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INTRODUCTION
ANTRODUGTION |

We know that static, electric and magnetic fields are independent of time. The fields are not coupled
with each other i.e., they can exist without each other. Now, we consider the e’=ctric and magnetic
fields that change with time i.e., time varying fields. These fields cannot caist without the other.
These Telds are called as electromagnctic fields.

In time varving fields, a changing magnetic field gives rise to an clectoic field end vice vers:
Therefore, there 1s a mutual dependence between electric and magnetic field vectors. In tume
varving helas, the electric field produced by changing magnetic {ic!d is = result o experimenta
researches of Michael Faraday. On the other hand, a magnetic field procduced by chunging clectr ¢
field 1s a result of theoretical researches.of James Clark Maxwe!l.

We will begin the study of time varying ficlds from Feraday's law of elsctromagnetic
induction. Then we will study the conduction current and displacement current. Based on these
fundamentals, we will develop the Maxwell's equations. We will also consider the Maxwell's
cquations in free space and conducting media; *

The varying electric and magnetic fields are mutually perpendicular to each other The
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{requency of these fields 1s same as the frcquency of oscillations of charged particles. The wave
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associated with these oscillations is colled as electromagnetic wave. Therefore, “ex
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clectremagnetic wave is a wave of oscillations of electric and magnetic fields in mutually
serpendicular planes and thesc oscilintions are perpendicular to the direction of propagation of
wal't_"ﬂ After this, we will apply Maxwell's equation to iniroduce the fundamental theorv of wave
motion and basic principles of wave prepagation. | >

When a current is passed through a conductor, magnetic field of constant magnitude is produced at
neaiby points of the conductor. But if an alternating current s passed through the conductor {i.e., the
current passed through the conductor is changing from time to time), the magnetic field produced at
pearby points of the conductor will also change from time to time. The maznetic field so produced 1s
called as time varying magnetic field. When a conducting circuit is placed in a time varymng .
magnetic field, an induced emf is produced in 1t. Due to this induced emf, a current flows through
the circuit.
Faraday observed the following points: ]

(1) Whenever tle magnetic flux linked with a circuit is ch

circuit. |
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of induced emf is directly proportional to the negative rate of hagnptic ﬂux
circuit.

I1® be the magnetic flux linked with the circuit at any instant and ¥, be the induced emf then

d 4
V = - b '
e .
If there are N tumns in a coil, then induced emf becomes
y, =N =

The negative sign indicates that the dlrectmn of induced emf (or current) in a closed c1rcu1t
such that it opposes the original cause that produces it. Thus, 1s kmwn as Lenz's law,

Consider a time varymg magnetic field is produced and closed ¢ 1 C Ufm
in this field. The circuit encloses a surface § in the field as shown in ( 1).1 f 1

flux density in the neighborhood of the circuit

surface
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Fig. (1) Closed surface in time varying manaetc field

The magnetic flux through a small area dS will be B - 48. Now, the flux, through the entire s
circuit is 5

*1?==I' B«dS

When magnetic flux is changed, an ¢!cctric field is induced around the circuit. The line in -H? ]
of the electric field gives the induced emf in the closed circuit, Thus, .

V,=pE-dl
dP d
. 1 (3), y m=——me——{ Beds
Fromegs. (2)anc (3) g - 7t s

From egs. (3 ail (5), we get

When the looi: or closed circuit i.?l--staiionary, then eq. (6) reduces to

js -———dS

The emf produced by changing field within a stationary circuit is called as transformeéneims
Eq. (7) is known as transformer induction equation.
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maﬁddwmachtm&mmlm &nﬁmmmnn.ﬁm:dhn

Jd EXAMPLE 1 A sliding ~encuctory’ MIﬁmﬁmI—Emmmﬂng 2).
ﬂecanductorumovmgmﬁw*m N=u, &_where T & comsun: Fmd the mduced

emf.
Solution The,situation Wn,mi;g:m
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;tﬂti dl - - d}r a !
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< EXAMPLE 2 A straight conductor 0f 0.2 m lies on the X-axis with one end at origin a4
shown in £1g. (3). The conductor is subjected to a magentic flux density B=004a ieslg ™
and velocity v =25sin10%7 & _ m/s. Calculate the motional electric field intensity gnd emf
induced in the L‘l)nduffgr_ ; _1_:

Fig. (3)

Solution The motional emf, i.e., induced voltage producing ficld intcnsily
E=vxB=(25sin107ta,)x(0.044,)
=0.10sin10%7(—a, ) V/m
Theretfore, emf induced mn the conductor
@ =I(v X B)«dl
020

= 0.10sin 10° t(—a )+dxa,

0

~010sin10° 1 [<]"® = -0.10sin10° £ (0.20) &

= - 0.020 sin 10° ¢ volt
The conductor first moves in a_ direction and afterward it moves in — a, direction.

Consider a parallel plaic capacitor 1s connected to an alternating generator through a resistance =
series cirouit as shown in Fig. (4). We know thatin a series circuit, the current has the same valueal
- all cross-sections. The conduction current which is due to electrical charges 1s same at all
’ cross-sections of the circuit except at all eross-sections (such-as 4AB) of
the dielectric inside capacitor. The dielectric 1S a_ir with permattivity € .
It is important to mention here that conductionelecttons (free electrons)
are flowing into one plate of the capacitor,andidorcing other free
electrons out of the second plate. Therefore, there is no flow of free
electrons through the dielectric.in otheérwdrds;We can say that there is
s discontinuity of the current in the space between the plates.of a Fig. (4)
capacitor Now, the question is that how this discontinuity of the current
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Substituting the value of ¢ from aq. (3) in eg, (1), we get
d db
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Thus, mnside the dielectric, tbcmmﬂbouditpllmmtcmmu which is equal to conduction
current i in the line.

lmporlmt Points
. The concepts of conJuction current o.nd displacement current are shown in Fig (5).
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ne plate to another plate. Hence, the term displacement is justifi
d displacement current are equal, i.e.,

. R : f(.. — id
2 Il;_l‘kgi ﬁni;]r?ctlluoc!: {;:m'rcnt, {hc displacement current is also a source of magnetic field. | t;g'-
Rt 5 rS,_lhe displacement current is negligible small as compared tc? conduction
at Irequencies less than optical frequencies. At ultra high frequencies, the dis- ¥
become quite important.
| : only so long as electric field E is changing with time, j e, =~
dlsp!accment D is changing with tim);. Whla;]gthe capacitar is fully charged upto the value of 4
applied emf the current in the line drops to zero. Now, the electric field E between the plates of ™

the capacitor attains at steady value. Asha result, (iE-] and (-d—q) becomes Zero.

dt dt

8. T;nc displacement current is called a current in‘the sense that it has the sarmne dimensions as tt 187,
of current. - .
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XE MODIFIED AMPERE'S LAW AND DISPL AC.

We hayc studied that a current in conductor produces a magnetic field. Maxwell proved that
changmg electnic field 1 vacuum or in a dieleciric also produces a magnetic field. So, a changi
electric field 1s equivalent to a current which flows as long as the electric field is changing. Thi

- produces the same magnetic effect as the ordinary conduction current. This is known ag ' ®
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displacement current. Now, we shall show th- how the Ampere’s law is modified by using the id A
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B! ©  of displacement current.
; Ampere’s law in vector form can be expressed as
I_é UxB-= W, J
3 where J 1s current density.
4 Taking divergencc of this cquaaon
G-an)=div.am3=€’rm0 J)
or div.eurli B=p, div.J
We know that div. of curl of a vector is always zero and hence,
O=u,div.Jd .
diV.J = () (-_- IJ'[} ;tO) ( 2
This is in contradiction with the continuity equation, which states that
d L
div.J+—E$ | ...(4)
ot .

where p represcats the charge densaty. _
A close inspection of egs. (3) and (4) shows that the Ampere’s law in the form of div. J = 0%

valid only when the charge density is static and not varying with time.




E Taking div. of both sides,

" 3-(?;-:3).;.,' W-J+3-J,]
o‘ll._latl-i-a-.l,]
ﬁ 3'1 ‘I‘e"." = () (.
F . * AT PL L 2
Using . (4), we get Ra ot (T

ot
According to Gauss's law in electrostatic

where J , is displacemcnt current density.
Now, the modified {form of Awmpere’s law is

dD
ﬁxﬂmp, (J +—a-';)
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where @, 15 the electrio flyx

Modified Ampere’s Law inin

Integrating eq. (11) over the surface, we have

L@KH)'ﬁtLjnﬁ.’.L%?.as

Applying Stoke's theorem, we get

- H - N=i+i = " m s |
f i+, LJ ﬁ+Lat ds (“r
In this way, Maxwell succeeded in bringing the complete s ry betw "
| _ , \LrY cen electnc
} magnetic fields by introducing the concept Ofg;r'_:.gp mfmwt
:
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® SOLVED EXAMPLES
J EXAMPLE 1 4 dielectric medium is kept in veri/le fie\.. Show that the value ¢

displacement current is equal to the conduction ¢:.rrer
Solution The displacement current density J L, 15 given by

| IE ‘ '
d 0 a‘

- T'he displacement current 7, is given by

f‘ =g -g-[i)::%: ]
Thus, displacement current is equ: | to conduction current.
J EXAMPLE 2 A parcliel plate capacitor with plate area of Sem*® and plate separation of

3 mm has a voltage of 50sin 10"t applied to its plates. Calculate the disptasement
assuming € = 2€ .

Solution We know that, D=¢tE
Further, E=—
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_ 2% (B83x 1077) (5% 107)
P T L
= 147 cos 10 nA

(5 %10* cos 10" 1]

§11.0 A REVIEW
" basic equations which we have studied are summarised in the frllcwing for: equations:
E [, * fE-ds-[-f’-] or fD.dS=gq ;
| &‘. -

" This is Gauss’s law of electrostatic. This law states ihar i< cl«.:ctr'ic_ﬂ}n_ through a closed
pur ,iﬂ_:qualmthcnetmmloudbythenﬁacediwidcdbythcpamlmym B

T | fngﬁfﬂ

'IhisisGaun’Hawjbrmm“Thh law ammmmmwam

This is Faraday’s law of ¢lcctromagnetic induction. This law states that an eletric field is
. produced by changingimarnetic ficld. . _
; 4. | fB-dl=uo! or fl-l-dl-:u,

f This is Ampere’s law for magnetic field due to steady current. This law states that the amount of

L i i
L

~ workdone in carrying a unit magnetic pole one around a closed arbitrary path linked with the current

- is u, times the current /.
The different symbols used are:
E = electric field intensity vector | |
D = electric flux density or electric digplacement vector |
Br mgglgg.iql lux density vector
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H = mz?gnctlc‘ ield 19tem1ty vegtor i 44
For a linear and isotropic media, E and Dmielmd jed as . :
For linear isotropic media ~ B=p& GRRER NGRS s Nl ol
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are changing very rapidly in space with §

, . d vice- . Maxwell in 1862 |

fields give magnetic field arid vice-versa ' - 3
GCtrom&gnctic in the form of four fumcnml S Th

OWn as Maxwell’s electromagnetic equations. These equalions arc based pos the

S Such as Gauss’s law of electrostatic, Gauss’s law of magnetostatic, Faraday’s law .

®li¢ induction and Ampere's circuital law.
gral forms of these equations are given below:

f’E-dS=[-f-} or f»SD-dS=q

1
‘_

)

:
B dS =0
P T ot M
J;B-dl=u0(.l +€ . | 5
o F

L

- | 5 Do I
The differential forms of these equation are given below:

# _

div.E#ﬂ or V.D=p
By |
div.B=0 or V-B=0
A B " JB
T - E::-———
curl E > or V X Y

According to Gauss’s law _{:E U R

If p be the charge density and dV/, the small volume considered, then
o gt sl

- I ¢ g ; 1 piung
ﬁE-dSi-B—_ﬁ-:LhW W Y LMD et

Or ' RRY € J;E'dS=Lp dV b
or | 'f?D*!dS;;:FL{deT
R ar dias




5. ~ hBras- I (?-Bw
[ V-Byav=0

As the volume is arbitrary, the integral mus? be z<ro. Heme,

4,-i;’
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- 1 1

i ..(4)
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' Applying Stoke’s theorem

S

From egs. (4) and (), we get

.(6)
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The RIH.S. of eq. (n) represents ﬁjg e mhmé& i valume |

Eq JDdV=q

¢ Equation (a) signifies that the new outward flux of elpctric displacemen: vector 1) through the
- surface enclosing a volusne V is equal to the net charge (q) containcd wiin that volume

-2, Maxwéll's second equation in integral form:

_' ,H,'he second Maxwell.s equution in differential form 1s

X Iﬂwﬂm over.an arbitrary volume V, we ge
fﬁumf O () 4 - A5

(Gauss ce theorcm we g
Using ' S dwergcn o gu I | — |

. dAb)

This 18 mtegrﬂd form of Maxwcll's sceond equation.
This equation sipi fies thit dre net outward of magnetic Induction B through any closed

surface is equauail to zero.
3. Maxwell'stlhird equatiion in integral form:

The third Maxwell's equation in differential form 1s

i

3
i J e”‘E:‘%? (M)
Taking surface integral of both sides of eq. (7) over a surface S, we get
OB _
I l“‘a XE)'(IS:“I (“"‘")'ds AB)
S\ ot

Using Stok:e's theorem, the surface integral of L H.8.vof eq. (8) can be converted into line
integral along t he boundary of C, i.¢,

J‘(V XE)’JS'&;E’di M ]2 e ‘ 1 .“(9) |
From egs. ( 8) and (9), weget R

i sl




This is integral form of Maxwell's fourth equation. ;

This equation signifies that magnetomotive force fm.m.\. jc H - A1) around a closed path
equal to the conduction current plus displacement currer: trough any surface bounded by
puth.

: : o

When divergence of a vector is zero, it i3 called as solertdidal vector. When the vector has a cent

value, then it is called as non- solencidal. Therefore, magpetic ficld B can be cxpressed 33 the ag
2 vecter piist function. A ( ¢, B=V X A.Here A is called the vector poteanial of electromagnet

ficlds

s l lf‘ I'!ug B: T_:f x A m &c !H[achu‘s eqm?- q 'S TR s - & |
- JB
V XE:: [ —— ihan 4 &2 ' s B &

ot

Jd o WLLY
6XE= ar(VxL')= ﬁx—é‘—-

o3 F 19

o

23
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Consider the Maxwell's equation V - B= 0. It follows that the migrietic SAB is solendidal field
3

'
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Use Maxwell’ . nt equation of
continuiry. § equation to uﬂHﬂ:ﬁ the charge current €q

 EXAMPLE 2 Using the Maxwell's relation
oD
f curl B= |, (J+at)
div.D =p
:' Solution Taking the dwcrgcnce of the given Maqull s;quatmn we have
---- [div.curl B]=div.J + — gdw, D)

prove that
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 'We know the vector identity
| VxVxE=Vx(V-E)-V*¥
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[(Using eq, (1)} :
U

By

i

o

(2) Similarly, taking curl

of both sides of eq. (1), we get

IO ot i:{i JUCTING N :;f_}m
R .-Llijl"t'!- s ) A £t wustiontl ot A | s

a4 P we have solved Maxwell’s nqualmql for perfect dwlfcmc (uc_h as free sptcc n _1

aus section, conduction currents. The aim of this article is to consider the
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gy = - - -

L - - s =
S Y e——
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L
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2
or ﬁ(a E) V2E=“H88EquaE '

As . D=E'.E, ‘E:%D

*-_.:;f:Ol' ; e'E=-l-6¢D=l(]1)

£

We know that there is no net charge within a conductor because the charge resides on the

surface of the conductor, p = 0
V-E=- - (0)=¢

Substituting the value of (‘f’ ) fmm cq (5) in eq. (4), we get

OrI

This is the wave equation for E.
Similarly, taking cur! of both gides GM.‘E' t25: we Fgc’t
- J
V%V X,H=EE(§XE)+U(§XE)

_ 98
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D) &

(- VD= p)
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® SOLVED EXAMPLES "

- EXAMPLE 1 Using €gs. MN@ abiain wave equations of Eand B for free space.
Solution For free space, p=0, 6=0, e =¢, and\u;p.,,. ' i

respectively

iii

-(b)

This 1s wave equation for H.

Substituting these values in equations (a) and (b), we get wave cquations of E and H

! A '.-I!Il- gi* -
T I""’-'fu‘“ﬂ-‘ﬁ"\"_mu"‘- o' 3 ) -

hbe® PROPAGATION OF £V YYAVE =~
(A) Solution of Maxwell's equation for EM wave .
Consider that an electromagnetic wave is propagating in Z-direction. In this case, there will be no E.

component, i.e., E, =0. There will be only E, and E, components. Further, there will be no
variations of E and H in X and ¥ i for a uniform plane wave travelling
Z-direction, we have B Wl e .




	IMG_20140529_213204
	IMG_20140529_213210
	IMG_20140529_213216
	IMG_20140529_213224
	IMG_20140529_213234
	IMG_20140529_213240
	IMG_20140529_213249
	IMG_20140529_213256
	IMG_20140529_213304
	IMG_20140529_213319
	IMG_20140529_213329
	IMG_20140529_213341
	IMG_20140529_213350
	IMG_20140529_213357
	IMG_20140529_213402
	IMG_20140529_213413
	IMG_20140529_213424
	IMG_20140529_213436
	IMG_20140529_213448

