GATE CS Topic wise Questions
 Digital Logic

YEAR 2001

Question. 1

Given the following Karnaugh map, which one of the following represents the minimal sum-of-Products of the map ?

(A) $x y+y^{\prime} z$
(B) $w x^{\prime} y^{\prime}+x y+x z$
(C) $w^{\prime} x+y^{\prime} z+x y$
(D) $x z+y$

SOLUTION

There are 2 quads.
$y^{\prime} z+y x$
So $x y+y^{\prime} z$
Hence (A) is correct option.

Question. 2

Consider the following circuit with initial state $Q_{0}=Q_{1}=0$. The D flip-flops are positive edged triggered and have set up times 20 nanosecond and hold times 0 .

Consider the following timing diagrams of X and C; the clock of $C \geq 40$ nanosecond. Which one is the correct plot of Y

(A)

(B)

(C)

(D)

SOLUTION

Consider the following circuit with initial state $Q_{0}=Q_{1}=0$. The D flip-flops are positive edged triggered and have set up times 20 nanosecond and hold times 0 .

Figure
Consider the following timing diagrams of X and C; the clock period of $C \geq 40$ nanosecond. Which one is the correct plot of Y ?

Question. 3

The 2's complement representation of $(-539)_{10}$ is hexadecimal is
(A) ABE
(B) DBC
(C) DE5
(D) 9 E 7

SOLUTION

Digital Logic

www.gatehelp.com

Binary	$: 0010$	0001	1011
2's comp	$: 1101$	1110	0101
Hexadecimal	D	E	5

$(D E S)_{16}$
Hence (C) is correct option.

Question. 4

Consider the circuit shown below. The output of a $2: 1$ Mux is given by the function $\left(a c^{\prime}+b c\right)$.

Which of the following is true?
(A) $f=x 1^{\prime}+x 2$

(C) $f=x 1 x 2+x 1^{\prime} x 2^{\prime}$ (D) $f=x 1+x 2$

SOLUTION

Output of any 2:1 MUX $=a c^{\prime}+b c$
Here output of MUX 1.

$$
g=a x_{1}^{\prime}+b x_{1}
$$

Output of MVX 2

$$
\begin{aligned}
& f=g x_{2}^{\prime}+x_{1} x_{2} \\
& f=\left(a x_{1}^{\prime}+b x_{1}\right) x_{2}^{\prime}+x_{1} x_{2} \\
& f=a x_{1}^{\prime} x_{2}^{\prime}+b x_{1} x_{2}^{\prime}+x_{1} x_{2}
\end{aligned}
$$

$$
\text { Given } a=1, b=0
$$

$$
f=x_{1}^{\prime} x_{2}^{\prime}+x_{1} x_{2}
$$

Hence (C) is correct option.

Question. 5

Consider the circuit given below the initial state $Q_{0}=1, Q_{1}=Q_{2}=0$. The state of the circuit is given by the value $4 Q_{2}+2 Q_{1}+Q_{0}$

Which one of the following is the correct state sequence of the circuit ?
(A) $1,3,4,6,7,5,2$
(B) $1,2,5,3,7,6,4$
(C) $1,2,7,3,5,6,4$
(D) $1,6,5,7,2,3,5$
SOLUTION

Initially	Q_{0}	Q_{1}	Q_{2}	Value $4 Q_{2}+2 Q_{1}+Q_{0}$
Clk	1	0	0	1
1	0	1	0	2
2	1	0	1	5
3	1	1	0	3
4	1	1	1	7
5	0	1	1	6
6	0	0	1	4

Hence (B) is correct option.

YEAR 2002

Question. 6

Minimum sum of product expression for $f(w, x, y, z)$ shown in Karnaugh-map below is

$y z{ }^{w z}$	00	01	11	10
00	0	1	1	0
01	\times	0	0	1
11	\times	0	0	1
10	0	1	1	\times

(A) $x z+y^{\prime} z$
(B) $x z^{\prime}+z x^{\prime}$
(C) $x^{\prime} y+z x^{\prime}$
(D) None of the above

SOLUTION

There are 2 quads possible

$$
x z^{\prime}+x^{\prime} z
$$

Hence (B) is correct option.

Question. 7

The decimal value of 0.25
(A) is equivalent to the binary value 0.1
(B) is equivalent to the binary value 0.01
(C) is equivalent to the binary value $0.00111 \ldots .$.
(D) cannot be represented precisely in binary.

SOLUTION

Given decimal no. 0.25
Binary $=$?
$.25 \times 2=.5$
$.5 \times 2=1$
$(.01)_{2}$
Hence (B) is correct option.

Question. 8

The 2's complement represent representation of the decimal value -15 is
(A) 1111
(B) 11111
(C) 111111
(D) 10001

SOLUTION

Given $(-15)_{10}$

Binary of $15=(01111)_{2}$
2's complement of 15 would represent (-15).
01111
(10001) 2

Hence (D) is correct option.

Question. 9

Sign extension is a step in
(A) floating point multiplication
(B) signed 16 bit integer addition
(C) arithmetic left shift
(D) converting a signed integer from one size to another.

SOLUTION

Sign extension is the operation in computer arithmetic of increasing no. of bits of a binary no., while preserving sign and value done by appending MSB's. In the floating point multiplication to bring the no. in desired no. of significant digits sign extension is done.
Hence (A) is correct option.

Question. 10
In 2's complement addition, overflow
(A) Relational algebra is more powerful than relational calculus
(B) Relational algebra has the same power as relational calculus.
(C) Relational algebra has the same power as safe relational calculus.
(D) None of the above.

SOLUTION

In 2's complement addition, overflow occurs when the carries from sign bit \& previous bit doesn't match. So overflow can't occur when a positive value is added to some negative value.
Hence (B) is correct option.

Question. 11
Consider the following logic circuit whose inputs are functions f_{1}, f_{2}, f_{3} and output is f

Given that

$$
\begin{aligned}
f_{1}(x, y, z) & =\Sigma(0,1,3,5) \\
f_{2}(x, y, z) & =\Sigma(6,7), \text { and } \\
f(x, y, z) & =\Sigma(1,4,5)
\end{aligned}
$$

f_{3} is
(A) $\Sigma(1,4,5)$
(B) $\Sigma(6,7)$
(C) $\Sigma(0,1,3,5)$
(D) None of the above

SOLUTION

$$
f_{1}(x, y, z)=\Sigma(0,1,3,5)
$$

$$
\begin{aligned}
& =x^{\prime} y^{\prime}+y^{\prime} z+x^{\prime} z \\
f_{2}(x, y, z) & =\Sigma(6,7)
\end{aligned}
$$

$$
\begin{aligned}
& =x y \\
f(x, y, z) & =\Sigma(1,4,5)
\end{aligned}
$$

$$
\begin{aligned}
& =x y^{\prime}+y^{\prime} z \\
f(x, y, z) & =\overline{\overline{f_{1}} f_{2}} \cdot \overline{f_{3}} \\
& =f_{1} \cdot f_{2}+f_{3} \\
& =x y\left(x^{\prime} y^{\prime}+y^{\prime} z+x^{\prime} z\right)+\left(x y^{\prime}+y^{\prime} z\right) \\
f_{3} & =x y^{\prime} z+x y^{\prime} z^{\prime}+x y^{\prime} z+x^{\prime} y^{\prime} z \\
f_{3} & =\Sigma(1,4,5)
\end{aligned}
$$

Hence (A) is correct option.

Question. 12

Consider the following multiplexor where 10, 11, 12, 13 are four data input lines selected by two address line combinations $A 1 A 0=00,01,10,11$ respectively and f is the output of the multiplexor. $E N$ is the Enable input.

The function $f(x, y, z)$ implemented by the above circuit is
(A) $x y z^{\prime}$
(B) $x y+z$
(C) $x+y$
(D) None of the above

SOLUTION

A_{1}	A_{0}	E_{N}	(MUX) work
0	0	1	do not
0	1	0	(MUX) Work
1	0	1	do not
1	1	0	

So MUX is ENABLED only if $A_{0}=0$
So output should have Z.
Consider $x y z^{\prime}$ option (A)

$A, A_{0}=1 \quad 0$ gives correct answer.
Hence (A) is correct option.

Question. 13

Let $f(A, B)=A^{\prime}+B$. Simplified expression for function $f(f(x+y, y), z)$ is
(A) $x^{1}+z$
(B) $x y z$
(C) $x y^{\prime}+z$
(D) None of the above

SOLUTION

$$
\begin{aligned}
& \quad f(x+y, y)=(x+y)^{\prime}+y \\
& \Rightarrow \overline{x+y}+y \\
& f(f(x+y, y), z)=\overline{\overline{x+y}+y}+z \\
& \Rightarrow(\overline{\overline{x+y}} \cdot \bar{y})+z \\
& {[(x+y) \cdot \bar{y}]+z}
\end{aligned}
$$

$$
\begin{array}{r}
{[x \bar{y}+y \bar{y}]+z} \\
x \bar{y}+z
\end{array}
$$

Hence (C) is correct option.

Question. 14

What are the states of the Auxiliary Carry (AC) and Carry Flag (CY) after executing the following 8085 program ?

MIV H, 5 DH
MIV L, 6BH
MOV A, H
ADD L
(A) $A C=0$ and $C Y=0$
(B) $A C=1$ and $C Y=1$
(C) $A C=1$ and $C Y=0$
(D) $A C=0$ and $C Y=1$

SOLUTION

Program is to add 2 nos kept in H \& L, result of addition is stored in A.

$$
(5 D)_{16}+(6 B)_{16} \Rightarrow
$$

(1) 111

01011101

+ 01101011
(0) 11001000

0 is the carry so $\mathrm{CY}=0$
(1) is auxillary carry $\mathrm{AC}=1$

Hence (C) is correct option.

Question. 15

The finite state machine described by the following state diagram with A as starting state, where an arc label is $\frac{x}{y}$ and x stands for 1-bit input and y stands for 2-bit output.
www.gatehelp.com

(A) Outputs the sum of the present and the previous bits of the input.
(B) Outputs 01 whenever the input sequence contains 11
(C) Outputs 00 whenever the input sequence contains 10
(D) None of the above.

SOLUTION

Previous input	Present i/p	Output
$0(\mathrm{~A})$	$0(\mathrm{~A})$	00
$0(\mathrm{~A})$	$1(\mathrm{~B})$	01
$1(\mathrm{~B})$	$0(\mathrm{~A})$	01
$1(\mathrm{~B})$	$1(\mathrm{C})$	10
$1(\mathrm{C})$	$1(\mathrm{C})$	10
$1(\mathrm{C})$	$0(\mathrm{~A})$	01

So output is always sum of the present and previous bits of input.
Hence (A) is correct option.

YEAR 2003

Question. 16

Assuming all numbers are in 2's complement representation, which of the following number is divisible by 11111011?
(A) 11100111
(B) 11100100
(C) 11010111
(D) 11011011

SOLUTION

We can't judge the no's in 2's complement first we need to convert them in decimal
Given no. $11111011 \rightarrow 00000101=5$
(A) $\quad 11100111 \rightarrow 00011001=25$
(B) $\quad 11100100 \rightarrow 00011100=28$
(C) $\quad 11010111 \rightarrow 00101001=41$
(D) $\quad 11011011 \rightarrow 00100101=37$

From all only option (A) is divisible by 5 .
Shortcut : To convert 2's complement no. directly into original binary, we should complement all the digits from MSB till the last one (1). Keep the last 1 from the LSB as it is. Observe in the example.

Question. 17

The following is a scheme for floating point number representation using 16 bits.

Let s, c and m be the number represented in binary in the sign, exponent, and mantissa fields respectively. Then the flouting point number represented id

What is the maximum difference between two successive real numbers representable in this system?
(A) 2^{-40}
(B) 2^{-9}
(C) 2^{22}
(D) 2^{31}

SOLUTION

e has 6 bits so max value can be

$$
2^{6}-1=63 \text { when } e=111111
$$

But given $e \neq 111111$
So $\max e=62=111110$
Two consecutive number will have same exponent but difference in mantissa by 1 .
Difference would be

$$
\begin{aligned}
& (-1)^{2}\left(1+(m+1) 2^{-9}\right) 2^{62-31}-(-1)^{2}\left(1+m \times 2^{-9}\right) 2^{62-31} 2^{31} \times 2^{-9} \\
& \quad=2^{22}
\end{aligned}
$$

Hence (C) is correct option.

Question. 18

A 1-input, 2-output synchronous sequential circuit behaves as follows.
Let z_{k}, n_{k} denote the number of 0 's and 1 's respectively in initial k bits of the input $\left(z_{k}+n_{k}=k\right)$. The circuit outputs 00 until one of the following conditions holds.

1. $n_{k}-n_{k}=2$. In this case, the output at the k-th and all subsequency clock ticks is 10 .
2. $n_{k}-z_{k}=2$. In this case, the output at the k-th and all subsequent clock ticks is 01 .

What in the minimum number of states required in the state transition graph of the above circuit?
(A) 5
(B) 6
(C) 7
(D) 8

SOLUTION

The sequential circuit has 3 variables to decide the state in which input \& 2 inputs are present. Output for particular inputs decide states.

i / p	op 1	op 2	State
0	0	0	Intial
0	0	1	$n_{K}-z_{K}=2$
0	1	0	$z_{K}-n_{K}=2$
0	1	1	Not applicable
1	0	0	Initial
1	0	1	$n_{K}-z_{K}=2$
1	1	0	$z_{K}-n_{K}=2$
1	1	1	is correct

Using 3 bits we require
$2^{3}-1=7$ states here.
Hence (C) is correct option.

Question. 19

The literal count of a boolean expression is the sum of the number of times each literal appears in the expression. For example, the literal count of $(x y+x z)$ is 4 . What are the minimum possible literal counts

www.gatehelp.com

of the product-of-sum and sum-of-product representations respectively of the function given by the following karnaugh map?

Here, \times denotes "don't care"

$x y>^{z u}$	00	01	11	10
00	\times	1	0	1
01	0	1	\times	0
11	1	\times	\times	0
10	\times	0	0	\times

(A) $(11,9)$
(B) $(9,13)$
(C) $(9,10)$
(D) $(11,11)$

SOLUTION

Considering product of sum \& sum of product separately.

Sum of product

$$
\begin{aligned}
= & w y+w^{\prime} y^{\prime}+z^{\prime} w x^{\prime}+x y z^{\prime} \\
& 12
\end{aligned} 34 \quad 567 \quad 8910
$$

Literal count $=10$

Product of sum
$=\left(y^{\prime}+z^{\prime}\right)\left(z^{\prime}+y\right)\left(w^{\prime}+z^{\prime}\right)$

$$
(x+z+w)
$$

Lateral count $=9$

Hence (C) is correct option.
In SOP the K-map is solved for $1 \&$ POS K-map solved for 0

Question. 20

Consider the following circuit composed of XOR gates and noninverting buffers.

The non-inverting buffers have delays $\delta_{1}=2 n s$ and $\delta_{2}=4 n s$ as shown
in the figure. both XOR gates and al wires have zero delay. Assume that all gate inputs, outputs and wires are stable at logic level 0 . If the following waveform is applied at input. A, how many transition (s) (change of logic levels) occur (s) at B during the interval from 0 to 10 ns ?

(A) 1
(C) 3

SOLUTION

Due to delays $S_{1}=2 \& S_{2}=4$ the transitions would occur at time 1, $2 \& 4$.

	Time	Input (A)	Output (B)	
	0	1	0	
I	1	1	0	Transition
II	2	1	0	Transition
III	4	0	1	Transition

So total 3 transitions
Hence (C) is correct option.

YEAR 2004

Question. 21

The Boolean function $x^{\prime} y^{\prime}+x y+x^{\prime} y$ is equivalent to
(A) $x^{\prime}+y^{\prime}$
(B) $x+y$
(C) $x+y^{\prime}$
(D) $x^{\prime}+y$

SOLUTION

$$
\begin{aligned}
x^{\prime} y^{\prime}+x y+x y^{\prime} & \\
x^{\prime}\left(y+y^{\prime}\right)+x y & \left(A+A^{\prime}\right)=1 \\
x^{\prime}+x y & (A+A B)=(A+A) \cdot(A+B) \\
\left(x^{\prime}+x\right) \cdot\left(x^{\prime}+y\right) & \\
1 \cdot\left(x^{\prime}+y\right) & \\
x^{\prime}+y &
\end{aligned}
$$

Hence (D) is correct option.

Question. 22

In an $S R$ latch made by cross-coupling two NAND gates, if both S and R inputs are set to 0 , then it will result in
(A) $Q=0, Q^{\prime}=1$
(B) $Q=1, Q^{\prime}=0$
(C) $Q=1, Q^{\prime}=1$
(D) Indeterminate states

SR latch both S and R when 0 leads to invalid state.

Transition table for SR flip flop.

S	R	$\mathrm{Q}($ Next state $)$
0	0	Invalid so $\mathrm{Q}=\mathrm{Q}^{\prime}=1$ change
0	1	1
1	0	0
1	1	previous state
$\mathrm{S}=\mathrm{R}=0$	$\mathrm{Q}=\mathrm{Q}^{\prime}=1$	

Hence (C) is correct option.

Question. 23

If 73_{x} (in base- x number system) is equal to 54 , (in base- y number system), the possible values of x and y are
(A) 8,16
(B) 10,12
(C) 9,13
(D) 8,11

SOLUTION

$\quad(73)_{x}=(54)_{y}$		
$7 x+3=5 y+4$		
$\left(x^{\prime}, y\right)$	$7 x+3$	$5 y+4$
8,16	59	84
10,12	73	64
9,13	64	69
8,11	59	59

Hence (D) is correct option.

Question. 24

What is the result of evaluating the following two expressions using three-digit floating point arithmetic with rounding?
$(113 .+-111)+$.
$113 .+(-111 .+7.51)$
help
(A) 9.51 and 10.0 respectively
(B) 10.0 and 9.51 respectively
(C) 9.51 and 9.51 respectively
(D) 10.0 and 10.0 respectively

SOLUTION

Expression 1
$(113.0+(-111)+7.51$.
$(113.0-111.0)+7.51$
$2.0+7.51$
9.51

10 rounded off
Expression 2
$113.0+(-111.0+7.51)$
$113.0+(-103.49)$
$113.0-103.00$
10.0
rounded off
Hence (D) is correct option

Question. 25

A circuit outputs a digit in the form of 4 bits. 0 is represented by 0000,1 by $0001, \ldots 9$ by 1001. A combinational circuit is to be diesigned which takes these 4 bits as input and outputs 1 if the digit ≥ 5, and 0 otherwise. If only AND, OR and NOT gates may be used, what is the minimum number of gates required?
(A) 2
(B) 3
(C) 4
(D) 5

SOLUTION

CKT takes 4 bits as the input so K-Map will have 4 variable so 16 options are available.

1 digit $=5$
0 otherwise
Here for 0 to 4 we have 0 output, from 5 to 91 output \& for 10 to 15 don't care. 1 octed \& 2 pounds.
$a+b d+b c$
$a+b(d+c)$
Two OR gates
One AND gate
Total 3
Hence (B) is correct option.

Question. 26

Which are the essential prime implicates of the following Boolean function?

$$
f(a, b, c)=a^{\prime} c+a c^{\prime}+b^{\prime} c
$$

(A) $a^{\prime} c$ and $a c^{\prime}$
(B) $a^{\prime} c$ and $b^{\prime} c$
(C) $a^{\prime} c$ only
(D) $a c^{\prime}$ and $b c^{\prime}$

SOLUTION

$$
f(a, b, c)=a^{\prime} c+a c^{\prime}+b^{\prime} c
$$

Making min terms $a^{\prime} b c+a^{\prime} b^{\prime} c+a b c^{\prime}+a b^{\prime} c^{\prime}+a^{\prime} b^{\prime} c+a b^{\prime} c$
Since $b^{\prime} c$ gives no new term.
So $a^{\prime} c \& a c^{\prime}$ are only essential prime implicants.
Solution detailed method
Tabulation method
Since $b^{\prime} c$ gives no new term.
So $a^{\prime} c \& a c^{\prime}$ are only essential prime implicants.
Solution detailed method
Tabulation method
$f(a, b, c)=\sum m(1,3,5,6,4)$
Figure
Figure
$3 \& 6$ have only 1 cross they are in $a^{\prime} c \& a c^{\prime}$

Question. 27

Consider the partial implementation fo a 2-bit counter using T flip flops following the sequence $0-2-3-1-0$, as shown below

To complete the circuit, the input X should be
(A) $Q_{2}{ }^{\prime}$
(B) $Q_{2}+Q_{1}$
(C) $\left(Q_{1} \oplus Q_{2}\right)^{\prime}$
(D) $Q_{1} \oplus Q_{2}$

SOLUTION

Counter counts the no. of signal inversion change of states.
Sequence input is $0-2-3-1-0$

Binary $00-10-11-01-00$ to generate signals if we XOR gate then it outputs 1 if both are different.
So output sequence would be. $0-1-0-1-0 \&$ the sequence would be counted.
So. $X=Q_{1} \oplus Q_{2}$
Hence (D) is correct option.

Question. 28

A 4-bit carry look ahead adder, which adds two 4-bit numbers, is designed using AND, OR, NOT, NAND, NOR gates only. Assuming that all the inputs are available in both complemented and uncompensated forms and the delay of each gate is one time unit, what is the overall propagation delay of the adder? Assume that the carry network has been implemented using two-level AND-OR logic.
(A) 4 time units
(C) 10 time units
(B) 6 time units
(D) 12 time units

SOLUTION

qate

Carry of any higher order bit is dependent upon previous order bit addition generated carry.

$$
\begin{aligned}
& \mathrm{C} \text { out }=g_{0}+p_{0} \mathrm{C} \text { in } \\
& P_{3} P_{2} P_{1} P_{0} \\
& g_{3} g_{2} g_{1} g_{0} \\
& c_{3} c_{2} c_{1} c_{0}
\end{aligned} \quad \begin{aligned}
& c_{3} g_{3}+P_{3} g_{2}+P_{3} P_{2} g_{1}+\mid P_{3} P_{2} P_{1} g_{0}+P_{3} P_{2} P_{2} P_{0} \mathrm{C} \text { in }
\end{aligned}
$$

This is 4 bit look ahead adder equation total gate delay

$$
\begin{aligned}
& =1+1+2+2 \\
& =6
\end{aligned}
$$

Hence (B) is correct option.

Question. 29

Let $A=11111010$ and B 00001010 be two 8 -bit 2's complement numbers. Their product in 2's complement is
(A) 11000100
(B) 10011100
(C) 10100101
(D) 11010101

SOLUTION

A and B are in 2's complement form.

$$
\begin{aligned}
\mathrm{A} & =11111010 \\
\text { Binary } & =00000110=6
\end{aligned}
$$

2's complement represent - ve number
So

$$
A=-6
$$

$$
\mathrm{B}=00001010
$$

MSB is 0 so + ve no. decimal 10 .

$$
\begin{aligned}
\mathrm{B} & =10 \\
A \times B & =-6 \times 10 \\
& =-60
\end{aligned}
$$

Binary of $60=00111100$
2's complement 11000100
Hence (A) is correct option.

YEAR 2005

Question. 30

Consider the following circuit.

Which one of the following is TRUE?
(A) f is independent of X
(B) f is independent of Y
(C) f is independent of Z
(D) None of X, Y, Z is redundant

SOLUTION

For redundant check we need to draw K map to min terms.
$X \bar{Y}(Z+\bar{Z})+(X+\bar{X}) \cdot Y Z$
$X \bar{Y} Z+X \bar{Y} \bar{Z}+X Y Z+\bar{X} Y Z$

$X \bar{Y}+Y Z+X Z$
Hence (D) is correct option.

Question. 31

The range of integers that can be represented by an a bit 2's complement number system is
(A) -2^{n-1} to $\left(2^{n-1}-1\right)$
(B) $-\left(2^{n-1}-1\right)$ to $\left(2^{n-1}-1\right)$
(C) -2^{n-1} to 2^{n-1}
(D) $-\left(2^{n-1}+1\right)$ to $\left(2^{n-1}-1\right)$

SOLUTION

n bit 2's complement system must have corresponding bit binary system.
But to implement $+v e \&-v e$ nos.
Both we require MSB to be sign bit.
So maximum magnitude can be $2^{n-1}-1$ suppose we take $n=4$.

Using 4 bits.

$$
\begin{aligned}
& 111 \text { 1,. } 0000 \text {, } 0111 \\
& -7 \quad+7
\end{aligned}
$$

This would be the range.
So $-\left(2^{n-1}-1\right)$ to $+\left(2^{n-1}-1\right)$
Hence (B) is correct option.

Question. 32

The hexadecimal representation of 657_{8} is
(A) 1 AF
(B) D78
(C) D71
(D) 32 F

SOLUTION

$$
(657)_{8}=(?)_{16}
$$

Making binary

$$
00010101111=(I A F)_{16}
$$

Hence (A) is correct option.

Question. 33

The switching expression corresponding to

$$
f(A, B, C, D)=\sum(1,4,5,9,11,12) \text { is }
$$

(A) $B C^{\prime} D^{\prime}+A^{\prime} C D+A B^{\prime} D$
(B) $A B C+A C F+B^{\prime} C D$
(C) $A C D^{\prime}+A^{\prime} B C+A C D^{\prime}$
(D) $A^{\prime} B D+A C D^{\prime}+B C D^{\prime}$

SOLUTION

$$
f(A, B, C, D)=\sum(1,4,5,9,11,12)
$$

Drawing K map for min terms.

$$
B \bar{C} \bar{D}+\bar{A} \bar{C} \bar{D}+A \bar{B} D
$$

So min terms are

$$
B \bar{C} \bar{D}+\bar{A} \bar{C} D+A \bar{B} D
$$

Hence (A) is correct option.

Question. 34

Consider the following circuit involving a positive edge triggered D -FF.

Consider the following timing diagram. Let $A i$ represent the logic level on the line A in the i - th clockperiod.

Let A represent the complement of A. The correct output sequence on Y over the clock perids 1 through 5 is
(A) $A_{0} A_{1} A_{1}{ }^{\prime} A_{3} A_{4}$
(B) $A_{0} A_{1} A_{2}{ }^{\prime} A_{3} A_{4}$
(C) $A_{1} A_{2} A_{2}{ }^{\prime} A_{3} A_{4}$
(D) $A_{1} A_{2}{ }^{\prime} A_{3} A_{4} A_{5}$

SOLUTION

We need to calculate equation for D input.

$$
\begin{aligned}
D & =\left(A_{i} X^{\prime}\right)^{\prime}-\left(X^{\prime} Q^{\prime}\right)^{\prime} \\
& =A_{i}+X+X+Q \\
D & =A_{i}{ }^{\prime}+X+Q
\end{aligned}
$$

Drawing truth table for ckt

Clock	X	$Q_{0}=0$	$Q_{1}=1$	A_{i}	Y

0	1	0	1	$A_{0}{ }^{\prime}$	$A_{0}{ }^{\prime}$
1	1	0	1	$A_{1}{ }^{\prime}$	$A_{0}{ }^{\prime}$
2	0	0	1	$A_{2}{ }^{\prime}$	$A_{1}{ }^{\prime}$
3	1	0	1	$A_{3}{ }^{\prime}$	$A_{1}{ }^{\prime}$
4	1	0	1	$A_{4}{ }^{\prime}$	$A_{3}{ }^{\prime}$
5	0	0	1	$A_{5}{ }^{\prime}$	$A_{4}{ }^{\prime}$

Hence (A) is correct option.

Question. 35

The following diagram represents a finite state machine which takes as input a binary number from the least significant bit

Which one of the following is TRUE?
(A) It computes 1's complement of the input number
(B) It computes 2's complement of the input number
(C) It increments the input number
(D) It decrements the input number

SOLUTION

The transition table for the diagram

Present state	Input	Next state	Output
Q_{0}	0	Q_{0}	0
Q_{0}	1	Q_{1}	1
Q_{1}	0	Q_{1}	1
Q_{1}	1	Q_{1}	0

So the FSM takes input from LSB side it doesn't change state till the first 1 comes from LSB side, after that it complement all the bits. This is logic for 2's complement.
Hence (B) is correct option.

Question. 36

Consider the following circuit

The flip-flops are positive edge triggered DFFs. Each state is designated as a two bit string Q_{0}, Q_{1}. Let the initial state be 00 . The state transition sequence is
(A) $00 \rightarrow 11 \rightarrow 01$
(B) $00 \rightarrow 11$
(C) $\underbrace{00 \rightarrow 10 \rightarrow 01 \rightarrow 11}$
(D) $\underbrace{00 \rightarrow 11 \rightarrow 01 \rightarrow 10}$

SOLUTION

Truth table for DFF

CP	D	Q_{n+1}	Action
0	X	Q_{n}	No change
1	0	0	Reset
1	1	1	Set

D here $A X+X^{\prime} Q^{\prime}$
Truth table for ckt

Q_{1}	Q_{0}	N	S
0	0	1	1
1	1	1	0
1	0	0	1
0	1	0	0
0	0	1	1

and so on.
Hence (D) is correct option.

Data for Q. $37 \& 38$ are given below.

www.gatehelp.com

Solve the problems and choose the correct answers.
Consider the following floating point format

Mantissa is a pure fraction is sign-magnitude form.

Question. 37

The decimal number 0.239×2^{13} has the following hexadecimal representation without normalization and rounding off
(A) $0 D 24$
(C) $4 D 0 D$

SOLUTION
Sign bit 0

Binary of 239

	carry
$.239 \times 2$	0
$.478 \times 2$	0
$.956 \times 2$	1
$.912 \times 2$	1
$.824 \times 2$	1
$.648 \times 2$	1
$.296 \times 2$	0
$.592 \times 2$	1
.184	

We have 8 bits for Mantissa 00111101
So the floating point format.

0	1001101	00111101	
0100	1101	0011	1101
4	D	3	D

Hence (D) is correct option.

Question. 38

The normalized representation for the above format is specified as follows. The mantissa has an implicit 1 preceding the binary (radix) point. Assume that only 0's are padded in while shifting a field. The normalized representation of the above number $\left(0.239 \times 2^{13}\right)$ is
(A) $0 A 20$
(B) 1134
(C) $4 D D 0$
(D) $4 A E 8$

SOLUTION

Given no. . 239×2^{13}
Normalized form of binary.
Binary $\rightarrow .239=(00111101)_{2}$

$$
\text { Normalized }=1.11101 \times 2^{10}
$$

Proceeding implicit 1
So 8 bit mantissa
11101000
padding
Excess 64 exponent
$1001010=74$
Sign bit $=0$

Floating	Point	Format	
0	1001010	11101000	
0100	1010	1110	1000
4	A	E	8

GAE8
Hence (D) is correct option.

YEAR 2006

Question. 39

You are given a free running clock with a duty cycle of 50% and a digital waveform f which changes only at the negative edge of the clock. Which one of the following circuits (using clocked D flip flops) will delay the phase of f by 180° ?

SOLUTION

We require phase shift of 180 in f In ckt (B) the negation of signal f \& clock delays signal f by 180.

www.gatehelp.com

So phase shift occurs.
Hence (B) is correct option.

Question. 40

Consider the circuit below. Which one of the following options correctly represents $f(x, y, z)$?

SOLUTION

MVXI

Selects X when $\mathrm{Z}=0$
Y when $\mathrm{Z}=0$
MVX II
Selects $(X Z+Y Z)$ when $y=0$

$$
\text { X } \quad \text { when } y=0 \quad \text { so }(X Z+Y Z) Y+X Y
$$

$$
\begin{aligned}
\text { Simplifying } & =x z^{\prime} y^{\prime}+z y^{\prime} y^{\prime}+x y \\
& =x z^{\prime} y^{\prime}+x y\left(z+z^{\prime}\right)+z y^{\prime} \\
& =x z^{\prime} y^{\prime}+x y z+x y z^{\prime}+z y^{\prime}\left(x+x^{\prime}\right) \\
& =x z^{\prime} y^{\prime}+x y z+x y z^{\prime}+x y^{\prime} z+x^{\prime} y^{\prime} z \\
& =y^{\prime} z+x y^{\prime} z+x y z^{\prime}+x y z+x y z^{\prime}[a+a=a] \\
& =y^{\prime} z+x z^{\prime}\left(y+y^{\prime}\right)+x y\left(z+z^{\prime}\right) \\
& =y^{\prime} z+x z^{\prime}+x y
\end{aligned}
$$

Hence (A) is correct option.

Question. 41

Given two three bit numbers $a_{2} a_{1} a_{0}$ and $b_{2} b_{1} b_{0}$ and c, the carry in, the function that represents the carry generate function when these two numbers are added is
(A) $a_{2} b_{2}+a_{1} a_{1} b_{1}+a_{2} a_{1} a_{0} b_{0}+a_{2} a_{0} b_{1} b_{0}+a_{1} b_{2} b_{1}+a_{1} a_{0} b_{2} b_{0}+a_{0} b_{2} b_{1} b_{0}$
(B) $a_{2} b_{2}+a_{2} b_{1} b_{0}+a_{2} a_{1} b_{1} b_{0}+a_{1} a_{0} b_{21} b_{1}+a_{1} a_{0} b_{2}+a_{1} a_{0} b_{2} b_{0}+a_{2} a_{0} b_{1} b_{0}$
(C) $a_{2}+b_{2}+\left(a_{2} \oplus b_{2}\right)\left[a_{1}+b_{1}+\left(a_{1} \oplus b_{1}\right)\left(a_{0}+b_{0}\right)\right]$
(D) $a_{2} b_{2}+\overline{a_{2}} a_{1} b_{1}+\overline{a_{2} a_{1}} a_{0} b_{0}+\overline{a_{2}} a_{0} \overline{b_{1}} b_{0}+a_{1} \overline{b_{2}} b_{1} \overline{a_{1}} a_{0} \overline{b_{2}} b_{0}+a_{0} \overline{b_{2} b_{1}} b_{0}$

SOLUTION

a_{2}	a_{1}	a_{0}	b_{2}	b_{1}	b_{0}	C
0	0	0	0	0	0	0
0	0	1	0	0	1	1
0	1	0	0	1	0	
0	1	0	0	1	1	
1	0	1	1	0	0	
1	0	0	1	0	1	
1	1	1	1	1	0	
1	1	0	1	1	1	

Case I These are the possible value of $a_{2} a_{1} a_{0} \& b_{2} b_{1} b_{0}$ when $a_{2}=1$ $c=1$
Case II $\quad b_{2}=1 c=1$ so $a_{2}+b_{2}$
Case III If any 1 of a_{2} or b_{2} is $1 a_{2} \oplus b_{2}$ then if $a_{1}=1 \quad c=1$

$$
b_{1}=1 \quad c=1 \text { so } a_{2} \oplus b_{2}\left[a_{1}+b_{1}\right]
$$

Case IV If any of a_{2} or b_{2} is $1 \&$ any of a_{2} or b_{1} is 1 then if $a_{0}=1 c=1$ or if $b_{0}=1$ then $c=1$ so overall. $a_{2}+b_{2}+\left[\left(a_{2} \oplus b_{2}\right)\left\{a_{1}+b_{1}+\left(a_{1} \oplus b_{1}\right)\left(a_{0}+b_{0}\right)\right\}\right]$
Hence (C) is correct option.

Question. 42

Consider a boolean function $f(w, x, y, z)$. Suppose that exactly one of its inputs is allowed to change at a time. If the function happens to be true for two input vectors $i_{1}+<w_{1}, x_{1}, y_{1}, x_{1}>$ and $i_{2}+<w_{2}, x_{2}, y_{2}, z_{2}>$

www.gatehelp.com

, we would like the function to remain true as the input changes from i_{1} to $i_{2}\left(i_{1}\right.$ and i_{2} differ in exactly one bit position), without becoming false momentarily. Let $f(w, x, y, z)=\sum(5,711,12,13,15)$. Which of the following cube covers of f will ensure that the required property is satisfied?
(A) $\bar{w} x z, w x \bar{y}, x \bar{y} z, x y z, w y z$
(B) $w x y, \bar{w} x z, w y z$
(C) $w x \overline{y z}, x z, w \bar{x} y z$
(D) $w z y, w y z, w x z, \overline{w w} x z, x \bar{y} z, x y z$

SOLUTION

Given function $f(w, x, y, z)=\Sigma(5,7,11,12,13,15)$ draw K-map of the above function.

1 quad $=x z=x z(y+$
2 pairs $=w x y^{\prime}+w y z$
$x y z+x y^{\prime} z+w x y^{\prime}+w y z$
Hence (A) is correct option.

Question. 43

We consider addition of two 2's complement numbers $b_{n-1} b_{n-2} \ldots . . b_{0}$ and $a_{n-1} a_{n-2} \ldots . a_{0}$. A binary adder for adding unsigned binary numbers is used to add the two numbers. The sum is denoted by $c_{n-1} c_{n-2} \ldots . c_{0}$ and the carryout by $c_{o u t}$. Which one of the following options correctly identifies the overflow condition?
(A) $c_{\text {out }} \overline{\left(a_{n-1} \oplus b_{n-1}\right)}$
(B) $a_{n-1} b_{n-1} \overline{c_{n-1}}+\overline{a_{n-1} b_{n-1} c_{n-1}}$
(C) $c_{o u t} \oplus c_{n-1}$
(D) $a_{n-1} \oplus b_{n-1} \oplus c_{n-1}$

SOLUTION

Binary adder generates C out only if

1	C in	1	0	1
0	a	1	1	1
1	b	0	1	1
1	C out	1	1	1

C out in this case is C_{n-1} generated carry.
C in is C_{n-2}
So

$$
\begin{gathered}
b_{n-1}^{\prime} a_{n-1}^{\prime} c_{n-2}+b_{n-1} a_{n-1} c^{\prime}{ }_{n-2} \\
f=C_{\text {out }} \oplus C_{n-1}
\end{gathered}
$$

Hence (C) is correct option.

Question. 44

Consider number represented in 4-bit gray code. Let $h_{3} h_{2} h_{1} h_{0}$ be the gray code representation of a number n and let $g_{3} g_{2} g_{1} g_{0}$ be the gray code of $(n+1)$ (modulo 16) value of the number. Which one of the following functions is correct?
(A) $g_{0}\left(h_{1} h_{2} h_{1} h_{0}\right)=\sum(1,2,3,6,10,13,14,15)$
(B) $g_{1}\left(h_{1} h_{2} h_{1} h_{0}\right)=\sum(4,9,10,11,12,13,14,15)$
(C) $g_{2}\left(h_{1} h_{2} h_{1} h_{0}\right)=\sum(2,4,5,6,7,12,, 13,15)$
(D) $g_{3}\left(h_{1} h_{2} h_{1} h_{0}\right)=\sum(0,1,6,7,10,11,12,, 13$,

SOLUTION

Binary	h	$h_{3} h_{2} h_{1} h_{0}$	$(n+1)$ $\bmod 16$	$g_{3} g_{2} g_{1} g_{0}$
0000	0	0000	1	0001
0001	1	0001	2	0011
0010	2	0011	3	0010
0011	3	0010	4	0110
0100	4	0110	5	0111
0101	5	0111	6	0101
0110	6	0101	7	0100
0111	7	0100	8	1100
1000	8	1100	9	1101

1001	9	1101	10	1111
1010	10	1111	11	1110
1011	11	1110	12	1010
1100	12	1010	13	1011
1101	13	1011	14	1001
1110	14	1001	15	1000
1111	15	1000	0	0000

This gives the solution option (B)

$$
g_{1}\left(h_{3}, h_{2}, h_{1}, h_{0}\right)=\sum(4,9,10,11,12,13,14,15)
$$

YEAR 2007

Question. 45

What is the maximum number of different Boolean functions involving n Boolean variables?
(A) n^{2}
(B) 2^{n}
(C) $2^{2^{n}}$
$5 \square(\mathrm{D}) 2^{2^{n^{2}}}$

SOLUTION

Each boolean variable can have values 0 or 1 , so for expression involving n boolean variables will have terms 2^{n}. These 2^{n} terms need to be arranged in different manner and nos., suppose $2^{n}=M$. So this arrangement would take 2^{M} ways or $2^{2^{n}}$ ways.
Hence (C) is correct option.

Question. 46

How many 3 -to- 8 line decoders with an enable input are needed to construct a 6 -to- 64 line decoder without using any other logic gates?
(A) 7
(B) 8
(C) 9
(D) 10

SOLUTION

Total output lines required $=64$
We need to use 3 to 8 decoders.
So decoders required $\frac{64}{8}=8$ decoders for output.

www.gatehelp.com

But we need one more decoder i.e for combining result.

$$
8+1=9 \text { decoders }
$$

Hence (C) is correct option.

Question. 47

Consider the following Boolean function of four variables
$f(w, x, y, z)=\sum(1,3,4,6,9,11,12,14)$
The function is
(A) independent of one variable
(B) independent of two variables
(C) independent of three variables
(D) dependent on all the variables

SOLUTION

$$
f(w, x, y, z)=\sum m(1,3,4,6,9,11,12,14)
$$

2 qlead
$1^{\text {st }}$ qlead $\quad x z^{\prime}$
$2^{\text {nd }}$ qlead $\quad x^{\prime} z$
$x z^{\prime}+x^{\prime} z x z^{\prime}+x^{\prime} z$
So independent of 2 variables.
Hence (B) is correct option.

Question. 48

Let $f(w, x, y, z)=\sum(0,4,5,7,8,9,13,15)$. Which of the following expressions are NOT equivalent to f ?
(A) $x^{\prime} y^{\prime} z+w^{\prime} x y^{\prime}+w y^{\prime} z+x z$
(B) $w^{\prime} y^{\prime} x^{\prime}+w x^{\prime} y^{\prime}+x z$
(C) $w^{\prime} y^{\prime} z^{\prime}+w x^{\prime} y^{\prime}+x y z+x y^{\prime} z$
(D) $x^{\prime} y^{\prime} z+w x^{\prime} y^{\prime}+w^{\prime} y$

SOLUTION

$$
f(w, x, y, z)=\sum m(0,4,5,7,8,9,13,15)
$$

Drawing K-map.

$$
x z+w^{\prime} y^{\prime} z^{\prime}+w x^{\prime} y^{\prime}
$$

Hence (B) is correct option.

Question. 49
Define the connective* for the boolean variable X and Y as: $X^{*} Y$
$=X Y+X^{\prime} Y^{\top}$
Let $Z=X^{*} Z$

Consider the following expression P, Q and R.
$P: X=Y^{*} Z Q: Y=X^{*} Z$
$R: X^{*} Y^{*} Z=1$
Which of the following is TRUE?
(A) only P and Q are valid
(B) Only Q and R are valid
(C) Only P and R are valid
(D) All P, Q, R are valid

SOLUTION

Given $Z=X * Z \quad \Rightarrow X Z+X^{\prime} Z$

$$
\begin{aligned}
P: X & =Y * Z \\
& =Y Z+Y^{\prime} Z \\
& =Y\left(X Z+X^{\prime} Z\right)+Y^{\prime} Z \\
& =X Y Z+X^{\prime} Y Z+Y^{\prime} Z \\
& =X Y Z+X^{\prime} Y Z+X Y^{\prime} Z+X^{\prime} Y^{\prime} Z \text { valid. } \\
Q: Y & =X * Z \\
& =X Z+X^{\prime} Z \\
& =X\left(X Z+X^{\prime} Z\right)+X^{\prime} Z
\end{aligned}
$$

$$
\begin{aligned}
& =X Z+X^{\prime} Z \\
& =X\left(Y+Y^{\prime}\right) Z+X^{\prime}\left(Y+Y^{\prime}\right) Z \\
& =X Y Z+X Y^{\prime} Z+X^{\prime} Y Z+X^{\prime} Y^{\prime} Z \text { valid } \\
R: X * Y * Z & =1 \\
\left(X Y+X^{\prime} Y^{\prime}\right) * Z & \Rightarrow\left(X Z+X^{\prime} Y^{\prime}\right) Z+\left(X Y+X^{\prime} Y^{\prime}\right) Z \\
& \Rightarrow X Y Z+X^{\prime} Y^{\prime} Z+\left[\left(\overline{X Y} \cdot \overline{X^{\prime} Y^{\prime}}\right) Z\right] \\
& \Rightarrow X Y Z+X^{\prime} Y^{\prime} Z+[(\bar{X}+\bar{Y}) \cdot(X+Y)] Z \\
& \Rightarrow X Y Z+X^{\prime} Y^{\prime} Z+X^{\prime} Y Z+X Y^{\prime} Z \neq 1
\end{aligned}
$$

So invalid
Hence (A) is correct option.

Question. 50

Suppose only one multiplexer and one inverter are allowed to be used to implement any Boolean function of n variables. What is the minimum size of the multiplexer needed?
(A) 2^{n} line to 1 line
(C) 2^{n-1} line to 1 line
(B) 2^{n+1} line to 1 line
(D) 2^{n-2} line to 1 line

SOLUTION

To select 2^{n} lines we need a select function with n bits. Here with n variables we have $(n-1)$ select bits thus 2^{n-1} data lines. So MUX has 2^{n-1} lines to 1 .
Hence (C) is correct option.

Question. 51

In a look-ahead carry generator, the carry generate function G_{i} and the carry propagate function P_{i} for inputs, A_{i} and B_{i} are given by $P_{i}=A_{i} \oplus B_{i}$ and $\mathrm{G}_{i}=A_{i} B_{i}$

The expressions for the sum bit S and carry bit C_{i+1} of the look ahead carry adder are given by
$S_{i}+P_{i} \oplus C_{i}$ and $C_{i+1} G_{i}+P_{i} C_{i}$, Where C_{0} is the input carry.
Consider a two-level logic implementation of the look-ahead carry generator.. Assume that all P_{i} and G_{i} are available for the carry generator circuit and that the AND and OR gates can have any number of inputs. The number of AND gates and OR gates needed to implement the look-ahead carry generator for a 4 -bit adder with $S_{3}, S_{2}, S_{1}, S_{0}$ and C_{4} as its outputs are respectively

www.gatehelp.com

(A) 6,3
(B) 10,4
(C) 6,4
(D) 10,5

SOLUTION

The equation for 4 bit carry look ahead adder is

$$
C_{\text {out }} g_{3}+p_{3} g_{2}+p_{3} p_{2} g_{1}+p_{3} p_{2} p_{1} g_{0}+p_{3} p_{2} p_{1} p_{0} C_{\text {in }}
$$

Here
no. of AND gates $=10$
OR gates $=4$
Hence (B) is correct option.

Question. 52

The control signal functions of 4-bit binary counter are given below
(where X is "don't care")

Clear	Clock	Load	Count	Function
1	X	X	X	Clear to 0
0	X	0	0	No change
0	\uparrow	1	X	Load_input
0	\uparrow	0	1	Count next

The counter is connected as follows

Assume that the counter and gate delays are negligible. If the counter starts at 0 , then it cycles through the following sequence
(A) $0,3,4$
(B) $0,3,4,5$
(C) $0,1,2,3,4$
(D) $0,1,2,3,4,5$

SOLUTION

From the truth table for the counter ckt we can see that when counter $=1 . \& \operatorname{load}=0$, count next is the function.
So it would count from 0 to $4 \&$ then clear to $0 \&$ again start if clock input is increasing.
Hence (C) is correct option.

YEAR 2008

Question. 53

In the IEEE floating point representation the hexadecimal value $0 x 00000000$ corresponds to
(A) the normalized value 2^{-127}
(B) the normalized value 2^{-126}
(C) the normalized value +0
(D) the special value +0

SOLUTION

This $0 X 00000000$ hexadecimal value can be converted into 32 bit binary.
$00000000000000000000000000 \overline{0} 0000 \overline{0}$
$0 \times 2^{\circ}$

This is representation in IEEE floating point format.
Case for special +0 .
Hence (D) is correct option.

Question. 54

In the karnaugh map shown below, X denoted a don't care term. What is the nominal form of the function represented by the karnaugh map

(A) $\bar{b} \cdot \bar{d}+\bar{a} \cdot \bar{d}$
(B) $\bar{a} \cdot \bar{b}+\bar{b} \cdot \bar{d}+\bar{a} \cdot \bar{b} \cdot \bar{d}$
(C) $\bar{b} \cdot \bar{d}+\bar{a} \cdot \bar{b} \cdot \bar{d}$
(D) $\bar{a} \cdot \bar{b}+\bar{b} \cdot \bar{d}+\bar{a} \cdot \bar{d}$

SOLUTION

Given K-map is

Question. 55

Let a denote number system radix. The only value(s) of r that satisfy the equation $\sqrt{121}+11$, is/are
(A) decimal 10
(B) decimal 11
(C) decimal 10 and 11
(D) any value >2

SOLUTION

$$
\sqrt{(121)_{r}}=(11)_{r}
$$

If $r=10$ it is true it can't be 2 since bit value can't be 2 then. It is not true for $r=11$
It is true for 3 to 10 .
So it is true for
$r>2$
Hence (D) is correct option.

Question. 56
Give f_{1}, f_{3} and f in canonical sum of products form (in decimal) for the circuit

Then f_{2} is
(A) $\sum m(4,6)$
(B) $\sum m(4,8)$
(C) $\sum m(6,8)$
(D) $\sum m(4,6,8)$

SOLUTION

$$
\text { Given } \begin{aligned}
f & =\Sigma m(1,6,8,15) \\
f_{3} & =\Sigma m(1,6,15)
\end{aligned}
$$

So output $1,6,8,15$ here $1,6,15$ can come form f_{3}.
Since the final gate is OR gate so from f_{1} AND f_{2} no minterm except $1,6,8,15$ should come.

$$
f_{1}=\Sigma m(4,5,6,7,8)
$$

$$
\text { So } \quad f_{2} \text { can be } \Sigma m(6,8)
$$

Since $4,5, \& 7$ should no 7 come here.
Hence (C) is correct option.

Question. 57

If P, Q, R are Boolean variables, $(P+\bar{Q})(P \cdot \bar{Q}+P \cdot R)(\bar{P} \cdot \bar{R}+\bar{Q})$ simplifies to
(A) $P . \bar{Q}$
(B) $P . \bar{R}$
(C) $P \cdot \bar{Q}+R$
(D) $P \cdot \bar{R}+Q$

SOLUTION

$$
\begin{aligned}
& =(P+\bar{Q}) \cdot(P \bar{Q}+P R) \cdot(\bar{P} \bar{R}+Q) \\
& =(P P \bar{Q}+P P R+P \bar{Q} \bar{Q}+P Q R)(\bar{P} \bar{R}+\bar{Q}) \\
& =(P \bar{Q}+P R+P \bar{Q}+P \bar{Q} R)(\bar{P} \bar{R}+Q) \\
& =(P \bar{Q}+P R+P \bar{Q} R)(\bar{P} \bar{R}+\bar{Q}) \\
& =[P \bar{Q}(1+R)+P R](\bar{P} \bar{R}+Q) \\
& =P(\bar{Q}+R)(\bar{P} \bar{R}+\bar{Q}) \\
& =(P \bar{P} \bar{R}+P \bar{Q})(\bar{Q}+R) \\
& =P \bar{Q} \cdot(\bar{Q}+R) \\
& =P \bar{Q}+P \bar{Q} R \\
& =P \bar{Q}(1+R) \\
& =P \bar{Q}
\end{aligned}
$$

Hence (A) is correct option.

YEAR 2009

Question. 58

$(1217)_{8}$ is equivalent to
$5 \frac{\square-2}{\square 日 \square}$
(B) $(028 F)_{16}$
(D) $(0 B 17)_{16}$
(A) $(1217)_{16}$
(C) $(2297)_{10}$

SOLUTION

$$
\begin{aligned}
& =(1217)_{8} \\
& =001010001111 \\
& =(028 F)_{16}
\end{aligned}
$$

Hence (B) is correct option.

Question. 59

What is the minimum number of gates required to implement the Boolean function $(A B+C)$ if we have to use only 2-input NOR gates ?
(A) 2
(B) 3
(C) 4
(D) 5

SOLUTION

$\mathrm{AB}+\mathrm{C}$ implementation through NOR gate $(\overline{X+Y})$
We require one AND gate \& 1 OR gate

AND gate \& OR gate can be implemented by NOR gate.

$$
\begin{aligned}
& =\overline{\overline{A+C}}+\overline{\overline{B+C}} \\
& =\overline{\overline{A+C}} \cdot \overline{\overline{B+C}} \\
& =(A+C) \cdot(B+C) \\
& =C+A B
\end{aligned}
$$

So we require \& NOR gates.
Hence (B) is correct option.

YEAR 2010

nelp

Question. 60
The minterm expansion of $f(P, Q, R)=P Q+Q \bar{R}+P \bar{R}$ is
(A) $m_{2}+m_{4}+m_{6}+m_{1}$
(B) $m_{0}+m_{1}+m_{3}+m_{5}$
(C) $m_{0}+m_{1}+m_{6}+m_{1}$
(D) $m_{2}+m_{3}+m_{4}+m_{5}$

SOLUTION

Given expression is

$$
f(P, Q, R)=P Q+Q \bar{R}+P \bar{R}
$$

For min term expansion we add the remaining variables in the expression.

$$
\begin{aligned}
& =P Q(R+\bar{R})+(P+\bar{P}) Q \bar{R}+P(Q+\bar{Q}) \bar{R} \\
& =P Q R+P Q \bar{R}+P Q \bar{R}+\bar{P} Q \bar{R}+P Q \bar{R}+P \bar{Q} R \\
& =P Q R+P Q \bar{R}+\bar{P} Q \bar{R}+P \bar{Q} \bar{R} \\
& =m_{7}+m_{6}+m_{2}+m_{4} \\
& =111+110+010+100 \\
\text { So } & =m_{2}+m_{4}+m_{6}+m_{7}
\end{aligned}
$$

Hence (A) is correct option.

Question. 61

P is a 16 -bit signed integer. The 2's complement representation of P is $(F 87 B)_{16}$. The 2's complement representation of $8^{*} P$ is
(A) $(C 3 D 8)_{16}$
(B) $(187 B)_{16}$
(C) $(\text { F878 })_{16}$
(D) $(987 B)_{16}$

SOLUTION

P's 2's complement.

$$
=(F 87 B)_{16}
$$

Is complement $=F 87 B-1$
$=(F 87 A)_{16}$
In base 16 complement is done by subtracting from 15 i.e F.

$$
\begin{aligned}
\mathrm{P} & =(0785)_{16} \\
& =(0000011110000101)_{2} \\
& =1 \times 2^{\circ}+1 \times 2^{2}+1 \times 2^{7}+1 \times 2^{8}+1 \times 2^{9}+1 \times 2^{10} \\
\mathrm{P} & =1925 \\
8 \times P & =8 \times 1925=15400
\end{aligned}
$$

Its binary 0011110000101000
For hexadecimal make pairs of 4 i.e. $(3 C 28)_{16}$
2 's complement $\mathrm{P}=1100$

$$
\begin{equation*}
\text { 2's complement } \mathrm{P}=1100 \quad 0011-11011000 \tag{array}
\end{equation*}
$$

2's complement of $\mathrm{P}=(C 3 D 8)_{16}$
Hence (A) is correct option.

Question. 62

The Boolean expression for the output f of the multiplexer shown below is

(A) $\overline{P \oplus Q \oplus R}$
(B) $P \oplus Q \oplus R$
(C) $P+Q+R$
(D) $\overline{P+Q+R}$

SOLUTION

$S_{1} \&$ so are the select bits which are used to select any 1 of the 4 inputs.
Selection table

$S_{1}(P)$	$S_{0}(Q)$	Input
0	0	0 R
0	1	$1 \bar{R}$
1	0	$2 \bar{R}$
1	1	3 R

The expression has 3 variables
So K-map

Hence (B) is correct option.

Question. 63

What is the boolean expression for the output f of the combinational logic circuit of NOR gates given below?

(A) $\overline{Q+R}$
(B) $\overline{P+Q}$
(C) $\overline{P+R}$
(D) $\overline{P+Q+R}$

SOLUTION

After 1 stage

$$
\overline{P+Q} \quad \overline{Q+R} \quad \overline{P+R} \quad \overline{Q+R}
$$

After 2 stage
$\overline{\overline{P+Q}+\overline{Q+R}} \quad \overline{\overline{P+R}+\overline{Q+R}}$
After 3 stage

$$
\begin{aligned}
& =\overline{\overline{P+Q}+\overline{Q+R}+\overline{P+R}+Q+R} \\
& =(\overline{\overline{P+Q}+\overline{Q+R}}) \cdot(\overline{\overline{P+R}+\overline{Q+R}}) \quad\{\overline{A+B}=\bar{A} \cdot \bar{B} \\
& =(\overline{P+Q}+\overline{Q+R}) \cdot(\overline{P+R}+\overline{Q+R}) \quad\{\overline{\bar{A}}=A \\
& =\overline{(P+Q) \cdot(Q+R)} \cdot(\overline{(P+R) \cdot(Q+R)} \\
& =\overline{Q+P R} \cdot \overline{R+P Q} \\
& =\overline{Q+P R+R+P Q} \\
& =\overline{R(P+1)+\bar{Q}(P+1)} \\
& =\overline{(Q+R)} \\
& \text { correct option. }
\end{aligned}
$$

Hence (A) is correct option.

Question. 64

In the sequential circuit shown below, if the initial value of the output $Q_{1} Q_{0}$ is 00 , what are the next four values of $Q_{1} Q_{0}$?

(A) $11,10,01,00$
(B) $10,11,01,00$
(C) $10,00,01,11$
(D) $11,10,00,01$

SOLUTION

There are 2 T-toggle flip flops in the ckt. Truth table for TFF.
CP T $\quad Q_{n+1}$
$0 \quad \mathrm{X} \quad Q_{n} \quad Q_{n}$ previous state
$1 \quad 0 \quad Q_{n} \quad$ CP clock pulse
$1 \quad 1 \quad \overline{Q_{n}} \quad Q_{n+1}$ next state

T toggle input
Since initially $\mathrm{Q}, Q_{0}=00$, so during $1^{\text {st }}$ clock cycle both T \& clock signals in ckt are 1 . After $Q_{0}=1$ this fed to $2^{\text {nd }}$ TFF which invert previous state $Q_{1}=1$ so $Q_{1} Q_{0}=11$

11 when fed to next cycle clock $=1$ so $Q_{0}=0 Q_{1}=1$ since no inversion $\mathrm{Q}, Q_{0}=10$

In next cycle clock $=1 Q_{0}=1$ inverse, $Q_{1}=0$ in the end $Q_{1} Q_{0}=00$
So order 11, 10, 01, 00
Hence (A) is correct option.

$* * * * * * * * * *$

GATE Multiple Choice Questions
 For Computer Science
 By NODIA and Company
 Available in Two Volumes

FEATURES

- The book is categorized into units and the units are sub-divided into chapters.
- Chapter organization for each unit is very constructive and covers the complete syllabus
- Each chapter contains an average of 40 questions
- The questions are standardized to the level of GATE examination
- Solutions are well-explained, tricky and consume less time. Solutions are presented in such a way that it enhances you fundamentals and problem solving skills
- There are a variety of problems on each topic
- Engineering Mathematics is also included in the book

