LAKSHYA (JEE)

Electrostatic Potential & Capacitance

DPP-06

- **1.** Two equal negative charge q are fixed at the fixed points $(0, a)$ and $(0, -a)$ on the *Y*-axis. A positive charge *Q* is released from rest at the point $(2a, 0)$ on the *X*-axis. The charge *Q* will
	- (a) Execute simple harmonic motion about the origin
	- (b) Move to the origin and remain at rest
	- (c) Move to infinity
	- (d) Execute oscillatory but not simple harmonic motion
- **2.** An electric line of force in the *xy* plane is given by equation $x^2 + y^2 = 1$. A particle with unit positive charge, initially at rest at the point $x = 1$, $y = 0$ in the *xy* plane
	- (a) Not move at all
	- (b) Will move along straight line
	- (c) Will move along the circular line of force
	- (d) Information is insufficient to draw any conclusion
- **3.** A solid metallic sphere has a charge +3*Q*. Concentric with this sphere is a conducting spherical shell having charge –*Q*. The radius of the sphere is a and that of the spherical shell is $b(b > a)$. What is the electric field at a distance
	- $R(a < R < b)$ from the center

(a)
$$
\frac{Q}{2\pi\varepsilon_0 R}
$$
 (b) $\frac{3Q}{2\pi\varepsilon_0 R}$
(c) $\frac{3Q}{4\pi\varepsilon_0 R^2}$ (d) $\frac{4Q}{4\pi\varepsilon_0 R^2}$

4. If on the concentric hollow spheres of radii *r* and R $\left($ > r $\right)$ the charge Q is distributed such that their surface densities are same then the potential at their common centre is

(a)
$$
\frac{Q(R^2+r^2)}{4\pi\varepsilon_0(R+r)}
$$
 (b)
$$
\frac{QR}{R+r}
$$

(c) Zero (d)
$$
\frac{Q(R+r)}{4\pi\varepsilon_0(R^2+r^2)}
$$

5. Two equal charges *q* of opposite sign separated by a distance 2*a* constitute an electric dipole of dipole moment *p*. If *P* is a point at a distance *R* from the centre of the dipole and the line joining the centre of the dipole to this point makes an angle θ with the axis of the dipole, then the potential at *p* is given by $(r \gg 2a)$ (Where $p = 2qa$)

(a)
$$
V = \frac{p \cos \theta}{4\pi \epsilon_0 r^2}
$$
 (b) $V = \frac{p \cos \theta}{4\pi \epsilon_0 r}$
(c) $V = \frac{p \sin \theta}{4\pi \epsilon_0 r}$ (d) $V = \frac{p \cos \theta}{2\pi \epsilon_0 r^2}$

6. A point charge *q* is placed at a distance *a*/2 directly above the centre of a square of side *a*. The electric flux through the square is

(a)
$$
\frac{q}{\epsilon_0}
$$
 (b) $\frac{q}{\pi \epsilon_0}$
(c) $\frac{q}{4\epsilon_0}$ (d) $\frac{q}{6\epsilon_0}$

7. Two infinitely long parallel wires having linear charge densities λ_1 and λ_2 respectively are placed at a distance of *R* metres. The force per

unit length on either wire will be 0 1 4 $K=\frac{1}{4\pi r}$ $\begin{pmatrix} 1 & 4\pi \varepsilon_0 \end{pmatrix}$

(a)
$$
K \frac{2\lambda_1 \lambda_2}{R^2}
$$
 (b) $K \frac{2\lambda_1 \lambda_2}{R}$
(c) $K \frac{\lambda_1 \lambda_2}{R^2}$ (d) $K \frac{\lambda_1 \lambda_2}{R}$

- **8.** A non-conducting solid sphere of radius *R* is uniformly charged. The magnitude of the electric field due to the sphere at a distance *r* from its centre
	- (a) Increases as *r* increases for $r < R$
	- (b) Decreases as *r* increases for $0 < r < \infty$
	- (c) Decreases as *r* increases for $R < r < \infty$
	- (d) Is discontinuous at $r = R$

9. Two identical thin rings each of radius *R* meters are coaxially placed at a distance *R* meters apart. If *Q*¹ coulomb and *Q*² coulomb are respectively the charges uniformly spread on the two rings, the work done in moving a charge *q* from the centre of one ring to that of other is (a) Zero

(b)
$$
\frac{q(Q_1 - Q_2)(\sqrt{2} - 1)}{\sqrt{2} \cdot 4\pi \epsilon_0 R}
$$

(c)
$$
\frac{q\sqrt{2}(Q_1 + Q_2)}{4\pi \epsilon_0 R}
$$

(d)
$$
\frac{q(Q_1 + Q_2)(\sqrt{2} + 1)}{\sqrt{2}.4\pi\epsilon_0 R}
$$

- **10.** A negatively charged plate has charge density of 2×10^{-6} C/m². The initial distance of an electron which is moving toward plate, cannot strike the plate, if it is having energy of 200 eV
	- (a) 1.77*mm* (b) 3.51*mm* (c) 1.77*cm* (d) 3.51*cm*

11. An ellipsoidal cavity is carved within a perfect conductor. A positive charge *q* is placed at the centre of the cavity. The points *A* and *B* are on the cavity surface as shown in the figure. Then

- (a) Electric field near A in the cavity = Electric field near *B* in the cavity
- (b) Charge density at $A =$ Charge density at *B*
- (c) Potential at $A =$ Potential at B
- (d) Total electric field flux through the surface of the cavity is q/ε_0

ANSWER KEY

- **1. (d)**
- **2. (c)**
- **3. (c)**
- **4. (d) 5. (a)**
- **6. (d)**
- **7. (b)**
-
- **8. (a, c)**
- **9. (b)**
- **10. (a)**
- **11. (c, d)**

***Note* - If you have any query/issue**

Mail us at support@physicswallah.org

1. (d)

By symmetry of problem the components of force on *Q* due to charges at *A* and *B* along y-axis will cancel each other while along *x*axis will add up and will be along *CO*. Under the action of this force charge *Q* will move towards *O*. If at any time charge *Q* is at a distance *x* from *O*. Net force on charge *Q*

As the restoring force *Fnet* is not linear, motion will be oscillatory (with amplitude 2*a*) but not simple harmonic.

2. (c)

Charge will move along the circular line of force because $x^2 + y^2 = 1$ is the equation of circle in *xy*-plane.

3. (c)

Electric field at a distance *R* is only due to sphere because electric field due to shell inside it is always zero. Hence electric field

$$
=\frac{1}{4\pi\varepsilon_0}\cdot\frac{3Q}{R^2}
$$

4. (d)

$$
q_1 + q_2 = Q
$$
 and $\frac{q_1}{4\pi r^2} = \frac{q_2}{4\pi R^2}$ (given)
 $q_1 = \frac{Qr^2}{R^2 + r^2}$ and $q_2 = \frac{QR^2}{R^2 + r^2}$

Potential at common centre

$$
\frac{1}{4\pi\varepsilon_0} \left[\frac{Qr^2}{(R^2 + r^2)r} + \frac{QR^2}{(R^2 + r^2)R} \right] = \frac{Q(R + r)}{4\pi\varepsilon_0 (R^2 + r^2)}
$$

5. (a)

For the given situation, diagram can be drawn as follows As shown in figure

component of dipole moment along the line *OP* will be $p' = p \cos \theta$.

Hence electric potential at point *P* will be

$$
V = \frac{1}{4\pi\varepsilon_0} \cdot \frac{p\cos\theta}{r^2}
$$

6. (d)

An imaginary cube can be made by considering charge *q* at the centre and given square is one of it's face.

7. (b)

Force on *l* length of the wire 2 is *R* $F_2 = QE_1 = (\lambda_2 l) \frac{2k\lambda_1}{R}$ $\Rightarrow \frac{r_2}{l} = \frac{2K\lambda_1}{R}$ *k l* $\frac{F_2}{F_1} = \frac{2k\lambda_1\lambda_2}{F_1}$ Also $\frac{r_1}{l} = \frac{r_2}{l} = \frac{r}{l} = \frac{2kA_1}{R}$ *k l F l F l* $\frac{F_1}{F_2} = \frac{F_2}{F_1} = \frac{2k\lambda_1\lambda_2}{F_2}$ *R* λ_1 λ_2 *l Q*

8. (a, c)

For non-conducting solid sphere $E_{in} \propto r$

and
$$
E_{out} \propto \frac{1}{r^2}
$$

i.e. for $r < R$; *E* increases as *r* increases and for $R < r < \infty$; *E* decreases as *r* increases

10. (a)

Let an electron is projected towards the plate from the *r* distance as shown in fig.

It will not strike the plate if and only if $KE \leq$ $e(E \cdot r)$ (where $E =$ Electric field due to charge plate $2\varepsilon_0$ $=\frac{\sigma}{2}$)

 \Rightarrow $r \geq \frac{NE}{eE}$ $r \geq \frac{KE}{\pi}$. Hence minimum value of *r* is given by

$$
r = \frac{KE}{eE} = \frac{200 \text{ eV}}{e \times \frac{\sigma}{2\varepsilon_0}}
$$

11. (c, d)

Under electrostatic condition, all points lying on the conductor are in same potential. Therefore, potential at $A =$ potential at B . From Gausss theorem, total flux through the surface of the cavity will be q/ε_0 .

 $$ would had been a spherical cavity then options (a) and (b) were also correct.

