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Preface

Fractional Brownian motion (fBm) appears naturally in the modeling of
many situations, for example, when describing

1. The widths of consecutive annual rings of a tree,
2. The temperature at a specific place as a function of time,
3. The level of water in a river as a function of time;
4. The characters of solar activity as a function of time,
5. The values of the log returns of a stock,
6. Financial turbulence, i.e. the empirical volatility of a stock, and other

turbulence phenomena,
7. The prices of electricity in a liberated electricity market.

In cases 1 to 5 the corresponding fBm has Hurst coefficient H > 1/2, which
means that the process is persistent. In cases 6 and 7 the corresponding fBm
has Hurst coefficientH < 1/2, which means that the process is anti-persistent.
For more information about some of these examples we refer to [209].

In addition to the above, it is a mathematically tractable fact that fBm
represents a natural one-parameter extension (represented by the Hurst pa-
rameter H) of classical Brownian motion. Therefore, it is natural to ask if
a stochastic calculus for fBm can be developed. This is not obvious since
fBm is not a semimartingale (except when H = 1/2, which corresponds to
the classical Brownian motion case). Moreover, it is not a Markov process ei-
ther; so the most useful and efficient classical mathematical machineries and
techniques for stochastic calculus are not available in the fBm case. There-
fore, it is necessary to develop these techniques from scratch for the fBm. It
turns out that this can be done by exploiting the fact that fBm is a Gaussian
process.

The purpose of this book is to explain this in detail and to give applications
of the resulting theory. More precisely, we will investigate the main approaches
used to develop a stochastic calculus for fBm and their relations. We also give
some applications, including discussions of the (sometimes controversial) use
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of fBm in finance, stochastic partial differential equations, stochastic optimal,
control and local time for fBm.

As shown by the reference section, there is a large literature concerning
stochastic calculus for fBm and its applications. We have tried to cite rigor-
ously every paper, preprint, or book we were aware of, and we apologize if we
accidentally overlooked some works.

We want to thank Birgit Beck, Christian Bender, Catriona M. Byrne,
Alessandra Cretarola, Robert Elliott, Nils Christian Framstad, Serena Fuschini,
ThiloMeyer-Brandis,KirstenMinkos, SebastianQueißer,DonnaMarySalopek,
Agnès Sulem, Esko Valkeila, John van der Hoek, and three anonymous referees
for many valuable communications and comments. Yaozhong Hu acknowledges
the support of the National Science Foundation under Grant No. DMS0204613
and DMS0504783. We are also very grateful to our editors Karen Borthwick,
Helen Desmond and Stephanie Harding for their patience and support.

Any remaining errors are ours.

Francesca Biagini, Yaozhong Hu, Bernt Øksendal and Tusheng Zhang,

Munich, Lawrence, Oslo, and Manchester, November 2006.
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Introduction

This book originates from the need of a comprehensive account of the sto-
chastic integration theory of the fractional Brownian motion (fBm). However
there are many important aspects of fBm that are not discussed here. For
example, for an analysis of the theory and the applications of long-range de-
pendence from a more statistical point of view, we refer to [81]. Our selection
of topics is based mainly on our main interests and background in correspond-
ing research papers. However besides our (fractional and standard) white noise
approach, we have tried to provide an overview of some of the most important
methods of introducing a stochastic integral for fBm.

After reviewing in Chapter 1 the properties of the fractional Brownian
motion, in Chapter 2 we start our tour through several definitions of stochastic
integral for fBm by the Wiener integral since it deals with the simplest case
of deterministic integrands. We proceed then to introduce the divergence type
integral seen as adjoint operator of the stochastic derivative.

In Chapters 3 and 4 we present a stochastic integration based on the white
noise theory. In Chapter 3 the stochastic integral is introduced as an element
of fractional Hida distribution space for Hurst index 1/2 < H < 1 and then
conditions are clarified that guarantee the existence of this type of integral in
L2. In Chapter 4 the integral is defined as an element in the classical Hida
distribution space by using the white noise theory and Malliavin calculus for
standard Brownian motion introduced in Appendix A. The main advantage
of this method with respect to the one presented in Chapter 3 is that it
permits us to define the stochastic integral for any H ∈ (0, 1). In addition it
doesn’t require the introduction of the fractional white noise theory since it
uses the well-established theory for the standard case. However, the approach
of Chapter 3 can be seen as more intrinsic.

Finally, in Chapter 5 we investigate the definition and the properties of the
pathwise integrals, respectively, symmetric, forward, and backward integrals.

All through this part we underline and investigate the relations between
the different approaches and in Chapter 6 we provide what in our eyes is
a useful summary. Here we present a synthesis of all the definitions and
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relations of the several kinds of stochastic integration for fBm together with
an overview of the Itô formula relative to each approach, trying to emphasize
how they can derive from each other by using the connections among the
different stochastic integrals.

In the second part we illustrate some application to finance, stochastic par-
tial differential equations, stochastic optimal control, and local time for fBm.
In the appendixes we gather the main results concerning the standard white
noise theory and Malliavin calculus for Brownian motion and fractional cal-
culus. Without aiming at completeness, for the reader’s convenience we also
provide a short summary of the main methods used to estimate the Hurst
parameter from sequences of data and some results concerning stochastic dif-
ferential equations for fBm.

In spite of its high level of technicality, we hope that this book will provide
a reference text for further development of the theory and the applications of
fBm.



1

Intrinsic properties of the fractional Brownian
motion

The aim of this book is to provide a comprehensive overview and system-
atization of stochastic calculus with respect to fractional Brownian motion.
However, for the reader’s convenience, in this chapter we review the main
properties that make fractional Brownian motion interesting for many appli-
cations in different fields.
The main references for this chapter are [76], [156], [177], [195], [209], [215].
For further details concerning the theory and the applications of long-range
dependence from a more statistical point of view, we also refer to [81].

1.1 Fractional Brownian motion

The fractional Brownian motion was first introduced within a Hilbert space
framework by Kolmogorov in 1940 in [141], where it was called Wiener Helix.
It was further studied by Yaglom in [230]. The name fractional Brownian
motion is due to Mandelbrot and Van Ness, who in 1968 provided in [156]
a stochastic integral representation of this process in terms of a standard
Brownian motion.

Definition 1.1.1. Let H be a constant belonging to (0, 1). A fractional Brown-
ian motion ( fBm) (B(H)(t))t≥0 of Hurst index H is a continuous and centered
Gaussian process with covariance function

E
[
B(H)(t)B(H)(s)

]
= 1/2(t2H + s2H − |t− s|2H).

For H = 1/2, the fBm is then a standard Brownian motion. By Definition
1.1.1 we obtain that a standard fBm B(H) has the following properties:

1. B(H)(0) = 0 and E
[
B(H)(t)

]
= 0 for all t ≥ 0.

2. B(H) has homogeneous increments, i.e., B(H)(t + s) − B(H)(s) has the
same law of B(H)(t) for s, t ≥ 0.
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3. B(H) is a Gaussian process and E
[
B(H)(t)2

]
= t2H , t ≥ 0, for all H ∈

(0, 1).
4. B(H) has continuous trajectories.

The existence of the fBm follows from the general existence theorem of cen-
tered Gaussian processes with given covariance functions (see [196]). We will
also give some constructions of the fBm through the white noise theory for
our special purposes in later chapters. The fBm is divided into three very
different families corresponding to 0 < H < 1/2, H = 1/2, and 1/2 < H < 1,
respectively, as we will see in the sequel. It was Mandelbrot that named the
parameter H of B(H) after the name of the hydrologist Hurst, who made
a statistical study of yearly water run-offs of the Nile river (see [129]). He
considered the values δ1, . . . , δn of n successive yearly run-offs and their cor-
responding cumulative value ∆n =

∑n
i=1 δi over the period from the year

662 until 1469. He discovered that the behavior of the normalized values of
the amplitude of the deviation from the empirical mean was approximately
cnH , where H = 0.7. Moreover, the distribution of ∆n =

∑n
i=1 δi was ap-

proximately the same as nHδ1, with H > 1/2. Hence, this phenomenon could
not be modeled by using a process with independent increments, but rather
the δi could be thought as the increments of a fBm. Because of this study,
Mandelbrot introduced the name Hurst index.

1.2 Stochastic integral representation

Here we discuss some of the integral representations for the fBm. In [156], it
is proved that the process

Z(t) =
1

Γ (H + 1/2)

∫

R

(
(t− s)H−1/2

+ − (−s)H−1/2
+

)
dB(s)

=
1

Γ (H + 1/2)

(∫ 0

−∞

(
(t− s)H−1/2 − (−s)H−1/2

)
dB(s)

+
∫ t

0

(t− s)H−1/2 dB(s)
)

(1.1)

where B(t) is a standard Brownian motion and Γ represents the gamma
function, is a fBm with Hurst index H ∈ (0, 1). If B(t) is replaced by a
complex-valued Brownian motion, the integral (1.1) gives the complex fBm.
By following [177] we sketch a proof for the representation (1.1). For further
detail we refer also to [207]. First we notice that Z(t) is a continuous centered
Gaussian process. Hence, we need only to compute the covariance functions.
In the following computations we drop the constant 1/Γ (H+1/2) for the sake
of simplicity. We obtain

E
[
Z2(t)

]
=
∫

R

[
(t− s)H−1/2

+ − (−s)H−1/2
+

]2
ds
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= t2H

∫

R

[
(1− u)H−1/2

+ − (−u)H−1/2
+

]2
du

= C(H)t2H ,

where we have used the change of variable s = tu. Analogously, we have that

E
[
|Z(t)− Z(s)|2

]
=
∫

R

[
(t− u)H−1/2

+ − (s− u)H−1/2
+

]2
ds

= t2H

∫

R

[
(t− s− u)H−1/2

+ − (−u)H−1/2
+

]2
du

= C(H)|t− s|2H .

Now

E [Z(t)Z(s)] = −1
2
{
E
[
|Z(t)− Z(s)|2

]
− E

[
Z(t)2

]
− E

[
Z(s)2

]}

=
1
2
(t2H + s2H − |t− s|2H).

Hence we can conclude that Z(t) is a fBm of Hurst index H.
Several other stochastic integral representations have been developed in

the literature. By [207], we get the following spectral representation of fBm

B(H)(t) :=
1

C2(H)

∫

R

eits − 1
is

|s|1/2−H dB̃(s),

where B̃(s) = B1 + iB2 is a complex Brownian measure on R such that
B1(A) = B1(−A), B2(A) = −B2(−A), and E

[
B1(A)2

]
= E

[
B2(A)2

]
=

|A|/2 for every A ∈ B(R), and

C2(H) =
(

π

HΓ (2H) sinHπ

)1/2

,

where Bi(A) :=
∫

A
dBi(t). Equation (1.1) provides an integral representation

for fBm over the whole real line. By following the approach of [172], we can
also represent the fBm over a finite interval, i.e.,

B(H)(t) :=
∫ t

0

KH(t, s) dB(s), t ≥ 0,

where

1. For H > 1/2,

KH(t, s) = cHs
1/2−H

∫ t

s

|u− s|H−3/2uH−1/2 du, (1.2)

where cH = [H(2H − 1)/β(2− 2H,H − 1/2)]1/2 and t > s.
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2. For H < 1/2,

KH(t, s) = bH

[(
t

s

)H−1/2

(t− s)H−1/2

−
(
H − 1

2

)
s1/2−H

∫ t

s

(u− s)H−1/2uH−3/2 du

] (1.3)

with bH = [2H/((1− 2H)β(1− 2H,H + 1/2))]1/2 and t > s.

For the proof, we refer to [114], [172], and [177]. Note that this representation
is canonical in the sense that the filtrations generated by B(H) and B coincide.

In Chapter 2 a definition of stochastic integral with respect to fBm will
be introduced by exploiting the stochastic integral representation of B(H) in
terms of (1.2) and of (1.3).

Remark 1.2.1. Integral representations that change fBm of arbitrary Hurst
index K into fBm of index H have been studied in [191], [133] and [134]. In
Theorem 1.1 of [191] it is shown that for any K ∈ (0, 1), there exists a unique
K-fBm B̃(K) such that for all t ∈ R there holds

B(H)(t) = c̃H,K

∫

R

[
(t− s)H−K

+ − (−s)H−K
+

]
dB̃(K)(s), a.s., (1.4)

with c̃H,K = 1/Γ (H − K + 1) (Γ (2K + 1) sin (πK)/Γ (2H + 1) sin (πH))1/2.
In Theorem 5.1 of [133] integration is carried out on [0, t] and showed that for
given K ∈ (0, 1), there exists a unique K-fBm B(K)(t), t ≥ 0, such that for
all t ≥ 0 we have a.s. that

B(H)(t) = cH,K

∫ t

0

(t− s)H−K

· F
(

1−K −H,H −K, 1 +H −K, s− t
s

)
dB(K)(s), (1.5)

where F is Gauss hypergeometric function and

cH,K =
1

Γ (H −K + 1)

(
2HΓ (H + 1/2)Γ (3/2−H)Γ (2− 2K)
2KΓ (K + 1/2)Γ (3/2−K)Γ (2− 2H)

)1/2

.

In [134] an analytical connection between (1.4) and (1.5) is proved.

1.3 Correlation between two increments

For H = 1/2, B(H) is a standard Brownian motion; hence, in this case the
increments of the process are independent. On the contrary, for H �= 1/2 the
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increments are not independent. More precisely, by Definition 1.1.1 we know
that the covariance between B(H)(t+h)−B(H)(t) and B(H)(s+h)−B(H)(s)
with s+ h ≤ t and t− s = nh is

ρH(n) =
1
2
h2H [(n+ 1)2H + (n− 1)2H − 2n2H ].

In particular, we obtain that two increments of the form B(H)(t+h)−B(H)(t)
and B(H)(t + 2h) − B(H)(t + h) are positively correlated for H > 1/2, while
they are negatively correlated for H < 1/2. In the first case the process
presents an aggregation behavior and this property can be used in order to
describe “cluster” phenomena (systems with memory and persistence). In the
second case it can be used to model sequences with intermittency and anti-
persistence.

1.4 Long-range dependence

Definition 1.4.1. A stationary sequence (Xn)n∈N exhibits long-range depen-
dence if the autocovariance functions ρ(n) := cov(Xk,Xk+n) satisfy

lim
n→∞

ρ(n)
cn−α

= 1

for some constant c and α ∈ (0, 1). In this case, the dependence between Xk

and Xk+n decays slowly as n tends to infinity and

∞∑
n=1

ρ(n) = ∞.

Hence, we obtain immediately that the increments Xk := B(H)(k)−B(H)(k−
1) of B(H) and Xk+n := B(H)(k + n) − B(H)(k + n − 1) of B(H) have the
long-range dependence property for H > 1/2 since

ρH(n) =
1
2
[(n+ 1)2H + (n− 1)2H − 2n2H ] ∼ H(2H − 1)n2H−2

as n goes to infinity. In particular,

lim
n→∞

ρH(n)
H(2H − 1)n2H−2

= 1.

Summarizing, we obtain

1. For H > 1/2,
∑∞

n=1 ρH(n) = ∞.
2. For H < 1/2,

∑∞
n=1 |ρH(n)| <∞.
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There are alternative definitions of long-range dependence. We recall that a
function L is slowly varying at zero (respectively, at infinity) if it is bounded
on a finite interval and if, for all a > 0, L(ax)/L(x) tends to 1 as x tends to
zero (respectively, to infinity).

We introduce now the spectral density of the autocovariance functions ρ(k)

f(λ) :=
1
2π

∞∑
k=−∞

e−iλkρ(k)

for λ ∈ [−π, π].

Definition 1.4.2. For stationary sequences (Xn)n∈N with finite variance, we
say that (Xn)n∈N exhibits long-range dependence if one of the following holds:

1. limn→∞(
∑n

k=−n ρ(k))/(cn
βL1(n)) = 1 for some constant c and β ∈ (0, 1).

2. limk→∞ ρ(k)/ck−γL2(k) = 1 for some constant c and γ ∈ (0, 1).
3. limλ→0 f(λ)/c|λ|−δL3(|λ|) = 1 for some constant c and δ ∈ (0, 1).

Here L1, L2 are slowly varying functions at infinity, while L3 is slowly varying
at zero.

Lemma 1.4.3. For fBm B(H) of Hurst index H ∈ (1/2, 1), the three defini-
tions of long-range dependence of Definition 1.4.2 are equivalent. They hold
with the following choice of parameters and slowly varying functions:

1. β = 2H − 1, L1(x) = 2H.
2. γ = 2− 2H, L2(x) = H(2H − 1).
3. δ = 2H − 1, L3(x) = π−1HΓ (2H) sinπH.

Proof. For the proof, we refer to Section 4 in [221]. ��

For a survey on theory and applications of long-range dependence, see also
[81].

1.5 Self-similarity

By following [209], we introduce the following:

Definition 1.5.1. We say that an R
d-valued random process X = (Xt)t≥0 is

self-similar or satisfies the property of self-similarity if for every a > 0 there
exists b > 0 such that

Law(Xat, t ≥ 0) = Law(bXt, t ≥ 0). (1.6)

Note that (1.6) means that the two processes Xat and bXt have the same
finite-dimensional distribution functions, i.e., for every choice t0, . . . , tn in R,

P (Xat0 ≤ x0, . . . , Xatn
≤ xn) = P (bXt0 ≤ x0, . . . , bXtn

≤ xn)

for every x0, . . . , xn in R.
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Definition 1.5.2. If b = a−H in Definition 1.5.1, then we say that X =
(Xt)t≥0 is a self-similar process with Hurst index H or that it satisfies the
property of (statistical) self-similarity with Hurst index H. The quantity D =
1/H is called the statistical fractal dimension of X.

Since the covariance function of the fBm is homogeneous of order 2H, we
obtain that B(H) is a self-similar process with Hurst index H, i.e., for any
constant a > 0 the processes B(H)(at) and a−HB(H)(t) have the same distri-
bution law.

1.6 Hölder continuity

We recall that according to the Kolmogorov criterion (see [228]), a process
X = (Xt)t∈R admits a continuous modification if there exist constants α ≥ 1,
β > 0, and k > 0 such that

E [|X(t)−X(s)|α] ≤ k|t− s|1+β

for all s, t ∈ R.

Theorem 1.6.1. Let H ∈ (0, 1). The fBm B(H) admits a version whose sam-
ple paths are almost surely Hölder continuous of order strictly less than H.

Proof. We recall that a function f : R → R is Hölder continuous of order α,
0 < α ≤ 1, and write f ∈ Cα(R), if there exists M > 0 such that

|f(t)− f(s)| ≤M |t− s|α,

for every s, t ∈ R. For any α > 0 we have

E
[
|B(H)(t)−B(H)(s)|α

]
= E

[
|B(H)(1)|α

]
|t− s|αH ;

hence, by the Kolmogorov criterion we get that the sample paths of B(H) are
almost everywhere Hölder continuous of order strictly less than H. Moreover,
by [9] we have

lim sup
t→0+

|B(H)(t)|
tH
√

log log t−1
= cH

with probability one, where cH is a suitable constant. Hence B(H) cannot have
sample paths with Hölder continuity’s order greater than H. ��

1.7 Path differentiability

By [156] we also obtain that the process B(H) is not mean square differentiable
and it does not have differentiable sample paths.
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Proposition 1.7.1. Let H ∈ (0, 1). The fBm sample path B(H)(.) is not
differentiable.

In fact, for every t0 ∈ [0,∞)

lim sup
t→t0

|B
(H)(t)−B(H)(t0)

t− t0
| =∞

with probability one.

Proof. Here we recall the proof of [156]. Note that we assume B(H)(0) = 0.
The result is proved by exploiting the self-similarity of B(H). Consider the
random variable

Rt,t0 :=
B(H)(t)−B(H)(t0)

t− t0
that represents the incremental ratio of B(H). Since B(H) is self-similar, we
have that the law of Rt,t0 is the same of (t− t0)H−1B(H)(1). If one considers
the event

A(t, ω) :=
{

sup
0≤s≤t

∣∣∣∣
B(H)(s)

s

∣∣∣∣ > d
}
,

then for any sequence (tn)n∈N decreasing to 0, we have

A(tn, ω) ⊇ A(tn+1, ω),

and

A(tn, ω) ⊇ (|B
(H)(tn)
tn

| > d) = (|B(H)(1)| > t1−H
n d).

The thesis follows since the probability of the last term tends to 1 as n→∞.
��

1.8 The fBm is not a semimartingale for H �= 1/2

The fact that the fBm is not a semimartingale for H �= 1/2 has been proved
by several authors. For example, for H > 1/2 we refer to [82], [150], [152].
Here we recall the proof of [195] that is valid for every H �= 1/2. In order
to verify that B(H) is not a semimartingale for H �= 1/2, it is sufficient to
compute the p-variation of B(H).

Definition 1.8.1. Let (X(t))t∈[0,T ] be a stochastic process and consider a par-
tition π = {0 = t0 < t1 < . . . < tn = T}. Put

Sp(X,π) :=
n∑

i=1

|X(tk)−X(tk−1)|p .

The p-variation of X over the interval [0, T ] is defined as
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Vp(X, [0, T ]) := sup
π

Sp(X,π),

where π is a finite partition of [0, T ]. The index of p-variation of a process is
defined as

I(X, [0, T ]) := inf {p > 0;Vp(X, [0, T ]) <∞} .
We claim that

I(B(H), [0, T ]) =
1
H
.

In fact, consider for p > 0,

Yn,p = npH−1
n∑

i=1

∣∣∣∣B(H)

(
i

n

)
−B(H)

(
i− 1
n

)∣∣∣∣
p

.

Since B(H) has the self-similarity property, the sequence (Yn,p)n∈N has the
same distribution as

Ỹn,p = n−1
n∑

i=1

|B(H)(i)−B(H)(i− 1)|p.

By the Ergodic theorem (see, for example, [69]) the sequence Ỹn,p converges
almost surely and in L1 to E

[
|B(H)(1)|p

]
as n tends to infinity; hence, it

converges also in probability to E
[
|B(H)(1)|p

]
. It follows that

Vn,p =
n∑

i=1

∣∣∣∣B(H)

(
i

n

)
−B(H)

(
i− 1
n

)∣∣∣∣
p

converges in probability respectively to 0 if pH > 1 and to infinity if pH < 1
as n tends to infinity. Thus we can conclude that I(B(H), [0, T ]) = 1/H. Since
for every semimartingale X, the index I(X, [0, T ]) must belong to [0, 1]∪{2},
the fBm B(H) cannot be a semimartingale unless H = 1/2.

As a direct consequence of this fact, one cannot use the Itô stochastic cal-
culus developed for semimartingales in order to define the stochastic integral
with respect to B(H). In the following chapters we will summarize the different
approaches developed in the literature in order to overcome this problem.

In [53] it has been introduced the new notion of weak semimartingale and
shown that B(H) is not even a weak semimartingale if H �= 1/2. A stochastic
process (X(t))t≥0 is said to be a weak semimartingale if for every T > 0 the
family of random variables
{

n∑
i=1

ai[X(ti)−X(ti−1)], n ≥ 1, 0 = t0 < . . . < tn = T, |ai| < 1, ai ∈ FX
ti−1

}

is bounded in L0. Here FX represents the natural filtration associated to the
process X. Moreover, in [53] it is shown that if B(t) is a standard Brownian
motion independent of B(H), then the process
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MH(t) := B(H)(t) +B(t)

is not a weak semimartingale if H ∈ (0, 1/2) ∪ (1/2, 3/4), while it is a
semimartingale equivalent in law to B on any finite time interval [0, T ] if
H ∈ (3/4, 1). We refer to [53] for further details.

1.9 Invariance principle

Here we present an invariance principle for fBms due to [36].
Assume that {Xn, n = 1, 2, ...} is a stationary Gaussian sequence with

E [Xi] = 0 and E[X2
i ] = 1. Define

Zn(t) =
1
nH

[nt]−1∑
k=0

Xk, 0 ≤ t ≤ 1,

where [·] stands for the integer part. We will show that if the covariance of∑n
k=0Xk is proportional to Cn2H for large n, Zn(t), t ≥ 0 converges weakly

to
√
CB

(H)
t in a suitable metric space. Let us first introduce the the metric

space. Let I = [0, 1] and denote by Lp(I) the space of Lebesgue integrable
functions with exponent p. For f ∈ Lp(I), t ∈ I, define

ωp(f, t) = sup
|h|≤t

(∫

Ih

|f(x+ h)− f(x)|pdx
)1/p

,

where Ih = {x ∈ I, x + h ∈ I}. For 0 < α < 1 and β > 0, consider the
real-valued function ωα

β (·) defined by

ωα
β (t) = tα

(
1 + log

1
t

)β

, t > 0,

and we let

‖f‖ωα
β

p = ||f ||Lp(I) + sup
0<t≤1

ωp(f, t)
ωα

β (t)
.

The Besov space Lipp(α, β) is the class of functions f in Lp(I) such that

‖f‖ωα
β

p < ∞. Lipp(α, β) endowed with the norm || · ||ω
α
β

p is a nonseparable
Banach space. Let Bα,β

p denote the separable subspace of Lipp(α, β) formed
by functions f ∈ Lipp(α, β) satisfying ωp(f, t) = o(ωα

β (t)) as t → 0. For
a continuous function f , denote by {Cn(f), n ≥ 0} the coefficients of the
decomposition of f in the Schauder basis given by

C0(f) = f(0), C1(f) = f(1)− f(0),

and for n = 2j + k, j ≥ 0, and k = 0, ..., 2j − 1,
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Cn(f) = 2 · 2j/2

{
f

(
2k − 1
2j+1

)
− 1

2

[
f

(
2k

2j+1

)
+ f
(

2k − 2
2j+1

)]}
.

The following characterization theorem proved in [55] will be used.

Theorem 1.9.1. 1. If α > 1/p, then Lipp(α, β) is the space of continuous
functions with the following equivalence of norms:

||f ||ω
α
β

p ∼ max
{
|C0(f)|, |C1(f)|,

sup
j≥0

2−j(1/2−α+1/p)

(1 + j)β

[ 2j+1∑
n=2j+1

|Cn(f)|p
]1/p}

.

2. f belongs to Bα,β
p if and only if

lim
j→∞

2−j(1/2−α+1/p)

(1 + j)β

[ 2j+1∑
n=2j+1

|Cn(f)|p
]1/p

= 0.

Lemma 1.9.2. Let 1 ≤ p < ∞, 1/p < α < 1, and β > 0. A set F of
measurable functions f : I → R is relatively compact in Bα,β

p if

1. supf∈F ||f ||
ωα

β
p <∞,

2. lim supδ→0 supf∈F Kδ(f, α, β, p) = 0, where

Kδ(f, α, β, p) = sup
0<t≤δ

ωp(f, t)
ωα

β (t)
.

Proof. It is a consequence of the Frechet–Kolmogorov theorem: a subset K ⊂
Lp(I) is relatively compact if and only if

sup
f∈K

(∫

I

|f(s)|pds
)
<∞,

lim
t→0

sup
f∈K

∫

I

(|f(s+ t)− f(s)|p) ds = 0.

Now assume (1) and (2) hold for a set F . To prove that F is relatively compact,
we need to show that any sequence {fn, n ≥ 1} ⊂ F admits a convergent
subsequence. Pick a sequence {fn, n ≥ 1} from F . By the Frechet–Kolmogorov
theorem, {fn, n ≥ 1} has a convergent subsequence in Lp(I). Without loss of
generality, we assume that fn → f in Lp(I). First we show that f ∈ Bα,β

p . By
the Fatou lemma,

ωp(f, t) = sup
|h|≤t

(∫

Ih

|f(x+ h)− f(x)|pdx
)1/p
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≤ sup
|h|≤t

lim inf
n→∞

(∫

Ih

|fn(x+ h)− fn(x)|pdx
)1/p

≤ supn sup
|h|≤t

(∫

Ih

|fn(x+ h)− fn(x)|pdx
)1/p

.

This together with assumption (2) implies ωp(f, t) = o(ωα
β (t)) as t→ 0. Hence,

f ∈ Bα,β
p . We will finish the proof by showing fn → f also in Bα,β

p . From the
definition of the norm in Bα,β

p , it is sufficient to show

lim
n→∞

sup
0<t≤1

ωp(fn − f, t)
ωα

β (t)
= 0.

For any 0 < δ < 1, we have

sup
0<t≤1

ωp(fn − f, t)
ωα

β (t)
≤ sup

0<t≤δ

ωp(fn − f, t)
ωα

β (t)
+ sup

δ<t≤1

ωp(fn − f, t)
ωα

β (t)
.

Let ε > 0. By assumption (2) we can find δ > 0 such that

sup
0<t≤δ

ωp(fn − f, t)
ωα

β (t)
≤ ε

2
,

for all n ≥ 1. On the other hand,

sup
δ<t≤1

ωp(fn − f, t)
ωα

β (t)
≤ cδ sup

δ<t≤1
ωp(fn − f, t) ≤ 2cδ||fn − f ||Lp(I).

Thus, there exists N > 0 such that for n ≥ N ,

sup
δ<t≤1

ωp(fn − f, t)
ωα

β (t)
≤ ε

2
.

Combining the above arguments, we arrive at

lim
n→∞

sup
0<t≤1

ωp(fn − f, t)
ωα

β (t)
= 0.

��

Lemma 1.9.3. Let α > 1/p and 0 < β < β′. The space Lipp(α, β) is com-
pactly embedded in Bα,β′

p .

Proof. Let B = {f ∈ Lipp(α, β); ||f ||ω
α
β

p ≤ M} be a bounded subset

of Lipp(α, β). It is clear that if β < β′, then ||f ||ω
α
β′

p ≤ ||f ||ω
α
β

p . Hence,

supf∈B ||f ||
ωα

β′
p <∞. On the other hand,
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Kδ(f, α, β′, p) = sup
0<t≤δ

ωp(f, t)
ωα

β′(t)
≤ sup

0<t≤δ

ωp(f, t)
ωα

β (t)ω0
β−β′(δ)

≤Mω0
β−β′(δ).

Therefore,
lim sup

δ→0
sup
f∈B

Kδ(f, α, β′, p) = 0.

By Lemma 1.9.2 this implies that B is relatively compact in Bα,β′

p . ��

Lemma 1.9.4. Let (Xn
t , t ∈ I)n≥1 be a sequence of stochastic processes sat-

isfying

1. Xn
0 = 0 for all n ≥ 1.

2. There exists a positive constant C and α ∈]0, 1[ such that for p ≥ 1,
E[|Xn

t −Xn
s |p] ≤ C|t− s|pα for all s, t ∈ I.

Then (Xn
t , t ∈ I)n≥1 is tight in Bα,β

p , β > 0 for p > max(1/α, 1/β).

Proof. By the assumptions, we have C0(Xn) = 0 and C1(Xn) = Xn
1 . To prove

the lemma, by Lemma 1.9.3 it is enough to show that there exists a constant
Cp > 0 such that , for λ > 0 and 1/p < β′ < β, we have P (||Xn||ω

α
β′

p > λ) ≤
Cpλ

−p for all n ≥ 1. Applying the characterization Theorem 1.9.1 above, it
suffices to show that

P

(
M(Xn) > λ

)
≤ Cpλ

−p,

where M(Xn) is the maximum of the set

{
|C0(Xn)|, |C1(Xn)|, sup

j≥0

2−j(1/2−α+1/p)

(1 + j)β′

[ 2j+1∑
m=2j+1

|Cm(Xn)|p
]1/p}

.

Now, by the Chebyshev inequality, we have

I = P

(
sup
j≥0

2−j(1/2−α+1/p)

(1 + j)β′

[ 2j+1∑
m=2j+1

|Cm(Xn)|p
]1/p

> λ

)

≤
∑
j≥0

2−jp(1/2−α+1/p)

(1 + j)pβ′

2j+1∑
m=2j+1

E[|Cm(Xn)|p]λ−p.

Recall that for m = 2j + k,

Cm(Xn) = 2 · 2j/2

[
Xn

(2k−1)/2j+1 −
1
2
(Xn

2k/2j+1 +Xn
(2k−2)/2j+1)

]
.

Thus,
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I ≤ Cpλ
−p
∑
j≥0

2−jp(1/2−α+1/p)

(1 + j)pβ′ ·
2j∑

k=1

(
E
[∣∣Xn

(2k−1)/2j+1 −Xn
2k/2j+1

∣∣p]

+ E
[∣∣Xn

(2k−1)/2j+1 −Xn
(2k−2)/2j+1

∣∣p]
)

≤ λ−p

[
Cp

∑
j≥0

1/(1 + j)pβ′
]
≤ Cpλ

−p

which completes the proof. ��

Let Xi be a stationary Gaussian sequence with mean 0 and correlations
E[XkXl] = r(k − l). Define

Zn(t) =
1
nH

[nt]−1∑
k=0

Xk.

Theorem 1.9.5. Let H ∈]0, 1[, β > 0 and p > max(1/H, 1/β). Assume

n∑
k=1

n∑
l=1

r(k − l) ∼ Cn2H , a.s. n→∞,

for some positive constant C. Then Zn(t) converges weakly to
√
CB

(H)
t in

BH,β
p .

Proof. First we prove that the finite-dimensional distributions of (Zn(t), t ∈ I)
converge weakly to those of (

√
CB

(H)
t t ∈ I). Fix any 0 < t1 < t2 < · · · <

tm ≤ 1, we need to show that the distribution of (Zn(t1), Zn(t1), ..., Zn(tm))
converges weakly to that of (

√
CB

(H)
t1 ,

√
CB

(H)
t2 , ...,

√
CB

(H)
tm

). Since they are
jointly Gaussian, by considering characteristic functions , it is sufficient to
prove that Cn(ti, tj) := E[Zn(ti)Zn(tj)] converges to

C(ti, tj) := C
1
2
(t2H

i + t2H
j − |ti − tj |2H)

as n→∞. Without loss of generality, let us assume tj > ti. We have

Cn(ti, tj) =
1
n2H

1
2

(
E

[∣∣∣∣
[nti]−1∑

k=0

Xk

∣∣∣∣
2]

+ E
[∣∣∣∣

[ntj ]−1∑
k=0

Xk

∣∣∣∣
2]
− E

[∣∣∣∣
[ntj ]−1∑
k=[nti]

Xk

∣∣∣∣
2]) (1.7)

has the same behavior as

1
n2H

1
2
{C[nti]2H + C[ntj ]2H − C([ntj ]− [nti])2H}
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for n→∞. Hence the limit of (1.7) is

C
1
2
{t2H

i + t2H
j − |ti − tj |2H} = C(ti, tj),

as n→∞. It remains to show that the sequence (Zn(t), t ∈ I) is tight in the
Banach space BH,β

p . Let s, t ∈ I such that t ≥ s and p > 1/H. Using the
stationarity, we see that

E[|Zn(t)− Zn(s)|p] = E

[∣∣∣∣
1
nH

[nt]−1∑
k=[ns]

Xk

∣∣∣∣
p]

= E

[∣∣∣∣
1
nH

[nt]−[ns]−1∑
k=0

Xk

∣∣∣∣
p]

=
∣∣∣∣
[nt]− [ns]

n

∣∣∣∣
pH

E

[∣∣∣∣
1

([nt]− [ns])H

[nt]−[ns]−1∑
k=0

Xk

∣∣∣∣
p]
.

Note that for n large enough, we have |([nt]− [ns])/n|pH ≤ |t − s|pH for all
t, s ∈ I. Hence, by Lemma 1.9.4 it suffices to show that there exists a positive
constant C such that E

[∣∣∣1/nH
∑n−1

k=0 Xk

∣∣∣
p]
≤ C for all n ≥ 1, equivalently

to show E[|Zn(1)|p] ≤ C for all n ≥ 1.
Since Sn =

∑n−1
k=0 Xk is Gaussian, E[(Sn)2p] is proportional to (E[(Sn)2])p

for all p ≥ 1 and n ≥ 1. By our assumption, E[(Sn)2] is asymptotically
proportional to n2H . Thus,

E[|Zn(1)|p] ∼ E[|Sn|p]
npH

=
O((E[(Sn)2])p/2)

npH
= O(1),

as n→∞. Hence, supn≥1E[|Zn(1)|p] <∞, which proves the theorem. ��

Corollary 1.9.6. Let H ∈ (0, 1), β > 0, and p > max(1/H, 1/β). Assume
that {Xn, n = 1, 2, ...} is a stationary Gaussian sequence with spectral repre-
sentation

Xn =
∫ π

−π

exp(inλ)|λ|1/2−HB(dλ), n = 1, 2, ...,

where B(dλ) is a Gaussian random measure with E[B(dλ)|2] = dλ. Then
there exists a positive constant C such that (Zn(t), t ∈ [0, 1]) converges weakly
to (CB(H)

t , t ∈ [0, 1]) in the space BH,β
p .

Proof. Let r(k) = E[X1Xk+1] be the covariance function of {Xn, n = 1, 2, ...}.
It suffices to show that

n∑
k=1

n∑
l=1

r(k − l) ∼ C2n2H .
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We have

n−2H
n∑

k=1

n∑
l=1

r(k − l) = n−2H
n∑

k=1

n∑
l=1

∫ π

−π

exp(i(k − l)λ)|λ|1−2Hdλ

= n−2H

∫ π

−π

∣∣∣∣
n∑

k=1

exp(ikλ)
∣∣∣∣
2

|λ|1−2Hdλ

= n−2H

∫ π

−π

∣∣∣∣
exp(i(n+ 1)λ)− exp(iλ)

(exp(iλ)− 1)

∣∣∣∣
2

|λ|1−2Hdλ

=
∫ π

−π

∣∣∣∣
exp[i(n+ 1)λ/n]− exp(iλ/n)

n(exp(iλ/n)− 1)

∣∣∣∣
2

|λ|1−2Hdλ.

Hence n−2H
∑n

k=1

∑n
l=1 r(k − l) tends to

∫

R

∣∣∣∣
exp(iλ)− 1

iλ

∣∣∣∣
2

|λ|1−2Hdλ,

as n→∞. Therefore, the proof is complete. ��



2

Wiener and divergence-type integrals for
fractional Brownian motion

We start our tour through the different definitions of stochastic integration
for fBm of Hurst index H ∈ (0, 1) with the Wiener integrals since they deal
with the simplest case of deterministic integrands. We show how they can
be expressed in terms of an integral with respect to the standard Brownian
motion, extend their definition also to the case of stochastic integrands, and
then proceed to define the stochastic integral by using the divergence operator.
In both cases we need to distinguish between H > 1/2 and H < 1/2.

The main references for this chapter are [6], [7], [8], [54], [68], [71], [72],
[75], [76].

2.1 Wiener integrals

Here we introduce stochastic integrals with respect to fBm by using its
Gaussianity. Stochastic integrals of deterministic functions with respect to
a Gaussian process were introduced in [171] and are called Wiener integrals.
In the case of Brownian motion, they coincide with Itô integrals. For fBm
they were defined for the first time in [76].

Fix an interval [0, T ] and let B(H)(t), t ∈ [0, T ], be a fBm of Hurst index
H ∈ (0, 1) on the probability space (Ω,F(H),F

(H)
t ,PH) endowed with the

natural filtration (F(H)
t )t∈[0,T ] and the law P

H of B(H) (for a construction of
the measure P

H we refer to Chapter 1 and for the case H > 1/2, to Section
3.1). Recall that if we define for s, t > 0 ,

RH(t, s) :=
1
2
(s2H + t2H − |t− s|2H), s, t ≥ 0,

then the covariance E
[
B(H)(t)B(H)(s)

]
= RH(t, s). By [177], we obtain the

following:

1. For H > 1/2, the covariance of the fBm can be written as
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RH(t, s) = αH

∫ t

0

∫ s

0

|r − u|2H−2 du dr,

where αH = H(2H − 1). We can rewrite

|r − u|2H−2 =
(ru)H−1/2

β(2− 2H,H − 1/2)

·
∫ r∧u

0

v1−2H(r − v)H−3/2(u− v)H−3/2 dv,

(2.1)

where β(α, γ) = Γ (α+ γ)/(Γ (β)Γ (γ)) and Γ (α) =
∫∞
0
xα−1e−xdx is the

Gamma function, since
∫ u

0

v1−2H(r − v)H−3/2(u− v)H−3/2 dv

= (r − u)2H−2

∫ ∞

r/u

(zu− r)1−2HzH−3/2 dz

= (ru)1/2−H(r − u)2H−2

∫ 1

0

(1− x)1−2HxH−3/2 dx

= β(2− 2H,H − 1/2)(ru)1/2−H(r − u)2H−2,

where we have used the change of variable z = (r − v)/(u − v) and x =
r/(uz) and supposed r > u. Consider now the deterministic kernel

KH(t, s) = cHs
1/2−H

∫ t

s

(u− s)H−3/2uH−1/2 du, (2.2)

where cH = [H(2H − 1)/(β(2− 2H,H − 1/2))]1/2 and t > s. Then we
have that

RH(t, s) =
∫ t∧s

0

KH(t, u)KH(s, u) du

since by (2.1) it follows that
∫ t∧s

0

KH(t, u)KH(s, u) du

= c2H

∫ t∧s

0

(∫ t

u

(y − u)H−3/2yH−1/2dy

)

·
(∫ s

u

(z − u)H−3/2zH−1/2dz

)
u1−2H du

= c2H

∫ t

0

∫ s

0

(yz)H−1/2

(∫ y∧z

0

u1−2H(y − u)H−3/2(z−u)H−3/2du

)
dz dy

= c2Hβ

(
2− 2H,H − 1

2

)∫ t

0

∫ s

0

(y − z)2H−2 dz dy = RH(t, s).
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Note also that with a change of variable in (2.2),KH(t, s) can be expressed
equivalently as

KH(t, s) = cH(t− s)H−1/2
+

∫ 1

0

uH−3/2

(
1− (1− t

s
)u
)H−1/2

du.

See also [72], [76] for further details.
2. For H < 1/2, the kernel

KH(t, s) = bH

[(
t

s

)H−1/2

(t− s)H−1/2

−
(
H − 1

2

)
s1/2−H

∫ t

s

(u− s)H−1/2uH−3/2du

] (2.3)

with bH =
√

2H/((1− 2H)β(1− 2H,H + 1/2)), and t > s satisfies

RH(t, s) =
∫ t∧s

0

KH(t, u)KH(s, u) du. (2.4)

For a detailed proof of equation (2.4), see [76], [189], where it is proved
by using the analyticity of both members as functions of the parameter
H. See also [177], where a direct proof is given by using the ideas of [172]
and the fact that

∂KH

∂t
(t, s) = cH(H − 1/2)(

t

s
)H−1/2(t− s)H−3/2.

3. For H = 1/2, we have K1/2(t, s) = I[0,t](s).

In order to define the Wiener integrals with respect to B(H), we introduce the
so-called reproducing kernel Hilbert space denoted by H.

Definition 2.1.1. The reproducing kernel Hilbert space (RKHS), de-
noted by H, associated to B(H) for every H ∈ (0, 1), is defined as the closure
of the vector space spanned by the set of functions {RH(t, ·), t ∈ [0, T ]} with
respect to the scalar product

〈RH(t, ·), RH(s, ·)〉 = RH(t, s) ∀t, s ∈ [0, T ]. (2.5)

In the case of standard Brownian motion, there exists a nice characteriza-
tion of H, which coincides with the space of absolutely continuous functions,
vanishing at 0, with square-integrable derivative.

In the case of fBm, it has been proved first in [12] for H > 1/2 and then
in [75] for every H ∈ (0, 1) that the following holds:
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Proposition 2.1.2. For any H ∈ (0, 1), H is the set of functions f which
can be written as

f(t) =
∫ t

0

KH(t, s)f̃(s) ds (2.6)

for some f̃ ∈ L2([0, T ]). By definition, ‖f‖H = ‖f̃‖L2([0,T ]).

If KH(t, s) is of the form (2.2), by [206, p. 187] we have that the integral
representation (2.6) induces an isomorphism from L2([0, T ]) onto the space
I

H+1/2
0+ (L2([0, T ])) introduced in Definition B.1.3. Hence it follows that H

considered as a vector space of functions (and not taking account of its
Hilbert space structure and its norm) coincides with the fractional space
I

H+1/2
0+ (L2([0, T ])) of functions ψ of the form

ψ(x) :=
1

Γ (H + 1/2)

∫ x

0

(x− y)H−1/2f(y) dy,

for some f ∈ L2([0, T ]). For further details, see also the proofs of [75] and
Theorem 3.2 of [76].

Definition 2.1.3. For any H ∈ (0, 1), the (abstract) Wiener integral with
respect to the fBm is defined as the linear extension from H in L2(PH) of the
isometric map IH :

IH : H −→ L2(PH),

RH(t, ·) �−→ B(H)(t).

By Definition 2.1.3, it follows that the abstract Wiener integral with respect
to finite combinations of RH(t, ·) is given by

IH

(
n∑

i=1

αiRH(ti, ·)
)

=
n∑

i=1

αiB
(H)(ti).

We consider now a general u ∈ H. For any u ∈ H, there exists a sequence
(un)n∈N ⊂ H such that every un is a finite linear combination of functions of
the type RH(ti, ·) that converges to u in H. Hence we can define the abstract
Wiener integral of u ∈ H with respect to B(H) as

IH(u) = lim
n→∞

IH(un),

where the limit is taken in L2(PH).
If we apply this construction to the standard Brownian motion, it follows

by the definition of the RKHS that the space of admissible integrands is given
by the deterministic functions which are continuous and whose first deriva-
tive is square integrable on [0, T ]. This characterization determines uniquely
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the space of integrands in the standard Brownian motion case. This is a con-
sequence of the fact that the properties of Wiener integrals don’t change if
H is replaced by an isometrically isomorphic space. Since I10+ is a bijective
isometry from L2([0, T ]) to H, they are usually identified in the construction
of the Wiener integral for the Brownian motion. In order to obtain a similar
characterization of the space of integrands even in the case of the fBm, we
replace H by an isometrically isomorphic Hilbert space.

Definition 2.1.4. By a representation of H we mean a pair (F, i) composed
of a functional space F and a bijective isometry i between F and H.

By Proposition 2.1.2, we immediately get the following:

Theorem 2.1.5.There exists a canonical isometric bijection betweenL2([0, T ])
and H given by

i1 : L2([0, T ]) −→ H,

h �−→ f(t) =
∫ t

0

KH(t, s)h(s) ds,

where H is endowed with the scalar product defined in (2.5) and L2([0, T ])
with the usual inner product. Hence (L2([0, T ]), i1) is a representation of H.

According to this representation, for H = 1/2 we have i1 = I10+, i.e.,
i1(h) =

∫ t

0
h(s) ds. In general, for any H ∈ (0, 1), KH(t, ·) is associated by

i1 to RH(t, ·).

2.1.1 Wiener integrals for H > 1/2

We now focus on the case H > 1/2. From now on we denote by E the space
of step functions on [0, T ]. Another representation of H is given by

Theorem 2.1.6. For any H > 1/2, consider L2([0, T ]) equipped with the
twisted scalar product:

〈f, g〉H := H(2H − 1)
∫ T

0

∫ T

0

f(s)g(t)|s− t|2H−2 ds dt . (2.7)

Define the linear map i2 on the space E of step functions on [0, T ] by

i2 : (L2([0, T ]), <,>H) −→ H,

I[0,t] �−→ RH(t, ·).

Then the extension of this map to the closure of (L2([0, T ]), <,>H) with re-
spect to the scalar product defined in (2.7) is a representation of H.
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Clearly, we have (L2([0, T ]), <,>H) = (E, <,>H). In the sequel we still de-
note with i2 even the extended map. In [188], it is proved that the space
(L2([0, T ]), <,>H) is not complete; hence one needs to take its closure to
obtain a Hilbert space. Moreover, in [189] and [190] it is shown that the ele-
ments of H2 := (L2([0, T ]), <,>H) may not be functions but distributions of
negative order.

To summarize, the Wiener integrals with respect to B(H) with H > 1/2
can be seen as the extensions of the following isometries:

1. Wiener integrals of first type:

IH
1 : L2([0, T ]) −→ L2(Ω,PH), (2.8)

KH(t, ·) �→ B(H)(t),

2. Wiener integrals of second type:

IH
2 : (L2([0, T ]), <,>H) −→ L2(PH), (2.9)

I[0,t](·) �→ B(H)(t),

induced by the representations i1 and i2, respectively. So either one keeps the
original scalar product on L2([0, T ]) and changes the pre-image of B(H)(t) to
KH(t, ·) or one changes the scalar product on L2([0, T ]) so that I[0,t](·) remains
the predecessor of B(H)(t). This is the main point where the situation for the
fBm differs from the standard Brownian motion case. Moreover, the integrals
of first type (2.8) are not consistent with the isometry property required by
the abstract scheme of Wiener integrals since

E
[
|IH

1 (I[0,t])|2
]

= ‖I[0,t]‖2L2([0,T ]) = t �= RH(t, t).

The process IH
1 (I[0,t]) is a centered Gaussian process with covariance kernel

equal to min(t, s), hence it coincides with a standard Brownian motion. We
provide in the following a connection between the two types of Wiener inte-
grals.

Consider the operator KH induced by the kernel KH(t, s) on L2([0, T ]) for
H ≥ 1/2 as follows:

(KHh)(t) :=
∫ t

0

KH(t, s)h(s) ds.

Let K∗
H be the adjoint operator of KH in L2([0, T ]), i.e.,

∫ T

0

(KHf)(s)g(s) ds =
∫ T

0

f(s)(K∗
Hg)(s) ds (2.10)

for every f, g ∈ L2([0, T ]). By Fubini theorem we obtain that

(K∗
Hg)(t) =

∫ T

t

KH(t, s)g(s) ds. (2.11)
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Since by exploiting fractional calculus (see Appendix B and also [206]) we can
rewrite the action of KH as

(KHf)(t) = cHΓ (h− 1
2
)I10+x

H−1/2I
H−1/2
0+ (x1/2−Hf),

we deduce that

(K∗
Hg)(t) = cHΓ (h− 1

2
)x1/2−HI

H−1/2
T− xH−1/2I1T−, (2.12)

for f ∈ L2([0, T ]). From a formal point of view, one can think that the two
operator are linked by the relation

KH(s, t) = K∗
H(δt)(s),

where δt is the Dirac measure with mass at t. Since I1T−δt = I[0,t], we have

KH(t, s) = cHΓ (h− 1
2
)s1/2−H(IH−1/2

T− x1/2−HI[0,t])(s). (2.13)

By using the characterization (2.13) we obtain another representation for H,

i3 : L2([0, T ]) −→ H,

h �−→ f(t) = cHΓ (h− 1
2
)t1/2−H(IH−1/2

T− x1/2−Hh)(t),

that is valid even for H < 1/2 and can be considered as the “dual” represen-
tation of i1 (see [190]). The dual space of H contains the linear combinations
of Dirac masses as a dense subspace; hence, i3 is actually an isometrically
representation of the dual space of H. However, since a representation is up
to isomorphisms, i3 can also be considered as a representation of H.

By (2.12) we obtain the following relation between Wiener integrals of first
and second type.

Theorem 2.1.7. Let H > 1/2. For any function u ∈ L2([0, T ]), we have

IH
1 (K∗

H(K∗
1/2)

−1u) = IH
2 (u), (2.14)

where K∗
H is defined by (2.10).

Proof. Equation (2.14) is immediately verified for indicator functions I[0,t] by
the definition of K∗

H . The result then follows by a limiting procedure. See [72]
for further details. ��

In the sequel we focus on Wiener integrals of second type induced by the
isometry (2.9). For the sake of simplicity, from now on we identify the RKHS
H with H2 = (L2([0, T ]), <,>H) through the representation map i2, i.e., we
put H = H2. Note that the map (2.9) induced by i2 that associates I[0,t] to
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B(H)(t) extended to H is an isometry between H and the chaos of first order
associated with B(H), i.e., the closed subspace of L2(PH) generated by B(H).
Since from now on we don’t need to distinguish anymore between Wiener
integrals of first and second type, we adopt the notation

B(H)(ψ) := IH
2 (ψ), ψ ∈ H.

In order to characterize Wiener integrals of second type, by following the
approach of [7] and [177], we now introduce the linear operator K∗

H defined
on ψ ∈ E as follows:

(K∗
Hψ)(s) :=

∫ T

s

ψ(t)
∂KH

∂t
(t, s) dt. (2.15)

Then

(K∗
HI[0,t])(s) = KH(t, s)I[0,t](s). (2.16)

By equation (2.16) it follows that the operator K∗
H is an isometry between

the space E of elementary functions and L2([0, T ]) that can be extended to
the Hilbert space H. This is because

〈K∗
HI[0,t],K

∗
HI[0,s]〉L2([0,T ]) = 〈KH(t, ·)I[0,t],KH(s, ·)I[0,s]〉L2([0,T ])

=
∫ t∧s

0

KH(t, u)KH(s, u) du

= RH(t, s) = 〈I[0,t], I[0,s]〉H .

The operator K∗
H can be rewritten by using the means of fractional cal-

culus (see Appendix B). Note that by the representation (2.2) for the square-
integrable kernel KH(t, s) we get

∂KH

∂t
(t, s) = cH

(
t

s

)H−1/2

(t− s)H−3/2. (2.17)

Hence by equations (2.15) and (2.17) and by the definition of the fractional
integral (B.1) of Appendix B with α = H − 1/2 and b = T , we obtain imme-
diately the following fractional representation for K∗

H :

(K∗
H)(ψ) = cHΓ (H − 1

2
)s1/2−H(IH−1/2

T− uH−1/2ψ(u))(s). (2.18)

Moreover, by using the following relation between the fractional integral and
the fractional derivative

D
H−1/2
T− (IH−1/2

T− (ψ)) = ψ
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for every ψ ∈ L1(0, T ) [see (B.3) of Appendix B], we also have that

(K∗
H)−1(ψ) =

1
cHΓ (H − 1/2)

s1/2−H(DH−1/2
T− uH−1/2ψ(u))(s). (2.19)

In particular, we obtain that the indicator function I[0,a] belongs to the im-
age of K∗

H for a ∈ [0, T ] because putting ψ = I[0,a] in (2.19) and using the
characterization (B.2) of fractional derivative, we have

(K∗
H)−1(I[0,a]) =

1
cHΓ (H − 1/2)

s1/2−H(DH−1/2
a− uH−1/2)(s)I[0,a](s).

As a consequence of this result, we obtain that the image of the operator K∗
H

coincides with L2([0, T ]), i.e.,

H = (K∗
H)−1(L2([0, T ])). (2.20)

Remark 2.1.8. The operator K∗
H defined in (2.15) is the adjoint of KH in the

following sense:

Lemma 2.1.9. For any function ψ ∈ E and h ∈ L2([0, T ]) we have
∫ T

0

(K∗
Hψ)(t)h(t) dt =

∫ T

0

ψ(t)(KHh)(dt).

Proof. For the proof, we refer to Lemma 1 in [6]. ��

Note that the relation between K∗
H introduced in (2.11) and K∗

H is then

K∗
H = K∗

H ◦ K∗
1/2.

This follows directly by comparing (2.12) and (2.18) since

K∗
1/2 = (I10+)∗ = I1T−.

Consider now the process B(t) that is associated by the representation i2
to (K∗

H)−1(I[0,t]), i.e.,

B(t) := B(H)((K∗
H)−1I[0,t]). (2.21)

Since B(t) is a continuous Gaussian process with covariance given by

E [B(t)B(s)] = E
[
B(H)((K∗

H)−1(I[0,t]))B(H)((K∗
H)−1(I[0,s]))

]

= 〈(K∗
H)−1I[0,t], (K∗

H)−1I[0,s]〉H
= 〈I[0,t], I[0,s]〉L2([0,T ])

= s ∧ t,

we conclude that B(t) is a standard Brownian motion. Analogously, the sto-
chastic process associated to
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K∗
HI[0,t] = KH(t, s)I[0,t](s)

by the isometry induced by B(t) on L2([0, T ]) is a fBm B(H)(t) with integral
representation

B(H)(t) =
∫ T

0

K∗
HI[0,t]dB(s) =

∫ t

0

KH(t, s) dB(s). (2.22)

Remark 2.1.10. The representation (2.22) holds in law, and it is shown in
[76] that it holds in trajectorial sense with a fixed standard Brownian motion
constructed on (Ω,F(H),PH). This characterization is also quite useful to find
a numerical simulation of the fBm paths. By [76] we obtain the following:

Theorem 2.1.11. Let πn be an increasing sequence of partitions of [0, T ] such
that the mesh size |πn| of πn tends to zero as n goes to infinity. The sequence
of processes (Wn)n∈N defined by

Wn(t) =
∑

t
(n)
i ∈πn

1

t
(n)
i+1 − t

(n)
i

∫ t
(n)
i+1

t
(n)
i

KH(t, s) ds
[
B(t(n)

i+1)−B(t(n)
i )
]

converges to B(H) in L2(P⊗ds), where here P denotes the probability measure
induced by the standard Brownian motion B.

Proof. For the proof, we refer to Proposition 3.1 of [76]. ��
For further results about discrete approximation for fBm for H > 1/2, see
also [30], [140] and [165].

By (2.21) and (2.22), it follows that B(t) and B(H)(t) generate the same
filtration. Moreover, we obtain an expression of the Wiener integral of second
type with respect to B(H) in terms of an integral with respect to the Brownian
motion B.

Proposition 2.1.12. Let H > 1/2. If ψ ∈ H, then

B(H)(ψ) = IH
2 (ψ) =

∫ T

0

(K∗
Hψ)(s)dB(s). (2.23)

Since by (2.18) the Hilbert space H coincides with the space of distribu-
tions ψ such that s1/2−H(IH−1/2

t− uH−1/2ψ)(s) is a square-integrable function,
the integral representation in (2.23) is correctly defined for ψ ∈ H.
In order to obtain a space of functions contained in H, we consider the linear
space |H| generated by the measurable functions ψ such that

‖ψ‖2|H| := αH

∫ T

0

∫ T

0

|ψ(s)||ψ(t)||s− t|2H−2 ds dt <∞, (2.24)

where αH = H(2H − 1). The space |H| is a Banach space with the norm
‖ · ‖2|H|, and E is dense in |H|. In [189] it is proved the space |H| is not
complete equipped with the scalar product 〈·, ·〉H .

We discuss now the relation between |H|, H and Lp([0, T ]), p ≥ 1.
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Proposition 2.1.13. Let ψ ∈ |H|. Then

‖ψ‖|H| ≤ βH‖ψ‖L1/H([0,T ])

for some constant βH > 0.

Proof. Here we recall briefly the proof of [161] by following [8]. If one applies
the Hölder inequality to

∫ T

0

∫ T

0

|ψ(u)||ψ(r)||r − u|2H−2 dr du

with q = 1/H, then

‖ψ‖2|H| ≤ αH

(∫ T

0

|ψ(r)|1/Hdr

)H

·

⎧
⎨
⎩
∫ T

0

[∫ T

0

|ψ(u)||ψ(r)||r − u|2H−2du

]1/(1−H)

dr

⎫
⎬
⎭

1−H

.

By exploiting fractional calculus (see Appendix B, and also [206]) we have
that

‖I2H−1
0+ (ψ)‖L1/(1−H)([0,T ])

=

⎧
⎨
⎩
∫ T

0

[∫ T

0

|ψ(u)||ψ(r)||r − u|2H−2du

]1/(1−H)

dr

⎫
⎬
⎭

1−H

.

The thesis follows by the Hardy–Littlewood inequality (see [217])

‖Iα
0+(ψ)‖Lq(0,∞) ≤ cH,p‖ψ‖Lp(0,∞),

applied to the particular case when α = 2H−1, q = 1/(1−H) and p = H. ��

As a consequence the following inclusions hold

L2([0, T ]) ⊂ L1/H([0, T ]) ⊂ |H| ⊂ H.

The inclusion L2([0, T ]) ⊂ |H| can also be seen directly since
∫ T

0

∫ T

0

|ψ(u)||ψ(r)||r − u|2H−2 dr du

≤
∫ T

0

∫ T

0

|ψ(u)|2|r − u|2H−2 dr du

≤ T 2H−1

H − 1/2

∫ T

0

|ψ(u)|2 du.
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As we have seen, Wiener integrals are introduced for deterministic integrands.
In order to extend the definition of the Wiener integral of second type to the
general case of stochastic integrands, we follow the approach of [72] and use
Theorem 2.1.7 to give the following definition.

Definition 2.1.14. Consider H > 1/2. Let u be a stochastic process u·(ω) :
[0, T ] −→ H such that K∗

Hu is Skorohod integrable with respect to the standard
Brownian motion B(t). Then we define the extended Wiener integral of u with
respect to the fBm B(H) as

B(H)(u) :=
∫ T

0

(K∗
Hu)(s)δB(s),

where the integral on the right-hand side must be interpreted as a Skorohod
integral with respect to B(t) (Definition A.2.1).

Definition 2.1.14 is an extension of (2.23) to the a case of a stochastic process
u seen as a random variable with values in H and such that K∗

Hu is Skorohod
integrable. Note that we have used the same symbol for the standard and the
extended Wiener integral.

2.1.2 Wiener integrals for H < 1/2

We now consider the case when the Hurst index H belongs to the interval
(0, 1/2). Main references for this section are [5], [6], [54] and [177].

As for H > 1/2, we focus on the following representation for the RKHS
H. Consider the space E of step functions on [0, T ] endowed with the inner
product

〈I[0,t], I[0,s]〉H := RH(t, s), 0 ≤ t, s ≤ T, (2.25)

and the linear map i2 on E given by

i2 : (E, <,>H) −→ H,

I[0,t] �−→ RH(t, ·).

Then the extension of this map to the closure of (E, <,>H) with respect to
the scalar product defined in (2.7) is a representation of H. From now on we
identify H = (E, <,>H), and for H < 1/2 we define the Wiener integral for
ψ ∈ H as the extension of the isometry

B(H) : (E, <,>H) −→ L2(PH),

I[0,t](·) �−→ B(H)(t),

induced by the representation i2.
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Remark 2.1.15. Note that the use of the same notation for the inner product
(2.25) and the twisted product (2.7) is justified since

H(2H − 1)
∫ T

0

∫ T

0

I[0,t](u)I[0,s](v)|u− u|2H−2 du dv = RH(t, s)

for H > 1/2.

We now derive also for the case H < 1/2 a representation of B(H)(ψ), ψ ∈ H,
in terms of a stochastic integral with respect to a standard Brownian motion
that is analogous to the one of Proposition 2.1.12.

For H < 1/2, we recall that by equation (2.3) the covariance of the fBm
is generated by the kernel

KH(t, s) = bH

[(
t

s

)H−1/2

(t− s)H−1/2

−
(
H − 1

2

)
s1/2−H

∫ t

s

(u− s)H−1/2uH−3/2 du

]

that can be written in terms of fractional derivatives as

KH(t, s) = bHΓ

(
H +

1
2

)
s1/2−H

(
D

1/2−H
t− uH−1/2

)
(s).

Consider the linear operator K∗
H from the space E of step functions on [0, T ]

to L2([0, T ]) defined by

(K∗
Hψ)(s) := KH(T, s)ψ(s) +

∫ T

s

(ψ(t)− ψ(s))
∂KH

∂t
(t, s) dt. (2.26)

It is immediate to verify that (2.26) evaluated for ψ = I[0,t] gives

(K∗
HI[0,t])(s) = KH(t, s)I[0,t](s).

Consequently, we can rewrite the covariance RH(t, s) as

RH(t, s) =
∫ t∧s

0

KH(t, u)KH(s, u) du

=
∫ T

0

K∗
HI[0,t](u)K∗

HI[0,s](u) du.

Hence, the linear operator K∗
H induces an isometry between E and L2([0, T ])

that can be extended to the Hilbert space H as in the case H > 1/2. Since
the following equality holds
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(D1/2−H
t− uH−1/2)I[0,t](s) = (D1/2−H

T− uH−1/2I[0,t])(s),

by equation (2.26) we obtain that

(K∗
Hψ)(s) = bHΓ (H +

1
2
)s1/2−H(D1/2−H

T− uH−1/2ψ(u))(s).

Using (B.3) from Appendix B, we obtain

(K∗
H)−1(f)(s) =

1
bHΓ (H + 1/2)

s1/2−H(I1/2−H
T− uH−1/2f(u))(s).

By [76] and by Proposition 8 of [6] we obtain, rewriting the kernel KH as

KH(s, t) = bH(t− s)H−1/2 + sH−1/2F1(
t

s
),

where

F1(z) = bH(
1
2
−H)

∫ z−1

0

uH−3/2(1− (u+ 1)H−1/2) du,

that one can prove for H < 1/2 (see Proposition 8 of [6] and [76])

H = (K∗
H)−1(L2([0, T ])) = I

1/2−H
T− (L2([0, T ])). (2.27)

In addition (2.27) guarantees that the inner product space H is complete
endowed with

〈f, g〉H =
∫ T

0

K∗
Hf(s)K

∗
Hg(s) ds,

as shown in Lemma 5.6 of [188]. Note also that by Definition B.2.1, the scalar
product in H can be written in the simpler form

〈f, g〉H = e2H〈D
1/2−H
− f,D

1/2−H
+ g〉L2(R), (2.28)

with eH = C1(H)Γ (1/2 +H), f, g ∈ H. Here we consider f(s) = g(s) = 0 if
s /∈ [0, T ].

Remark 2.1.16. We emphasize once more that the inner product space H is
complete for H < 1/2 and incomplete if H > 1/2. By [189] we obtain that
this difference in completeness is a consequence of the following two facts:

1. For H < 1/2 the equation

s1/2−H(D1/2−H
T− uH−1/2ψ(u))(s) = f(s)

has a solution ψ(s) = sH−1/2(IH−1/2
T− uH−1/2f(u))(s) for every f ∈

L2([0, T ]).
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2. For H > 1/2 there exist functions f ∈ L2([0, T ]) for which the equation

s1/2−H(IH−1/2
T− uH−1/2ψ(u))(s) = f(s) (2.29)

cannot be solved. In fact, since IH−1/2
T− is an integral operator, the left-

hand side of (2.29) will satisfy some smoothness conditions that may not
hold for a general f ∈ L2([0, T ]).

Note also that for the space of Hölder continuous functions of order γ in the
interval [0, T ] (for a definition, see also the proof of Theorem 1.6.1), it holds

Cγ([0, T ]) ⊂ H

if γ > 1/2−H. As in the case H > 1/2, the process

B(t) = B(H)((K∗
H)−1(I[0,t]))

is a Wiener process and the fractional Brownian has the integral representation

B(H)(t) =
∫ t

0

KH(t, s) dB(s). (2.30)

Hence we can conclude with the following

Proposition 2.1.17. For H < 1/2 the Wiener-type integral B(H)(ψ) with
respect to fBm can be defined for functions ψ ∈ H = I

1/2−H
T− (L2([0, T ])) and

the following holds:

B(H)(ψ) =
∫ T

0

(K∗
Hψ)(t) dB(t).

2.2 Divergence-type integrals for fBm

We analyze now the properties and the main results concerning a stochastic
integral for fBm introduced as dual operator of the stochastic derivative. We
also investigate its relations with Wiener integrals and the ones defined in
Chapter 3. Main references for this part are [6], [8], [170] and [177].

Consider H ∈ (0, 1) and H = (E, <,>H). Let SH be the set of smooth
cylindrical random variables of the form

F = f(B(H)(ψ1), . . . , B(H)(ψn)),

where n ≥ 1, f ∈ C∞
b (Rn), and ψi ∈ H. The derivative operator D(H) of

F ∈ SH is defined as the H-valued random variable

D(H)F =
n∑

i=1

∂f

∂xi
(B(H)(ψ1), . . . , B(H)(ψn))ψi. (2.31)
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The derivative operator D(H) is then a closable unbounded operator from
Lp(Ω,PH) in Lp(Ω;H) for any p ≥ 1. We denote byD(H),k the iteration of the
derivative operator. The iterate derivative operator D(H),k maps Lp(Ω,PH)
into Lp(Ω,H⊗k).

Definition 2.2.1. For any k ∈ N and p ≥ 1 we denote by D
k,p
H the Sobolev

space generated by the closure of SH with respect to the norm

‖F‖p
k,p = E [|F |p] +

k∑
i=1

E
[
‖(D(H))jF‖p

H⊗j

]

and by D
k,p(H) the corresponding Sobolev space of H-valued random variables.

We introduce the adjoint operator of the derivative.

Definition 2.2.2. We say that a random variable u ∈ L2(Ω;H) belongs to
the domain dom δH of the divergence operator if

|E
[
〈D(H)F, u〉H

]
| ≤ cu‖F‖L2(PH)

for any F ∈ SH .

Definition 2.2.3. Let u ∈ dom δH . Then δH(u) is the element in L2(PH)
defined by the duality relationship

E [FδH(u)] = E
[
〈D(H)F, u〉H

]

for any F ∈ D
1,2
H .

Hence the divergence operator δH is the adjoint of the derivative operator
D(H). Note that by Definition 2.2.3 we obtain immediately that the space
D

1,2(H) of H-valued random variables is included in dom δH and for u ∈
D

1,2(H) the following holds:

E
[
δH(u)2

]
≤ E

[
‖u‖2H

]
+ E

[
‖D(H)u‖2H⊗H

]
.

By the Meyer inequalities (see, for example, [176]), we also get for all p > 1
that

‖δH(u)‖Lp(PH) ≤ cp‖u‖D1,p(H).

If u is a simple H-valued random variable of the form

u =
n∑

j=1

FjXj ,

where Fj ∈ D
1,2
H and Xj ∈ H, then u belongs to dom δH and by Definition

2.2.3 we obtain



2.2 Divergence-type integrals for fBm 39

δH(u) =
n∑

j=1

FjδH(Xj)− 〈D(H)Fj ,Xj〉H . (2.32)

Moreover, if F ∈ D
1,2
H and u ∈ dom δH are such that Fu, and FδH(u) +

〈D(H)F, u〉H are square integrable, then Fu ∈ dom δH and (2.32) extends to

δH(Fu) = FδH(u)− 〈D(H)F, u〉H . (2.33)

We now investigate separately the cases H > 1/2 and H < 1/2. We focus
first on the case H > 1/2; for H < 1/2 the definition of the divergence is more
delicate and will be studied in Section 2.2.2.

2.2.1 Divergence-type integral for H > 1/2

In the particular case of the Brownian motion, the divergence operator is
an extension of the Itô integral in the sense that the set of square-integrable
adapted processes is included in dom δH and the divergence operator restricted
to this set coincides with the Itô stochastic integral. More precisely, in the case
of the Brownian motion, the divergence operator coincides with the Skorohod
integral introduced in [213] (for a survey, see Section A.2). For further details
for the Brownian motion case, we refer also to [179].

The same relation holds for the fBm for H > 1/2, i.e., the divergence op-
erator coincides with the generalized Wiener integral introduced in Definition
2.1.14. To show this, we proceed as follows. First of all, by Definition 2.2.3 we
immediately obtain that

δH(ψ) = B(H)(ψ)

and, in particular,

δH(
n∑

i=1

aiI[ti,ti+1]) =
n∑

i=1

ai(B(H)(ti+1)−B(H)(ti)) (2.34)

for 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn+1 ≤ T . Then we study the relation between the
derivatives and the divergence operators defined with respect to B(H) and to
B, respectively. By (2.20) we have that

H = (K∗
H)−1(L2(0, T )).

Hence, it also follows that

D
1,2
H = (K∗

H)−1(L1,2), (2.35)

where L
1,2 := D

1,2(L2([0, T ])). Moreover, by [6] we obtain the following re-
lation between the derivative D(H) with respect to B(H) and the Malliavin
derivative D with respect to the standard Brownian motion B.
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Proposition 2.2.4. For any F ∈ D
1,2
H , we have

K∗
HD

(H)F = DF. (2.36)

Proof. By following [6], let

F = f(B(H)(t)) (2.37)

for f ∈ C1, and let u ∈ H. Then

E
[
〈u,D(H)F 〉H

]
= E

[
〈u,D(H)f(B(H)(t))〉H

]

= E
[
〈K∗

Hu, f
′(B(H)(t))K∗

HI[0,t]〉L2([0,T ])

]

= E
[
〈K∗

Hu, f
′(B(H)(t))KH(t, ·)I[0,t]〉L2([0,T ])

]

= E
[
〈K∗

Hu,Df(B
(H)(t))〉L2([0,T ])

]
.

Since
E
[
〈u,D(H)F 〉H

]
= E

[
〈K∗

Hu,K
∗
HD

(H)F 〉L2([0,T ])

]
,

then (2.36) holds for random variables of the form (2.37). The result extends
to every F ∈ D

1,2
H by a density argument. ��

Hence, if F ∈ D
1,2
H , we have

E
[
〈u,D(H)F 〉H

]
= E

[
〈K∗

Hu,DF 〉L2([0,T ])

]

for any u ∈ H and the equality K∗
HD

(H)F = DF holds. This implies that

dom δH = (K∗
H)−1(dom δ),

where δ = δ1/2 denotes the divergence operator with respect to the standard
Brownian motion B. Hence, for any H-valued random variable u ∈ dom δH it
holds

δH(u) = δ(K∗
Hu) =

∫ T

0

K∗
Hu(s)δB(s) , (2.38)

where the integral on the right-hand side must be interpreted as the Skorohod
integral with respect to the standard Brownian motion (Definition A.2.1).
Hence, we have proved the following:

Proposition 2.2.5. Let u ∈ dom δH . Then δH(u) coincides with the extended
Wiener integral of u (Definition 2.1.14), i.e.,

δH(u) = B(H)(u).

Note that by (2.35) and (2.38) we obtain that K∗
H(L1,2) is included in the

domain dom δH .
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2.2.2 Divergence-type integral for H < 1/2

In this section we describe the approach of [54], [177] in order to introduce
the divergence-type integral for H < 1/2. The standard divergence integral
of B(H) with respect to itself does not exist if H < 1/4 because the paths
becomes too irregular. In [54] the standard divergence operator is extended
by a change of the order of integration in the duality relationship that defines
the divergence operator as the adjoint of the Malliavin derivative. For the
extended divergence operator, a Fubini theorem and an Itô formula hold with
any H ∈ (0, 1/2) (see Chapter 6). In this approach, the integral of divergence
type is always a random variable, while in Chapter 4 the stochastic integral
is defined as an Hida distribution. Here we reformulate the results of [54] for
processes ut with t in [0, T ] for the sake of homogeneity with the previous
sections. In [54] the following results hold for processes (ut)t∈R defined on the
whole real line. Recall that H = (E, <,>H).

Proposition 2.2.6. Consider H < 1/2. Let 0 < a < b < T and set

u(t) = B(H)(t)I(a,b](t), t ∈ R.

Then

P
H(u ∈ H) = 1, H ∈

(
1
4
,
1
2

)

and

P
H(u ∈ H) = 0, H ∈

(
0,

1
4

]
.

Proof. Here we sketch for (ut)t∈[0,T ] the proof provided in Proposition 3.2
of [54] for processes defined on the whole real line. Let H ∈ (1/4, 1/2). By
Kolmogorov’s Continuity Theorem there exists a measurable set Ω̃ ⊂ Ω with
P

H(Ω̃) = 1 such that for all ω ∈ Ω̃ there exists constant C̃(ω) such that

sup
t∈(a,b]

|B(H)(t, ω)| ≤ C̃(ω)

and

sup
t,s∈(a,b],t
=s

|B(H)(t, ω)−B(H)(s, ω)|
|t− s|1/4

≤ C̃(ω).

Fix an ω ∈ Ω and set

ψ(t) := ut(ω) = B(H)(t)I(a,b](t), t ∈ R,

and
Ĉ :=

α

Γ (1− α)
C̃(ω).

Let ε > 0. For t ∈ (0, a], consider

Dα
+,εψ(t) = 0.
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For the definition of Dα
+,ε we refer to the Appendix B. For t ∈ (a, b],

|Dα
+,εψ(t)| ≤ α

Γ (1− α)

(
I{t−a>ε}

∫ t−a

ε

∣∣∣∣
ψ(t)− ψ(t− s)

s1+α

∣∣∣∣ ds

+ |ψ(t)|
∫ T

(t−a)∨ε

s−1−α ds

)

≤ Ĉ
(
I{t−a>ε}

∫ t−a

ε

s−3/4−α ds+
∫ T

(t−a)∨ε

s−1−αds

)

≤ Ĉ
[

1
1/4− α (t− a)1/4−α +

1
α

(t− a)−α

]
.

For t ∈ (b, T ),

|Dα
+,εψ(t)| ≤ α

Γ (1− α)

∫ t−a

t−b

|ψ(t− s)|
s1+α

ds

≤ Ĉ
∫ t−a

t−b

s−1−α ds =
Ĉ

α

(
(t− b)−α − (t− a)−α

)
.

Hence, for all ε > 0 and for all t ∈ [0, T ], we have

|Dα
+,εψ(t)| ≤ ψ(t),

where

ψ(t) =

⎧
⎪⎪⎨
⎪⎪⎩

0 if t ∈ (0, a),

C[(t− a)1/4−α + (t− a)−α] if t ∈ (a, b],

C[(t− b)−α − (t− a)−α] if t ∈ (b, T ],

with C = Ĉ [1/(1/4− α) ∨ 1/α]. Since ψ ∈ L2([0, T ]), by Theorem 6.2 of [206]
it follows that ψ ∈ H.

We now consider the case H ∈ (0, 1/4]. The process

B̃(H)(t) := B(H)(t+ a)−B(H)(a), t ∈ R,

is also a fBm with Hurst parameter H. Since it is self-similar, for all t ∈
(0, b− a), the random variable

t−2H

∫ b−a−t

0

[B̃(H)(s+ t)− B̃(H)(s)]2ds

has the same distribution as
∫ b−a−t

0

[B̃(H)(
s

t
+ 1)− B̃(H)(

s

t
)]2ds

= t

∫ (b−a)/t−1

0

[B̃(H)(x+ 1)− B̃(H)(x)]2dx

=
b− a− t

(b− a)/t− 1

∫ (b−a)/t−1

0

[B̃(H)(x+ 1)− B̃(H)(x)]2dx

(2.39)
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The process (B̃(H)(x+ 1)− B̃(H)(x))x≥0 is stationary and mixing. Therefore,
it follows from the ergodic theorem that (2.39) converges to

(b− a)E
[
[B̃(H)(1)]2

]
> 0

in L1 as t → 0. Hence, it follows that there exists a measurable set Ω̃ ⊂ Ω
with P

H(Ω̃) = 1 and a sequence of positive numbers (tk)k∈N that converges
to 0 such that for all ω ∈ Ω̃ and k ∈ N,

∫ T

0

[us+tk
(ω)− us(ω)]2ds ≥

∫ b−tk

a

[B̃(H)
s+tk

(ω)− B̃(H)
s (ω)]2ds

=
∫ b−a−tk

0

[B̃(H)
s+tk

(ω)− B̃(H)
s (ω)]2ds

≥ b− a
2
E
[
(B̃(H)

1 )2
]
t2H
k . (2.40)

Assume that there exists an ω ∈ Ω̃ such that u(ω) ∈ H. By (6.40) of [206],
the function u(ω) has the property

∫ T

0

[us+t(ω)− us(ω)]2ds = o(t2α) as t→ 0.

But u(ω) can only satisfy both (2.39) and (2.40) at the same time if H > α =
1/2−H, which contradicts H ≤ 1/4. Therefore, u(ω) /∈ H for all ω ∈ Ω̃. This
concludes the proof. ��

By Proposition 2.2.6 it follows that processes of the form

B(H)(t)I(a,b](t), t ∈ R,

cannot be in dom δH (Definition 2.2.2) if H ≤ 1/4. Hence, we consider now
the following extension of the divergence δH to an operator whose domain
also contains processes with paths that are not in H by using the approach
of [54] and [177].
By (2.28) and the fractional integration by parts formula (B.5), for any f, g ∈
H we obtain that

〈f, g〉H = 〈K∗
Hf,K

∗
Hg〉L2([0,T ])

= d2H〈s1/2−HD
1/2−H
T− sH−1/2f, s1/2−HD

1/2−H
T− sH−1/2g〉L2([0,T ])

= d2H〈f, sH−1/2s1/2−HD
1/2−H
0+ (s1−2HD

1/2−H
T− sH−1/2g)〉L2([0,T ]),

where for H ≤ 1/2 the operator K∗
H is introduced in (2.26). This implies that

the adjoint K∗,a
H of the operator K∗

H in L2([0, T ]) is

(K∗,a
H f)(s) = dHs

1/2−HD
1/2−H
0+ (s1−2HD

1/2−H
T− sH−1/2f).
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In order to introduce an extended domain for the divergence operator δH as
in the approach of [54], we introduce the space

K := (K∗
H)−1(K∗,a

H )−1[L2([0, T ])].

Let SK the space of smooth cylindrical random variables of the form

F = f(B(H)(ψ1), . . . , B(H)(ψn)),

where n ≥ 1, f ∈ C∞
b (Rn), i.e., f is bounded with smooth bounded partial

derivatives, and ψi ∈ K.

Definition 2.2.7. Let u(t), t ∈ [0, T ] be a measurable process such that
E
[∫ T

0
u2(t) dt

]
< ∞. We say that u ∈ dom∗ δH if there exists a random

variable δH(u) ∈ L2(PH) such that for all F ∈ SK we have

∫ T

0

E
[
u(t)K∗,a

H K∗
HD

(H)
t F

]
dt = E [δH(u)F ] .

Note that if u ∈ dom∗ δH , then δH(u) is unique and the mapping

δH : dom∗ δH → ∪p>1L
p(PH)

is linear. This extended domain satisfies the following natural requirements:

1. dom δH ⊂ dom∗ δH , and δH restricted to dom δH coincides with the di-
vergence operator (Proposition 3.5 of [54]).

2. In particular, dom δH = dom∗ δH ∩ [∪p>1L
p(Ω;H)] (Proposition 3.5 of

[54]).
3. If u ∈ dom∗ δH such that E [u] ∈ L2([0, T ]), then E [u] belongs to H

(Proposition 3.6 of [54]).
4. If u is a deterministic process, then u ∈ dom∗ δH if and only if u ∈ H.
5. The extended divergence operator δH is closed in the following sense.

Let p ∈ (1,∞] and q ∈ (2/(1 + 2H),∞]. Let (uk)k≥1 be a sequence in
dom∗ δH ∩ Lp(Ω,Lq([0, T ])) and u ∈ Lp(Ω,Lq([0, T ])) such that

lim
k→∞

uk = u in Lp(Ω,Lq([0, T ])).

It follows that for all n ∈ N0 and F ∈ SH , we have

lim
k→∞

uk(t)K∗,a
H K∗

HD
(H)F = u(t)K∗,a

H K∗
HD

(H)F

in L1(Ω× [0, T ]). If there exists a p̂ ∈ (1,∞] and an X ∈ Lp̂(Ω) such that

lim
k→∞

δH(uk) = X in Lp̂(Ω),

then u ∈ dom∗ δH and δH(u) = X.
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By Theorem 3.7 of [54] we also get the following theorem:

Theorem 2.2.8 (Fubini Theorem). Let (Y,Y, µ) be a measure space and
u = u(ω, t, y) ∈ L0(Ω × [0, T ]× Y ) such that

1. For almost y ∈ Y , u(·, ·, y) ∈ dom∗ δH .
2. For almost all (ω, t)∈Ω×[0, T ], u(ω, t, ·)∈L1(Y ) and

∫
Y
|u(ω, t, y)| dµ(y)∈

L2(Ω × [0, T ]).
3. For almost all ω ∈ Ω, δH(u)(ω) ∈ L1(Y ) and

∫
Y
δH(u) dµ(y) ∈ L2(Ω).

Then
∫

Y
u(ω, t, y)dµ(y) ∈ dom∗ δH and

δH

[∫

Y

u(ω, t, y) dµ(y)
]

=
∫

Y

δH(u) dµ(y).



3

Fractional Wick Itô Skorohod (fWIS) integrals
for fBm of Hurst index H > 1/2

In this chapter we introduce the definition of stochastic integral with respect
to the fBm for Hurst index 1/2 < H < 1 by using the white noise analysis
method. At this purpose we define the fractional white noise and stochastic
integral as an element in the fractional Hida distribution space.

To obtain a classical Itô formula, we need the stochastic integral to be an
ordinary random variable. Hence the φ-derivative is introduced to handle the
existence of the Wick product in L2. Classical Itô type formulas are obtained
and applications are discussed. The main references for this chapter are [32],
[83] and [121].

3.1 Fractional white noise

Fix H with 1/2 < H < 1. We put

φ(s, t) = φH(s, t) = H(2H − 1)|s− t|2H−2, s, t ∈ R, (3.1)

and recall that for s, t > 0,
∫ t

0

∫ s

0

φ(u, v) du dv =
1
2
(s2H + t2H − |t− s|2H) = RH(t, s). (3.2)

Let S(R) be the Schwartz space of rapidly decreasing smooth functions on R,
and if f ∈ S(R), denote

‖f‖2H :=
∫

R

∫

R

f(s)f(t)φ(s, t) ds dt <∞. (3.3)

If we equip S(R) with the inner product

〈f, g〉H :=
∫

R

∫

R

f(s)g(t)φ(s, t) ds dt, f, g ∈ S(R), (3.4)
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then the completion of S(R), denoted by L2
φ(R), becomes a separable Hilbert

space. Similarly, we can define L2
φ(R+) or L2

φ([0, T ]) on a finite interval. We
remark that elements of L2

φ(R) may be distributions (see, for example, [190]).
For further comments we refer to Chapter 2. From now on we denote by
L2

H(R) the subspace of deterministic functions contained in L2
φ(R).

Remark 3.1.1. We remark that in (3.3) and (3.4) we use the same notation as
in Theorem 2.1.6, since the inner product (3.4) extends (2.7) to the case of
functions defined on the whole real axis. Hence we start here with an analogous
setting to the one for Wiener integrals in Chapter 2, but we provide a different
construction of the stochastic integral for fBm for H > 1/2. Moreover, by
(2.7), (3.1), and (3.4) we obtain that L2

φ([0, T ]) = H = (L2([0, T ]), <,>H)
and L2

φ(R) ⊇ L2
φ([0, T ]) = H if we identify ψ ∈ L2

φ([0, T ]) with ψI[0,T ].

In particular we obtain the following representation of L2
φ(R).

Lemma 3.1.2. Let

I
H−1/2
− f(u) = cH

∫ ∞

u

(t− u)H−3/2f(t) dt,

where cH =
√
H(2H − 1)Γ (3/2−H) /(Γ (H − 1/2)Γ (2− 2H)) , and Γ de-

notes the gamma function. Then IH−1/2
− is an isometry from L2

φ(R) to L2(R).

Proof. By a limiting argument, we may assume that f and g are continuous
with compact support. By definition,

〈IH−1/2
− (f) , IH−1/2

− (g)〉L2(R)

= c2H

∫

R

{∫ ∞

u

(s− u)H−3/2f(s) ds
∫ ∞

u

(t− u)H−3/2g(t) dt
}
du

= c2H

∫

R2
f(s)g(t)

{∫ s∧t

−∞
(s− u)H−3/2(t− u)H−3/2 du

}
ds dt

=
∫

R

∫

R

f(s)g(t)φ(s, t) ds dt = (f, g〉H ,

where we have used the identity (see [103, p. 404])

c2H

∫ s∧t

−∞
(s− u)H−3/2(t− u)H−3/2du = φ(s, t).

��

Now let Ω = S′(R) be the dual of S(R) (considered as Schwartz space), i.e.,
Ω is the space of tempered distributions on R. The map f �→ exp(−1/2‖f‖2H) ,
with f ∈ S(R), is positive definite on S(R), and by the Bochner–Minlos the-
orem (see [144] or [109]) there exists a probability measure P

H on the Borel
subsets B(Ω) of Ω such that
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∫

Ω

ei〈ω,f〉dPH(ω) = e−1/2‖f‖2
H ∀f ∈ S(R), (3.5)

where 〈ω, f〉 denotes the usual pairing between ω ∈ S′(R) and f ∈ S(R) and
‖f‖H is defined in (3.3). It follows from (3.5) that

E [〈·, f〉] = 0 and E
[
〈·, f〉2

]
= ‖f‖2H , (3.6)

where E denotes the expectation under the probability measure P
H . Using

this we see that we may define

B̃
(H)
t = B̃(H)(t, ω) = 〈ω, I[0,t](·)〉

as an element of L2(PH) for each t ∈ R, where

I[0,t](s) =

⎧
⎪⎨
⎪⎩

1 if 0 ≤ s ≤ t,
−1 if t ≤ s ≤ 0, except t = s = 0,
0 otherwise.

By Kolmogorov’s continuity theorem B̃
(H)
t has a t-continuous version,

which we will denote by B
(H)
t , t ∈ R. From (3.6) we see that B(H)

t is a
Gaussian process with

E
[
B

(H)
t

]
= 0

and
E
[
B(H)

s B
(H)
t

]
=

1
2
(
|t|2H + |s|2H − |t− s|2H

)
.

It follows that B(H)
t is a fBm. From now on we endow Ω with the natural

filtration F
(H)
t of B(H).

The stochastic integral with respect to fBm for deterministic function is
easily defined (see also Section 2.1).

Lemma 3.1.3. If f , g belong to L2
H(R), then

∫
R
fs dB

(H)
s and

∫
R
gs dB

(H)
s are

well-defined zero mean, Gaussian random variables with variances ‖f‖2H and
‖g‖2H , respectively, and

E

[∫

R

fs dB
(H)
s

∫

R

gs dB
(H)
t

]
=
∫

R

∫

R

f(s)g(t)φ(s, t) ds dt = 〈f , g〉H .

Proof. This lemma is verified in [103]. It can be proved directly by verifying
it for simple functions

∑n
i=1 aiI[ti,ti+1](s) and then proceeding with a passage

to the limit. ��

Let Lp(PH) = Lp be the space of all random variables F : Ω → R such that

‖F‖Lp(PH) = E [|F |p]1/p
<∞.
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For any f ∈ L2
H(R), define ε : L2

H(R) → L1(PH) as

ε(f) := exp
(∫

R

ft dB
(H)
t − 1

2

∫

R

∫

R

fsftφ(s, t) ds dt
)

= exp
(∫

R

ft dB
(H)
t − 1

2
‖f‖2H

)
.

(3.7)

If f ∈ L2
H(R), then ε(f) ∈ Lp(PH) for each p ≥ 1 and ε(f) is called an ex-

ponential functional (e.g., [160]). Let E be the linear span of the exponentials,
that is,

E =

{
n∑

k=1

akε(fk) : n ∈ N, ak ∈ R, fk ∈ L2
φ(R) for k ∈ {1, . . . , n}

}
.

Theorem 3.1.4. E is a dense set of Lp(PH) for each p ≥ 1. In particular, E

is a dense set of L2(PH).

Proof. A functional F : Ω → R is said to be a polynomial of the fBm if there
is a polynomial p(x1, x2, . . . , xn) such that

F = p(B(H)
t1 , B

(H)
t2 , . . . , B

(H)
tn

)

for some 0 ≤ t1 < t2 < · · · < tn. Since (B(H)
t , t ≥ 0) is a Gaussian process, it

is well known that the set of all polynomial fractional Brownian functionals
is dense in Lp(PH) for p ≥ 1. In this case, the denseness of the polynomials
follows from the continuity of the process and the Stone–Weierstrass theorem.
To prove the theorem it is only necessary to prove that any polynomial can be
approximated by the elements in E. Since the Wick product of exponentials
is still an exponential, it is easy to see that it is only necessary to show that
for any t > 0, B(H)

t can be approximated by elements in E.
Let fδ(s) = I[0,t](s) δ, δ > 0. Clearly fδ is in L2

H(R). Then ε(fδ) =

c(δ)eδB
(H)
t for some positive constant c(δ). It is easy to see that

Fδ =
ε(fδ)− c(δ)
c(δ)δ

=
eδB

(H)
t − 1
δ

is in E. If δ → 0, then Fδ → B
(H)
t in Lp(PH) for each p ≥ 1. This completes

the proof. ��

The following theorem is also interesting.

Theorem 3.1.5. If f1, f2, . . ., fn are elements in L2
H(R) such that ‖fi −

fj‖H �= 0 for i �= j, then ε(f1), ε(f2), . . ., ε(fn) are linearly independent in
L2(PH).
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Proof. This theorem is known to be true if the fBm is replaced by a standard
Brownian motion, (e.g., [160]).

Let f1 , f2 , . . . , fk be distinct elements in L2
H(R). Let λ1 , λ2 , . . . , λk be

real numbers such that

‖λ1ε(f1) + λ2ε(f2) + · · ·+ λkε(fk)‖L2(PH) = 0.

Thus for any g ∈ L2
H(R),

E [(λ1ε(f1) + λ2ε(f2) + · · ·+ λkε(fk)) ε(g)] = 0.

By an elementary computation for Gaussian random variables it follows that

λ1e
〈f1 ,g〉H + λ2e

〈f2 ,g〉H + · · ·+ λke
〈fk ,g〉H = 0.

Replace g by δg for δ ∈ R to obtain

λ1e
δ〈f1 ,g〉H + λ2e

δ〈f2 ,g〉H + · · ·+ λke
δ〈fk ,g〉H = 0.

Expand the above identity in the powers of δ and compare the coefficients of
δp, for p ∈ {0, 1, . . . , k − 1} to obtain the family of equations

λ1〈f1 , g〉pH + λ2〈f2 , g〉pH + · · ·+ λk〈fk , g〉pH = 0

for p = 0 , 1 , . . . , k−1. This is a linear system of k equations and k unknowns.
By the Vandermonde formula, the determinant of this linear system is

det (〈fi , g〉pH) =
∏
i<j

〈fi − fj , g〉pH .

For every pair (i, j) with i �= j, the set
{
g ∈ L2

H(R) : 〈fi − fj , g〉H �= 0
}

is the
complement of a hyperplane in L2

H(R). Since the intersection of finitely many
complements of hyperplanes in L2

H(R) is not empty, there is a g ∈ L2
H(R)

such that 〈fi − fj , g〉H �= 0 for all pairs i and j such that i �= j. Thus
λ1 = λ2 · · · = λk = 0. This proves the theorem. ��

In the following we let

hn(x) = (−1)nex
2/2 d

n

dxn

(
e−x2/2

)
, n = 0, 1, 2, . . . , (3.8)

be the Hermite polynomials. For further details on Hermite polynomials, we
refer to Appendix A.

Lemma 3.1.6. There is an orthonormal basis {ei}∞i=1 of L2
φ(R) such that for

any t ∈ R there exists Ct <∞ such that

|
∫

R

en(s)φ(s, t) ds| < Ctn
1/6 (3.9)
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Proof. Define the Hermite functions as in (A.6),

ξn(x) = π−1/4((n− 1)!)−1/2hn−1(
√

2x)e−x2/2 , n = 1, 2, . . . .

Then from [223], {ξn(x) , n = 1, 2, . . .} is an orthonormal basis of L2(R) and

|ξn(x)| ≤
{
Cn−1/12 when |x| ≤ 2

√
n,

Ce−γx2
when |x| > 2

√
n

where γ and C are certain positive constants, independent of n. (See, for
example, [219] or [223, p. 26, Lemma 1.5.1]). Set

en(u) = (IH−1/2
− )−1(ξn)(u) . (3.10)

Then by Lemma 3.1.2, {en , n = 1, 2, . . .} is an orthonormal basis of L2
φ(R).

We also have
∫

R

en(s)φ(s, t) ds = c2H

∫

R

en(s)
∫ s∧t

−∞
(s− u)H−3/2(t− u)H−3/2 du ds

= c2H

∫ t

−∞
(t− u)H−3/2du

∫ ∞

u

(s− u)H−3/2en(s) ds

= cH

∫ t

−∞
(t− u)H−3/2Γφ(en)(u) du

= cH

∫ t

−∞
(t− v)H−3/2ξn(v) dv

≤ Ct

[∫

v≤2
√

n

|v − t|H−3/2n−1/12 dv

+
∫

|v|>2
√

n

|v − t|H−3/2e−γ|v|2 dv

]

≤ Ctn
1/6.

This proves the lemma. ��

From now on we let {en}∞n=1 be the orthonormal basis of L2
φ(R) defined

in (3.10). Then the ei’s are smooth. Moreover, we see that

t→
∫

R

ei(s)φ(s, t) ds is continuous for each i. (3.11)

Let J =
(
N

N

0

)
c

denote the set of all (finite) multi-indices α = (α1, . . . , αm)
of nonnegative integers (N is the set of natural numbers and N0 = N ∪ {0}).
Then if α = (α1, . . . , αm) ∈ J, we put

H̃α(ω) := hα1(〈ω , e1〉) · · ·hαm
(〈ω , em〉). (3.12)
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In particular, if we let ε(i) := (0, . . . , 0, 1, 0, . . . , 0) denote the ith unit vector,
then we get

H̃ε(i)(ω) = h1(〈ω , ei〉) = 〈ω, ei〉.

Remark 3.1.7. Note that H̃α(ω) and Hα(ω) introduced in (A.8) are defined
on different probability spaces, but they have the same law.

The following result is a fractional Wiener Itô chaos expansion theorem. It is
well-known in a more general context (see, e.g., Theorem 2.6 of [131]).

Theorem 3.1.8. Let F ∈ L2(PH). Then there exist constants cα ∈ R, α ∈ J,
such that

F (ω) =
∑
α∈J

cαH̃α(ω), (3.13)

where the convergence holds in L2(PH). Moreover,

‖F‖2L2(PH) =
∑
α∈J

α!c2α,

where α! = α1!α2! · · ·αm! if α = (α1, . . . , αm) ∈ J.

Proof. The following proof is standard. For the reader’s convenience we repeat
it in the fBm framework. Consider

E(akek) = exp
(
ak〈ω, ek〉 −

1
2
a2

k

)
=

∞∑
n=0

an
k

n!
hn(〈ω, ek〉), (3.14)

where ak ∈ R, k = 1, 2, . . .. If f ∈ L2
H(R) has the expansion f =

∑∞
k=1 akek,

then

E(f) = exp

( ∞∑
k=1

ak〈ω, ek〉 −
1
2

∞∑
k=1

a2
k

)

= lim
N→∞

∞∏
k=1

(
N∑

n=0

an
k

n!
hn(〈ω, ek〉)

)

= lim
N→∞

∑
α∈J(N)

∞∏
k=1

aαk

k

αk!
hαk

(〈ω, ek〉)

= lim
N→∞

∑
α∈J(N)

cαH̃α(ω) (limit in L2(PH)), (3.15)

where J(N) denotes the set of all multi-indices α = (α1, . . . , αm) of nonnegative
integers with αi ≤ N and we have put

cα =
∞∏

k=1

aαk

k

αk!
if α = (α1, . . . , αm).
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If we combine Theorem 3.1.4 with (3.15), we obtain that the linear span of
{H̃α}α∈J is dense in L2(PH).

It remains to prove that

E
[
H̃αH̃β

]
= 0 if α �= β (3.16)

and
E
[
H̃2

α

]
= α! .

To this end note that from (3.5) it follows that

E [f(〈ω, e1〉, . . . , 〈ω, em〉)] =
∫

Rm

f(x) dλm(x)

for all f ∈ L1(λm), where λm is the normal distribution on R
m, i.e.,

dλm(x) = (2π)−m/2e−1/2|x|2 dx1 · · · dxm, x = (x1, . . . , xm) ∈ R
m.

Therefore, if α = (α1, . . . , αm) and β = (β1, . . . , βm) we have

E
[
H̃αH̃β

]
= E

[
m∏

k=1

hαk
(〈ω, ek〉)hβk

(〈ω, ek〉)
]

=
∫

Rm

m∏
k=1

hαk
(xk)hβk

(xk) dλm(x1, . . . , xm)

=
m∏

k=1

∫

R

hαk
(xk)hβk

(xk) dλm(xk)

=
m∏

k=1

δαk,βk
αk! =

{
0 if α �= β

α! if α = β,

where we have used the following orthogonality relation for Hermite polyno-
mials: ∫

R

hi(x)hj(x)e−1/2x2
dx = δij

√
2πj! .

��

Example 3.1.9. Note that by orthogonality of the family {H̃α}α∈J in L2(PH)
we have that the coefficients cα in the expansion (3.13) of F are given by

cα =
1
α!
E
[
F H̃α

]
.

Choose f ∈ L2
H(R) and put F (ω) = 〈ω, f〉 =

∫
R
f(s) dB(H)

s . Then F is
Gaussian and by (3.16) we deduce that
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E
[
F H̃ε(i)

]
= E [〈ω, f〉〈ω, ei〉]

= 〈f, ei〉H =
∫ ∞

−∞

∫ ∞

−∞
f(u)ei(v)φ(u, v) du dv .

Moreover,
E
[
F H̃ε(i)

]
= 0 if |α| > 1.

We conclude that we have the expansion
∫

R

f(s) dB(H)
s =

∞∑
i=1

〈f, ei〉HH̃ε(i)(ω), f ∈ L2
H(R).

In particular, for fBm we get, by choosing f = I[0,t],

B
(H)
t =

∞∑
i=1

[∫ t

0

(∫ ∞

−∞
ei(v)φ(u, v) dv

)
du

]
H̃ε(i)(ω).

We proceed to define the fractional Hida test function and distribution spaces
(compare with Definition A.1.4).

Definition 3.1.10. 1. The fractional Hida test function space: Define (S)H

to be the set of all ψ(ω) =
∑

α∈J aαH̃α(ω) ∈ L2(PH) such that

‖ψ‖2H,k :=
∑
α∈J

α!a2
α(2N)kα <∞ for all k ∈ N,

where
(2N)γ =

∏
j

(2j)γj if γ = (γ1, . . . , γm) ∈ J.

2. The fractional Hida distribution space: Define (S)∗H to be the set of all
formal expansions

G(ω) =
∑
β∈J

bβH̃β(ω)

such that

‖G‖2H,−q :=
∑
β∈J

β!b2β(2N)−qβ <∞ for some q ∈ N.

We equip (S)H with the projective topology and (S)∗H with the inductive
topology. Then (S)∗H can be identified with the dual of (S)H and the action
of G ∈ (S)∗H on ψ ∈ (S)H is given by

〈〈G,ψ〉〉 := 〈G,ψ〉(S)H ,(S)∗H
:=
∑
α∈J

α!aαbα.

In particular, if G belongs to L2(PH) ⊂ (S)∗H and ψ ∈ (S)H ⊂ L2(PH), then
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〈〈G,ψ〉〉 = E [Gψ] = (G,ψ)L2(PH).

The construction of the fractional Hida space is analogous to the one for the
standard Brownian motion case. If we compare Definition 3.1.10 and Defin-
ition A.1.4), we note that here the fractional Hida distribution space (S)∗H
is an extension of L2(PH), while in the standard Brownian motion case (S)∗

extends L2(P), where P is the Wiener measure associated to the Brownian
motion B.

We can in a natural way define (S)∗H -valued integrals as follows:

Definition 3.1.11. Suppose Z : R → (S)∗H is a given function with property
that

〈〈Z(t), ψ〉〉 ∈ L1(R, dt) for all ψ ∈ (S)H . (3.17)

Then
∫

R
Z(t) dt is defined to be the unique element of (S)∗H such that

〈〈
∫

R

Z(t) dt, ψ〉〉 =
∫

R

〈〈Z(t), ψ〉〉 dt for all ψ ∈ (S)H . (3.18)

Just as in Proposition 8.1 of [109], one can show that (3.18) defines
∫

R
Z(t) dt

as an element of (S)∗H .
If (3.17) holds, then we say that Z(t) is dt-integrable in (S)∗H .

Example 3.1.12. The fractional white noise W (H)(t) at time t is defined by

W (H)(t) =
∞∑

i=1

[∫

R

ei(v)φ(t, v) dv
]

H̃ε(i)(ω). (3.19)

We see that for q > 4/3 we have

‖W (H)(t)‖2H,−q =
∞∑

i=1

ε(i)!
[∫

R

ei(v)φ(t, v) dv
]2

(2N)−qε(i)

=
∞∑

i=1

[∫

R

ei(v)φ(t, v) dv
]2

(2i)−q <∞

by (3.9). Hence, W (H)(t) ∈ (S)∗H for all t. Moreover, by (3.11) it follows that
t → W (H)(t) is a continuous function from R into (S)∗H . Hence, W (H)(t) is
integrable in (S)∗H for 0 ≤ s ≤ t and
∫ t

0

W (H)(s) ds =
∞∑

i=1

{∫ t

0

[∫

R

ei(v)φ(u, v) dv
]
du

}
H̃ε(i)(ω) = B

(H)
t (3.20)

by Example 3.1.9. Therefore, t→ B
(H)
t is differentiable in (S)∗H and

d

dt
B

(H)
t = W (H)(t) in (S)∗H . (3.21)

This justifies the name fractional white noise for W (H)(t).
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We remark that in (4.16) of Chapter 4 we have introduced the fractional
white noise W (H) as an element in the Hida space (S)∗. Here the fractional
white noise W (H) is considered as an element of the fractional Hida space
(S)∗H .

Definition 3.1.13. Let

F (ω) =
∑
α∈J

aαH̃α(ω) and G(ω) =
∑
β∈J

bβH̃β(ω)

be two members of (S)∗H . Then we define the Wick product F �G of F and G
by

(F �G)(ω) =
∑

α,β∈J

aαbβH̃α+β(ω) =
∑
γ∈J

⎛
⎝ ∑

α+β=γ

aαbβ

⎞
⎠ H̃γ(ω). (3.22)

Just as for the usual white noise theory one can now prove Lemma 2.4.4 of
[109]

Lemma 3.1.14. 1. F , G ∈ (S)∗H =⇒ F �G ∈ (S)∗H .
2. ψ, η ∈ (S)H =⇒ ψ � η ∈ (S)H .

Example 3.1.15. Let f , g ∈ L2
H(R). Then by (3.12)

(∫

R

f dB(H)

)
�
(∫

R

g dB(H)

)
=

( ∞∑
i=1

〈f, ei〉HH̃ε(i)

)
�

⎛
⎝

∞∑
j=1

〈g, ej〉HH̃ε(j)

⎞
⎠

=
∞∑

i,j=1

〈f, ei〉H〈g, ej〉HH̃ε(i)+ε(j)

=
∞∑

i,j=1
i
=j

〈f, ei〉H〈g, ej〉H〈ω, ei〉〈ω, ej〉

+
∞∑

i=1

〈f, ei〉H〈g, ei〉H
(
〈ω, ei〉2 − 1

)

=

( ∞∑
i=1

〈f, ei〉H〈ω, ei〉
)⎛
⎝

∞∑
j=1

〈g, ej〉H〈ω, ej〉

⎞
⎠

−
∞∑

i=1

〈f, ei〉H〈g, ei〉H .

We conclude that(∫

R

f dB(H)

)
�
(∫

R

g dB(H)

)

=
(∫

R

f dB(H)

)
·
(∫

R

g dB(H)

)
− 〈f, g〉H .

(3.23)
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Example 3.1.16. If X ∈ (S)∗H , then we define its Wick powers X�n by

X�n = X �X � · · · �X (n factors)

and we define its Wick exponential exp�(X) by

exp�(X) =
∞∑

n=0

1
n!
X�n

provided that the series converges in (S)∗H . Note that by definition of the Wick
product we have

〈ω, ek〉�n =
(
H̃ε(k)

)�n

= H̃nε(k) = hn(〈ω, ek〉).

Therefore, if ck ∈ R, we get

exp�(ck〈ω, ek〉) =
∞∑

n=0

cnk
n!
〈ω, ek〉�n

=
∞∑

n=0

cnk
n!
hn(〈ω, ek〉)

= exp
(
ck〈ω, ek〉 −

1
2
c2k

)

by the generating property of Hermite polynomials. More generally, if f ∈
L2

H(R), we get

exp�(〈ω, f〉) = exp�

(∑
k

〈f, ek〉H〈ω, ek〉
)

=
∏
k

� exp� (〈f, ek〉H〈ω, ek〉)

=
∏
k

exp� (〈f, ek〉H〈ω, ek〉)

=
∏
k

exp
(
〈f, ek〉H〈ω, ek〉 −

1
2
〈f, ek〉2H

)

= exp

(∑
k

〈f, ek〉H〈ω, ek〉 −
1
2

∑
k

〈f, ek〉2H

)

= exp
(
〈ω, f〉 − 1

2
‖f‖2H

)
. (3.24)

Thus
exp�(〈ω, f〉) = E(f) for all f ∈ L2

H(R). (3.25)
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More generally, if g : C → C is an entire function (C is the set of complex
numbers) with the power series expansion

g(z1, . . . , zn) =
∑
α

cαz
α1
1 · · · zαn

n =:
∑
α

cαz
α,

where we have put zα = zα1
1 · · · zαn

n if α = (α1, . . . , αn) ∈ J, then we define,
for X = (X1, . . . , Xn) ∈ ((S)∗H)n,

g�(X1, . . . , Xn) =
∑
α

cαX
�α.

It is useful to note that with this notation we in fact have

H̃α(ω) = 〈ω, e1〉�α1 � · · · � 〈ω, en〉�αn

if α = (α1, . . . , αn) ∈ J. Or, if we define

ξk(ω) = 〈ω, ek〉 , ξ = (ξ1, ξ2, . . .),

then
H̃α(ω) = ξ�α.

3.2 Fractional Girsanov theorem

With the white noise machinery just established in Section 3.1 one can now
verify that the proof of the Benth–Gjessing version of the Girsanov formula,
as presented in Corollary 2.10.5 in [109], applies to the fractional case.

At this purpose we now introduce the translation operator by following
[109]. Let ω0 ∈ S′(R). For F ∈ (S)H , we define

Tω0F (ω) = F (ω + ω0), ω ∈ S′(R).

It is easy to verify, as in the proof of Theorem 2.10.1 of [109], that f → Tω0f
is a continuous linear map from (S)H to (S)H . We then define the adjoint
translation operator T ∗

ω0
from (S)∗H to (S)∗H by

〈〈T ∗
ω0
X ,F 〉〉 = 〈〈X ,Tω0F 〉〉, X ∈ (S)∗H , F ∈ (S)H .

Lemma 3.2.1. Let ω0 ∈ L2
H(R) and define ω̃0(t) =

∫
R
ω0(u)φ(t, u) du. Then

T ∗
ω̃0
X = X � exp� (〈ω , ω0〉) .

Proof. By a density argument it suffices to show that

〈〈T ∗
ω0
X ,F 〉〉 = 〈〈X � exp� (〈ω, ω0〉) , F 〉〉

for
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X = exp
(
〈ω, g〉 − 1

2
‖g‖2H

)
, F = exp

(
〈ω, f〉 − 1

2
‖f‖2H

)
,

where f, g ∈ L2
H(R) and ω0 ∈ S(R). In this case, we have by definition

〈〈T ∗
ω̃0
X,F 〉〉 = 〈〈X,F (ω + ω̃0)〉〉 = e〈ω̃0,f〉〈〈X,F (ω)〉〉 = e〈ω0,f〉+〈f,g〉H .

On the other hand,

〈〈X � exp� (〈ω , ω0〉) , F 〉〉 = 〈〈e〈ω,g+ω0〉− 1
2‖g+ω0‖2

H , F 〉〉
= e〈g+ω0 ,f〉H .

This shows the lemma. ��

Theorem 3.2.2 (Fractional Girsanov formula I). Let ψ ∈ Lp(PH) for
some p > 1 and let γ ∈ L2

φ(R) ∩ C(R) ⊂ S′(R). Let γ̃ be defined by γ̃(t) =∫
R
φ(t, s)γ(s) ds. Then the map ω → ψ(ω+ γ̃) belongs to Lρ(PH) for all ρ < p

and ∫

S′(R)

ψ(ω + γ̃) dPH(ω) =
∫

S′(R)

ψ(ω) · exp�(〈ω, γ〉) dPH(ω) .

Proof. By Lemma 3.2.1, we have

〈〈X ,Tγ̃ψ〉〉 = 〈〈X � exp� (〈ω , γ〉) , ψ〉〉. (3.26)

Let X = 1. We see that the left-hand side of (3.26) is
∫

S′(R)
ψ(ω + γ̃) dPH(ω)

and the right-hand side of (3.26) is
∫

S′(R)
ψ(ω) · exp�(〈ω, γ〉) dPH(ω). This

completes the proof of this theorem. ��

Corollary 3.2.3. Let g : R → R be bounded and let γ ∈ L2
φ(R)∩C(R). Then,

with E(·) as in (3.7),

E

[
g(B(H)

t +
∫ t

0

γ̃(s) ds)
]

= E
[
g(B(H)

t )E(γ)
]
. (3.27)

Proof. Define ψ(ω) = g(〈ω, I[0,t]〉) = g(B(H)
t ). Then

ψ(ω + γ̃) = g(〈ω + γ̃, I[0,t]〉) = g(B(H)
t +

∫ t

0

γ̃(s) ds);

so the result follows from (3.25) and Theorem 3.2.2. ��

Theorem 3.2.4 (Fractional Girsanov formula II). Let T > 0 and let
γ be a continuous function with supp γ ⊂ [0, T ]. Let K be a function with
supp K ⊂ [0, T ] and such that

〈K, f〉H = 〈γ, f〉L2(R) , for all f ∈ S(R), supp f ⊂ [0, T ],
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i.e., ∫

R

K(s)φ(s, t) ds = γ(t) , 0 ≤ t ≤ T.

On the σ-algebra F
(H)
T generated by {B(H)

s : 0 ≤ s ≤ T}, define a probability
measure P

H,γ by
dPH,γ

dPH
= exp� (−〈ω,K〉)

Then B̂(H)(t) = B
(H)
t +

∫ t

0
γs ds, 0 ≤ t ≤ T , is a fBm under P

H,γ .

Proof. It suffices to show that for any G(ω) = exp(〈ω, f〉) with f ∈ S(R),
supp f ⊂ [0, T ], we have

EH,γ [G(ω + γ)] = E [G(ω + γ) exp� [−〈ω,K〉]] = E [G(ω)] ,

where EH,γ [·] denotes the expectation under P
H,γ . But in this case

E [G(ω + γ) exp� [−〈ω,K〉]] = E

[
exp
(
〈ω + γ , f〉 − 〈ω,K〉 − 1

2
‖K‖2H

)]

= E

[
exp
(
〈ω , f −K〉+ 〈γ, f〉L2(R) −

1
2
‖K‖2H

)]

= exp
(

1
2
‖f −K‖2H + 〈γ, f〉L2(R) −

1
2
‖K‖2H

)

= exp
(
−〈K, f〉H +

1
2
‖f‖2H + 〈γ, f〉L2(R)

)

= e1/2‖f‖2
H = E

[
e〈ω,f〉

]
= E [G(ω)] .

��

Remark 3.2.5. SinceB(H)
t is not a martingale, unlike in the standard Brownian

motion case, the restriction of dPH,γ/dPH to F
(H)
t , 0 < t < T is in general

not given by exp�(−〈ω, I[0,t]K〉).

Remark 3.2.6. In [172], a special case of (3.27) was obtained.

Lemma 3.2.7 (Wick products on different white noise spaces). Let
P = P

H , Q = P
H,γ and B̂(H)(t) = B

(H)
t +

∫ t

0
γsds be as in Theorem 3.18.

Let the Wick products corresponding to P and Q be denoted by �P and �Q,
respectively. Then

F �P G = F �Q G

for all F,G ∈ (S)∗H .

Proof. First let F = exp(
∫

R
f(s) dB(H)

s ) and G = exp(
∫

R
g(s) dB(H)

s ), where
f and g are in L2

H(R). Then the Wick product of F and G is
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F �P G = exp
(∫

R

[f(s) + g(s)] dB(H)
s − 〈f, g〉H

)
.

On the other hand

F = exp
(∫

R

f(s) dB̂(H)(s)− 〈f, γ〉L2(R)

)

and

G = exp
(∫

R

g(s) dB̂(H)(s)− 〈g, γ〉L2(R)

)
.

Thus,

F �Q G = exp
(∫

R

[f(s) + g(s)] dB̂(H)(s)− 〈f, g〉H − 〈f + g, γ〉L2(R)

)

= exp
(∫

R

[f(s) + g(s)] dB(H)
s − 〈f, g〉H

)
.

Thus F �Q G = F �P G for exponential functions. Since the Wick product
is linear with respect to F and G, we know that F �Q G = F �P G for
linear combinations of exponential functions. The identity follows by a density
argument. ��

3.3 Fractional stochastic gradient

Now that the basic fractional white noise theory is established, we can proceed
as in [1] to define stochastic gradient.

Definition 3.3.1. Let F : S′(R) → R be a given function and let γ ∈ S′(R).
We say that F has a directional derivative in the direction γ if

D(H)
γ F (ω) := lim

ε→0

F (ω + εγ)− F (ω)
ε

exists in (S)∗H . If this is the case, we call D(H)
γ F the directional derivative of

F in the direction γ.

Example 3.3.2. If F (ω) = 〈ω, f〉 =
∫

R
f(t) dB(H)

t for some f ∈ S(R) and
γ ∈ L2(R) ⊂ S′(R), then

D(H)
γ F (ω) = lim

ε→0

1
ε

[〈ω + εγ, f〉 − 〈ω, f〉]

= lim
ε→0

1
ε

[〈εγ, f〉] = 〈γ, f〉 =
∫

R

f(t)γ(t) dt .
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Definition 3.3.3. We say that F : S′(R) → R is differentiable if there exists
a map Ψ : R → (S)∗H such that

Ψ(t)γ(t) = Ψ(t, ω)γ(t) is (S)∗H -integrable

and
D(H)

γ F (ω) =
∫

R

Ψ(t, ω)γ(t) dt ∀γ ∈ L2(R).

In this case we put

D
(H)
t F (ω) :=

dF

dω
(t, ω) := Ψ(t, ω),

and we call D(H)
t F (ω) = dF (t, ω)/dω the stochastic gradient (or the Hida

Malliavin derivative) of F at t.

Example 3.3.4. Let F (ω) = 〈ω, f〉 with f ∈ S(R). Then by Example 3.3.2 F
is differentiable and its stochastic gradient is

D
(H)
t F (ω) = f(t) forallmostall (t, ω).

Just as in Lemma 3.6 of [1], we now get

Lemma 3.3.5 (The chain rule I). Let P (y) =
∑

α cαy
α be a polynomial in

n variables y = (y1, . . . , yn) ∈ R
n. Choose fi ∈ S(R) and put Y = (Y1, . . . , Yn)

with
Yi(ω) = 〈ω, fi〉 =

∫

R

fi(t) dB
(H)
t , 1 ≤ i ≤ n.

Then P �(Y ) and P (Y ) are differentiable and

D
(H)
t P �(Y ) =

n∑
i=1

∂P �

∂xi
(Y1, . . . , Yn)fi(t) =

∑
α

cα
∑

i

αiY
�(α−ε(i))fi(t),

D
(H)
t P (Y ) =

n∑
i=1

∂P

∂xi
(Y1, . . . , Yn)fi(t) =

∑
α

cα
∑

i

αiY
α−ε(i)

fi(t).

Similarly, if we define Y (t) = (Y (t)
1 , . . . , Y

(t)
n ) with

Y
(t)
i (ω) =

∫ t

0

fi(s) dB(H)
s =

∫

R

fi(s)I[0,t](s) dB(H)
s , 1 ≤ i ≤ n,

then we obtain, as in Lemma 3.7 of [1]

Lemma 3.3.6 (Chain rule II).

d

dt
P �(Y (t)) =

n∑
j=1

fj(t)
(
∂P

∂xj

)�
(Y (t)) �W (H)(t).

We remark that Lemma 3.3.5 shows that definition 3.3.3 extends Definition
(2.31) of Chapter 2 of the derivative operator as an element of (S)∗H .
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3.4 Fractional Wick Itô Skorohod integral

The following definition is an extension of the fractional stochastic integral of
Itô type introduced in Theorem 3.6.1.

Definition 3.4.1. Suppose Y : R → (S)∗H is a given function such that
Y (t)�W (H)(t) is dt-integrable in (S)∗H (Definition 3.1.11). Then we define its
fractional Wick Itô Skorohod (fWIS) integral,

∫
R
Y (t) dB(H)

t , by
∫

R

Y (t) dB(H)
t :=

∫

R

Y (t) �W (H)(t) dt. (3.28)

In particular, the integral on an interval can be defined as

∫ T

0

Y (t) dB(H)
t =

∫

R

Y (t)I[0,T ](t) dB
(H)
t .

Example 3.4.2. Suppose

Y (t) =
n∑

i=1

Fi(ω)I[ti,ti+1)(t), where Fi ∈ (S)∗H .

Then by (3.20) we see that

∫

R

Y (t) dB(H)
t =

n∑
i=1

Fi(ω) �
(
B

(H)
ti+1

−B(H)
ti

)
.

We illustrate how the fractional Wick calculus works in (S)∗H by means of two
simple examples.

Example 3.4.3. We compute the following integral.
∫ t

0

B(H)
s dB(H)

s =
∫ t

0

B(H)
s �W (H)(s) ds

=
∫ t

0

B(H)
s � d

ds
B(H)

s ds =
1
2
(B(H)

t )�2

=
1
2
(B(H)

t )2 − 1
2
t2H , (3.29)

where we have used (3.28), (3.21), standard Wick calculus, (3.23), and finally
the fact that ∫ t

0

∫ t

0

φ(u, v) du dv = t2H .

Example 3.4.4 (Geometric fractional Brownian motion). Consider the frac-
tional stochastic differential equation
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dX(t) = µX(t) dt+ σX(t) dB(H)
t , X(0) = x > 0,

where x, µ and σ are constants. We rewrite this as the following equation in
(S)∗H :

dX(t)
dt

= µX(t) + σX(t) �W (H)(t)

or
dX(t)
dt

=
(
µ+ σW (H)(t)

)
�X(t).

Using Wick calculus, we see that the solution of this equation is

X(t) = x exp�
(
µt+ σ

∫ t

0

W (H)(s) ds
)

= x exp�
(
µt+ σB(H)

t

)
. (3.30)

By (3.25) and (3.29) this can be written

X(t) = x exp
(
σB

(H)
t + µt− 1

2
σ2t2H

)
.

Note that
E [X(t)] = xeµt.

3.5 The φ-derivative

The stochastic integral defined (3.28) is a (S)∗H -valued stochastic process. To
discuss the Itô formula for usual functions, we need to have stochastic integral
with value in L2 or as an ordinary random variable. For this reason we study
the Malliavin derivative in more detail.

Definition 3.5.1. Let g ∈ L2
H(R). The φ-derivative of a random variable

F ∈ Lp(PH) in the direction of Φg is defined as

DΦgF (ω) = lim
δ→0

1
δ

{
F (ω + δ

∫ ·

0

(Φg)(u) du)− F (ω)
}

if the limit exists in Lp(PH). Furthermore, if there is a process (Dφ
sF, s ≥ 0)

such that
DΦgF =

∫

R

Dφ
sFgs ds almost surely

for all g ∈ L2
H(R), then F is said to be φ-differentiable.

Remark 3.5.2. Note that by comparing Definition 3.3.3 and 3.5.1 we obtain
that

Dφ
t F =

∫

R

φ(t, v)D(H)
v F dv. (3.31)
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The higher order derivatives can be defined in a similar manner.

Definition 3.5.3. Let F : [0, T ]×Ω → R be a stochastic process. The process
F is said to be φ-differentiable if for each t ∈ [0, T ], F (t, ·) is φ-differentiable
and Dφ

sFt is jointly measurable.

It is easy to verify an elementary version of a chain rule, that is, if f : R → R

is a smooth function and F : Ω → R is φ-differentiable then f(F ) is also
φ-differentiable and

DΦgf(F ) = f ′(F )DΦgF

and
Dφ

s f(F ) = f ′(F )Dφ
sF

and the iterated directional derivatives are

DΦg1DΦg2f(F ) = f ′(F )DΦg1DΦg2F + f ′′(F )DΦg1FDΦg2F.

The following rules for differentiation, which can be verified as in the proof of
Proposition 3.5.4, are useful later:

DΦg

∫

R

fs dB
(H)
s =

∫

R

∫

R

φ(u, v)fugv du dv = 〈f, g〉H ;

Dφ
s

∫

R

fu dB
(H)
u =

∫

R

φ(u, s)fu du = (Φf)(s);

DΦgε(f) = ε(f)
∫

R

∫

R

φ(u, v)fugv du dv = ε(f)〈f, g〉H ,

Dφ
s ε(f) = ε(f)

∫

R

φ(u, s)fu du = ε(f)(Φf)(s),

where f, g ∈ L2
H(R).

We note that the Wick product of two exponentials ε(f) and ε(g) has the
following form

ε(f) � ε(g) := ε(f + g). (3.32)

Since for distinct f1, f2, . . ., fn in L2
H(R), ε(f1), ε(f2), . . ., ε(fn) are linearly

independent, this property uniquely defines the Wick product F � G of two
functionals F and G in E.

Proposition 3.5.4. If g ∈ L2
H(R), F ∈ L2(PH) and DΦgF ∈ L2(PH), then

F �
∫

R

gs dB
(H)
s = F

∫

R

gs dB
(H)
s −DΦgF (3.33)
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Proof. By (3.32),
ε(f) � ε(δg) = ε(f + δg), δ ∈ R. (3.34)

Differentiate the above identity with respect to δ and evaluate at δ = 0, to
obtain

ε(f) �
∫

R

gs dB
(H)
s = ε(f)

[∫

R

gs dB
(H)
s − 〈f, g〉H

]

= ε(f)
∫

R

gs dB
(H)
s − ε(f)〈f, g〉H . (3.35)

By (3.5) it follows that the last term of the above expression is DΦgε(f). Thus
the following equality is satisfied:

ε(f) �
∫

R

gs dB
(H)
s = ε(f)

∫

R

gs dB
(H)
s −DΦgε(f). (3.36)

If F ∈ E is a finite linear combination of ε(f1), ε(f2), . . ., ε(fn), then extend
(3.36) by linearity

F �
∫

R

gs dB
(H)
s = F

∫

R

gs dB
(H)
s −DΦgF

= F

∫

R

gs dB
(H)
s −

∫

R

Dφ
sFgs ds. (3.37)

The proof of the proposition is completed by Theorem 3.1.4. ��

Now we compute the second moment of (3.33). Note that by a simple
computation for Gaussian random variables, it follows that

E [ε(f)ε(g)] = exp (〈f, g〉H) .

Thus for δ, γ ∈ R

E [(ε(f) � ε(γg)) (ε(h) � ε(δg))] = E [ε(f + γg)ε(h+ δg)]
= exp(〈f + γg , h+ δg〉H).

Both sides of this equality are functions of γ and δ. Taking the partial deriv-
ative ∂2/(∂γ∂δ) evaluated at γ = δ = 0, it follows that

E

[(
ε(f) �

∫

R

gs dB
(H)
s

)(
ε(h) �

∫

R

gs dB
(H)
s

)]

= exp (〈f, h〉H) {〈f, g〉H〈h, g〉H + 〈g, g〉H}
= E [DΦgε(f)DΦgε(h) + ε(f)ε(h)〈g, g〉H ] .

Thus
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E

[(
ε(f) �

∫

R

gs dB
(H)
s

)(
ε(h) �

∫

R

gs dB
(H)
s

)]

= E [(DΦgε(f)DΦgε(h) + ε(f)ε(h)〈g, g〉H)] .

By bilinearity, for any F and G in E, the following equality is satisfied

E

[(
F �
∫

R

gs dB
(H)
s

)(
G �
∫

R

gs dB
(H)
s

)]
= E [DΦgFDΦgG+ FG〈g, g〉H ] .

Let F be equal to G. Then

E

[(
F �
∫

R

gs dB
(H)
s

)2
]

= E
[
(DΦgF )2 + F 2‖g‖2H

]
.

This result is stated in the following theorem.

Theorem 3.5.5. Let g ∈ L2
H(R) and let Eg be the completion of E under the

norm
‖F‖2g = E

[
(DΦgF )2 + F 2

]
,

where F is a random variable. Then for any element F ∈ Eg, F �
∫

R
gs dB

(H)
s

is well-defined and

E

[(
F �
∫

R

gs dB
(H)
s

)2
]

= E
[
(DΦgF )2 + F 2‖g‖2H

]
. (3.38)

By the polarization technique [160], there is the following corollary.

Corollary 3.5.6. Let g, h ∈ L2
H(R) and F,G ∈ E. Then

E

[(
F �
∫

R

gs dB
(H)
s

)(
G �
∫

R

hs dB
(H)
s

)]

= E [DΦhFDΦgG+ FG〈g, h〉H ] .
(3.39)

3.6 Fractional Wick Itô Skorohod integrals in L2

We now wish to define the stochastic integral
∫ T

0
Fs dB

(H)
s , for a suitable

integrand Ft, as an element in L2(PH). We recall that we are assuming H >
1/2.

Consider an arbitrary partition of [0, T ], π : 0 = t0 < t1 < t2 < . . . < tn =
T and the Riemann sum

S(F, π) =
n−1∑
i=0

Fti
� (B(H)

ti+1
−B(H)

ti
).

Note first that if Y (t) = FiI{ti≤t<ti+1}, then by (3.28) we have
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∫

R

Y (t) dB(H)
t =

∫

R

Y (t) �W (H)(t) dt = Fi �
∫ ti+1

ti

W (H)(t) dt

= Fi � (B(H)
ti+1

−B(H)
ti

)

Under some assumptions on φ-derivative of Fi we see that
∫

R
Y (t) dB(H)

t is
square integrable. For the general case we shall use equality (3.39). From (3.34)
it easily follows that that for any F and G in E, E [F �G] = E [F ]E [G]. This
identity extends to more general F and G such that F �G is well-defined (e.g.
[109, p. 83]). Thus for any partition π,

E

[
n−1∑
i=0

Fti
� (B(H)

ti+1
−B(H)

ti
)

]
=

n−1∑
i=0

E
[
Fti
� (B(H)

ti+1
−B(H)

ti
)
]

=
n−1∑
i=0

E [Fti
]E
[
B

(H)
ti+1

−B(H)
ti

]
= 0.

To compute the L2 norm of S(F, π), denote

σij = E
[(
Fti
� (B(H)

ti+1
−B(H)

ti
)
)(
Ftj

� (B(H)
tj+1

−B(H)
tj

)
)]
.

By Corollary 3.5.6, it follows that

σij = E

[∫ tj+1

tj

Dφ
sFti

ds

∫ ti+1

ti

Dφ
t Ftj

dt+ Fti
Ftj

∫ ti+1

ti

∫ tj+1

tj

φ(u, v) du dv

]
.

Thus

E
[
S(F, π)2

]
=

n−1∑
i,j=0

E

[∫ tj+1

tj

Dφ
sFti

ds

∫ ti+1

ti

Dφ
t Ftj

dt

+Fti
Ftj

∫ ti+1

ti

∫ tj+1

tj

φ(u, v) du dv

]
.

Denote |π| := maxi(ti+1 − ti) and Fπ
t = Fti

if ti ≤ t < ti+1. Assume that as
|π| → 0, E

[
‖Fπ − F‖2H

]
→ 0 and

E

⎡
⎣
∣∣∣∣∣∣

n−1∑
i,j=0

∫ t
(n)
i+1

t
(n)
i

∫ t
(n)
j+1

t
(n)
j

Dφ
sF

π

t
(n)
i

Dφ
t F

π

t
(n)
j

ds dt−
∫ T

0

∫ T

0

Dφ
sFtD

φ
t Fs ds dt

∣∣∣∣∣∣

⎤
⎦

converges to 0. Then from the above it is easy to see that if (πn, n ∈ N) is a
sequence of partitions such that |πn| → 0 as n→∞, then (S(F, πn) , n ∈ N) is
a Cauchy sequence in L2(PH). The limit of this sequence in L2(PH) is defined
as
∫ T

0
Fs dB

(H)
s , that is, define
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∫ T

0

Fs dB
(H)
s = lim

|π|→0

n−1∑
i=0

Fπ
ti
� (B(H)

ti+1
−B(H)

ti
) (3.40)

so that

E

[
|
∫ T

0

Fs dB
(H)
s |2

]
= E

[∫ T

0

∫ T

0

Dφ
sFtD

φ
t Fs ds dt+ ‖f‖2H

]
.

Let Lφ(0, T ) be the family of stochastic processes F on [0, T ] with the following
properties: F ∈ Lφ(0, T ) if and only if E

[
‖F‖2H

]
< ∞, F is φ-differentiable,

the trace of Dφ
sFt, 0 ≤ s, t ≤ T , exists, and E

[∫ T

0

∫ T

0
|Dφ

sFt|2 ds dt
]
<∞ and

for each sequence of partitions (πn, n ∈ N) such that |πn| → 0 as n→∞,

n−1∑
i,j=0

E

[∫ t
(n)
i+1

t
(n)
i

∫ t
(n)
j+1

t
(n)
j

∣∣∣∣Dφ
sF

π

t
(n)
i

Dφ
t F

π

t
(n)
j

−Dφ
sFtD

φ
t Fs

∣∣∣∣ ds dt
]

and
E
[
‖Fπ − F‖2H

]

tend to 0 as n→∞, where πn : 0 = t
(n)
0 < t

(n)
1 < . . . < t

(n)
n−1 < t

(n)
n = T .

The following result summaries the above construction of a stochastic in-
tegral.

Theorem 3.6.1. Let (Ft, t ∈ [0, T ]) be a stochastic process such that F ∈
Lφ(0, T ). The limit (3.40) exists, and this limit is defined as

∫ T

0
Fs dB

(H)
s .

Moreover, this integral satisfies

E

[∫ T

0

Fs dB
(H)
s

]
= 0

and

‖
∫ T

0

Fs dB
(H)
s ‖Lφ(0,T ) := E

[
|
∫ T

0

Fs dB
(H)
s |2

]
(3.41)

= E

[∫ T

0

∫ T

0

Dφ
sFtD

φ
t Fs ds dt+ ‖1[0,T ]F‖2H

]
.

The following properties follow directly from the above theorem.

1. If F,G ∈ Lφ(0, T ), then
∫ t

0

(aFs + bGs) dB(H)
s = a

∫ t

0

Fs dB
(H)
s + b

∫ t

0

Gs dB
(H)
s a.s.

for any constants a and b.
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2. If F ∈ Lφ(0, T ), E
[
sup0≤s≤T |Fs|2

]
< ∞ and sup0≤s,t≤T E

[
|Dφ

sFt|2
]
<

∞, then (
∫ t

0
FsdB

(H)
s , 0 ≤ t ≤ T ) has a continuous version.

Property 1 is obvious. To show property 2 let Yt =
∫ t

0
Fs dB

(H)
s , 0 ≤ t ≤ T .

By the equality (3.41) it follows that

E
[
|Yt − Ys|2

]
= E

[
|
∫ t

s

Fu dB
(H)
u |2

]

≤ E
[∫ t

s

∫ t

s

|Dφ
uFv|2 du dv +

∫ t

s

∫ t

s

FuFvφ(u, v) du dv
]

≤ C(t− s)2 +E

[{
sup

0≤s≤T
Fs

}2
]∫ t

s

∫ t

s

φ(u, v) du dv

≤ (t− s)2 + C(t− s)2H .

By the Kolmogorov’s lemma [218], the property 2 is satisfied.

3.7 An Itô formula

Now an analogue of the Itô formula is established, that is, a chain rule for the
integral introduced in the last section.

At this purpose we need to introduce first the following theorem that shows
how to compute the φ-derivative of a stochastic integral of Itô type. It can be
verified from the product rule and the Riemann sum approximations to the
stochastic integral.

Theorem 3.7.1. Let (Ft , t ∈ [0, T ]) be a stochastic process in Lφ(0, T ) and
sup0≤s≤T E

[
|Dφ

sFs|2
]
<∞, and let ηt =

∫ t

0
Fu dB

(H)
u for t ∈ [0, T ]. Then for

s, t ∈ [0, T ],

Dφ
s ηt =

∫ t

0

Dφ
sFu dB

(H)
u +

∫ t

0

Fuφ(s, u) du, a.s.

Now a general Itô formula is given. For further comments about Itô formulas
for fBm, we refer to Section 6.3.

Theorem 3.7.2. Let ηt =
∫ t

0
Fu dB

(H)
u , where (Fu , 0 ≤ u ≤ T ) is a stochastic

process in Lφ(0, T ). Assume that there is an α > 1−H such that

E
[
|Fu − Fv|2

]
≤ C|u− v|2α,

where |u− v| ≤ δ for some δ > 0 and

lim
0≤u,v≤t,|u−v|→0

E
[
|Dφ

u(Fu − Fv)|2
]

= 0 .
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Let f : R+ × R → R be a function having the first continuous derivative
in its first variable and the second continuous derivative in its second vari-
able. Assume that these derivatives are bounded. Moreover, it is assumed that
E
[∫ T

0
|FsD

φ
s ηs| ds

]
<∞ and (f ′(s, ηs)Fs, s ∈ [0, T ]) is in Lφ(0, T ). Then for

0 ≤ t ≤ T ,

f(t, ηt) = f(0, 0) +
∫ t

0

∂f

∂s
(s, ηs) ds+

∫ t

0

∂f

∂x
(s, ηs)Fs dB

(H)
s

+
∫ t

0

∂2f

∂x2
(s, ηs)FsD

φ
s ηs ds a.s.

Proof. Let π be a partition defined as above by replacing T by t. Then

f(t, ηt)− f(0, 0)

=
n−1∑
k=0

[
f(tk+1, ηtk+1)− f(tk, ηtk

)
]

=
n−1∑
k=0

[
f(tk+1, ηtk+1)− f(tk, ηtk+1)

]
+

n−1∑
k=0

[
f(tk, ηtk+1)− f(tk, ηtk

)
]

by the mean value theorem. It is easy to see that the first sum converges to∫ t

0
∂f(s, ηs)/∂s ds in L2(PH). Now consider the second sum. Using Taylor’s

formula, it follows that

f(tk, ηtk+1)− f(tk, ηtk
) =

∂f

∂x
(tk, ηtk

)
(
ηtk+1 − ηtk

)

+
1
2
∂2f

∂x2
(tk, η̃tk

)
(
ηtk+1 − ηtk

)2
,

where η̃tk
∈ (ηtk

, ηtk+1). An upper bound is obtained for E
[(
ηtk+1 − ηtk

)2]

as follows

E

[(
ηtk+1 − ηtk

)2] = E

[∫ tk+1

tk

∫ tk+1

tk

Dφ
sFtD

φ
t Fs ds dt

]

+ E
[∫ tk+1

tk

∫ tk+1

tk

FuFvφ(u, v) du dv
]

≤ C(tk+1 − tk)2

+
∫ tk+1

tk

∫ tk+1

tk

(E
[
F 2

u

]
)1/2(E

[
F 2

v

]
)1/2φ(u, v) du dv

≤ C
[
(tk+1 − tk)2 +

∫ tk+1

tk

∫ tk+1

tk

φ(u, v) du dv
]

≤ C(tk+1 − tk)2 + C(tk+1 − tk)2H

≤ C(tk+1 − tk)2H ,
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where ti+1 − ti < 1 and C is a constant independent of the partition π that
may differ from line to line in this proof. Since

E

[
n−1∑
k=0

∂2f

∂x2
(tk, η̃tk

)
(
ηtk+1 − ηtk

)2
]
≤ C

n−1∑
k=0

E
[(
ηtk+1 − ηtk

)2]

≤ C
n−1∑
k=0

(tk+1 − tk)2H ,

then E
[∑n−1

k=0 ∂
2f(tk, η̃tk

)/∂x2(ηtk+1 − ηtk
)2
]
→ 0 as |π| → 0. On the other

hand,

∂f

∂x
(tk, ηtk

)
(
ηtk+1 − ηtk

)
=
∂f

∂x
(tk, ηtk

)
(
Ftk

� (B(H)
tk+1

−B(H)
tk

)
)

+
∂f

∂x
(tk, ηtk

)
(∫ tk+1

tk

(Fs − Ftk
) dB(H)

s

)
.

The first term on the right-hand side can be expressed as

∂f

∂x
(tk, ηtk

)
(
Ftk

� (B(H)
tk+1

−B(H)
tk

)
)

=
∂f

∂x
(tk, ηtk

)
(
Ftk

(B(H)
tk+1

−B(H)
tk

)−
∫ tk+1

tk

Dφ
sFtk

ds

)

=
∂f

∂x
(tk, ηtk

)Ftk
(B(H)

tk+1
−B(H)

tk
)− ∂f

∂x
(tk, ηtk

)
∫ tk+1

tk

Dφ
sFtk

ds

=
[
∂f

∂x
(tk, ηtk

)Ftk

]
� (B(H)

tk+1
−B(H)

tk
)

+
∫ tk+1

tk

Dφ
s

(
∂f

∂x
(tk, ηtk

)Ftk

)
ds− ∂f

∂x
(tk, ηtk

)
∫ tk+1

tk

Dφ
sFtk

ds

=
[
∂f

∂x
(tk, ηtk

)Ftk

]
� (B(H)

tk+1
−B(H)

tk
) +
∫ tk+1

tk

Ftk
Dφ

s

∂f

∂x
(tk, ηtk

) ds.

Thus

n−1∑
k=0

∂f

∂x
(tk, ηtk

)
(
ηtk+1 − ηtk

)
=

n−1∑
k=0

[
∂f

∂x
(tk, ηtk

)Ftk

]
� (B(H)

tk+1
−B(H)

tk
)

+
n−1∑
k=0

∫ tk+1

tk

Ftk
Dφ

s

∂f

∂x
(tk, ηtk

) ds.

As |π| → 0, the first term converges to
∫ t

0
Fs∂f(s, ηs)/∂x dB

(H)
s and the second

term converges to
∫ t

0
∂2f(s, ηs)/∂x2Dφ

s ηsFs ds in L2. To prove the theorem,
it is only necessary to show that
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n−1∑
k=0

E

[
|∂f
∂x

(tk, ηtk
)
∫ tk+1

tk

(Fs − Ftk
) dB(H)

s |
]

converges to 0 as |π| → 0. Since f has a bounded second derivative, it follows
that

|∂f
∂x

(tk, ηtk
)| ≤ C(1 + |ηtk

|).

Thus

E

[
|∂f
∂x

(tk, ηtk
)|2
]
≤ C.

Furthermore

n−1∑
k=0

E

[
|∂f
∂x

(tk, ηtk
)
∫ tk+1

tk

(Fs − Ftk
) dB(H)

s |
]

≤ C
n−1∑
k=0

E

[
|
∫ tk+1

tk

(Fs − Ftk
) dB(H)

s |2
]1/2

= C
n−1∑
k=0

E

[{∫ tk+1

tk

[
Dφ

s (Fs − Ftk
)
]
ds

}2
]

+ E
[∫ tk+1

tk

∫ tk+1

tk

(Fu − Ftk
)(Fv − Ftk

)φ(u, v) du dv
]1/2

≤ C
n−1∑
k=0

{
(tk+1 − tk)

∫ tk+1

tk

E
[(
Dφ

s (Fs − Ftk
)
)2]

ds

+
∫ tk+1

tk

∫ tk+1

tk

√
E [(Fu − Ftk

)2]E [(Fv − Ftk
)2]φ(u, v) du dv

}1/2

≤ C
n−1∑
k=0

{
sup

tk≤s≤tk+1

E
[
|Dφ

s (Fs − Ftk
)|2
]
(tk+1 − tk)2

+(tk+1 − tk)2H sup
tk≤s≤tk+1

E
[
(Fs − Ftk

)2
]
}1/2

≤ C sup
tk≤s≤tk+1

E
[
|Dφ

s (Fs − Ftk
)|2
]1/2

+ C|π|H+α−1.

The last term tends to 0 as |π| → 0. This proves the theorem. ��

The equality (3.7.2) can be formally expressed as

df(t, ηt) =
∂f

∂t
(t, ηt) dt+

∂f

∂x
(t, ηt)Ft dB

(H)
t +

∂2f

∂x2
(t, ηt)FtD

φ
t ηt dt.

If F (s) = a(s) is a deterministic function, then (3.7.2) simplifies as follows.
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Corollary 3.7.3. Let ηt =
∫ t

0
au dB

(H)
u , where a ∈ L2

H(R) and f : R+ ×R →
R satisfies the conditions in Theorem 3.7.2. Let (∂f(s, ηs)/∂x as, s ∈ [0, T ])
be in Lφ(0, T ). Then

f(t, ηt) = f(0, 0) +
∫ t

0

∂f

∂s
(s, ηs) ds+

∫ t

0

∂f

∂x
(s, ηs)as dB

(H)
s

+
∫ t

0

∂2f

∂x2
(s, ηs)as

∫ s

0

φ(s, v)av dv ds

alomst surely, or formally,

df(t, ηt) =
∂f

∂t
(t, ηt) dt+

∂f

∂x
(t, ηt)at dB

(H)
t +

∂2f

∂x2
(t, ηt)at

∫ t

0

φ(t, v)av dv dt.

If as ≡ 1, then we find the same result as in Theorem 4.2.6 in the special case
H > 1/2.

In the classical stochastic analysis, the stochastic integral can be defined
for general semimartingales and an Itô formula can be given. By the Doob–
Meyer decomposition [79], a semimartingale can be expressed as the sum of
a martingale and a bounded variation process. A semimartingale (Xt, t ≥ 0)
with respect to a Brownian motion can often be expressed as Xt = X0 +∫ t

0
fs dBs +

∫ t

0
gs ds. An Itô formula in the analogous form with respect to

fBm is given. This generalization of the Itô formula is useful in applications.

Theorem 3.7.4. Let (Fu, u ∈ [0, T ]) satisfy the conditions of Theorem 3.7.2,
and let E

[
sup0≤s≤T |Gs|

]
< ∞. Denote ηt = ξ +

∫ t

0
Gu du +

∫ t

0
Fu dB

(H)
u ,

ξ ∈ R, for t ∈ [0, T ]. Let (∂f(s, ηs)/∂xFs, s ∈ [0, T ]), be in Lφ(0, T ). Then for
t ∈ [0, T ],

f(t, ηt) = f(0, ξ) +
∫ t

0

∂f

∂s
(s, ηs) ds+

∫ t

0

∂f

∂x
(s, ηs)Gs ds

+
∫ t

0

∂f

∂x
(s, ηs)Fs dB

(H)
s +

∫ t

0

∂2f

∂x2
(s, ηs)FsD

φ
s ηs ds a.s. .

Proof. The proof is the same as for Theorem 3.7.2. ��

We now present two applications of the Itô formula. First, we provide an Lp

estimate of the fWIS integral. Second, we extend the so-called homogeneous
chaos to the fBm.

3.8 Lp estimate for the fWIS integral

Let hn(x) be the Hermite polynomial of degree n, that is,

etx−1/2t2 =
∞∑

n=0

tnhn(x).
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Let

‖f‖H,t :=
[∫ t

0

∫ t

0

φ(u, v)fufv du dv

]1/2

.

Define

f̃t := ‖f‖−1
H,t

∫ t

0

fs dB
(H)
s ,

where f ∈ L2
H(R) and

hH,f
n (t) := ‖f‖n

H,thn

(
f̃t

)
. (3.42)

Theorem 3.8.1. If f ∈ L2
H(R), then the following equality is satisfied

dhH,f
n (t) = nhH,f

n−1(t)ft dB
(H)
t ,

where t ∈ [0, T ].

Proof. Fix n and denote Xt = hH,f
n (t) for t ∈ [0, T ]. Using the Itô formula

(3.7.2), it follows that

dXt = n‖f‖n−2
H,t ft

∫ t

0

φ(u, t)fu duhn

(
f̃t

)
dt

− ‖f‖n
H,tft

∫ t

0

φ(u, t)fu duh
′
n

(
f̃t

)
‖f‖−3

H,t

(∫ t

0

fs dB
(H)
s

)
dt

+ ‖f‖n
H,th

′
n

(
f̃t

)
‖f‖−1

H,tft dB
(H)
t

+ ‖f‖n
H,tft

∫ t

0

φ(u, t)fu duh
′′
n

(
f̃t

)
‖f‖−2

H,t dt

= n‖f‖n−2
H,t hn−1

(
f̃t

)
ft dB

(H)
t

+ ‖f‖n−2
H,t ft

∫ t

0

φ(u, t)fu du ·
{
nhn(f̃t)− f̃th

′
n(f̃t) + h′′n(f̃t)

}
dt.

It is well known that for each n ∈ N the Hermite polynomial satisfies

nhn(x)− xh′n(x) + h′′n(x) = 0

for each x ∈ R. Thus nhn(f̃t)− f̃th
′
n(f̃t) + h′′n(f̃t) = 0. The first term is

nhH,f
n−1(t)ft dB

(H)
t .

Thus,
dhH,f

n (t) = nhH,f
n−1(t)ft dB

(H)
t .

This proves the theorem. ��
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The following estimate for the Lp norm is of Meyer inequality type and is
useful in some applications.

Theorem 3.8.2. Let (gs, s ∈ [0, t]) be a stochastic process satisfying the as-
sumptions of Theorem 3.7.2. Let Ft :=

∫ t

0
gs dB

(H)
s and p ≥ 2. If E

[∫ t

0
|gs|p ds

]

<∞,
∫ t

0
E
[
|Dφ

sFs|p ds
]
<∞ and F p−1g ∈ Lφ(0, t), then

E [F p
t ] ≤ pp

{∫ t

0

(
E
[
|gsD

φ
sFs|p/2

])2/p

ds

}p/2

.

Proof. Applying the Itô formula (Theorem 3.7.2) to F p
t (by the assumption

that F p−1g ∈ Lφ(0, t), the restriction on the boundedness of f to its second
derivatives in Theorem 3.7.2 can be removed), it follows that

F p
t = p

∫ t

0

F p−1
s gs dB

(H)
s + p(p− 1)

∫ t

0

F p−2
s gsD

φ
sFs ds.

Thus,

E [F p
t ] = p(p− 1)

∫ t

0

E
[
F p−2

s gsD
φ
sFs

]
ds.

and

E [F p
t ] ≤ p(p− 1)

∫ t

0

E
[
|F p−2

s gsD
φ
sFs|

]
ds

≤ p2
∫ t

0

E [F p
s ](p−2)/p

E
[
|gsD

φ
sFs|p/2

]2/p

ds

By an inequality of Langenhop (e.g., [13]), we have

E [F p
t ] ≤ pp

{∫ t

0

(
E
[
|gsD

φ
sFs|p/2

])2/p

ds

}p/2

.

This completes the proof of the theorem. ��
Corollary 3.8.3. Let the conditions of Theorem 3.8.2 be satisfied and let p ≥
2. Then

E [F p
t ] ≤ pp

{∫ t

0

(E [|gs|p])2/p
ds+

∫ t

0

(
E
[
|Dφ

sFs|p
])2/p

ds

}p/2

.

Proof. From |ab| ≤ a2 + b2, it follows that

E
[
|gsD

φ
sFs|p/2

]
≤ E [|gs|p] + E

[
|Dφ

sFs|p
]
.

Thus
(
E
[
|gsD

φ
sFs|p/2

])2/p

≤
(
E [|gs|p] + E

[
|Dφ

sFs|p
])2/p

≤ (E [|gs|p])2/p +
(
E
[
|Dφ

sFs|p
])2/p

.

This verifies the corollary. ��
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3.9 Iterated integrals and chaos expansion

As a second application of Itô formula, we now provide a Wiener Itô chaos
expansion theorem in terms of iterated integrals.

We recall that L2
H(R+) denotes the subspace generated by the deter-

ministic functions in L2
φ(R+). In the sequel we identify f ∈ L2

H(R+) with
fI[0,+∞) ∈ L2

H(R) to keep simple the notation concerning the norms. Let
f ∈ L2

H(R+) be such that ‖f‖H = 1. Similar to [109], define (
∫∞
0
fs dB

(H)
s )�n

as the nth Wick power of
∫∞
0
fsdB

(H)
s , i.e.,

(∫ ∞

0

fs dB
(H)
s

)�n

:=
(∫ ∞

0

fs dB
(H)
s

)�(n−1)

�
∫ ∞

0

fs dB
(H)
s ,

exp�
(∫ ∞

0

fsdB
(H)
s

)
:=

∞∑
n=0

1
n!

(∫ ∞

0

fs dB
(H)
s

)�n

,

log�
(

1 +
∫ ∞

0

fs dB
(H)
s

)
:=

∞∑
n=1

(−1)n−1

n

(∫ ∞

0

fs dB
(H)
s

)�n

for n = 2, 3, . . ..

Lemma 3.9.1. If f ∈ L2
H(R+) with ‖f‖H = 1, then for each n ∈ N,(∫∞

0
fs dB

(H)
s

)�n

is well-defined and

(∫ ∞

0

fs dB
(H)
s

)�n

= hn

(∫ ∞

0

fs dB
(H)
s

)
, (3.43)

where hn denotes the Hermite polynomial of degree n (see (3.8)).

Proof. The equality (3.43) is verified by induction. It is easy to see that (3.43)
is true for n = 1. Suppose that (3.43) is true for 1, 2, . . . , n− 1. Then
(∫ ∞

0

fsdB
(H)
s

)�n

= hn−1(
∫ ∞

0

fs dB
(H)
s ) �

∫ ∞

0

fs dB
(H)
s

= hn−1(
∫ ∞

0

fs dB
(H)
s )

∫ ∞

0

fs dB
(H)
s −DΦf

{
hn−1(

∫ ∞

0

fs dB
(H)
s )

}

= hn−1(
∫ ∞

0

fs dB
(H)
s )

∫ ∞

0

fs dB
(H)
s − h′n−1(

∫ ∞

0

fs dB
(H)
s )‖f‖2H

= hn−1(
∫ ∞

0

fs dB
(H)
s )

∫ ∞

0

fs dB
(H)
s − h′n−1(

∫ ∞

0

fs dB
(H)
s )

= hn(
∫ ∞

0

fs dB
(H)
s )

by an identity for Hermite polynomials. This verifies the equation (3.43). ��
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For an arbitrary, nonzero f ∈ L2
H(R+), the product defined in (3.43) is ex-

tended as follows:

(∫ ∞

0

fs dB
(H)
s

)�n

= ‖f‖n
H

(∫∞
0
fs dB

(H)
s

‖f‖H

)�n

= ‖f‖n
Hhn

(∫ ∞

0

∫∞
0
fs dB

(H)
s

‖f‖H

)
.

Lemma 3.9.2. If f ∈ L2
H(R+), then

(∫∞
0
fs dB

(H)
s

)�n

is well-defined for
each n ∈ N and (∫ t

0

fs dB
(H)
s

)�n

= hH,f
n (t),

where hH,f
n (t) is defined in (3.42).

Since
∫∞
0
fs dB

(H)
s is a Gaussian random variable, it is easy to estimate

its moments and to show that the series defining exp�
(∫∞

0
fs dB

(H)
s

)
is con-

vergent in L2(PH). Moreover, there is the following corollary.

Corollary 3.9.3. If f ∈ L2
H(R+), then

exp�
(∫ ∞

0

fs dB
(H)
s

)
= ε(f) = exp

(∫ ∞

0

fs dB
(H)
s − 1

2
‖f‖2H

)
.

Proof. It follows that

exp�
(∫ ∞

0

fs dB
(H)
s

)
=

∞∑
n=0

1
n!

(∫ ∞

0

fs dB
(H)
s

)�n

=
∞∑

n=0

1
n!
‖f‖n

Hhn

(∫∞
0
fs dB

(H)
s

‖f‖H

)

= exp

(
‖f‖H

∫∞
0
fs dB

(H)
s

‖f‖H
− 1

2
‖f‖2H

)

= exp
(∫ ∞

0

fs dB
(H)
s − 1

2
‖f‖2H

)
.

This completes the proof of the lemma. ��

The following lemma is also easy to prove.

Lemma 3.9.4. For any two functions f and g in L2
H(R+) with 〈f, g〉H = 0,

the following equality is satisfied
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(∫ ∞

0

fs dB
(H)
s

)�n

�
(∫ ∞

0

gs dB
(H)
s

)�m

=
(∫ ∞

0

fs dB
(H)
s

)�n(∫ ∞

0

gs dB
(H)
s

)�m

= hH,f
n (∞)hH,g

m (∞).

Since
∫∞
0
fs dB

(H)
s /‖f‖H and

∫∞
0
gs dB

(H)
s /‖g‖H are Gaussian random vari-

ables with mean 0 and variance 1, their covariance is

E

[(∫ ∞

0

fs

‖f‖H
dB(H)

s

) (∫ ∞

0

gs

‖g‖H
dB(H)

s

)]
=
〈

f

‖f‖H
,
g

‖g‖H

〉

H

,

It follows that

E

[(∫ ∞

0

fs dB
(H)
s

)�n(∫ ∞

0

gs dB
(H)
s

)�m]

= E

[
‖f‖n

H‖g‖m
Hhn

(∫ ∞

0

fs

‖f‖H
dB(H)

s

)
hm

(∫ ∞

0

gs

‖g‖H
dB(H)

s

)]

=

⎧
⎨
⎩

0 if m �= n

n!‖f‖n
H‖g‖n

H

〈
f

‖f‖H
, g
‖g‖H

〉n

φ
if m = n

=

{
0 if m �= n

n!〈f, g〉nH if m = n

By a polarization technique [160] it is easy to verify the following lemma.

Lemma 3.9.5. Let f1, . . . , fn, g1, . . . , gm ∈ L2
H(R+). The following equality

is satisfied

E

[(∫ ∞

0

f1
s dB

(H)
s � · · · �

∫ ∞

0

fn
s dB

(H)
s

)

·
(∫ ∞

0

g1sdB
(H)
s � · · · �

∫ ∞

0

gm
s dB

(H)
s

)]

=

{
0 if n �= m∑

σ〈f1, gσ(1)〉H〈f2, gσ(2)〉H · · · 〈fn, gσ(n)〉H if n = m,

where
∑

σ denotes the sum over all permutations σ of {1, 2, . . . , n}.
Let e1, e2, . . ., en, . . . be a complete orthonormal basis of L2

φ(R+) as defined
in (3.10). Consider the nth symmetric tensor product L̂2

H(Rn
+) of L2

H(R+):

L̂2
H(Rn

+) := L2
H(R+)⊗̂ · · · ⊗̂L2

H(R+).

We denote by Ln the set of all functions of n variables of the following form:

f(s1, . . . , sn) =
∑

1≤k1,...,kn≤k

ak1 ··· kn
ek1(s1)ek2(s2) · · · ekn

(sn) , (3.44)
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where f is a symmetric function of its variables s1, . . ., sn and k is a positive
integer. For an element of the form (3.44), its multiple integral is defined by

In(f) =
∑

1≤k1,...,kn≤k

ak1 ··· kn

∫ ∞

0

ek1(s) dB
(H)
s

�
∫ ∞

0

ek2(s) dB
(H)
s � · · · �

∫ ∞

0

ekn
(s) dB(H)

s .

By Lemma 3.9.5, we have

E
[
|In(f)|2

]
= n!

∫

R
2n
+

φ(u1, v1)φ(u2, v2) · · ·φ(un, vn)f(u1, u2, . . . , un)

·f(v1, v2, . . . , vn) du1 du2 · · · dun dv1 dv2 · · · dvn (3.45)

= n!
∑

1≤k1,...,kn≤k
1≤l1,...,ln≤k

ak1 ··· kn
al1 ··· ln〈ek1 , el1〉 · · · 〈ekn

, eln〉

= n!
∑

1≤k1,...,kn≤k

a2
k1 ··· kn

. (3.46)

Given f ∈ L̂2
φ(Rn

+), we define

‖f‖L2
φ(Rn

+) := n!
∫

R
2n
+

φ(u1, v1)φ(u2, v2) · · ·φ(un, vn)f(u1, u2, . . . , un)

· f(v1, v2, . . . , vn) du1 du2 · · · dun dv1 dv2 · · · dvn.

We note that the completion of L̂2
H(Rn

+) with respect to the norm (3.9) is
L2

φ(Rn
+).

Since every element f in L̂2
H(Rn

+) is a limit of elements in Ln, the multiple
integral In(f) for f ∈ L̂2

H(Rn
+) can be defined by a limit from elements in Ln

and it follows that
E
[
(|In(f)|2)

]
= n!‖f‖2H .

The following lemma can also be shown by the polarization technique.

Lemma 3.9.6. If f ∈ L̂2
H(Rn

+) and g ∈ L̂2
H(Rm

+ ), then

E [In(f)Im(g)] =

{
n!〈f, g〉H if n = m,

0 if n �= m.

Let f ∈ L̂2
H(Rn

+). The iterated integral can be defined by the recursive formula
∫

0≤s1<···<sn≤t

f(s1, . . . , sn) dB(H)
s1

· · · dB(H)
sn

=
∫ t

0

(∫

0≤s1<···<sn

f(s1, . . . , sn) dB(H)
s1

· · · dB(H)
sn−1

)
dB(H)

sn

(3.47)



82 3 fWIS integrals

Theorem 3.9.7. If f ∈ L̂2
H(Rn

+), then the iterated integral (3.47) exists and

In(f) = n!
∫

0≤s1<···<sn≤t

f(s1, . . . , sn) dB(H)
s1

· · · dB(H)
sn
. (3.48)

Proof. First let f have the special form f = g⊗n, that is, f(s1, s2, . . . , sn) =
g(s1)g2(s2) · · · g(sn). Then

In(f) = hH,g
n (t)

and

dIn(f) = dhH,g
n (t)

= nhH,g
n−1(t)g(t) dB

(H)
t

= nIn−1(g⊗(n−1))g(t) dB(H)
t .

This verifies (3.48) for the case where f = g⊗n. By the polarization technique
[160], the theorem follows easily. ��

Remark 3.9.8. For Brownian motion, a multiple integral was originally intro-
duced by Wiener [235]; Wiener’s original multiple integral is in fact a multiple
integral of Stratonovich type. The multiple integral of Itô type was introduced
in [131].

Theorem 3.9.9. Let F ∈ L2(PH). Then there exist fn ∈ L̂2
H(Rn

+) for n =
0, 1, 2, . . . such that

F (ω) =
∞∑

n=0

In(fn),

where I0(f0) := E [F ]. Moreover,

‖F‖2L2(PH) =
∞∑

n=0

n!‖fn‖2L2
φ(Rn

+).

Proof. The result can be deduced from Theorem 3.1.8 by using the identity

H̃α(ω) =
∫

Rn

e⊗α1
1 ⊗̂ · · · ⊗̂e⊗αm

m d(B(H))⊗n (3.49)

if α = (α1, . . . , αm) and n = |α| = α1 + · · · + αm, where ⊗̂ denotes the sym-
metric tensor product. The identity (3.49) follows by Theorem 3.1.8, (3.12),
and (3.48). ��
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3.10 Fractional Clark Hausmann Ocone theorem

In this section we prove a generalized Clark Hausmann Ocone formula in the
fractional case. For this purpose we extend the differentiation operator to a
space of random variables containing L2(PH). A convenient pair of spaces to
work with is the following:

Definition 3.10.1. ([1], [192])

1. Let k ∈ N. We say that a function

ψ(ω) =
∞∑

n=0

∫

R
n
+

fn d(B(H))⊗n(t) ∈ L2(PH), fn ∈ L̂2
H(Rn

+),

belongs to the space Gk = Gk(PH) if

‖ψ‖2Gk
:=

∞∑
n=0

n!‖fn‖2L2
φ(Rn

+)e
2kn <∞,

where ‖fn‖L̂2
φ(Rn

+) is defined in (3.9). We put

G = G(PH) = ∩∞
k=1Gk(PH)

and equip G with the projective topology.
2. Let q ∈ N. We say that a formal expansion

G =
∞∑

n=0

∫

R
n
+

gn d(B(H))⊗n(t), gn ∈ L̂2
H(Rn

+),

belongs to the space G−q = G−q(PH) if

‖G‖2G−q
=

∞∑
n=0

n!‖gn‖2L2
φ(Rn

+)e
−2qn <∞.

We define
G∗ = G∗(PH) = ∪q∈NG−q(PH)

and equip G∗ with the inductive topology. Then G∗ is the dual of G, and
the action of G ∈ G∗ on ψ ∈ G is given by

〈〈G,ψ〉〉 =
∞∑

n=0

n!(gn, fn)L2
φ(Rn

+) .

Remark 3.10.2. Note that by Theorem 3.9.9 we have

(S)H ⊂ G(PH) ⊂ L2(PH) =
(
L2(PH)

)∗ ⊂ G∗(PH) ⊂ (S)∗H .
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Let F
(H)
t be the σ-algebra generated by B(H)(s, ·); 0 ≤ s ≤ t. The following

operator is useful:

Definition 3.10.3. 1. Let G =
∑∞

n=0

∫
R

n
+
gn(s) d(B(H))⊗n(s) ∈ G∗. Then

we define the fractional (or quasi-) conditional expectation of G with
respect to F

(H)
t by

Ẽ
[
G|F(H)

t

]
:=

∞∑
n=0

∫

R
n
+

gn(s) · I{0≤s≤t} d(B(H))⊗n(s), (3.50)

for t ≥ 0.
2. We say that G ∈ G∗ is F

(H)
t -measurable if Ẽ

[
G|F(H)

t

]
= G, t ≥ 0.

Remark 3.10.4. The fractional conditional expectation Ẽ is different from
the ordinary conditional expectation. For example, it is easy to check that
Ẽ
[
B

(H)
t |F(H)

s

]
= B

(H)
s for 0 ≤ s ≤ t. But the computation of E

[
B

(H)
t |F(H)

s

]

is much more complicated. See, for example, [103].

Note, however, that if G ∈ L2(PH) then Definition , 2 coincides with the usual
definition of being F

(H)
t -measurable, i.e., we have

Ẽ
[
G|F(H)

t

]
= G a.s. ⇔ E

[
G|F(H)

t

]
= G a.s. .

This equivalence follows from the prediction formula for fBm. See [103], and
also [172] and [227] for related results.
As in Lemma 2.8 of [1], we can get

Lemma 3.10.5. 1. F ∈ Gr implies ‖Ẽ
[
F |F(H)

t

]
‖Gr

≤ ‖F‖Gr
.

2. F ∈ G∗ implies Ẽ
[
F |F(H)

t

]
∈ G∗.

3. F,G ∈ G∗ implies Ẽ
[
F �G|F(H)

t

]
= Ẽ

[
F |F(H)

t

]
� Ẽ
[
G|F(H)

t

]
.

Motivated by Lemma 3.3.5 we now extend Definition 3.3.3 to elements in
G∗.

Definition 3.10.6. Let F =
∑

α cαH̃α(ω) ∈ G∗. Then we define the stochas-
tic gradient of F at t by

D
(H)
t F (ω) =

dF

dω
(t, ω) :=

∑
α

cα
∑

i

αiH̃α−ε(i)ei(t)

=
∑

β

(∑
i

cβ+ε(i)(βi + 1)ei(t)

)
H̃β(ω). (3.51)
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Lemma 3.10.7 (Fractional Clark Hausmann Ocone formula for poly-
nomials). Let F (ω) be F

(H)
T -measurable and suppose F (ω) = P �(Y ) for some

polynomial P (y) =
∑

α cαy
α, where Y = (Y1, . . . , Yn) with Yj = 〈ω, fj〉 as in

Lemma 3.3.5, 1 ≤ j ≤ n. Then

F (ω) = P �(Y (T )), where Y
(T )
j = 〈ω, fjI[0,T ]〉,

and

F (ω) = E [F ] +
∫ T

0

Ẽ
[
D

(H)
t F |F(H)

t

]
dB

(H)
t .

Proof. The proof of Lemma 3.8 in [1] applies, with only conceptual modifica-
tions. ��

We now state the main result of this section:

Theorem 3.10.8 (Fractional Clark Hausmann Ocone theorem).

1. Let G(ω) ∈ G∗ be F
(H)
T -measurable. Then D

(H)
t G and Ẽ

[
D

(H)
t G|F(H)

t

]

belong to G∗ for almost all t. Moreover, Ẽ
[
D

(H)
t G|F(H)

t

]
� W (H)(t) is

integrable in (S)∗H and

G(ω) = E [G] +
∫ T

0

Ẽ
[
D

(H)
t G|F(H)

t

]
�W (H)(t) dt.

2. Suppose G(ω) ∈ L2(PH) is F
(H)
T -measurable. Define

Ψ(t, ω) := Ẽ
[
D

(H)
t G|F(H)

t

]
, t ∈ [0, T ].

Then Ψ belongs to the space Lφ(0, T ) and

G(ω) = E [G] +
∫ T

0

Ẽ
[
D

(H)
t G|F(H)

t

]
dB

(H)
t .

Proof. The proof of 1 is similar to the proof of Theorem 3.15 in [1] and is
omitted. The proof of 2 is similar to the proof of Theorem 3.11 in [1], but
with minor modifications. For completeness we include a proof of 2.

Let G(ω) ∈ L2(PH) have the expansion G(ω) =
∑

α∈I cαH̃α(ω). Define

Jn = {α ∈ I : |α| ≤ n and length(α) ≤ n}

and put
Gn(ω) =

∑
α∈In

cαH̃α(ω).

Then
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Gn(ω) =
∑

α∈In

cαX
�n,

where
X = (X1, . . . , Xn); Xi = 〈ω, ei〉.

Hence, by Lemma 3.10.7 we have

Gn(ω) = E [Gn] +
∫ T

0

Ẽ
[
D

(H)
t Gn|F(H)

t

]
dB

(H)
t

for all n. Since Gn → G in L2(PH) as n→∞, we deduce that

G(ω) = E [G] + lim
n→∞

∫ T

0

Ẽ
[
D

(H)
t Gn|F(H)

t

]
dB

(H)
t .

The sequence Ẽ
[
D

(H)
t Gn|F(H)

t

]
is a Cauchy sequence and hence convergent

in Lφ(0, T ). By 1 we know that this limit can be represented as

Ẽ
[
D

(H)
t G|F(H)

t

]
.

This completes the proof of 2. ��

We shall call Ẽ
[
D

(H)
t G|F(H)

t

]
the fractional Clark derivative of G in anal-

ogy with the classical Brownian motion case. We will use the notation

∇φ
tG = Ẽ

[
D

(H)
t G|F(H)

t

]
.

Example 3.10.9. Let ξ ∈ R and let

X(t) = exp
(
iξB

(H)
t +

1
2
ξ2t2H

)
, t ≥ 0.

Then from Example 3.4.4 it follows that

X(T ) = 1 + iξ
∫ T

0

X(s) dB(H)
s

Thus we have
∇φ

tX(T ) = iξX(t).

Consequently,
∇φ

t e
iξB

(H)
T = iξeiξB

(H)
t +1/2ξ2(t2H−T 2H). (3.52)

Let f ∈ S(R) and let f̂ be the Fourier transform of f , i.e.f̂(ξ)=
∫

R
e−ixξf(x) dx.

Then f(x) = 1/(2π)
∫

R
eixξ f̂(ξ) dξ. Consequently, we have

f(B(H)
T ) =

1
2π

∫

R

eiB
(H)
T ξ f̂(ξ) dξ.
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Therefore, by (3.52) we obtain

∇φ
t f(B

(H)
T ) =

1
2π

∫

R

∇φ
t e

iB
(H)
T ξf̂(ξ) dξ

=
1
2π

∫

R

iξ exp
(
iξB

(H)
t − 1

2
ξ2
(
T 2H − t2H

))
f̂(ξ) dξ

= g(B(H)
t ),

where g is the inverse Fourier transform of the product of the following two
functions: f̂(ξ) and

Q(ξ) = iξe−1/2ξ2(T 2H−t2H).

However, Q(ξ) is the Fourier transform of dPt,T (x)/dx, where

Pt,T (x) =
1√

2π(T 2H − t2H)
exp
(
− x2

2(T 2H − t2H)

)
,

which is the heat kernel at time T 2H − t2H . Thus we have obtained

g(x) =
∫

R

qt,T (x− y)f(y) dy,

where qt,T (x) = dPt,T (x)/dx.

In general, we can obtain the following

Proposition 3.10.10. Let f be a function such that E
[
|f(B(H)

T )|
]
< ∞.

Then
∇φ

t f(B
(H)
T ) =

∫

R

qt,T (B(H)
t − y)f(y) dy, (3.53)

where qt,T (x) = dPt,T (x)/dx with

Pt,T (x) =
1√

2π(T 2H − t2H)
exp
(
− x2

2(T 2H − t2H)

)
(3.54)

and 0 ≤ t ≤ T .

Remark 3.10.11. When H = 1/2, (3.53) and (3.54) reduce to known formulas.
(See [111].)

3.11 Multidimensional fWIS integral

We wish to extend the results of the first part of this chapter to the multidi-
mensional case. Let B(H)(t) be an m-dimensional fBm with Hurst parameter
H = (H1, . . . , Hm) ∈ (0, 1)m with respect to the probability measure P

H

defined on Ω := (S′(R))d by
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P
H := P

H1 ⊗ · · · ⊗ P
Hm . (3.55)

Note that for the sake of simplicity we are using the symbol P
H also to denote

the product measure (3.55). This is the (version of the) fBm we will work
with from now on. Similar to the one-dimensional case, we can define the
multidimensional fWIS integral over [0, T ]:

∫ T

0

f(t, ω) dB(H)(t) =
m∑

k=1

∫ T

0

fk(t, ω) dB(H)
k (t) ∈ L2(PH)

for f = (f1, . . . , fm) in

L
(m)
φ (0, T ) := Lφ1(0, T )× · · · × Lφm

(0, T ).

In particular, we have
∥∥∥
∫

R

fdB(H)
∥∥∥

L2(PH)
≤

m∑
k=1

∥∥fk

∥∥
Lφk

(0,T )
. (3.56)

It is useful to have an explicit expression for the norm on the left-hand side
of (3.56).

Theorem 3.11.1 (Multidimensional fWIS isometry I). Let f, g ∈
L

(m)
φ (0, T ). Then

E

[(∫ T

0

f dB(H)
)
·
(∫ T

0

g dB(H)
)]

=
(
f, g
)
L

(m)
φ (0,T )

where

(
f, g
)
L

(m)
φ (0,T )

= E

⎡
⎣

m∑
k=1

T∫

0

T∫

0

fk(s)gk(t)φk(s, t) ds dt

+
m∑

k,�=1

(∫ T

0

∫ T

0

Dφ
�,t fk(s)Dφ

k,s g�(t)dsdt
)
⎤
⎦ .

(3.57)

Remark 3.11.2. Note the crossing of the indices �, k of the derivatives and the
components fk, g� in the last terms of the right-hand side of (3.57).

To prove Theorem 3.11.1, we proceed as in Section 3.6, but with the appro-
priate modifications. In the sequel we put

L
2,(m)
H (R) := L2

H1
(R)× · · · × L2

Hm
(R).

If α = (α1, . . . , αm) ∈ L2,(m)
H (R) we define the corresponding Wick exponential

E(α) = exp�
(∫

R

α(t) dB(H)(t)
)

= exp�
( m∑

k=1

∫

R

αk(t) dB(H)
k (t)

)



3.11 Multidimensional fWIS integral 89

= exp
( m∑

k=1

∫

R

αk(t) dB(H)
k (t)− 1

2
‖α‖2H

)
, (3.58)

where

‖α‖2H =
m∑

k=1

∫

R

αk(s)αk(t)φk(s, t) ds dt =
m∑

k=1

‖α‖2Hk
. (3.59)

Let E be the linear span of all E(α); α ∈ L2,(m)
H (R). By Theorem 3.1.4 we

have that E is a dense subset of Lp(PH), for all p ≥ 1, and we can reformulate
Theorem 3.1.5 for the multidimensional case as follows.

Theorem 3.11.3. Let gi = (gi1 , . . . , gim
) ∈ L2,(m)

H (R) for i = 1, 2, . . . , n such
that

‖gik
− gjk

‖Hk
�= 0 if i �= j, k = 1, . . . ,m.

Then E(g1), . . . ,E(gn) are linearly independent in L2(PH).

If F ∈ L2(PH) and gk ∈ L2
Hk

(R), we put, as in [83],

Dk,Φ(gk) F =
∫

R

Dφ
k,t F · gk(t) dt.

We list some useful differentiation and Wick product rules. The proofs are
similar to the one-dimensional case and are omitted.

Lemma 3.11.4. Let f = (f1, . . . , fm) ∈ L
2,(m)
H (R), g = (g1, . . . , gm) ∈

L
2,(m)
H (R). Then

1. Dk,Φ(gk)

( m∑
i=1

∫
R
fi dB

(H)
i

)
= 〈f, g〉Hk

, k = 1, . . . ,m, where

〈f, g〉Hk
=
∫

R

∫

R

fk(s)gk(t)φk(s, t) ds dt, k = 1, . . . ,m.

2. Dφ
k,s

( m∑
i=1

∫
R
fi dB

(H)
i

)
=
∫

R
fk(u)φk(s, u) du; k = 1, . . . ,m.

3. Dk,Φ(gk) E(f) = E(f) · 〈f, g〉Hk
; k = 1, . . . ,m.

4. Dφ
k,s E(f) = E(f) ·

∫
R
fk(u)φk(s, u) du; k = 1, . . . ,m.

5. E(f) � E(g) = E(f + g).
6. F �

∫
R
gk dB

(H)
k = F ·

∫
R
gk dB

(H)
k − Dk,Φ(gk) F , k = 1, . . . ,m, provided

that F ∈ L2(PH) and Dk,Φ(gk) F ∈ L2(PH).
7. E [E(f) · E(g)] = exp〈f, g〉H .

Lemma 3.11.5. Suppose αk ∈ L2
Hk

(R), β� ∈ L2
H�

(R), D�,Φ(β�) F ∈ L2(PH)
and Dk,Φ(αk)G ∈ L2(PH). Then

E

[(
F �
∫

R

αk dB
(H)
k

)
·
(
G �
∫

R

β� dB
(H)
�

)]

= E
[
(D�,Φ(β�) F ) · (Dk,Φ(αk)G) + δk�FG〈αk, βk〉Hk

]
,

(3.60)
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where

δk� =

{
1 if k = �,

0 otherwise.

Proof. We adapt the argument in Theorem 3.5.5 to the multidimensional case.
First note that by a density argument we may assume that

F = E(f) = exp
(∫

R

f(t) dB(H)(t)− 1
2
‖f‖2H

)

and

G = E(g) = exp
(∫

R

g(t) dB(H)(t)− 1
2
‖g‖2H

)
,

for some f ∈ L2,(m)
H (R), g ∈ L2,(m)

H (R). Choose δ = (δ1, . . . , δm) ∈ R
m, and

γ = (γ1, . . . , γm) ∈ R
m, and put δ × f = (δ1f1, . . . , δmfm) and γ × g =

(γ1g1, . . . , γmgm). Then by Lemma 3.11.4

E [E(f) � E(δ × α)) · (E(g) � E(γ × β))] (3.61)
= E [E(f + δ × α) · E(g + γ × β)] = exp(〈f + δ × α, g + γ × β〉H)

= exp
{ m∑

i=1

∫

R

∫

R

(fi + δiαi)(s)(gi + γiβi)(t)φi(s, t) ds dt
}
. (3.62)

We now compute the double derivatives

∂2

∂δk∂γ�

of (3.61) and (3.62) at δ = γ = 0. We distinguish between two cases:

1. k �= �: Then if we differentiate (3.61), we get

∂2

∂δk∂γ�
E [(E(f) � E(δ × α)) · (E(g) � E(γ × β))]δ=γ=0

=
∂

∂γ�
E

[(
E(f) � E(δ × α) �

∫

R

αk dB
(H)
k

)
· (E(g) � E(γ × β))

]

δ=γ=0

= E

[(
E(f) �

∫

R

αk dB
(H)
k

)
·
(
E(g) �

∫

R

β� dB
(H)
�

)]
. (3.63)

On the other hand, if we differentiate (3.62) we get

∂2

∂δk∂γ�

[
exp(f + δ × α, g + γ × β〉H

]
δ=γ=0

=
∂

∂γ�

[
exp(f + δ × α, g + γ × β〉H
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·
∫

R

∫

R

αk(s)(gk + γkβk)(t)φk(s, t) ds dt
]

δ=γ=0

= exp〈f, g〉H ·
∫

R

∫

R

αk(s)gk(t)φk(s, t) ds dt ·
∫

R

∫

R

β�(s)f�(t)φ�(s, t) ds dt

= exp〈f, g〉H · 〈αk, gk〉Hk
· 〈β�, f�〉H�

= E [E(f) · 〈β�, f�〉H�
· E(g) · 〈αk, gk〉Hk

]

= E
[
D�,Φ(β�) E(f) ·Dk,Φ(αk) E(g)

]
. (3.64)

This proves (3.60) in this case.
2. k = �: In this case, if we differentiate (3.61), we get

∂2

∂δk∂γk
E [(E(f) � E(δ × α)) · (E(g) � E(γ × β))]δ=γ=0

=
∂

∂γk
E

[(
E(f) � E(δ × α) �

∫

R

αk dB
(H)
k

)
· (E(g) � E(γ × β))

]

δ=γ=0

= E

[(
E(f) �

∫

R

αk dB
(H)
k

)
·
(
E(g) �

∫

R

βk dB
(H)
k

)]
. (3.65)

On the other hand, if we differentiate (3.62), we get

∂2

∂δk∂γk

[
exp(f + δ × α, g + γ × β〉H

]
δ=γ=0

=
∂

∂γk

[
exp(f + δ × α, g + γ × β〉H

·
∫

R

∫

R

αk(s)(gk + γkβk)(t)φk(s, t) ds dt
]

δ=γ=0

= exp(f, g〉H ·
[
〈αk, gk〉Hk

· (βk, fk〉Hk
+
∫

R

∫

R

αk(s)βk(t)φk(s, t) ds dt
]

= E
[
Dk,Φ(βk) E(f) ·Dk,Φ(αk) E(g) + E(f)E(g)〈αk, βk〉Hk

]
. (3.66)

This proves (3.60) also for this case. Hence, the proof of the lemma is complete.
��

We are now ready to prove Theorem 3.11.1.

Proof. Put f̃(t) = f(t)I[0,T ](t). Then
∫ T

0
f(t) dB(H)

k (t) =
∫

R
f̃(t) dB(H)

k (t). We
may consider

∫
R
f̃k(t) dB(H)

k (t) as the limit of sums of the form

N∑
i=1

f̃k(ti) �
[
B

(H)
k (ti+1)−B(H)

k (ti)
]
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when ∆ti = ti+1 − ti → 0, t1 < t2 < · · · < tN , N = 2, 3, . . .. Hence,

E
[(∫

R
f dB(H)

)2]
= E

[( m∑
k=1

∫
R
f̃k dB

(H)
k

)2
]

is the limit of sums of the form

∑
i,j,k,�

E
[
(f̃k(ti) � (B(H)

k (ti+1)−B(H)
k (ti))) · (f̃�(tj) � (B(H)

� (tj+1)−B(H)
� (tj)))

]
,

which by Lemma 3.11.5 is equal to

∑
i,j,k,�

E

[ ti+1∫

ti

tj+1∫

tj

Dφ
�,s f̃k(tj)D

φ
k,t f̃�(ti) ds dt

]

+E

[
δk�

ti+1∫

ti

tj+1∫

tj

f̃k(ti)f̃k(tj)φk(s, t) ds dt

]
.

When ∆ti → 0, this converges to

E

[
m∑

k,�=1

(∫

R

∫

R

Dφ
�,t f̃k(s)Dφ

k,s f̃�(t) ds dt
)

+
m∑

k=1

∫

R

∫

R

f̃k(s)f̃k(t)φk(s, t) ds dt

]
.

This proves (3.57) when f = g. By polarization the proof of Theorem 3.11.1
is complete. ��

Using Theorem 3.11.1, we can now proceed as in the one-dimensional case
with appropriate modifications, and obtain a fractional multidimensional Itô
formula. We omit the proof (for a proof in n = 2, see also [83]).

Theorem 3.11.6 (The fractional multidimensional Itô formula). Let
X(t) = (X1(t), . . . , Xn(t)), with

dXi(t) =
m∑

j=1

σij(t, ω)dB(H)
j (t),

where σi = (σi1, . . . , σim) ∈ L
(m)
φ (0, T ), 1 ≤ i ≤ n. Suppose that for all

j = 1, . . . ,m there exists θj > 1−Hj such that

sup
i
E
[
(σij(u)− σij(v))2

]
≤ C

∣∣u− v∣∣θj if |u− v| < δ

where δ > 0 is a constant. Moreover, suppose that

lim
0≤u,v≤t
|u−v|→0

sup
i,j,k

E
[
(Dφ

k,u{σij(u)− σij(v)})2
]

= 0.
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Let f ∈ C1,2(R×R
n) with bounded second-order derivatives with respect to x.

Then for t ∈ [0, T ],

f(t,X(t)) = f(0,X(0)) +
∫ t

0

∂f

∂s
(s,X(s)) ds+

∫ t

0

n∑
i=1

∂f

∂xi
(s,X(s)) dXi(s)

+
∫ t

0

{ m∑
i,j=1

∂2f

∂xi∂xj
(s,X(s))

m∑
k=1

σik(s)Dφ
k,s(Xj(s))

}
ds

= f(0,X(0)) +
∫ t

0

∂f

∂s
(s,X(s)) ds

+
m∑

j=1

∫ t

0

[ n∑
i=1

∂f

∂xi
(s,X(s))σij(s, ω)

]
dB

(H)
j (s)

+
∫ t

0

Tr
[
ΛT (s)fxx(s,X(s))

]
ds, (3.67)

where (·)T denotes matrix transposed, Tr[·] denotes matrix trace, and Λ =[
Λij

]
∈ R

n×m with

Λij(s) =
m∑

k=1

σikD
φ
k,s(Xj(s)), 1 ≤ i ≤ n, 1 ≤ j ≤ m, (3.68)

fxx =
[ ∂2f

∂xi∂xj

]
1≤i,j≤n

∈ R
n×n. (3.69)

If we combine Theorem 3.11.6 with Theorem 3.11.1, we get the following
result, which also may be regarded as a fractional Itô isometry:

Theorem 3.11.7 (Fractional Itô isometry II). Suppose f = (f1, . . . , fm)∈
L

(m)
φ (0, T ). Then, for T > 0,

E

[(∫ T

0

∫ T

0

Dφ
�,t fk(s)Dφ

k,s f�(t) ds dt
)]

= E

[∫ T

0

{
fk(t)

∫ t

0

Dφ
k,t f�(s) dB

(H)
� (s)

+f�(t)
∫ T

0

Dφ
�,t fk(s) dB(H)

k (s)
}
dt

]

Proof. By the Itô formula (Theorem 3.11.6) we have

E

[(∫ T

0

fk dB
(H)
k

)
·
(∫ T

0

f� dB
(H)
�

)]

= E

[ ∫ T

0

fk(t)Dφ
k,t

(∫ t

0

f�(s) dB
(H)
� (s)

)
dt

]
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+ E
[ ∫ T

0

fk(t)Dφ
�,t

(∫ t

0

fk(s) dB(H)
k (s)

)
dt

]

= E

[ ∫ T

0

{
fk(t)

∫ t

0

Dφ
k,t f�(s) dB

(H)
� (s)

+ f�(t)
∫ t

0

Dφ
�,t fk(s) dB(H)

k (s)
}
dt

]

+ δk�E

[ T∫

0

t∫

0

{fk(t)fk(s) + f�(t)fk(s)}φk(s, t) ds dt
]
, (3.70)

where we have used that, for u > 0,

Dφ
k,t

[ ∫ u

0

f�(s) dB
(H)
� (s)

]

=
∫ u

0

Dφ
k,t f�(s) dB

(H)
� (s) + δk�

∫ u

0

fk(s)φk(t, s) ds.

On the other hand, the Itô isometry (Theorem 3.11.1) gives that

E

[(∫ T

0

fk dB
(H)
k

)
·
(∫ T

0

f�dB
(H)
�

)]

= E

[(∫ T

0

∫ T

0

Dφ
�,t fk(s)Dφ

k,s f�(t) ds dt
)

+ δk�‖fk‖2Hk

]
.

(3.71)

Comparing (3.70) and (3.71), we get the theorem. ��

We end this section by proving a fractional integration by parts formula.
First we recall the following:

Theorem 3.11.8 (Fractional Girsanov formula). Let γ = (γ1, . . . , γm) be
in ∈ (L2(R))m and γ̂ = (γ̂1, . . . , γ̂m) ∈ L2,(m)

H (R) ∩ C(R,Rm) are related by

γk(t) =
∫

R

γ̂k(s)φk(s, t) ds, t ∈ R, k = 1, . . . ,m. (3.72)

Let G ∈ L2(PH). Then

E [G(ω + γ)] = E [G(ω) exp�(〈ω, γ̂〉)] = E

[
G(ω)E

(∫

R

γ̂ dB(H)
)]
.

The proof in the multidimensional case is similar to the one-dimensional case
(Theorem 3.2.2).

Definition 3.11.9. If F ∈ L2(PH) and γ = (γ1, . . . , γm) ∈ (L2(R))m, the
directional derivative of F in the direction γ is defined by
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D(H)
γ F (ω) = lim

ε→0

F (ω + εγ)− F (ω)
ε

,

provided the limit exists in L2(PH). We say that F is differentiable if there ex-
ists a process D(H)

t F (ω) = (D(H)
1,t F (ω), . . . , D(H)

m,t F (ω)) such that D(H)
k,t F (ω) ∈

L2(dPH × dt) for all k = 1, . . . ,m and

D(H)
γ F (ω) =

∫

R

D
(H)
t F (ω) · γ(t) dt ∀γ ∈ (L2(R))m.

Theorem 3.11.10 (Fractional integration by parts I). Consider F,G ∈
L2(PH) and γ ∈ (L2(R))m, and assume that the directional derivatives
D

(H)
γ F , D(H)

γ G exist. Then

E
[
D(H)

γ F ·G
]

= E

[
F ·G ·

∫

R

γ̂ dB(H)

]
− E

[
F ·D(H)

γ G
]
,

where γ̂ is defined in (3.72).

Proof. By Theorem 3.11.8 we have, for all ε > 0,

E [F (ω + εγ)G(ω)] = E [F (ω)G(ω − εγ) exp�(ε〈ω, γ̂〉)] .

Hence

E
[
D(H)

γ F ·G
]

= E

[
lim
ε→0

1
ε
{F (ω + εγ)− F (ω)}G(ω)

]

= E

[
lim
ε→0

1
ε
{F (ω)[G(ω − εγ) exp�(ε〈ω, γ̂〉)−G(ω)]}

]

= E

[
F (ω)

d

dε

{
G(ω − εγ) exp

(
ε

∫

R

γ̂ dB(H)− 1
2
ε2‖γ̂‖2H

)}
ε=0

]

= E

[
F (ω)G(ω)

∫

R

γ̂ dB(H)

]
− E

[
F (ω)D(H)

γ G(ω)
]
.

��

We now apply the above to the fractional gradient

Dφ
t F =

∫

R

D(H)
s F · φ(s, t) ds =

m∑
k=1

∫

R

D
(H)
k,s F · φk(s, t) ds.

Theorem 3.11.11 (Fractional integration by parts II). Suppose F,G ∈
L2(PH) are differentiable with fractional gradients Dφ

t F , Dφ
t G. Then for each

t ∈ R, k ∈ {1, . . . ,m}, we have

E
[
Dφ

k,t F ·G
]

= E
[
F ·G ·B(H)

k (t)
]
− E

[
F ·Dφ

k,tG
]
.
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Proof. Choose a sequence γ̂(j)
k ∈ L2

Hk
(R), j = 1, 2, . . ., such that limj→∞ γ̂

(j)
k =

δt(·) (the point mass at t) in the sense that if we define

φ
(j)
k (s) =

∫

R

γ̂
(j)
k (r)φk(s, r) dr

then φ(j)
k (·) → φk(·, t) in L2(R). Then by Theorem 3.11.10

E
[
Dφ

k,t F ·G
]

= E

[
lim

j→∞
D

φ
(j)
k

F ·G
]

= lim
j→∞

E
[
D

φ
(j)
k

F ·G
]

= lim
j→∞

E

[
F ·G ·

∫

R

γ̂(j)dB(H)

]
− E

[
F ·D

φ
(j)
k

G
]

= E
[
F ·G ·B(H)

k (t)
]
− E

[
F ·Dφ

k,tG
]
.

��

3.12 Relation between the fWIS integral and the
divergence-type integral for H > 1/2

We now investigate the relation between the stochastic integral and the
divergence-type integral introduced in Chapter 2 in the case when H > 1/2.
In the following we refer to the notation used in Chapter 2 and recall that
H = (L2([0, T ]), <,>H).

First of all, by Remark 3.1.1 we have L2
φ(R) ⊇ L2

φ([0, T ]) = H if we identify
ψ ∈ L2

φ([0, T ]) with ψI[0,T ]. Hence, for every deterministic ψ ∈ H B(H)(ψ)
coincides with the fWIS integral of ψ. Next we note that for any ψ ∈ H and
any random variable F ∈ L2(PH), the Wick product F�B(H)(ψ) exists in
L2(PH) if and only if ψF belongs to dom δH . Hence, the equality

F�B(H)(ψ) = δH(Fψ) (3.73)

follows by Proposition 3.5.4 and equations (2.33) to (2.34). The relation (3.73)
can also be seen as a consequence of the characterization of dom δH in terms
of the Wiener chaos expansion.

Proposition 3.12.1. Consider H > 1/2. Let u be a process that is λ-Hölder
continuous in the norm D

1,2(H) with λ > H − 1/2. Then

lim
|π|→0+

n∑
i=1

uti
�(B(H)(ti+1)−B(H)(ti)) = δH(u),

where π = {0 = s0 < s1 < · · · < sn+1 = T} is a partition of [0, T ] with mesh
size |π| = max

i=1,...,n
|ti+1 − ti| and the convergence holds in L2(PH).
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Proof. We sketch here the proof of Proposition 4 of [6]. Consider uπ(t) =∑n
i=1 uti

I[ti,ti+1). By (3.73) we obtain

δH(uπ) =
n∑

i=1

uti
�
[
B(H)(ti+1)−B(H)(ti)

]
.

The thesis follows since uπ converges to u in the norm D
1,2
H . ��

Hence we can conclude that under the hypotheses of Proposition 3.12.1, the
fWIS integral coincides with the divergence operator for H > 1/2. Moreover,
in Chapter 5 we will investigate the relation between the divergence operator
(respectively, the fWIS integral) and the forward integral.



4

Wick Itô Skorohod (WIS) integrals for
fractional Brownian motion

In this chapter we again study the stochastic integral for the fBm following the
white noise approach. However, the integral is defined here as an element in the
classical Hida distribution space by using the white noise theory and Malliavin
calculus for standard Brownian motion introduced in Appendix A. The main
advantage of this method with respect to the one presented in Chapter 3 is
that it permits to define the stochastic integral for any H ∈ (0, 1). In addition,
it doesn’t require the introduction of the fractional white noise theory since
it uses the well-established one for the standard case.

On the other side, the approach of Chapter 3 can be seen as more intrinsic.
For a further discussion of the relation among these two types of integrals we
refer to Chapter 6. The main references for this chapter are [34] and [89].

4.1 The M operator

Let S(R) denote the Schwartz space of rapidly decreasing smooth functions
on R, and let Ω := S′(R) be its dual, the space of tempered distributions. Let
P be the white noise probability measure on the Borel sets B(S′(R)) defined
by the property that

∫

S′(R)

exp(i < ω, f >) dP(ω) = exp
(
−1

2
‖f‖2L2(R)

)
, f ∈ S(R),

where i2 = −1 and < ω, f >= ω(f) is the action of ω ∈ Ω = S′(R) on
f ∈ S(R).

Remark 4.1.1. Note that the underlying probability measure P is here the
same as for the standard Brownian motion B(t). For further details about
the white noise theory and Malliavin calculus for standard Brownian motion
applied in this chapter to the fBm case, we refer to Appendix A.
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The main idea of this approach is to relate the fBm B(H)(t) with Hurst
parameter H ∈ (0, 1) to classical Brownian motion B(t) (which corresponds
to H = 1/2) via the following operator M :

Definition 4.1.2. Let 0 < H < 1. The operator M = MH is defined on
functions f ∈ S(R) by

M̂f(y) = |y|1/2−H f̂(y), y ∈ R (4.1)

where
ĝ(y) :=

∫

R

e−ixyg(x) dx

denotes the Fourier transform.

We remark that in the sequel we will usually use the notation M instead of
MH , unless we need to specify the associated Hurst parameter H. Equiva-
lently, for every 0 < H < 1 the operator M can be defined as

Mf(x) = − d

dx

CH

(H − 1/2)

∫

R

(t− x)|t− x|H−3/2f(t) dt (4.2)

where f ∈ S(R) and where

CH =
{

2Γ
(
H − 1

2

)
cos
[
π

2

(
H − 1

2

)]}−1

[Γ (2H + 1)sin(πH)]1/2,

with Γ (·) denoting the classical gamma function. This can be restated as
follows. Let f ∈ S(R). For 0 < H < 1/2 we have

Mf(x) = CH

∫

R

f(x− t)− f(x)
|t|3/2−H

dt.

For H = 1/2 we have
Mf(x) = f(x).

For 1/2 < H < 1 we have

Mf(x) = CH

∫

R

f(t)
|t− x|3/2−H

dt. (4.3)

See [89]. The exact domains and ranges ofM have been characterized in [206].
The operator M extends in a natural way from S(R) to the space

L2
H(R) :={f : R → R (deterministic) : |y|1/2−H f̂(y) ∈ L2(R)}

={f : R → R : Mf(x) ∈ L2(R)}
={f : R → R : ‖f‖H <∞},
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where
‖f‖H := ‖Mf‖L2(R).

The inner product on this space is

〈f, g〉H = 〈Mf,Mg〉L2(R). (4.4)

We remark that L2
H(R) is not closed with respect the inner product (4.4), as

we have seen in Chapter 2 (see also [188]).
In particular, the indicator function I[0,t](·) is easily seen to belong to

L2
H(R) for fixed t ∈ R, and we write

MI[0,t](x) := M [0, t](x).

Note that if f, g ∈ L2(R) ∩ L2
H(R), then

〈f,Mg〉L2(R) = 〈f̂ , M̂g〉L2(R) =∫

R

|y|1/2−H f̂(y)ĝ(y) dy = 〈M̂f, ĝ〉L2(R) = 〈Mf, g〉L2(R). (4.5)

Remark 4.1.3. Note that by (4.1) it follows that for H ∈ (0, 1) we have

MH(M1−Hf) = f, f ∈ S(R).

Example 4.1.4. We now compute M [a, b] := MI[a,b](x), i.e., Mf when f is
the indicator function of an interval [a, b] with a < b. By [89], M [a, b] can be
calculated explicitly as

M [a, b](x) =
[Γ (2H + 1)sin(πH)]1/2

2Γ (H + 1/2) cos[π/2(H + 1/2)]

[
b− x

|b− x|3/2−H
− a− x
|a− x|3/2−H

]

This can be computed directly by using the characterization (4.2). We also
remark that Mf ∈ L2(R) for this choice of f .

Moreover, by using (4.1) we obtain by Parceval’s Theorem, for 0 < H < 1,
∫

R

[M [a, b](x)]2 dx =
1
2π

∫

R

[M̂ [a, b](ξ)]2 dξ

=
1
2π

∫

R

|ξ|1−2H |e−ibξ − e−iaξ|2
|ξ|2 dξ

= (b− a)2H , (4.6)

where we have used the fact that

Î[a, b](ξ) =
[e−ibξ − e−iaξ]

−iξ .

Since M [s, t] = M [0, t] −M [0, s] for s < t, by polar identity arguments we
obtain
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∫

R

M [0, t](x)M [0, s](x) dx =
1
2
(|t|2H + |s|2H − |t− s|2H), (4.7)

which holds for arbitrary s, t ∈ R (see [89, (A.10)]). When t < 0, M [0, t] =
−M [0,−t]. Moreover, we also have, for 0 < H,L < 1,

∫

R

MH [a, b](x)ML[a, b](x) dx = |a− b|H+L, (4.8)

and
∫

R

MH [0, t](x)ML[0, s](x) dx =
1
2
(|t|H+L + |s|H+L − |t− s|H+L). (4.9)

If H = L, (4.8) and (4.9) coincide with (4.6) and (4.7), respectively.

Remark 4.1.5. By (4.7) we have that for s, t > 0,
∫

R

M [0, t](x)M [0, s](x) dx = RH(t, s) = 〈I[0,t], I[0,s]〉H

as in (2.7) and (2.25). This justifies the use of the same notation for the two
inner products.

Moreover, comparing (3.2) and (4.7), by limit argument we obtain that

〈Mf,Mg〉L2(R) =
∫

R

∫

R

f(s)g(t)φ(s, t) ds dt, (4.10)

where φ is defined in (3.1). Hence, for H > 1/2, L2
H(R) is the subspace of

deterministic functions of the space L2
φ(R) defined in Section 3.1.

We now define, for t ∈ R,

B̃(H)(t) := B̃(H)(t, ω) :=< ω,M [0, t](·) >, (4.11)

where < ω, f >= ω(f) is the action of ω ∈ Ω = S′(R) on f ∈ S(R). Then
B̃(H)(t) is Gaussian, B̃(H)(0) = E[B̃(H)(t)] = 0 for all t ∈ R, and by (4.7)

E[B̃(H)(s)B̃(H)(t)] =
∫

R

M [0, s](x)M [0, t](x)dx

=
1
2
(|t|2H + |s|2H − |s− t|2H).

Therefore, the continuous version B(H)(t) of B̃(H)(t) is a fBm, as defined in
Chapter 1.
Let f(x) =

∑
j ajI[tj ,tj+1](x) be a step function. Then by (4.11) and linearity

< ω,Mf > =
∑

j

aj < ω,M [tj , tj+1] >
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=
∑

j

aj(B(H)(tj+1)−B(H)(tj))

=:
∫

R

f(t) dB(H)(t). (4.12)

Since
‖ < ω,Mf > ‖L2(P) = ‖Mf‖L2(R) = ‖f‖H ,

we see that definition (4.12) extends to all f ∈ L2
H(R). Comparing with (A.4),

we obtain
∫

R

f(t) dB(H)(t) =
∫

R

Mf(t) dB(t), f ∈ L2
H(R). (4.13)

Since Mf ∈ L2(R) for all f ∈ S(R), we can, by (A.2), define M : S′(R) →
S′(R) by

< Mω, f >=< ω,Mf >, f ∈ S(R) for P-a.e. ω ∈ Ω = S′(R). (4.14)

Remark 4.1.6. By (4.11) and (4.13) we obtain

B(H)(t) =
∫

R

MH [0, t](u) dB(u),

and because of the properties of MH [see, e.g., (4.6)] we also have

B(t) =
∫

R

M1−H [0, t](u) dB(H)(u).

4.2 The Wick Itô Skorohod (WIS) integral

Let {ξk}∞k=1 be the Hermite functions as defined in (A.6) of Appendix A.
Define

ek(x) = M−1ξk(x), k = 1, 2, . . .

Then {ek}∞k=1 is orthonormal in L2
H(R), and the closed linear span of {ek}∞k=1

contains L2
H(R). Note, however, that this closed linear span of also contains

distributions that do not belong to L2
H(R). See Chapter 2 for further details.

Example 4.2.1 (Fractional white noise). From (4.11) we see that for each t
the random variable B(H)(t, ω) belongs to L2(P). Let Hα(ω) be defined as in
(A.8) and denote by ε(k) the unit vectors

ε(k) = (0, 0, . . . , 0, 1)

with 1 on the kth entry and 0 otherwise, k = 1, 2, . . . By Theorem A.1.3 the
chaos expansion of B(H)(t) can be found as follows:
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B(H)(t) =< ω,M [0, t](·) >=< Mω, I[0,t](·) >

=< Mω,
∞∑

k=1

〈I[0,t], ek〉Hek(·) >

=< Mω,
∞∑

k=1

〈M [0, t],Mek〉L2(R)ek(·) >

=
∞∑

k=1

〈M [0, t], ξk〉L2(R) < Mω, ek >

=
∞∑

k=1

〈I[0,t],Mξk〉L2(R) < ω,Mek >

=
∞∑

k=1

t∫

0

Mξk(s), ds Hε(k)(ω), (4.15)

where we have used (4.11), (4.14), and (4.5) and the fact that ξn ∈ L2(R) ∩
L2

H(R).
Now define the fractional white noise W (H)(t) by the expansion

W (H)(t) =
∞∑

k=1

Mξk(t)Hε(k)(ω). (4.16)

Then it can be shown (see Example 8.2.3) that W (H)(t) ∈ (S)∗ for all t and

dB(H)(t)
dt

= W (H)(t) in (S)∗. (4.17)

For the definition of the Hida space (S)∗ stochastic distributions see Definition
A.1.4.

In view of Theorem A.2.2 the following definition is natural.

Definition 4.2.2 (The Wick Itô Skorohod integral).
Let Y : R → (S)∗ be such that Y (t) �W (H)(t) is dt-integrable in (S)∗ (De-
finition A.1.5). Then we say that Y is Wick Itô Skorohod integrable (WIS
integrable) and we define the Wick Itô Skorohod integral (WIS integral) of
Y (t) = Y (t, ω) with respect to B(H)(t) by

∫

R

Y (t, ω) dB(H)(t) :=
∫

R

Y (t) �W (H)(t) dt,

where the Wick product � is introduced in Definition A.1.7 and W (H)(t) is the
fractional white noise defined in (4.16).

Note that by (4.16) this definition coincides with (4.13) if Y = f ∈ L2
H(R)

since in that case, by (4.5),
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∫

R

f(t) �W (H)(t) dt =
∞∑

k=1

⎡
⎣
∫

R

f(t)Mξk(t) dt

⎤
⎦Hε(k)(ω)

=
∞∑

k=1

〈f,Mξk〉L2(R)Hε(k)(ω) =
∞∑

k=1

〈Mf, ξk〉L2(R)Hε(k)(ω)

=
∫

R

Mf �W (t) dt =
∫

R

Mf(t) dB(t),

where W (t) = dB(t)/dt is the white noise of the standard Brownian motion
[see (A.11)]. In particular, we define the stochastic integral over a finite interval
[0, T ] as

T∫

0

Y (t, ω) dB(H)(t) :=
∫

R

Y (t)I[0,T ] �W (H)(t) dt.

Example 4.2.3. Using Wick calculus in (S)∗ ( see Definition A.1.7), we get

T∫

0

B(H)(t) dB(H)(t) =

T∫

0

B(H)(t) �W (H)(t) dt

=

T∫

0

B(H)(t) � dB
(H)(t)
dt

dt =
1
2
[(B(H)(t))�2]T0 =

1
2
(B(H)(T ))�2

=
1
2
(< ω,M [0, T ] >)�2 =

1
2
[(< ω,M [0, T ] >)2 − 〈M [0, T ],M [0, T ]〉L2(R)]

=
1
2
(B(H)(T ))2 − 1

2
‖M [0, T ]‖2L2(R) =

1
2
(B(H)(T ))2 − 1

2
T 2H ,

where we have used (A.12) and (4.6).

Example 4.2.4 (The WIS exponential).
Consider the fractional stochastic differential equation

dX(t) = α(t)X(t) dt+ β(t)X(t) dB(H)(t), t ≥ 0,

which is just a shorthand notation for

X(t) = X(0) +

t∫

0

α(s)X(s) ds+

t∫

0

β(s)X(s) dB(H)(s).

Here α(·), β(·) are locally bounded deterministic functions. To solve this equa-
tion, we use (4.17) to rewrite it as a differential equation in (S)∗:

dX(t)
dt

= α(t)X(t)+β(t)X(t)�W (H)(t) = X(t)� [α(t)+β(t)W (H)(t)]. (4.18)
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This is the familiar differential equation for the exponential, but with ordi-
nary product replaced by Wick product. Thus, by analogy we guess that the
solution is

X(t) = X(0) � exp�(

t∫

0

α(s) ds+

t∫

0

β(s) dB(H)(s)), (4.19)

where
t∫

0

β(s) dB(H)(s) =
∫

R

β(s)I[0,t](s) dB(H)(s)

and, in general,

exp�F =
∞∑

n=0

1
n!
F �n

if convergent in (S)∗. By Wick calculus (Appendix A) we see that (4.19) is
indeed the (unique) solution of (4.18).

In general we have (see [89, (3.5)] or [121, (3.15)])

exp�[< ω,Mf >] = exp
(
< ω,Mf > −1

2
‖Mf‖2L2(R)

)
.

Therefore, the solution can also be written

X(t) = X(0) � exp(

t∫

0

β(s) dB(H)(s) +

t∫

0

α(s) ds

− 1
2

∫

R

(Msβ(s)I[0,t](s))2 ds),

where Ms is the operator M acting on the variable s. If X(0) = x is deter-
ministic, this becomes

X(t) = x exp(
∫ t

0

β(s) dB(H)(s) +
∫ t

0

α(s) ds

− 1
2

∫

R

(Ms(β(s)I[0,t](s)))2 ds).

In particular, if β(s) = β, α(s) = α are constants, we get, by using (4.7),

X(t) = x exp(βB(H)(t) + αt− 1
2
β2t2H), t ≥ 0.
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Remark 4.2.5. Note that if the expansion of the process Y (s) is

Y (s) =
∑
α∈J

cα(s)Hα(ω) for each s ∈ R,

then the expansion of its WIS integral is
∫

R

Y (s) dB(H)(s) =
∫

R

[
∑
α∈J

cα(s)Hα(ω)] � [
∞∑

k=1

Mξk(s)Hε(k)(ω)] ds

=
∫

R

[
∑

α∈J,k∈N

cα(s)Mξk(s)Hα+ε(k)(ω)] ds

=
∑

α∈J,k∈N

〈cα,Mξk〉L2(R)Hα+ε(k)(ω). (4.20)

Note that this expansion is not necessarily orthogonal since it may happen that
α+ε(k) = β+ε(j) for some α, β, j, k, α �= β. In particular, if

∫
R

Y (s) dB(H)(s) ∈

L2(P), then

E[
∫

R

Y (s) dB(H)(s)] = 0. (4.21)

Indeed, the WIS integral shares many of the properties of the Skorohod inte-
gral for classical Brownian motion (see Section A.2).

We end this section by presenting an Itô formula for fBm valid for all H in
(0, 1). A formula for general H ∈ (0, 1) similar to ours has been obtained inde-
pendently in [14] and [90]. Our proof, given below, is different from the proofs
of these authors. A more general form for H > 1/2 is proved in Theorem 3.7.2
and Theorem 6.3.6. The relations among these Itô formulas will be clarified
in Chapter 6.

Theorem 4.2.6 (A fractional Itô formula). Let H ∈ (0, 1). Assume that
f(s, x) : R × R → R belongs to C1,2(R × R), and assume that the random
variables

f(t, B(H)(t)),

t∫

0

∂f

∂s
(s,B(H)(s)) ds and

t∫

0

∂2f

∂x2
(s,B(H)(s))s2H−1 ds

all belong to L2(P). Then

f(t, B(H)(t)) = f(0, 0) +

t∫

0

∂f

∂s
(s,B(H)(s)) ds

+

t∫

0

∂f

∂x
(s,B(H)(s)) dB(H)(s) +H

t∫

0

∂2f

∂x2
(s,B(H)(s))s2H−1 ds.

(4.22)
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Proof. Let α ∈ R be constant, and let β : R → R be a deterministic differen-
tiable function. Define

g(t, x) = exp(αx+ β(t)) (4.23)

and put
Y (t) = g(t, B(H)(t)).

Then

Y (t) = exp(αB(H)(t))exp(β(t))

= exp�(αB(H)(t) +
1
2
α2t2H)exp(β(t)).

Therefore, by Wick calculus in (S)∗,

d

dt
Y (t) = exp�(αB(H)(t) +

1
2
α2t2H) � (αW (H)(t) +Hα2t2H−1)exp(β(t))

+ exp�(αB(H)(t) +
1
2
α2t2H)exp(β(t))β′(t)

= Y (t)β′(t) + Y (t) � (αW (H)(t)) + Y (t)Hα2t2H−1.

Hence,

Y (t) = Y (0) +

t∫

0

Y (s)β′(s) ds+

t∫

0

Y (s)αdB(H)(s) +H

t∫

0

Y (s)α2s2H−1 ds.

This can be written

g(t, B(H)(t)) = g(0, 0) +

t∫

0

∂g

∂s
(s,B(H)(s)) ds

+

t∫

0

∂g

∂x
(s,B(H)(s)) dB(H)(s) +H

∫ t

0

∂2g

∂x2
(s,B(H)(s))s2H−1ds,

(4.24)

which is (4.22).
Now let f(t, x) be as in Theorem 4.2.6. Then we can find a sequence fn(t, x)

of linear combinations of functions g(t, x) of the form (4.23) such that

fn(t, x) → f(t, x),
∂fn

∂t
(t, x) → ∂f

∂t
(t, x),

∂fn

∂x
(t, x) → ∂f

∂x
(t, x)

and ∂2fn(t, x)/∂x2 → ∂2f(t, x)/∂x2 pointwise dominatedly as n→∞.
By (4.24) we have for all n
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fn(t, B(H)(t)) = fn(0, 0) +
∫ t

0

∂fn

∂s
(s,B(H)(s))ds

+

t∫

0

∂fn

∂x
(s,B(H)(s))dB(H)(s) +H

t∫

0

∂2fn

∂x2
(s,B(H)(s))s2H−1ds.

(4.25)

Taking the limit of (4.25) in L2(P) [and hence also in (S)∗], we get

f(t, B(H)(t)) = f(0, 0) +

t∫

0

∂f

∂s
(s,B(H)(s)) ds

+ lim
n→∞

t∫

0

∂fn

∂x
(s,B(H)(s)) dB(H)(s)

+H

t∫

0

∂2f

∂x2
(s,B(H)(s))s2H−1 ds. (4.26)

Since s→ ∂fn(s,B(H)(s))/∂x is continuous in (S)∗ we have

t∫

0

∂fn

∂x
(s,B(H)(s)) dB(H)(s) =

t∫

0

∂fn

∂x
(s,B(H)(s)) �W (H)(s) ds. (4.27)

Hence, (4.27) converges to

∫ t

0

∂f

∂x
(s,B(H)(s)) �W (H)(s) ds (4.28)

in (S)∗ as n→∞. Comparing (4.26) and (4.28), we see that
∫ t

0
∂f(s,B(H)(s))/

∂x �W (H)(s) ds ∈ L2(P) and (4.22) follows. ��

4.3 Girsanov theorem

The first Girsanov-type theorem for fBm was obtained by [168]. Using the
approach of Section 5 of [89], we obtain the following version of the Girsanov
theorem for fBm valid for every Hurst index H ∈ (0, 1). Let ψ ∈ L2(R)
and consider the new probability measure P̂ on (Ω,F) with Radon–Nikodym
density

dP̂

dP
= exp

(∫

R

ψ(s) dB(s)− 1
2
‖ψ‖2L2(R)

)
.

The classical Girsanov theorem then states that under P̂ the process
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B̂(t) := B(t)−
∫ t

0

ψ(s) ds

is a standard Brownian motion. Hence,

B̂(H)(t) :=
∫

R

M(0, t)(s) dB̂(s) =
∫

R

M(0, t)(s) dB(s)−
∫

R

M(0, t)(s)ψ(s) ds

is a fBm under P̂. To eliminate the drift, we have to solve equations of the
form ∫

R

M(0, t)(s)ψ(s) ds = g(t),

or equivalently, ∫ t

0

Mψ(s) ds = g(t).

In the particular case when g(t) = At for t ∈ [0, T ] for some constant A and
g(t) = 0 otherwise, by [89] we obtain for 0 ≤ t ≤ T ,

ψ(t) =
A[(T − t)1/2−H + t1/2−H ]

2Γ (3/2−H) cos (π/2 (1/2−H))
.

4.4 Differentiation

We now recall the approach in [121] to differentiation, as modified and ex-
tended by [89].

Definition 4.4.1. Let F : Ω → R and choose γ ∈ Ω. Then we say F has a
directional derivative in the direction γ if

D(H)
γ F (ω) := lim

ε→0

1
ε [F (ω + εMγ)− F (ω)]

exists in (S)∗. In that case we call D(H)
γ F the directional derivative of F in

the direction γ.

Example 4.4.2. 1. Suppose F (ω) =< ω,Mf >n for some f ∈ L2
H(R), n ∈ N.

Since

1
ε
[F (ω + εMγ)− F (ω)]

=
1
ε
[< ω + εMγ,Mf >n − < ω,Mf >n]

=
1
ε
[(< ω,Mf > +ε < Mγ,Mf >)n− < ω,Mf >n],

we get the chain rule
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D(H)
γ (< ω,Mf >n) = n < ω,Mf >n−1< Mγ,Mf > . (4.29)

In particular, choosing n = 1 and γ ∈ L2
H(R), we get

D(H)
γ (

∫

R

f(t) dB(H)(t)) = 〈Mγ,Mf〉L2(R) = 〈γ, f〉L2
H(R).

2. Suppose G(ω) =< ω,Mg >�n for some g ∈ L2
H(R), n ∈ N. Assume

‖Mg‖L2(R) = 1. By Example A.1.8 we have < ω,Mg >�n= hn(< ω,Mg>)
with hn as in (A.5); hence, we get

lim
ε→0

1
ε
[G(ω + εMγ)−G(ω)]

= lim
ε→0

1
ε
[< ω + εMγ,Mg >�n − < ω,Mg >�n]

= lim
ε→0

1
ε
[hn(< ω + εMγ,Mg >)− hn(< ω,Mg >)]

= lim
ε→0

1
ε
[hn(< ω,Mg > +ε < Mγ,Mg >)− hn(< ω,Mg >)]

= h′n(< ω,Mg >) < Mγ,Mg >= nhn−1(〈ω,Mg〉)〈Mγ,Mg〉,

by a well-known property of the Hermite polynomials {hn}∞n=1. Hence,
the following Wick chain rule holds:

D(H)
γ (< ω,Mg >�n) = n < ω,Mg >�(n−1)< Mγ,Mg > . (4.30)

By linearity this holds also if ‖Mg‖L2(R) �= 1.

Definition 4.4.3. A process Y (t) =
∑

α∈J cα(t)Hα(ω) ∈ (S)∗ belongs to M

if cα(·) ∈ L2
H(R) and

∑
α∈JMcα(t)Hα(ω) converges in (S)∗ for all t.

If Y ∈ M, we define MY (t) by the expansion

MY (t) :=
∑
α∈J

Mcα(t)Hα(ω). (4.31)

In particular, by (4.16) we see that the relation between fractional and classical
white noise is given by

W (H)(t) = MW (t).

Definition 4.4.4. We say that F : Ω → R is differentiable if there exists a
function Ψ : R → (S)∗ in M such that

D(H)
γ F (ω) =

∫

R

MΨ(t)Mγ(t) dt ∀ γ ∈ L2
H(R).

Then we write

D
(H)
t F :=

∂(H)

∂ω
F (t, ω) = Ψ(t),

and we call D(H)
t F the Hida Malliavin derivative or the stochastic gradient

of F at t.



112 4 WIS integrals

Example 4.4.5. From (4.29) to (4.30) we get, for f ∈ L2
H(R),

D
(H)
t (< ω,Mf >n) = n < ω,Mf >n−1 f(t) for a.a. t

D
(H)
t (

∫

R

f(s)dB(H)(s)) = f(t) for a.a. t

D
(H)
t (< ω,Mf >�n) = n < ω,Mf >�(n−1) f(t) for a.a. t (4.32)

These examples illustrate that the stochastic gradient satisfies a chain rule
both with respect to ordinary products and with respect to Wick products.
Note that for α = (α1, . . . , αm) ∈ J we have

Hα(ω) = hα1(< ω, ξ1 >) · · ·hαm
(< ω, ξm >)

=< ω, ξ1 >�α1 · · · < ω, ξm >�αm

=< ω,Me1 >�α1 · · · < ω,Mem >�αm

Therefore, by (4.32),

D
(H)
t Hα(ω) =

∞∑
i=1

αihαi−1(< ω,Mei >)Πj 
=ihαj
(< ω, ξj >)ei(t)

=
∞∑

i=1

αiHα−ε(i)(ω)ei(t).

This motivates the following:

Definition 4.4.6 (Fractional stochastic Sobolev spaces). Let D
1,2
H be

the set of all F ∈ L2(P) whose chaos expansion

F (ω) =
∑
α∈J

cαHα(ω)

satisfies
∑
α∈J

∞∑
i=1

c2ααiα! <∞.

If F ∈ D
1,2
H , we define the fractional stochastic derivative of F by

D
(H)
t F (ω) =

∂(H)F

∂ω
(t, ω) =

∑
α∈J

∞∑
i=1

cααiHα−ε(i)(ω)ei(t).

Note that if F ∈ D
1,2
H , then E

[
‖D(H)

t F (ω)‖2H
]

=
∑

α,i c
2
ααiα! < +∞. Next,

we extend this to (S)∗:
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Definition 4.4.7 (The general fractional stochastic gradient). Let F ∈
(S)∗ with chaos expansion

F (ω) =
∑
α∈J

cαHα(ω).

Then we define the fractional stochastic gradient of F by the expansion

D
(H)
t F (ω) :=

∂(H)F

∂ω
(t, ω) :=

∑
α∈J

∞∑
i=1

cααiHα−ε(i)(ω)ei(t) (4.33)

=
∑
γ∈J

[
∑

α,i:α−ε(i)=γ

cααiei(t)]Hγ(ω)

=
∑
γ∈J

[
l(γ)∑
i=1

cγ+ε(i)(γi + 1)ei(t)]Hγ(ω), (4.34)

where l(γ) = max{i : γi �= 0} is the length of γ. One can show that D(H)
t F ∈

(S)∗ for almost all t ∈ R (see [89]).

Remark 4.4.8. We note that for the fractional gradient we are using the same
notation as in Definition 3.3.3. We remark that here the gradient is defined as
an element in the classical Hida space (S)∗ of stochastic distributions (Defin-
ition A.1.4), while in Chapter 3 it belongs to the fractional Hida distribution
space (S)∗H (Definition 3.1.10). The relation between the two stochastic gra-
dients is clarified in Proposition 6.3.8.

The following result gives a relation between the Wick product and the
ordinary product. It has been obtained with a different proof in Lemma 2 of
[155].

Lemma 4.4.9. Let g ∈ L2
H(R) and F ∈ D

1,2
H . Then

F �
∫

R

g(t) dB(H)(t) = F ·
∫

R

g(t) dB(H)(t)− 〈g,D(H)F 〉H

Proof. For y ∈ R define

Gy = exp�(y
∫

R

g(t)dB(H)(t)) = exp
(
y

∫

R

g(t)dB(H)(t)− 1
2
y2‖g‖2H

)

Choose F = exp�(
∫

R
f(t) dB(H)(t)) = exp

(∫
R
f(t) dB(H)(t)− 1/2‖f‖2H

)
,

where f ∈ L2
H(R). Then

F �Gy = exp�
(∫

R

f(t) dB(H)(t)
)
� exp�

(
y

∫

R

g(t) dB(H)(t)
)

= exp�
(∫

R

(f(t) + yg(t)) dB(H)(t)
)
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= exp
(∫

R

(f(t) + yg(t)) dB(H)(t)− 1
2
‖f(t) + yg(t)‖2H

)

= exp�
(∫

R

f(t) dB(H)(t)
)

exp�
(
y

∫

R

g(t) dB(H)(t)
)

exp (−y〈g, f〉H)

= F ·Gy · exp (−y〈g, f〉H) . (4.35)

Now differentiate with respect to y. We have

d

dy
(F �Gy) = F � d

dy
(Gy) = F �

{
Gy · [

∫

R

g(t) dB(H)(t)− y‖g‖H ]
}

(4.36)

and

d

dy
(F ·Gy · exp (−y〈g, f〉H))

= F ·Gy · [
∫

R

g(t) dB(H)(t)− y‖g‖H ] · exp (−y〈g, f〉H)

− 〈g, f〉HF ·Gy exp (−y〈g, f〉H) . (4.37)

Comparing (4.36) and (4.37) and using (4.35), we get

F �
(
Gy · (

∫

R

g(t) dB(H)(t)− y‖g‖H)
)

=
d

dy
(F �Gy) =

= F ·Gy · (
∫

R

g(t) dB(H)(t)− y‖g‖H) exp (−y〈g, f〉H)

− 〈g, f〉HF ·Gy exp (−y〈g, f〉H) (4.38)

In particular, if we put y = 0, we get

F �
∫

R

g(t) dB(H)(t) = F ·
∫

R

g(t) dB(H)(t))− F 〈g, f〉H

= F ·
∫

R

g(t) dB(H)(t))− F
∫

R

Mg(t)Mf(t) dt

By the chain rule D(H)
t F = Ff(t), and hence

F

∫

R

Mg(t)Mf(t) dt =
∫

R

Ff(t)M2g(t) dt

=
∫

R

D
(H)
t FM2g(t) dt = 〈g,D(H)

t F 〉H .

Combined with (4.38), this proves the theorem in the case when F =
exp�(

∫
R
f(t) dB(H)(t)), where f ∈ L2

H(R). Since the linear combinations of
such F is dense in D

1,2
H , the result follows. ��
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4.5 Relation with the standard Malliavin calculus

In this section we study the relation between the WIS integration for fBm and
the classical stochastic calculus. As before, D(H)

t denotes the Hida Malliavin
derivative with respect to B(H)(·). In the classical case (H = 1/2) we use
the notation Dt for the corresponding Hida Malliavin derivative (for further
details, see Appendix A).

Proposition 4.5.1 (Differentiation). Let F ∈ (S)∗. Then

DtF = MD
(H)
t F for a.a. t ∈ R.

Proof. Let F have the expansion

F (ω) =
∑
α∈J

cαHα(ω).

Then by (4.34) and (4.31) we get

MD
(H)
t F = M(

∑
γ∈J

[
l(γ)∑
i=1

cγ+ε(i)(γi + 1)ei(t)]Hγ(ω))

=
∑
γ∈J

[
l(γ)∑
i=1

cγ+ε(i)(γi + 1)ξi(t)]Hγ(ω)

= DtF.

��

Proposition 4.5.2 (Integration). Suppose Y : R → (S)∗ is WIS integrable
(Definition 4.2.2) and Y ∈ M. Then

∫

R

Y (t) dB(H)(t) =
∫

R

MY (t)δB(t),

where δB(t) denotes the Skorohod integral with respect to the standard Brown-
ian motion B(t) defined in Definition A.2.1.

Proof. Suppose Y (t) =
∑

α∈J cα(t)Hα(ω). Then by (4.20) and (4.5) we have
∫

R

Y (t) dB(H)(t) =
∑

α∈J,k∈N

〈cα,Mξk〉L2(R)Hα+ε(k)(ω)

=
∑

α∈J,k∈N

〈Mcα, ξk〉L2(R)Hα+ε(k)(ω)

=
∫

R

MY (t)δB(t).

��
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Note that
T∫

0

Y (t) dB(H)(t) =
∫

R

Y (t)I[0,T ](t) dB(H)(t)

=
∫

R

M(Y I[0,T ])δB(t) �=
T∫

0

MY (t)δB(t).

Theorem 4.5.3. Let Y ∈ M. Suppose Y : R → (S)∗ and D(H)
t Y (·) : R → (S)∗

are WIS integrable. Then

D
(H)
t (

∫

R

Y (s) dB(H)(s)) =
∫

R

D
(H)
t Y (s) dB(H)(s) + Y (t) (4.39)

Proof. If Y (s) =
∑

α∈J cα(s)Hα(ω) then by (4.20) and (4.33) we get

D
(H)
t (

∫

R

Y (s)dB(H)(s))

= D
(H)
t (

∑
α∈J,k∈N

〈cα,Mξk〉L2(R)Hα+ε(k)(ω))

=
∑

α∈J,k∈N

〈cα,Mξk〉L2(R)

∑
i∈N

(α+ ε(k))iHα+ε(k)−ε(i)(ω)ei(t)

=
∑

α∈J,k∈N,i∈N

〈cα,Mξk〉L2(R)αiHα+ε(k)−ε(i)ei(t)

+
∑

α∈J,k∈N

〈cα,Mξk〉L2(R)Hα(ω)ek(t). (4.40)

Applying (4.20) to the integrand D(H)
t Y (s), we see that the right-hand side

of (4.39) is
∑

α∈J,k,i∈N

〈cα,Mξk〉L2(R)αiHα−ε(i)+ε(k)(ω)ei(t) +
∑

α∈J,k∈N

〈cα, ek〉Hek(t)Hα(ω),

which coincides with (4.40) since by (4.4) and (4.5)

〈cα, ek〉H = 〈Mcα,Mek〉L2(R) = 〈Mcα, ξk〉L2(R) = 〈cα,Mξk〉L2(R).

��
Theorem 4.5.4 (Integration by parts). Consider F ∈ L2(P) and let Y :
R → (S)∗ be in M. Then

F

∫

R

Y (s) dB(H)(s) =
∫

R

FY (s) dB(H)(s) +
∫

R

MY (s)MD(H)
s F ds

provided that at least two of the terms are well-defined and belong to L2(P).
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Proof. The classical (H = 1/2) integration by parts formula states that

F

∫

R

Y (s)δB(s) =
∫

R

FY (s)δB(s) +
∫

R

Y (s)DsF ds.

See, e.g., [176, (1.49)]. Combining this with Proposition 4.5.2 and Proposition
4.5.1, we get

F

∫

R

Y (s) dB(H)(s) = F

∫

R

MY (s)δB(s)

=
∫

R

FMY (s)δB(s) +
∫

R

MY (s)DsF ds

=
∫

R

Ms(FY (s))δB(s) +
∫

R

MY (s)MsD
(H)
s F ds

=
∫

R

FY (s) dB(H)(s) +
∫

R

MY (s)MsD
(H)
s F ds.

��

Since WIS integrals have expectation 0 (see (4.21)), we deduce the following:

Corollary 4.5.5. Let F, Y (s) be such that F ∈ L2(P), E
[
(
∫

R
YsdB

(H)(s))2
]
<

∞, E
[
(
∫

R
FYsdB

(H)(s))2
]
<∞. Then

E[F
∫

R

Y (s) dB(H)(s)] = E[
∫

R

MY (s)MD(H)
s F ds].

The following WIS isometry was first proved by [89]. We give a different proof,
based on the results above.

Theorem 4.5.6. (The WIS isometry)
Let Y : R → (S)∗ be WIS integrable and belong to M. Then

E[(
∫

R

Y (t) dB(H)(t))2] = E[
∫

R

(MY (t))2 dt]

+ E[
∫

R

∫

R

D
(H)
t M2

s Y (s) ·D(H)
s M2

t Y (t) ds dt]

provided that at least two of these terms are well-defined. Here Mt indicates
that the operator M acts on the variable t, and similarly with Ms.
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Proof. By (4.5), Corollary 4.5.5, Theorem 4.5.3, and Corollary 4.5.5 again, we
get

E[
∫

R

∫

R

D
(H)
t M2

s Y (s) ·D(H)
s M2

t Y (t) ds dt]

= E[
∫

R

(
∫

R

MsD
(H)
t Y (s) ·Ms(D(H)

s M2
t Y (t)) ds) dt]

= E[
∫

R

(M2
t Y (t) ·

∫

R

D
(H)
t Y (s) dB(H)(s) dt]

= E[
∫

R

M2
t Y (t) · {D(H)

t (
∫

R

Y (s) dB(H)(s))− Y (t)} dt]

= E[
∫

R

(M2
t Y (t) ·D(H)

t (
∫

R

Y (s) dB(H)(s)) dt]− E[
∫

R

M2
t Y (t) · Y (t) dt]

= E[(
∫

R

Y (s) dB(H)(s))2]− E[
∫

R

(MtY (t))2 dt].

��

4.6 The multidimensional case

We now proceed to the multidimensional case. In the following we let
H1, . . . , HN be N numbers (Hurst coefficients) in (0, 1), and we put

H = (H1, . . . , HN ) ∈ (0, 1)N .

With (Ω,P) as in Section 4.1, we let (Ω1,P1), . . . , (ΩN ,PN ) be N copies of
(Ω,P), and we put

Ω = Ω1 × · · · ×ΩN , P = P1 ⊗ · · · ⊗ PN . (4.41)

Note that here we are denoting the product measure (4.41) simply with P

for notational simplicity. Then the N -dimensional fBm with Hurst vector
H = (H1, . . . , HN ) is defined by

B(H)(t) = (B(H)
1 (t), . . . , B(H)

N (t)),

where

B
(H)
k (t) = B

(H)
k (t, ω) = B(Hk)(t, ωk), ω = (ω1, . . . , ωN ) ∈ Ω,

is a one-dimensional fBm with Hurst coefficient Hk ∈ (0, 1), k = 1, . . . , N .
Thus B(H)(t) consists of N independent one-dimensional fBms B(H1)(t), . . .,
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B(HN )(t).
We let JN be the set of all N -tuples α = (α(1), . . . , α(N)) with α(j) =
(α(j)

1 , . . . , α
(j)

l(α(j))
) ∈ J for all j = 1, . . . , N , and we put

Hα(ω) = Hα(1)(ω1) · · ·Hα(N)(ωN ) for α ∈ JN . (4.42)

Then the family {Hα}α∈JN constitutes an orthogonal basis for L2(P) and

E[(Hα)2] = α! := α(1)! · · ·α(N)! .

Therefore, every F ∈ L2(P) has a chaos expansion

F (ω) =
∑

α∈JN

cαHα(ω),

where cα ∈ R for all α ∈ JN with

‖F‖2L2(P) =
∑

α∈JN

c2αα! .

The nth component of B(H)(t), B(H)
n (t), has the expansion

B(H)
n (t) = B(Hn)(t, ωn) =

∞∑
k=1

t∫

0

M (Hn)ξk(s) dsHε(k)(ωn),

where M (Hn) is as in Definition 4.1.2 with H = Hn. The corresponding ex-
pansion for the nth component of fractional white noise is

W (H)
n (t) = W (Hn)(t, ωn) =

∞∑
k=1

M (Hn)ξk(t)Hε(k)(ωn).

As in Section 4.4 we have W (H)
n (t) ∈ (S)∗ and

W (H)
n (t) =

d

dt
B(H)

n (t) in (S)∗ for n = 1, . . . , N.

[See (4.15) to (4.17).]
The Wick product on (S)∗ is defined as in Appendix A. For the multidimen-
sional case we have

∑
α∈JN

aαHα(ω) �
∑

β∈JN

bβHβ(ω) =
∑

α,β∈JN

aαbβHα+β(ω).

Note in particular that if m,n ∈ {1, . . . , N} with m �= n, then by (4.42)

Hα(ωm) �Hβ(ωn) = Hα(ωm)Hβ(ωn).

As in Definition 4.2.2 we now define the multidimensional WIS integral.
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Definition 4.6.1 (The multidimensional WIS integral).

1. If X : R → (S)∗ is such that X(t) �W (H)
n (t) is dt-integrable in (S)∗, then

we define
∫

R

X(t, ω) dB(H)
n (t) =

∫

R

X(t, ω) �W (H)
n (t) dt.

2. If Y : R → ((S)∗)N is such that Yn(t)�W (H)
n (t) is dt-integrable in (S)∗ for

all n = 1, . . . , N , we say that Y is WIS integrable with respect to B(H)

and define the multidimensional WIS integral as given by

∫

R

Y (t) dB(H)(t) :=
N∑

n=1

∫

R

Yn(t) dB(H)
n (t) =

N∑
n=1

∫

R

Yn(t) dB(Hn)(t).

Example 4.6.2. Let m �= n. Then

T∫

0

B(H)
m (t) dB(H)

n (t) =
∫

R

B(H)
m (T )I[0,T ](t) �W (H)

n (t) dt

= B(H)
m (T ) �

T∫

0

W (H)
n (t)dt = B(H)

m (T ) �B(H)
n (T )

= B(Hm)(T, ωm)B(Hn)(T, ωn).

Therefore, if we choose

Yk(t) =

⎧
⎪⎨
⎪⎩
B

(H)
m (t) · I[0,T ](t) if k = n,

−B(H)
n (t) · I[0,T ](t) if k = m,

0 otherwise,

then
∫

R

Y (t) dB(H)(t) = B(Hm)(T )B(Hn)(T )−B(Hn)(T )B(Hm)(T ) = 0,

even though Y �= 0.

Proceeding as in Section 4.4, we are led to the following definition of a
stochastic derivative in the direction n (see Definition 4.4.6).

Definition 4.6.3. Let D
1,2
H be the set of all F ∈ L2(P) whose chaos expansion

F (ω) =
∑

α∈JN

cαHα(ω)
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satisfies
∑

α∈JN

∞∑
i=1

c2αα
(n)
i α! <∞ for n = 1, . . . , N. (4.43)

If F ∈ D
1,2
H , we define the fractional stochastic derivative of F in direction n

(n = 1, 2, . . . , N) by

D
(H)
n,t F =

∂(Hn)F

∂ωn
(t, ω) =

∑
α∈JN

∞∑
i=1

cαα
(n)
i Hα−ε(n,i)(ω)en,i(t),

where
ε(n,i) = (0, . . . , 0, ε(i), 0, . . . , 0) ∈ JN

with ε(i) on the nth place and en,i(t) = (M (Hn))(−1)ξi(t).
We define the fractional stochastic gradient of F by

∇(H)F (t, ω) =
(
∂(H1)F

∂ω1
(t, ω), . . . ,

∂(HN )F

∂ωN
(t, ω)

)
.

Note that by (4.43) we have

∇(H)F (t, ω) ∈ L2(λ× P) if F ∈ D
1,2
H ,

where as before λ denotes Lebesgue measure on R.
As in the one-dimensional case we extend this to F ∈ (S)∗ by setting

D
(H)
n,t F =

∂(H)F

∂ωn
(t, ω) =

∑
α∈JN

∞∑
i=1

cαα
(n)
i Hα−ε(n,i)(ω)ei(t).

(See Definition 4.4.7.)
We now give the multidimensional versions of the results of Section 4.5.

These results can either be obtained similarly to those in Section 4.5, or by
reducing to the one-dimensional cases, and we therefore omit the proofs.

Proposition 4.6.4 (Differentiation). Let F ∈ (S)∗. Then

Dn,tF = M (Hn)D
(H)
n,t F for n = 1, . . . , N.

Proposition 4.6.5 (Integration). Suppose Y : R → ((S)∗)N is WIS inte-
grable with respect to B(H) (Definition 4.6.1) and belongs to (M)N . Then

∫

R

Y (t) dB(H)(t) =
∫

R

M (H)Y (t)δB(t),

where
M (H)Y (t) = (M (H1)Y1(t), . . . ,M (HN )YN (t)),
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B(t) = (B1(t), · · · , BN (t)) is an N -dimensional standard Brownian motion,
and ∫

R

M (H)Y (t)δB(t) =
N∑

i=1

∫

R

MHi
Y i(t)δBi(t)

is a multidimensional Skorohod integral with respect to B(t).

Theorem 4.6.6. Suppose Y : R → ((S)∗)N is WIS integrable with respect to
B(H). Then

D
(H)
n,t (

∫

R

Y (s) dB(H)(s)) =
N∑

j=1

∫

R

D
(Hn)
n,t Yj(s) dB

(H)
j (s) + Yn(t).

Theorem 4.6.7 (Integration by parts). Let F ∈ L2(P) and Y : R →
((S)∗)N . Then

F

∫

R

Y (s) dB(H)(s) =
∫

R

FY (s) dB(H)(s)

+
∫

R

M (H)Y (s) ·M (H)∇(H)F (s) ds,

(where the dot · denotes inner product in R
N ), provided that at least two of

the terms are well-defined and belong to L2(P).

Theorem 4.6.8 (The multi-dimensional WIS isometry). Let Y : R →
((S)∗)N . Then

E[(
∫

R

Y (t) dB(H)(t))2] = E[
N∑

n=1

∫

R

(M (Hn)
t Yn(t))2 dt]

+E[
N∑

m,n=1

∫

R

∫

R

D
(Hm)
m,t ((M (Hn)

s )2Yn(s))

·D(Hn)
n,s ((M (Hm)

t )2Ym(t)) ds dt],

provided that at least two of the terms are well-defined.
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Pathwise integrals for fractional Brownian
motion

We conclude our overview of the stochastic integrals for fBm with the pathwise
ones. A natural way to introduce a stochastic integral with respect to the fBm
is to consider the so-called Riemann sums:

n∑
i=1

f(ti)
[
B(H)(ti+1)−B(H)(ti)

]
,

where 0 = t1 < · · · < tn = T is a partition of [0, T ], and then to investigate the
conditions on f under which the convergence of this quantity holds at least in
probability. Here we summarize the main approaches and results for pathwise
integration with respect to fBm and investigate their relation with the other
definitions of stochastic integral (divergence, fWIS and WIS integrals) seen in
the previous chapters. For further details we also refer to Chapter 6.

We remark that since all definitions are made pathwise, adaptedness of in-
tegrands is not required and only sample-path regularity counts. This implies
that in general it is not trivial to compute the expectation of any of these
integrals. In the following sections, we recall some of the main results of [5],
[6], [33], [42], [46], [54], [55], [61],[62], [70], [72], [74], [94], [101], [102], [149],
[172], [173], [177], [237], [238], [239], [240].

5.1 Symmetric, forward and backward integrals for fBm

The symmetric (respectively, forward and backward) integral for the standard
Brownian motion has been introduced in [10], [24] and [145] and developed in
[198], [199] and [201]. These definitions have been extended to the fBm case
in [33], [101], [102],[177], [237], [238], [239], [240].
Here we consider the definition of the symmetric stochastic integral in the
fBm case as in the approach of [177].

Definition 5.1.1. Let H ∈ (0, 1). Let (ut)t∈[0,T ] be a process with integrable
trajectories. The symmetric integral of u with respect to B(H) is defined as
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lim
ε→0

1
2ε

∫ T

0

u(s)
[
B(H)(s+ ε)−B(H)(s− ε)

]
ds,

provided that the limit exists in probability, and is denoted by
∫ T

0
u(s)doB(H)(s).

We also define the forward and backward integrals for fBm as in the approach
of [201].

Definition 5.1.2. Let H ∈ (0, 1). Suppose that (ut)t∈[0,T ] is a process with
integrable trajectories. The forward integral of u with respect to B(H) is defined
as

lim
ε→0

1
ε

∫ T

0

u(s)
B(H)(s+ ε)−B(H)(s)

ε
ds, (5.1)

provided that the limit exists in probability, and is denoted by
∫ T

0
u(s)d−B(H)(s).

The backward integral is defined as

lim
ε→0

1
ε

∫ T

0

u(s)
B(H)(s− ε)−B(H)(s)

ε
ds,

provided that the limit exists in probability, and is denoted by
∫ T

0
u(s)d+B(H)(s).

For a survey of all the different possible definitions of the forward integral
for fBm, we refer to [101] and to [240]. Here the “classical” forward integral
defined in [201] has been extended to the case of fBm in the general context
of m-order integrals for nonsemimartingale processes.

If f is a deterministic function with bounded variation, the symmetric in-
tegral

∫ T

0
f(t) doB(H)(t) can be obtained as the almost sure limit of Riemann

sums, as will be made precise in the sequel. The convergence of these Rie-
mann sums is equivalent to the convergence of the Riemann–Stieltjes integral
appearing on the right-hand side of the integration by parts formula

∫ T

0

f(t) doB(H)(t) = f(T )B(H)(T )−
∫ T

0

B(H)(s) df(s),

which holds because of the continuity of the sample paths of B(H).
ForH = 1/2, the symmetric integral is a generalization of the Stratonovich

integral for standard Brownian motion, while the forward integral extends
the Itô integral. In order to clarify the relation between the forward and the
symmetric integral for every H ∈ (0, 1), by following [101] and [201] we define
the (generalized) covariation.

Definition 5.1.3. If X,Y are two continuous (respectively, locally bounded)
processes, then their covariation is defined as the limit

[X,Y ]t = lim
ε→0

1
ε

∫ t

0

(Xu+ε −Xu)(Yu+ε − Yu) du
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if the limit exists uniformly on compacts in probability [i.e., in uniform con-
vergence in probability (ucp)].

If X is such that [X,X] exists, then X is called finite quadratic variation
process. Moreover, if [X,X] = 0, then X is called zero quadratic variation
process.

If X,Y are two continuous (respectively, locally bounded) processes, the
following relation among the symmetric integral and the forward integral
holds: ∫ t

0

Yu d
oXu =

∫ t

0

Yu d
−Xu + [X,Y ]t ,

provided that two of these three terms exist. If Xt, Yt are continuous semi-
martingales, the covariation coincides with the usual square bracket. Hence,
for H = 1/2, [B,B]t = t. Since by Theorem 1.6.1 we have that sample paths
of a fBm with parameter H are, outside a negligible event, Hölder continuous
with every exponent β < H, it follows that B(H) is a zero quadratic variation
process for H > 1/2. On the other hand, the quadratic variation is infinite
for H < 1/2. However, B(H) admits for every H ∈ (0, 1) a strong α-variation
according to the following definition provided originally in [201].

Definition 5.1.4. Let X be a continuous process and α > 0. The strong α-
variation of X is the increasing continuous process given by

[X](α)
t = lim

ε→0

1
ε

∫ t

0

|Xu+ε −Xu|αdu ,

if this limit exists in ucp.

In Proposition 3.14 of [201] it is proved that B(H) has a strong 1/H-variation
for every H ∈ (0, 1) and that

[B(H)](1/H)
t = ρHt,

where ρH = E
[
|G|1/H

]
and G is a centered Gaussian random variable with

unit variance. For further details we also refer to [101], [102] and [201].

5.2 On the link between fractional and stochastic
calculus

In order to clarify the link between stochastic calculus for fBm and fractional
calculus presented in Appendix B, we follow the approach of [237] and intro-
duce the following definition:

Definition 5.2.1. Let (ht)t∈[0,T ] be a stochastic process. We define the ex-
tended forward integral of h with respect to B(H) as
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∫ t

0

h(s) d−B(H)(s)

= lim
ε→0

1
Γ (ε)

∫ T

0

uε−1

∫ t

0

h(s)
B(H)(s+ u)−B(H)(s)

s
ds du,

(5.2)

if the limit exists in ucp as a function of t ∈ [0, T ].

Definition 5.2.1 provides an extension of the definition of the forward integral
for fBm given in Definition 5.1.2. In fact, the existence of the limit

lim
u→0

∫ t

0

h(s)
B(H)(s+ u)−B(H)(s)

u
ds

in uniform convergence in probability implies the existence of (5.2). This no-
tion is a generalization of the one provided in [199]. This representation is the
key in order to describe the link between stochastic and fractional calculus as
described in the following.

Consider two deterministic functions f, g on [0, T ] satisfying the condi-
tions of Definition B.1.4 and the fractal integral

∫ b

a
fdg, 0 ≤ a < b ≤ T , as

introduced in (B.6) [respectively, in (B.7)]. Then the following approximation
property of the integral holds:

∫ b

a

f dg = lim
ε→0

∫ b

a

Iε
a+f dg.

By (B.4) we obtain that
∫ b

a

Iε
a+f dg =

1
Γ (ε)

∫ T

0

uε−1

∫ b

a

f(s)
gb−(s+ u)− gb−(s)

u
ds du, (5.3)

where gb−(x) = I(a,b)(g(x) − g(b−)) (see Definition B.1.4). This formula is
valid if the degrees of differentiability of f and g sum up at least to 1− ε. By
using (5.3), we extend the definition of fractal integral provided in Definition
B.1.4 as

∫ b

a

f dg = lim
ε→0

1
Γ (ε)

∫ T

0

uε−1

∫ b

a

f(s)
gb−(s+ u)− gb−(s)

u
ds du,

whenever the limit on the right-hand side is determined. Applying this defini-
tion to stochastic processes via uniform convergence in probability, we obtain
the natural extension of fractional calculus to the stochastic case.

5.3 The case H < 1/2

The definition of a pathwise integral for fBm with Hurst index H < 1/2 is
more delicate since new difficulties appear. For example, the forward integral
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∫ T

0
B(H)(s) d−B(H)(s) does not exist in the sense of Definition 5.1.2 when the

limit (5.1) is meant in the L2sense, as it is shown in the following example pro-
vided in [177]. Given a partition ti = iT/n of the interval [0, T ], the Riemann
sums

n∑
i=1

B(H)(ti−1)
[
B(H)(ti)−B(H)(ti−1)

]

have the expectation
n∑

i=1

E
[
B(H)(ti−1)(B(H)(ti)−B(H)(ti−1))

]
=

1
2

n∑
i=1

t2H
i − t2H

i−1 − (ti − ti−1)2H

=
1
2
T 2H(1− n1−2H)

that diverges as n goes to infinity if H < 1/2. On the other hand, the expec-
tation of the symmetric sums

n∑
i=1

E
[
(B(H)(ti) +B(H)(ti−1))(B(H)(ti)−B(H)(ti−1))

]
=

n∑
i=1

[t2H
i − t2H

i−1]

= T 2H

is finite.
There are several approaches introduced in order to avoid these problems.

In [6], [42] and [46] the stochastic integral for fBm when H < 1/2 is defined by
regularizing the kernel KH(t, s) that appears in the representation B(H)(t) =∫ t

0
KHt, s) dB(s) of the fBm with respect to the standard Bm [see (2.30)],

in order to obtain a semimartingale. They then use the classical theory of
stochastic integration and pass to the limit after a stochastic integration by
parts in the sense of Malliavin calculus. Furthermore, they prove that under
suitable Hölder continuity assumptions on the integrand, the integral is the
limit in probability of the Riemann sums.

In order to establish when the symmetric integral is well-defined for H <
1/2, here we follow the approach of [5], [54] and [177]. By Chapter 2, we
have that the operator K∗

H defined in (2.26) induces an isometry between the
Hilbert space H = (E, <,>H) (introduced in Section 2.1.2) and L2([0, T ]). We
recall that for H < 1/2

∂KH

∂t
(t, s) = cH

(
H − 1

2

)(
t

s

)H−1/2

(t− s)H−3/2,

that can be then estimated as follows:

|∂KH

∂t
(t, s)| ≤ cH

(
1
2
−H

)
(t− s)H−3/2 (5.4)

if t > s. Using (5.4), we can introduce the following space of suitable inte-
grands.
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Definition 5.3.1. Consider on the space E of step functions on [0, T ] the
following seminorm:

‖φ‖2KH
=
∫ T

0

φ2(s)KH(T, s)2 ds

+
∫ T

0

[∫ T

0

|φ(t)− φ(s)|(t− s)H−3/2dt

]2

ds.

We denote by HKH
the completion of E with respect to this seminorm.

The space HKH
is continuously embedded in the Hilbert space H.

Proposition 5.3.2. Let H < 1/2 and (ut)t∈[0,T ] be a stochastic process in the
space D

1,2(HKH
). Suppose that the trace defined as

TrD(H)u := lim
ε→0

1
2ε

∫ T

0

〈D(H)us, I[s−ε,s+ε]〉H ds

exists as a limit in probability and that

E

[∫ T

0

u2(s)(s2H−1 + (T − s)2H−1) ds

]
<∞,

E

[∫ T

0

∫ T

0

(D(H)
r us)2(s2H−1 + (T − s)2H−1) ds dr

]
<∞.

Then the symmetric integral
∫ T

0
u(s)doB(H)(s) of u with respect to the fBm

defined as the limit in probability

lim
ε→0

∫ T

0

us
B(H)(s+ ε)−B(H)(s− ε)

2ε
ds

exists and ∫ T

0

u(s) doB(H)(s) = δH(u) + TrD(H)u.

Proof. For the proof, we refer to [5]. ��

We can compute the trace in the particular case when the process ut =
f(B(H)

t ), where f ∈ C2(R) and satisfies the growth condition

max |f(x)|, |f ′(x)|, |f ′′(x)| ≤ ceλx2
, (5.5)

with c, λ positive constants such that λ < 1/(4T 2H). If 1/2 > H > 1/4, then
the process ut = f(B(H)

t ) belongs to D
1,2(HKH

), TrD(H)u exists and

TrD(H)u = H

∫ T

0

f ′(B(H)(t))t2H−1 dt.
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By Proposition 5.3.2 we get

∫ T

0

f(B(H)(t)) doB(H)(t) = δH(f(B(H)) +H
∫ T

0

f ′(B(H)(t))t2H−1 dt.

where δH(f(B(H)) is the divergence-type integral introduced in Chapter 2.
In order to consider a wider class of integrands with respect to the one

considered in (5.5), we use the properties of the extended divergence operator
as in the approach of [54]. They have shown that the symmetric integral of a
general smooth function of B(H) with respect to B(H) exists in L2(PH) if and
only if H > 1/6.

Note that if h : R −→ R is a continuous function, then

lim
ε→0

∫ T

0

h(s)
h(s+ ε)− h(s− ε)

2ε
ds

= lim
ε→0

1
2ε

(∫ T

0

h(s)h(s+ ε)ds−
∫ T−ε

−ε

h(s)h(s+ ε)ds

)

= lim
ε→0

1
2ε

(∫ T

T−ε

h(s)h(s+ ε)ds−
∫ 0

−ε

h(s)h(s+ ε)ds

)

=
1
2
h2(T )− 1

2
h2(0)

Hence it follows that for all H ∈ (0, 1),

lim
ε→0

∫ b

a

B(H)(s)
B(H)(s+ ε)−B(H)(s− ε)

2ε
ds =

1
2

[
B(H)(b)2 −B(H)(a)2

]

almost surely. Since for H > 1/2, B(H) is a zero quadratic variation process,
by Theorem 2.1 of [199] that for all H > 1/2 and g ∈ C1(R)

∫ b

a

g(B(H)(s)) doB(H)(s) = G(B(H)(b)2)−G(B(H)(a)2), (5.6)

where G′(x) := g(x), x ∈ R. In [200], this formula is proved for H = 1/2
even in the case when g ∈ L2

loc(R). For H < 1/2, B(H) has infinite quadratic
variation, but equation (5.6) holds for g ∈ C1(R) if H ∈ (1/4, 1/2) as shown
in [5]. In Theorem 4.1 of [102], (5.6) is proved even for H = 1/4, but with
g ∈ C3(R). The most general result in this direction is contained in Theorem
5.3 of [54], where they show that for g ∈ C3(R), H = 1/6 is the critical value
for the existence of the symmetric integral in (5.6). Here we state the result
of [54].

Proposition 5.3.3. Let g ∈ C3(R). Then the following results hold:

1. For every H ∈ (1/6, 1/2),
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∫ b

a

g(B(H)(s)) doB(H)(s) = G(B(H)(b)2)−G(B(H)(a)2),

where G(x) =
∫ x

0
g(s) ds, x ∈ R.

2. On the other hand, if H ∈ (0, 1/6], then
∫ b

a

[B(H)(s)]2 doB(H)(s)

does not exist.

Proof. The proof of this result is quite technical and we refer to [54, Theorem
5.3, Lemma 5.4, 5.5, 5.6 and Proposition 5.7] for further details. ��

5.4 Relation with the divergence integral

In Proposition 5.3.2 we have already investigated the relation between the
symmetric and the divergence-type integrals for H < 1/2. Here we study the
case H > 1/2 following the approach of [8] and [177].

We recall that the space H = (L2([0, T ]), <,>H) is introduced in Theorem
2.1.6, |H| in (2.24), the stochastic derivative D(H) in Section 2.2 and that P

H

denotes the law of B(H).

Proposition 5.4.1. Let H > 1/2. Suppose (ut)t∈[0,T ] is a stochastic process
in D

1,2(|H|) and that

∫ T

0

∫ T

0

|D(H)
s u(t)||t− s|2H−2 ds dt <∞, a.s. (5.7)

Then the symmetric integral exists and the following relation holds:
∫ T

0

u(t) doB(H)(t)

= δH(u) +H(2H − 1)
∫ T

0

∫ T

0

D(H)
s u(t)|t− s|2H−2 ds dt.

(5.8)

Under the assumptions of Proposition 5.4.1, the symmetric, backward and
forward integrals coincide. For example, a sufficient condition for (5.7) is that

∫ T

0

(
∫ T

0

|D(H)
s u(t)|p dt)1/p ds <∞

for some p > 1/(2H − 1).

Proof. Here we sketch a short proof of (5.8) by following [177]. For further
details, we refer to the proof of Proposition 3 of [8]. We start by approximating
u by
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uε
t =

1
2ε

∫ t+ε

t−ε

u(s) ds.

Then
‖uε‖2

D1,2(|H|) ≤ dH‖u‖2D1,2(|H|)

for some positive constant dH depending on H. Since by (2.33) we have the
following integration by part formula

δH(Fu) = FδH(u)− 〈D(H)F, u〉H ,

if F ∈ D
1,2
H , u ∈ dom δH , and Fu, FδH(u)+〈D(H)F, u〉H ∈ L2(PH), we obtain

∫ T

0

u(s)
B(H)(s+ ε)−B(H)(s− ε)

2ε
ds

=
∫ T

0

u(s)
1
2ε

∫ s+ε

s−ε

dB(H)(u) ds

=
∫ T

0

δH(u(s)
1
2ε
I[s−ε,s+ε]) ds+

1
2ε

∫ T

0

〈D(H)u(s), I[s−ε,s+ε]〉H ds

= δH(uε) +
1
2ε

∫ T

0

〈D(H)u(s), I[s−ε,s+ε]〉H ds.

The proposition follows taking the limit as ε tends to 0. ��

We now investigate when the symmetric integral coincides almost surely
with the limit of Riemann sums, i.e., with the pathwise Riemann–Stieltjes
integral. Using the representation (5.8), we obtain the following:

Proposition 5.4.2. Let H > 1/2. If u is an adapted process continuous in
the norm of D

1,2(H) such that

lim
n−→∞

∫ T

0

sup
s,s′∈(r,r+1/n)∩[0,T ]

E
[
|D(H)

r u(s)−D(H)
r u(s′)|2

]
dr = 0, (5.9)

then we have

lim
|π|→0

n∑
i=1

u(ti)(B(H)(ti+1)−B(H)(ti)) =
∫ T

0

u(s) doB(H)(s),

where the convergence holds in L2(PH) and π : 0 = t0 < t1 < . . . < tN = T is
a partition of [0, T ] with mesh size |π| = sup

i=0,...,n
(ti+1 − ti).

Proof. Here we adapt the proof of Proposition 5 of [6] to the fBm case for
H > 1/2. By (5.8) we have that
∫ T

0

u(t) doB(H)(t) = δH(u) +H(2H − 1)
∫ T

0

∫ T

0

D(H)
s u(t)|t− s|2H−2 ds dt.
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Since by Proposition 3.12.1

δH(u) = lim
|π|→0

n∑
i=1

u(ti)�(B(H)(ti+1)−B(H)(ti)),

where the convergence is in L2(PH), we have

n∑
i=1

u(ti)�(B(H)(ti+1)−B(H)(ti))

=
n∑

i=1

u(ti)(B(H)(ti+1)−B(H)(ti)) +
n∑

i=1

〈D(H)u(si), I(si,si+1]〉H .

We need to study the convergence of the second term of the sum. By using
the properties of the operator K∗

H defined in (2.15) with respect to 〈·, ·〉H , we
get

Aπ =
n∑

i=1

〈D(H)u(si), I(si,si+1]〉H =
n∑

i=1

〈Du(si),K∗
HI(si,si+1]〉L2([0,T ])

=
n∑

i=1

∫ T

0

Dru(si)(KH(si+1, r)−KH(si, r)) dr,

where we have also applied (2.36). Then

E

[
(Aπ −

∫ T

0

∫ T

0

D(H)
s u(t)|t− s|2H−2 ds dt)2

]

≤ TE

⎡
⎣
(∫ T

0

n∑
i=1

∫ si+1

si

|Dru(s)−Dru(si)||r − s|2H−2 ds

)2

dr

⎤
⎦

≤ T
∫ T

0

|T − r|2H−2
n∑

i=1

∫ si+1

si

E
[
|Dru(s)−Dru(si)|2

]
|r − s|2H−2 ds dr

≤ T
∫ T

0

|T − r|2(2H−2) dr

·
∫ T

0

sup
s,s′∈(t,t+|π|)∩[0,T ]

E
[
|D(H)

t u(s)−D(H)
t u(s′)|2

]
dt.

The last term converges to zero since (5.9) holds. ��

5.5 Relation with the fWIS integral

We now investigate the relation between the fWIS integral introduced in Chap-
ter 3 and the pathwise integral in the case H > 1/2. Here

∫ T

0
F (s) dB(H)(s)
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must be interpreted as the fWIS integral defined in Definition 3.4.1 for
H > 1/2. Main reference for this section is [83]. For other approaches see
also [68] and [149].

Consider the symmetric integral as introduced in Definition 5.1.1 and
characterized in Proposition 5.4.2. We recall that in Chapter 3 the space
Lφ(0, T ) of integrands is defined as the family of stochastic processes F on
[0, T ] with the following properties: F ∈ Lφ(0, T ) if E

[
‖F‖2H

]
< ∞, F is

φ-differentiable, the trace of Dφ
sFt , 0 ≤ s ≤ T , 0 ≤ t ≤ T exists, and

E
[∫ T

0

∫ T

0
(Dφ

t Fs)2 ds dt
]
<∞ and for each sequence of partitions (πn, n ∈ N)

such that |πn| → 0 as n→∞,

n−1∑
i=0

E

[∫ t
(n)
i+1

t
(n)
i

∫ t
(n)
j+1

t
(n)
j

|Dφ
sF

π

t
(n)
i

Dφ
t F

π

t
(n)
j

−Dφ
sFtD

φ
t Fs| ds dt

]

and
E
[
‖Fπ − F‖2H

]

tend to 0 as n→∞, where πn : 0 = t
(n)
0 < t

(n)
1 < · · · < t(n)

n−1 < t
(n)
n = T .

Theorem 5.5.1. Let H > 1/2 and F ∈ Lφ(0, T ). Then the symmetric inte-
gral

∫ T

0
Fs d

oB(H)(s) exists and the following equality is satisfied

∫ T

0

Fs d
oB(H)(s) =

∫ T

0

Fs dB
(H)(s) +

∫ T

0

Dφ
sFs ds a.s.,

where
∫ T

0
Fs dB

(H)(s) is the fWIS integral defined in Theorem 3.6.1 and Dφ
sF

in Definition 3.5.1.

Proof. Since if g ∈ L2
H(R), F ∈ L2(PH), and DΦgF ∈ L2(PH), by Proposition

3.5.4 we have that

F �
∫

R

gs dB
(H)(s) = F

∫

R

gs dB
(H)(s)−DΦgF.

Hence,

n−1∑
i=0

F
t
(n)
i

(B(H)(t(n)
i+1)−B(H)(t(n)

i ))

=
n−1∑
i=0

F
t
(n)
i

� (B(H)(t(n)
i+1)−B(H)(t(n)

i )) +
n−1∑
i=0

DΦI
[t(n)

i
,t

(n)
i+1]
F

t
(n)
i

=
n−1∑
i=0

{
F

t
(n)
i

�
[
B(H)(t(n)

i+1)−B(H)(t(n)
i )
]

+
∫ t

(n)
i+1

t
(n)
i

Dφ
sFt

(n)
i

ds

}
.

This equality easily proves the theorem. ��



134 5 Pathwise integrals for fractional Brownian motion

These two types of stochastic integrals are both interesting and present
different characteristics. The expectation of

∫ t

0
Fs dB

(H)(s) is 0, but the chain
rule for this type of integral is more complicated than for the pathwise integral.
On the contrary, we have that E

[∫ t

0
Fs d

oB(H)(s)
]
�= 0 in general, as the

following shows.
It is well known that if X is a standard normal random variable, X ∼

N(0, 1), then

E [Xn] =

⎧
⎨
⎩

n!
(
√

2)n(n/2)!
if n is even,

0 if n is odd.

Let f(x) = xn. If n is odd, then

E

[∫ t

0

f(B(H)(s)) doB(H)(s)
]

= E

[∫ t

0

Dφ
s f(B

(H)(s)) ds
]

= E

[∫ t

0

f ′(B(H)(s))Dφ
sB

(H)(s) ds
]

= E

[∫ t

0

f ′(B(H)(s))
∫ s

0

φ(u, s) du ds
]

= H

∫ t

0

s2H−1E
[
f ′(B(H)(s))

]
ds

= nH

∫ t

0

s2H−1E
[
(B(H)(s))n−1

]
ds

= nH

∫ t

0

s2H−1E

[(
B(H)(s)
sH

)n−1
]
snH−H ds

=
n!Ht(n+1)H

√
2

n−1
(n+ 1)H ((n− 1)/2)!

which is not 0. If n is even, then by the same computation, we obtain

E

[∫ t

0

(B(H)(s))n doB(H)(s)
]

= 0.

We now show another interesting phenomenon. Let π be a partition of
the interval [0, T ]: 0 = t0 < t1 < t2 < . . . < tn = T . If (f(s), s ≥ 0) is a
continuous stochastic process, the Itô integral with respect to the Brownian
motion (Bt , t ∈ [0, T ]) can be defined as the limit of the Riemann sums

n−1∑
i=0

fti
(Bti+1 −Bti

)

as the partition mesh size |π| → 0, where π : 0 = t0 < t1 < t2 < . . . < tn = T .
The Stratonovich integral in the standard Brownian motion case is defined as
the limit of the Riemann sums
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n−1∑
i=0

fti
+ fti+1

2
(Bti+1 −Bti

)

as the partition |π| → 0. Here we prove that the symmetric integral is a
Stratonovich-type integral for fBm B

(H)
t , t ≥ 0, with H > 1/2 since in the

sequel we show that the above two limits are the same for a large class of
stochastic processes.

Initially the following lemma is given.

Lemma 5.5.2. Let p be a positive even integer. Then

E
[(
B(H)(t)−B(H)(s)

)p]
=

p!
2p/2(p/2)!

|t− s|pH .

Proof. Since
E
[
|B(H)(t)−B(H)(s)|2

]
= |t− s|2H ,

we have that (B(H)(t) − B(H)(s))/|t − s|H is a standard Gaussian random
variable and

E
[
|B(H)(t)−B(H)(s)|p

]
= |t− s|pHE

[(
B(H)(t)−B(H)(s)

|t− s|H
)p
]

=
p!

2p/2(p/2)!
|t− s|pH .

��

Corollary 5.5.3. For each α > 1, there is a Cα <∞ such that

E
[
|B(H)(t)−B(H)(s)|α

]
≤ Cα|t− s|αH .

Definition 5.5.4. The process (fs , 0 ≤ s ≤ T ) is said to be a bounded
quadratic variation process if there are constants p ≥ 1 and 0 < Cp < ∞
such that for any partition π : 0 = t0 < t1 < t2 < . . . < tn = T ,

n−1∑
i=0

E
[
|fti+1 − fti

|2p
]1/p ≤ Cp.

Example 5.5.5. Let f : R → R be continuously differentiable with bounded
first derivative. Then f(B(H)(s)) is a bounded quadratic variation process. In
fact, for any p ≥ 1 and partition π : 0 = t0 < t1 < t2 < . . . < tn = T ,

n−1∑
i=0

E
[
|f(B(H)

ti+1
)− f(B(H)

ti
)|2p
]1/p

=
n−1∑
i=0

E

[([∫ 1

0

f ′
(
B

(H)
ti

+ θ(B(H)
ti+1

−B(H)
ti

)
)
dθ

]
· (B(H)

ti+1
−B(H)

ti
)
)2p
]1/p
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≤ C
n−1∑
i=0

E
[
|B(H)

ti+1
−B(H)

ti
|2p
]1/p

≤ C
n−1∑
i=0

|ti+1 − ti|2H ≤ CT.

Theorem 5.5.6. Let (f(t), 0 ≤ t ≤ T ) be a bounded quadratic variation
process. Let (πn)n∈N be a sequence of partitions of [0, T ] such that |πn| → 0
as n→∞ and

n−1∑
i=0

f(t(n)
i )[B(H)(t(n)

i+1)−B(H)(t(n)
i )], n ∈ N,

converges to a random variable G in L2(PH), where πn =
{
t
(n)
0 , . . . , t

(n)
n

}
.

Then
n−1∑
i=0

f(t(n)
i+1)[B

(H)(t(n)
i+1)−B(H)(t(n)

i )], n ∈ N,

also converges to G in L2(PH).

Proof. It suffices to show that
∑n−1

i=0 (fti+1 − fti
)[B(H)

ti+1
− B(H)

ti
] converges to

0 in L2(PH). Let p be a number as indicated in the definition of bounded
quadratic variation for (ft, 0 ≤ t ≤ T ),

E

⎡
⎣
(

n−1∑
i=0

(fti+1 − fti
)(B(H)

ti+1
−B(H)

ti
)

)2
⎤
⎦

1/2

≤
n−1∑
i=0

(
E
[
(fti+1 − fti

)2(B(H)
ti+1

−B(H)
ti

)2
])1/2

≤
n−1∑
i=0

E
[
(fti+1 − fti

)2p
]1/(2p)

E
[
(B(H)

ti+1
−B(H)

ti
)2q
]1/(2q)

≤
{

n−1∑
i=0

E
[
(fti+1 − fti

)2p
]1/p

}1/2{n−1∑
i=0

E
[
|B(H)

ti+1
−B(H)

ti
|2q
]1/q
}1/2

≤ C
(

n−1∑
i=0

|ti+1 − ti|2H

)1/2

≤ C max
0≤i≤n−1

(ti+1 − ti)H−1/2

(
n−1∑
i=0

|ti+1 − ti|
)1/2

≤ C
√
T max

0≤i≤n−1
(ti+1 − ti)H−1/2

where 1/p + 1/q = 1. The proposition follows since max0≤i≤n−1(ti+1 −
ti)H−1/2 → 0 as |π| → 0. ��
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It can also be shown with a slightly more lengthy argument that if (fs, s ≥
0) is a process with bounded quadratic variation and ξi is any point in [ti, ti+1],
then the limit of the Riemann sums

∑n−1
i=0 fξi

[B(H)
ti+1
−B(H)

ti
] converge in L2(PH)

to
∫ T

0
fs d

oB(H)(s) if it is true for any particular choice of such a ξi.

5.6 Relation with the WIS integral

We now clarify the relation between the forward integral and the WIS inte-
gral for every H ∈ (0, 1). Hence, in this section the integral

∫
ψ dB(H) must

then be interpreted in the sense introduced in Chapter 4 and our reference
probability space is here (Ω,F,P), where P is the probability measure induced
by the standard Brownian motion (see Definition A.1.1). At this purpose we
first reformulate Definition 5.1.2 under the probability P and then extend it
to (S)∗ following the approach of [33].

Definition 5.6.1.

1. The (classical) forward integral of a realvalued measurable process Y with
integrable trajectories is defined by

∫ T

0

Y (t) d−B(H)(t) = lim
ε−→0

∫ T

0

Y (t)
B(H)(t+ ε)−B(H)(t)

ε
dt,

provided that the limit exists in probability under P.
2. The (generalized) forward integral of a realvalued measurable process Y

with integrable trajectories is defined by
∫ T

0

Y (t) d−B(H)(t) = lim
ε−→0

∫ T

0

Y (t)
B(H)(t+ ε)−B(H)(t)

ε
dt,

provided that the limit exists in (S)∗.

Note that in the generalized definition of forward integral, the limit is re-
quired to exist in the Hida space of stochastic distributions (S)∗ introduced
in Definition A.1.4. Convergence in (S)∗ is also explained in Appendix A.

Corollary 5.6.2. Let ψ(t) = ψ(t, ω) be a measurable forward integrable
process and assume that ψ is càglàd. The forward integral of ψ with respect
to the fBm B(H) coincides with

∫ T

0

ψ(t) d−B(H)(t) = lim
|∆|−→0

N∑
j=1

ψ(tj)∆B
(H)
tj

(5.10)

whenever the left-hand limit exists in probability, where π : 0 = t0 < t1 <
. . . < tN = T is a partition of [0, T ] with mesh size |∆| = sup

j=0,...,N−1
|tj+1− tj |

and ∆B(H)
tj

= B
(H)
tj+1

−B(H)
tj

.
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Proof. Let ψ be a càglàd forward integrable process and

ψ(∆)(t) =
∑

k

ψ(tk)I(tk,tk+1](t)

be a càglàd step function approximation to ψ. Then ψ(∆)(t) converges bound-
edly almost surely to ψ(t) as |∆| −→ 0. The forward integral of ψ(∆)(t) is
then given by

∫ T

0

ψ(∆)(t) d−B(H)(t) = lim
ε→0

∫ T

0

ψ(∆)(s)
B(H)(s+ ε)−B(H)(s)

ε
ds

= lim
ε→0

∑
k

ψ(tk)
∫ tk+1

tk

1
ε

∫ s+ε

s

dB(H)(u) ds

= lim
ε→0

∑
k

ψ(tk)
∫ tk+1

tk

1
ε

∫ u

u−ε

ds dB(H)(u)

=
∑

k

ψ(tk)∆B(H)
tk
, (5.11)

where ∆B(H)
tk

= B
(H)
tk+1

−B(H)
tk

. Hence (5.10) follows by the dominated conver-
gence theorem and by (5.11). ��

For the sequel we will use the same notation as in Appendix A. We recall
that J is the set of all multi-indices α = (α1, α2, . . .) of finite length l(α) =
max {i : αi �= 0} with αi ∈ N0 = {0, 1, 2, . . .} for all i and that ξn are the
Hermite functions defined in (A.6).

Definition 5.6.3. The space L
(H)
1,2 consists of all càglàd processes ψ(t) =∑

α∈J cα(t)Hα(ω) ∈ (S)∗ for every t ∈ [0, T ] such that

‖ψ‖2
L
(H)
1,2

:=
∑
α∈J

∞∑
i=1

αiα!‖cα‖2L2([0,T ]) <∞.

Note that if ψ(t) ∈ (S)∗ for every t ∈ [0, T ], then Dsψ(t) exists in (S)∗ by
Theorem A.3.5. We recall that we denote by D the Malliavin derivative with
respect to a standard Brownian motion.

We recall a preliminary lemma needed in the following.

Lemma 5.6.4. Let (Γ,G,m) be a measure space. Let fε : Γ → B, ε ∈ R, be
measurable functions with values in a Banach space (B, ‖ · ‖B). If fε(γ) →
f0(γ) as ε→ 0 for almost every γ ∈ Γ and there exists K <∞ such that

∫

Γ

‖fε(γ)‖2B dm(γ) < K

for all ε ∈ R, then
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∫

Γ

fε(γ) dm(γ) →
∫

Γ

f0(γ) dm(γ)

in ‖ · ‖B.

Proof. The proof is analogous to the one of Theorem II.21.2 of [196]. ��

Lemma 5.6.5. Suppose that ψ ∈ L
(H)
1,2 . Then

Mt+Dt+ψ(t) := lim
ε−→0

1
ε

∫ t+ε

t

MsDsψ(t) ds

exists in L2(P) for all t. Moreover,
∫ T

0

Mt+Dt+ψ(t) dt = lim
ε−→0

∫ T

0

[
1
ε

∫ t+ε

t

MsDsψ(t) ds
]
dt (5.12)

in L2(P) and

E

⎡
⎣
(∫ T

0

Ms+Ds+ψ(s) ds

)2
⎤
⎦ <∞. (5.13)

Proof. Suppose that ψ(t) has the expansion

ψ(t) =
∑
α∈J

cα(t)Hα(ω).

In the sequel we drop ω in Hα(ω) for the sake of simplicity. Then, in the same
notation as in Appendix A, we have

Dsψ(t) =
∑
α∈J

∞∑
i=1

cα(t)αiHα−ε(i)ξi(s)

and

MsDsψ(t) =
∑
α∈J

∞∑
i=1

cα(t)αiHα−ε(i)ηi(s),

where ηi(s) = Mξi(s). Hence,

1
ε

∫ t+ε

t

MsDsψ(t) ds =
∑
α∈J

∞∑
i=1

[
cα(t)

1
ε

∫ t+ε

t

ηi(s) ds
]
αiHα−ε(i) .

Since ηi(s) = Mξ(s) is a continuous function, we have that

1
ε

∫ t+ε

t

ηi(s) ds→ ηi(t)

as ε→ 0.
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We apply now Lemma 5.6.4 with γ = (α, i), dm(γ) =
∑

α∈J

∑∞
i=1 δ(α,i),

where δx denotes the point mass at x, B = L2(P), and functions fε =
[cα(t) 1

ε

∫ t+ε

t
ηi(s) ds]αiHα−ε(i) . We obtain

∫

Γ

‖fε(γ)‖2B dm(γ) =
∑
α∈J

∞∑
i=1

‖fε(γ)‖2L2(P)

=
∑
α∈J

∑
i=1

[
cα(t)

1
ε

∫ t+ε

t

ηi(s) ds
]2
αiα!

≤
[
(t+ ε)2H − t2H

ε

]2∑
α∈J

∑
i=1

cα(t)2αiα!

since

1
ε

∫ t+ε

t

ηi(s) ds = 〈Mξi,
1
ε
I[t,t+ε]〉L2(R) = 〈M2ei,

1
ε
I[t,t+ε]〉L2(R)

= 〈ei,
1
ε
I[t,t+ε]〉H ≤ ‖ei‖H

1
ε
‖I[t,t+ε]‖H =

(t+ ε)2H − t2H

ε
,

where we have used that the fact that ‖ei‖H = 1 and (4.6). Since we have∑
α∈J

∑
i=1 cα(t)2αiα! <∞ for almost every t, by Lemma 5.6.4 it follows that∑

α∈J

∑∞
i=1[cα(t) 1

ε

∫ t+ε

t
ηi(s) ds]αiHα−ε(i) converges to

∑
α∈J

∞∑
i=1

cα(t)ηi(t)αiHα−ε(i)

in L2(P).
We now prove (5.12). Consider

∫ T

0

1
ε

∫ t+ε

t

MsDsψ(t) ds dt =
∑
α∈J

∞∑
i=1

∫ T

0

[
cα(t)

1
ε

∫ t+ε

t

ηi(s) ds
]
dt αiHα−ε(i) .

Now assuming fε =
∫ T

0

[
cα(t) 1

ε

∫ t+ε

t
ηi(s) ds

]
dt αiHα−ε(i) and as before γ =

(α, i), B = L2(P), dm(γ) =
∑

α∈J

∑∞
i=1 δα,i, where δx denotes the point mass

at x, we use again Lemma 5.6.4. We obtain
∫

Γ

‖fε(γ)‖2B dm(γ) =
∑
α∈J

∞∑
i=1

‖fε(γ)‖2L2(P)

=
∑
α∈J

∑
i=1

[∫ T

0

cα(t)
1
ε

∫ t+ε

t

ηi(s) ds dt

]2

αiα!

≤
∑
α∈J

∑
i=1

[∫ T

0

cα(t)
(

(t+ ε)2H − t2H

ε

)
dt

]2

αiα!
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≤
∑
α∈J

∑
i=1

[∫ T

0

cα(t)2 dt

]

·
[∫ T

0

(
(t+ ε)2H − t2H

ε

)2

dt

]
αiα!. (5.14)

Since ψ ∈ L
(H)
1,2 by Lemma 5.6.4, we can conclude that the limit (5.12) exists

in L2(P) and also that (5.13) holds. ��

Lemma 5.6.6. Suppose that ψ ∈ L
(H)
1,2 and let

ψ(∆)(s) =
∑

k

ψ(tk)I(tk,tk+1](s)

be a càglàd step function approximation to ψ, where ∆ = maxi |∆ti| is the
maximal length of the subinterval in the partition 0 = t0 < . . . < tn = T of
[0, T ]. Then ψ(∆) ∈ L

(H)
1,2 for all ∆ and

∫ T

0

Ms+Ds+ψ
(∆)(s) ds −→

∫ T

0

Ms+Ds+ψ(s) ds in L2(P) (5.15)

as |∆| −→ 0.

Proof. Since ψ(∆)(s) =
∑

α∈J c
(∆)
α (s)Hα(ω) with

c(∆)
α (s) =

∑
k

cα(tk)I(tk,tk+1](s)

and
‖c(∆)

α ‖L2([0,T ]) ≤ const.‖cα‖L2([0,T ]) ∀α,

it follows that ψ(∆) ∈ L
(H)
1,2 . We have

1
ε

∫ t+ε

t

MsDsψ
(∆)(t) ds

=
∑
α∈J

∞∑
i=1

{∫ T

0

[
c(∆)
α (t)

1
ε

∫ t+ε

t

ηi(s) ds
]
dt

}
αiHα−ε(i) .

If we assume γ = (α, i), B = L2(P), m(dγ) =
∑

α∈J

∑∞
i=1 δ(α,i), where δx de-

notesthepointmassatx,andf∆=
{∫ T

0

[
c
(∆)
α (t)1/ε

∫ t+ε

t
ηi(s) ds

]
dt
}
αiHα−ε(i) ,

with the same argument as in (5.14) by Lemma 5.6.4, we obtain that
∫ T

0

[
1
ε

∫ t+ε

t

MsDsψ(t) ds
]
dt

= lim
|∆|−→0

∫ T

0

[
1
ε

∫ t+ε

t

MsDsψ
(∆)(t) ds

]
dt

(5.16)
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in L2(P) for almost every s, since c(∆)
α converges by dominated convergence

to cα in L2(P) and ψ(∆) ∈ L
(H)
1,2 . Using (5.16) and Lemma 5.6.5 we conclude

that (5.15) holds. ��

We now investigate the relation among forward integrals and WIS inte-
grals.

Theorem 5.6.7. Let H ∈ (0, 1). Suppose ψ ∈ L
(H)
1,2 and that one of the fol-

lowing conditions holds:

i) ψ is Wick-Itô-Skorohod integrable (Definition 4.2.2);
ii) ψ is forward integrable in (S)∗ (Definition 5.6.1).

Then

∫ T

0

ψ(t) d−B(H)(t) =
∫ T

0

ψ(t) dB(H)(t) +
∫ T

0

Mt+Dt+ψ(t) dt, (5.17)

holds as an identity in (S)∗, where here
∫ T

0
ψ(t)dB(H)(t) is the WIS integral

of Definition 4.2.2.

Proof. We prove (5.17) assuming that hypothesis i) is in force. The argument
works symmetrically under hypothesis ii). Let ψ ∈ L

(H)
1,2 . Since ψ is càglàd,

we can approximate it as

ψ(t) = lim
|∆t|−→0

∑
j

ψ(tj)I(tj ,tj+1](t) a.e.,

where for any partition 0 = t0 < t1 < . . . < tN = T of [0, T ], with ∆tj =
tj+1 − tj , we have put |∆t| = sup

j=0,...,N−1
∆tj .

As before we put ψ(∆)(t) =
∑N−1

j=0 ψ(tk)I(tk,tk+1](t) and evaluate

∫ T

0

ψ(∆)(t) d−B(H)(t)

= lim
ε→0

∫ T

0

ψ(∆)(t, ω)
B(H)(t+ ε)−B(H)(t)

ε
dt

= lim
ε→0

∫ T

0

⎡
⎣∑

j

ψ(tj)I(tj ,tj+1](t)

⎤
⎦ 1
ε

∫ t+ε

t

dB(H)(u) dt

= lim
ε→0

∫ T

0

⎡
⎣∑

j

ψ(tj)I(tj ,tj+1](t)

⎤
⎦ � 1

ε

∫ t+ε

t

dB(H)(u) dt

+ lim
ε→0

∑
j

∫ T

0

I(tj ,tj+1](t)
1
ε

∫

R

I[t,t+ε](u)M2
uD

(H)
u ψ(tj) du dt.
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The first limit is equal to

lim
ε→0

∫ T

0

⎡
⎣∑

j

ψ(tj)I(tj ,tj+1](t)

⎤
⎦ � 1

ε

∫ t+ε

t

dB(H)(u) dt

= lim
ε→0

∫ T

0

⎡
⎣∑

j

ψ(tj)I(tj ,tj+1](t)

⎤
⎦ � 1

ε

∫ t+ε

t

W (H)(u) du dt

= lim
ε→0

∫ T

0

1
ε

⎡
⎣
∫ u

u−ε

∑
j

ψ(tj)I(tj ,tj+1](t)

⎤
⎦ �W (H)(u) du

=
∫ T

0

ψ(∆)(u) �W (H)(u) du,

which converges in (S)∗ to
∫ T

0
ψ(u)�W (H)(u) du =

∫ T

0
ψ(u) dB(H)(u). For the

second limit we get

lim
ε→0

1
ε

∑
j

∫ T

0

I(tj ,tj+1](t)
∫ t+ε

t

M2
uD

(H)
u ψ(tj) du dt

= lim
ε→0

∫ T

0

1
ε

∫ t+ε

t

M2
uD

(H)
u ψ(∆)(t) du dt

= lim
ε−→0

∫ T

0

1
ε

∫ t+ε

t

MuDuψ
(∆)(t) du dt.

By Lemmas 5.6.5 and 5.6.6 the last limit converges to
∫ T

0

Mu+Du+ψ(u) du

in L2(P). ��

An analogous relation to the one of Theorem 5.6.7 between Stratonovich
integrals and WIS integrals for fBm is proved under different conditions in
[164].

An Itô formula for forward integrals with respect to classical Brownian
motion was obtained by [201] and then extended to the fBm case in [101].
Here we prove the following Itô formula for forward integrals with respect to
fBm as a consequence of Lemma 5.6.8.

Lemma 5.6.8. Let G ∈ (S)∗ and suppose that ψ is forward integrable. Then

G(ω)
∫ T

0

ψ(t) d−B(H)(t) =
∫ T

0

G(ω)ψ(t) d−B(H)(t). (5.18)

Proof. This is immediate by Definition 5.6.1. ��
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Definition 5.6.9. Let ψ be a forward integrable process and let α(s) be a
measurable process such that

∫ t

0
|α(s)| ds < ∞ almost surely for all t ≥ 0.

Then the process

X(t) := x+
∫ t

0

α(s) ds+
∫ t

0

ψ(s) d−B(H)(s), t ≥ 0 (5.19)

is called a fractional forward process. As a shorthand notation for (5.19), we
write

d−X(t) := α(t) dt+ ψ(t) d−B(H)(t), X(0) = x.

Theorem 5.6.10. Let

d−X(t) = α(t) dt+ ψ(t) d−B(H)(t), X(0) = x

be a fractional forward process. Suppose f ∈ C2(R2) and put Y (t) = f(t,X(t)).
Then if 1/2 < H < 1, we have

d−Y (t) =
∂f

∂t
(t,X(t)) dt+

∂f

∂x
(t,X(t)) d−X(t).

Proof. Let 0 = t0 < t1 < . . . < tN = t be a partition of [0, t]. By using Taylor
expansion and by equation (5.18), we get

Y (t)− Y (0)

=
∑

j

Y (tj+1)− Y (tj)

=
∑

j

f(tj+1,X(tj+1))− f(tj ,X(tj))

=
∑

j

∂f

∂t
(tj ,X(tj))∆tj +

∑
j

∂f

∂x
(tj ,X(tj))∆X(tj)

+
1
2

∑
j

∂2f

∂x2
(tj ,X(tj))(∆X(tj))2 +

∑
j

o((∆tj)2) + o((∆X(tj))2)

=
∑

j

∂f

∂t
(tj ,X(tj))∆tj +

∑
j

∫ tj+1

tj

∂f

∂x
(tj ,X(tj)) d−Xt

+
1
2

∑
j

∂2f

∂x2
(tj ,X(tj))(∆X(tj))2 +

∑
j

o((∆tj)2) + o((∆X(tj))2),
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where ∆X(tj) = X(tj+1)−X(tj). Since 1/2 < H < 1, the quadratic variation
of the fBm is zero, and we are left with the first terms of the sum above, which
converges to

∫ t

0

∂f

∂s
(s,X(s)) ds+

∫ t

0

∂f

∂x
(s,X(s)) d−X(s).

��



6

A useful summary

In Chapters 2 to 5 we have presented several ways of introducing a stochastic
calculus with respect to the fBm. We have already underlined the relations
among these different approaches, but in our opinion it is convenient to pro-
vide here a comprehensive summary, including a further investigation of their
analogies and differences.

Moreover, in this chapter we present a general overview of the Itô formulas
for the different definitions of stochastic integral for fBm together with an
investigation of their relations.

6.1 Integrals with respect to fBm

We recall shortly the main approaches to define a stochastic integral with
respect to fBm, and we refer the reader to the related chapters for further
details.

6.1.1 Wiener integrals

In order to define the Wiener integrals with respect to B(H), we fix an interval
[0, T ] and introduce the so-called reproducing kernel Hilbert space, denoted by
H. Recall that

RH(t, s) :=
1
2
(s2H + t2H − |t− s|2H), s, t > 0,

and let KH(t, s), H ∈ (0, 1), be a deterministic kernel such that

RH(t, s) =
∫ t∧s

0

KH(t, u)KH(s, u) du.

For explicit expressions for KH(t, s), we refer to Chapter 2.
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Definition 6.1.1. The reproducing kernel Hilbert space (RKHS), denoted by
H, associated to B(H) for every H ∈ (0, 1), is defined as the closure of the
vector space spanned by the set of functions {RH(t, ·), t ∈ [0, T ]} with respect
to the scalar product:

〈RH(t, ·), RH(s, ·)〉 = RH(t, s) ∀t, s ∈ [0, T ].

Definition 6.1.2. For any H ∈ (0, 1), the (abstract) Wiener integral with
respect to the fBm is defined as the linear extension from H in L2(PH) of the
isometric map

H −→ L2(PH),

RH(t, ·) �−→ B(H)(t).

We replace H by an isometrically isomorphic Hilbert space.

Definition 6.1.3. By a representation of H we mean a pair (F, i) composed
of a functional space F and a bijective isometry i between F and H.

First we study the case H > 1/2 and consider the following representation
for H.

Theorem 6.1.4. For any H > 1/2, consider L2([0, T ]) equipped with the
twisted scalar product:

〈f, g〉H = H(2H − 1)
∫ T

0

∫ T

0

f(s)g(t)|s− t|2H−2 ds dt. (6.1)

Define the linear map i2 on the space E of step functions on [0, T ] by

i2 : (L2([0, T ]), <,>H) −→ H,

I[0,t] �−→ RH(t, ·).

Then the extension of this map to the closure of (L2([0, T ], <,>H) with respect
to the scalar product defined in (6.1) is a representation of H.

From now on we identify the RKHS H with (L2([0, T ]), <,>H) through
the representation map i2. Note that the map i2 induces an isometry, that
associates I[0,t] to B(H)(t), between H and the chaos of first order associated
with B(H), i.e., the closed subspace of L2(Ω,P) generated by B(H). We denote
the image of this isometry by B(H)(φ) for φ ∈ H and call it the Wiener integral
(of second type) of φ ∈ H. In the sequel we use only the name Wiener integral
dropping the additional specification “of second type”.

In order to characterize this kind of integral, we introduce the linear op-
erator K∗

H defined on φ ∈ E as follows:

(K∗
Hφ)(s) :=

∫ T

s

φ(t)
∂KH

∂t
(t, s) dt.
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Then (K∗
HI[0,t])(s) = KH(t, s)I[0,t](s) and the process B(t) associated by

the representation i2 to (K∗
H)−1(I[0,t]), i.e.,

B(t) := B(H)((K∗
H)−1I[0,t]),

is a Brownian motion (for the proof of this, see Chapter 2). Analogously, the
stochastic process associated to

K∗
HI[0,t] = KH(t, s)I[0,t](s)

by the isometry induced by B(t) on L2([0, T ]) is a fBm B(H)(t) with integral
representation

B(H)(t) =
∫ T

0

K∗
HI[0,t] dB(s) =

∫ t

0

KH(t, s) dB(s).

We obtain an expression of the Wiener integral with respect to B(H) in terms
of an integral with respect to the Brownian motion B.

Proposition 6.1.5. Let H > 1/2. If φ ∈ H, then

B(H)(φ) =
∫ T

0

(K∗
Hφ)(s) dB(s).

As we have seen, Wiener integrals are introduced for deterministic inte-
grands. In order to extend the definition of the Wiener integral to the general
case of stochastic integrands, we follow the approach of [72] and use Theorem
2.1.7.

Definition 6.1.6. Consider H > 1/2. Let u be a stochastic process u·(ω) :
[0, T ] −→ H such that K∗

Hu is Skorohod integrable (Definition A.2.1) with
respect to the standard Brownian motion B(t). Then we define the stochastic
integral of u with respect to the fBm B(H) as

∫ T

0

u(s) dB(H)(s) :=
∫ T

0

(K∗
Hu)(s) δB(s),

where the integral on the right-hand side is a Skorohod integral with respect to
B(t) (Definition A.2.1).

We now focus on the case H < 1/2. As before we consider the following
representation for the RKHS H. Consider the space E of step functions on
[0, T ] endowed with the inner product

〈I[0,t], I[0,s]〉H := RH(t, s), 0 ≤ t, s ≤ T,

and the linear map i2 on E given by

i2 : (E, <,>H) −→ H,
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I[0,t] �−→ RH(t, ·).

Then the extension of this map to the closure of (E, <,>H) with respect to
the scalar product defined in (2.7) is a representation of H. From now on we
identify H = (E, <,>H) and we define the Wiener integral for H < 1/2 as
the extension to ψ ∈ H of the isometry

B(H) : (E, <,>H) −→ L2(PH),

I[0,t](·) �−→ B(H)(t),

induced by the representation i2. Consider the linear operator K∗
H from the

space E of step functions on [0, T ] to L2([0, T ]) defined by

(K∗
Hφ)(s) := KH(T, s)φ(s) +

∫ T

s

[φ(t)− φ(s)]∂KH

∂t
(t, s) dt. (6.2)

Then (6.2) evaluated for φ = I[0,t] gives

(K∗
HI[0,t])(s) = KH(t, s)I[0,t](s),

and for H < 1/2 we have

H = (K∗
H)−1(L2([0, T ])) = I

1/2−H
T− (L2([0, T ])).

This representation of H guarantees in addition that the inner product
space H is complete when endowed with the inner product

〈f, g〉 =
∫ T

0

K∗
Hf(s)K

∗
Hg(s) ds,

as shown in Lemma 5.6 of [188].
Hence we can conclude with the following:

Proposition 6.1.7. For H < 1/2 the Wiener-type integral B(H)(φ) with re-
spect to fBm can be defined for φ ∈ H = I

1/2−H
T− (L2([0, T ])) and the following

holds:

B(H)(φ) =
∫ T

0

(K∗
Hφ)(t) dB(t).

6.1.2 Divergence-type integrals

The divergence operator δH is the adjoint of the derivative operator. We say
that a random variable u ∈ L2(Ω;H) belongs to the domain dom δH of the
divergence operator if

|E
[
〈D(H)F, u〉H

]
| ≤ cu‖F‖L2(Ω)

for any F ∈ SH , where SH is the set of smooth cylindrical random variables
of the form F = f(B(H)(ψ1), . . . , B(H)(ψn)), where n ≥ 1, f ∈ C∞

b (Rn), and
ψi ∈ H.
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Definition 6.1.8. Let H > 1/2 and u ∈ dom δH . Then δH(u) is the element
in L2(Ω;H) defined by the duality relationship

E [FδH(u)] = E
[
〈D(H)F, u〉H

]

for any F ∈ D
1,2
H .

For H < 1/2, the definition of a divergence-type integral is more delicate.
Namely, by Proposition 2.2.6 it follows that processes of the form

B(H)(t)I(a,b](t), t ∈ R,

cannot be in dom δH if H ≤ 1/4. We consider then an extended domain for
the divergence operator. Let SK the space of smooth cylindrical variables of
the form

F = f(B(H)(ψ1), . . . , B(H)(ψn)),

where n ≥ 1, f ∈ C∞
b (Rn), i.e., f is bounded with smooth bounded partial

derivatives, and ψi ∈ K, where

K := (K∗
H)−1(K∗,a

H )−1(L2([0, T ]))

and K∗,a
H is the adjoint of the operator K∗

H in L2([0, T ]).

Definition 6.1.9. Let u(t), t ∈ [0, T ] be a measurable process such that
E
[∫ T

0
u2(t) dt

]
< ∞. We say that u ∈ dom∗ δH if there exists a random

variable δH(u) ∈ L2(PH) such that for all F ∈ SK, we have

∫ T

0

E
[
u(t)K∗,a

H K∗
HD

(H)
t F

]
dt = E [δH(u)F ] .

Note that if u ∈ dom∗ δH , then δH(u) is unique and the mapping

δH : dom∗ δH −→ ∪p>1L
p(Ω)

is linear.

6.1.3 fWIS integrals

Consider H > 1/2 and

φ(s, t) = φH(s, t) = H(2H − 1)|s− t|2H−2, s, t ∈ R.

Let Lφ(0, T ) be the family of stochastic processes F on [0, T ] with the following
properties: F ∈ Lφ(0, T ) if and only if E

[
‖F‖2H

]
< ∞, F is φ-differentiable,

the trace of Dφ
sFt , 0 ≤ s, t ≤ T exists, and E

[∫ T

0

∫ T

0
|Dφ

sFt|2 ds dt
]
<∞ and

for each sequence of partitions (πn, n ∈ N) such that |πn| → 0 as n→∞,
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n−1∑
i,j=0

E

[∫ t
(n)
i+1

t
(n)
i

∫ t
(n)
j+1

t
(n)
j

∣∣∣∣Dφ
sF

π

t
(n)
i

Dφ
t F

π

t
(n)
j

−Dφ
sFtD

φ
t Fs

∣∣∣∣ ds dt
]

and
E
[
‖Fπ − F‖2H

]

tend to 0 as n→∞, where πn : 0 = t
(n)
0 < t

(n)
1 < . . . < t

(n)
n−1 < t

(n)
n = T .

Theorem 6.1.10. Let (Ft, t ∈ [0, T ]) be a stochastic process such that F ∈
Lφ(0, T ). The limit

∫ T

0

Fs dB
(H)
s :=

∫ T

0

Fs dB
(H)
s = lim

|π|→0

n−1∑
i=0

Fπ
ti
� (B(H)

ti+1
−B(H)

ti
) (6.3)

exists in L2(PH), where P
H is the measure induced by B(H). Moreover, this

integral satisfies

E

[∫ T

0

Fs dB
(H)
s

]
= 0

and

‖
∫ T

0

Fs dB
(H)
s ‖Lφ(0,T ) := E

[
|
∫ T

0

Fs dB
(H)
s |2

]

= E

[∫ T

0

∫ T

0

Dφ
sFtD

φ
t Fs ds dt+ ‖1[0,T ]F‖2H

]
.

This definition can be extended in the following way.

Definition 6.1.11. Suppose Y : R → (S)∗H is a given function such that
Y (t) �W (H)(t) is dt-integrable in (S)∗H (Definition 3.1.11) . Then we define
its fWIS integral,

∫
R
Y (t)dB(H)

t , by
∫

R

Y (t) dB(H)
t :=

∫

R

Y (t) �W (H)(t) dt, (6.4)

where the Wick product � is introduced in (3.22) and W (H)(t) is the fractional
white noise defined in (3.19).

Note that in Chapter 3 we have followed the opposite direction, i.e., we
have introduced the fWIS integral in the more general case (6.4) and then its
L2 version (6.3).
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6.1.4 WIS integrals

Let M be the operator introduced in Definition 4.1.2. We define the WIS inte-
gral in the following way. We recall that the spaces (S) and (S)∗ are introduced
in Definition A.1.4.

Definition 6.1.12. Suppose that Z : R −→ (S)∗ is a given function with the
property that

〈Z(t), ψ〉 ∈ L1(R, dt) ∀ψ ∈ (S). (6.5)

Then
∫

R
Z(t)dt is defined to be the unique element of (S)∗ such that

〈
∫

R

Z(t) dt, ψ〉 =
∫

R

〈Z(t), ψ〉dt ∀ψ ∈ (S). (6.6)

Just as in [109, Proposition 8.1], one can show that (6.6) defines
∫

R
Z(t) dt as

an element of (S)∗. If (6.5) holds, we say that Z(t) is dt-integrable in (S)∗.

Definition 6.1.13. Let H ∈ (0, 1). Let Y : R → (S)∗ be such that Y (t) �
W (H)(t) is dt-integrable in (S)∗ (Definition 6.1.12). Then we say that Y is
WIS integrable and we define the WIS integral of Y (t) = Y (t, ω) with respect
to B(H)(t) by

∫

R

Y (t, ω) dB(H)(t) :=
∫

R

Y (t) �W (H)(t) dt,

where the Wick product � is introduced in Definition A.1.7 and W (H)(t) is the
fractional white noise defined in (4.16).

In particular, we define the stochastic integral over a finite interval [0, T ]
as

T∫

0

Y (t, ω) dB(H)(t) :=
∫

R

Y (t)I[0,T ] �W (H)(t) dt.

Consider now the space M of the processes Y (t) =
∑

α∈J cα(t)Hα(ω) ∈ (S)∗

such that cα(·) belongs to L2
H(R) = {f : R → R;Mf(x) ∈ L2(R)} and∑

α∈JMcα(t)Hα(ω) converges in (S)∗ for all t. Then the following fundamen-
tal relation holds.

Proposition 6.1.14. Let H ∈ (0, 1). If Y : R → (S)∗ is WIS integrable and
Y ∈ M, then ∫

R

Y (t) dB(H)(t) =
∫

R

MY (t) δB(t),

where the integral on the right-hand side is a Skorohod integral with respect to
B(t) (Definition A.2.1).
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We remark that

T∫

0

Y (t) dB(H)(t) =
∫

R

Y (t)I[0,T ](t) dB(H)(t)

=
∫

R

M(Y I[0,T ]) δB(t) �=
T∫

0

MY (t) δB(t).

6.1.5 Pathwise integrals

Consider H ∈ (0, 1).

Definition 6.1.15. Let (ut)t∈[0,T ] be a process with integrable trajectories.
The symmetric integral of u with respect to B(H) is defined as

∫ T

0

u(s) doB(H)(s) = lim
ε→0

1
2ε

∫ T

0

u(s)[B(H)(s+ ε)−B(H)(s− ε)] ds,

if the limit exists in probability.
The forward integral of u with respect to B(H) is defined as

∫ T

0

u(s) d−B(H)(s) = lim
ε→0

1
ε

∫ T

0

u(s)
B(H)(s+ ε)−B(H)(s)

ε
ds,

if the limit exists in probability. On the other hand, the backward integral is
defined as

∫ T

0

u(s) d+B(H)(s) = lim
ε→0

1
ε

∫ T

0

u(s)
B(H)(s− ε)−B(H)(s)

ε
ds,

if the limit exists in probability.

The definition of a pathwise integral for fBm with Hurst index H < 1/2 is
more delicate. For example, the forward integral

∫ T

0
B(H)(s) d−B(H)(s) does

not exist in the L2 sense, as it is shown in Chapter 5. However, sufficient
conditions can be established to guarantee the existence of the symmetric
integral for H < 1/2.

Let KH(t, s) be the kernel defined in (2.3). Consider, on the space E of
step functions on [0, T ], the seminorm

‖φ‖2KH
=
∫ T

0

φ2(s)KH(T, s)2 ds

+
∫ T

0

(
∫ T

0

|φ(t)− φ(s)|(t− s)H− 3
2 dt)2 ds,

and denote by HKH
the completion of E with respect to ‖ · ‖2KH

.
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Proposition 6.1.16. Let H < 1/2 and (ut)t∈[0,T ] be a stochastic process in
the space D

1,2(HKH
). Suppose that the trace defined as

TrD(H)u := lim
ε→0

1
2ε

∫ T

0

〈D(H)us, I[s−ε,s+ε]〉H ds

exists as a limit in probability and that

E

[∫ T

0

u2(s)(s2H−1 + (T − s)2H−1) ds

]
<∞,

E

[∫ T

0

∫ T

0

(D(H)
r us)2(s2H−1 + (T − s)2H−1) ds dr

]
<∞.

Then the symmetric integral
∫ T

0
u(s) doB(H)(s) of u with respect to the fBm

defined as the limit in probability

lim
ε→0

∫ T

0

us
B(H)(s+ ε)−B(H)(s− ε)

2ε
ds

exists.

Moreover, the symmetric integral
∫ T

0
f(B(H)(t)) doB(H)(t) of a general

smooth function f exists in L2(PH) if and only if H > 1/6 (see [54]).
We consider the following extended definition of the forward integral, seen

as an element of (S)∗.

Definition 6.1.17. The (generalized) forward integral of a measurable process
Y with integrable trajectories is defined by

∫ T

0

Y (t) d−B(H)(t) = lim
ε−→0

∫ T

0

Y (t)
B(H)(t+ ε)−B(H)(t)

ε
dt,

provided that the limit exists in (S)∗.

6.2 Relations among the different definitions of
stochastic integral

We investigate here the relations among the different definitions of stochastic
integrals for fBms summarized in Section 6.1. For the proofs of the following
results, we refer to the related chapter.
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6.2.1 Relation between Wiener integrals and the divergence

For H > 1/2 the divergence operator coincides with the Wiener integral in-
troduced in Definition 6.1.2. In fact, it is sufficient to note that

δH(
n∑

i=1

aiI[ti,ti+1]) =
n∑

i=1

ai(B(H)(ti+1)−B(H)(ti))

for 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn+1 ≤ T . By a limiting procedure it follows that for
any ψ ∈ H, we have

δH(ψ) = B(H)(ψ).

This relation still holds for the extended Wiener integral for stochastic inte-
grands. In fact, if F ∈ D

1,2
H , we have

E
[
〈u,D(H)F 〉H

]
= E

[
〈K∗

Hu,DF 〉L2([0,T ])

]

for any u ∈ H, and the equality K∗
HD

(H)F = DF holds. This implies that

dom δH = (K∗
H)−1(dom δ),

where δ = δ1/2 denotes the divergence operator with respect to the standard
Brownian motion B. Hence, for any H-valued random variable u ∈ dom δH ,
it holds that

δH(u) = δ(K∗
Hu) =

∫ T

0

K∗
Hu(s) δB(s) ,

where the integral on the right-hand side is a Skorohod integral with respect
to the standard Brownian motion (Definition A.2.1). Hence, we have proved
the following:

Proposition 6.2.1. Let u ∈ dom δH . Then δH(u) coincides with the extended
Wiener integral of u (Definition 6.1.6), i.e.,

δH(u) = B(H)(u).

6.2.2 Relation between the divergence and the fWIS integral

Here we investigate the relation between the stochastic integral introduced
in Chapter 3 and the divergence-type integral for H > 1/2. By Remark
3.1.1 we have L2

φ(R) ⊇ L2
φ([0, T ]) = H = (L2([0, T ]), <,>H) if we identify

ψ ∈ L2
φ([0, T ]) with ψI[0,T ]. Hence, for every deterministic ψ ∈ H, B(H)(ψ)

coincides with the fWIS integral of ψ. Moreover, for any ψ ∈ H and any ran-
dom variable F ∈ L2(PH), the Wick product F�B(H)(ψ) exists in L2(PH) if
and only if ψF belongs to dom δH , and we have that

F�B(H)(ψ) = δH(Fψ).
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Proposition 6.2.2. Consider H > 1/2. Let u be a process that is λ-Hölder
continuous in the norm D

1,2(H) with λ > H − 1/2. Then

lim
|π|→0+

n∑
i=1

uti
�(B(H)(ti+1)−B(H)(ti)) = δH(u),

where π = {0 = s0 < s1 < · · · < sn+1 = T} is a partition of [0, T ] with mesh
size |π| = max

i=1,...,n
|ti+1 − ti| and the convergence holds in L2(PH).

Hence we can conclude that under the hypotheses of Proposition 3.12.1 the
fWIS integral coincides with the divergence operator when H > 1/2.

6.2.3 Relation between the fWIS and the WIS integrals

Here we study the relation between the fWIS integral and the WIS integral
for H > 1/2 as defined in Chapters 3 and 4, respectively. The WIS integral
exists in (S)∗, and the fWIS integral admits a generalized definition as an
element of (S)∗H . Here we compare the generalized Definition 6.1.10 for the
fWIS integral with Definition 6.1.13 for the case H > 1/2. We obtain the
relations (6.10) and (6.11) that also justify why we use the same symbol to
denote both the fWIS and the WIS integrals. To distinguish between these
two types of integrals, we adopt in the sequel the symbols I

fW IS
and I

W IS
to

denote, respectively, the fWIS and the WIS integral.
In Chapter 4 we have seen that the operator M induces an isometry be-

tween L2
H(R) and L2(R). Moreover, we have
∫

R

[Mf(t)]2 dt = H(2H − 1)
∫ ∫

R2
f(s)f(t)|s− t|2H−2 ds dt,

by (4.10). Hence, we can conclude that for H > 1/2, L2
H(R) coincides

with the subspace generated by the deterministic functions in L2
φ(R). Let

{en , n = 1, 2, . . .} be an orthonormal basis of L2
φ(R). Then

{ξn , n = 1, 2, . . .} = {Men , n = 1, 2, . . .} (6.7)

is an orthonormal basis of L2(R). Consider an element F (ω)=
∑

α∈J cαH̃α(ω)∈
(S)∗H , where if α = (α1, . . . , αm) ∈ J, we put

H̃α(ω) := hα1(〈ω , e1〉) · · ·hαm
(〈ω , em〉) .

The operator M induces the function

M̃ : (S)∗H −→ (S)∗ (6.8)

such that
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M̃

(∑
α∈J

cαH̃α(ω)

)
= M̃

(∑
α∈J

cαhα1(〈ω , e1〉) · · ·hαm
(〈ω , em〉)

)

:=
∑
α∈J

cαhα1(〈ω ,Me1〉) · · ·hαm
(〈ω ,Mem〉)

=
∑
α∈J

cαhα1(〈ω , ξ1〉) · · ·hαm
(〈ω , ξm〉)

=
∑
α∈J

cαHα(ω). (6.9)

Then the following relations between the WIS integral and the fWIS integral
hold. If Y : R → (S)∗ is a given function such that Y (t)�W (H)(t) is integrable
in (S)∗, then M̃−1Y : R → (S)∗H is such that M̃−1Y (t) �W (H)(t) is integrable
in (S)∗H and

I
W IS

(Y ) =
∫

R

Y (t) �W (H)(t) dt

= M̃

(∫

R

M̃−1Y (t) �W (H)(t) dt
)

= M̃
(
I

fW IS
(M̃−1Y )

)
. (6.10)

Analogously, suppose Y : R → (S)∗H is a given function such that Y (t) �
W (H)(t) is integrable in (S)∗H . Then M̃Y : R → (S)∗ is such that M̃Y (t) �
W (H)(t) is integrable in (S)∗ and

I
fW IS

(Y ) =
∫

R

Y (t) �W (H)(t) dt

= M̃−1

(∫

R

M̃Y (t) �W (H)(t) dt
)

= M̃−1
(
I

W IS
(M̃Y )

)
. (6.11)

For further details, we also refer to [116].

6.2.4 Relations with the pathwise integrals

We investigate here the relations among the stochastic integral of divergence,
fWIS and WIS types and the symmetric (respectively, forward) integral.

In the divergence case, we need to distinguish between H > 1/2 and
H < 1/2.

Proposition 6.2.3 (Relation between the symmetric integral and the
divergence I). Let H > 1/2. Suppose (ut)t∈[0,T ] is a stochastic process in
D

1,2(|H|) and that
∫ T

0

∫ T

0

|D(H)
s u(t)||t− s|2H−2 ds dt <∞, a.s..

Then the symmetric integral exists and the following relation holds:
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∫ T

0

u(t) doB(H)(t)

= δH(u) +H(2H − 1)
∫ T

0

∫ T

0

D(H)
s u(t)|t− s|2H−2 ds dt.

Note that under the assumptions of Proposition 6.2.3, the symmetric, back-
ward and forward integrals coincide.

Proposition 6.2.4 (Relation between the symmetric integral and the
divergence II). Let H < 1/2 and assume that the hypotheses of Proposition
6.1.16 hold. Then the symmetric integral

∫ T

0
u(s)doB(H)(s) of u exists, and∫ T

0

u(s) doB(H)(s) = δH(u) + TrD(H)u.

In Proposition 5.5.1 we already investigated the relation between the fWIS
integral and the symmetric integral.

Theorem 6.2.5 (Relation between the symmetric and fWIS
integrals). Let H > 1/2. If F ∈ Lφ(0, T ), then the symmetric integral∫ T

0
Fs d

oB(H)(s) exists and the following equality is satisfied
∫ T

0

Fs d
oB(H)(s) =

∫ T

0

Fs dB
(H)(s) +

∫ T

0

Dφ
sFs ds a.s. ,

where
∫ T

0
Fs dB

(H)(s) is the fWIS integral.

We note that the result of Theorem 6.2.5 also follows by Propositions 6.2.2
and 6.2.3 and by (6.16), that we prove in the sequel.

Moreover, we recall the following relation between the generalized forward
integrals and the WIS integral that holds for every H ∈ (0, 1). We recall that
the space L

(H)
1,2 consists of all càglàd processes ψ(t) =

∑
α∈J cαHα(ω) such

that

‖ψ‖2
L
(H)
1,2

:=
∑
α∈J

∞∑
i=1

αiα!‖cα‖2L2([0,T ]) <∞.

Lemma 6.2.6. Suppose that ψ ∈ L
(H)
1,2 . Then

Mt+Dt+ψ(t) := lim
ε−→0

1
ε

∫ t+ε

t

MsDsψ(t) ds

exists in L2(P) for all t. Moreover,
∫ T

0

Mt+Dt+ψ(t) dt = lim
ε−→0

∫ T

0

[
1
ε

∫ t+ε

t

MsDsψ(t) ds
]
dt

in L2(P) and

E

⎡
⎣
(∫ T

0

Ms+Ds+ψ(s) ds

)2
⎤
⎦ <∞.
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Theorem 6.2.7 (Relation between the (generalized) forward and
WIS integral). Let H ∈ (0, 1). Suppose ψ ∈ L

(H)
1,2 and that one of the fol-

lowing conditions holds:

1. ψ is WIS integrable.
2. ψ is forward integrable in (S)∗.

Then
∫ T

0

ψ(t) d−B(H)(t) =
∫ T

0

ψ(t) dB(H)(t) +
∫ T

0

M2
t+D

(H)
t+ ψ(t) dt,

holds as an identity in (S)∗, where
∫ T

0
ψ(t) dB(H)(t) is the WIS integral.

Remark 6.2.8. We show now that if (ψt)t∈[0,T ] satisfies the hypotheses of
Proposition 6.2.3, then

∫ T

0

M2
t+D

(H)
t+ ψ(t) dt = H(2H − 1)

∫ T

0

∫ T

0

D(H)
s ψ(t)|t− s|2H−2 ds dt (6.12)

if we identify ψt with ψtI[0,T ]. We need only note that

∫ T

0

[
1
ε

∫ t+ε

t

M2
sD

(H)
s ψ(t) ds

]
dt

=
∫ T

0

∫ T

0

1
ε
M2[t, t+ ε](s)D(H)

s ψ(t) ds dt,

(6.13)

where M2[t, t+ ε](s) = M2
s (I[t,t+ε]), and that by (4.3) and Lemma 3.1.2,

M2[t, t+ ε](s) = kH
1
ε

∫ t+ε

t

(∫

R

|u− x|H−3/2|u− s|H−3/2 du

)
dx

= H(2H − 1)
1
ε

∫ t+ε

t

|s− x|2H−2 dx,

where kH = (H(2H − 1)Γ (3/2−H))/(2Γ (H − 1/2)Γ (2 − 2H)). By domi-
nated convergence the limit of (6.13) exists almost surely as ε→ 0 and (6.12)
holds.

6.3 Itô formulas with respect to fBm

Several Itô formulas have been proposed in the literature according to the dif-
ferent definitions of stochastic integral for fBm. Here we present some of them
and investigate their relations. We begin with the Itô formula for functionals
of B(H).
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Theorem 6.3.1. Let H ∈ (0, 1). Assume that f(s, x) : R×R → R belongs to
C1,2(R× R), and assume that the random variables

f(t, B(H)(t)),

t∫

0

∂f

∂s
(s,B(H)(s)) ds, and

t∫

0

∂2f

∂x2
(s,B(H)(s))s2H−1 ds

are square integrable for every t. Then

f(t, B(H)(t)) = f(0, 0) +

t∫

0

∂f

∂s
(s,B(H)(s)) ds+

t∫

0

∂f

∂x
(s,B(H)(s)) dB(H)(s)

+H

t∫

0

∂2f

∂x2
(s,B(H)(s))s2H−1 ds. (6.14)

The Itô formula (6.14) is formulated in terms of WIS integrals and holds
for every H ∈ (0, 1). The same formula is valid also for fWIS integrals and
divergence-type ones for H > 1/2. To guarantee the existence of the diver-
gence for H < 1/2, we need more restrictive hypotheses. We consider the
following Theorem due to [54].

Theorem 6.3.2. Let H < 1/2. Let F be a function of class C2(R) that sat-
isfies the growth condition

max
{
|F (x)|, |F ′

(x)|, |F ′′(x)|
}
≤ ceλx2

,

where c, λ > 0, and λ < 1/(4T 2H). Then for all t ∈ [0, T ], the process
F

′
(B(H)(s))I[0,t](s) belongs to dom∗ δH , and we have

F (B(H)
t ) = F (0) + δH(F ′(B(H)I[0,t])) +H

∫ t

0

F ′′(B(H)(s))s2H−1 ds

for all t ∈ [0, T ].

Proof. Here we sketch a proof by following [177]. For further details, we refer
to Lemma 4.3 of [54]. We have that F ′(B(H)(s))I[0,t](s) ∈ L2(Ω × [0, T ]) and

F (B(H)
t )− F (0)−H

∫ t

0

F ′′(B(H)(s))s2H−1ds ∈ L2(Ω).

Hence, it is sufficient to prove that for any G ∈ SH we have

E
[
〈F ′(B(H)(s))I[0,t](s),D(H)G〉H

]

= E

[
G(F (B(H)

t )− F (0)−H
∫ t

0

F ′′(B(H)(s))s2H−1ds)
]
.

This equality can be proved by choosing smooth cylindrical random variable
of the form G = hn(B(H)(ψ)), where hn denotes the nth Hermite polynomial
(see Appendix A), and applying the integration by parts formula. ��
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We now present Itô formulas for functionals of integrals for the different
definitions of stochastic integral for fBm and clarify the relations among them.
We start with the one for fWIS integral. In Theorem 3.7.2 we have proved the
following result.

Theorem 6.3.3 (Itô formula for the fWIS integral). Let H > 1/2. Let
ηt =

∫ t

0
Fu dB

(H)
u , where (Fu , 0 ≤ u ≤ T ) is a stochastic process in Lφ(0, T ).

Assume that there is an α > 1−H such that

E
[
|Fu − Fv|2

]
≤ C|u− v|2α,

where |u− v| ≤ δ for some δ > 0 and

lim
0≤u,v≤t,|u−v|→0

E
[
|Dφ

u(Fu − Fv)|2
]

= 0.

Let f : R+ × R → R be a function having the first continuous derivative
in its first variable and the second continuous derivative in its second vari-
able. Assume that these derivatives are bounded. Moreover, it is assumed that
E
[∫ T

0
|FsD

φ
s ηs| ds

]
<∞ and (f ′(s, ηs)Fs, s ∈ [0, T ]) is in Lφ(0, T ). Then for

0 ≤ t ≤ T ,

f(t, ηt) = f(0, 0) +
∫ t

0

∂f

∂s
(s, ηs) ds+

∫ t

0

∂f

∂x
(s, ηs)Fs dB

(H)
s

+
∫ t

0

∂2f

∂x2
(s, ηs)FsD

φ
s ηs ds a.s. (6.15)

By using the result of Proposition 6.2.2, Theorem 6.3.3 can be restated in
terms of divergence-type integrals for H > 1/2. We only need to note that the
stochastic gradient introduced in Definition 3.3.1 coincides with the derivative
operator D(H) of (2.31) [with respect to the particular representation H =
L2

φ([0, T ])] and that we have

Dφ
t F =

∫ T

0

D(H)
v Fφ(t, v) dv = H(2H − 1)

∫ T

0

|t− v|2H−2D(H)
v F dv. (6.16)

Here we recall an Itô formula for the divergence integral following the approach
of [8, Theorem 8].

Theorem 6.3.4 (Itô formula for the divergence integral). Let H >
1/2. Let ψ be a function of class C2(R). Assume that the process (ut)t∈[0,T ]

belongs to D
2,2
loc(|H|) and that the integral Xt =

∫ t

0
u(s) dB(H)(s) is almost

surely continuous. Assume that E
[
|u|2
]1/2 belongs to H. Then for each t ∈

[0, T ] the following holds:

ψ(Xt) = ψ(0) + δH(ψ′(X))
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+ αH

∫ t

0

ψ′′(Xs)u(s)

(∫ T

0

|s− v|2H−2δH(D(H)u I[0,s])

)
ds

+ αH

∫ t

0

ψ′′(Xs)u(s)
(∫ s

0

u(v)|s− v|2H−2 dv

)
ds. (6.17)

Remark 6.3.5. Since [(2H−1)/s2H−1](s−v)2H−2I[0,s](v) tends to the identity
as H goes to 1/2, we can formally recover the Itô formula for the Skorohod
integral with respect to the standard Brownian motion proved in [179] by
taking the limit as H converges to 1/2 of equation (6.17).

Moreover, we remark that conditions under which the integral process
admits a continuous modification are proved in [6] and [8].

Finally, we provide an Itô formula for the WIS integral proved in [33].

Theorem 6.3.6 (Itô formula for the WIS integral). Suppose 1/2 < H <

1. Let γ(s) be a measurable process such that
∫ t

0
|γ(s)| ds < ∞ almost surely

for all t ≥ 0; let ψ(t) =
∑

α∈J cα(t)Hα(ω) be càglàd, WIS integrable and such
that ∑

α∈J

∞∑
i=1

∞∑
k=1

‖cα‖L2([0,T ])αi(αk + 1)α! <∞.

Suppose that MtDtψ(s) is also WIS integrable for almost all t ∈ [0, T ]. Con-
sider

X(t) = x+
∫ t

0

γ(s) ds+
∫ t

0

ψ(s) dB(H)(s), t ∈ [0, T ],

or in shorthand notation,

dX(t) = γ(t) dt+ ψ(t) dB(H)(t), X(0) = x.

Suppose Xt has a càdlàg version (Remark 6.3.5). Let f ∈ C2(R2) and put
Y (t) = f(t,X(t)). Then on [0, T ],

dY (t) =
∂f

∂t
(t,X(t)) dt+

∂f

∂x
(t,X(t)) dX(t)

+
∂2f

∂x2
(t,X(t))ψ(t)Mt+Dt+X(t) dt,

(6.18)

and equivalently,

dY (t) =
∂f

∂t
(t,X(t)) dt+

∂f

∂x
(t,X(t)) dX(t)

+
∂2f

∂x2
(t,X(t))ψ(t)M2

t (ψI[0,t])t dt

+
[
∂2f

∂x2
(t,X(t))ψ(t)

∫ t

0

M2
t D

(H)
t ψ(u)dB(H)(u)

]
dt,

where M2(ψχ[0,t])t = M2(ψχ[0,t])(t).
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We now show that if H > 1/2, then (6.14) is a particular case of (6.18)
when X(t) = B(H)(t).

Proposition 6.3.7. For every H ∈ (0, 1) we have

Mt+Dt+B
(H)(t) = Ht2H−1, t ≥ 0.

Proof. Let t ≥ 0. We recall that D(H)
t B(H)(u) = I[0,u)(t). Hence, we need to

prove that

Mt+Dt+B
(H)(t) = lim

s−→t+

1
ε

∫ t+ε

t

M2
sD

(H)
s B(H)(t) ds

= [M2
t I[0,u)(t)]u=t = Ht2H−1

We consider ψ(u) =
∫

R
(MtI[0,u)(t))2 dt. Since, by [89], we have that ψ(u) =

u2H , we only need to show that ψ′(u) = 2[M2
t I[0,u)(t)]t=u. We rewrite ψ(u)

as follows:

ψ(u) =
∫

R

(MtI[0,u)(t))2 dt =
∫

R

I[0,u)(t)M2
t I[0,u)(t) dt =

∫ u

0

M2
t I[0,u)(t) dt

by using the properties of the operator M . We compute

ψ(u+ ε)− ψ(u)
ε

=
1
ε

(∫ u+ε

0

M2
t I[0,u+ε](t) dt−

∫ u

0

M2
t I[0,u)(t) dt

)

=
1
ε

{∫ u+ε

u

M2
t I[0,u+ε](t) dt

+
∫ u

0

[M2
t I[0,u+ε](t)−M2

t I[0,u)(t)] dt
}

by adding and subtracting
∫ u

0
M2

t I[0,u+ε](t) dt. Since the operator M trans-
forms I[0,u)(t) into a continuous function, we obtain

1.
∫ u+ε

u
M2

t I[0,u+ε](t) dt = [M2
t I[0,u+ε](t)]t=ξε

ε, where u < ξε < u + ε. By
writing

[M2
t I[0,u+ε](t)]t=ξε

= [M2
t (I[0,u+ε] − I[0,u))(t)]t=ξε

+ [M2
t I[0,u)(t)]t=ξε

we obtain that when taking the limit as ε −→ 0, the first term goes to
zero while the second term converges to [M2

t I[0,u)(t)]t=u since ξε −→ u
when ε −→ 0.

2. We have that

1
ε

∫ u

0

[M2
t I[0,u+ε](t) dt−M2

t I[0,u)(t)] dt =
1
ε

∫ u

0

M2
t [I(u,u+ε](t)] dt

=
1
ε

∫ T

0

I[0,u)(t)(M2
t [I(u,u+ε](t)] dt
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=
1
ε

∫ u+ε

u

M2
t [I[0,u)(t)] dt

converges to [M2
t I[0,u)(t)]t=u as ε −→ 0.

Hence,

ψ′(u) = lim
ε−→0

ψ(u+ ε)− ψ(u)
ε

= 2[M2
t I[0,u)(t)]t=u,

i.e., the equality [M2
t I[0,u)(t)]t=u = Hu2H−1 holds for every H ∈ (0, 1).

��

We now show that Theorem 6.3.3 is a special case of Theorem 6.3.6 for
integrals seen as elements of L2(PH). At this purpose, we need only to prove
the following result that in addition justifies the use of the same notation
for the Malliavin derivative introduced, respectively, in Definitions 3.3.3 and
4.4.7. To distinguish between the two, we denote in the sequel by D̃(H) the
derivative in (S)∗H (Definition 3.3.3) and by D(H) the one in (S)∗ (Definition
4.4.7).

As before, let (ei)i∈N be the orthonormal basis of L2
φ(R) defined in (3.10)

and (ξi)i∈N be an orthonormal basis of L2(R) as in (6.7).

Proposition 6.3.8. Consider the stochastic derivatives D̃(H)
t ,Dφ

t ,D
(H)
t de-

fined, respectively, in Definitions 3.3.3, 3.5.1, and 4.4.4. Let F ∈ (S)∗H . Then
M̃F ∈ (S)∗ and

M̃D̃
(H)
t F = D

(H)
t (M̃F ). (6.19)

Moreover, for every differentiable F ∈ L2(PH), we obtain

Dφ
t F = M2[M̃−1D

(H)
t (M̃F )].

Proof. Let F ∈ (S)∗H . Then

F (ω) =
∑
α∈J

cαH̃α(ω) =
∑
α∈J

cαhα1(〈ω , e1〉) · · ·hαm
(〈ω , em〉)

and by (6.9)

M̃F (ω) =
∑
α∈J

cαhα1(〈ω ,Me1〉) · · ·hαm
(〈ω ,Mem〉)

=
∑
α∈J

cαhα1(〈ω , ξ1〉) · · ·hαm
(〈ω , ξm〉).

By Definition 4.4.7 we have that

D
(H)
t M̃F (ω) =

∑
γ∈J

[
l(γ)∑
i=1

cγ+ε(i)(γi + 1)ei(t)]Hγ(ω) (6.20)
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in (S)∗. Comparing (6.20) with Definition 3.10.6, by (6.8) we obtain immedi-
ately the relation (6.19).

Consider now F ∈ L2(PH). The second relation follows by (6.19), (3.31),
and the fact that
∫ T

0

M2
uD

(H)
u M̃F du = 〈M2

uD
(H)
u M̃F, I[0,T ]〉L2(R)

= 〈D(H)
u M̃F, I[0,T ]〉H =

∫ T

0

∫

R

D(H)
u M̃Fφ(t, u) dt du.

��

To finish our overview of Itô formulas for fBm, we conclude with some
remarks concerning other possible approaches. In [92] a basic stochastic cal-
culus and an Itô formula are developed for finite cubic variation processes,
which also apply to B(H) for H ≥ 1/3. This extends a result from [42], where
an Itô formula is established for H > 1/6 but with respect to f ∈ C5

b . A more
general Itô formula for g ∈ C3

b (R) valid for every H ∈ (0, 1) for cylindrical
integrands is stated in [73].
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Fractional Brownian motion in finance

As we all know, fBm cannot be used in finance, because it produces arbitrage. There-

fore, fBm in finance is forbidden. But, as we also know, boys like to do forbidden

things.

Esko Valkeila, in a talk given at the workshop Applications of Partial Differential

Equations, Institut Mittag-Leffler, November 2007.

In view of the success – and at the same time limitations – of the classical
Black Scholes market based on Brownian motion (H = 1/2), it is natural
to ask if an extension to fBm (0 < H < 1) could give interesting financial
models also. For example, if H > 1/2 then fBm has a certain memory (or
persistence) feature (see Chapter 1), and this has been used in the modeling
of weather derivatives (see, e.g., [38]). In addition if H < 1/2 then fBm has a
certain turbulence (or anti-persistence) feature, which seems to be shared by
electricity prices in the liberated Nordic electricity market (see [210]).

However, it is more controversial to let fBm simply replace classical Brown-
ian motion in the classical Black Scholes market. Basically the problems are
the following:

1. If we define, as in Chapter 5, the corresponding integration with respect
to fBm in the pathwise (forward) way (which is a natural form from a
modeling point of view and which makes mathematical sense forH > 1/2),
then the corresponding financial market has arbitrage.

2. If we define the corresponding integration with respect to fBm in the WIS
sense (see Chapter 4), then the corresponding market is free from (strong)
arbitrage, but this integration is hard to justify from a modeling point of
view.

We now discuss these two cases separately in more detail:

1. The pathwise (forward) integration (see Chapter 5).
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2. The WIS integration (see Chapter 4).

7.1 The pathwise integration model (1/2 < H < 1)

For simplicity we concentrate on the simplest nontrivial type of market,
namely, on the fBm version of the classical Black Scholes market, as follows.
Suppose there are two investment possibilities:

1. A safe or risk-free investment, with price dynamics

dS0(t) = rS0(t) dt; S0(0) = 1. (7.1)

2. A risky investment, with price dynamics

d−S1(t) = µS1(t) dt+ σS1(t) d−B(H)(t); S1(0) = x > 0. (7.2)

Here r, µ, σ �= 0 and x > 0 are constants. By Theorem 5.6.10 we know that
the solution of this equation is

S1(t) = x exp(σB(H)(t) + µt), t ≥ 0.

Let {F(H)
t }t≥0 be the filtration of B(H)(·), i.e., F

(H)
t is the σ-algebra generated

by the random variables B(H)(s), s ≤ t.
A portfolio in this market is a two-dimensional F

(H)
t -adapted stochastic

process θ(t) = (θ0(t), θ1(t)), where θi(t) gives the number of units of invest-
ment number i held at time t, i = 0, 1. The corresponding wealth process V θ(t)
is defined by

V θ(t) = θ(t) · S(t) = θ0(s)S0(t) + θ1(t)S1(t),

where
S(t) = (S0(t), S0(t)).

We say that θ is pathwise self-financing if

d−V θ(t) = θ(t) · d−S(t),

i.e.,

V θ(t) = V θ(0) +
∫ t

0

θ0(s) dS0(s) +
∫ t

0

θ1(s) d−S1(s).

If, in addition, V θ(t) is lower bounded, then we call the portfolio θ (pathwise)
admissible.

Definition 7.1.1. A pathwise admissible portfolio θ is called an arbitrage if
the corresponding wealth process V θ(t) satisfies the following three conditions:

V θ(0) = 0, (7.3)

V θ(T ) ≥ 0 a.s., (7.4)

P(V θ(T ) > 0) > 0. (7.5)
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Remark 7.1.2. The nonexistence of arbitrage in a market is a basic equilib-
rium condition. It is not possible to make a sensible mathematical theory for
a market with arbitrage. Therefore, one of the first things to check in a math-
ematical finance model is whether arbitrage exists. In the above pathwise fBm
market the existence of arbitrage was proved by [195] in 1997. Subsequently
several simple examples of arbitrage were found. See, e.g., [70], [204], [208].
Note, however, that the existence of arbitrage in this pathwise model is already
a direct consequence of Theorem 7.2 in [77]: There it is proved in general that
if there is no arbitrage using simple portfolios (with pathwise products), then
the price process is a semimartingale. Hence, since the process S1(t) given by
(7.2) is not a semimartingale, an arbitrage must exist.

Here is a simple arbitrage example, due to [70], [204], [208]. For simplicity
assume that

µ = r and σ = x = 1. (7.6)

Define

θ0(t) = 1− exp(2B(H)(t)), θ1(t) = 2[exp(B(H)(t))− 1]. (7.7)

Then the corresponding wealth process is

V θ(t) = θ0(t)S0(t) + θ1(t)S1(t)

= [1− exp(2B(H)(t))] exp(rt)

+ 2[exp(B(H)(t))− 1] exp(B(H)(t) + rt)

= exp(rt)[exp(B(H)(t))− 1]2 > 0 for a.a. (t, ω). (7.8)

This portfolio is self-financing, since

θ0(t) dS0(t) + θ1(t) d−S1(t) = [1− exp(2B(H)(t))]r exp(rt) dt

+ 2[exp(B(H)(t))− 1]S1(t)[rt+ d−B(H)(t)]

= r exp(rt)[exp(B(H)(t))− 1]2 dt

+ 2 exp(rt)(exp(B(H)(t))− 1) exp(B(H)(t)) d−B(H)(t)

= d(exp(rt)[exp(B(H)(t))− 1]2) = d−V θ(t).

We have proved the following:

Theorem 7.1.3. The portfolio θ(t) = (θ0(t), θ1(t)) given by (7.7) is a (path-
wise) arbitrage in the (pathwise) fractional Black Scholes market given by
(7.1), (7.2), and (7.6).

In view of this result the pathwise fBm model is not suitable in finance, at least
not in this simple form (but possibly in combination with classical Brownian
motion or other stochastic processes; see, e.g., Section 9.6).
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7.2 The WIS integration model (0 < H < 1)

We now consider the WIS integration version of the market (7.1), (7.2). Math-
ematically the model below is an extension to H ∈ (0, 1) of the model intro-
duced in [121] for H ∈ (1/2, 1). (Subsequently a related model, also valid for
all H ∈ (0, 1), was presented in [89]). However, compared to [121] we give a
different interpretation of the mathematical concepts involved. This presen-
tation is based on [183]. We also remark that for H > 1/2 we can repeat
formally the same model construction by using the fWIS integration studied
in Chapter 3 instead of the WIS calculus.

Assume that the values S0(t), S1(t) of the risk-free (e.g., bond) and risky
asset (e.g., stock), respectively, are given by

dS0(t) = rS0(t) dt, S0(0) = 1 (bond) (7.9)

and

dS1(t) = µS1(t) dt+ σS1(t) dB(H)(t), S1(0) = x > 0 (stock) (7.10)

where r, µ, σ �= 0 and x > 0 are constants and the integral appearing in (7.10)
is the one introduced in Chapter 4.

By Theorem of 4.2.6 the solution of equation (7.10) is

S1(t) = x exp(σB(H)(t) + µt− 1
2
σ2t2H), t ≥ 0.

In this WIS model S1(t) does not represent the observed stock price at time
t, but we give it a different interpretation. We assume that S1(t) represents
in a broad sense the total value of the company and that it is not observed
directly. Instead we adopt a quantum mechanical point of view, regarding
S1(t, ω) as a stochastic distribution in ω [represented mathematically as an
element of (S)∗] and regarding the actual observed stock price S̄1(t) as the
result of applying S1(t, ·) ∈ (S)∗ to a stochastic test function ψ(·) ∈ (S) (see
Definition A.1.4). We call S1(t) the generalized stock price.
Hence, we have

S̄1(t) := 〈S1(t, ·), ψ(·)〉 = 〈S1(t), ψ〉,
where in general 〈F,ψ〉 denotes the action of a stochastic distribution F ∈ (S)∗

to a stochastic test function ψ ∈ (S).
We call such stochastic test functions ψ market observers. We will assume

that they have the form

ψ(ω) = exp�
(∫

R

h(t) dB(H)(t)
)

= exp
(∫

R

h(t)dB(H)(t)− 1
2
‖h‖2H

)
for some h ∈ L2

H(R). (7.11)
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The set of all linear combinations of such ψ is dense in both (S) and (S)∗.
Moreover, these ψ are normalized, in the sense that

E
[
exp�

(∫

R

h(t) dB(H)(t)
)]

= 1 ∀h ∈ L2
H(R).

We let D denote the set of all market observers of the form (7.11).
Similarly, a generalized portfolio is an adapted process

θ(t) = θ(t, ω) = (θ0(t, ω), θ1(t, ω)), (t, ω) ∈ [0, T ]×Ω, (7.12)

such that θ(t, ω) is measurable with respect to B[0, T ] ⊗ F(H), where B[0, T ]
is the Borel σ-algebra on [0, T ] and F(H) is the σ-algebra generated by
{B(H)(s)}s≥0, representing a general strategy for choosing the number of units
of investment number i at time t, i = 0, 1.

For example, θ1(t) could be the usual “buy and hold” strategy, consisting
of buying a certain number of stocks at a stopping time τ1(ω) and holding
them until another stopping time τ2(ω) > τ1(ω), or θ1(t) could be the strategy
to hold a fixed fraction of the current wealth in stocks. If the actual observed
price at time t is S̄1(t) = 〈S1(t, ·), ψ(·)〉, the actual number of stocks held is

θ̄1(t) := 〈θ1(t, ·), ψ(·)〉.

Thus the actual observed wealth V̄1(t) held in the risky asset corresponding
to this portfolio is

V̄1(t) = 〈θ1(t), ψ〉 · 〈S1(t), ψ〉.
By Lemma 7.2.1 below this can be written

V̄1(t) = 〈θ1(t) � S1(t), ψ〉, (7.13)

where � denotes the Wick product. In fact, F := θ1(t) � S1(t) is the unique
F ∈ (S)∗ such that

〈F,ψ〉 = 〈θ1(t), ψ〉 · 〈S1(t), ψ〉 ∀ψ ∈ D.

In view of this it is natural to define the generalized total wealth process V (t, ω)
associated to θ(t, ω) by the Wick product

V (t, ·) = θ(t, ·) � S(t, ·) = θ0(t)S0(t) + θ1(t) � S1(t). (7.14)

Similarly, if we consider a discrete time market model and keep the generalized
portfolio process θ(t) = θ(tk, ω), tk ≤ t < tk+1,

constant from t = tk to t = tk+1, the corresponding change in the generalized
wealth process is

∆V (tk) = θ(tk) �∆S(tk),

where
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∆V (tk) = V (tk+1)− V (tk), ∆S(tk) = S(tk+1)− S(tk).

If we sum this over k and take the limit as ∆tk = tk+1 − tk goes to 0, we end
up with the following generalized wealth process formula:

V (T ) = V (0) +
∫ T

0

θ(t) � dS(t) = V (0) +
∫ T

0

θ(t) dS(t),

where dS(t) means that the integral is interpreted in the WIS sense.
Therefore, by (7.9) and (7.10) this argument leads to the following (WIS)

self-financing property :

V (T ) = V (0) +
∫ T

0

rθ0(t)S0(t) dt+
∫ T

0

µθ1(t) � S1(t) dt

+
∫ T

0

σθ1(t) � S1(t) dB(H)(t),

(7.15)

where the integral to the right of (7.15) is a WIS integral. We now prove the
fundamental result that explains why the Wick product suddenly appears in
(7.13) above:

Lemma 7.2.1. 1. Let F,G ∈ (S)∗. Then

〈F �G,ψ〉 = 〈F, φ〉 · 〈G,ψ〉 ∀ψ ∈ D.

2. Moreover, if Z ∈ (S)∗ is such that

〈Z,ψ〉 = 〈F,ψ〉 · 〈G,ψ〉 ∀ψ ∈ D,

then
Z = F �G.

Proof. 1. Choose ψ = exp�
( ∫

R
h(t)dB(H)(t)

)
∈ D. We may assume that

F = exp�
(∫

R

f(t) dB(H)(t)
)

and G = exp�
(∫

R

g(t) dB(H)(t)
)

for some f, g ∈ L2
H(R), because the set of all linear combinations of such

Wick exponentials is dense in (S)∗. For such F,G, ψ we have

〈F,ψ〉 = E[F · ψ] and 〈G,ψ〉 = E[G · ψ].

Therefore

〈F �G,ψ〉 = E
[
exp�

(∫

R

(f + g) dB(H)
)
· exp�

(∫

R

h dB(H)
)]

= E
[
exp
(∫

R

(f + g) dB(H) − 1
2
‖f + g‖2H

)
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· exp
(∫

R

h dB(H) − 1
2
‖h‖2H

)]

= E
[
exp
(∫

R

(f + g + h) dB(H) − 1
2
‖f‖2H −

1
2
‖g‖2H

− 1
2
‖h‖2H − 〈f, g〉H

)]

= E
[
exp
(∫

R

(f + g + h) dB(H) − 1
2
‖f + g + h‖2H + 〈f, h〉H

+ 〈g, h〉H
)]

= E
[
exp�

(∫

R

(f + g + h) dB(H)
)
· exp〈f + g, h〉H

]

= exp〈f + g, h〉H . (7.16)

On the other hand, a similar computation gives

〈F,ψ〉 · 〈G,ψ〉 = E
[
exp�

(∫

R

f dB(H)
)
· exp�

(∫

R

h dB(H)
)]

· E
[
exp�

(∫

R

g dB(H)
)
· exp�

(∫

R

h dB(H)
)]

= exp〈f, h〉H · exp〈g, h〉H = exp〈f + g, h〉H . (7.17)

Comparing (7.16) and (7.17) we get 1.
2. This follows from the fact that the set of linear combinations of elements

of D is dense in (S) and (S)∗ is the dual of (S). ��

Remark 7.2.2. We emphasize that this model for fBm in finance does not a
priori assume that the Wick product models the growth of wealth. In fact, the
Wick product comes as a mathematical consequence of the basic assumption
that the observed value is the result of applying a test function to a distrib-
ution process describing in a broad sense the value of a company. This way
of thinking stems from microcosmos (quantum mechanics), but it has been
argued that it is often a good description of macrocosmos situations as well.
Here is an example.

An agent from an opinion poll firm stops a man on the street and asks him
what political party he would vote for if there was an election today. Often this
man on the street does not really have a firm opinion about this beforehand
(he is in a diffuse state of mind politically), but the contact with the agent
forces him to produce an answer. In a similar sense the general state of a
company does not really have a noted stock price a priori, but it brings out a
number (price) when confronted with a market observer (the stock market).

In view of the above we now make the following definitions:

Definition 7.2.3. 1. The total wealth process V θ(t) corresponding to a gen-
eralized portfolio θ(t) defined in (7.12) in the WIS model is defined by
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V θ(t) = θ(t) � S(t). (7.18)

2. A generalized portfolio θ(t) is called WIS self-financing if

dV θ(t) = θ(t) dS(t),

i.e.,

V θ(t) = V θ(0) +
∫ t

0

θ0(s) dS0(s) +
∫ t

0

θ1(s) dS1(s), (7.19)

where the integral to the right of (7.19) is a WIS integral. In particular,
we assume that the two integrals in (7.19) exist.

By the Girsanov theorem for fBm for every H ∈ (0, 1), as described in
Section 4.3, there exists a probability measure P̂ on (Ω,F) such that P̂ is
equivalent to P (i.e., P̂ has the same null sets as P) with Radon–Nikodym
density

dP̂

dP
= exp

(∫

R

ψ(s) dB(H)(s)− 1
2
‖ψ‖2L2(R)

)
, (7.20)

where

ψ(t) =
(µ− r)[(T − t)1/2−H + t1/2−H ]

2σΓ (3/2−H) cos[π/2(1/2−H)]
,

and such that
B̂(H)(t) :=

µ− r
σ

t+B(H)(t)

is a fBm with respect to P̂. Replacing B(H)(t) by B̂(H)(t) in (7.19), we get

e−rtV θ(t) = V θ(0) +
∫ t

0

e−rsσθ1(s) � S1(s) dB̂(H)(s). (7.21)

Definition 7.2.4. We call a generalized portfolio θ(t) WIS admissible if it
is WIS self-financing and θ1(s) � S1(s) is Skorohod integrable with respect to
B̂(H)(s).

Definition 7.2.5. A WIS admissible portfolio θ(t) is called a strong arbitrage
if the corresponding total wealth process V θ(t) satisfies

V θ(0) = 0, (7.22)

V θ(T ) ∈ L2(P̂) and V θ(T ) ≥ 0 a.s., (7.23)

P(V θ(T ) > 0) > 0. (7.24)

The following result was first proved by [121] for the case 1/2 < H < 1 and
then extended to arbitrary H ∈ (0, 1) by [89] (in a related model):

Theorem 7.2.6. There is no strong arbitrage in the WIS fractional Black
Scholes market (7.9) and (7.10).
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Proof. If we take the expectation with respect to P̂ of both sides of (7.21)
with t = T , we get, by (7.10),

e−rT Ê[V θ(T )] = V θ(0).

From this we see that (7.22) to (7.24) cannot hold. ��
Remark 7.2.7. Note that the nonexistence of a strong arbitrage in this market
[where the value process S1(t) is not a semimartingale] is not in conflict with
the result of [77] mentioned in Remark 7.1.2, because in this market the
underlying products are Wick products, not ordinary pathwise products.

We proceed to discuss completeness in this market.

Definition 7.2.8. The market is called (WIS) complete if for every F
(H)
T -

measurable random variable F ∈ L2(P̂) there exists an admissible portfolio
θ(t) = (θ0(t), θ1(t)) such that

F = V θ(T ) a.s.

By (7.21) we see that this is equivalent to requiring that there exists g such
that

e−rTF (ω) = e−rT Ê[F ] +
∫ T

0

g(s, ω) dB̂(H)(s),

where
g(s) = e−rsσ θ1(s) � S1(s).

If such a g can be found, then we put

θ1(s) = σ−1ersS1(s)�(−1) � g(s).

It was proved by [121] (for 1/2 < H < 1) and subsequently by [89] in a related
market [for arbitrary H ∈ (0, 1)] that this market is complete. In fact,we have

Theorem 7.2.9. Let F ∈ L2(P̂) be F
(H)
T -measurable. Then F = V θ(T ) almost

surely for θ(t) = (θ0(t), θ1(t)) with

θ1(t) = σ−1e−ρ(T−t)S1(t)�(−1) � Ẽ
P̂
[D̂(H)

t F | F(H)
t ],

where Ẽ
P̂
[·|·] denotes the quasi-conditional expectation and D̂(H)

t is the frac-
tional Hida–Malliavin derivative with respect to B̂(H)(·). The other compo-
nent, θ0(t), is then uniquely determined by the self-financing condition (7.19).

In the Markovian case, i.e., when

F (ω) = f(B(H)(T ))

for some integrable Borel function f : R → R, we can give a more explicit
expression for the replicating portfolio θ(t). This is achieved by using the
following representation theorem, due to [14]. It has the same form as in the
well-known classical case (H = 1/2):
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Theorem 7.2.10. Let f : R → R be a Borel function such that

E[f2(B(H)(T ))] <∞.

Then

f(B(H)(T )) = E[f(B(T ))] +
∫ T

0

g(t, ω) dB(H)(t),

where

g(t, ω) =
{
∂

∂x
E[f(x+B(H)(T − t))]

}

x=B(H)(t)

.

In view of the interpretation of the observed wealth V̄ (t) as the result of
applying a test function ψ ∈ D to the general wealth process V (t), i.e.,

V̄ (t) = 〈V (t), ψ〉,

the following alternative definition of an arbitrage is natural (compare with
Definition 7.2.5).

Definition 7.2.11. A WIS admissible portfolio θ(t) is called a weak arbitrage
if the corresponding total wealth process V θ(t) satisfies

V θ(0) = 0, (7.25)

〈V θ(T ), ψ〉 ≥ 0 ∀ψ ∈ D, (7.26)

〈V θ(T ), ψ〉 > 0 for some ψ ∈ D. (7.27)

Do weak arbitrages exist? The answer is yes. Here is an example, found in
[17].

Example 7.2.12 (A weak arbitrage). For ε > 0 define

Kε(x) =

{
−1 if |x| ≤ ε,
1 if |x| > ε.

Then there exists ε0 > 0 such that
∫

R

Kε0(x) exp
(
−1

2
x2

)
dx = 0. (7.28)

By a variant of Lemma 2.6 in [15] we have

E
[
K(〈ω, f〉) exp(〈ω, g〉 − 1

2
‖g‖2H)

]

= (2π)−1/2‖f‖H

∫

R

K(u) exp
(
− (u− 〈f, g〉H)2

2||f‖2H

)
du (7.29)

for all bounded measurable K : R → R, f, g ∈ L2
H(R).
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Applying (7.29) to f = I[0,1] and 〈ω, f〉 = B(H)(1), we get

E[Kε0(B
(H)(1))] = 0 (7.30)

E
[
Kε0(B

(H)(1)) exp(〈ω, g〉 − 1
2
‖g‖2H)

]
≥ 0 ∀g ∈ L2

H(R)

E
[
Kε0(B

(H)(1)) exp(〈ω, I[0,1]〉 −
1
2
‖I[0,1]‖2H)

]
> 0. (7.31)

Now consider the Skorohod fractional market (7.9) and (7.10) with r = µ = 0,
σ = T = 1. Then S0(t) = 1 and S1(t) = x exp(B(H)(t) − 1/2t2H). Moreover,
B̂(H)(t) = B(H)(t) and P = P̂. Hence, by Theorem 7.2.9 and (7.28) there
exists a Skorohod self-financing portfolio θ(t) = (θ0(t), θ1(t)) such that

Kε0(B
(H)(1)) = V θ(1) =

∫ T

0

θ1(s) dS(s) a.s.

Then V θ(0) = 0 and by (7.11), (7.30) and (7.31) we see that (7.26) and (7.27)
hold. Hence, θ(t) is a weak arbitrage.

7.3 A connection between the pathwise and the WIS
model

In spite of the fundamental differences in the features of the pathwise model
and the WIS model, it turns out that there is a close relation between them.
Assume H ∈ (1/2, 1).

Fix ψ ∈ D and define the function bH : [0, T ] → R by

bH(t) = 〈B(H)(t), ψ〉 = E[B(H)(t) · ψ].

Then for p > 1 and any partition P : 0 = t0 < t1 < · · · < tN = T of |0, T ], we
have

N−1∑
j=0

|bH(tj+1)− bH(tj)|p =
N−1∑
j=0

|E[(B(H)(tj+1)−B(H)(tj)) · ψ]|p

≤
N−1∑
j=0

(E[|B(H)(tj+1)−B(H)(tj)|p]1/p · E[ψq]1/q)p

≤ C
N−1∑
j=0

E[|B(H)(tj+1)−B(H)(tj)|p],

where 1/p+ 1/q = 1. Hence, by a known property of fBm,

sup
P

N−1∑
j=0

|bH(tj+1)− bH(tj)|p <∞ if and only if p ≥ 1
H
.
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In this sense the continuous function bH(t) is at least as regular as a generic
path of a fBm B(H)(t, ω). Therefore, we can define integration with respect
to bH(t) just as we define pathwise integration with respect to B(H)(t). Now
suppose we start with the wealth generating formula in the WIS model

V θ(T ) = V θ(0) +
∫ T

0

φ(s, ω) dB(H)(s).

Suppose φ is càglàd and ψ ∈ D. Then this gives

V̄ θ(T ) = 〈V θ(T ), ψ〉 = V θ(0) +
〈∫ T

0

φ(s, ω) dB(H)(s), ψ
〉

= V θ(0) + lim
∆tj→0

〈N−1∑
j=0

φ(tj) � (B(H)(tj+1)−B(H)(tj)), ψ
〉

= V θ(0) + lim
∆tj→0

N−1∑
j=0

〈φ(tj), ψ〉〈B(H)(tj+1)−B(H)(tj), ψ〉

= V θ(0) + lim
∆tj→0

N−1∑
j=0

φ̄(tj)(bH(tj+1)− bH(tj))

= V θ(0) +
∫ T

0

φ̄(t) dbH(t). (7.32)

We can summarize this as follows:

Theorem 7.3.1. If H > 1/2 the mapping F → 〈F,ψ〉, F ∈ L2(P), transforms
the WIS fBm model into the pathwise fBm model. If H = 1/2 this mapping
transforms the Wick Itô Skorohod Brownian motion model into the classical
Brownian motion model.

7.4 Concluding remarks

At first glance there seems to be a disagreement between the existence of ar-
bitrage in the (fractional) pathwise model (see Theorem 7.1.3) and the nonex-
istence of a (strong) arbitrage in the WIS model (Theorem 7.2.6). The above
discussion, including, in particular, Theorem 7.3.1, serves to explain this ap-
parent contradiction. The arbitrages in the pathwise model correspond to the
weak arbitrages in the WIS model (see Example 7.2.12) and not to the (nonex-
istent) strong arbitrages. In addition in [104] and [105] it is shown that there is
no arbitrage with the fBm pathwise integral financial model when transaction
costs are taken into account.

In spite of the mathematical coherence of the WIS model, there is still a
lot of controversy about its economic interpretation and features. We refer to
the discussions in [35] and [215] for more details. For other models for financial
markets with fBm, we refer also to [21].
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Stochastic partial differential equations driven
by fractional Brownian fields

This chapter is devoted to the study of stochastic Poisson and stochastic heat
equations driven by fractional white noise. The equations are solved both in
the setting of white noise analysis and the setting of L2 space. The main
references for this chapter are [126] and [184].

8.1 Fractional Brownian fields

We start by recalling the standard white noise construction of multiparameter
classical Brownian motion B(x), x ∈ R

d, because we need the construction
of the multiparameter fractional Brownian field for the study of stochastic
partial differential equations.

Let S = S(Rd) be the Schwartz space of rapidly decreasing smooth func-
tions on R

d, and let Ω := S′(Rd) be its dual, the space of tempered dis-
tributions. By the Bochner–Minlos theorem (see [144], [109]) there exists a
probability measure P on the Borel σ-algebra F = B(Ω) such that

∫

Ω

ei〈ω,f〉 dP(ω) = e
−1/2‖f‖2

L2(Rd) , f ∈ S(Rd) (8.1)

where 〈ω, f〉 = ω(f) denotes the action of ω ∈ Ω = S′(Rd) applied to f ∈
S(Rd). From (8.1) one can deduce that

E[〈ω, f〉] = 0 ∀f ∈ S(Rd),

where E denotes the expectation with respect to P. Moreover, we have the
isometry

E[〈ω, f〉〈ω, g〉] = 〈f, g〉L2(Rd), f, g ∈ S(Rd). (8.2)

Using this isometry, we can extend the definition of 〈ω, f〉 ∈ L2(P) from S(Rd)
to L2(Rd) as follows:

〈ω, f〉 = lim
n→∞

〈ω, fn〉 [limit in L2(P)]
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when fn ∈ S(Rd), fn → f ∈ L2(Rd) [limit in L2(Rd)].
In particular, we can now define, for x = (x1, . . . , xd) ∈ R

d,

B̃(x) = B̃(x, ω) = 〈ω, I[0,x](·)〉, ω ∈ Ω,

where

I[0,x](y) =
d∏

i=1

I[0,xi](yi) for y = (y1, . . . , yd) ∈ R
d (8.3)

and

I[0,xi](yi) =

⎧
⎪⎨
⎪⎩

1 if 0 ≤ yi ≤ xi,

−1 if xi ≤ yi ≤ 0 except xi = yi = 0,
0 otherwise.

(8.4)

By Kolmogorov’s continuity theorem the process {B̃(x)} has a continuous
version, which we will denote by {B(x)}. By (8.1) to (8.2) it follows that
{B(x)} is a Gaussian process with mean

E[B(x)] = B(0) = 0

and covariance [using (8.2)]

E[B(x)B(y)] = 〈I[0,x], I[0,y]〉L2(Rd)

=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d∏
i=1

xi ∧ yi if xi, yi ≥ 0 for all i,

d∏
i=1

(−xi) ∧ (−yi) if xi, yi ≤ 0 for all i,

0 otherwise.

Therefore {B(x)}x∈Rd is a d-parameter Brownian motion.
We now use this Brownian motion in order to construct d-parameter fBm

B(H)(x) for all Hurst parameters H = (H1, . . . , Hd) ∈ (0, 1)d extending the
approach of Chapter 4.

For 0 < Hj < 1 put

Kj =
[
2Γ
(
Hj −

1
2

)
cos
(
π

2

(
Hj −

1
2

))]−1

[sin(πHj)Γ (2Hj + 1)]1/2

and if g ∈ S(Rd), x = (x1, . . . , xd) ∈ R
d, define mjg(·) : R

d → R by

mjg(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Kj

∫

R

g(x− tε(j))− g(x)
|t|3/2−Hj

dt if 0 < Hj < 1/2,

g(x) if Hj = 1/2,

Kj

∫

R

g(x1, . . . , xj−1, t, xj+1, . . . , xd) dt
|xj − t|3/2−Hj

if 1/2 < Hj < 1,

(8.5)
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where
ε(j) = (0, 0, . . . , 1, . . . , 0), the jth unit vector.

Then define

MHf(x) := m1(m2(· · · (md−1(mdf)) · · · ))(x), f ∈ S(Rd).

Note that if f(x) = f1(x) · · · fd(xd) =: (f1 ⊗ · · · ⊗ fd)(x) is a tensor product,
then

MHf(x) =
d∏

j=1

(MHj
fj)(xj), (8.6)

where

MHj
fj(xj) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Kj

∫

R

fj(xj − t)− fj(xj)
|t|3/2−Hj

dt if 0 < Hj < 1/2

fj(xj) if Hj = 1/2

Kj

∫

R

fj(t) dt
|t− xj |3/2−Hj

if 1/2 < Hj < 1

Therefore, if

Fg(ξ) := ĝ(ξ) :=
∫

Rd

e−ix·ξg(x) dx, ξ = (ξ1, . . . , ξd) ∈ R
d , (8.7)

denotes the Fourier transform of g, by (8.6) we have

M̂Hf(ξ) =
d∏

j=1

M̂Hj
fj(ξj) =

d∏
j=1

|ξj |1/2−Hj f̂j(ξj) (8.8)

and

̂M−1
H f(ξ) =

⎛
⎝

d∏
j=1

|ξj |1/2−Hj

⎞
⎠

−1

f̂(ξ).

We now construct d-parameter fBm B(H)(x) with Hurst parameter H =
(H1, . . . , Hd) ∈ (0, 1)d as follows. First, define

B̃(H)(x) = B̃(H)(x, ω) = 〈ω,MH(I[0,x](·))〉 (8.9)

with I[0,x](·) as in (8.3) and (8.4). Then B̃(H)(x) is a Gaussian process with
mean

E[B̃(H)(x)] = B̃(H)(0) = 0 (8.10)

and covariance (using (8.6) and [89, (1.13)])
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E[B̃(H)(x)B̃(H)(y)] =
∫

Rd

MH(I[0,x](z))MH(I[0,y](z)) dz

=
∫

Rd

d∏
i=1

MHi
I[0,xi](zi) ·

d∏
j=1

MHj
I[0,yj ](zj) dz1 · · · dzd

=
d∏

j=1

∫

R

MHj
I[0,xj ](t) ·MHj

I[0,yj ](t) dt

= (1
2 )d

d∏
j=1

(
|xj |2Hj + |yj |2Hj − |xj − yj |2Hj

)
, x, y ∈ R

d. (8.11)

By Kolmogorov’s continuity theorem we get that {B̃(H)(x)} has a continuous
version, which we denote by {B(H)(x)}. From (8.10) and (8.11) we conclude
that B(H)(x) is a d-parameter fBm with Hurst parameterH = (H1, . . . , Hd) ∈
(0, 1)d.

If f is a simple deterministic function of the form

f(x) =
N∑

j=1

ajI[0,y(j)](x), x ∈ R
d,

for some aj ∈ R, y(j) ∈ R
d, and N ∈ N, then we define its integral with respect

to B(H) by ∫

Rd

f(x) dB(H)(x) =
N∑

j=1

ajB
(H)(y(j)).

Note that by (8.9) this coincides with < ω,MHf >, and we have the isometry

E[(
∫

Rd

f(x) dB(H)(x))2] = E[< ω,MHf >
2] = ||MHf ||2L2(Rd).

We can extend the definition of this integral to all g ∈ L2
H(Rd), where

L2
H(Rd) = {g : R

d → R; ‖g‖L2
H(Rd) := ‖MHg‖L2(Rd) <∞} ,

by setting
∫

Rd

g(x) dB(H)(x) := 〈ω,MHg〉 ∀g ∈ L2
H(Rd). (8.12)

Moreover, if f, g ∈ L2
H(Rd), then we have the isometry

E
[( ∫

Rd

f(x) dB(H)(x)
)(∫

Rd

g(x) dB(H)(x)
)]

= E[〈ω,MHf〉〈ω,MHg〉]
= 〈MHf,MHg〉L2(Rd) = 〈f, g〉L2

H(Rd). (8.13)



8.2 Multiparameter fractional white noise calculus 185

8.2 Multiparameter fractional white noise calculus

With the processes B(H)(x) constructed in Section 8.1 as a starting point, we
proceed to develop a d-parameter white noise theory. Let

hn(t) = (−1)net
2/2 d

n

dtn
(
e−t2/2

)
, n = 0, 1, 2, . . . , t ∈ R,

be the , Hermite polynomials and let

ξn(t) = π−1/4
[
(n− 1)!

]−1/2
hn−1(

√
2 t)e−t2/2, n = 1, 2, . . . , t ∈ R

be the Hermite functions.
If α = (α1, . . . , αd) ∈ N

d (with N = {1, 2, . . .}) and x = (x1, . . . , xd) ∈ R
d,

define
ηα(x) = ξα1(x1) · · · ξαd

(xd) = (ξα1 ⊗ · · · ⊗ ξαd
)(x)

and

eα(x) =
(
M−1

Hα1
ξα1

)
(x1) · · ·

(
M−1

Hαd
ξαd

)
(xd) = (M−1

H ηα)(x). (8.14)

Let {α(i)}∞i=1 be a fixed ordering of N
d with the property that, with |α(i)| =

α
(i)
1 + · · ·+ α(i)

d ,
i < j ⇒ |α(i)| ≤ |α(j)|.

This implies that there exists a constant C <∞ such that

|α(k)| ≤ Ck ∀k. (8.15)

With a slight abuse of notation let us write

ηn(x) := ηα(n)(x) = MHen(x)

and
en(x) := eα(n)(x) = M−1

H ηn(x), n = 1, 2, . . .

Now let J = (NN

0 )c denote the set of all finite sequences α = (α1, . . . , αm) with
αj ∈ N0 = N ∪ {0}, m = 1, 2, . . . Then if α = (α1, . . . , αm) ∈ J, we define

Hα(ω) = hα1(〈ω, η1〉) · · ·hαm
(〈ω, ηm〉)

In particular, note that by (8.12) we have

Hε(i)(ω) = h1(〈ω, ηi〉) = 〈ω, ηi〉 =
∫

Rd

ηi(x) dB(x)

=
∫

Rd

MHei(x) dB(x) = 〈ω,MHei〉 =
∫

Rd

ei(x) dB(H)(x) (8.16)

for i = 1, 2, . . .
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Note that if f ∈ S(Rd), then MHf ∈ L2(Rd). Moreover, if f, g ∈ S(Rd),
then

〈g,MHf〉L2(Rd) = 〈ĝ, M̂Hf〉L2(Rd) = 〈MHg, f〉L2(Rd).

Therefore, since the action of ω ∈ Ω = S′(Rd) extends to L2(Rd), we can
extend the definition of the operatorMH from S(Rd) to Ω = S′(Rd) by setting

〈MHω, f〉 = 〈ω,MHf〉, f ∈ S(R), ω ∈ S′(R).

Example 8.2.1. The chaos expansion of classical Brownian motion B(x) ∈
L2(P) is

B(x) = 〈ω, I[0,x]〉 =
∞∑

k=1

〈I[0,x], ηk〉L2(Rd)〈ω, ηk〉

=
∞∑

k=1

(∫ x

0

ηk(y)dy
)
·Hε(k)(ω), (8.17)

where, in general, we put
∫ x

0

g(y) dy =
∫ xd

0

· · ·
∫ x1

0

g(y) dy1 . . . dyd, x = (x1, . . . , xd) ∈ R
d.

Hence, by (8.9) the chaos expansion of fBm B(H)(x) is

B(H)(x) = 〈ω,MHI[0,x]〉 (8.18)

=
∞∑

k=1

〈MHI[0,x], ηk〉L2(Rd)〈ω, ηk〉 =
∞∑

k=1

〈I[0,x],MHηk〉L2(Rd)Hε(k)(ω)

=
∞∑

k=1

[ ∫ x

0

MHηk(y) dy
]
Hε(k)(ω). (8.19)

Similarly, if f ∈ L2
H(Rd), then by (8.12)

∫

R

f(x) dB(H)(x) = 〈ω,MHf〉 =
∞∑

k=1

〈MHηk, f〉L2(Rd)Hε(k)(ω).

Next, we define the d-parameter Hida test function and distribution spaces (S)
and (S)∗, respectively.

Definition 8.2.2. 1. For k = 1, 2, . . ., let (S)(k) be the set of G ∈ L2(P) with
expansion

G(ω) =
∑
α

cαHα(ω)

such that
‖G‖2k :=

∑
α

α! c2α(2N)αk <∞,
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where

(2N)β = (2 · 1)β1(2 · 2)β2 · · · (2m)βm if β = (β1, . . . , βm) ∈ J.

The space of Hida test functions , (S), is defined by

(S) =
∞⋂

k=1

(S)(k),

equipped with the projective topology.
2. For q = 1, 2, . . ., let (S)(−q) be the set of all formal expansions

G =
∑
α

cαHα(ω)

such that
‖G‖2q :=

∑
α

α! c2α(2N)−qα <∞.

The space of Hida distributions, (S)∗, is defined by

(S)∗ =
∞⋃

q=1

(S)(−q),

equipped with the inductive topology.

Note that with this definition we have

(S) ⊂ L2(P) ⊂ (S)∗.

Example 8.2.3. Define fractional white noise, W (H)(x), by

W (H)(x) =
∞∑

k=1

MHηk(x)Hε(k)(ω), x ∈ R
d. (8.20)

Then W (H)(x) ∈ (S)∗ because in this case, by (8.14) and (8.15),

∑
α

α!c2α(2N)−qα =
∞∑

k=1

〈MHηk)2(x)(2N)−qε(k)

=
∞∑

k=1

(MH
α
(k)
1

ξ
α

(k)
1

)2(x1) · · · (MH
α
(k)
d

ξ
α

(k)
d

)2(xd)(2k)−q

≤
∞∑

k=1

C1

( d∏
j=1

(
α

(k)
j

)2/3−H
α
(k)
j

/2)2

(2k)−q

≤ C1

∞∑
k=1

(2k)4d/3−q <∞
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for q > 4d/3 + 1 (C1 is a constant). Here we have used the estimate

|MHj
ξn(t)| ≤ C2n

2/3−Hj/2 ∀t, (C2 constant), (8.21)

from Section 3 of [89].
Note that from (8.20) and (8.19) we have that

∂d

∂x1 · · · ∂xd
B(H)(x) = W (H)(x) [in (S)∗] for all x ∈ R

d.

This justifies the name fractional white noise for the process W (H)(x).

Choose g ∈ S(Rd) and let mjg be as in (8.5). We establish a useful formula
for the L2(R) norm of mjg.

Theorem 8.2.4. Let f and g be elements in S(R) (the space of rapidly de-
creasing smooth functions). If 0 < Hj < 1/2, then there is a constant κ such
that ∫

R

mjf(x)mjg(x) dx = κ

∫

R

∫

R

|x− y|2Hjf ′(x)g′(y) dx dy.

Proof. From (8.7) and (8.8) we have

F(mjf)(ξ) = Kj |ξ|1/2−Hj f̂(ξ).

Thus, ∫

R

mjf(x)mjg(x) dx =
1
2π
K2

j

∫

R

|ξ|1−2Hj ¯̂
f(ξ)ĝ(ξ) dξ.

For α > 0 define

Iαφ(x) = γα

∫

R

φ(t)
|t− x|1−α

dt,

where γα = 2Γ (α) cos(απ/2). By [206], we have

F (Iαφ) (ξ) = |ξ|−αφ̂(ξ) .

Therefore, ∫

R

f ′(x)Iαg′(x) dx =
1
2π

∫

R

|ξ|2−α ¯̂
f(ξ)ĝ(ξ) dξ.

Hence, ∫

R

mjf(x)mjg(x) dx = K2
j

∫

R

f ′(x)Iαg′(x) dx

if 1− 2Hj = 2− α. That is,

α = 1 + 2Hj .

When the above identity is true, we have
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∫

R

f ′(x)Iαg′(x) dx = κ

∫

R2
|x− y|2Hjf ′(x)g′(y) dx dy,

where
κ = γαK

2
j .

��

Remark 8.2.5. It is easy to extend the identity to more general functions.

8.3 The stochastic Poisson equation

We now illustrate the use of the theory above by solving the Poisson equation
with fractional white noise heat source. Let D ⊂ R

d be a given bounded
domain with smooth (C∞) boundary. We want to find U(·) : D̄ → (S)∗ such
that {

∆U(x) = −W (H)(x) for x ∈ D,
U(x) = 0 for x ∈ ∂D,

(8.22)

where ∆ = 1/2
∑d

i=1 ∂
2/∂x2

i is the Laplacian operator, and such that U is
continuous on the closure D̄ of D.

From classical potential theory we are led to the solution candidate

U(x) =
∫

D

G(x, y)W (H)(y) dy =
∫

D

G(x, y) dB(H)(y), (8.23)

where G is the classical Green function for the Dirichlet Laplacian.
We first verify that U(x) ∈ (S)∗ for all x. To this end, consider the expan-

sion of U(x):

U(x) =
∫

D

G(x, y)
∞∑

k=1

MHηk(y)Hε(k)(ω) dy

=
∞∑

k=1

ak(x)Hε(k)(ω),

where
ak(x) =

∫

D

G(x, y)MHηk(y)dy.

By the estimate (8.21) we have

|ak(x)| ≤ C3k
2d/3

∫

D

G(x, y) dy ≤ C4k
2d/3, (8.24)

and therefore,
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∞∑
k=1

a2
k(x)

(
2N
)−qεk ≤ C2

4

∞∑
k=1

(
2k
)4d/3(2k)−q <∞

for q > 4d/3 + 1. This proves that U(x) ∈ (S)∗, and the same estimate gives
that U : D̄ → (S)∗ is continuous.

To prove ∆U(x) = −W (H)(x), introduce

Un(x) =
n∑

k=1

ak(x)Hε(k)(ω).

We have

∆Un(x) =
n∑

k=1

∆ak(x)Hε(k)(ω) = −
n∑

k=1

MHηk(x)Hε(k)(ω).

By the estimate in (8.21), we see that ∆Un(x) converges to −W (H)(x) in
(S)∗ uniformly for x ∈ D̄. On the other hand, (8.24) implies that Un(x)
converges to U(x) in (S)∗ uniformly for x ∈ D̄. Therefore, we conclude
∆U(x) = −W (H)(x). Thus we have the following:

Theorem 8.3.1. Let H = (H1, . . . , Hd) ∈ (0, 1)d. The stochastic fractional
Poisson equation (8.22) has a unique solution U(x) ∈ (S)∗ given by

U(x) =
∫

D

G(x, y) dB(H)(y), (8.25)

where G(x, y) is the classical Green function for the Laplacian.

Next we discuss when this solution U(x) belongs to L2(P).

Theorem 8.3.2. Let H = (H1, . . . , Hd) ∈ (0, 1)d and H := {i , Hi < 1/2} .
Suppose that H contains at most 1 element and

d∑
i=1

Hi > d− 2. (8.26)

Then the solution U(x) given by (8.25) belongs to L2(P) for all x.

Proof. By (8.23) and (8.13) we have

E[U2(x)] = 〈G(x, ·), G(x, ·)〉L2
H(Rd)

= 〈MHG(x, ·),MHG(x, ·)〉L2(Rd) =
∫

Rd

[MHG(x, y)]2 dy, (8.27)

where the operator MH acts on y, and we have extended the function G(x, ·),
and MHG(x, ·), to R

d by defining it to be zero outside D. Without loss of
generality we can assume that
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H1 < 1/2 and Hi > 1/2 for i > 1.

Since ∂D is smooth, there exists a constant C such that
∣∣∣∣

∂k

∂y1 · · · ∂yk
G(x, y)

∣∣∣∣ ≤ C
∏k

i=1 |xi − yi|
|x− y|d+2k−2

.

Recall that if 1/2 < Hj < 1,
∫

R

mjf(x)2 dx = cj

∫

R

∫

R

f(x)|x− y|2Hj−2f(y) dx dy

Hence, by (8.27) and Theorem 8.3.1

E[U2(x)] ≤ C
∫

D

∫

D

|x1 − y1|
|x− y|d φ(y, z)

|x1 − z1|
|x− z|d dy dz, (8.28)

where

φ(y, z) =
∣∣y1 − z1

∣∣2H1
d∏

i=2

∣∣yi − zi
∣∣2Hi−2

.

Let z′ = x − z and y′ = x − y. Since D is bounded, there exists a positive
constant R such that, using (8.28),

E[U2(x)] ≤ C
R∫

−R

· · ·
R∫

−R

|y′1|
|y′|dφ(y

′, z′)
|z′1|
|z′|d dy

′ dz′

= C

R∫

−R

· · ·
R∫

−R

|y1||z1||y1 − z1|2H1

|y|d

∏d
i=2 |yi − zi|2Hi−2

|z|d dy dz. (8.29)

Next, we are going to show that the integral above is finite.
For notational simplicity, we assume that R = 1. For any a > 0, b > 0, d >

0, we claim that there is a constant c, independent of a and b, such that
∫ 1

−1

∫ 1

−1

|y||z||y − z|2H1

(y2 + a)d/2(z2 + b)d/2
dy dz ≤ c aH1 + bH1

ad/2−1bd/2−1
. (8.30)

Indeed,
∫ 1

−1

∫ 1

−1

|y||z||y − z|2H1

(y2 + a)d/2(z2 + b)d/2
dy dz

≤ c
{∫ 1

−1

dy

∫ 1

−1

|y||z|(|y|2H1 + |z|2H1)
(y2 + a)d/2(z2 + b)d/2

dz

}

≤ c
{∫ 1

0

dy
y2H1+1

(y2 + a)d/2

∫ 1

0

z

(z2 + b)d/2
dz
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+
∫ 1

0

dz
z2H1+1

(z2 + b)d/2

∫ 1

0

y

(y2 + a)d/2
dy

}

≤ c
∫ 1

0

y2H1+1

(y2 + a)d/2
[b1−d/2 − (1 + b)1−d/2] dy

+ c
∫ 1

0

z2H1+1

(z2 + b)d/2
[a1−d/2 − (1 + a)1−d/2] dz

≤ cb1−d/2

∫ 1

0

y

(y2 + a)d/2−H1
dy + ca1−d/2

∫ 1

0

z

(z2 + b)d/2−H1
dz

≤ cb1−d/2a1−d/2+H1 + a1−d/2b1−d/2+H1 = c
aH1 + bH1

ad/2−1bd/2−1
.

Applying (8.30) for a =
∑d

i=2 y
2
i , b =

∑d
i=2 z

2
i , we have

∫ 1

−1

· · ·
∫ 1

−1

|y1||z1||y1 − z1|2H1

|y|d

∏d
i=2 |yi − zi|2Hi−2

|z|d dy dz

=
∫ 1

−1

· · ·
∫ 1

−1

d∏
i=2

|yi − zi|2Hi−2 dy2 · · · dyd dz2 · · · dzd

·
∫ 1

−1

∫ 1

−1

|y1||z1||y1 − z1|2H1

|y|d|z|d dy1 dz1

≤ c
∫ 1

−1

· · ·
∫ 1

−1

[(
∑d

i=2 y
2
i )H1 + (

∑d
i=2 z

2
i )H1 ]

(
∑d

i=2 y
2
i )d/2−1(

∑d
i=2 z

2
i )d/2−1

·
d∏

i=2

|yi − zi|2Hi−2 dy2 · · · dyd dz2 · · · dzd

=
∫ 1

−1

· · ·
∫ 1

−1

∏d
i=2 |yi − zi|2Hi−2

(
∑d

i=2 y
2
i )d/2−1−H1(

∑d
i=2 z

2
i )d/2−1

dy2 · · · dyd dz2 · · · dzd

+
∫ 1

−1

· · ·
∫ 1

−1

∏d
i=2 |yi − zi|2Hi−2

(
∑d

i=2 y
2
i )d/2−1(

∑d
i=2 z

2
i )d/2−1−H1

dy2 · · · dyd dz2 · · · dzd

=: I + II.

We now prove that both I and II are finite. By symmetry, we only look at
I. For any choice of positive numbers αi > 0 with

∑d
i=2 αi = 1 and positive

numbers βi > 0 with
∑d

i=2 βi = 1, we have

I ≤
∫ 1

−1

· · ·
∫ 1

−1

∏d
i=2

∣∣yi − zi
∣∣2Hi−2

∏d
i=2 |yi|αi(d−2−2H1)|zi|βi(d−2)

dy2 · · · dyd dz2 · · · dzd.

Therefore, I is finite if the following conditions are met:
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αi(d− 2− 2H1) < 1, i = 2, · · · , d;
βi(d− 2) < 1, i = 2, · · · , d;

αi(d− 2− 2H1) + βi(d− 2)− 2Hi + 2 < 2, i = 2, · · · , d. (8.31)

Adding these inequalities in (8.31), we see that it is sufficient to have

2(d− 2)− 2H1 <

d∑
i=2

2Hi,

namely,
d∑

i=1

Hi > d− 2.

This completes the proof. ��

Remark 8.3.3. It is natural to ask if condition (8.26) is also necessary to have
U(x) ∈ L2(P). Now we give a discussion.

We need the following. For any a > 0, b > 0, d > 0 (a and b bounded),
there is a constant c, independent of a and b, such that

∫ 1

−1

∫ 1

−1

|y||z||y − z|2H1

(y2 + a)d/2(z2 + b)d/2
dy dz ≥ c aH1

ad/2−1bd/2−1

and ∫ 1

−1

∫ 1

−1

|y||z||y − z|2H1

(y2 + a)d/2(z2 + b)d/2
dy dz ≥ c bH1

ad/2−1bd/2−1
(8.32)

In fact,
∫ 1

−1

∫ 1

−1

|y||z||y − z|2H1

(y2 + a)d/2(z2 + b)d/2
dy dz

≥
∫ 1

0

∫ 1

−1

y|z||y − z|2H1

(y2 + a)d/2(z2 + b)d/2
dy dz

≥
∫ 1

0

∫ 0

−1

y|z|2H1+1

(y2 + a)d/2(z2 + b)d/2
dy dz

≥ c
∫ 1

0

y

(y2 + a)d/2
dy

∫ 1

0

z2H1+1

(z2 + b)d/2
dz

= ca−d/2+1b−d/2+1+H1

∫ 1/
√

a

0

u

(u2 + 1)d/2
du

∫ 1/
√

b

0

v2H1+1

(v2 + 1)d/2
dv

≥ c bH1

ad/2−1bd/2−1
.

Let us consider (8.29) in the case when d = k = 2, namely,
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∫ 1

−1

· · ·
∫ 1

−1

|y1||z1||y1 − z1|2H1

|y|d+2

|y2||z2||y2 − z2|2H2

|z|d+2
dy dz,

where 0 < H1,H2 < 1/2. Applying (8.32) for a = y2
2 , b = z22 , we have

∫ 1

−1

· · ·
∫ 1

−1

|y1||z1||y1 − z1|2H1

|y|d+2

|y2||z2||y2 − z2|2H2

|z|d+2
dy dz

≥ c
∫ 1

−1

∫ 1

−1

zH1
2 |y2||z2||y2 − z2|2H2

y2
2z

2
2

dy2 dz2

which is divergent. Thus we conjecture that U(t, x) is in L2 only if at most
one Hurst exponent is less than 1/2.

8.4 The linear heat equation

In this section we consider the linear stochastic fractional heat equation
⎧
⎪⎪⎨
⎪⎪⎩

∂U

∂t
(t, x) =

1
2
∆U(t, x) +W (H)(t, x), t ∈ (0,∞), x ∈ D ⊂ R

d;

U(0, x) = 0, x ∈ D;
U(t, x) = 0, t ≥ 0, x ∈ ∂D.

(8.33)

Here W (H)(t, x) is the fractional white noise with Hurst parameter H = (H0,

H1, . . . , Hd) ∈ (0, 1)d+1, ∆ =
∑d

i=1 ∂
2/∂x2

i is the Laplace operator, and D ⊂
R

d is a bounded open set with smooth boundary ∂D. We are looking for a
solution U : [0,∞)× D̄ → (S)∗ that is continuously differentiable in (t, x) and
twice continuously differentiable in x, i.e., belongs to C1,2((0,∞) ×D; (S)∗),
and which satisfies (8.33) in the strong sense [as an (S)∗-valued function].
Based on the corresponding solution in the deterministic case [withW (H)(t, x)
replaced by a bounded deterministic function], it is natural to guess that the
solution will be

U(t, x) =
∫ t

0

∫

D

W (H)(s, y)Gt−s(x, y) dy ds (8.34)

where Gt−s(x, y) is the Green function for the heat operator ∂/∂t− 1/2∆. It
is well known [70] that G is smooth in (0,∞)×D and that

|Gu(x, y)| ∼ u−d/2 exp
(
− |x− y|

2

δu

)
in (0,∞)×D,

and

|∂Gu(x, y)
∂yi

| ∼ u−d/2−1|xi − yi| exp
(
− |x− y|

2

δu

)
in (0,∞)×D,
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where the notation X ∼ Y means that

1
C
X ≤ Y ≤ CX in (0,∞)×D

for some positive constant C <∞ depending only on D. We use this to verify
that U(t, x) ∈ (S)∗ for all (t, x) ∈ [0,∞) × D̄. Using (8.20), we see that the
expansion of U(t, x) is

U(t, x) =
∫ t

0

∫

D

Gt−s(x, y))
∞∑

k=1

MHηk(s, y)Hε(k)(ω) dy ds

=
∞∑

k=1

bk(t, x)Hε(k)(ω), (8.35)

where

bk(t, x) = bε(k)(t, x) =

t∫

0

∫

D

Gt−s(x, y)MHηk(s, y) dy ds.

In the following C denotes a generic constant, not necessarily the same from
place to place. From (8.21) we obtain that

|bk(t, x)| ≤ Ck2(d+1)/3

∫ t

0

∫

D

Gt−s(x, y) dy ds

= Ck2(d+1)/3t . (8.36)

Therefore,
∞∑

k=1

b2k(t, x)(2N)−qε(k) ≤ C(t)
∞∑

k=1

k4(d+1)/3(2k)−q <∞

for q > 4(d+ 1)/3 + 1.
Hence U(t, x) ∈ (S)−q∗

for all q > 4(d+ 1)/3 + 1, for all t, x. In fact, this
estimate also shows that U(t, x) is uniformly continuous as a function from
[0, T ]× D̄ into (S)∗ for any T <∞. Moreover, by the properties of Gt−s(x, y),
we get from (8.34) that

∂U

∂t
(t, x)−∆U(t, x)

=
∫ t

0

∫

D

W (H)(s, y)
(
∂

∂t
−∆

)
Gt−s(x, y) dy ds+W (H)(t, x)

= W (H)(t, x). (8.37)

So U(t, x) satisfies (8.33).
Next we study the L2-integrability of U(t, x). In the standard white noise

case (Hi = 1/2 for all i) the same solution formula (8.34) holds. In this case
we see that the solution U(t, x) belongs to L2(P) if and only if
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E[U2(t, x)] =
∫ t

0

∫

D

G2
t−s(x, y) dy ds <∞.

Now, if D ⊂ (−1/2R, 1/2R)d and we put F = [−R,R]d,
∫ t

0

∫

D

G2
t−s(x, y) ds dy ∼

∫ t

0

∫

D

s−d exp
(
−2y2

δs

)
dy ds

∼
∫ t

0

[ ∫

F/
√

s

s−d/2 exp
(
−2z2

δ

)
dz

]
ds.

Hence, if Hi = 1/2 for all i = 0, 1, . . . , d, we have

E[U2(t, x)] <∞⇐⇒ d = 1. (8.38)

Now, consider the fractional case. Assume 1/2 < H0 < 1, and because of
(8.38) we may assume that at most one of the indices: H1,H2, . . . , Hd is less
than 1/2, say, 0 < H1 < 1/2. Then

E[U2(t, x)] =
∫

(MHGt−·(x, ·)(s, y))2ds dy ≤ C
∫ t

0

∫ t

0

∫

D

∫

D

∣∣∣∣
∂Gt−s(x, y)

∂y1

∣∣∣∣

·
∣∣∣∣
∂Gt−r(x, z)

∂z1

∣∣∣∣|r − s|2H0−2|y1 − z1|2H1

·
d∏

i=2

|yi − zi|2Hi−2 dy1 · · · dyd dz1 · · · dzd dr ds

∼
∫ t

0

∫ t

0

∫

D

∫

D

r−d/2−1s−d/2−1|x1 − y1||x1 − z1| exp
(
−|x− y|

2

δr

)

· exp
(
−|x− z|

2

δs

)
|r − s|2H0−2|y1 − z1|2H1

·
d∏

i=2

|yi − zi|2Hi−2 dy1 · · · dyd dz1 · · · dzd dr ds. (8.39)

Note that
∫ 1/2R

−1/2R

∫ 1/2R

−1/2R

|x1 − y1||x1 − z1| exp
(
−|x1 − y1|2

δr
− |x1 − z1|2

δs

)

· |y1 − z1|2H1 dy1 dz1

≤ Crs(rH1 + sH1). (8.40)

Using (see Inequality (2.1) of [161])
∫

R

∫

R

|f(x)||g(y)||x− y|2H−2 dx dy ≤ C||f ||L1/H ||g||L1/H , (8.41)
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we have
d∏

i=2

∫ 1/2R

−1/2R

∫ 1/2R

−1/2R

exp
(
−|xi − yi|2

δr
− |xi − zi|2

δs

)
|yi − zi|2Hi−2 dyi dzi

≤ C
d∏

i=2

{[∫ 1/2R

−1/2R

exp
(
−|xi − yi|2

Hiδr

)
dyi

]Hi

·
[ ∫ 1/2R

−1/2R

exp
(
−|xi − zi|2

Hiδs

)
dzi

]Hi
}

∼ (rs)1/2
∑d

i=2 Hi . (8.42)

Substituting (8.42) into (8.39), we have

E[U2(t, x)] ≤ C
t∫

0

t∫

0

(rs)−d/2+1/2
∑d

i=2 Hi(rH1 + sH1)

· |r − s|2H0−2 dr ds <∞

if d/2− 1/2
∑d

i=2Hi < 1 and 2− 2H0 +2(d/2−
∑d

i=2 1/2Hi)−H1 < 2. From
this we obtain that

E[U2(t, x)] <∞ if [(2H0 +H1) ∧ 2] +
d∑

i=2

Hi > d.

Now let 1/2 < Hi < 1 for all 1 ≤ i ≤ d. Then

E[U2(t, x)] =
∫

(MHGt−·(x, ·)(s, y))2 ds dy

∼
∫ t

0

∫ t

0

∫

D

∫

D

|Gt−s(x, y)Gt−r(x, z)| · |r − s|2H0−2

·
d∏

i=1

|yi − zi|2Hi−2 dy1 · · · dyd dz1 · · · dzd dr ds

∼
∫ t

0

∫ t

0

∫

D

∫

D

r−d/2s−d/2 exp
(
−|x− y|

2

δr

)
exp
(
−|x− z|

2

δs

)

· |r − s|2H0−2

·
d∏

i=1

|yi − zi|2Hi−2 dy1 · · · dyd dz1 · · · dzd dr ds. (8.43)

By (8.41), we have

d∏
i=1

∫ 1/2R

−1/2R

∫ 1/2R

−1/2R

exp
(
−|xi − yi|2

δr
− |xi − zi|2

δs

)
|yi − zi|2Hi−2 dyi dzi
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≤ C
d∏

i=1

{[∫ 1/2R

−1/2R

exp
(
−|xi − yi|2

Hiδr

)
dyi

]Hi

·
[ ∫ 1/2R

−1/2R

exp
(
−|xi − zi|2

Hiδs

)
dzi

]Hi
}

∼ (rs)1/2
∑d

i=1 Hi . (8.44)

Substituting (8.44) into (8.43), we have

E[U2(t, x)] ≤ C
t∫

0

t∫

0

(rs)−d/2+1/2
∑d

i=1 Hi |r − s|2H0−2 dr ds <∞ (8.45)

if 2H0 +
∑d

i=1Hi > d. We summarize what we have proved:

Theorem 8.4.1. 1. For any space dimension d there is a unique strong so-
lution U(t, x) : [0,∞) ×D → (S)∗ of the fractional heat equation (8.33).
The solution is given by

U(t, x) =

t∫

0

∫

D

W (H)(s, y)Gt−s(x, y) dy ds.

It belongs to C1,2((0,∞)×D → (S)∗) ∩ C([0,∞)× D̄ → (S)∗).
2. If 0 < H1 < 1/2, 1/2 < Hi < 1 for i = 0, 2, 3, . . . , d and

[(2H0 +H1) ∧ 2] +
d∑

i=2

Hi > d,

then U(t, x) ∈ L2(P) for all t ≥ 0, x ∈ D̄.
3. If 1/2 < Hi < 1 for i = 0, 1, ..., d and

2H0 +
d∑

i=1

Hi > d,

then U(t, x) ∈ L2(P) for all t ≥ 0, x ∈ D̄.

8.5 The quasi-linear stochastic fractional heat equation

Let f : R → R be a function satisfying

|f(x)− f(y)| ≤ L|x− y| for all x, y ∈ R (8.46)
|f(x)| ≤M(1 + |x|) for all x ∈ R, (8.47)
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where L and M are positive constants.
In this section we consider the following quasi-linear equation:
⎧
⎨
⎩
∂U

∂t
(t, x) =

1
2
∆U(t, x) + f(U(t, x)) +W (H)(t, x), t > 0, x ∈ R

n,

U(0, x) = U0(x), x ∈ R
n,

(8.48)

where U0(x) is a given bounded deterministic function on R
n. We say that

U(t, x) is a solution of (8.48) if
∫

Rn

U(t, x)ϕ(x) dx−
∫

Rn

U0(x)ϕ(x) dx

=
1
2

∫ t

0

∫

Rn

U(s, x)∆ϕ(x) dx ds+
∫ t

0

∫

Rn

f(U(s, x))ϕ(x) dx ds

+
∫ t

0

∫

Rn

ϕ(x) dB(H)(s, x) (8.49)

for all ϕ ∈ C∞
0 (Rn). As in Walsh [234] we can show that U(t, x) solves (8.49)

if and only if it satisfies the following integral equation:

U(t, x) =
∫

Rn

U0(y)Gt(x, y) dy +
∫ t

0

∫

Rn

f(U(s, y))Gt−s(x, y) dy ds

+
∫ t

0

∫

Rn

Gt−s(x, y) dB(H)(s, y), (8.50)

where

Gt−s(x, y) = (2π(t− s))−n/2 exp
(
− |x− y|

2

2(t− s)

)
, s < t, x ∈ R

n, (8.51)

is the Green function for the heat operator ∂/∂t− 1/2∆ in (0,∞)× R
n.

For the proof of our main result, we need the following two lemmas. Let
0 < α < 1. Define, for u > 0,

g(u, y) =
∫

R

|y − z|−α 1√
u

exp
(
− z

2

2u

)
dz.

Lemma 8.5.1. Assume p > 1/(1 − α). Then g(u, y) ≤ C(1 + u−1/2(1−1/p)),
where C is a constant independent of y and u.

Proof. In the proof, we will use C to denote a generic constant independent
of y and u. First, we have

g(u, y) =
∫

|z−y|≤1

|y − z|−α 1√
u

exp
(
− z

2

2u

)
dz

+
∫

|z−y|>1

|y − z|−α 1√
u

exp
(
− z

2

2u

)
dz.
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By the Hölder inequality,

g(u, y) ≤ C
{

1 +
[ ∫

|z−y|≤1

|y − z|−αp/(p−1)dz

](p−1)/p

·
[ ∫

|z−y|≤1

1
u1/2p

exp
(
− pz

2

2u

)
dz

]1/p}

≤ C(1 + u−1/2(1−1/p)) (8.52)

��

Let F (y1, y2, . . . , yn) denote a function on R
n.

Lemma 8.5.2. Let h = (h1, h2, . . . , hn) with hi ≥ 0, 1 ≤ i ≤ n. Assume that
F and all its partial derivatives of first order are integrable with respect to the
Lebesgue measure. Then

∫

Rn

|F (y − h)− F (y)| dy ≤
n∑

i=1

(∫

Rn

∣∣∣∂F
∂yi

(y1, y2, . . . , yn)
∣∣∣ dy
)
hi. (8.53)

Proof. Observe that

F (y − h)− F (y)

=
n∑

i=1

(F (y1, . . . , yi−1, yi − hi, yi+1 − hi+1, . . . , yn − hn)

− F (y1, . . . , yi−1, yi, yi+1 − hi+1, . . . , yn − hn))

=
n∑

i=1

∫ yi

yi−hi

−∂F
∂yi

(y1, . . . , yi−1, z, yi+1 − hi+1, . . . , yn − hn) dz. (8.54)

Integrating equation (8.54), we get

∫

Rn

|F (y − h)− F (y)| dy

≤
n∑

i=1

∫

Rn−1

dy1 · · · dyi−1 dyi+1 · · · dyn

·
∫

R

dyi

yi∫

yi−hi

∣∣∣∂F
∂yi

∣∣∣(y1, · · · , yi−1, z, yi+1 − hi+1, · · · , yn − hn) dz

=
n∑

i=1

∫

Rn−1

dy1 · · · dyi−1 dyi+1 · · · dyn
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·
∫

R

dz
∣∣∣∂F
∂yi

∣∣∣(y1, · · · , yi−1, z, yi+1 − hi+1, · · · , yn − hn)

z+hi∫

z

dyi

=
n∑

i=1

[∫

Rn

|∂F
∂yi

(y1, y2, . . . , yn)| dy
]
hi.

��

Our main result is the following:

Theorem 8.5.3. Let H = (H0,H1, . . . , Hn) ∈ (1/2, 1)n+1 with

Hi > 1− 1
n

for i = 1, 2, . . . , n.

Then there exists a unique L2(P)-valued random field solution U(t, x), t ≥ 0,
x ∈ R

n of (8.48). Moreover, the solution has a jointly continuous version in
(t, x) if H0 > 3/4.

Proof. Define

V (t, x) =
∫ t

0

∫

Rn

Gt−s(x, y) dB(H)(s, y).

Dividing R into regions {z : |z − y| ≤ 1} and {z : |z − y| > 1}, we see that a
slight modification of the arguments in Section 8.4 gives E[V 2(t, x)] <∞; so
V (t, x) exists as an ordinary random field. The existence of the solution now
follows by usual Picard iteration. Define

U0(t, x) = U0(x)

and iteratively

Uj+1(t, x) =
∫

Rn

U0(y)Gt(x, y) dy

+
∫ t

0

∫

Rn

f(Uj(s, y))Gt−s(x, y) dy ds+ V (t, x)

for j = 0, 1, 2, . . . Then by (8.47) Uj(t, x) ∈ L2(P) for all j. We have

Uj+1(t, x)− Uj(t, x) =
∫ t

0

∫

Rn

[f(Uj(s, y))− f(Uj−1(s, y))]Gt−s(x, y) dy ds,

and therefore by (8.46) if t ∈ [0, T ],

E
[
|Uj+1(t, x)− Uj(t, x)|2

]

≤ LE
[(∫ t

0

∫

Rn

|Uj(s, y)− Uj−1(s, y)|Gt−s(x, y) dy ds
)2]
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≤ L
(∫ t

0

∫

Rn

Gt−s(x, y) dy ds
)

· E
[ ∫ t

0

∫

Rn

|Uj(s, y)− Uj−1(s, y)|2Gt−s(x, y) dy ds
]

≤ CT

∫ t

0

sup
y
E[|Uj(s, y)− Uj−1(s, y)|2] ds

≤ Cj
T

∫ t

0

∫ s1

0

· · ·
∫ sj−1

0

sup
y
E[|U1(s, y)− U0(s, y)|2] ds dsj−1 · · · ds1

≤ ATC
j
T

T j

(j)!

for some constants AT , CT . It follows that the sequence {Uj(t, x)}∞j=1 of ran-
dom fields converges in L2(P) to a random field U(t, x). Letting k → ∞ in
(8.53), we see that U(t, x) is a solution of (8.48). The uniqueness follows from
the Gronwall’s inequality. It is not difficult to see that both

∫

Rn

Uo(y)Gt(x, y) dy and
∫ t

0

∫

Rn

f(U(s, y))Gt−s(x, y) dy ds

are jointly continuous in (t, x). So to finish the proof of the theorem, it suffices
to prove that V (t, x) has a jointly continuous version. To this end, consider
for h ∈ R,

V (t+ h, x)− V (t, x)

=
∫ t+h

t

∫

Rd

Gt+h−s(x, y) dB(H)(s, y)

+
∫ t

0

∫

Rn

(Gt+h−s(x, y)−Gt−s(x, y)) dB(H)(s, y)

(8.55)

By the estimate in (8.45) it follows that

E

[∣∣∣
∫ t+h

t

∫

Rn

Gt+h−s(x, y) dB(H)(s, y)
∣∣∣
2
]
≤ C

∫ t+h

t

(u− t)2H0−2 du

≤ Ch2H0−1. (8.56)

To estimate the second term on the right-hand side of (8.55), we proceed as
follows:

E

[
|
∫ t

0

∫

Rn

(Gt+h−s(x, y)−Gt−s(x, y)) dB(H)(s, y)|2
]

≤ C
∫

R

∫

R

I[0,t](r)I[0,t](s)|r − s|2H0−2

·
{∫

Rn

∫

Rn

[
(t+ h− r)−n/2 exp

(
− |x− z|2

2(t+ h− r)

)
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− (t− r)−n/2 exp
(
− |x− z|

2

2(t− r)

)]

·
[
(t+ h− s)−n/2 exp

(
− |x− y|2

2(t+ h− s)

)

−(t− s)−n/2 exp
(
− |x− y|

2

2(t− s)

)]

·
n∏

i=1

|yi − zi|2Hi−2 dy dz

}
dr ds (8.57)

≤ C
∫

R

∫

R

I[0,t](r)I[0,t](s)|r − s|2H0−2

·
{∫

Rn

∫

Rn

[
(r + h)−n/2 exp

(
− |z|2

2(r + h)

)
− r−n/2 exp

(
− |z|

2

2r

)]

·
[
(s+ h)−n/2 exp

(
− |y|2

2(s+ h)

)
− s−n/2 exp

(
− |y|

2

2s

)]

·
n∏

i=1

|yi − zi|2Hi−2 dy dz

}
dr ds. (8.58)

From (8.57) to (8.58), we first perform the change of variables, x − y = y′,
x − z = z′, t − r = r′, t − s = s′,and then we change the name of y′, z′, r′, s′

back to y, z, r, s again for simplicity. Inequality (8.58) is less than

C

∫ t

0

ds

∫ s

0

dr(s− r)2H0−2

·
{∫

Rn

dy

∫ s+h

s

[
−n

2
v−n/2−1 exp

(
− |y|

2

2v

)

+
1
2
v−n/2−2|y|2 exp

(
− |y|

2

2v

)]
dv

·
∫

Rn

[
(r + h)−n/2 exp

(
− |z|2

2(r + h)

)
− r−n/2 exp

(
− |z|

2

2r

)]

·
n∏

i=1

|yi − zi|2Hi−2 dz

}

≤ C
∫ t

0

ds

∫ s

0

dr(s− r)2H0−2

·
{∫ s+h

s

dv

∫

Rn

[
n

2
v−n/2−1 exp

(
− |y|

2

2v

)

+
1
2
v−n/2−2|y|2 exp

(
− |y|

2

2v

)]
dy
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·
∫

Rn

[
(r + h)−n/2 exp

(
− |z|2

2(r + h)

)
+ r−n/2 exp

(
− |z|

2

2r

)]

·
n∏

i=1

|yi − zi|2Hi−2 dz

}
. (8.59)

Choose p > 1 such that

1
2Hi − 1

< p <
n

n− 2
for i = 1, 2, . . . , n.

This is possible since Hi > 1− 1/n for i = 1, 2, . . . , n. Then

2p
p− 1

> d and
p

p− 1
(2Hi − 2) > −1, i = 1, 2, . . . , n.

Now applying Lemma 8.5.1 repeatedly to this choice of p and to α = 2− 2Hi,
we get

(8.59) ≤ C
∫ t

0

ds

∫ s

0

dr(s− r)2H0−2

·
∫ s+h

s

dv
1
v

(
1 + Cr−1/2(1−1/p)

)n

≤ C
∫ t

0

ds

∫ s

0

dr

·
∫ s+h

s

dv
1
v

(
1 + r−n/2(1−1/p)

)
(s− r)2H0−2. (8.60)

Choose β such that 2− 2H0 < β < 1. It follows that (8.60) is dominated by

C

∫ t

0

ds

∫ s

0

dr
1

s1−β

∫ s+h

s

dv
1
vβ

(
1 + r−n/2(1−1/p)

)
(s− r)2H0−2

≤ Ch1−β

∫ t

0

ds

∫ s

0

dr
1

s1−β
r−n/2(1−1/p)(s− r)2H0−2

= Ch1−β

∫ t

0

ds
1

s1−β

[ ∫ s/2

0

r−n/2(1−1/p)(s− r)2H0−2 dr

+
∫ s

s/2

r−n/2(1−1/p)(s− r)2H0−2 dr

]

≤ Ch1−β

∫ t

0

1
s1−β

s1−n/2(1−1/p)−(2−2H0) ds ≤ Ch1−β . (8.61)

On the other hand, for k ∈ R
n we have

V (t, x+ k)− V (t, x) =
∫ t

0

∫

Rn

[Gt−s(x+ k, y)−Gt−s(x, y)] dB(H)(s, y)
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Hence, by (8.51),

E[ |V (t, x+ k)− V (t, x)|2]

≤ C
∫ t

0

∫ t

0

|r − s|2H0−2

·
∫

Rn

∫

Rn

{
(t− r)−n/2

[
exp
(
− |x+ k − y|2

2(t− r)

)

− exp
(
− |x− y|

2

2(t− r)

)]}

·
{

(t− s)−n/2

[
exp
(
− |x+ k − z|2

2(t− s)

)
− exp

(
− |x− z|

2

2(t− s)

)]}

·
n∏

i=1

|yi − zi|2Hi−2 dy dz dr ds

≤ C
∫ t

0

∫ t

0

|r − s|2H0−2

·
∫

Rn

∫

Rn

{
r−n/2

[
exp
(
− |y + k|2

2r

)
− exp

(
− |y|

2

2r

)]}

·
{
s−n/2

[
exp
(
− |z + k|2

2s

)
− exp

(
− |z|

2

2s

)]}

·
n∏

i=1

|yi − zi|2Hi−2 dy dz dr ds

≤ C
∫ t

0

ds

∫ s

0

dr(s− r)2H0−2

·
∫

Rd

dy

∣∣∣∣s−n/2

[
exp
(
− |y + k|2

2s

)
− exp

(
− |y|

2

2s

)]∣∣∣∣

·
∫

Rn

dz

{
r−n/2

[
exp
(
− |z + k|2

2r

)
− exp

(
− |z|

2

2r

)]}

·
n∏

i=1

|yi − zi|2Hi−2. (8.62)

Applying Lemma 8.5.1 and Lemma 8.5.2 we get

(8.62) ≤ C
∫ t

0

ds

∫ s

0

dr(s− r)2H0−2
(
1 + r−1/2(1−1/p)

)n

·
n∑

i=1

|ki|
∫

Rn

s−n/2−1exp
(
− |y|

2

2s

)
|yi| dy

≤ C|k|
∫ t

0

ds

∫ s

0

dr
1
s1/2

(s− r)2H0−2 r−n/2(1−1/p)
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≤ C|k|
∫ t

0

ds
1
s1/2

[ ∫ s/2

0

dr(s− r)2H0−2 r−n/2(1−1/p)

+
∫ s

s/2

dr(s− r)2H0−2 r−n/2(1−1/p)

]

≤ C|k|
∫ t

0

s2H0−n/2(1−1/p)−3/2 ds ≤ C|k|, if H0 > 3/4. (8.63)

Combining the estimates (8.56), (8.61), and (8.63) we get, for some β < 1,

E[ |V (t+ h, x+ k)− V (t, x)|2] ≤ C[h1−β + |k| ].

Since V (t+h, x+ k)−V (t, x) is a Gaussian random variable with mean zero,
it follows that for any m ≥ 1,

E[ |V (t+ h, x+ k)− V (t, x)|2m] ≤ CmE[ |V (t+ h, x+ k)− V (t, x)|2]m

≤ Cm[h1−β + |k| ]m ≤ Cm[h1−β + |k|]m.

Hence, by Kolmogorov’s theorem we conclude that V (t, x) admits a jointly
continuous version. ��



9

Stochastic optimal control and applications

Stochastic control has many important applications and is a crucial branch
of mathematics. Some textbooks contain fundamental theory and examples
of applications of stochastic control theory for systems driven by standard
Brownian motion (see, for example, [96], [97], [182], [231]). In this chapter we
shall deal with the stochastic control problem where the controlled system is
driven by a fBm.

Even in the stochastic optimal control of systems driven by Brownian
motion case or even for deterministic optimal control the explicit solution is
difficult to obtain except for linear systems with quadratic control. There are
several approaches to the solution of classical stochastic control problem. One
is the Pontryagin maximum principle, another one is the Bellman dynamic
programming principle. For linear quadratic control one can use the technique
of completing squares. There are also some other methods for specific prob-
lems. For example, a famous problem in finance is the optimal consumption
and portfolio studied by Merton (see [162]), and one of the main methods
to solve this problem is the martingale method combined with Lagrangian
multipliers. See [135] and the reference therein.

The dynamic programming method seems difficult to extend to fBm since
fBm – and solutions of stochastic differential equations driven by fBm – are
not Markov processes. However, we shall extend the Pontryagin maximum
principle to general stochastic optimal control problems for systems driven
by fBms. To do this we need to consider backward stochastic differential
equations driven by fBm.

9.1 Fractional backward stochastic differential equations

Let B(H)
t , t ≥ 0, be a fBm with Hurst index H > 1/2 on the probability

space (Ω,F(H),PH) endowed with the natural filtration F
(H)
t of B(H) and

F(H) = ∨t≥0F
(H)
t . Let b : [0, T ] × R × R → R be a given function and let
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F : Ω → R be a given F
(H)
T -measurable random variable, where T > 0 is a

constant. Consider the problem of finding F(H)-adapted processes p(t), q(t)
such that

dp(t) = b(t, p(t), q(t)) dt+ q(t) dB(H)(t), t ∈ [0, T ], (9.1)

P (T ) = F a.s.. (9.2)

This is a fractional backward stochastic differential equation in the two un-
known processes p(t) and q(t) since the terminal condition instead of initial
condition is given. This equation is the generalization of backward stochas-
tic differential equation for Brownian motion case to fBm case. We will not
discuss general theory for such equations. Instead we shall present a detailed
study of linear variant of (9.1) and (9.2), namely,

dp(t) = [α(t) + btp(t) + ctq(t)] dt+ q(t) dB(H)(t), t ∈ [0, T ], (9.3)

P (T ) = F a.s., (9.4)

where bt and ct are given continuous deterministic functions and α(t) = α(t, ω)
is a given F(H)-adapted process such that

∫ T

0
|α(t, ω)|dt <∞ almost surely.

To solve (9.3) and (9.4) we proceed as follows. By the fractional Girsanov
theorem 3.2.4 we can rewrite (9.3) as

dp(t) = [α(t) + btp(t)] dt+ q(t) dB̂(H)(t), t ∈ [0, T ], (9.5)

where

B̂(H)(t) = B(H)(t) +
∫ t

0

cs ds

is a fBm (with Hurst parameter H) under the new probability measure P̂
H

on F
(H)
T defined by

dP̂H(ω)
dPH(ω)

= exp� (−〈ω, ĉ〉) = exp

(
−
∫ T

0

ĉ(s) dB(H)(s)− 1
2‖ĉ‖

2
H

)
,

where ĉ = ĉt is the continuous function with supp (ĉ) ⊂ [0, T ] satisfying

∫ T

0

ĉsφ(s, t) ds = ct, 0 ≤ t ≤ T,

where φ is defined in (3.1) and here

‖ĉ‖2H =
∫ T

0

∫ T

0

ĉ(s)ĉ(t)φ(s, t) ds dt.

If we multiply (9.5) by the integrating factor
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βt := exp(−
∫ t

0

bs ds),

we get
d(βsp(s)) = βsα(s) ds+ βsq(s) dB̂(H)(s), (9.6)

or, by integrating (9.6) from s = t to s = T ,

βTF = βtp(t) +
∫ T

t

βsα(s) ds+
∫ T

t

βsq(s) dB̂(H)(s). (9.7)

Assume from now on that

‖α‖2
L̂φ(0,T )

:= E
P̂H

[∫ T

0

∫ T

0

α(s)α(t)φ(s, t) ds dt

]

+ E
P̂H

[∫ T

0

∫ T

0

D̂φ
sα(t)D̂φ

t α(s) ds dt

]
<∞, (9.8)

where D̂φ denotes the φ-derivative at s with respect to B̂(H)(·). By the frac-
tional Itô isometry (3.41) applied to B̂(H) and P̂

H we then have

E
P̂H

⎡
⎣
(∫ T

0

α(s) dB̂(H)(s)

)2
⎤
⎦ = ‖α‖2

L̂φ(0,T )
. (9.9)

From now on let us also assume that

E
P̂H

[
F 2
]
<∞. (9.10)

We now apply the quasi-conditional expectation operator (3.50)

Ẽ
P̂H

[
·|F(H)

t

]

to both sides of (9.7) and get

βT ẼP̂H

[
F |F(H)

t

]
= βtp(t) +

∫ T

t

βsẼP̂H

[
α(s)|F(H)

t

]
ds. (9.11)

Here we have used that p(t) is F
(H)
t -measurable, that the filtration F̂

(H)
t gen-

erated by B̂(H)(s) ; s ≤ t is the same as F
(H)
t , and that

Ẽ
P̂H

[∫ T

t

f(s, ω) dB̂(H)(s)|F̂(H)
t

]
= 0, ∀t ≤ T,

for all f ∈ L̂φ(0, T ).
From (9.11) we get the solution
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p(t) = exp

(
−
∫ T

t

bs ds

)
Ẽ

P̂H

[
F |F(H)

t

]

+
∫ T

t

exp
(
−
∫ s

t

br dr

)
Ẽ

P̂H

[
α(s)|F(H)

t

]
ds, t ≤ T.

(9.12)

In particular, choosing t = 0, we get

p(0) = exp

(
−
∫ T

0

bs ds

)
E

P̂H [F ]

+
∫ T

0

exp
(
−
∫ s

0

brdr

)
E

P̂H [α(s)] ds.

(9.13)

Note that p(0) is F
(H)
0 -measurable and hence a constant. Choosing t = 0 in

(9.7), we get

G =
∫ T

0

βsq(s) dB̂(H)(s), (9.14)

where

G = G(ω) = βTF (ω)−
∫ T

0

βsα(s, ω) ds− p(0),

with p(0) given by (9.13).
By the fractional Clark Hausmann Ocone theorem (3.10.8) applied to

(B̂(H), P̂H) we have

G = E
P̂H [G] +

∫ T

0

Ẽ
P̂H

[
D̂sG|F̂(H)

s

]
dB̂(H)(s). (9.15)

Comparing (9.14) and (9.15), we see that we can choose

q(t) = exp
(∫ t

0

br dr

)
Ẽ

P̂H

[
D̂tG|F(H)

t

]
. (9.16)

We have proved the first part of the following result:

Theorem 9.1.1 ([31]).
Assume that (9.8) and (9.10) hold. Then a solution (p(t), q(t)) of (9.3) and
(9.4) is given by (9.12) and (9.16). The solution is unique among all F

(H)
· -

adapted processes p(·), q(·) ∈ L̂φ(0, T ).

Proof. It remains to prove uniqueness. The uniqueness of p(·) follows from
the way we deduced formula (9.12) from (9.3) and (9.4). The uniqueness of
q is deduced from (9.14) and (9.15) by the following argument: Substituting
(9.15) from (9.14) and using that E

P̂H [G] = 0, we get

0 =
∫ T

0

{
βsq(s)− ẼP̂H

[
D̂sG|F̂(H)

s

]}
dB̂(H)(s).
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Hence by the fractional Itô isometry (9.9)

0 = E
P̂H

⎡
⎣
(∫ T

0

{
βsq(s)− ẼP̂H

[
D̂sG|F̂(H)

s

]}
dB̂(H)(s)

)2
⎤
⎦

= ‖βsq(s)− ẼP̂H

[
D̂sG|F̂(H)

s

]
‖2

L̂φ(0,T )
,

from which it follows that

βsq(s)− ẼP̂H

[
D̂sG|F̂(H)

s

]
= 0 for a.a. (s, ω) ∈ [0, T ]×Ω.

��

For more information about backward stochastic differential equations
driven by fBm, see [18].

9.2 A stochastic maximum principle

We now apply the theory in the previous section to prove a maximum principle
for systems driven by fBm. See, e.g., [107], [186] and [231] and the references
therein for more information about the maximum principle in the classical
Brownian motion case.

Consider an m-dimensional fBm B(H)(t) with Hurst parameter H =
(H1,H2, . . . , Hm), 1/2 < Hi < 1, i = 1, . . . ,m, on the probability space
(Ω,F,PH) endowed with the natural filtration F

(H)
t generated by B(H),

where P
H is the probability measure defined in (3.55) of Chapter 3. Suppose

X(t) = X(u)(t) is a controlled system of the form

dX(t) = b(t,X(t), u(t)) dt+σ(t,X(t), u(t)) dB(H)(t), X(0) = x ∈ R
n, (9.17)

where b : [0.T ]×R
n ×U → R

n and σ : [0, T ]×R
n ×U → R

n×m are given C1

functions. The control process u(·) : [0, T ] × Ω → U ⊂ R
k is assumed to be

F(H)-adapted, and U is a given closed convex set in R
k.

Let f : [0, T ] × R
n × U → R, g : R

n → R, and G : R
n → R

N be given
lower bounded C1 functions and define the performance functional J(u) by

J(u) = E

[∫ T

0

f(t,X(t), u(t)) dt+ g(X(T ))

]
(9.18)

and the terminal condition by

E [G(X(T ))] = 0.

Definition 9.2.1. Let A denote the set of all F
(H)
t -adapted processes u :

[0, T ]×Ω → U such that X(u)(t) exists and does not explode in [0, T ] and such
that (9.17) holds. If u ∈ A and X(u)(t) is the corresponding state process, we
call (u,X(u)) an admissible pair.
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Consider the problem to find J∗ and u∗ ∈ A such that

J∗ = sup {J(u) ;u ∈ A} = J(u∗). (9.19)

If such u∗ ∈ A exists, then u∗ is called an optimal control and (u∗,X∗), where
X∗ = Xu∗

, is called an optimal pair.
Let C ([0, T ]; Rn×m) be the set of continuous function from [0, T ] into

R
n×m. Define the Hamiltonian H : [0, T ]×R

n×U×R
n×C ([0, T ]; Rn×m) → R

by

H(t, x, u, p, q(·)) = f(t, x, u) + b(t, x, u)T p

+
n∑

i=1

m∑
k=1

σik(t, x, u)
∫ T

0

qik(s)φHk
(s, t) ds,

where φHk
(s, t) is defined in Chapter 3, (3.1). Consider the following fractional

backward stochastic differential equation in the pair of unknown F
(H)
t -adapted

processes p(t) ∈ R
n and q(t) ∈ R

n×m called the adjoint processes:
{
dp(t) = −Hx(t,X(t), u(t), p(t), q(·)) dt+ q(t)dB(H)(t), t ∈ [0, T ].
p(T ) = gx(X(T )) + λTGx(X(T )).

(9.20)

where Hx = ∇xH = (∂H/∂x1 , . . . , ∂H/∂xn)T is the gradient of H with
respect to x and similarly with gx and Gx. X(t) = X(u)(t) is the process
obtained by using the control u ∈ A and λ ∈ R

n
+ is a constant. The equation

(9.20) is called the adjoint equation and p(t) is sometimes interpreted as the
shadow price (of a resource).

Lemma 9.2.2. Let X(t) and Y (t) be two processes of the form

dX(t) = µ(t, ω) dt+ σ(t, ω) dB(H)(t), X(0) = x ∈ R
n

and
dY (t) = ν(t, ω) dt+ θ(t, ω) dB(H)(t), Y (0) = y ∈ R

n ,

where µ : [0, T ]×Ω → R
n, ν : [0, T ]×Ω → R

n, σ : [0, T ]×Ω → R
n×m, and

θ : [0, T ] × Ω → R
n×m are given processes with rows σi, θi ∈ L

(m)
φ (0, T ) for

1 ≤ i ≤ n and BH(·) is an m-dimensional fBm.

1. Then, for T > 0,

E [X(T ) · Y (T )]

= x · y + E

[∫ T

0

X(s) dY (s)

]
+ E

[∫ T

0

Y (s) dX(s)

]

+ E

[∫ T

0

∫ T

0

n∑
i=1

m∑
k=1

σik(s)θik(t)φHk
(s, t) ds dt

]

+ E

⎡
⎣

n∑
i=1

m∑
j,k=1

(∫

R

∫

R

Dφ
j,tσik(s)Dφ

k,sθij(t) dt ds
)
⎤
⎦
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provided that the first two integrals exist.

2. In particular, if σ(·) or θ(·) is deterministic, then

E [X(T ) · Y (T )]

= x · y + E

[∫ T

0

X(s) dY (s)

]
+ E

[∫ T

0

Y (s) dX(s)

]

+ E

[∫ T

0

∫ T

0

n∑
i=1

m∑
k=1

σik(s)θik(t)φHk
(s, t) ds dt

]
.

Theorem 9.2.3 (The fractional stochastic maximum principle). [31]
Suppose û ∈ A and put X̂ = X(û). Let p̂(t), q̂(t) be a solution of the corre-
sponding adjoint equation (9.20) for some λ ∈ R

n
+. Put ∆4 equal to

E

[ n∑
i=1

m∑
j,k=1

∫ T

0

∫ T

0

D
φj

j,s

{
σik(t,X(t), u(t))−σik(t, X̂(t), û(t))

}
Dφk

k,tq̂ij(s) dt ds
]
.

Assume that (9.21) to (9.23) hold,

H(t, ·, ·, p̂(t), q̂(t)), g(·) and G(·) are concave, for all t ∈ [0, T ], (9.21)

H(t, X̂(t), û(t), p̂(t), q̂(·)) = max
v∈U

H(t, X̂(t), v, p̂(t), q̂(·)), (9.22)

∆4 ≤ 0, (9.23)

and that [X(t) − X̂(t)]q̂(t) and p̂(t)T
[
σ(t, X̂(t), û(t))− σ(t,X(t), u(t))

]
are

fWIS integrable for all u ∈ A. Then if λ ∈ R
n
+ is such that (û, X̂) is admissible

[i.e., (9.17) holds], the pair (û, X̂) is an optimal pair for problem (9.19).

Proof. We first give a proof in the case when G(x) = 0, i.e., when there is no
terminal condition.

If dp(t) = ξ(t) dt+ η(t) dB(H)(t), then we put
∫ T

0

ρ(t) dp(t) :=
∫ T

0

ρ(t)ξ(t) dt+
∫ T

0

ρ(t)η(t) dB(H)(t),

where
∫ T

0
ρ(t)η(t) dB(H)(t) denotes the fWIS stochastic integral defined in

Chapter 3. With (û, X̂) as above, consider

∆ =: E

[∫ T

0

f(t, X̂(t), û(t)) dt−
∫ T

0

f(t,X(t), u(t)) dt

]

=: ∆1 +∆2 +∆3, (9.24)

where
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∆1 :=E

[∫ T

0

H(t, X̂(t), û(t), p̂(t), q̂(·)) dt−
∫ T

0

H(t,X(t), u(t), p̂(t), q̂(·)) dt
]

∆2 :=− E
[∫ T

0

b(t, X̂(t), û(t))T p̂(t) dt−
∫ T

0

b(t,X(t), u(t))T p̂(t) dt

]

and −∆3 is equal to

E

[ ∫ T

0

∫ T

0

n∑
i=1

m∑
k=1

Ψik(s, X̂(s), û(s),X(s), u(s))q̂ik(t)φHk
(s, t) ds dt

]
,

where Ψik(s, X̂(s), û(s),X(s), u(s)) := σik(s, X̂(s), û(s)) − σik(s,X(s), u(s)).
Since (x, u) → H(x, u) = H(t, x, u, p, q(·)) is concave, we have

H(x, u)−H(x̂, û) ≤ Hx(x̂, û) · (x− x̂) +Hu(x̂, û) · (u− û)

for all (x, u), (x̂, û). Since v → H(X̂(t), v) is maximal at v = û(t), we have

Hu(x̂, û) · (u(t)− û(t)) ≤ 0 ∀t ∈ [0, T ].

Therefore,

∆1 ≥ E
[∫ T

0

−Hx(t, X̂(t), û(t), p̂(t), q̂(·)) · (X(t)− X̂(t)) dt

]

= E

[∫ T

0

(X(t)− X̂(t))T dp̂(t)−
∫ T

0

(X(t)− X̂(t))T q̂(t) dB(H)(t)

]
.

Since E
[∫ T

0
(X(t)− X̂(t))T q̂(t) dB(H)(t)

]
= 0, this gives

∆1 ≥ E
[∫ T

0

(X(t)− X̂(t))T dp̂(t)

]
.

By (9.17) we have

∆2 = −E
[∫ T

0

{
b(t, X̂(t), û(t))− b(t,X(t), u(t))

}
· p̂(t) dt

]

= −E
[∫ T

0

p̂(t)
(
dX̂(t)− dX(t)

)]

− E
[∫ T

0

p̂(t)T
{
σ(t, X̂(t), û(t))− σ(t,X(t), u(t))

}
dB(H)(t)

]

= E

[∫ T

0

p̂(t)
(
dX(t)− dX̂(t)

)]
.
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Finally, since g is concave, we have

g(X(T ))− g(X̂(T )) ≤ gx(X̂(T )) · (X(T )− X̂(T )) (9.25)

Combining (9.24) through (9.25) with Lemma 9.2.2, we get, using (9.18),
(9.20), and (9.23),

J(û)− J(u)

= ∆+ E
[
g(X̂(T ))− g(X(T ))

]

≥ ∆+ E
[
gx(X̂(T )) · (X̂(T )−X(T ))

]

≥ ∆− E
[
p̂(T ) ·

(
X(T )− X̂(T )

)]

= ∆−
{
E

[∫ T

0

(
X(t)− X̂(t)

)
dp̂(t)

]
+ E

[∫ T

0

p̂(t)
(
dX(t)− dX̂(t)

)]

+ E
[ ∫ T

0

∫ T

0

n∑
i=1

m∑
k=1

Ψik(s, X̂(s), û(s),X(s), u(s))q̂ik(t)φHk
(s, t) ds dt

]

+ E
[ n∑

i=1

m∑
j,k=1

∫ T

0

∫ T

0

D
φj

j,s

{
Ψik(t,X(t), u(t), X̂(t), û(t))

}

·Dφk

k,tq̂ij(s) dt ds
]}

≥ ∆− (∆1 +∆2 +∆3 +∆4) ≥ 0,

where Ψik(s, X̂(s), û(s),X(s), u(s)) = σik(s, X̂(s), û(s)) − σik(s,X(s), u(s)).
This shows that J(û) is maximal among all admissible pairs (u(·),X(·)). This
completes the proof in the case with no terminal conditions (G = 0).

Finally consider the general case with G �= 0. Suppose that for some λ0 ∈
R

n
+ there exists ûλ0 satisfying (9.21) to (9.23). Then by the above argument

we know that if we put

Jλ0(u) = E

[∫ T

0

f(t,X(t), u(t))dt+ g(X(T )) + λT
0G(X(T ))

]
,

then Jλ0(ûλ0) ≥ Jλ0(u) for all controls u (without terminal condition). If λ0 is
such that ûλ0 satisfies the terminal condition (i.e., ûλ0 ∈ A) and u is another
control in A, then

J(ûλ0) = Jλ0(ûλ0) ≥ Jλ0(u) = J(u),

and hence ûλ0 ∈ A maximizes J(u) over all u ∈ A. ��
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Corollary 9.2.4. Let û ∈ A, X̂ = X(û) and (p̂(t), q̂(t)) be as in Theorem
9.2.3. Assume that (9.21) and (9.22) hold and that condition (9.23) is replaced
by the condition

q̂(·) or σ(·, X̂(·), û(·)) is deterministic .

Suppose that [X(t) − X̂(t)]q̂(t) and p̂(t)T
[
σ(t, X̂(t), û(t))− σ(t,X(t), u(t))

]

are fWIS integrable for all u ∈ A. Then if λ ∈ R
n
+ is such that (û, X̂) is

admissible, the pair (û, X̂) is optimal for problem (9.19).

In the following sections we illustrate our main results with several exam-
ples.

9.3 Linear quadratic control

We start by extending the following classical control model to the fBm case.
The controlled dynamics is given by the following fWIS-type SDE where the
state is scalar-valued:

⎧
⎪⎨
⎪⎩

dxt = (atxt + btut) dt+ (ctxt + dtut) dB
(H)
t ,

x0 ∈ R is given and deterministic,
(9.26)

where at, bt, ct, and dt, 0 ≤ t ≤ T , are given essentially bounded deterministic
functions of t. The process ut is assumed to be a Markov linear feedback
control, namely,

ut = Ktxt ,

where Kt is an essentially bounded deterministic function of t. Such a control
is also referred to as an admissible (Markov linear feedback) control in this
section.

Under each admissible control ut = Ktxt, the system (9.26) reduces to the
following linear SDE

⎧
⎪⎨
⎪⎩

dxt = (at + btKt)xtdt+ (ct + dtKt)xtdB
(H)
t ,

x0 ∈ R is given and deterministic.
(9.27)

Hence K· itself, also known as the feedback gain, can be regarded as a control.
For every initial state x0 and admissible control ut = Ktxt, there is an asso-
ciated cost

J(x0, u·) ≡ J(x0,K·) = E

[∫ T

0

(Qtx
2
t +Rtu

2
t ) dt+Gx

2
T

]
, (9.28)
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where x· is the solution of (9.26) under the control u· (or equivalently, K·),
Qt and Rt are given essentially bounded deterministic functions in t, and
G is a given deterministic scalar. Our optimal stochastic control problem is
to minimize the cost functional (9.28), for each given x0, over the set of all
admissible Markov linear feedback controls.

Theorem 9.3.1. Assume that for almost every t ∈ [0, T ], dt = 0, Qt ≥ 0,
and Rt > δ for some given δ > 0, and G ≥ 0. Then the following Riccati
equation

⎧
⎪⎨
⎪⎩

ṗt + 2pt[at + ct
∫ t

0
φ(t, s)cs ds] +Qt −R−1

t b2tp
2
t = 0

pT = G

(9.29)

admits a unique solution pt over [0, T ] with pt ≥ 0 for all t ∈ [0, T ]. Moreover,
the optimal Markov linear feedback control for the problem in (9.27) and (9.28)
is given by

ût = K̂txt with K̂t = −R−1
t btpt.

Finally, the optimal value is p0x2
0.

Proof. The unique solvability of the (classical) Riccati equation (9.29) was
proved in, e.g., [231, p. 297, Corollary 2.10]. Next, for any admissible control
ut = Ktxt, applying the Itô formula to the equation (9.27) with dt = 0, we
get

d(ptx
2
t ) = x2

t

[
ṗt + 2pt(at + btKt) + 2ptct

∫ t

0

φ(t, s)cs ds
]
dt+ 2x2

t ctpt dB
(H)
t .

Taking integration from 0 to T , we get

pTx
2
T = p0x

2
0 +
∫ T

0

x2
t

[
ṗt + 2pt(at + btKt) + 2ptct

∫ t

0

φ(t, s)cs ds
]
dt

+ 2
∫ T

0

x2
t ctpt dB

(H)
t .

Denote ft = x2
t ctpt. It is easy to see that

∫ T

0

∫ T

0

φ(s, t)E [|fsft|] ds dt <∞.

On the other hand, Dφ
t xt = xt

∫ t

0
φ(t, s)cs ds. It is straightforward to check by

Corollary 9.2.2 that

sup
0≤s≤t≤T

E
[
|Dφ

t xt|p
]
<∞ ∀ p ≥ 1.

This implies that ft is integrable and
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E

[∫ T

0

x2
t ctpt dB

(H)
t

]
= 0.

Hence,

E
[
pTx

2
T

]
= p0x

2
0+E

[∫ T

0

x2
t

[
ṗt + 2pt(at + btKt) + 2ptct

∫ t

0

φ(t, s)cs ds
]
dt

]
.

Since pT = G, we obtain

J(x0,K·) = p0x
2
0 + E

[ ∫ T

0

x2
t (ṗt + 2pt(at + btKt)

+ (Qt +RtK
2
t ) + 2ptct

∫ t

0

φ(t, s)csds)dt
]

= p0x
2
0 + E

[ ∫ T

0

x2
t (ṗt + 2ptat + 2ptct

∫ t

0

φ(t, s)csds+Qt

+Rt(Kt +R−1
t btpt)2 −R−1

t b2tp
2
t )dt
]

= p0x
2
0 + E

[∫ T

0

Rt(Kt +R−1
t btpt)2dt

]
, (9.30)

where the last equality is due to the Riccati equation (9.29). Equation (9.30)
shows that the cost function achieves its minimum when K̂t = −R−1

t btpt,
with the minimum value being p0x2

0. This proves the theorem. ��

Remark 9.3.2. It is interesting to note that the Riccati equation (9.29) cor-
responds to the following linear–quadratic control problem with (normal)
Brownian motion: Minimize (9.28) subject to

⎧
⎪⎨
⎪⎩

dxt = (atxt + btut)dt+ c̃txtdWt,

x0 ∈ R is given and deterministic,

where c̃t =
√

2ct
∫ t

0
φ(t, s)cs ds if ct

∫ t

0
φ(t, s)cs ds ≥ 0 for all t ≥ 0. This sug-

gests that, in the current setting, the linear–quadratic control problem with
fBm is equivalent (in the sense of sharing the same optimal feedback con-
trol and optimal value) to a linear–quadratic control problem with Brownian
motion where the diffusion coefficient of the state is properly modified.

9.4 A minimal variance hedging problem

We move now to consider some problems from mathematical finance. The
first one is a minimal variance hedging problem. For a discussion and an
introduction to the use of fBm in finance we refer to Chapter 7.
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Consider a financial market driven by two independent fBms B1(t) =
B(H1)(t) and B2(t) = B(H2)(t), with 1/2 < Hi < 1, i = 1, 2, according to the
WIS integration model presented in Chapter 7, as follows:

Risk-free asset price: dS0(t) = 0, (9.31)
Generalized value of company 1: dS1(t) = dB1(t), (9.32)
Generalized value of company 2: dS2(t) = dB1(t) + dB2(t), (9.33)

respectively, with initial values S0(0) = 1, S1(0) = s1, S2(0) = s2. If θ(t) =
(θ0(t), θ1(t), θ2(t)) ∈ R

3 is a WIS admissible portfolio (Definition 7.2.4) (giving
the number of units of the risk-free asset, stock on company 1, and stock on
company 2, respectively, held at time t), then the corresponding generalized
value process is [see (7.14)]

V θ(t) = V θ(0) +
∫ t

0

θ1(s) dS1(s)) +
∫ t

0

θ2(s) dS2(s).

It follows from the fractional Clark–Haussmann–Ocone theorem (Theorem
3.10.8) that this market is strong arbitrage free and complete. The latter means
that any bounded F

(H)
T -measurable random variable F can be hedged (or

replicated), in the sense that there exists a WIS admissible portfolio θ(t) and
an initial value z ∈ R such that

F (ω) = z +
∫ T

0

θ1(s) dS1(s)) +
∫ T

0

θ2(s) dS2(s) for a.a. ω.

(See [233] for a general discussion about this.)
Let us now assume that we are not allowed to trade in stock 1, i.e., we

must have θ1(t) ≡ 0. How close to, say, the value F (ω) = B1(T, ω) can we get
at the terminal value if we must hedge under this constraint?

If we put θ2(t) = u(t) and interpret “close” as having a small L2(PH)
distance to F , then the problem can be stated as follows: Find z ∈ R and
u(t, ω) ∈ L

(2)
φ (0, T ), F

(H)
t -adapted, such that

J(z, u) :=E

⎡
⎣
(
B1(T )−

{
z +
∫ T

0

u(t)[dB1(t) + dB2(t)]

})2
⎤
⎦

=z2 + E

[{∫ T

0

[u(t)− 1] dB1(t) +
∫ T

0

u(t) dB2(t)
}2
]

is minimal. We see immediately that it is optimal to choose z = 0; so it
remains to minimize over u(t) = u(t, ω) the functional

J(u) := E

[{∫ T

0

[u(t)− 1] dB1(t) +
∫ T

0

u(t) dB2(t)
}2
]
.
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If we apply the fractional Itô isometry (3.41), we get, after some simplifica-
tions,

J(u) = E

[∫ T

0

∫ T

0

{
[u(s)− 1][u(t)− 1]φ1(s, t) + u(s)u(t)φ2(s, t)

}
ds dt

]

+ E

[∫ T

0

∫ T

0

{
Dφ

1,tu(s)−D
φ
2,tu(s)

}{
Dφ

1,su(t)−D
φ
2,su(t)

}
dt ds

]
.

However, it is difficult to see from this what the minimizing u(t) is.
To approach this problem by using the fractional maximum principle, we

define the state process X(t) by

dX(t) = (u(t)− 1) dB1(t) + u(t) dB2(t). (9.34)

Then the problem is equivalent to maximizing

J1(u) := E

[
−1

2
X2(T )

]
.

The Hamiltonian for this problem is

H(t, x, u, p, q(·)) = (u− 1)
∫ T

0

q1(s)φ1(s, t) ds+ u
∫ T

0

q2(s)φ2(s, t) ds

= (u− 1)
∫ T

0

q1(s)φ1(s, t) ds+ u
∫ T

0

q2(s)φ2(s, t) ds

= u
[ ∫ T

0

q1(s)φ1(s, t) ds+
∫ T

0

q2(s)φ2(s, t) ds
]

−
∫ T

0

q1(s)φ1(s, t) ds.

(9.35)

The adjoint equation is

dp(t) = q1(t)dB1(t) + q2(t)dB2(t), t < T,

p(T ) = −X(T ) .

Comparing with (9.34), we see that this equation has the solution

q1(t) = 1− u(t), q2 = −u2(t), p(t) = −X(t), t ≤ T.
Let û(t) be an optimal control candidate. Then by (9.35)

H(t, X̂(t), v, p̂(t), q̂(·))

= v
[ ∫ T

0

q̂1(s)φ1(s, t) ds+
∫ T

0

q̂2(s)φ2(s, t) ds
]
−
∫ T

0

q̂1(s)φ1(s, t) ds

= v
[ ∫ T

0

(1−û(t))φ1(s, t) ds−
∫ T

0

û(s)φ2(s, t) ds
]

−
∫ T

0

q̂1(s)φ1(s, t) ds.
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The maximum principle requires that the maximum of this expression is at-
tained at v = û(t). However, this is an affine function of v; so it is natural to
guess that the coefficient of v must be 0, i.e.,

∫ T

0

(1− û(s))φ1(s, t) ds−
∫ T

0

û(s)φ2(s, t) ds = 0,

which gives

∫ T

0

û(s)[φ1(s, t) + φ2(s, t)] ds =
∫ T

0

φ1(s, t) ds. (9.36)

This is a symmetric Fredholm integral equation of the first kind, and it is
known that it has a unique solution û(t) ∈ L2[0, T ].

This choice of û(t) satisfies all the requirements of Theorem 9.2.3 (in fact,
even those of Corollary 9.2.4) and we can conclude that this û(t) is optimal.
Thus we have proved the following:

Theorem 9.4.1 (Solution of the minimal variance hedging problem).
The minimal value of

J(z, u) = E

⎡
⎣
(
B1(T )−

[
z +
∫ T

0

u(t)[dB1(t) + dB2(t)]

])2
⎤
⎦

is attained when z = 0 and u = û(t) satisfies (9.36). The corresponding
minimal value is

inf
z,u
J(z, u) =

∫ T

0

∫ T

0

{[û(s)− 1][û(t)− 1]φ1(s, t) + û(s)û(t)φ2(s, t)} ds dt.

Remark 9.4.2. Note that if φ1 = φ2, then û(t) ≡ 1/2, which is the same as the
optimal value in the classical Brownian motion case (H1 = H2 = 1/2).

9.5 Optimal consumption and portfolio in a fractional
Black and Scholes market

We address now the problem of finding the optimal consumption and portfolio
in two market models affected in different ways by long-range dependence: in
the first model the asset price is driven by a fBm; in the second one only the
volatility is a function of B(H)

t , H > 1/2.
We start by considering a WIS model of a fractional Black and Scholes (BS)

financial market driven by a one-dimensional fBm as introduced in Chapter 7.
Suppose now that we have the following two investment possibilities:
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1. A risk-free asset, where the price A(t) at time t ≥ 0 is given by

dA(t) = rA(t) dt; A(0) = 1 [i.e., A(t) = ert],

where r > 0 is a constant, 0 ≤ t ≤ T (constant).
2. A stock on a company, whose generalized price process S(t) at time t ≥ 0

is given by

dS(t) = aS(t) dt+ σS(t) dB(H)(t); S(0) = s > 0, (9.37)

where a > r > 0 and σ �= 0 are constants, 0 ≤ t ≤ T .

The solution of (9.37) is

S(t) = S(0) exp
(
σ B(H)(t) + at− 1

2
σ2t2H

)
, t ≥ 0,

by Example 3.4.4. Suppose an investor chooses a WIS admissible portfolio
(Definition 7.2.4) θ(t) = (α(t), β(t)) giving the number of units α(t), β(t) held
at time t of risk-free assets and stocks, respectively. Suppose the investor is also
free to choose a (t, ω)-measurable, adapted consumption process c(t, ω) ≥ 0.
The generalized wealth process Z(t) = Zc,θ(t) associated to a given assumption
rate c and portfolio θ = (α, β) is defined by [see (7.18)]

Z(t) = α(t)A(t) + β(t)�S(t). (9.38)

We say that θ is Wick Itô Skorohod self-financing with respect to c if

dZ(t) = α(t) dA(t) + β(t) dS(t)− c(t) dt. (9.39)

From (9.38) we get

α(t) = A−1(t)[Z(t)− β(t)�S(t)], (9.40)

which substituted into (9.39) gives, using (9.38),

dZ(t) = rZ(t) dt+ (a− r)β(t)�S(t) dt+ σβ(t)�S(t) dB(H)(t)− c(t) dt

or

d(e−rtZ(t)) + e−rtc(t) dt = σe−rtβ(t)�S(t)
[
a− r
σ

dt+ dB(H)(t)
]
. (9.41)

Define the measure P̂
H on F

(H)
T by

dP̂H

dPH
= exp

(
−
∫ T

0

K(s) dB(H)(s)− 1
2
‖K‖2H

)

:= exp�

(
−
∫ T

0

K(s) dB(H)(s)

)
=: η(T ),

(9.42)
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where we have

K(s) =
(a− r)(Ts− s2)1/2−HI[0,T ](s)

2σH · Γ (2H) · Γ (2− 2H) cos[π(H − 1/2)]
(9.43)

and

‖K‖2H =
∫ T

0

∫ T

0

K(s)K(t)φ(s, t) ds dt,

where Γ is the gamma function and φ is defined in (3.1).
Then by the fractional Girsanov formula (Theorem 3.2.4), the process

B̂(H)(t) :=
a− r
σ

t+B(H)(t) (9.44)

is a fBm (with Hurst parameter H) with respect to P̂
H . In terms of B̂(H)(t),

we can write (9.41) as follows:

e−rtZ(t) +
∫ t

0

e−ruc(u) du = Z(0) +
∫ t

0

σe−ruβ(u)�S(u) dB̂(H)(u). (9.45)

If Z(0) = z > 0, we write Zc,θ
z (t) for the corresponding wealth process Z(t)

given by (9.45). We say that (c, θ) is admissible with respect to z and write
(c, θ) ∈ A(z) if θ = θ(t) = (α(t), β(t)) with α(t) satisfying (9.40) and β(t) =
β(t, ω) satisfying the condition

β(·)�S(·) ∈ Lφ(0, T ) (9.46)

and in addition θ is (WIS) self-financing with respect to c and Zc,θ
z (T ) ≥ 0

almost surely.
Note that it follows from (9.46) and Theorem 3.2.4 that if we put

M(t) :=
∫ t

0

σ e−ruβ(u)�S(u) dB̂(H)(u), 0 ≤ t ≤ T,

then E
P̂H [M(T )] = 0, where E

P̂H is the expectation under P̂
H . Therefore,

from (9.45) we get the budget constraint

E
P̂H

[
e−rTZc,θ

z (T ) +
∫ T

0

e−ruc(u) du

]
= z,

valid for all (c, θ) ∈ A(z).
Conversely, suppose c(u) ≥ 0 is a given consumption rate and F (ω) is a

given F
(H)
T -measurable random variable such that E

P̂H

[
G2
]
<∞, where

G(ω) = e−rTF (ω) +
∫ T

0

e−ruc(u, ω) du. (9.47)
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Then by the fractional Clark–Haussmann–Ocone theorem (Theorem 3.10.8)
applied to (B̂(H)(·), P̂H), we get

G(ω) = E
P̂H [G] +

∫ T

0

ψ(t, ω) dB̂(H)(t), (9.48)

where
ψ(t, ω) := Ẽ

P̂H

[
D̂

(H)
t G | F(H)

t

]
,

D̂
(H)
t denotes the Malliavin derivative with respect to B̂(H), and

ψ(·) ∈ Lφ(0, T ).

Therefore, if E
P̂H [G] = z and we define

β(t) := σ−1ertS−1(t)�ψ(t), (9.49)

then β(t) satisfies (9.46) and with θ = (α, β) with α as in (9.40) we have by
comparing (9.45) and (9.48)

Zc,θ
z (T ) = F a.s.

We have proved the following:

Lemma 9.5.1. Let c(t) ≥ 0 be a given consumption rate, and let F be a given
F

(H)
T -measurable random variable such that the random variable

G(ω) := e−rTF (ω) +
∫ T

0

e−ruc(u, ω) du

satisfies
E

P̂H

[
G2
]
<∞.

Then (9.50) and (9.51) are equivalent:

There exists a portfolio θ such that (c, θ)∈A(x) and Zc,θ
z (T )=F a.s. (9.50)

E
P̂H [G] = z. (9.51)

Now let D1 > 0,D2 > 0, T > 0 and γ ∈ (−∞, 1)\{0} be given constants.
Consider the following quantity

J (c,θ)(z) = E

[∫ T

0

D1

γ
cγ(t) dt+

D2

γ
(Zc,θ

z (T ))γ

]
, (9.52)

where (c, θ) ∈ A(z) and we interpret Zγ as −∞ if Z < 0. We may regard
J (c,θ)(z) as the total expected utility obtained from the consumption rate
c(t) ≥ 0 and the terminal wealth Zc,θ

z (T ). We now seek V (z) and (c∗, θ∗) ∈
A(z) such that
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V (z) = sup
(c,θ)∈A(z)

J (c,θ)(z) = Jc∗,θ∗
(z), z > 0.

By Lemma 9.5.1 we see that this problem is equivalent to the constrained
optimization problem

V (z) = sup
c,F≥0

E

[∫ T

0

D1

γ
cγ(t)dt+

D2

γ
F γ

]
, (9.53)

given that

E
P̂H

[∫ T

0

e−ruc(u)du+ e−rTF

]
= z, (9.54)

where the supremum is taken over all consumption rates c(t, ω) ≥ 0 and
F

(H)
T -measurable F (ω) ≥ 0 such that

∫ T

0

e−ruc(u) du+ e−rTF ∈ L2(P̂H).

Consider for each λ > 0 the following related unconstrained optimization
problem:

Vλ(z) = sup
c,F≥0

{
E
[ ∫ T

0

D1

γ
cγ(t) dt+

D2

γ
F γ
]

− λE
P̂H

[ ∫ T

0

e−rtc(t) dt+ e−rTF
]}
.

(9.55)

Suppose that for each λ > 0 we can find Vλ(z) and corresponding cλ(t, ω) ≥ 0,
Fλ ≥ 0. Moreover, suppose that there exists λ∗ > 0 such that cλ∗ , Fλ∗ satisfies
the constraint in (9.54):

E
P̂H

[∫ T

0

e−rucλ∗(u)du+ e−rTFλ∗

]
= z. (9.56)

Then, cλ∗ , Fλ∗ actually solves the constrained problem (9.53) because if c ≥ 0,
F ≥ 0 is another pair satisfying the constraint, then

E

[∫ T

0

D1

γ
cγ(t) dt+

D2

γ
F γ

]

= E

[∫ T

0

D1

γ
cγ(t) dt+

D2

γ
F γ

]

− λ∗E
P̂H

[∫ T

0

e−ruc(u) du+ e−rTF

]
+λ∗z
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≤ E
[∫ T

0

D1

γ
cγλ∗(t) dt+

D2

γ
F γ

λ∗

]

− λ∗E
P̂H

[∫ T

0

e−rucλ∗(u) du+ e−rTFλ∗

]
+λ∗z

= E

[∫ T

0

D1

γ
cγλ∗(t) dt+

D2

γ
F γ

λ∗

]
.

Finally, to solve the original problem (9.52), we use Lemma 9.5.1 to find θ∗

such that (cλ∗ , θ∗) ∈ A(z) and

Zcλ∗ ,θ∗

z (T ) = Fλ∗ a.s..

Then cλ∗ , θ∗ are optimal for (9.52) and

V (z) = Vλ∗(z) = E

[∫ T

0

D1

γ
cγλ∗(t) dt+

D2

γ
(Zcλ∗ ,θ∗

z (T ))γ

]
.

In view of the above we now proceed to solve the unconstrained optimization
problem (9.55). Note that with

η(t) = exp�
(
−
∫ t

0

K(s) dB(H)(s)
)

(9.57)

as in (9.42), we can write

Vλ(z) = sup
c,F≥0

E

[∫ T

0

(
D1

γ
cγ(t)− λη(T )e−rtc(t)

)
dt

+
D2

γ
F γ − λη(T )e−rTF

]

= sup
c,F≥0

E

[∫ T

0

(
D1

γ
cγ(t)− λρ(t)e−rtc(t)

)
dt

+
D2

γ
F γ − λη(T )e−rTF

]
,

(9.58)

where
ρ(t) =: E

[
η(T ) | F(H)

t

]
.

In the above formula we have used that

E [η(T )c(t)] = E
[
E
[
η(T )c(t) | F(H)

t

]]
= E

[
c(t)E

[
η(T ) | F(H)

t

]]

= E [c(t)ρ(t)] .
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The problem (9.58) can be solved by simply maximizing pointwise (for each
t, ω) the two functions

g(c) =
D1

γ
cγ − λρ(t, ω)e−rtc, c ≥ 0

h(F ) =
D2

γ
F γ − λη(T, ω)e−rTF, F ≥ 0

for each t ∈ [0, T ] and ω ∈ Ω.
We have g′(c) = 0 for

c = cλ(t, ω) =
1
D1

[λe−rtρ(t, ω)]1/(γ−1) (9.59)

and by concavity this is the maximum point of g. Similarly,

F = Fλ(ω) =
1
D2

[
λe−rT η(T, ω)

]1/(γ−1)
(9.60)

is the maximum point of h. We now seek λ∗ such that (9.56) holds, i.e.,

E

[∫ T

0

e−rtρ(t)
1
D1

[
λe−rtρ(t)

]1/(γ−1)
dt

+e−rtη(T )
1
D2

[λe−rT η(T )]1/(γ−1)

]
= z

or
λ1/(γ−1)N = z,

where

N = E

[∫ T

0

1
D1
erγ/(1−γ)tρ(t)γ/(γ−1)dt+

1
D2
erγ/(1−γ)T η(T )γ/(γ−1)

]
> 0.

(9.61)
Hence,

λ∗ =
( z
N

)γ−1

.

Substituted into (9.59) and (9.60) this gives

cλ∗(t, ω) =
z

D1N
er/(1−γ)tρ(t, ω)1/(γ−1) (9.62)

and
Fλ∗(ω) =

z

D2N
er/(1−γ)T η(T, ω)1/(γ−1). (9.63)

This is the optimal c, F for the constrained problem (9.53), and we conclude
that the solution of the original problem is
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V (z) = Vλ∗(z) = E

[∫ T

0

D1

γ
cγλ∗(t) dt+

D2

γ
F γ

λ∗

]
. (9.64)

To find V (z) we need to compute E
[
ρ(t)γ/(γ−1)

]
. For t = T , this was done in

(2.19) to (2.27) in [124].
Define K(t) = K · I[0,t], where K(·) is defined in (9.43). From (3.6) and

(3.8) of [113], we obtain

ρ(t) = E
[
η(T ) | F(H)

t

]
= exp

(∫ t

0

ζ(s) dB(H)(s)− 1
2
‖ζ‖2H

)
,

where ζ is determined by the following equation:

(−∆)−(H−1/2)ζ(s) = −(−∆)−(H−1/2)K(T )(s), 0 ≤ s ≤ t;
ζ(s) = 0 s < 0, or s > t.

We have

ζ(s) = −κHs
1/2−H d

ds

∫ t

s

w2H−1(w − s)1/2−H dw

· d
dw

∫ w

0

z1/2−H(w − z)1/2−Hg(z) dz,

where g(z) = −(−∆)−(H−1/2)K(T )(z) and

κH =
22H−2

√
πΓ (−1/2)

Γ (1−H)Γ 2(3/2−H) cos[π(H − 1/2)]
.

Hence,

E
[
ρ(t)γ/(γ−1)

]
= E

[
exp
(
− γ

1− γ

[∫ t

0

ζ(s) dB(H)(s)− 1
2
‖ζ‖2H

])]

= E

[
exp
(
− γ

1− γ

∫ t

0

ζ(s) dB(H)(s)− γ2

2(1− γ)2 ‖ζ‖
2
H

+
( γ2

2(1− γ)2 +
γ

2(1− γ)
)
‖ζ‖2H

)]

= exp
(

γ

2(1− γ)2 ‖ζ‖
2
H

)
. (9.65)

In the special case t = T we see that ζ = K(T ) = K · I[0,T ], where

∫ T

0

K(s)φ(s, t) ds =
a− r
σ

for 0 ≤ t ≤ T .

Thus,
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‖K(T )‖2H = ‖K‖2H =
a− r
σ

∫ T

0

K(t) dt

=
(a− r)2

2σ2H · Γ (2H) · Γ (2− 2H) cos(π(H − 1/2))

∫ T

0

(Tt− t2)1/2−Hdt

=
(a− r)2
σ2

ΛH · T 2−2H , (9.66)

where

ΛH =
Γ 2(3/2−H)

2H · (2− 2H) · Γ (2H) · Γ (2− 2H) cos[π(H − 1/2)]
.

Substituting (9.65) and (9.66) into (9.61), we get

N =
1
D1

∫ T

0

exp
(
rγ

1− γ t+
γ

2(1− γ)2 ‖ζ‖
2
H

)
dt

+
1
D2

exp
(
rγ

1− γ T +
γ(a− r)2ΛH

2(1− γ)2σ2
T 2−2H

) (9.67)

and (9.64) gives

V (z) =
zγ

γ

[
D−1γ

1 N−γ

∫ T

0

exp
(
rγ

1− γ t+
γ

2(1− γ)2 ‖ζ‖
2
H

)
dt

+D−1γ
2 N−γ exp

(
rγ

1− γ T +
γ(a− r)2ΛH

2(1− γ)2σ2
T 2−2H

)]
.

(9.68)

We have proved the following:

Theorem 9.5.2. The value function V (z) of the optimal consumption and
portfolio problem (9.52) is given by (9.67) and (9.68). The corresponding
optimal consumption cλ∗ is given by (9.62), and the corresponding optimal
terminal wealth Zc∗λ,π∗

z = Fλ∗ is given by (9.63).

Remark 9.5.3. It is an interesting question how the value function V (z) =
V (H)(z) of problem (9.52) depends on the Hurst parameter H ∈ (1/2, 1). We
will not pursue this question here, but simply note that since Λ1/2 = 1, we
have

lim
H→1/2+

V (H)(z) = V ( 1
2 )(z)

where V ( 1
2 )(z) is the (well-known) value function in the standard Brownian

motion case.

It remains to find the optimal portfolio θ∗ = (α∗, β∗) for problem (9.52).
For this we use the fractional Clark–Haussmann–Ocone theorem (Theorem
3.10.8) with
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G(ω) = e−rtFλ∗(ω) +
∫ T

0

e−rucλ∗(u, ω) du

as in (9.47). Then by (9.49)

β∗(t) = σ−1ertS−1(t)Ẽ
P̂H

[
D̂

(H)
t G | F(H)

t

]
. (9.69)

To compute this we first note that by Theorem 3.2.4, (9.57) and (9.44), we
have

η(t)
1

γ−1 = exp
(

1
1− γ

∫ t

0

K(s) dB(H)(s) +
1

2(1− γ)‖K
(t)‖2H

)

= exp
(

1
1− γ

∫ t

0

K(s) dB̂(H)(s)− a− r
σ(1− γ)

∫ t

0

K(s) ds

+
1

2(1− γ)‖K
(t)‖2H

)

= exp
(

1
1− γ

∫ t

0

K(s) dB̂(H)(s)− 1
2(1− γ)2 ‖K

(t)‖2H

+
1

2(1− γ)2 ‖K
(t)‖2H −

a− r
σ(1− γ)

∫ t

0

K(s) ds

+
1

2(1− γ)‖K
(t)‖2H

)

= exp�
(

1
1− γ

∫ t

0

K(s) dB̂(H)(s)
)
·R(t),

where

R(t) = exp
(

2− γ
2(1− γ)2 ‖K

(t)‖2H −
a− r
σ(1− γ)

∫ t

0

K(s) ds
)
.

Hence, by (9.63)

Ẽ
P̂H

[
D̂

(H)
t

(
e−rTFλ∗

)
| F(H)

t

]

=
z

D2N
e−rT erT/(1−γ)Ẽ

P̂H

[
D̂

(H)
t

(
η(T )1/(γ−1)

)
| F(H)

t

]

=
z

D2N
exp
(
rγT

1− γ

)
Ẽ

P̂H

[
K(t)
1− γ η(T )1/(γ−1) | F(H)

t

]

=
z

D2N
exp
(
rγT

1− γ

)
K(t)
1− γR(T )

· Ẽ
P̂H

[
exp�

(
1

1− γ

∫ T

0

K(s) dB̂(H)(s)

)∣∣∣F(H)
t

]

=
z

D2N
exp
(
rγT

1− γ

)
K(t)
1− γR(T ) exp�

(
1

1− γ

∫ t

0

K(s) dB̂(H)(s)
)
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=
z

D2N
exp
(
rγT

1− γ

)
R(T ) · K(t)

1− γ · exp
(

1
1− γ

∫ t

0

K(s) dB̂(H)(s)

− 1
1− γ ‖K

(t)‖2H
)

=
zK(t)

D2N(1− γ) exp
(
rγT

1− γ +
1

1− γ

∫ t

0

K(s) dB(H)(s)− a− r
σ(1− γ)

·
∫ T

t

K(s) ds+
2− γ

2(1− γ)2 ‖K
(T )‖2H −

1
1− γ ‖K

(t)‖2H

)
. (9.70)

Similarly, by (9.62) and (9.70),

Ẽ
P̂H

[
D̂

(H)
t

(∫ T

0

e−rucλ∗(u) du

)
| F(H)

t

]

=
z

D1N
Ẽ

P̂H

[∫ T

0

D̂
(H)
t

(
e−rueru/(1−γ)ρ(u)1/(γ−1)

)
du | F(H)

t

]

=
z

D1N

∫ T

0

exp
(
rγu

1− γ

)
Ẽ

P̂H

[
D̂

(H)
t

(
ρ(u)1/(γ−1)

)
| F(H)

t

]
du

=
zh(t)

D1N(1− γ)

∫ T

0

exp
(
rγu

1− γ

)
exp
(

1
1− γ

∫ t

0

ζ(s) dB(H)(s)

− a− r
σ(1− γ)

∫ u

t

ζ(s)ds+
2− γ

2(1− γ)2 ‖ζ‖
2
H −

1
1− γ ‖ζ‖

2
H

)
du

=
zζ(t)

D1N(1− γ) exp
(

1
1− γ

∫ t

0

K(s) dB(H)(s)− 1
1− γ ‖K

(t)‖2H
)

(9.71)

·
∫ T

0

exp
(
rγu

1− γ +
2− γ

2(1− γ)2 ‖K
(u)‖2H −

a− r
σ(1− γ)

∫ u∧t

t

K(s)ds
)
du.

Adding (9.70) and (9.71) and using (9.69), we get the following:

Theorem 9.5.4. The optimal portfolio θ∗(t) = (α∗(t), β∗(t)) for problem
(9.52) is given by

β∗(t) = σ−1ertS−1(t)(Y1 + Y2),

where
Y1 = Ẽ

P̂H

[
D̂

(H)
t

(
e−rTFλ∗

)
| F(H)

t

]

is given by (9.70) and

Y2 = Ẽ
P̂H

[
D̂

(H)
t

(∫ T

0

e−rucλ∗(u) du

)
| F(H)

t

]

is given by (9.71), and
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α∗(t) = e−rt [Z∗(t)− β∗(t)S(t)]

with

e−rtZ∗(t) +
∫ t

0

e−rucλ∗(u)du = z +
∫ t

0

σ e−ruβ∗(u)S(u) dB̂(H)(u)

and cλ∗(u) given by (9.62).

9.6 Optimal consumption and portfolio in presence of
stochastic volatility driven by fBm

As a final example we compute the optimal consumption and portfolio in a
market affected by stochastic volatility driven by fBm. Fix a terminal time
T > 0 and consider a market with two securities.

1. A risk-free asset whose price per share At at time t ≥ 0 is given by

dAt = rtAtdt ; A0 = 1 (i.e., At = e
∫ t
0 rsds),

where rt > 0 is a given adapted stochastic process satisfying

E

[∫ T

0

|rt| dt
]
<∞.

2. A stock whose price per share St at time t ≥ 0 is given by the solution of
a generalized “geometric Brownian motion” on (Ω,F,P) with stochastic
volatility

dSt = µtStdt+ σtStdBt , S0 > 0,

where µt(> rt) is a given adapted stochastic processes and σt = f(t, Yt)
for a certain continuous function f and

dYt = a(t, Yt) dt+ b(t, Yt) dBt + k(t, Yt) dB
(H)
t . (9.72)

Let Ft = σ(Bs , 0 ≤ s ≤ t)be the σ-algebra generated by Bs, 0 ≤ s ≤ t and
Gt = σ(Bs , 0 ≤ s ≤ t) ∨ σ(B(H)

s , 0 ≤ s ≤ T )be the σ-algebra generated by
Bs, 0 ≤ s ≤ t and B(H)

s , 0 ≤ s ≤ T . A portfolio is a pair of Gt-adapted process
θt = (αt, βt), 0 ≤ t ≤ T , where αt and βt denote the numbers of shares in
risk-free asset and stock, respectively, held by the investor at time t. Here
we assume that the volatility is observable to simplify the setting. We first
search the optimal portfolio among all portfolios which are adapted to the
filtration Gt. Then we will show that the optimal portfolio in this class is, in
fact, Ht = σ(Bs , B

(H)
s , 0 ≤ s ≤ t) adapted. With this portfolio the investor’s

wealth at time instant t is
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Zt = Zθ
t = αtAt + βtSt. (9.73)

Let c = (ct , 0 ≤ t ≤ T ) be a given Gt-adapted process, denoting the investor’s
consumption rate. We assume that ct ≥ 0 and

∫ T

0

ct dt <∞ almost surely.

The set of all such (ct, 0 ≤ t ≤ T ) is denoted by C.
A portfolio θt = (αt, βt) , 0 ≤ t ≤ T is called self-financing with respect to

the consumption rate c if

dZθ
t = αtdAt + βtdSt − ctdt, 0 ≤ t ≤ T, (9.74)

where Zθ
t is given by (9.73). Denote ξt = exp

(
−
∫ t

0
rs ds

)
.

A self-financing Gt-adapted portfolio θ = (αt, βt) is called admissible with
respect to c if

E

[∫ T

0

|βtσtStξt|2dt
]
<∞ . (9.75)

The set of all admissible portfolios is denoted by A. We shall denote by Zθ,c
t

an investor’s wealth at time t that is associated with the portfolio θ and that
is self-financing with respect to c. Namely, Zθ,c

t satisfies (9.73), (9.74) and
(9.75).

Let g and ψ be two given continuous concave functions. Define

J(θ, c) = E

[∫ T

0

ψ(ct) dt+ g(Z
θ,c
T )

]
.

The problem that will be studied in this section is the following:
Problem I: Find an admissible portfolio θ∗ ∈ A and a consumption rate
c∗ ∈ C such that

J(θ∗ , c∗) ≥ J(θ , c) ∀θ ∈ A , c ∈ C .

When rt, µt and σt are constants, a similar problem was proposed and
solved by R. Merton [162]. If Yt is driven only by standard Brownian motion,
namely, in the equation (9.72), a2(t, Yt) = 0, the problem has been discussed in
the literature (see for example, [98]). Here we shall assume that the volatility
process is observable and driven both by a standard Brownian motion and a
fBm. Unlike in the only one standard Brownian motion case, we are no longer
in a Markovian setup. We shall use the method which appeared in [63], [64]
and [124].
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Lemma 9.6.1. Define

ρs =
as − rs
σs

and let

E

[
exp

(
1
2

∫ T

0

|ρs|2 ds
)]

<∞.

Let Q be a probability measure on (Ω,F) defined by

dQ

dP
= η(T ) , (9.76)

where

η(t) := exp
(∫ t

0

ρs dBs −
1
2

∫ t

0

ρ2s ds

)
,

Denote ξt = exp
(
−
∫ t

0
rsds

)
, 0 ≤ t ≤ T . Assume that F is a given random

variable which is FT measurable. Then the following statements about F are
equivalent:

1. There is an admissible portfolio θ and a consumption rate c such that
Zθ,c

0 = z and Zθ,c
T = F .

2. G = ξTF +
∫ T

0
ξscs ds is square integrable and

EQ [G] = z.

Proof. From (9.73) we see that a self-financing portfolio is uniquely deter-
mined by βt, 0 ≤ t ≤ T . In fact, we have

αt =
Zt − βtSt

At
= ξt(zt − βtSt), (9.77)

which substituted into (9.74) yields

dZt = rtZt dt− ct dt+ (µt − rt)βtSt dt+ σtβtSt dBt.

This we can also write as

dZt − rtZt dt+ ct dt = σtβtSt

(
dBt +

µt − rt
σt

dt

)

= σtβtSt (dBt + ρt dt) .

Using the definition of ξt we may write the above equation as

d(ξtZt) + ξtct dt = σtξtβtSt dB̃t,

where
B̃t = Bt +

µt − rt
σt

.
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Hence

ξTZT +
∫ T

0

ξscs ds = z +
∫ T

0

σsξsβsSs dB̃s.

If Q is a probability measure on (Ω,F) defined by (9.76), then from the
Girsanov theorem, B̃t is a Brownian motion on the probability space (Ω,F,Q).
Therefore, by (9.75) we have

EQ

[
ξTZT +

∫ T

0

ξscs ds

]
= z.

On the other hand, let

G(ω) = ξTF +
∫ T

0

ξscs ds.

If EQ [G] = z and G is square integrable, then there is a unique Gt-adapted
stochastic process ft such

G = EQ [G] +
∫ T

0

ft dB̃t.

Define
βt =

ft

σtξtSt

and αt by (9.77). Then θt = (αt, βt) is the portfolio that we seek. ��

From this lemma we see that Problem I is equivalent to the following
problem.
Problem II: Find a Gt-adapted nondecreasing process ct and a GT -measurable
nonnegative random variable F subject to

EQ

[
ξTF +

∫ T

0

ξscs ds

]
= z, (9.78)

which maximizes

EQ

[
g(F ) +

∫ T

0

ψ(cs) ds

]
.

We shall use the Lagrange multiplier method to solve this constrained Prob-
lem II. Consider for each λ > 0 the following unconstrained optimization
problem

Vλ(z) = sup
c,F≥0

{
E

[
g(F ) +

∫ T

0

ψ(cs) ds

]
− λEQ

[∫ T

0

ξtct dt+ ξTF

]}
.
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Lemma 9.6.2. Suppose that for each λ > 0 one can find Vλ(z) and cor-
responding optimal cλ(t, ω) ≥ 0, Fλ ≥ 0. If there exists λ∗ > 0 such that
c∗ = cλ∗ , F ∗ = Fλ∗ satisfy the constraint (9.78), i.e.,

EQ

[∫ T

0

ξscλ∗(s) ds+ ξTFλ∗

]
= z,

then cλ∗ , Fλ∗ solve the constrained Problem II.

Proof. If c ≥ 0, F ≥ 0 is any pair satisfying the constraint, then

E

[∫ T

0

ψ(ct) dt+ g(F )

]
= E

[∫ T

0

ψ(ct) dt+ g(F )

]

− λ∗EQ

[∫ T

0

ξscs ds+ ξTF

]
+ λ∗z

≤ E
[∫ T

0

ψ(c∗t ) dt+ g(F
∗)

]

− λ∗EQ

[∫ T

0

ξsc
∗
s ds+ ξTF ∗

]
+ λ∗z

= E

[∫ T

0

ξsc
∗
s ds+ g(F ∗)

]
.

This proves the lemma. ��

From this lemma it follows that Problem I is equivalent to the following prob-
lem.
Problem III: Find λ∗, Fλ∗ and cλ∗ such that F = Fλ∗ and c = cλ∗ maximize

Jλ∗(F, c) = E

[∫ T

0

ψ(ct) dt+ g(F )

]
− λ∗EQ

[∫ T

0

ξscs ds+ ξTF

]
(9.79)

for the fixed λ∗ and the following holds for λ∗:

EQ

[∫ T

0

ξscλ∗(s) ds+ ξTFλ∗

]
= z. (9.80)

Now we outline the general method to solve the unconstrained optimization
problem (9.79) and (9.80). Using the definition of ηt, we can write

Vλ(z) = supc,F≥0E
[∫ T

0
(ψ(ct)− ληT ξtct) dt+ g(F )− ληT ξTF

]

= supc,F≥0E
[∫ T

0
(ψ(ct)− ληtξtct) dt+ g(F )− ληT ξTF

]
.
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The problem (9.79) can be solved by maximizing the following two functions:

ft(c) = ψ(c)− ληtξtc , c ≥ 0,

ht(F ) = g(F )− ληT ξTF , F ≥ 0,

for each t ∈ [0, T ] and ω ∈ Ω. Since g and ψ are continuous concave functions
for any given λ, the maximum cλ(t, ω) and Fλ(ω) exist as a function of λ.
Once this is done, one can substitute cλ(t, ω) and Fλ(ω) into (9.78) to obtain
an equation for λ∗. Then cλ∗(t, ω) and Fλ∗(ω) is the solution to (9.79) and
(9.80). We shall give more explicit solutions for some specific utility functions.
Now we assume that

g(x) =
xγ

D1γ
and ψ(x) =

xγ

D2γ
.

In this case
ft(c) =

D1

γ
cγ − λη(t, ω)ξtc, c ≥ 0,

h(F ) =
D2

γ
F γ − λη(t, ω)ξTF, F ≥ 0,

for all t ∈ [0, T ] and ω ∈ Ω. We have f ′t(c) = 0 for

c = cλ(t, ω) =
(
λξtηT

D1

)1/(γ−1)

(9.81)

and by concavity this is the maximum point of ft. Similarly,

F = Fλ(ω) =
(
λξT ηT

D2

)1/(γ−1)

(9.82)

is the maximum point of ht.
We now seek λ∗ such that (9.80) holds, i.e.,

E

[∫ T

0

ξtηt

(
λξtηt

D1

)1/(γ−1)

dt+ ξT ηT

(
λξT ηT

D2

)1/(γ−1)
]

= z

or
λ1/(γ−1)N = z,

where

N = E

[∫ T

0

ξtηt

(
ξtηt

D1

)1/(γ−1)

dt+ ξT ηT

(
ξT ηT

D2

)1/(γ−1)
]

=
∫ T

0

ξ
γ/(γ−1)
t

D
1/(γ−1)
1

E
[
η
1/(γ−1)
t

]
dt+

ξ
γ/(γ−1)
T

D
1/(γ−1)
2

E
[
η
1/(γ−1)
T

]
.
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Hence,

λ∗ =
( z
N

)γ−1

.

Substituted into (9.81) and (9.82) yields the optimal consumption rate

cλ∗(t, ω) =
z

N

(
ξtηt

D1

)1/(γ−1)

and

Fλ∗(ω) =
z

N

(
ξT ηT

D1

)1/(γ−1)

.

If g(x) = (log x)/D1 and ψ(x) = (log x)/D2, then in similar way we have

λ∗ =
D1 +D2

z
,

F ∗ =
D2

λ∗ξT ηT
,

and
c∗(t, ω) =

D2

λ∗ξtηt
.

It is easy to see that c∗(t, ω) is Ht-adapted.
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Local time for fractional Brownian motion

In this chapter we present the main results concerning the local time of the
fBm and provide its chaos expansion. In addition, we investigate the definition
and the properties of the weighted and renormalized self-intersection local
time for fBm and present a Meyer Tanaka formula valid for every H ∈ (0, 1).

The main references for this part are [28], [62], [87], [100], [110], [120],
[122], [123] and [177].

10.1 Local time for fBm

Fix a d-dimensional Hurst parameter

H = (H1,H2, . . . , Hd) ∈ (0, 1)d,

and let B(H)(t) = (B(H1)
1 (t), . . . , B(Hd)

d (t)), t ∈ R, be a d-dimensional fBm
on (Ω,F,P), where P is the measure defined in (4.41). We are considering d
independent fBm with Hurst parameters H1,H2, . . . , Hd, respectively, such
that

E
[
B

(Hj)
j (t)B(Hk)

k (s)
]

=
1
2
{
|s|2Hj + |t|2Hj − |s− t|2Hj

}
δjk, 1 ≤ j, k ≤ d,

where

δjk =

{
0 when j �= k,

1 when j = k.

Given x ∈ R
d, the local time of fBm B(H)(t) can be heuristically described

by

�T (x) = �
(H)
T (x) =

T∫

0

δ(B(H)(t)− x) dt,

where δ is the Dirac delta function, which is approximated by
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Pε(x) =
1

(2πε)d/2
e−|x|2/(2ε) =

1
(2π)d

∫

Rd

eixξ−1/2εξ2
dξ, x ∈ R

d, (10.1)

where i2 = −1. This means that formally

δ(x) = lim
ε→0

Pε(x) =
1

(2π)d

∫

Rd

eixξdξ.

The justification of this is similar to those in [4] and [112].
More rigorously we follow [123] and introduce the local time �T (x) of fBm
B(H)(t) = (B(H1)

1 (t), . . . , B(Hd)
d (t)) at points x ∈ R

d up to time T > 0 by
using the (Donsker) delta function

δB(H)(t)(x) = δ(B(H)(t)− x)

of B(H)(t) at x ∈ R
d, a concept we will make precise using the fractional white

noise theory introduced in Chapter 4. We now proceed as in [2] and define the
Donsker delta function as follows:

Definition 10.1.1. Let Y : Ω → R
d be a random variable which also belongs

to (S)∗. Then a continuous function

δY (·) : R
d → (S)∗

is called a Donsker delta function of Y if it has the property that
∫

Rd

g(y)δY (y) dy = g(Y ) a.s. (10.2)

for all (measurable) g : R
d → R such that the integral converges in (S)∗.

As in [2, Prop. 4.2] we can now prove the following:

Proposition 10.1.2. Suppose Y : Ω → R
d is normally distributed with mean

m = (m1,m2, ...,md) = E [Y ] and covariance matrix C = [cjk]1≤j,k≤d. Sup-
pose C is invertible with inverse

A = C−1 = [ajk]1≤j,k≤d .

Then δY (y) exists, is unique, and, is given by

δY (y) = (2π)−d/2
√
|A| exp�

(
− 1

2

d∑
j,k=1

ajk(Yj +mj − yj) � (Yk +mk − yk)
)
,

(10.3)
where |A| is the determinant of A.

Proof. The proof of Proposition 4.2 in [2] applies. We omit the details. ��
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Proposition 10.1.3. Let Y,C = [cjk], A = C−1 = [ajk] be as in Proposition
10.1.2. Then

δY (y) = (2π)−d

∫

Rd

exp�
(
i

d∑
j=1

ξj(Yj +mj − yj)−
1
2

d∑
j,k=1

cjkξjξk

)
dξ, (10.4)

where i2 = −1 is the imaginary unit.

Proof. Recall the well-known formula
∫

Rd

exp
(
bT ξ − 1

2
ξTCξ

)
dξ = (2π)d/2|A|1/2 exp

[
1
2
bTAb

]
(10.5)

valid for all b ∈ C
d. Using the fractional Hermite transform (see [109] for the

standard case), we obtain the following Wick analogue of (10.5):
∫

Rd

exp�
(
bT ξ − 1

2
ξTCξ

)
dξ = (2π)d/2|A|1/2 exp�

(
1
2
bT �A � b

)
,

valid for every d-dimensional square-integrable random variable b. In partic-
ular, if we apply (10.5) with b = i(Y +m− y), we get from (10.3) that

δY (y) = (2π)−d/2|A|1/2 exp�
(

1
2
bT �A � b

)

= (2π)−d

∫

Rd

exp�
(
bT ξ − 1

2
ξTCξ

)
dξ,

which is (10.4). ��

From this we deduce the Hu formula for the Donsker delta function proved
in [110].

Theorem 10.1.4.

δY (y) = (2π)−d

∫

Rd

exp
(
i

d∑
j=1

ξj(Yj +mj − yj)
)
dξ, (10.6)

where the integral exists in (S)∗.

Proof. Recall the following connection between the Wick exponential and the
ordinary exponential of a Gaussian random variable Z with values in R

d and
with E [Z] = 0:

exp�(bTZ) = exp
(
bTZ − 1

2
bTE

[
ZZT

]
b

)

for all (deterministic) b ∈ C
d. If we apply this to (10.4) with Z = Y −m and

b = iξ we get (10.6). ��
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We now focus on the case when Y = B(H)(t):

Corollary 10.1.5. The Donsker delta function δB(H)(t)(x) of fractional
Brownian B(H)(t) ∈ R

d is given by

δB(H)(t)(x) = (2π)−d/2

⎛
⎝

d∏
j=1

t−Hj

⎞
⎠ exp�

(
− 1

2

d∑
j=1

t−2Hj (B(Hj)
j (t)− xj)�2

)
.

Proof. The random variable Y := B(H)(t) is normally distributed with mean
0 and with covariance matrix C = [cjk] given by

cjk = E
[
B

(Hj)
j (t)B(Hk)

k (t)
]

= t2Hjδjk, 1 ≤ j, k ≤ d. (10.7)

Thus C is diagonal with inverse A = [ajk] given by

ajk = t−2Hjδjk.

Then

|A| =
d∏

j=1

t−2Hj .

Hence the result follows from Proposition 10.1.2. ��

Corollary 10.1.6. The Donsker delta function is also given by

δB(H)(t)(x) = (2π)−d

∫

Rd

exp�
(
i

d∑
j=1

ξj(B
(Hj)
j (t)− xj)

− 1
2

d∑
j=1

t2Hjξ2j (B(Hj)
j (t)− xj)�2

)
dξ.

Proof. This follows from Proposition 10.1.3 and (10.7). ��

Remark 10.1.7. Note that this integral converges in the fractional distribution
space (S)∗. This follows by considering the fractional Hermite transforms. See
[109].

Corollary 10.1.8.

δB(H)(t)(x) = (2π)−d

∫

Rd

exp
(
i

d∑
j=1

ξj [B
(Hj)
j (t)− xj ]

)
dξ,

where the integral converges in (S)∗.

Proof. This is a direct consequence of Theorem 10.1.4. ��
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We now proceed to define fractional local time:

Definition 10.1.9. Fix T > 0 and a point x ∈ R
d. The local time of B(H)(t)

up to time T at the point x is defined by

�
(H)
T (x) = �

(H)
T (ω, x) = lim

ε→0

1
|D(x, ε)|λ1({s ∈ [0, T ] : B(H)(s, ω) ∈ D(x, ε)}),

where the limit is taken in (S)∗,

D(x, ε) = {y ∈ R
d :| y − x |< ε},

|D(x, ε)| = λd(D(x, ε)) is the volume of D(x, ε), and λd denotes the Lebesgue
measure in R

d.

Remark 10.1.10. This definition is natural from the point of view that local
time at x is the amount of time spent at the point.

Proposition 10.1.11. 1. The local time of B(H)(t) ∈ R
d at the point x ∈ R

d

exists in (S)∗ and is given by

�
(H)
T (x) =

∫ T

0

δB(H)(s)(x) ds.

2. Hence, for d-dimensional B(H)(t) we have

�
(H)
T (x) = (2π)−d/2

∫ T

0

( d∏
j=1

t−Hj

)

· exp�
(
− 1

2

d∑
j=1

t−2Hj [B(Hj)
j (t)− xj ]�2

)
dt

(10.8)

and

�
(H)
T (x) = (2π)−d

∫ T

0

[ ∫

Rd

exp
(
i

d∑
j=1

ξj [B
(Hj)
j (t)− xj ]

)
dξ
]
dt. (10.9)

3. In particular, for d = 1 this gives

�
(H)
T (x) = (2π)−1/2

∫ T

0

t−H exp�
(
−1

2
t−2H(B(H)(t)− x)�2

)
dt (10.10)

and

�
(H)
T (x) = (2π)−1

∫ T

0

[ ∫

R

exp(iξ[B(H)(t)− x])dξ
]
dt.
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Proof. If we apply (10.2) to the function

gε(y) = ID(x,ε)(y) =

{
1 if y ∈ D(x, ε),
0 otherwise,

we get

λ1({s ∈ [0, T ] : B(H)(s) ∈ D(x, ε)}) =
∫ T

0

ID(x,ε)[B(H)(s)] ds

=
∫ T

0

[ ∫

Rd

ID(x,ε)(y)δB(H)(s)(y) dy
]
ds

=
∫

D(x,ε)

[ ∫ T

0

δB(H)(s)(y)ds
]
dy.

Hence

�
(H)
T (x) = lim

ε→0

1
|D(x, ε)|λ1({s ∈ [0, T ] : B(H)(s) ∈ D(x, ε)})

= lim
ε→0

1
|D(x, ε)|

∫

D(x,ε)

[ ∫ T

0

δB(H)(s)(y) ds
]
dy =

∫ T

0

δB(H)(s)(x) ds.

Formulas (10.8) and (10.9) now follow from Corollary 10.1.5 and Corollary
10.1.6. ��

The generalized expectation operator E can be defined on (S)∗ in exactly
the same way as in the standard case (for example, see [109]): If X ∈ (S)∗,
then E [X] is the zero order element in the chaos expansion ofX. In particular,
E has the properties

E [Y � Z] = E [Y ]E [Z] for Y,Z ∈ (S)∗

and
E [exp� Y ] = expE [Y ] if exp�(Y ) ∈ (S)∗.

Therefore we obtain the following directly from (10.8) and (10.10):

Corollary 10.1.12. 1. The generalized expectation of fractional local time
of B(H)(t), 0 ≤ t ≤ T at x ∈ R

d is

E
[
�
(H)
T (x)

]
= (2π)−d/2

∫ T

0

( d∏
j=1

t−Hj

)

exp
(
− 1

2

d∑
j=1

t−2Hjx2
j

)
dt.

(10.11)
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2. In particular, for d = 1 we have

E
[
�
(H)
T (x)

]
= (2π)−1/2

∫ T

0

t−H exp
(
−1

2
t−2Hx2

)
dt. (10.12)

In the next section we will find the whole chaos expansion of �(H)
T (x). Then

we will find conditions which ensure that �(H)
T (x, ·) ∈ L2(P). If this is the case,

then (10.11) and (10.12) give the usual expectation of �(H)
T (x, ·).

It is well-known that L2(P) is a dense subset of (S)∗. Thus �(H)
T (x) can be

approximated by elements in L2(P). It is easy to verify that

Proposition 10.1.13. Let Pε be defined as in (10.1), and let

�
(H)
ε,T (x) =

∫ T

0

Pε(B(H)(t)− x) dt =
1

(2π)d

∫ T

0

∫

Rd

ei(B
(H)(t)−x)ξ−1/2εξ2

dξ dt

Then
lim
ε→0

�
(H)
ε,T (x) = �

(H)
T (x) in (S)∗.

10.2 The chaos expansion of local time for fBm

In this section we will use the following formula for the Donsker delta function,

δB(H)(t)(x) = (2π)−d

∫

Rd

exp
(
i

d∑
j=1

ξj [B
(Hj)
j (t)− xj ]

)
dξ ∈ (S)∗, (10.13)

obtained in Corollary 10.1.8, to find the chaos expansion of the fractional local
time

�
(H)
T (x) =

∫ T

0

δB(H)(t)(x) dt. (10.14)

For simplicity we will first assume that x = 0 (the case x �= 0 is similar), and
we will put

δ(B(H)(t)) = δB(H)(t)(0).

Let f(s) = (f1(s), . . . , fd(s)) be a (complex) deterministic function belonging
to L2,(d)

H (R) = L2
H1

(R)× · · · × L2
Hd

(R), f = 0 outside [0, T ]. Define

E[f ](t) := exp
( t∫

0

f(s) dB(Hj)
j (s)− 1

2
‖fI[0,t]‖2H

)
,

where ‖fI[0,t]‖2H is defined in (3.59). Then it is easy to see that

E[f ](t) = 1 +
d∑

j=1

∫ t

0

E[f ](s)fj(s) dB
(H)
j (s).
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By iteration of this identity it follows that

exp
(∫ T

0

f(s)dB(H)(s)− 1
2
‖f‖2H

)

= 1 +
∞∑

n=1

∑
1≤j1,··· ,jn≤d

∫ T

0

∫ sn−1

0

· · ·
∫ s2

0

fj1(s1) · · · fjn
(sn) dB(Hj1 )

j1
(s1) · · · dB(Hjn )

jn
(sn).

Note that

iB(H)(t)ξ = i

d∑
j=1

ξj

∫ T

0

I[0,t](s) dB
(Hj)
j (s) for all ξ ∈ R

d

and
I[0,t](s1) · · · I[0,t](sn) = I[max{s1,...,sn},∞)(t).

Thus for any ξ ∈ R
d,

exp
(
iξB(H)(t)

)

= exp
(
iξB(H)(t) +

1
2

d∑
j=1

t2Hjξ2j

)
exp
(
− 1

2

d∑
j=1

t2Hjξ2j

)

=
∞∑

n=0

in exp
(
− 1

2

d∑
j=1

t2Hjξ2j

)

·
∫ T

0

∫ sn−1

0

· · ·
∫ s2

0

∑
1≤j1,...,jn≤d

ξj1 · · · ξjn
I[0,t](s1) · · · I[0,t](sn)

· dB(Hj1 )
j1

(s1) · · · dB(Hjn )
jn

(sn)

=
∞∑

n=0

in exp
(
− 1

2

d∑
j=1

t2Hjξ2j

)

·
∫ T

0

∫ sn−1

0

· · ·
∫ s2

0

∑
1≤j1,...,jn≤d

ξj1 · · · ξjn
I[max{s1,...,sn},∞)(t)

· dB(Hj1 )
j1

(s1) · · · dB(Hjn )
jn

(sn).

Therefore by Proposition 10.1.11 item 2,

�
(H)
T (0) =

∞∑
n=0

in
∑

1≤j1,...,jn≤d

∫ T

0

∫ sn−1

0

· · ·
∫ s2

0

fj1,...,jn
(s1, . . . , sn)

· dB(Hj1 )
j1

(s1) · · · dB(Hjn )
jn

(sn),
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where, for n ≥ 1,

fj1,...,jn
(s1, . . . , sn) =

1
(2π)d

∫ T

0

∫

Rd

exp
(
− 1

2

d∑
k=1

t2Hkξ2k

)
ξj1 · · · ξjn

· I[max{s1,...,sn},∞](t) dt dξ1 · · · dξd.

To compute fj1,...,jn
(s1, . . . , sn), let us introduce

j = (j1, j2, . . . , jn)

and
ν(j, k) := # {l ∈ {1, 2, . . . , n} : jl = k}

for k = 1, 2, . . . , d. Thus ν(j, 1) + · · ·+ ν(j, d) = n for j = 1, . . . , n. With this
notation, we obtain

∫

Rd

exp
(
− 1

2

d∑
k=1

t2Hkξ2k

)
ξj1 · · · ξjn

dξ1 · · · dξd

=
∫

Rd

exp
(
− 1

2

d∑
k=1

t2Hkξ2k

)
ξ

ν(j,1)
1 · · · ξν(j,d)

d dξ1 · · · dξd

= t−K(j)

∫

Rd

e−1/2|η|2η
ν(j,1)
1 · · · ην(j,d)

d dη1 · · · dηd

= t−K(j)(2π)dC(j),

where

C(j) =

⎧
⎪⎨
⎪⎩

0 when one of ν(j, k) is odd,

(2π)−d/2
d∏

k=1

ν(j, k)!
2ν(j,k)/2(ν(j, k)/2)!

when all ν(j, k) are even.

and

K(j) =
d∑

k=1

Hk(1 + ν(j, k)).

Thus

fj1,...,jn
(s1, . . . , sn) = C(j)

∫ T

max{s1,...,sn}
t−K(j) dt

=
C(j)

1−K(j)

(
T 1−K(j) −max {s1, . . . , sn}1−K(j)

)
.

Consequently,
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�
(H)
T (0) =

∑
n even

∑
1≤j1,...,jn≤d

∫ T

0

∫ sn−1

0

· · ·
∫ s2

0

gn(T,max {s1, . . . , sn})

· dB(H)
j1

(s1) · · · dB(H)
jn

(sn),

where

gn(T, u) = (−1)n C(j)
1−K(j)

(
T 1−K(j) − u1−K(j)

)
for n ≥ 1. (10.15)

(When n = 0, we assume that max {s1, . . . , sn} = 0.) Thus we obtain

Theorem 10.2.1. The chaos expansion of the fractional local time �(H)
T (0) =∫ T

0
δ(B(H)(t)) dt at x = 0 is given by

�
(H)
T (0) =

∫ T

0

δ(B(H)(t)) dt

=
∑

n even

∑
1≤j1,...,jn≤d

∫ T

0

∫ sn−1

0

· · ·
∫ s2

0

gn(T,max {s1, . . . , sn})

· dB(H)
j1

(s1) · · · dB(H)
jn

(sn), (10.16)

where g(T, u) is given by (10.15).

Another proof of the chaos expansion for the fBm can be found in Proposition
4 of [87].

Remark 10.2.2. If the series in (10.16) converges in L2(P), then the expecta-
tion is the zero-order term in the chaos expansion. Thus, by choosing n = 0
in (10.15) we have, for d = 1 (see Corollary 10.1.12),

E

[∫ T

0

δ(B(H)(t)) dt

]
=

T 1−H

√
2π(1−H)

.

Now we compute the L2 norm of the local time of the fBm. We still use
expressions (10.13) and (10.14) for the Donsker delta function. It suffices to
show that �(H)

ε,T (0) is a bounded sequence in L2(P) as ε→ 0+. For the sake of
simplicity, we let ε = 0. Thus we need to estimate

E
[
(�(H)

T (x))2
]

= E

[
(
∫ T

0

δ(B(H)(t)− x) dt)2
]

=
1

(2π)2d

∫

[0,T ]2

∫

R2d

e−iξx+iηxE
[
e−iξB(H)(t)+iηB(H)(s)

]
dξ dη ds dt

≤ 1

(2π)2d

∫

[0,T ]2

∫

R2d

e−1/2 Var(ξB(H)(t)−ηB(H)(s)) dξ dη ds dt
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≤ 2
(2π)2d

∫ T

0

∫ sn−1

0

· · ·
∫ s2

0

∫

R2d

e−1/2 Var(ξB(H)(t)−ηB(H)(s)) dξ dη ds dt.

Here we have used that for any Gaussian random variable X,

E
[
eiX
]

= e−1/2 Var(X).

Using the nondeterminism property of fBm we have that when 0 ≤ s < t ≤ T ,
there is a positive constant k > 0 such that

Var
(
ξB(H)(t)− ηB(H)(s)

)
= Var

(
ξ[B(H)(t)−B(H)(s)] + (ξ − η)B(H)(s)

)

≥ k
[
ξ2|t− s|2H0 + (η − ξ)2s2H0

]
,

where
H0 = max(H1, . . . , Hd).

See [25], [26], [27], [28], [29], [119], [197] for the use of this property. Therefore,
we have when H0d < 1,

E
[
(�(H)

T (x))2
]
≤ 2

(2π)2d

∫

0≤s<t≤T

∫

R2d

e−k/2[ξ2|t−s|2H0+(η−ξ)2s2H0 ] dξ dη ds dt

=
2

(2π)dkd/2

∫

0≤s<t≤T

1
sH0d(t− s)H0d

ds dt

=
2

(2π)dkd/2

∫ T

0

(∫ t

0

1
sH0d(t− s)H0d

ds

)
dt

=
2Γ (1−H0d)2

(2π)dkd/2Γ (2− 2H0d)

∫ T

0

t1−2H0d dt

=
2Γ (1−H0d)2

(2π)dkd/2Γ (2− 2H0d)(2− 2H0d)
T 2−2H0d

=
2Γ (1−H0d)2

(2π)dkd/2Γ (3− 2H0d)
T 2−2H0d.

Summarizing the above, we obtain

Theorem 10.2.3. Assume that H0d < 1. Then the local time �(H)
T (x) =∫ T

0
δ(B(t)− x) dt is square integrable, and for any x ∈ R we have

lim
T→∞

E

⎡
⎣
(∫ T

0

δ(B(H)(t)− x) dt
)2
⎤
⎦ ≤ 2Γ (1−H0d)2T 2−2H0d

(2π)
√
kΓ (3− 2H0d)

,

where k is a constant depending on H0.

Moreover, by [87] we obtain the following further regularity result concerning
�
(H)
T .
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Theorem 10.2.4. The local time �(H)
T of the one-dimensional fBm B(H) be-

longs to the space D
α,2
H for every α < (1−H)/(2H).

This result can be obtained by using the Wiener chaos expansion for �(H)
T (see,

for example [177]). For further details on the proof of this Theorem, we refer
to Theorem 5 of [87].

By Theorem 1.6.1 of Chapter 1 we know that the fBm has β-Hölder con-
tinuous trajectories for all β < H. Thus, when H becomes smaller, the paths
of B(H) become less regular, but the regularity of its local time increases. If
H = 1/2, we obtain the regularity result for the standard Brownian motion
that holds for α < 1/2.

10.3 Weighted local time for fBm

Let d = 1 and consider a one-dimensional B(H) for H ∈ (0, 1). Now we
introduce the weighted local time as

L
(B(H))
t (x) =

∫ t

0

δ(B(H)
s − x)s2H−1 ds. (10.17)

For H = 1/2, the usual local time is the same as the weighted local time.

In [62] the weighted local time L
(B(H))
t is introduced as the density of the

occupation measure

mw
t (Γ ) = 2H

∫ t

0

IΓ (B(H)
s )s2H−1 ds,

where Γ ∈ B(R). By [28] and [100] it follows that the occupation measure

mt(Γ ) =
∫ t

0

IΓ (B(H)
s ) ds

has a density λ(x)
t that has a continuous version in t and x. In particular, by

[100] we have that λ(x)
t is Hölder continuous respectively of order γ < 1−H

in t and of order α < (1−H)/(2H) in x. Since we have

L
(B(H))
t (x) = 2H

∫ t

0

s2H−1λ
(x)
t ds,

the weighted local time L
(B(H))
t (x) inherits the continuity properties of λ(x)

t .
In particular, for any continuous function g : R → R the following holds:

∫ t

0

g(B(H)
s )s2H−1 ds =

∫ t

0

g(y)L(B(H))
t (y) dy.

Following the proof of [29], it can also be easily seen that the local time

�
(B(H))
t (x) is a jointly continuous function of t and x for almost all ω ∈ Ω. We

can now prove the following:
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Proposition 10.3.1.

E
[
L

(B(H))
t (x)

]
= (2π)−1/2

∫ t

0

rH−1 exp
(
−1

2
r−2Hx2

)
dr. (10.18)

Proof. To prove (10.18), use integration by parts to write

L
(B(H))
t (x) =

∫ t

0

δ(B(H)
s − x)s2H−1 ds

= �
(B(H))
t (x)t2H−1 − (2H − 1)

∫ t

0

s2H−2�(B
(H))

s (x) ds. (10.19)

By using equation (10.11), we have

E

[∫ t

0

s2H−2�(B
(H))

s (x) ds
]

=
∫ t

0

s2H−2

[
1√
2π

∫ s

0

r−H exp
(
−1

2
r−2Hx2

)
dr

]
ds

=
1√
2π

∫ t

0

(∫ t

r

s2H−2 ds

)
r−H exp

(
−1

2
r−2Hx2

)
dr

=
1√
2π

∫ t

0

1
2H − 1

(
t2H−1 − r2H−1

)
r−H exp

(
−1

2
r−2Hx2

)
dr

=
t2H−1

2H − 1
E
[
�
(B(H))
t (x)

]

− 1
(2H − 1)

√
2π

∫ t

0

rH−1 exp
(
−1

2
r−2Hx2

)
dr. (10.20)

Combining (10.19) and (10.20), we obtain (10.18). ��

The exact second moment is harder to compute. However, we are able to
obtain an upper bound for the second moment.

Proposition 10.3.2. The weighted local time L
(B(H))
T (x) =

T∫
0

δ(B(H)(t) −

x)t2H−1 dt is square integrable, and for any x ∈ R, we have

E
[
(L(B(H))

T (x))2
]
≤ Γ (H)Γ (1−H)T 2H

2Hπ
√
k

,

where k is a constant depending on H and is defined by (10.21) below.

Proof. Using the representation (10.17), we follow the proof of Theorem 10.2.3
and get

E

[(
L

(B(H))
T (x)

)2
]

= E

⎡
⎣
(∫ T

0

δ(B(H)(t)− x)t2H−1 dt

)2
⎤
⎦
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=
1

(2π)2

∫

[0,T ]2

∫

R2
e−(iξx+iηx)

· E
[
eiξB(H)(t)+iηB(H)(s)

]
(st)2H−1 dξ dη ds dt

≤ 1
(2π)2

∫

[0,T ]2

∫

R2
e−1/2 Var(ξB(H)(t)−ηB(H)(s))(st)2H−1 dξ dη ds dt

≤ 2
(2π)2

∫

0≤s<t≤T

∫

R2
e−1/2 Var(ξB(H)(t)−ηB(H)(s))(st)2H−1 dξ dη ds dt.

As in the proof of Theorem 10.2.1 by using the nondeterminism property of
fBm (see [29], [119], [122], and the references therein), we find that, when
0 ≤ s < t ≤ T , there is a positive constant k > 0 such that

Var
(
ξB(H)(t)− ηB(H)(s)

)
= Var

(
ξ[B(H)(t)−B(H)(s)] + (ξ − η)B(H)(s)

)

≥ k
[
ξ2|t− s|2H + (η − ξ)2s2H

]
, (10.21)

Therefore, we have

E

[(
L

(B(H))
T (x)

)2
]

≤ 2
(2π)2

∫

0≤s<t≤T

∫

R2
e−k/2[ξ2|t−s|2H+(η−ξ)2s2H ](st)2H−1 dξ dη ds dt

=
2

2π
√
k

∫ T

0

∫ sn−1

0

· · ·
∫ s2

0

(st)2H−1

sH(t− s)H
ds dt

=
2

2π
√
k

∫ T

0

(∫ t

0

sH−1t2H−1

(t− s)H
ds

)
dt

=
2Γ (H)Γ (1−H)

2π
√
k

∫ T

0

t2H−1 dt =
Γ (H)Γ (1−H)

2Hπ
√
k

T 2H .

This proves the proposition. ��

By [62] we obtain the Wiener chaos expansion for the weighted local time.

Proposition 10.3.3. Let H ∈ (0, 1) and B(H) a one-dimensional fBm. The

weighted local time L
(B(H))
t has the following Wiener chaos expansion:

L
(B(H))
t = 2H

∞∑
n=0

∫ t

0

s(2−n)H−1ps2H (x)hn(
x

s2H
)In(KH(s, ·)⊗n) ds.

where ps2H (x) = 1/(sH
√

2π) exp
(
−x2/(2s2H)

)
; hn is the nth Hermite poly-

nomial, and KH(s, t) is the reproducing kernel introduced in Chapter 2.
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10.4 A Meyer Tanaka formula for fBm

Here we provide a generalized Itô formula for convex functions valid for every
H ∈ (0, 1) following [123]. At this purpose we consider the stochastic integral
defined in Chapter 4. Let f : R → R be a convex function. Then it is well-
known that its left derivative D−f(x) exists and is finite for every x ∈ R,
where we have

D−f(x) := lim
h→0,h>0

f(x− h)− f(x)
h

. (10.22)

Define the second derivative measure of f by νf (dx) by

νf ([a, b)) := D−f(b)−D−f(a), −∞ < a < b <∞. (10.23)

Theorem 10.4.1. Let H ∈ (0, 1), B(H) a one-dimensional fBm and f be a
convex function of polynomial growth. Then

f(B(H)
t ) = f(0) +

∫ t

0

D−f(B(H)
s ) dB(H)

s +H
∫

R

L
(B(H))
t (x) νf (dx),

where here the stochastic integral in terms of B(H) is to be interpreted as the
one defined in Chapter 4.

Proof. Define a function ρ by

ρ(x) := c exp
(

1
(x− 1)2 − 1

)
,

for x ∈ (0, 2), and ρ(x) = 0 elsewhere, where c is a normalizing constant such
that

∫
R
ρ(x) dx = 1. Let

ρn(x) := nρ(nx).

If
fn(x) =

∫

R

ρn(x− y)f(y) dy, n ≥ 1,

then it is well-known that

lim
n→∞

fn(x) = f(x) and lim
n→∞

f ′n(x) = D−f(x)

for every x ∈ R. Moreover, if g is of class C1 and has compact support, then

lim
n→∞

∫

R

g(x)f ′′n (x) dx =
∫

R

g(x) νf (dx).

Since fn is C2, we have by Theorem 4.2.6 in Chapter 4

fn(B(H)
t ) = fn(0) +

∫ t

0

f ′n(B(H)
s ) dB(H)

s +H
∫ t

0

s2H−1f ′′n (B(H)
s ) ds. (10.24)
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If n → ∞, then it is easy to see that fn(B(H)
t ) converges to f(B(H)

t ) almost
surely, and fn(0) converges to f(0).

Next, we consider the limit of the last term. Since

H

∫ t

0

s2H−1f ′′n (B(H)
s ) ds = H

∫ t

0

s2H−1

∫

R

f ′′n (x)δ(B(H)
s − x) dx ds

= H

∫

R

f ′′n (x)
∫ t

0

s2H−1δ(B(H)
s − x) ds dx

= H

∫

R

f ′′n (x)L(B(H))
t (x) dx

we have

H

∫ t

0

s2H−1f ′′n (B(H)
s ) ds −→ H

∫

R

L
(B(H))
t (x) νf (dx)

as n goes to infinity. Finally we see that
∫ t

0

f ′n(B(H)
s ) �W (H)

s ds
n→∞−−−−→

∫ t

0

D−f(B(H)
s ) �W (H)

s ds in (S)∗

and also almost surely, by the convergence of the other terms in (10.24). So,
the result follows. ��

The function f defined by f(x) = |x − z| for x ∈ R is convex, D−f(x) =
sign (x− z), and νf (dx) = 2δz(dx). Thus we obtain the following representa-
tion for the reflection of fBm.

Corollary 10.4.2 (A Meyer Tanaka formula for fBm). Let H ∈ (0, 1)
and B(H) a one-dimensional fBm. For any z ∈ R,

|B(H)
t − z| = |z|+

∫ t

0

sign (B(H)
s − z) dB(H)

s + 2HL
(B(H))
t (z). (10.25)

In [62] a Meyer Tanaka formula for fBm is obtained for H > 1/3. Moreover
in [54] a Meyer Tanaka formula for fBm is provided for all H < 1/2 by using
the extended divergence operator δ introduced in Chapter 2, Definition 2.2.7.
We recall it for the sake of completeness.

Theorem 10.4.3. Let H < 1/2 and x ∈ R. Then I(x,∞)(B(H)(s))I(0,t)(s) ∈
dom∗ δ and

δ(I(x,∞)(B(H)(s))I(0,t)(s)) = [B(H)(t)− x]+ − (−x+)− 1
2
L

(B(H))
t (x).

For the proof of this result, we refer to Theorem 4.4 of [54].
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10.5 A Meyer Tanaka formula for geometric fBm

Let Xt be a geometric fBm, defined by

dXt = µXt dt+ σXt dB
(H)
t , t ≥ 0, X0 = x > 0,

with x a constant, where B(H) is a one-dimensional fBm and H ∈ (0, 1). Using
the Wick calculus (see Example 4.2.4), the solution of this equation is found
to be

Xt = x exp
(
σB

(H)
t + µt− 1

2
σ2t2H

)
. (10.26)

For this process, we define the local time �(X)
t (z) of X at the point z > 0 by

�
(X)
t (z) =

∫ t

0

δ(Xs − z) ds = lim
ε→0

1
2ε
λ1 ({s ∈ [0, t] : |Xs − z| < ε}) ,

where λ1 is the Lebesgue measure on R, and the weighted local time L
(X)
t (z)

of X at z by

L
(X)
t (z) =

∫ t

0

δ(Xs − z)s2H−1 ds.

SinceXt is a functional of B(H)
t , we expect that the local time of X will also be

related to the local time of B(H). The approach that we are going to develop
is applicable more generally to any process of the form Yt = f(t, B(H)(t)).
Let f(t, x) be a continuous function of t and x such that as a function of x it
is invertible with continuously differentiable inverse function f−1(t, x). Then
for any smooth function ψ of compact support we have, fixing t and writing
f(y) = f(t, y), ∫

R

δ(f(y)− z)ψ(z) dz = ψ(f(y)).

On the other hand, if we make the substitution u = f−1(z), we get
∫

R

δ(y − f−1(z))
d

dz

[
f−1(z)

]
ψ(z) dz =

∫

R

δ(y − u)ψ(f(u)) du

= ψ(f(y)).

Thus we have
δ(f(y)− z) = δ(y − f−1(z))

d

dz

[
f−1(z)

]

(in the distribution sense). Now we consider the local time of Yt = f(t, B(H)(t))
with

f(t, y) = x exp
(
σy + µt− 1

2
σ2t2H

)
.

Denote the inverse of y → f(t, y) by h(t, y). Then
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h(t, z) =
1
σ

(
log

z

x
− µt+ σ2

2
t2H−1

)
. (10.27)

The derivative of h(t, z) with respect to z is

d

dz
h(t, z) =

d

dz

[
f−1(t, z)

]
=

1
σz
.

Thus

L
(X)
t (z) =

∫ t

0

δ(f(s,B(H)(s))− z)s2H−1 ds

=
∫ t

0

δ(B(H)(s)− h(s, z)) 1
σz
s2H−1 ds

=
1

2σzπ

∫ t

0

∫

R

eiξ(B
(H)(s)−h(s,z)) dξs2H−1 ds.

Now it is easy to see from our previous calculations of the first and second
moments of the local time of fBm (see Propositions 10.3.1 and 10.3.2) that
we have the following result.

Proposition 10.5.1. Let H ∈ (0, 1) and Xt given in (10.26). Then

E
[
L

(X)
t (z)

]
=

1√
2πσz

∫ t

0

sH−1 exp
(
−h(s, z)

2

2s2H

)
ds,

where h(s, z) is defined by (10.27), and

E

[(
L

(X)
t (z)

)2
]
≤ Γ (H)Γ (1−H)t2H

2Hπ
√
kσ2z2

,

where Γ is the gamma function.

Remark 10.5.2. Similarly, we can obtain

E
[
�
(X)
t (z)

]
=

1√
2πσz

∫ t

0

s−H exp
(
−h(s, z)

2

2s2H

)
ds.

It is interesting to note that when f is independent of t, i.e., Yt = f(B(H)(t)),
then the local time of Yt is given by

L
(Y )
t (f(y)) =

∫ t

0

δ(f(B(H)(s))− f(y))s2H−1 ds

=
∫ t

0

δ(B(H)(s)− y)s2H−1 1
f ′(y)

ds

=
1

f ′(y)

∫ t

0

δ(B(H)(s)− y)s2H−1 ds
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=
1

f ′(y)
L

(B(H))
t (y).

This means that we have

L
(f(B(H)))
t (f(y)) =

1
f ′(y)

L
(B(H))
t (y).

It is interesting to compare this formula to those in the semimartingale case
(see [194, p. 234]).

The above calculations also prove the following theorem.

Theorem 10.5.3. The weighted local time L
(X)
t (z) exists as an element of

L2, and it is a positive, jointly continuous function of t > 0 and z > 0.

Furthermore, we have the following theorem and its corollaries.

Theorem 10.5.4. Let f : R
+ → R be a convex function having polynomial

growth. Then

f(Xt) = f(X0) +
∫ t

0

D−f(Xs) dXs + σ2H

∫

R

x2L
(X)
t (x) dνf (x), (10.28)

where, as before, D−f denotes the left derivative of f and νf denotes the
second derivative measure of f , as introduced in (10.22) and (10.23), respec-
tively.

Proof. We proceed as in the proof of Theorem 10.4.1. Let {fn} be a sequence
of smooth functions converging to f (as in the proof of Theorem 10.4.1).
Define gn(t, y) = fn(x exp

(
σy − 1/2σ2t2H + µt

)
). Then by the fractional Itô

formula (see Theorem 4.2.6), we have

fn(Xt) = gn(t, B(H)
t )

= gn(0, 0) +
∫ t

0

∂gn

∂s
(s,B(H)

s ) ds

+
∫ t

0

∂gn

∂y
(s,B(H)

s ) dB(H)
s +H

∫ t

0

s2H−1 ∂
2gn

∂y2
(s,B(H)

s ) ds

= fn(x) +
∫ t

0

f ′n(Xs)Xs(−Hσ2s2H−1 ds+ µds+ σ dB(H)
s )

+H
∫ t

0

s2H−1[f ′′n (Xs)X2
sσ

2 + f ′n(Xs)Xsσ
2] ds

= fn(x) +
∫ t

0

f ′n(Xs) dXs +H
∫ t

0

s2H−1f ′′n (Xs)X2
sσ

2 ds. (10.29)

Proceeding as in the proof of Theorem 10.4.1, we have
∫ t

0

f ′′n (Xs)σ2X2
sHs

2H−1 ds =
∫ t

0

[∫

R

f ′′n (Xs)σ2x2δ(Xs − x) dx
]
Hs2H−1 ds
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= σ2H

∫

R

f ′′n (x)x2L
(X)
t (x) dx, (10.30)

which converges to σ2H
∫

R
x2L

(X)
t (x) dνf (x) as n → ∞. Letting n → ∞ in

(10.29) and using (10.30), we obtain (10.28). ��

Corollary 10.5.5 (A Meyer Tanaka formula for geometric fBm). Let
H ∈ (0, 1) and Xt given in (10.26). For any z > 0 we have

|Xt − z| = |X0 − z|+
∫ t

0

sign (Xs − z) dXs + 2σ2Hz2L
(X)
t (z).

Proof. In this case f(x) = |x−z| in Theorem 10.5.4; so D−f(x) = sign (x−z)
and νf (x) = 2δz(x). ��

Corollary 10.5.6. Let H ∈ (0, 1) and Xt given in (10.26). For any z > 0 we
have

(Xt − z)+ = (X0 − z)+ +
∫ t

0

I[z,∞)(Xs) dXs + σ2Hz2L
(X)
t (z).

Proof. In this case f(x) = (x − z)+ in Theorem 10.5.4; so D−f(x) = I[z,∞)

and νf (x) = δz(x). ��

A convergence of functionals of weighted sums of independent random
variables to local times of fBm can be found in [132], where discrete approxi-

mations of L
(B(H))
t (x) are established in the L2 sense.

10.6 Renormalized self-intersection local time for fBm

Let B(H) = {B(H)(t), t ≥ 0} be a d-dimensional fBm of Hurst parameter
H ∈ (0, 1). The self-intersection local time of B(H) is formally defined as

I =
∫ T

0

∫ t

0

δ0(B(H)(t)−B(H)(s)) ds dt,

where δ0(x) is the Dirac delta function. It measures the amount of time that
the process spends intersecting itself on the time interval [0, T ] and has been
an important topic of the theory of stochastic process. A rigorous definition
of this random variable may be obtained by approximating the Dirac function
by the heat kernel

pε(x) = (2πε)−d/2 exp
(
−|x|

2

2ε

)
,

as ε > 0 tends to zero. We denote the approximated self-intersection local
time by
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Iε =
∫ T

0

∫ t

0

pε(B(H)(t)−B(H)(s)) ds dt, (10.31)

and a natural question is to study the behavior of Iε as ε tends to zero. At
this purpose, we present some of the results of [120].

The following result extends a result from [197] to the case of arbitrary
dimensions and with Hurst parameter H < 3/4.

Theorem 10.6.1. Let Iε be the random variable defined in (10.31). We have

1. If H < 1/d, then Iε converges in L2 as ε tends to zero.
2. If 1/d < H < 3/(2d), then

Iε − TCH,dε
−d/2+1/(2H), (10.32)

converges in L2 as ε tends to zero, where

CH,d = (2π)−d/2

∫ ∞

0

(
z2H + 1

)−d/2
dz.

3. If 1/d = H < 3/(2d), then

Iε −
T

2H(2π)d/2
log
(

1
ε

)
, (10.33)

converges in L2 as ε tends to zero.
4. If H ≥ 3/(2d), then the difference Iε − E [Iε] does not converge in L2.

That means, if H < 3/(2d), the difference Iε−E [Iε] converges in L2 as ε tends
to zero to the renormalized self-intersection local time. In the case H ≥ 3/(2d)
we know from the above (10.33) that Iε − E [Iε] does not converge in L2.
However, we have the following in this case.

Theorem 10.6.2. Suppose 3/(2d) ≤ H < 3/4. Then the random variables
{(

log(1
ε )
)−1/2 (Iε − E [Iε]) if H = 3/(2d)

εd/2−3/(4H) (Iε − E [Iε]) if H > 3/(2d)

converge as ε tends to zero in distribution to a normal law N(0, Tσ2), where
σ2 is a constant depending on d and H.

We shall prove Theorem 10.6.1. The proof of Theorem 10.6.2 is more involved,
and the reader is referred to the paper [120].

Proof (Theorem 10.6.1). Let B(H) = {B(H)(t), t ≥ 0} be a d-dimensional fBm
of Hurst parameter H ∈ (0, 1).

Consider the approximation Iε of the self-intersection local time introduced
in (10.31). From the equality
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pε(x) = (2π)−d

∫

Rd

exp
(
i 〈ξ, x〉L2(Rd)

)
exp

(
−
ε‖ξ‖2L2(Rd)

2

)
dξ

and the definition of Iε, we obtain

Iε = (2π)−d

∫ T

0

∫ t

0

∫

Rd

exp
(
i〈ξ,B(H)(t)−B(H)(s)〉L2(Rd)

)

· exp

(
−
ε‖ξ‖2L2(Rd)

2

)
dξ ds dt.

Therefore,

E
[
I2ε
]

=
∫

T

∫

R2d

E
[
exp
(
i〈ξ,B(H)

t −B(H)
s 〉L2(Rd)

+ i〈η,B(H)
t′ −B(H)

s′ 〉L2(Rd)

)]

· 1
(2π)2d

exp
(
−
(
ε‖ξ‖2L2(Rd) + ε‖η‖2L2(Rd)

)
/2
)

· dξ dη ds dt ds′ dt′,

(10.34)

where

T = {(s, t, s′, t′) : 0 < s < t < T, 0 < s′ < t′ < T}. (10.35)

Throughout this part we will make use of the following notation: for any
τ = (s, t, s′, t′),

λ(τ) = |t− s|2H , ρ(τ) = |t′ − s′|2H , (10.36)

and

µ(τ) =
1
2
(
|s− t′|2H + |s′ − t|2H − |t− t′|2H − |s− s′|2H

)
. (10.37)

Notice that λ is the variance of BH,1
t −BH,1

s , ρ is the variance of BH,1
t′ −BH,1

s′ ,
and µ is the covariance between BH,1

t − BH,1
s and BH,1

t′ − BH,1
s′ , where BH,1

denotes a one-dimensional fBm with Hurst parameter H.
With this notation, for any ξ, η ∈ R

d, we can write

E

[(
〈ξ,B(H)(t)−B(H)(s)〉L2(Rd) + 〈η,B(H)(t′)−B(H)(s′)〉L2(Rd)

)2
]

= λ‖ξ‖2L2(Rd) + ρ‖η‖2L2(Rd) + 2µ〈ξ, η〉L2(Rd). (10.38)

As a consequence, from (10.34) and (10.38) we deduce for all ε > 0,

E
(
I2ε
)

= (2π)−2d

·
∫

T

∫

R2d

e
−
[
(λ+ε)‖ξ‖2

L2(Rd)
+2µ〈ξ,η〉

L2(Rd)+(ρ+ε)‖η‖2
L2(Rd)

]
/2
dξ dη dτ
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= (2π)−d

∫

T

[
(λ+ ε) (ρ+ ε)− µ2

]−d/2
dτ. (10.39)

On the other hand, the expectation of the random variable Iε is given by

E [Iε] =
∫ T

0

∫ t

0

pε+|t−s|2H (0) ds dt

= (2π)−d/2

∫ T

0

∫ t

0

(
ε+ |t− s|2H

)−d/2
ds dt

= (2π)−d/2

∫ T

0

(T − s)
(
ε+ s2H

)−d/2
ds. (10.40)

Assertion 1 follows easily from (10.39) and (10.40). From (10.40), making
the change of variables s = zε1/(2H), we obtain, if 1/d < H < 3/(2d)

E [Iε] =
ε1/(2H)−d/2

(2π)d/2

∫ Tε1/(2H)

0

(T − zε1/(2H))
(
z2H + 1

)−d/2
dz

= ε1/(2H)−d/2TCH,d + o(ε).

For H = 1/d we get

E [Iε] =
T log(1/ε)
2H(2π)d/2

+ o(ε).

Hence, the convergence in L2 of the random variables (10.32) and (10.33) is
equivalent to the convergence of Iε − E [Iε].

From (10.39) and (10.40) we obtain

E [IεIη]− E [Iε]E [Iη] = (2π)−d

∫

T

[
((λ+ ε) (ρ+ η)− µ2)−d/2

−((λ+ ε) (ρ+ η))−d/2
]
dτ.

Therefore, a necessary and sufficient condition for the convergence in L2 of
Iε − E [Iε] is that

ΞT =:
∫

T

[
(λρ− µ2)−d/2 − (λρ)−d/2

]
dτ <∞. (10.41)

This is a purely analysis problem and is solved by the following lemma. ��

Lemma 10.6.3. Let ΞT be defined by (10.41). Then ΞT < ∞ if and only if
dH < 3/2.

Proof. We divide the proof into three steps.
Step 1. We will denote by k a generic constant which may be different
from one formula to another one. We will decompose the region T defined in
(10.35) as follows:
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T ∩ {s < s′} = T1 ∪ T2∪T3,

where

T1 = {(t, s, t′, s′) : 0 < s < s′ < t < t′ < T},
T2 = {(t, s, t′, s′) : 0 < s < s′ < t′ < t < T},
T3 = {(t, s, t′, s′) : 0 < s < t < s′ < t′ < T}.

We will make use of the notation:

i. If (t, s, t′, s′) ∈ T1, we put a = s′ − s, b = t − s′ and c = t′ − t. On this
region, the functions λ, ρ and µ defined in (10.36) and (10.37) take the
following values

λ = λ1 := λ1(a, b, c) := (a+ b)2H , ρ = ρ1 := (b+ c)2H ,

µ = µ1 := µ1(a, b, c) :=
1
2
[
(a+ b+ c)2H + b2H − c2H − a2H

]
.

ii. If (t, s, t′, s′) ∈ T2, we put a = s′ − s, b = t′ − s′ and c = t − t′. On this
region we will have

λ = λ2 := b2H , ρ = ρ2 := (a+ b+ c)2H ,

µ = µ2 :=
1
2
[
(b+ c)2H + (a+ b)2H − c2H − a2H

]
.

iii. If (t, s, t′, s′) ∈ T3, we put a = t − s, b = s′ − t and c = t′ − s′. On this
region we will have

λ = λ3 := a2H , ρ = ρ3 := c2H ,

µ = µ3 :=
1
2
[
(a+ b+ c)2H + b2H − (b+ c)2H − (a+ b)2H

]
.

For i = 1, 2, 3 we set δi = λiρi − µ2
i , Θi = δ

−d/2
i − (λiρi)−d/2. Note that λi,

ρi, µi, and so on, i = 1, 2, 3, are functions of a, b, and c.
The following lower bounds for the determinant of the covariance matrix

of BH,1
t − BH,1

s and BH,1
t′ − BH,1

s′ , were obtained in [119] using the local
nondeterminism property of the fBm (see [29]).

i.
δ1 ≥ k

[
(a+ b)2Hc2H + (b+ c)2Ha2H

]
. (10.42)

ii. For i = 2, 3
δi ≥ kλiρi. (10.43)

Step 2. The following estimates are important.

k(a+ b+ c)2H−2ac ≤ µ3 ≤ kb2H−2ac. (10.44)

For i = 2, 3, we have



10.6 Renormalized self-intersection local time for fBm 263

Θi ≤ kµ2
i (λiρi)

−d/2−1 (10.45)

and
Θi ≤ k (λiρi)

−d/2
. (10.46)

In fact, the inequalities in formula (10.44) follow from

µ3 =
1
2
[
(a+ b+ c)2H + b2H − (a+ b)2H − (b+ c)2H

]

= H(2H − 1)ac
∫ 1

0

∫ 1

0

(b+ vc+ ua)2H−2 du dv.

We have, for i = 2, 3,

Θi =

[(
1− µ2

i

λiρi

)−d/2

− 1

]
(λiρi)

−d/2
.

The estimate (10.43), assuming k < 1, implies µ2
i /(λiρi) ≤ 1− k and (10.45)

holds. Moreover, (10.43) also implies (10.46).
Step 3. Suppose dH < 3/2. We claim that

∫

[0,T ]3
Θi da db dc <∞ (10.47)

for i = 1, 2, 3. From (10.42) we deduce

δ1 ≥ k(a+ b)H(b+ c)HaHcH

≥ k(abc)4H/3. (10.48)

Then, (10.48) together with the estimate

λ1ρ1 = (a+ b)2H(b+ c)2H ≥ (abc)4H/3.

implies (10.47) for i = 1.
To handle the case i = 2, we decompose the integral over the regions

{b ≥ ηa}, {b ≥ ηc}, and {b < ηa, b < ηc} for some fixed but arbitrary η > 0.
We have, using (10.46)

Ξ =
∫

b≥ηa

Θ2 da db dc ≤ k
∫

b≥ηa

da db dc

(a+ b+ c)dHbdH
.

If dH < 1, then this integral is finite. If 1 < dH, then

Ξ ≤ k
∫ T

0

∫ T

0

da dc

(a+ c)dH

∫ T

ηa

b−Hd db

≤ k
∫ T

0

∫ T

0

a−4dH/3+1c−2dH/3 da dc <∞.
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It is also easy to show that Ξ < ∞ in the case 1 = dH. The case b ≥ ηc can
be treated in a similar way.

To deal with the case both b < ηa and b < ηc, we make use of the estimate
(10.45) and the following upper bound for µ2.

µ2 =
1
2
[
(a+ b)2H − a2H + (b+ c)2H − c2H

]

≤ k(a2H−1 + c2H−1)b

for η small enough. In this way we obtain

Θ2 ≤ k (a4H−2 + c4H−2) (a+ b+ c)−2H−dH
b2−2H−dH

≤ k
(
a(2−d/3)HbdH/3 + c(2−d/3)HbdH/3

)
(a+ b+ c)−2H−dH

b−dH .

Hence,
∫

b<ηa,b≤ηc

Θ2 da db dc

≤ k
∫

b<ηa,b≤ηc

b−dH (a+ b+ c)−2H−dH

·
[
a(2−d/3)HbdH/3 + c(2−d/3)HbdH/3

]
da db dc

≤ k
∫

[0,T ]3
b−dH (a+ b+ c)−2H−dH

a(2−d/3)HbdH/3 da db dc

≤ k
∫

[0,T ]3
b−2dH/3a−2dH/3c−2dH/3 da db dc

which is finite if dH < 3/2.
To handle the case i = 3, we decompose the integral over the regions {a ≥

η1b, c ≥ η2b}, {a < η1b, c < η2b}, {a ≥ η1b, c < η2b}, and {a < η1b, c ≥ η2b}.
By symmetry it suffices to consider the first three regions. We have, using
(10.46)

∫

a≥η1b,c≥η2b

Θ3 da db dc ≤ k
∫ T

0

db

∫ T

η1b

da

adH

∫ T

η2b

dc

cdH

≤ k
∫ T

0

db

b2dH−2
<∞.

Let us now suppose both a < η1b and c < η2b. Using (10.44) and (10.45) and
that H < 3/4 yields

Θ3 ≤ kb4H−4a2−2H−dHc2−2H−dH ≤ ka−2/3dHc−2/3dHb−2/3dH ,

which implies that the integral over this region is finite. Finally, let us consider
the case c < η1b and a ≥ η2b. If Hd > 1, then (10.46) yields
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Θ3 ≤ k(ac)−Hd

which is integrable. So we can assume H ≤ 1/d ≤ 1/2. Then

µ3 =
1
2
[
(a+ b+ c)2H − (a+ b)2H − (c+ b)2H + b2H

]

≤ kb2H−1c (10.49)

if η2 is small enough. Hence, using (10.45) and (10.49) we get

Θ3 ≤ kb4H−2a−2H−dHc2−2H−dH .

Consequently, if −dH + 2H + 1 < 0
∫

c<η1b,a≥η2b

Θ3 da db dc ≤ k
∫

c<η1b,a≥η2b

b4H−2a−2H−dHc2−2H−dH dc db da

≤ k
∫

a≥η2b

a−dH−2Hb−dH+2H+1 db da

≤ k
∫ T

0

a−2dH+2 da,

which is finite if dH < 3/2. The case −dH + 2H + 1 ≥ 0 is easier. Assume
that H = 3/(2d). We note that

E
[
(I2m(f2m,ε))

2
]

= (2m)! ‖f2m,ε‖2H⊗(2m) (10.50)

= (2m)!
∑

m1+···+md=m

(2m)!
(2m1)! · · · (2md)!

(2π)−d

((2m)!)2
α(i2m)2

·
∫

T

(ε+ λ)−d/2−m(ε+ ρ)−d/2−mµ2m dτ

=
αm

(2π)d22m

∫

T

(ε+ λ)−d/2−m(ε+ ρ)−d/2−m µ2mdτ,

where

αm =
∑

m1+···+md=m

(2m1)! · · · (2md)!
(m1!)

2 · · · (md!)
2 .

Let us show that ΞT =∞. It suffices to prove that

d

2(2π)d

∫

T

µ2(λρ)−d/2−1 ds dt ds′ dt′ = ∞, (10.51)

because from the identity (10.50) this is the second moment of the second
chaos of the renormalized self-intersection local time. In order to check (10.51)
we will show that

A :=
∫

0<a+b+c<T

(T − a− b− c)µ2
3(λ3ρ3)−d/2−1 da db dc = ∞.
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With the above notation, we have, using (10.44), for ε > 0 small enough,

A ≥ k
∫

[0,ε]3
(b+ c+ a)4H−4(ac)2−Hd−2H da db dc := B.

If d = 2, we get

B = k

∫

[0,ε]3

1
(a+ b+ c)ac

da db dc = ∞.

For d > 2, we have 2−Hd− 2H = 1/2− 3/d > −1. Hence,

B =
k

3− 4H

∫

[0,ε]2

[
(c+ a)4H−3 − (ε+ c+ a)4H−3

]
(ac)2−Hd−2H da dc,

and
∫

0<a<c<ε

(c+ a)4H−3(ac)2−Hd−2H da dc

≥ 24H−3

∫

0<a<c<ε

a2−Hd−2Hc2H−1−Hd da dc

≥ k
∫ ε

0

a2−2Hd da = ∞

because 2H − 1−Hd < −1. ��

10.7 Application to finance

To show an application of the previous results, we now use Corollary 10.5.6 to
prove that the fractional analogue of the stop-loss–start-gain (SLSG) portfolio
is not self-financing in a fractional Black Scholes market. Our result includes
the classical Black Scholes market (H = 1/2), which was first proved in [49].
For further information on this portfolio from a p-variation approach, see [205]
and the references therein.

We adopt here the WIS model of a financial market driven by fBm, as
described in Chapter 7. The fractional Black Scholes market consists of a
bank account or a bond, and a stock . The generalized price process At of the
bond, at time t is given by

dAt = ρAtdt, A0 = 1, 0 ≤ t ≤ T,

where ρ ≥ 0, T > 0 are constants. The generalized price process Xt of the
stock is given by a geometric fBm

dXt = µXt dt+ σXt dB
(H)
t , X0 = x > 0, (10.52)
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where µ and σ �= 0 are constants. The solution of (10.52) is given in Example
4.2.4 of Chapter 4. This financial market is complete, and there exists an
explicit fractional Black Scholes formula for the price of European call option
(see Section 9.5). By normalizing the market (i.e., by considering all prices in
units of At), we may assume without loss of generality that

ρ = 0, i.e. At = 1 ∀t.

A European call option in this market gives the (generalized) payoff

F (ω) = (XT (ω)− q)+

at time T , for some given constant q > 0 (the exercise price of the option).
The (generalized WIS) SLSG portfolio θt = (αt, βt) for this payoff is defined
by

αt = −qI[q,∞)(Xt),

i.e., the number of bonds or monetary units held at time t, and

βt = I[q,∞)(Xt),

i.e., the number of stocks held at time t. We may describe this as follows:
Assume that we start with initial fortune 0 and X0 < q. As long as Xt < q,
we do nothing. However, as soon as Xt ≥ q, we immediately borrow the
amount q from the bank to buy one stock at the price q. We keep this stock
until its price drops below q. Then we sell it immediately and pay q back to
the bank. The (generalized) value V θ

t at time t of this portfolio θ is given by

V θ
t = αtAt + βt�Xt

= −qI[q,∞)(Xt) + I[q,∞)(Xt)�Xt

= (Xt − q)+. (10.53)

Thus this portfolio replicates the (generalized) payoff (Xt − q)+ at all times
t ≤ T with initial fortune 0 when X0 < q. Recall that θ is self-financing (in
the WIS sense of Definition 7.2.3) if and only if

dV θ
t = αt dAt + βt� dXt.

That is, with ρ = 0, we have

dV θ
t = I[q,∞)(Xt) dXt.

By (10.53), this implies that

(Xt − q)+ = (X0 − q)+ +
∫ t

0

I[q,∞)(Xs) dXs. (10.54)

However, Corollary 10.25 states that
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(Xt − q)+ = (X0 − q)+ +
∫ t

0

I[q,∞)(Xs) dXs + σ2Hq2L
(X)
t (q). (10.55)

Since L
(X)
t (q) > 0 for all t > 0, we see that (10.55) contradicts (10.54). Hence

θ is not self-financing (in the WIS sense).
Thus in this model, we are able to extend the SLSG portfolio from the

geometric Brownian motion case of [49] to a geometric fBm. The fact that θ
is not self-financing is in agreement with the result that our fractional Black
Scholes model does not allow for strong arbitrage opportunities (Theorem
7.2.6). Further, we obtain new expressions for the value of European call and
put options in our fBm model. Like in [49], our expressions decompose option
prices into their intrinsic and time values. That is, we have

Proposition 10.7.1 (An alternative call valuation formula). Consider
a European call option with market value C(0), maturity date T , and exercise
price q. Assume the WIS fBm model for H ∈ (0, 1) (Chapter 7). Then

C(0) = (X0 − q)+ + σ2Hq2Ê
[
L

(X)
T (q)

]
,

where Ê denotes the expectation under the risk-free measure P̂ defined in
(7.20).

Proof. By Corollary 5.6 in [121] and Section 6 in [89], we know that

C(0) = Ê
[
(XT − q)+

]
.

Combining this with (10.55), we get

C(0) = Ê

[
(X0 − q)+ +

∫ T

0

I[q,∞)(Xs) dXs + σ2Hq2L
(X)
T (q)

]

= (X0 − q)+ + σ2Hq2Ê
[
L

(X)
T (q)

]

since the expectation of the middle term, a quasi-martingale with respect to
P̂, is zero. ��

Following [49], we call (X0 − q)+ the intrinsic value of the option and
σ2Hq2Ê(H)[L(X)

T (q)] the time value of the option.
Note that, letting H → 1/2 in (10.55), we get the price process of a

geometric Brownian motion. Taking the expectation of (10.55), under the
risk-free measure for a geometric Brownian motion, the middle term again
vanishes, and the expectation of the local time remains in agreement with
Lemma A5 of [49]. This case is Proposition 2 of [49]. On the other hand,
letting H → 1 in (10.55), we get the case of a continuous price process of
bounded variation. Then the local time term disappears since L

(X)
t (q) is zero

for bounded variation processes. This complements the results of [49] and
[205] using Lebesgue and Riemann Stieltjes integrals. In the latter paper, the
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SLSG portfolio is shown to be self-financing for continuous price process of
bounded variation, and so arbitrage opportunities exist for this process.

The put–call parity implies that puts and calls have the same time value.
Hence, by the above proposition, we have a value for European put options.
Recall that we assume the bond process At = 1 for all t.

Corollary 10.7.2 (Put Valuation). Let P (0) be the market price of the
European put with maturity date T and exercise price q. Assume the WIS
fBm model for H ∈ (0, 1) (Chapter 7). Then

P (0) = (q −X0)+ + σ2Hq2Ê
[
L

(X)
T (q)

]
.



Part IV

Appendixes



A

Classical Malliavin calculus

For the reader’s convenience we recall the standard setup for the classical
white noise probability space. For further details, we refer to [1], [108], [109],
[144], [176] and [179].

A.1 Classical white noise theory

Definition A.1.1. Let S(R) denote the Schwartz space of rapidly decreasing
smooth functions on R, and let Ω := S′(R) be its dual, usually called the space
of tempered distributions. Let P be the probability measure on the Borelian
σ-algebra F := B(S′(R)) defined by the property that

∫

S′(R)

exp(i < ω, f >) dP(ω) = exp
(
−1

2
‖f‖2L2(R)

)
, f ∈ S(R), (A.1)

where i =
√
−1 and < ω, f >= ω(f) is the action of ω ∈ Ω = S′(R) on

f ∈ S(R).
The measure P is called the white noise probability measure. Its existence

follows from the Bochner Minlos theorem (see, for example, [109] or [144]).

Using (A.1) one can prove that

E[< ω, f >] = 0 ∀f ∈ S(R),

where in general

E[F (ω)] =
∫

Ω

F (ω) dP(ω)

is the expectation of F with respect to P. Moreover, we have the isometry

E[< ω, f >2] = ‖f‖2L2(R) ∀f ∈ S(R). (A.2)
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Based on this we can now define < ω, f > for an arbitrary f ∈ L2(R) as
follows:

< ω, f >= lim
n→∞

< ω, fn > [limit in L2(P)],

where fn ∈ S(R) is a sequence converging to f in L2(R). In particular, this
makes

B̃(t) := B̃(t, ω) :=< ω, I[0,t](·) > (A.3)

well-defined as an element of L2(P) for all t ∈ R, where

I[0,t](s) =

⎧
⎨
⎩

1 if 0 ≤ s ≤ t,
−1 if t ≤ s ≤ 0, except t = s = 0,
0 otherwise.

By Kolmogorov’s continuity theorem the process B̃(t) has a continuous ver-
sion, which we will denote by B(t). It can now be verified that B(t) is a
Gaussian process and

E[B(t1)B(t2)] =
∫

R

I[0,t1](s)I[0,t2](s) ds =
{

min(|t1|, |t2|) if t1, t2 > 0,
0 otherwise.

Therefore, B(t) is a Brownian motion with respect to the probability law P.
It follows from (A.3) that

< ω, f >=
∫

R

f(t) dB(t) for all deterministic f ∈ L2(R). (A.4)

Let L̂2(Rn) be the set of all symmetric deterministic functions f ∈ L2(Rn). If
f ∈ L̂2(Rn), the iterated Itô integral of f is defined by

In(f) :=
∫

Rn

f(t) dB⊗n(t)

:= n!
∫

R

{∫ tn

−∞
· · ·
[∫ t2

−∞
f(t1, . . . , tn) dB(t1)

]
dB(t2) · · · dB(tn)

}
.

We now recall the following fundamental result:

Theorem A.1.2 (The Wiener Itô chaos expansion theorem I). Let
F ∈ L2(P). Then there exists a unique sequence {fn}∞n=0 of functions fn ∈
L̂2(Rn) such that

F (ω) =
∞∑

n=0

In(fn) [convergence in L2(P)],

where I0(f0) := E [F ].
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Moreover, we have the isometry

E[F 2] =
∞∑

n=0

n!‖fn‖2L2(Rn).

By convention we put I0(f0) = f0 for constants f0, and then ‖f0‖2 = |f0|2.
Define the Hermite polynomials by

hn(x) = (−1)nex
2/2 d

n

dxn
(e−x2/2), n = 0, 1, 2, . . . (A.5)

For example, the first Hermite polynomials are

h0(x) = 1 , h1(x) = x , h2(x) = x2 − 1,
h3(x) = x3 − 3x , h4(x) = x4 − 6x2 + 3 , . . .

The generating function is

exp
(
tx− x

2

2

)
=

∞∑
n=0

tn

n!
hn(x) , ∀ t, x ∈ R .

In the following we let

ξn(x) = π−1/4((n− 1)!)−1/2hn−1(
√

2x)e−x2/2; n = 1, 2, . . . , (A.6)

be the Hermite functions (see [109] and [223]). Then ξn ∈ S(R) and there
exist constants C and γ such that

|ξn(x)| ≤
{
Cn−1/12 if |x| ≤ 2

√
n

Ce−γx2
if |x| > 2

√
n

(A.7)

for all n (see, for example, [223, Lemma 1.5.1]). It is also proved in [223] that
{ξn}∞n=1 constitutes an orthonormal basis for L2(R).

Let J be the set of all multi-indices α = (α1, α2, . . .) of finite length l(α) =
max {i;αi �= 0}, with αi ∈ N0 = {0, 1, 2, . . .} for all i. For α = (α1, . . . , αn) ∈ J

we put α! = α1!α2! · · ·αn! and |α| = α1 + · · ·+ αn, and we define

Hα(ω) = hα1(< ω, ξ1 >)hα2(< ω, ξ2 >) · · ·hαn
(< ω, ξn >). (A.8)

Thus, for example,

H(2,0,3,1)(ω) = h2(< ω, ξ1 >)h0(< ω, ξ2 >)h3(< ω, ξ3 >)h1(< ω, ξ4 >)

= (< ω, ξ1 >2 −1)(< ω, ξ3 >3 −3 < ω, ξ3 >) < ω, ξ4 >

since
h0(x) = 1, h1(x) = x, h2(x) = x2 − 1, h3(x) = x3 − 3x.

Important special cases are the unit vectors
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ε(k) = (0, 0, . . . , 0, 1)

with 1 on the kth entry, 0 otherwise, k = 1, 2, . . . Note that

Hε(k)(ω) = h1(< ω, ξk >) =< ω, ξk >=
∫

R

ξk(t) dB(t).

More generally we have, by a result of Itô [I]:

Hα(ω) =
∫

R|α|
ξ⊗̂α(x) dB⊗|α|(x)

where ⊗̂ denotes symmetrized tensor product, i.e., ξ⊗̂α(x) is the symmetriza-
tion with respect to the l(α) variables x1, . . . , xl(α) of the tensor product

ξ⊗α(x) := ξ⊗α1
1 (x1, . . . , xα1) · · · ξ⊗αm

m (xl(α)−αm+1, . . . , xl(α)),

where x = (x1, . . . , xl(α)) and α = (α1, . . . , αl(α)) ∈ J, αm �= 0. This is the link
between Theorem A.1.2 and the following result.

Theorem A.1.3 (The Wiener Itô chaos expansion theorem II). Let
F ∈ L2(P). Then there exists a unique family {cα}α∈J of constants cα ∈ R

such that
F (ω) =

∑
α∈J

cαHα(ω) [convergence in L2(P)].

Moreover, we have the isometry

E[F 2] =
∑
α∈J

c2αα!.

We now use Theorem A.1.2 and Theorem A.1.3 to define the following space
(S) of stochastic test functions and the dual space (S)∗ of stochastic distrib-
utions:

Definition A.1.4. 1. We define the Hida space (S) of stochastic test func-
tions to be all ψ ∈ L2(P) whose expansion

ψ(ω) =
∑
α∈J

aαHα(ω)

satisfies
‖ψ‖2k :=

∑
α∈J

a2
αα!(2N)kα <∞ ∀k = 1, 2, . . . ,

where

(2N)γ = (2 · 1)γ1(2 · 2)γ2 · · · (2 ·m)γm if γ = (γ1, . . . , γm) ∈ J.
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2. We define the Hida space (S)∗ of stochastic distributions to be the set
of formal expansions

G(ω) =
∑
α∈J

bαHα(ω)

such that

‖G‖2q :=
∑
α∈J

b2αα!(2N)−qα <∞ for some q <∞.

We equip (S) with the projective topology and (S)∗ with the inductive topol-
ogy. Convergence in (S) means convergence in ‖ · ‖k for every k = 1, 2, . . .,
while convergence in (S)∗ means convergence in ‖ · ‖q for some q <∞. Then
(S)∗ can be identified with the dual of (S), and the action of G ∈ (S)∗ on
ψ ∈ (S) is given by

〈G,ψ〉(S)∗,(S) :=
∑
α∈J

α!aαbα.

In the sequel, we will denote the action 〈·, · 〉(S)∗,(S) simply with symbol 〈·, ·〉.
In particular, if G belongs to L2(P) ⊂ (S)∗ and ψ ∈ (S) ⊂ L2(P), then

〈G,ψ〉 = 〈G,ψ〉L2(P) = E[Gψ].

We can in a natural way define (S)∗-valued integrals as follows:

Definition A.1.5. Suppose that Z : R −→ (S)∗ is a given function with
property that

〈Z(t), ψ〉 ∈ L1(R, dt) ∀ψ ∈ (S). (A.9)

Then
∫

R
Z(t) dt is defined to be the unique element of (S)∗ such that

〈
∫

R

Z(t) dt, ψ〉 =
∫

R

〈Z(t), ψ〉 dt ∀ψ ∈ (S). (A.10)

Just as in [109, Proposition 8.1], one can show that (A.10) defines
∫

R
Z(t) dt

as an element of (S)∗. If (A.9) holds, we say that Z(t) is dt-integrable in (S)∗.

Example A.1.6 (White noise).
For given t ∈ R the random variable B(t) ∈ L2(P) has the expansion

B(t) =< ω, I[0,t](·) >=< ω,
∞∑

k=1

〈I[0,t], ξk〉L2(R)ξk(·) >

=
∞∑

k=1

t∫

0

ξk(s) ds < ω, ξk >=
∞∑

k=1

t∫

0

ξk(s) dsHε(k)(ω).

From this and (A.7) we see that regarded as a map B(·) : R → (S)∗, B(t) is
differentiable with respect to t and
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d

dt
B(t) =

∞∑
k=1

ξk(t)Hε(k)(ω) in (S)∗. (A.11)

The expansion on the right-hand side of (A.11) is called white noise and
denoted by W (t).

The space (S)∗ is convenient for the Wick product.

Definition A.1.7. If Fi(ω) =
∑

α∈J c
(i)
α Hα(ω); i = 1, 2, are two elements of

(S)∗ we define their Wick product (F1 � F2)(ω) by

(F1 � F2)(ω) =
∑

α,β∈J

c(1)α c
(2)
β Hα+β(ω) =

∑
γ∈J

(
∑

α+β=γ

c(1)α c
(2)
β )Hγ(ω).

The Wick product is a commutative, associative, and distributive (over addi-
tion) binary operation on each of the spaces (S) and (S)∗.

Example A.1.8. 1. If F is deterministic, then F �G = F ·G.
2. If f ∈ L2(R) is deterministic, then

∫

R

f(t) dB(t) =< ω, f >=
∞∑

k=1

〈f, ξk〉L2(R) < ω, ξk >

=
∞∑

k=1

〈f, ξk〉L2(R)Hε(k)(ω).

Moreover, if ‖f‖2 = 1, then < ω, f >�n= hn(< ω, f >).
3. If also g(t) ∈ L2(R) is deterministic, we have

⎡
⎣
∫

R

f(t) dB(t)

⎤
⎦ �
⎡
⎣
∫

R

g(t) dB(t)

⎤
⎦

=
∞∑

i,j=1

〈f, ξi〉L2(R)〈g, ξj〉L2(R)Hε(i)+ε(j)(ω)

=
[∫

R

f(t) dB(t)
]
·
[∫

R

g(t) dB(t)
]
− 〈f, g〉L2(R)

(A.12)

A fundamental property of the Wick product is the following relation to Itô
Skorohod integration.

A.2 Stochastic integration

We recall the definition of Skorohod integral for the standard Brownian motion
and its relation with the Wick product. For further details we refer to [109],
[154], [179] and [176].
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This integral may be regarded as an extension of the Itô integral to inte-
grands that are not necessarily adapted. We first introduce some convenient
notation.

Let u(t, ω), ω ∈ Ω, t ∈ [0, T ], be a stochastic process [always assumed to
be (t, ω)-measurable] such that

u(t, ·) is F-measurable for all t ∈ [0, T ] (A.13)

and
E[u2(t, ω)] <∞ ∀t ∈ [0, T ]. (A.14)

Then for each t ∈ R we can apply the Wiener Itô chaos expansion to the
random variable ω → u(t, ω) and obtain functions fn,t(t1, . . . , tn) ∈ L̂2(Rn)
such that

u(t, ω) =
∞∑

n=0

In(fn,t(·)).

The functions fn,t(·) depend on the parameter t, so we can write

fn,t(t1, . . . , tn) = fn(t1, . . . , tn, t).

Hence, we may regard fn as a function of n+1 variables t1, . . . , tn, t. Since this
function is symmetric with respect to its first n variables, its symmetrization
f̃n as a function of n+ 1 variables t1, . . . , tn, t is given by, with tn+1 = t,

f̃n(t1, . . . , tn+1) =
1

n+ 1
[fn(t1, . . . , tn+1) + . . .

+ fn(t1, . . . , ti−1, ti+1, . . . , tn+1, ti) + . . .
+ fn(t2, . . . , tn+1, t1)],

where we only sum over those permutations σ of the indices (1, . . . , n + 1)
which interchange the last component with one of the others and leave the
rest in place.

Definition A.2.1. Suppose u(t, ω) is a stochastic process satisfying (A.13)
and (A.14) and with Wiener Itô chaos expansion

u(t, ω) =
∞∑

n=0

In(fn(·, t)).

Then we define the Skorohod integral of u by

δ(u) : =
∫

R

u(t, ω)δB(t) :=
∞∑

n=0

In+1(f̃n) (when convergent) (A.15)

where f̃n is the symmetrization of fn(t1, . . . , tn, t) as a function of n+1 vari-
ables t1, . . . , tn, t.
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We say u is Skorohod integrable and write u ∈ dom(δ) if the series in
(A.15) converges in L2(P). This occurs if and only if

E[δ(u)2] =
∞∑

n=0

(n+ 1)!‖f̃n‖2L2(Rn+1) <∞.

Theorem A.2.2. Suppose Y (t, ω) : R×Ω → R is Skorohod integrable. Then
Y (t, ·) �W (t) is dt-integrable in (S)∗ and

∫

R

Y (t, ω)δB(t) =
∫

R

Y (t, ω) �W (t) dt, (A.16)

where the integral on the left is the Skorohod integral defined in (A.15).

Proof. See [109] for details. ��
The Skorohod integral is an extension of the classical Itô integral in the

sense that if Y (t, ω) is adapted to the filtration Ft generated by B and

E
[ ∫

R

Y 2(t, ω)dt
]
<∞,

then ∫

R

Y (t)δB(t) =
∫

R

Y (t) dB(t), the classical Itô integral.

The integral on the right-hand side of (A.16) may exist even if Y is not
Skorohod integrable. Therefore, we may regard the right-hand side of (A.16)
as an extension of the Skorohod integral, and we call it the extended Skorohod
integral. We will use the same notation

∫

R

Y (t)δB(t)

for the extended Skorohod integral.
If [a, b] ⊂ R is an interval and u is Skorohod integrable, we define

∫ b

a

u(t) δB(t) :=
∫

R

u(t)I[a,b](t) δB(t).

More generally, if L ⊂ R is a Borel set, we define
∫

L

u(t) δB(t) :=
∫

R

u(t)IL(t) δB(t).

Example A.2.3. Using Wick calculus in (S)∗, we get
∫ T

0

B(T )δB(t) =
∫ T

0

B(T ) �W (t) dt = B(T ) �
∫ T

0

W (t) dt

= B(T ) �B(T ) = B2(T )− T,

by Example A.1.8 with f = g = I[0,T ].
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The following result gives a useful interpretation of the Skorohod integral
as a limit of Riemann sums:

Theorem A.2.4. Let Y : [0, T ] → (S)∗ be a càglàd function, i.e., Y (t) is left-
continuous with right-sided limits. Then Y is Skorohod integrable over [0, T ]
and ∫

R

Y (t) δB(t) = lim
∆tj→0

N−1∑
j=0

Y (tj) � (B(tj+1)−B(tj)),

where the limit is taken in (S)∗ and 0 = t0 < t1 < · · · < tn = T is a partition
of [0, T ], ∆tj = tj+1 − tj, j = 0, . . . , N − 1.

Proof. This is an easy consequence of Theorem A.2.2. ��

We also note the following:

Theorem A.2.5. Let Y : R → (S)∗. Suppose Y (t) has the expansion

Y (t) =
∑
α∈J

cα(t)Hα(ω), t ∈ R,

where
cα ∈ L2(R) ∀α ∈ J.

Then ∫

R

Y (t) δB(t) =
∑
α∈J

∑
k∈N

〈cα, ξk〉L2(R)Hα+ε(k)(ω),

provided that the right-hand side converges in (S)∗.
In particular, if

∫
R
Y (t) δB(t) belongs to L2(P), then

E
[ ∫

R

Y (t)δB(t)
]

= 0.

A.3 Malliavin derivative

We recall here the main results concerning stochastic derivatives and the main
relations between integral and differential stochastic calculus.

Definition A.3.1. 1. Let F : Ω → R, γ ∈ L2(R). Then the directional
derivative of F in the direction γ is defined by

DγF (ω) = lim
ε→0

F (ω + εγ)− F (ω)
ε

provided that the limit exists in (S)∗.
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2. Suppose there exists a function ψ : R → (S)∗ such that

DγF (ω) =
∫

R

ψ(t)γ(t) dt ∀γ ∈ L2(R).

Then we say that F is differentiable and we call ψ(t) the stochastic gra-
dient of F (or the Hida Malliavin derivative of F ). We use the notation

DtF = ψ(t)

for the stochastic gradient of F at t ∈ R.

Note that – in spite of the notation – DtF is not a derivative with respect to
t but is a (kind of) derivative with respect to ω ∈ Ω.

Example A.3.2. Suppose F (ω) = 〈ω, f〉 =
∫

R
f(s) dB(s) for some f ∈ L2(R).

Then by linearity

DγF (ω) = lim
ε→0

1
ε

(〈ω + εγ, f〉 − 〈ω, f〉) = 〈γ, f〉L2(R) =
∫

R

f(t)γ(t) dt

for all γ ∈ L2(R). We conclude that F is differentiable and

Dt

[∫

R

f(s) dB(s)
]

= f(t) for a.e. t.

(Note that this is only valid for deterministic integrands f . See Theorem A.3.6
for the general case.)

We note two useful chain rules for stochastic differentiation.

Theorem A.3.3 (Chain rule I). Let φ : R
n → R be a Lipschitz continuous

function, i.e., there exists C <∞ such that

|φ(x)− φ(y)| ≤ C|x− y| ∀x, y ∈ R
n.

Let X = (X1, . . . , Xn), where each Xi : Ω → R is differentiable. Then φ(X)
is differentiable and

Dtφ(X) =
n∑

k=1

∂φ

∂xk
(X)DtXk. (A.17)

We refer to [176] for a proof.

If f(x) =
∞∑

m=0
amx

m is a real analytic function and X ∈ (S)∗ we put

f�(X) =
∞∑

m=0

amX
�m,

provided the sum converges in (S)∗.
We call f�(X) the Wick version of f(X). A similar definition applies to

real analytic functions on R
n.
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Theorem A.3.4 (The Wick chain rule). Let f : R
n → R be real analytic

and let X = (X1, . . . , Xn) ∈ ((S)∗)n. Then if f�(X) ∈ (S)∗,

Dt[f�(X)] =
n∑

k=1

( ∂f
∂xk

)�
(X) �DtXk, t ∈ R.

We refer to [179] for a proof. Note that by Example A.3.2 and the chain rule
(A.17) we have

DtHα(ω) =
m∑

i=1

αiHα−ε(i)(ω)ξi(t) ∈ (S)∗ ∀t.

where α = (α1, . . . , αm) ∈ J. In fact, using the topology for (S)∗ one can
prove, by using the approach of [1, Lemma 3.10], the following:

Theorem A.3.5. Let F ∈ (S)∗. Then F is differentiable, and if F has the
expansion

F (ω) =
∑
α∈J

cαHα(ω),

then
DtF (ω) =

∑
α,i

cααiHα−ε(i)(ω)ξi(t) ∀t ∈ R.

We now mention without proofs some of the most fundamental results from
stochastic differential and integral calculus. For proofs we refer to [179].

Theorem A.3.6 (Fundamental theorem of stochastic calculus). Sup-
pose Y (·) : R → (S)∗ and DtY (·) : R → (S)∗ are Skorohod integrable. Then

Dt

[∫

R

Y (s) δB(s)
]

=
∫

R

DtY (s) δB(s) + Y (t).

Theorem A.3.7 (Relation between the Wick product and the ordi-
nary product). Suppose g ∈ L2(R) is deterministic and that F ∈ (S)∗. Then

F �
∫

R

g(t) dB(t) = F ·
∫

R

g(t) dB(t)−
∫

R

g(t)DtF dt.

Corollary A.3.8. Let g ∈ L2(R) be deterministic and F ∈ L2(P). Then

E
[
F ·
∫

R

g(t) dB(t)
]

= E
[ ∫

R

g(t)DtF dt
]

provided that the integrals converge.

Theorem A.3.9 (Integration by parts). Let F ∈ L2(P) and assume that
Y : R×Ω → R is Skorohod integrable with

∫
R
Y (t)δB(t) ∈ L2(P). Then

F

∫

R

Y (t) δB(t) =
∫

R

FY (t) δB(t) +
∫

R

Y (t)DtF dt

provided that the integral on the extreme right converges in L2(P).
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This immediately gives the following generalization of Corollary A.3.8:

Corollary A.3.10. Let F and Y (t) be as in Theorem A.3.9. Then

E
[
F

∫

R

Y (t) δB(t)
]

= E
[ ∫

R

Y (t)DtF dt
]
.

Theorem A.3.11 (The Itô Skorohod isometry). Suppose Y : R×Ω → R

is Skorohod integrable with
∫

R
Y (t) δB(t) ∈ L2(P). Then

E
[( ∫

R

Y (t) δB(t)
)2]

= E
[ ∫

R

Y 2(t) dt
]

+ E
[ ∫

R

∫

R

DtY (s)DsY (t) ds dt
]
.



B

Notions from fractional calculus

In this appendix we briefly recall the main features of the classical theory of
fractional calculus by following [237]. For a complete treatment of this subject,
we refer to [206].

B.1 Fractional calculus on an interval

Definition B.1.1. Let f be a deterministic real-valued function that belongs
to L1(a, b), where (a, b) is a finite interval of R. The fractional Riemann
Liouville integrals of order α > 0 are determined at almost every x ∈ (a, b)
and defined as the

1. Left-sided version:

Iα
a+f(x) :=

1
Γ (α)

∫ x

a

(x− y)α−1f(y) dy. (B.1)

2. Right-sided version:

Iα
b−f(x) :=

1
Γ (α)

∫ b

x

(y − x)α−1f(y) dy. (B.2)

For α = n ∈ N one obtains the n-order integrals

In
a+f(x) =

∫ x

a

∫ xn−1

a

. . .

∫ x2

a

f(x1) dx1 dx2 . . . dxn

and

In
b−f(x) =

∫ b

x

∫ b

xn−1

. . .

∫ b

x2

f(x1) dx1 dx2 . . . dxn.

Definition B.1.2. Consider α < 1. We define the fractional Liouville deriv-
atives as
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Dα
a+f :=

d

dx
I1−α
a+ f

and
Dα

b−f :=
d

dx
I1−α
b− f,

if the right-hand sides are well-defined (or determined).

For any f ∈ L1(a, b) one obtains

Dα
a+I

α
a+f = f, Dα

b−I
α
b−f = f. (B.3)

In order to guarantee that also the opposite order of operation holds, we
consider the following family of functions.

Definition B.1.3. We denote by Iα
a+(Lp(a, b)) [respectively, Iα

b−(Lp(a, b))]
the family of functions f that can be represented as an Iα

a+-integral (respec-
tively, Iα

b−-integral) of some function φ ∈ Lp(a, b), p ≥ 1. Such φ is unique
(in Lp sense) and coincides with Dα

a+f (respectively, with Dα
b−f).

In particular we denote by Iα
a+ (respectively, Iα

b−) the map from Lp(a, b)
into Iα

a+(Lp(a, b)) [respectively, Iα
b−(Lp(a, b))].

This means that if f ∈ Iα
a+(Lp(a, b)), we have

Iα
a+D

α
a+f = f.

Moreover, given f ∈ Lp(a, b) the following Weyl representation holds:

Dα
a+f(x) =

1
Γ (1− α)

[
f(x)

(x− a)α
+ α

∫ x

a

f(x)− f(y)
(x− y)α−1

dy

]

and

Dα
b−f(x) =

1
Γ (1− α)

[
f(x)

(b− x)α
+ α

∫ b

x

f(x)− f(y)
(y − x)α−1

dy

]
,

for almost every x ∈ (a, b). The convergence of the integrals at the singularity
y = x holds pointwise for almost every x ∈ (a, b) and moreover in Lp sense if
1 < p <∞.

It is easy to verify that the fractional integrals satisfy the composition
formulas

Iα
a+(Iβ

a+f) = Iα+β
a+ f

and
Iα
b−(Iβ

b−f) = Iα+β
b− f.

Moreover, the following integration by parts formula holds

∫ b

a

Iα
a+f(x)g(x) dx =

∫ b

a

f(x)Iα
b−g(x) dx (B.4)
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if f ∈ Lp, g ∈ Lq(a, b), 1/p + 1/q ≤ 1 + α, where p > 1 and q > 1 if
1/p + 1/q = 1 + α. This implies the following relations for the fractional
derivatives

Dα
a+(Dβ

a+f) = Dα+β
a+ f

and
Dα

b−(Dβ
b−f) = Dα+β

b− f

if f ∈ Iα+β
a+ (Lp(a, b)) [respectively, f ∈ Iα+β

b− (Lp(a, b))], α > 0, β > 0, α+β <
1. We introduce the boundary orders of differentiation 0 or 1 by taking the
limits in Lp(a, b)

lim
α→1−

Dα
a+f = f ′,

if f is differentiable in the Lp sense with derivative f ′, and

lim
α→0+

Dα
a+f = f.

If p = 1, the latter limit is to be interpreted in pointwise convergence. The
corresponding integration by parts formula is

∫ b

a

Dα
a+f(x)g(x) dx =

∫ b

a

f(x)Dα
b−g(x) dx, (B.5)

for f ∈ Iα
a+(Lp(a, b)), g ∈ Iα

b−(Lq(a, b)), 1/p + 1/q ≤ 1 + α, 0 ≤ α ≤ 1. By
using these relations, we introduce the concept of fractal integral following
[238]. In the following we denote by Cα, 0 < α < 1, the space of α-Hölder
continuous functions on (a, b).

Definition B.1.4. Consider the “corrected” functions

fa+(x) := I(a,b)(f(x)− f(a+)),

fb−(x) := I(a,b)(f(x)− f(b−)),

provided that f(a+) := lim
x→a+

f(x) and f(b−) := lim
x→b−

f(x) exist. Then

1. If fa+ ∈ Iα
a+(Lp(a, b)), gb− ∈ I1−α

b− (Lq(a, b)), g(a+) exists, 1/p+ 1/q ≤ 1,
0 ≤ α ≤ 1, f ∈ Cα−1/p if αp > 1, we define the fractal integral

∫ b

a

f dg :=
∫ b

a

Dα
a+fa+(x)D1−α

b− gb−(x) dx+f(a+)[g(b−)−g(a+)]. (B.6)

2. If fa+ ∈ Iα
a+(Lp(a, b)), gb− ∈ I1−α

b− (Lq(a, b)), 1/p + 1/q ≤ 1, 0 ≤ α ≤ 1,
g ∈ C1−α−1/q, αp < 1, we define the fractal integral

∫ b

a

f dg :=
∫ b

a

Dα
a+fa+(x)D1−α

b− gb−(x) dx. (B.7)
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These definitions do not depend on α and agree when f, g satisfy both condi-
tions. For further details, see [238].

For α = 0 or α = 1, the fractal integrals reduce to the well-known case of
Stieltjes integral in the smooth case:

∫ b

a

f dg = f(b−)g(b−)− f(a+)g(a+)−
∫ b

a

f ′(x)g(x) dx

and ∫ b

a

f dg =
∫ b

a

f ′(x)g(x) dx.

If g is Hölder continuous on [a, b], then for any f =
∑n

i=1 fiI[xi,xi+1] with
x0 = a, xn+1 = b, we have that

∫ b

a

f dg =
n∑

i=1

fi(g(xi+1)− g(xi))

if the integral exists in the sense of (B.6). For further properties of fractional
integrals, we also refer to [74].

B.2 Fractional calculus on the whole real line

We can also introduce the following left- and right-sided fractional integral
and derivative operators on R for α ∈ (0, 1) (see [206] and also [54] and [177]).

Definition B.2.1. Let α ∈ (0, 1). The fractional integrals Iα
+ and Iα

− of a
function φ on the whole real line are defined, respectively, by

Iα
+f(x) :=

1
Γ (α)

∫ x

−∞
(x− y)α−1f(y) dy, x ∈ R,

and
Iα
−f(x) :=

1
Γ (α)

∫ ∞

x

(x− y)α−1f(y) dy, x ∈ R.

The Marchaud fractional derivatives Dα
+ and Dα

− of a function φ on the whole
real line are defined by the following limits:

Dα
±f(x) := lim

ε→0
Dα

±,εf(x), x ∈ R,

where

Dα
±,εf(x) :=

α

Γ (1− α)

∫ ∞

ε

φ(t)− φ(t∓ s)
s1+α

ds, x ∈ R.

By Theorem 6.1 of [206] we obtain that for φ ∈ L2(R),

Dα
+I

α
+f = f, Dα

−I
α
−f = f.



C

Estimation of Hurst parameter

Assume that we have a sequence of data B(H)
1 , B

(H)
2 , . . . , B

(H)
N from obser-

vations of a fBm BH
t at time instants t = 1, 2, . . . , N . How can we estimate

the Hurst parameter H? There are many approaches that we will summarize
in this appendix (see [23], [91], [222], and the references therein for further
details).

In what follows we put Y1 = B
(H)
1 , Y2 = B

(H)
2 , . . . , YN = B

(H)
N . Since fBm

has stationary increments,

X1 = Y1,X2 = Y2 − Y1, . . . , XN = YN − YN−1

is a stationary Gaussian time sequence. The covariance of this sequence is

ρH(k) = E(X1Xk+1) = E(XmXm+k)

=
1
2
[
(k + 1)2H + (k − 1)2H − 2k2H

]
(C.1)

We use the following convention to construct a statistic.

If a statistic f(m) behaves like maH+b as m→∞ for some constants a
and b, then

log f(m) ≈ (aH + b) logm+R,

where R is independent of H. We may use linear regression to find the
slope aH + b for the log plot of f(m) against the log plot of m. Hence we
can find an estimator of H.
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C.1 Absolute value method

Given positive integers k and m, denote

Xm(k) :=
1
m

km∑
i=(k−1)m

Xi, k = 1, 2, . . . ,
[
N

m

]
,

where
[

N
m

]
denotes the integer part of N

m , and

X̄N =
1
N

N∑
i=1

Xi.

Define

AM (m) =
1

N/m

[N/m]∑
k=1

|X(m)(k)− X̄N |.

Then AM (m) behaves like mH−1 for large m.

C.2 Variance Method

Use the notation of the above subsection and define

V̂arX(m) =
1

N/m

[N/m]∑
k=1

[
X(m)(k)− X̄N

]2
.

Then V̂arX(m) behaves like m2H−2 as m→∞.

C.3 Variance residuals methods

The variance of residuals methods was introduced by [185]. Denote

L1/2,H(t) =
∫ ∞

−∞

[
|t− x|H−1/2 − |x|H−1/2

]
dBx,

the 1/2-stable fractional stable motion (see [207]), where Bx is a Brownian
motion, and denote

A1 =
∫ 1

0

L1/2,H(t) dt, A2 =
∫ 1

0

tL1/2,H(t) dt.

Define
b = mH−1 [12A2 − 6A1] , a = mH [4A1 − 6A2] .

Then 1/m
∑m

i=1 (Yi − a− bi)2 behaves like m2H in distribution.
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C.4 Hurst’s rescaled range (R/S) analysis

To use Hurst’s R/S analysis we first define the adjusted range

S(n) =

[
1
N

k∑
i=1

(Yi − ȲN )2
]1/2

and

RS(N) =
[max1≤i≤N −min1≤i≤N ] {Yi − i/NYN}

S(n)
.

We have that RS(N) behaves like NH for large N (in distribution).

C.5 Periodogram method

Let

IN (ν) =
1

2πN

∣∣∣∣∣∣
N∑

j=1

Xje
ijν

∣∣∣∣∣∣

2

. (C.2)

When N → ∞, IN (ν) is the spectral density of ρH(k). Then IN (ν) behaves
like ν1−2H as ν → 0.

C.6 Discrete variation method

In this section we present a result from [56].
Let p ≥ 1 be an integer. A filter of length l + 1 and order p is an l + 1

dimensional vector a = (a0, a1, . . . , al) ∈ R
l+1 such that

∑l
j=0 ajj

r = 0 for

all integers r such that 0 ≤ r ≤ p − 1, and
∑l

j=0 ajj
p �= 0. Given a filter

a = (a0, a1, . . . , al) define the random variable

V a
N (i) =

�∑
q=0

aqB
(H)
i−q

and define the kth empirical absolute moment as

SN (k, a) =
1

(N − �)N−KH

N−1∑
i=�

|V a
N (i)|k.

Denote

πa
H = E [V a

N (i)]2 = −1
2

�∑
q,r=0

aqar|q − r|2H .
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Set
gk,a,N (t) =

1
N tk

πa
tEk,

where

Ek =
1√
2π

∫

R

|x|ke−|x|2/2dx = 2k/2Γ (K + 1/2)
Γ (1/2)

.

Lemma C.6.1. When N is large, gk,a,N (t) is a monotonic function of t.

Proof. It is easy to see that

d

dt
gk,a,N (t) = −k logN +

k

2
(πa

t )−1t
∑

|q−r|≥2

aqar|q − r|2t log |q − r|,

which is strictly negative if

N > max
0≤t≤1

exp

(∑
|q−r|≥2 aqar|q − r|2t log |q − r|
∑�

q,r=1 aqar|q − r|2t

)
.

��

From this lemma, the inverse g−1
k,a,N (t) exists. The k-variation estimator is

defined as ĤN (k, a) = g−1
k,a,N (SN (k, a)).

Theorem C.6.2. As N →∞,

ĤN (k, a) → H a.s.,

and if p ≥ H + 1/4,

√
N log(N)

[
ĤN (k, a)−H

]
→ N

(
0,
A1(H, k, a)

k2

)

in distribution as N →∞.

For the proof, we refer to [56].

C.7 Whittle method

For the following three subsections we shall use θ to denote the Hurst para-
meter H. The spectral density of the time series X1 = Bθ

1 , X2 = Bθ
2 − Bθ

1 ,
. . ., XN = Bθ

N −Bθ
N−1 is

f(x, θ) :=
∞∑

k=−∞
ρ(k)eikx = (1− cosx)

∞∑
k=−∞

|x+ 2kπ)−1−2θ. (C.3)

Set
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f̃(x, θ) = exp
(
− 1

2π

∫ π

−π

log f(x, θ) dx
)
f(x, θ) (C.4)

and

Lw
N (θ) :=

∫ π

−π

IN (x)
f̃(x, θ)

dx+
∫ π

−π

log
[
f̃(x, θ)

]
dx,

where IN (x) is defined as in (C.2). Then the Whittle estimator is the maxi-
mizer θ̂ of Lw

N (θ), or
θ̂ = arg max

0≤θ≤1
Lw

N ((θ).

C.8 Maximum likelihood estimator

The maximum likelihood estimator is a commonly used estimator in the theory
of statistics. Denote

XN = (X1,X2, . . . , XN )T

and the covariance matrix of XN

Σ(θ) = (σij)1≤i,j≤n , where σij = ρθ(|j − i+ 1|).

The likelihood function L(θ) is given by

L(θ) =
1

(2π)n/2
det(Σ(θ))−1/2 exp

(
−1

2
XT

NΣ(θ)−1XN

)
.

Thus the maximum likelihood estimator θ̂n is the maximizer of the follow-
ing function:

θ̂n = arg max
{
−1

2
[
log det(Σ(θ)) + XT

NΣ(θ)−1XN

]}
,

or θ̂n is given by the following equation:

d

dθ
log det(Σ(θ)) + XT

N

d

dθ
Σ(θ)−1XN = 0.

The following theorem is proved in [67].

Theorem C.8.1. As n→∞, we have

θ̂n → θ a.s.

and
n1/2(θ̂n − θ)→d ξ

where ξ is a mean 0 normal distribution with variance σ2 = 2D−1 with

D =
1
2π

∫ π

−π

[
∂

∂θ
log f(x, θ)

]2
dx

∣∣∣∣
θ=H

.
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C.9 Quasi maximum likelihood estimator

In this section we shall give a detailed discussion of the so-called quasi maxi-
mum likelihood estimator for the Hurst parameter H. Recall the autocorrela-
tion and the spectral density of the increments of the fBm are given by (C.1)
and (C.3).

We normalize f(x, θ) by a constant as in (C.4) and denote the normalized
spectral density f̃(x, θ) still by f(x, θ) from now on.

Lemma C.9.1. f(x, θ) has the following expression:

f(x, θ) = Cθ(1− cosx)
∞∑

j=1

|2πj + x|−2θ−1,

and when x→ 0, we have

f(x, θ) = cf |x|1−2θ + o(|x|min(3−2θ,2)).

For the proof we refer to [212].
Now we consider

LN (θ) =
XT

NAN (θ)XN

N
,

where
AN (θ) = (aj−k(θ))1≤j,k≤n

with
ak(θ) =

1
(2π)2

∫ π

−π

eijx [f(x, θ)]−1
dx.

Recalling the definition IN (θ) defined by (C.2), we may write

LN (θ) =
1
2π

∫ π

−π

[f(x, θ)]−1
IN (x) dx.

It is easy to see that as x→ 0,

f(x, θ) ≈ x1−2θ,
d

dθ
f(x, θ) ≈ x1−2θ lnx.

The quasi maximum likelihood estimator θ̂N is the minimizer of LN (θ):

θ̂N = arg min
θ
LN (θ).

Theorem C.9.2. 1.

θ̂N → θ0 = H as n→∞

almost surely.
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2. √
N(θ̂N − θ0) → N(0, σ2)

in distribution, where

σ2 = 4π
[∫ π

−π

f(x, θ)
∂2

∂θ2
f(x, θ)−1dx

]−1

= 4π

[∫ π

−π

[
f(x, θ)

∂

∂θ
f(x, θ)−1

]2
dx

]−1

.

For a proof of this theorem see [99].
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Stochastic differential equations for fractional
Brownian motion

In this appendix we present an overview of some results concerning stochastic
differential equations for fBm.

Several approaches have been considered in the literature, but a compre-
hensive theory has not yet been formulated. Here we summarize some of them
without aiming for completeness. Since these methods use different techniques,
it is in fact quite difficult to formulate them in a systematic way. However, in
our opinion this summary can be still of interest for the reader. In particular,
we consider here the approaches of [58], [60], [61], [149], [180], [203], [237].

Other possible methods are, for example, the following: In [92] they con-
sider ordinary stochastic differential equations with respect to integrators with
finite p-variation when p ≤ 3. This applies to the case of fBm with H ≥ 1/3.
In [39] they investigate for which given drift and volatility the solution of a
stochastic differential equation (SDE) in terms of a pathwise integral with re-
spect to fBm can be expressed as a monotone transformation of a stationary
fractional Ornstein–Uhlenbeck process. In [40] they also obtain a characteri-
zation of the maximum domain of attraction for stationary solutions.

A certain number of authors have also studied the problem of defining a
stochastic integration for fBm in Hilbert space. This goes beyond the aims of
this books and we refer the reader to [84], [85], [86], [224], [225] and [226] for
a complete survey on the subject.

Stochastic delay differential equations driven by fBm with Hurst index
H > 1/2 are studied in [95].

D.1 Stochastic differential equations with Wiener
integrals

Let KH(t, s) be the reproducing kernel defined in (2.2) for H > 1/2 and in
(2.3) for H < 1/2. We follow here the approach of [58] and study for any Hurst
index H ∈ (0, 1) the existence, uniqueness, and regularity of the stochastic
equation
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X(t) = x+
∫ t

0

KH(t, s)b(s,X(s)) ds+
∫ t

0

KH(t, s)σ(s,X(s)) dB(s), (D.1)

where B(t) is a 1-dimensional standard Brownian motion. Here we note that
the KH(t, s) term appears in the drift just in order to symmetrize the role of
b and σ.

The following proposition guarantees that equation (D.1) makes sense:

Proposition D.1.1. Let X = (Xt)t∈[0,T ] and Y = (Yt)t∈[0,T ] be two indistin-
guishable processes on (Ω,F(H),PH), i.e., such that

X = Y dPH ⊗ dt a.s.

For b, σ Lipschitz continuous, then
∫ t

0

KH(t, s)b(s,X(s)) ds =
∫ t

0

KH(t, s)b(s, Y (s)) ds dPH ⊗ dt a.s.

and
∫ t

0

KH(t, s)σ(s,X(s)) dB(s) =
∫ t

0

KH(t, s)σ(s, Y (s)) dB(s) dPH⊗dt a.s.

Proof. The proof follows by applying the Cauchy–Schwartz inequality and the
Burkholder–Davis–Gundy inequality. For further details, we refer to Proposi-
tion 3.1 of [58]. ��

We introduce now the definition of solution. Set αp = (1− p|H − 1/2|)−1.

Definition D.1.2. Consider α2 = (1− 2|H − 1/2|)−1. By a solution of the
SDE (D.1) we mean a real-valued adapted stochastic process X = (Xt)t∈[0,T ]

satisfying the equation (D.1) and such that the function ψ(t) = E
[
X(t)2

]
belongs to ∪α>α2L

α([0, T ]).

The main result of [58] is then the following theorem.

Theorem D.1.3. Let b(t, x), σ(t, x) be Lipschitz continuous in x, uniformly
with respect to t, i.e.,

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ L|x− y|,

for some L > 0. If, in addition, there exists x0, y0 ∈ R and αb > α1, ασ > 2α2

such that
b(·, x0) ∈ Lαb([0, T ]), σ(·, y0) ∈ Lασ ([0, T ]),

then the SDE has a unique solution. Moreover, for this solution and for any
p ∈
{
p ≥ 2, p|H − 1

2 | < 1
}

the function ψp(t) = E [X(t)p] is bounded on [0, T ].



D.1 Stochastic differential equations with Wiener integrals 299

Proof. The uniqueness of the solution follows by the Jensen inequality, the
Burkholder–Davis–Gundy inequality, the Lipschitz continuity of b, σ, and
Lemmas D.1.5 and D.1.6.

The existence of the solution can be proved by using Picard iteration. For
further details, we refer to the proof of Theorem 3.1 in [58]. ��

To prove Theorem D.1.3 we need some additional lemmas that we recall
here without proof. The Gronwall lemma is here replaced by the following
result on the resolvent kernel associated to KH . Set H0 = |H − 1/2| and
∆H = {p ≥ 1 : pH0 < 1}, and for any p ≥ 1 define

Kp
1 (t, s) := |KH(t, s)|p,

Kp
n+1(t, s) :=

∫ t

s

Kp
1 (t, u)Kp

n(u, s) du.

Lemma D.1.4. For every p ∈ ∆H and for all t ∈ [0, T ], KH(t, ·) belongs to
LP ([0, T ]) and

sup
t∈[0,T ]

‖KH(t, ·)‖Lp([0,T ]) <∞.

Lemma D.1.5. For every p ∈ ∆H , the resolvent series

+∞∑
n=1

zn

∫ t

0

|KH(t, s1)|p ds1
∫ s1

0

|KH(s1, s2)|p ds2 · · ·
∫ sn−1

0

|KH(sn−1, sn)|p dsn

converges for all z ∈ C.

A detailed proof of this Lemma can be found in [58]. A consequence of Lemma
D.1.5 and the Hölder inequality is Lemma D.1.6.

Lemma D.1.6. For every p ∈ ∆H , let αp = (1 − pH0)−1. If φ belongs to
∪α>αp

Lα([0, T ]), then Kp
1φ(t) =

∫ t

0
Kp

1 (t, s)φ(s)ds belongs to L∞([0, T ]).

Finally, we recall some regularity behavior of the solution, proved in The-
orems 3.2 and 3.3 of [58].

Theorem D.1.7. Let b, σ satisfy the hypothesis of Theorem D.1.3 and assume
also that αp ≥ 2 and σ is bounded. Then the solution of (D.1) has almost surely
continuous sample paths.

Moreover, we have the continuity with respect to the initial conditions.

Theorem D.1.8. Let b, σ satisfy the hypothesis of Theorem D.1.3 and denote
with Xx,Xy the solution of (D.1), respectively, with, initial condition x and
y. There exists a positive constant c > 0 such that

sup
t∈[0,T ]

E
[
|Xx

t −Xy
t |2
]
≤ c|x− y|2,

and this upper bound is uniform with respect to x, y on any compact set of R.
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D.2 Stochastic differential equations with pathwise
integrals

Here we summarize the approaches of [149], [180], [203] and [237] for SDEs
with respect to pathwise integrals.

We begin with an existence-uniqueness theorem due to [203] for SDEs
driven by fBm with Hurst index H > 1/2, which derives from an analogous
result for ordinary differential equations with Hölder continuous forcing. In or-
der to define the Riemann Stieltjes integral

∫
f dg for functions of unbounded

variation, we recall the following result of [142] and [232]. For an interesting
introduction to Young integrals we refer to [82].

In the sequel for any 0 < γ < 1 we denote by Cγ(R) the space of γ-Hölder
continuous functions f : [0, T ] −→ R, equipped with the norm

‖f‖γ = sup
t∈[0,T ]

|f(t)|+ sup
0≤s<t≤T

|f(t)− f(s)|
(t− s)γ

<∞.

Theorem D.2.1. Let f ∈ Cβ(R), g ∈ Cγ(R). If β+γ > 1, then
∫ t

0
f dg exists

as a Stieltjes integral for t > 0.

In [203] the previous theorem is proved by using the following result, which
turns out also to be the key to prove existence and uniqueness for differential
equations as we describe in the sequel.

Theorem D.2.2. Consider the interval [s, t] divided into 2n subintervals of
equal size and denote sni the ith point of this partition. Let f ∈ Cβ(R), g ∈
Cγ(R) and suppose β + γ > 1. Then

∫ t

s

f(u) dg(u) = f(s)(g(t)− g(s)) +
∞∑

k=1

2k−1−1∑
i=0

∆f(s+ sk2i)∆g(s+ sk2i+1),

where ∆f(s + skn) = f(s + skn+1) − f(s + skn) and the similar expression for
∆g.

Proof. The idea behind Theorem D.2.2 is to write a recursion between the
Riemann sums on finer partitions of the interval and Riemann sums on coarser
partitions of the interval. We refer to [203] for further details. ��

Theorem D.2.3. Let b, σ : R
+ × R → R, g ∈ Cγ(R) with 1/2 < γ ≤ 1.

Suppose b is globally Lipschitz in t and x, and σ ∈ C1(R+ ×R) with σ, σt, σx

globally Lipschitz in t and x. Then for every T > 0 and γ > β > 1 − γ, the
ordinary differential equation

dx(t) = b(t, x(t)) dt+ σ(t, x(t)) dg(t), x(0) = x0,

has a unique solution in Cβ([0, T ]).
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Proof. For the proof of this Theorem we refer to the one given in [203, Sec-
tions 5.3 and 5.4], by the means of Theorem D.2.2. First local existence and
uniqueness are proved and then the global result is shown by applying the lo-
cal existence and uniqueness repeatedly, taking as initial condition the value
of the solution at the end of the previous interval. ��

Since B(H)(t, ω) ∈ Cγ(R) for γ < H with probability 1 (see The-
orem 1.6.1), Theorem D.2.1 implies that the pathwise stochastic integral∫ t

0
f(s) d−B(H)(s) exists for all f ∈ Cβ(R) with β > (1−H). A special case of

this result for functions f(B(H)(·, ω)) is also contained in [149]. Analogously,
Theorem D.2.2 holds with probability one also for the pathwise stochastic
integral

∫ t

0
f(s) d−B(H)(s) for all f ∈ Cβ(R) with β > (1 −H). Hence, The-

orem D.2.2 and Theorem D.2.3 imply the following existence and uniqueness
theorem for SDEs driven by fBm.

Theorem D.2.4. Let b, σ : R
+ × R → R, Z : Ω → R and 1/2 < H < 1,

(1 − H) < β < H. Suppose b is globally Lipschitz in t and x, and σ ∈
C1(R+×R) with σ, σt, σx globally Lipschitz in t and x. Then for every T > 0
the SDE

dX(t) = b(t,X(t)) dt+ σ(t,X(t)) d−B(H)(t), X(0) = Z,

has a unique solution in Cβ([0, T ]) with probability 1.

If f(t, ω) = f(t) is deterministic and f ∈ L 1
H (R+), then the stochastic

integral
∫ t

0
f(s) d−B(H)(s) exists in L2(R+ ×Ω) for all t ≥ 0. If, in addition,

f ∈ L2/(1+β)([0, T ]), where 0 < β < 2H − 1, then for almost every ω, the
integral

∫ t

0
f(s) d−B(H)(s) has a t-continuous version for all t ∈ [0, T ]. For

further details, we refer to [203].
For H > 1/2 a solution of the SDE

dX(t) = b(t,X(t)) dt+ σ(t,X(t)) d−B(H)(t), X(0) = Z (D.2)

for an arbitrary random initial value Z can be obtained under weaker assump-
tions by using the method developed in [237] for a continuous process Xt with
generalized covariation process of the form [X]t =

∫ t

0
q(s) ds, for some con-

tinuous random function q. In [237] this approach is actually formulated for
m-dimensional driving processes and extends a previous 1-dimensional result
by [139].

Remark D.2.5. In [149] a uniqueness and existence result for pathwise SDEs
is also provided in the case when the diffusion coefficient is a bounded deter-
ministic function, by using Gronwall’s lemma and Picard’s iteration.

In [178] they prove the existence and uniqueness of a strong solution for
a SDE with constant σ = 1 , where b(s, x) is a bounded Borel function with
linear growth in x for H ≤ 1/2 or a Hölder continuous function of order,
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respectively, strictly larger than 1−1/2H in x and thanH−1/2 in t for the case
H > 1/2. Existence of a weak solution with monotonous drift and constant
σ = 1 can be found in [37] for the case H > 1/2. The ergodic properties
of finite-dimensional systems of SDEs driven by nondegenerate additive fBm
with arbitrary Hurst index H ∈ (0, 1) are studied in [106]. An SDE with
deterministic coefficients with respect to a sequence of fBms with Hurst index
H > 1/2 is solved in [41]. For the problem of identification and estimation of
the drift function for linear stochastic systems driven by fBm with constant
volatility, we refer to [193].

Here we sketch the method presented in [237], but only in the case m = 1
for the sake of simplicity. Assume that the following conditions hold:

1. b(t, x) ∈ C1([0, T ]× R,R), ∂b/∂x(t, x) is locally Lipschitz in x ∈ R.
2. σ(t, x) ∈ C1([0, T ]× R,R), σ(t, x) is locally Lipschitz in x ∈ R.

Consider pathwisely the auxiliary partial differential equation on R
n×R×

[0, T ] given by

∂h

∂z
(y, z, t) = b(t, h(y, z, t)), h(Y0, Z0, t0) = X0, (D.3)

where Z0 = B(H)(0) = 0 and Y0 is an arbitrary random vector in R
n. By

the classical theory, there exists a (nonunique) local solution h ∈ C1 in a
neighborhood of (Y0, Z0, t0) with ∂h/∂y �= 0. For any such solution h consider
the ordinary differential equation in R

n

dY

dt
(t) =

[
∂h

∂y
(Y (t), Z(t), t)

]−1

[σ(t, h(Y (t), Z(t), t))− ∂h
∂t

(Y (t), Z(t), t)

− 1
2
q(t)b(t, h(Y (t), Z(t), t))

∂b

∂x
(t, h(Y (t), Z(t), t))] (D.4)

with Y (t0) = Y0, which has a unique solution in a neighborhood of t0.

Theorem D.2.6. Under the above conditions any representation

X(t) = h(Y (t), Z(t), t),

with h satisfying (D.3) and Y (t) given by the unique solution of (D.4), provides
a solution of (D.2). In addition, the solution X of (D.2) is unique in the
maximal interval of definition.

Proof. For the proof and further details, we refer to [237]. ��

Note that this method reduces the problem of existence of a global solution
of (D.2) to a growth condition on the coefficients b and σ for equations (D.3)
and (D.4).

By following this approach, in [180] they have established an existence and
uniqueness result for equation (D.2) using the a priori estimate (D.6) based
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on the fractional integration by parts formula. For the sake of simplicity, we
sketch only the 1-dimensional case. For the multi–dimensional case and further
details, we refer to [180]. We introduce now some useful space of functions.
Let 0 < α < 1/2. We denote byWα,∞

0 (0, T ) the space of measurable functions
f : [0, T ] → R such that

‖f‖α,∞ := sup
t∈[0,T ]

(
|f(t)|+

∫ t

0

|f(t)− f(s)|
(t− s)α+1

ds

)
<∞.

Note that for all 0 < ε < α,

Cα+ε(0, T ) ⊂Wα,∞
0 (0, T ) ⊂ Cα−ε(0, T ).

Moreover, we denote by W 1−α,∞
T (0, T ) the space of measurable functions g :

[0, T ] → R such that

‖g‖1−α,∞ := sup
0<s<t<T

(
| |g(t)− g(s)|

(t− s)1−α
|+
∫ t

s

|g(y)− g(s)|
(y − s)2−α

dy

)
<∞.

Then, for all 0 < ε < α,

C1−α+ε(0, T ) ⊂W 1−α,∞
T (0, T ) ⊂ C1−α(0, T ).

For g ∈W 1−α,∞
T (0, T ) we define

Λα(g) =
1

Γ (1− α)
sup

0<s<t<T
|(D1−α

t− gt−)(s)|.

Finally we denote byWα,1
0 (0, T ) the space of measurable functions h : [0, T ] →

R such that

‖h‖α,1 :=
∫ T

0

|h(t)|
tα

dt+
∫ T

0

∫ t

0

|h(y)− h(t)|
(t− y)α+1

dy dt <∞.

If h ∈ Wα,1
0 (0, T ) and g ∈ W 1−α,∞

T (0, T ), then the generalized Stieltjes inte-
gral

∫ t

0
h dg exists for all t ∈ [0, T ] and

|
∫ t

0

h dg| ≤ Λα(g)‖f‖α,1.

We come back to equation (D.2) and consider the following regularity assump-
tions for the coefficients:

1. Assumption H1: σ(t, x) is differentiable in x and there exists some con-
stants M > 0, 0 < β, δ ≤ 1, and for every N > 0 there exists MN > 0
such that the following holds:

|σ(t, x)− σ(t, y)| ≤M |x− y|, ∀x ∈ R,∀t ∈ [0, T ],

|∂xσ(t, x)− ∂xσ(t, y)| ≤MN |x− y|δ, ∀|x|, |y| ≤ N,∀t ∈ [0, T ],

|σ(t, x)− σ(s, x)|+ |∂xσ(t, x)− ∂xσ(s, x)| ≤M |t− s|β ,
∀x ∈ R,∀t, s ∈ [0, T ].
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2. Assumption H2: There exists b0 ∈ Lp([0, T ]) and for every N > 0 there
exists LN > 0 such that

|b(t, x)− b(t, y)| ≤ LN |x− y|, ∀|x|, |y| ≤ N,∀t ∈ [0, T ],
|b(t, x)| ≤ L0|x|+ b0(t), ∀|x| ∈ R,∀t ∈ [0, T ].

3. Assumption H3: There exists γ ∈ [0, 1) and M0 > 0 such that

|σ(t, x)| ≤M0(1 + |x|γ), ∀x ∈ R,∀t ∈ [0, T ].

Denote

α0 = min
(

1
2
, β,

δ

1 + δ

)
.

Under these conditions, in [180] the following theorem on the existence and
uniqueness of a solution for equation (D.2) is proved. Recently this result has
been extend in [39], where they provide a method to find stationary solutions
of integral equations driven by B(H) with only Hölder continuous drift and
volatility. Their hypotheses on b and σ are weaker than the others usually
assumed in literature (see also [163]), but in this case the uniqueness of the
solution is in general lost.

Theorem D.2.7. Suppose X0 is an R-valued random variable, the coefficients
b(t, x) and σ(t, x) satisfy the previous hypotheses with β > 1−H, δ > 1/H −
1, and assume that the constants M,MN , and LN and the function b0 may
depend on ω. Then

1. If α ∈ (1 − H,α0) and p ≥ 1/α, then there exists a unique stochas-
tic process X ∈ L0(Ω;Wα,∞

0 (0, T )) that satisfies the stochastic equation
(D.2), and moreover, for P

H-almost all ω ∈ Ω

X(ω, ·) ∈ C1−α([0, T ]).

2. If α ∈ (1−H,α0 ∧ (2− γ)/4), p ≥ 1/α, X ∈ L∞(Ω; R) and the constants
M,MN , LN , b0 are independent of ω, then for all p ≥ 1,

E
[
‖X‖p

α,∞
]
<∞.

Theorem D.2.7 is a consequence of the following result for deterministic
differential equations.

Theorem D.2.8. Let 0 < α < 1/2. Let g ∈ W 1−α,∞
T (0, T ) and consider the

deterministic differential equation on R

x(t) = x0 +
∫ t

0

b(s, x(s)) ds+
∫ t

0

σ(s, x(s)) dg(s), (D.5)

where x0 ∈ R, and the coefficients b, σ are measurable functions satisfying the
assumptions H1 and H2, respectively with p = 1/α, β > 0, δ ≤ 1, and
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0 < α < α0 = min(
1
2
, β,

δ

1 + δ
).

Then there exists a unique solution x ∈Wα,∞
0 (0, T ) for equation (D.5). More-

over, the solution is (1− α)-Hölder continuous.

Proof. The existence is proved by using a fixed point argument inWα,∞
0 (0, T ).

The uniqueness is a consequence of the following estimate for functions g ∈
W 1−α,∞

T (0, T ) and f ∈Wα,∞
0 (0, T ). If h(t) =

∫ t

0
f(s) dg(s), then

|h(t)|+
∫ t

0

|h(t)− h(s)|
(t− s)α+1

ds ≤ Λα(g)cα,T

∫ t

0

[(t− s)−2α + s−α]
[
|f(s)|+

∫ s

0

|f(s)− f(r)|
(s− r)α+1

dr

]
ds, (D.6)

where cα,T is a constant depending on α, T . For further details, we refer to
the proof of Theorem 5.1 of [180]. ��

Hence Theorem D.2.7 is a direct consequence of Theorem D.2.8 because if
H > 1/2 the random variable

G =
1

Γ (1− α)
sup

0<s<t<T
|(D1−α

t− B(H)(t−))(s)|

has moments of all orders (see Lemma 7.4 in [180]). Hence, if u(t) is a stochas-
tic process whose trajectories belongs to Wα,1

T (0, T ) with 1 −H < α < 1/2,
then the pathwise integral U(t) =

∫ t

0
u(s) d−B(H)(s) exists and we have the

estimate

|
∫ t

0

u(s) d−B(H)(s)| ≤ G‖u‖α,1.

Moreover, if u(t) is such that its trajectories belongs to Wα,∞
0 (0, T ), then the

pathwise integral U(t) =
∫ t

0
u(s) d−B(H)(s) is Hölder continuous of order 1−α

and the estimate (D.6) holds. For further details, we refer to [180].

D.3 Stochastic differential equations via rough path
analysis

In [153] an integration theory has been established for a class of nonsmooth
paths under the name of geometric rough paths. Here we sketch this framework
and its application to SDEs for fBm according to [61].

D.3.1 Rough path analysis

Let V be an Euclidean space with norm | · |V , and for each integer k let V ⊗k

be the kth tensor product endowed with a compatible norm | · |V ⊗k . Denote
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by T (3) the truncated tensor algebra R ⊕ V ⊕ V ⊗2 ⊕ V ⊗3. A multiplicative
functional w in T (3) is a map

w : ∆ −→ T (3),

where ∆ is given by the simplex ∆ = {(s, t) ∈ [0, 1]× [0, 1] : 0 ≤ s ≤ t ≤ 1},
such that ws,t = (1, w1

s,t, w
2
s,t, w

3
s,t) satisfies the Chen equality

ws,u = ws,t ⊗ wt,u, ∀s ≤ t ≤ u.

Given a continuous path ω in V with finite variation, we can define the mul-
tiplicative functional in T (3) by taking

w1
s,t = ωt − ωs,

w2
s,t =

∫

s<t1<t2<t

dωt1 ⊗ dωt2 ,

w3
s,t =

∫

s<t1<t2<t3<t

dωt1 ⊗ dωt2 ⊗ dωt3 .

We say that ws,t = (1, w1
s,t, w

2
s,t, w

3
s,t) is a smooth rough path in T (3) over the

continuous path ω.
Let 3 < p < 4. A multiplicative functional w in T (3) is said to have finite

p-variation if

sup
π

∑
k

|wi
tk−1,tk

|p/i
V ⊗i < +∞, i = 1, 2, 3,

where the supremum is taken over all the finite partitions π of [0, 1]. The space
of all smooth rough paths is denoted by Ω∞

p (V ), and it is endowed with the
p-variation distance

dp(w, v) = sup
i=1,2,3

(
sup

π

∑
k

|wi
tk−1,tk

− vi
tk−1,tk

|p/i
V ⊗i

)i/p

,

where again the second supremum is taken over all the finite partitions π of
[0, 1]. The space Ωp(V ) of geometric rough paths is then the closure of Ω∞

p (V )
under the p-variation distance and an element in Ωp(V ) is called a geometric
rough path (of finite p-variation).

D.3.2 Stochastic calculus with rough path analysis

In [153] it is proved that solutions of differential equations with smooth vector
fields are continuous on Ωp(V ) under the p-variation distance.

Theorem D.3.1. Let p ≥ 1 and let f : R×R
n → L(Rd,Rn) be a differentiable

function with bounded derivatives up to degree [p] + 1. Denote by F (w, x) ∈
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Ω∞
p (Rn) the smooth rough path associated with the unique solution y to the

differential equation

dyt = f(t, yt)dωt, y0 = x, (D.7)

where ω is a continuous path in R
d with finite variation and w is its associated

smooth rough path. Then the map, called the Itô map determined by (D.7),
w → F (w, x) is continuous from Ω∞

p (Rn) → Ω∞
p (Rn) with respect to the

p-variation distance. Therefore, there is a unique extension of the Itô map
F (w, x) to the space Ωp(Rd) of all geometric rough paths.

Theorem D.3.1 is a particular case of the main result of [153]. In [61]
they construct a canonical geometric rough path in T (3)(Rd) associated to
a d-dimensional fBm with Hurst index H > 1/4 by using the so-called the
dyadic approximations. More precisely, the dyadic approximation of B(H) is
the piecewise linear path

Wm(t) = B(H)(tmk−1) + [t− (tmk−1)]∆
m
k B

(H) for tmk−1 ≤ t < tmk , (D.8)

where tmk = k/2m, k = 1, . . . , 2m, and ∆m
k B

(H) = B(H)(tmk ) − B(H)(tmk−1).
Since Wm has finite variation, it can be associated to a smooth rough path

wm
s,t = (1, wm,1

s,t , w
2,m
s,t , w

3,m
s,t ),

where wm,i
s,t is the ith iterated path integral of Wm over the interval [s, t].

Theorem D.3.2. Consider the smooth rough path wm associated to the dyadic
approximation (D.8) of the fBm B(H).

1. If 1/4 < H < 1/2, then for any p < 4 such that Hp > 1, wm converges
almost surely to a geometric rough path w in p-variation distance and
w1

s,t = B(H)(t)−B(H)(s).
2. If 1/4 ≥ H, then even the second level paths wm,2 of its dyadic approxi-

mations do not converge in L1(Ω,F(H),PH) according to the p-variation
distance.

Proof. The proof relies on the Gaussian properties of B(H). For further details,
we refer to Theorem 2 of [61]. ��

Theorem D.3.2 is the key in order to use the universal limit Theorem D.3.1
to study pathwise SDEs driven by fBm. For the sake of simplicity, we again
consider the case of a 1-dimensional fBm. Let α be a smooth one form and
α(k) denote its (k − 1)th derivative (so that α1 = α). Then the pathwise
integral of α along B(H) exists and can be seen as

∫ t

s

α(B(H)(r)) d−B(H)(r) = lim
|π|→0

∑
l

3∑
k=1

α(k)(B(H)(tl−1))(wk
tl−1,tl

),
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where 0 ≤ s ≤ t ≤ 1 and |π| = maxl |tl − tl−1| for a finite partition of [0, 1].
More precisely,

∫ t

s
α(B(H)(r)) d−B(H)(r) is defined as a geometric rough path,

whose projection coincides with the above limit.
Let H > 1/4 and consider the SDE

dX(t) = b(t,X(t)) dt+ f(t,X(t)) d−B(H)(t), X(0) = ξ, (D.9)

where all the derivatives of f are bounded. Then if xm(t) is the unique solution
of the following ordinary differential equation

dxm(t) = b(t, xm(t)) dt+ f(t, xm(t)) dWm(t), xm(0) = ξ,

by Theorem D.3.2 and D.3.1 it follows that xm(t) converges to a continuous
path x(t) uniformly on any finite interval as m goes to ∞ and that x(0) = ξ.
The limit path x(t) actually gives the strong solutionX(t) for (D.9). Moreover,
the following stronger result holds.

Theorem D.3.3. If H > 1/4 and pH > 1, let vm
t = (xm,1

t , . . . , xm,k
t ) with

vm,i
s,t denotes the ith iterated path integral of the unique solution xm over

[s, t]. Then vm,i
s,t converges to the unique limit vi

s,t in p-variation distance, as
m→∞,

sup
π

∑
k

|vm,i
tk−1,tk

− vi
tk−1,tk

|p/i → 0

almost surely for any i = 1, 2, . . ., v1s,t = x(t)− x(s). Moreover, the solution x
is a flow of diffeomorphisms of R as a function of the initial value ξ.

Proof. For the proof and further details, we refer to [61]. ��
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75. Decreusefond, L. and Üstünel, A.S.: Application du calcul des variations
stochastiques au mouvement brownien fractionnaire. Compte-Rendus de
l’Acaémie des Sciences 321, 1605–1608, 1995.
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Kolmogorov criterion, 11

Lagrange multiplier method, 235
Likelihood function, 293
Linear operator, 150
Linear quadratic control, 216
Linear regression, 289
Lipschitz continuous, 298
Local nondeterminism property, 262
Local time

approximated self-intersection, 258
fractional, 243
renormalized self-intersection, 259
self-intersection, 258
weighted, 250

Locally Lipschitz, 302
Long range dependence, 9

Malliavin derivative, 138, 281
Marchaud fractional derivatives, 288
Markov linear feedback control, 216
Maximum likelihood estimator, 293
Memory, 9
Method

absolute value, 290
Discrete variation, 291
periodogram, 291
variance, 290
variance residual, 290
Whittle, 292

Meyer inequality, 77
Meyer Tanaka formula, 254
Minimal variance hedging problem, 218
Multi-indices, 275

Multidimensional
fractional Wick Itô Skorohod integral,

88
fractional Wick Itô Skorohod

Isometry, 88
WIS integral, 120
WIS isometry, 122

Multiparameter fractional
Brownian motion, 181
white noise calculus, 185

Multiple integral, 82
Multiplicative functional, 306

Normal distribution, 293

Observed wealth, 173
Optimal

consumption, 229
consumption rate, 238
control, 212
pair, 212, 213
terminal wealth, 229

Ordinary differential equation, 302

Path differentiability, 11
Pathwise integration model, 170, 180
Performance functional, 211
Periodogram method, 291
Persistence, 9
Poisson equation, 189
Polarization technique, 68
Polynomial fractional Brownian

functionals, 50
Portfolio, 170, 232

admissible, 170, 233
generalized, 173
pathwise self-financing, 170
self-financing, 233
Wick Itô Skorohod admissible, 176
Wick Itô Skorohod self-financing, 176
WIS admissible, 219
WIS self-financing, 176

Process
adjoint, 212
finite quadratic variation, 125
fractional forward, 144
mixing, 43
zero quadratic variation, 125

Projective topology, 187, 277
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Quasi maximum likelihood estimator,
294

Quasi-conditional expectation, 84, 177

Regularity behavior, 299
Relation between symmetric and fWIS

integrals, 159
Relation between the (generalized)

forward and WIS integral, 160
Relation between the symmetric integral

and the divergence I, 158
Relation between the symmetric integral

and the divergence II, 159
Representation, 27, 148
reproducing kernel Hilbert space, 25,

147
Resolvent

kernel, 299
series, 299

Riccati equation, 217
Riemann Stieltjes integral, 300
Riemann sum, 68, 300
Risk free investment, 170
Risky investment, 170
RKHS, 25, 148
Rough path analysis, 305

Schauder basis, 14
Schwartz space, 47
Second level paths, 307
Self-similarity, 10
Semimartingale, 12
Shadow price, 212
Skorohod integrable, 280
Skorohod integral, 278–280

extended, 280
Smooth cylindrical random variables,

37, 44, 150
Smooth rough path, 306
Solution, 194, 298, 301, 308
Space of tempered distributions, 48, 99
Spectral

density, 10
representation, 7, 19

Spectral density, 291, 294
Stationary Gaussian time sequence, 289
Statistic, 289
Statistical fractal dimension, 11
Stochastic

derivative, 37, 130
derivative in the direction n, 120
distributions, 277
gradient, 63, 84, 111, 282
integral in L2, 68

Stochastic calculus with rough path
analysis, 306

Stochastic delay differential equations,
297

Stochastic differential equation, 301
Stochastic differential equations, 297

via rough path analysis, 305
with pathwise integrals, 300
with Wiener integrals, 297

Stochastic maximum principle, 211
Stochastic volatility, 232
Stock, 266
Stock price

generalized, 172
observed, 172

Stop-loss–start-gain, 266
Stratonovich integral, 143
Strong α-variation, 125
Strong arbitrage, 176
Strong arbitrage free, 219
Strong solution, 301, 308
Symmetric Fredholm integral equation

of the first kind, 221
Symmetric integral, 123, 128
Symmetrization, 279
Symmetrized tensor product, 276

Tempered distributions, 273
Terminal condition, 211
Test functions, 276
Theorem

Wiener Itô chaos expansion I, 274
Wiener Itô chaos expansion II, 276

Total wealth process, 175
Translation operator, 59
Twisted scalar product, 27, 148

Ucp, 125, 126
Unbounded variation, 300
Unconstrained optimization problem,

225
Uniform convergence in probability, 125

Value function, 229
Variance, 293
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Variance Method, 290
Variance residuals methods, 290

Weak arbitrage, 178
Weak semimartingale, 13
Weak solution, 302
Wealth process, 170
Weyl representation, 286
White noise, 277

probability measure, 99, 273
Whittle estimator, 293
Whittle method, 292
Wick chain rule, 111, 283
Wick Itô Skorohod

complete, 177
fractional Black Scholes market, 176
integrable, 104

integral, 104

integration model, 172, 180

isometry, 117

self-financing, 222

self-financing property, 174

Wick product, 50, 96, 156, 278

Wick version, 282

Wiener Helix, 5

Wiener integral, 23, 26, 148

of first type, 28, 29

of second type, 28, 29

WIS exponential, 105

WIS integrable, 104

WIS integral, 104, 120

Young integrals, 300
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