The Welfare Effects of Transportation Infrastructure Improvements

Treb Allen1 Costas Arkolakis2

1Dartmouth and NBER 2Yale and NBER

December 2016
Motivation

- More than $1 trillion spent on infrastructure each year.
Motivation

- More than $1 trillion spent on infrastructure each year.

- Is this money being well spent?
 - Need to know how infrastructure investment affects welfare
Motivation

- More than $1 trillion spent on infrastructure each year.

- Is this money being well spent?
 - Need to know how infrastructure investment affects welfare

- Complicated problem:
 - Agents choose their routes: trade cost between any 2 locations possibly affected by infrastructure in between any 2 other nodes
 - General equilibrium effects on equilibrium trade flows, income, and population in all locations.

- State of the art: calibrate spatial model, use algorithm (Dijkstra, FMM) to calculate change in least cost routes from a given infrastructure investment, re-calculate equilibrium.

- "Black box" procedure limits resulting economic insight.
Motivation

- More than $1 trillion spent on infrastructure each year.

- Is this money being well spent?
 - Need to know how infrastructure investment affects welfare

- Complicated problem:
 - Agents choose their routes: trade cost between any 2 locations possibly affected by infrastructure in between any 2 other nodes
 - General equilibrium effects on equilibrium trade flows, income, and population in all locations.

- State of the art: calibrate spatial model, use algorithm (Dijkstra, FMM) to calculate change in least cost routes from a given infrastructure investment, re-calculate equilibrium.

- “Black box” procedure limits resulting economic insight.
Overview of this paper

- This paper: Propose a new analytically tractable procedure to determine the welfare impacts of transportation infrastructure investment.

1. Geography component:
 - Develop a new technique for modeling the endogenous trade costs that arise from trading over an infrastructure network.

2. Economic component:
 - Embed in GE spatial frameworks to derive analytical expression for welfare elasticity to changes in network.

3. Empirical component:
Overview of this paper

• This paper: Propose a new analytically tractable procedure to determine the welfare impacts of transportation infrastructure investment.

1. Geography component:
 • Develop a new technique for modeling the endogenous trade costs that arise from trading over an infrastructure network
Overview of this paper

• This paper: Propose a new analytically tractable procedure to determine the welfare impacts of transportation infrastructure investment.

1. Geography component:
 • Develop a new technique for modeling the endogenous trade costs that arise from trading over an infrastructure network

2. Economic component:
 • Embed in GE spatial frameworks to derive analytical expression for welfare elasticity to changes in network

Empirical component:
• Use shipment-level data across U.S. cities to assess welfare impact of improving each section of U.S. Interstate Highway System.
Overview of this paper

• This paper: Propose a new analytically tractable procedure to determine the welfare impacts of transportation infrastructure investment.

1. Geography component:
 • Develop a new technique for modeling the endogenous trade costs that arise from trading over an infrastructure network

2. Economic component:
 • Embed in GE spatial frameworks to derive analytical expression for welfare elasticity to changes in network

3. Empirical component:
 • Use shipment-level data across U.S. cities to assess welfare impact of improving each section of U.S. Interstate Highway System.
Overview of this paper: Geography component

- Many locations arrayed on a transportation infrastructure network.
Overview of this paper: Geography component

- Many locations arrayed on a transportation infrastructure network.

- Heterogeneous traders choose least cost path from i to j.
 - Eaton Kortum ’02 Frechet + graph theory = closed form mapping from infrastructure network to endogenous trade costs.

- Intuitive analytical expressions for:
 - Probability a trader going from i to j passes through the link from k to l.
 - Elasticity of trade costs from i to j to an infrastructure improvement in link from k to l.
 - Mean of distance traveled from i to j across traders (crucial for estimation).
Overview of this paper: Geography component

- Many locations arrayed on a transportation infrastructure network.

- Heterogeneous traders choose least cost path from i to j.
 - Eaton Kortum ’02 Frechet + graph theory = closed form mapping from infrastructure network to endogenous trade costs.

- Intuitive analytical expressions for:
 - Probability a trader going from i to j passes through the link from k to l.
 - Elasticity of trade costs from i to j to an infrastructure improvement in link from k to l.
 - Mean of distance traveled from i to j across traders (crucial for estimation).
Overview of this paper: Economic component

- Standard (Armington) general equilibrium spatial model.
 - Consider two variants: trade model with immobile labor and economic geography model with mobile labor.

- New methodology: Use dual "planner" formulation of the equilibrium conditions, apply the envelope theorem.
 - Combine with the geographic component to derive elasticity of aggregate welfare to any change in the transportation infrastructure network.
 - Simple and intuitive analytical expression: welfare elasticity equal to flows over an infrastructure link.
Overview of this paper: Economic component

- Standard (Armington) general equilibrium spatial model.
 - Consider two variants: trade model with immobile labor and economic geography model with mobile labor.

- For each variant, derive the elasticity of aggregate welfare to a change in any (endogenous) bilateral trade cost.
 - New methodology: Use dual “planner” formulation of the equilibrium conditions, apply the envelope theorem.
Overview of this paper: Economic component

- Standard (Armington) general equilibrium spatial model.
 - Consider two variants: trade model with immobile labor and economic geography model with mobile labor.

- For each variant, derive the elasticity of aggregate welfare to a change in any (endogenous) bilateral trade cost.
 - New methodology: Use dual “planner” formulation of the equilibrium conditions, apply the envelope theorem.

- Combine with the geographic component to derive elasticity of aggregate welfare to any change in the transportation infrastructure network.
 - Simple and intuitive analytical expression: welfare elasticity equal to flows over an infrastructure link.
Overview of this paper: Empirical component

- Use shipment level trade data between 67 U.S. cities to estimate structural parameters of the model.
Overview of this paper: Empirical component

- Use shipment level trade data between 67 U.S. cities to estimate structural parameters of the model.

- Assess the welfare effect of improving each link in the U.S. Interstate Highway System.
Overview of this paper: Empirical component

- Use shipment level trade data between 67 U.S. cities to estimate structural parameters of the model.

- Assess the welfare effect of improving each link in the U.S. Interstate Highway System.

- Most important highway in the U.S.: I-95 South from New York to Philadelphia. Reducing the travel time by 30 minutes would increase aggregate U.S. welfare by 0.02%.
Related literature

- Quantitative spatial models with exogenous trade costs:
 - Trade models: Anderson ’79, Krugman ’80, Eaton and Kortum ’02, Anderson and van Wincoop ’03, Dekle, Eaton and Kortum ’08
 - Economic geography models: Krugman ’91, Allen and Arkolakis ’14, Redding ’16

- Quantitative evaluation of existing infrastructure projects:
 - Donaldson ’12, Allen and Arkolakis ’14, Ahlfeldt et. al. ’15, Donaldson and Hornbeck ’16, Alder ’16.

- Quantitative optimal policy computationally:

- Designing transportation networks: Fajgelbaum and Schaal ’17.
 - Benefits of AA: analytical solutions, gravity framework \(\Rightarrow\) evaluate existing infrastructure using observed trade data.
 - Benefits of FS: globally concave objective with convex constraints (from congestion) \(\Rightarrow\) optimal transportation network from scratch.
Outline of Talk

Introduction

Geographic component: Endogenous transportation costs
 Setup
 Trade costs along the optimal route
 Properties of endogenous trade costs

Economic component: The welfare effect of improving infrastructure

Empirical component: The Interstate Highway Network

Next steps
Endogenous transportation costs: setup

- N locations arrayed on a weighted network.

- Let $T \equiv \begin{bmatrix} t_{ij} \end{bmatrix}$ be the associated infrastructure matrix.
 - $t_{ij} \geq 1$ is the iceberg trade cost incurred by traveling directly from i to j on the infrastructure network.
 - If $t_{ij} \in [1, \infty)$, we say that i and j are connected and we call the connection a link from i to j.

Notes:
- We do not impose symmetry, i.e. it is okay if $t_{ij} \neq t_{ji}$.
- We assume $t_{ii} = \infty$ (to avoid certain cycles).
Endogenous transportation costs: setup

- \(N \) locations arrayed on a weighted network.

- Let \(\mathbf{T} \equiv [t_{ij}] \) be the associated \textit{infrastructure matrix}.

- Notes:
 - We do not impose symmetry, i.e. it is okay if \(t_{ij} \neq t_{ji} \).
 - We assume \(t_{ii} = \infty \) (to avoid certain cycles).
Endogenous transportation costs: setup

- N locations arrayed on a weighted network.

- Let $T \equiv [t_{ij}]$ be the associated *infrastructure matrix*.
 - $t_{ij} \geq 1$ is the iceberg trade cost incurred by traveling directly from i to j on the infrastructure network.
Endogenous transportation costs: setup

- N locations arrayed on a weighted network.
- Let $T \equiv [t_{ij}]$ be the associated \textit{infrastructure matrix}.
 - $t_{ij} \geq 1$ is the iceberg trade cost incurred by traveling directly from i to j on the infrastructure network.
 - If $t_{ij} \in [1, \infty)$, we say that i and j are \textit{connected} and we call the connection a \textit{link} from i to j.

Notes:
- We do not impose symmetry, i.e. it is okay if $t_{ij} \neq t_{ji}$.
- We assume $t_{ii} = \infty$ (to avoid certain cycles).
Endogenous transportation costs: setup

• N locations arrayed on a weighted network.

• Let $\mathbf{T} \equiv [t_{ij}]$ be the associated *infrastructure matrix*.

 • $t_{ij} \geq 1$ is the iceberg trade cost incurred by traveling directly from i to j on the infrastructure network.

 • If $t_{ij} \in [1, \infty)$, we say that i and j are *connected* and we call the connection a *link* from i to j.

• Notes:
Endogenous transportation costs: setup

• N locations arrayed on a weighted network.

• Let $\mathbf{T} \equiv [t_{ij}]$ be the associated *infrastructure matrix*.
 • $t_{ij} \geq 1$ is the iceberg trade cost incurred by traveling directly from i to j on the infrastructure network.
 • If $t_{ij} \in [1, \infty)$, we say that i and j are *connected* and we call the connection a *link* from i to j.

• Notes:
 • We do not impose symmetry, i.e. it is okay if $t_{ij} \neq t_{ji}$.
Endogenous transportation costs: setup

- \(N \) locations arrayed on a weighted network.

- Let \(T \equiv [t_{ij}] \) be the associated *infrastructure matrix*.
 - \(t_{ij} \geq 1 \) is the iceberg trade cost incurred by traveling directly from \(i \) to \(j \) on the infrastructure network.
 - If \(t_{ij} \in [1, \infty) \), we say that \(i \) and \(j \) are *connected* and we call the connection a *link* from \(i \) to \(j \).

- Notes:
 - We do not impose symmetry, i.e. it is okay if \(t_{ij} \neq t_{ji} \).
 - We assume \(t_{ii} = \infty \) (to avoid certain cycles).
Example network
A path \(p \) from \(i \) to \(j \) is a sequence of locations beginning in location \(i \) and ending in location \(j \):

\[
\tau_{ij}(p) = \prod_{k=1}^{K-1} t_{p_k},
\]

Let the length of a path \(p \) be the number of elements of the sequence minus one (example: \(K = 4 \)).

The aggregate trade cost from \(i \) to \(j \) along path \(p = \{ p_0 = i, p_1, \ldots, p_K = j \} \) of length \(K \) is:

Let \(P_{ij}, K \) denote the set of all paths of length \(K \) from \(i \) to \(j \).
Endogenous transportation costs: setup (ctd.)

- A path p from i to j is a sequence of locations beginning in location i and ending in location j:
 - Example path from $i = 1$ to $j = 25$: $\{1, 7, 13, 19, 25\}$.
Endogenous transportation costs: setup (ctd.)

• A *path p* from *i* to *j* is a sequence of locations beginning in location *i* and ending in location *j*:
 - Example path from *i* = 1 to *j* = 25: \{1, 7, 13, 19, 25\}.

• Let the *length of a path p* be the number of elements of the sequence minus one (example: *K* = 4).
Endogenous transportation costs: setup (ctd.)

- A path p from i to j is a sequence of locations beginning in location i and ending in location j:
 - Example path from $i = 1$ to $j = 25$: $\{1, 7, 13, 19, 25\}$.
- Let the length of a path p be the number of elements of the sequence minus one (example: $K = 4$).

- The aggregate trade cost from i to j along path $p = \{p_0 = i, p_1, \ldots, p_{K-1}, p_K = j\}$ of length K is:

$$\tilde{\tau}_{ij}(p) = \prod_{k=1}^{K} t_{p_{k-1}, p_k} \quad (1)$$
A path p from i to j is a sequence of locations beginning in location i and ending in location j:

- Example path from $i = 1$ to $j = 25$: $\{1, 7, 13, 19, 25\}$.

Let the length of a path p be the number of elements of the sequence minus one (example: $K = 4$).

The aggregate trade cost from i to j along path $p = \{p_0 = i, p_1, \ldots, p_{K-1}, p_K = j\}$ of length K is:

$$\tilde{\tau}_{ij}(p) = \prod_{k=1}^{K} t_{p_{k-1}, p_k}$$ \hspace{1cm} (1)

Let $\mathcal{P}_{ij,K}$ denote the set of all paths of length K from i to j.
Traders

- Assume a unit measure of perfectly competitive traders $\nu \in [0, 1]$ shipping goods from i to j.

- If trader ν takes path p from i to j, she incurs a total trade cost $\tilde{\tau}_{ij}(p) \varepsilon_{ij}(p, \nu)$, where $\varepsilon_{ij}(p, \nu)$ is Frechet distributed across paths with shape parameter $\theta > 0$.

- A trader chooses the path from i to j to minimize her total trade cost:

$$\hat{\tau}_{ij}(\nu) = \min_{p \in P_{ij}, K, K \geq 0} \tilde{\tau}_{ij}(p) \varepsilon_{ij}(p, \nu).$$

- The expected trade cost between i and j, τ_{ij}, is the expectation of the least cost route across all traders:

$$\tau_{ij} \equiv \mathbb{E}_{\nu} [\hat{\tau}_{ij}(\nu)].$$
Traders

- Assume a unit measure of perfectly competitive traders $\nu \in [0, 1]$ shipping goods from i to j.

- If trader ν takes path p from i to j, she incurs a total trade cost $\tilde{\tau}_{ij}(p) \varepsilon_{ij}(p, \nu)$,
Traders

- Assume a unit measure of perfectly competitive traders $\nu \in [0, 1]$ shipping goods from i to j.

- If trader ν takes path p from i to j, she incurs a total trade cost $\tilde{\tau}_{ij}(p) \varepsilon_{ij}(p, \nu)$,
 - where $\varepsilon_{ij}(p, \nu)$ is Frechet distributed across paths with shape parameter $\theta > 0$.

Traders

- Assume a unit measure of perfectly competitive traders $\nu \in [0, 1]$ shipping goods from i to j.

- If trader ν takes path p from i to j, she incurs a total trade cost $\tilde{\tau}_{ij}(p) \varepsilon_{ij}(p, \nu)$, where $\varepsilon_{ij}(p, \nu)$ is Frechet distributed across paths with shape parameter $\theta > 0$.

- A trader chooses the path from i to j to minimize her total trade cost:

$$\tilde{\tau}_{ij}(\nu) = \min_{p \in P_{ij, K}, K \geq 0} \tilde{\tau}_{ij}(p) \varepsilon_{ij}(p, \nu).$$
Traders

- Assume a unit measure of perfectly competitive traders $\nu \in [0, 1]$ shipping goods from i to j.

- If trader ν takes path p from i to j, she incurs a total trade cost $\tilde{\tau}_{ij}(p) \varepsilon_{ij}(p, \nu)$,
 - where $\varepsilon_{ij}(p, \nu)$ is Frechet distributed across paths with shape parameter $\theta > 0$.

- A trader chooses the path from i to j to minimize her total trade cost:
 \[\tilde{\tau}_{ij}(\nu) = \min_{p \in \mathcal{P}_{ij}, K \geq 0} \tilde{\tau}_{ij}(p) \varepsilon_{ij}(p, \nu). \]

- The expected trade cost between i and j, τ_{ij}, is the expectation of the least cost route across all traders:
 \[\tau_{ij} \equiv E_{\nu}[\tilde{\tau}_{ij}(\nu)]. \]
Outline of Talk

Introduction

Geographic component: Endogenous transportation costs
 Setup
 Trade costs along the optimal route
 Properties of endogenous trade costs

Economic component: The welfare effect of improving infrastructure

Empirical component: The Interstate Highway Network

Next steps
Expected trade costs

- From EK '02, the expected trade cost from i to j is:

\[
\tau_{ij} = c \left(\sum_{K=0}^{\infty} \sum_{p \in \mathbb{P}_{ij,K}} \tilde{\tau}_{ij}(p)^{-\theta} \right)^{-\frac{1}{\theta}},
\]

where $c \equiv \Gamma(\theta - 1)$. Define the weighted adjacency matrix $A \equiv \begin{bmatrix} a_{ij} \equiv t_{ij} - \theta \end{bmatrix}$. Note $a_{ij} \in [0, 1]$, with $a_{ij} = 0 \Leftrightarrow \text{i and j are not connected}$. Use equation (1) to write expected trade costs as:

\[
\tau_{ij} = c \left(\sum_{K=0}^{\infty} \sum_{p \in \mathbb{P}_{ij,K}} \tilde{\tau}_{ij}(p)^{-\theta} \right)^{-\frac{1}{\theta}},
\]
Expected trade costs

- From EK '02, the expected trade cost from i to j is:

$$
\tau_{ij} = c \left(\sum_{K=0}^{\infty} \sum_{p \in P_{ij,K}} \tilde{\tau}_{ij}(p)^{-\theta} \right)^{-\frac{1}{\theta}},
$$

- where $c \equiv \Gamma \left(\frac{\theta - 1}{\theta} \right)$.
Expected trade costs

- From EK '02, the expected trade cost from i to j is:

\[
\tau_{ij} = c \left(\sum_{K=0}^{\infty} \sum_{p \in P_{ij}, K} \tilde{\tau}_{ij}(p)^{-\theta} \right)^{-\frac{1}{\theta}},
\]

- where $c \equiv \Gamma \left(\frac{\theta - 1}{\theta} \right)$.

- Define the weighted adjacency matrix $A \equiv \left[a_{ij} \equiv t_{ij}^{-\theta} \right]$.
Expected trade costs

• From EK ’02, the expected trade cost from i to j is:

$$\tau_{ij} = c \left(\sum_{K=0}^{\infty} \sum_{p \in \mathbb{P}_{ij,K}} \tilde{\tau}_{ij}(p)^{-\theta} \right)^{-\frac{1}{\theta}},$$

• where $c \equiv \Gamma \left(\frac{\theta-1}{\theta} \right)$.

• Define the weighted adjacency matrix $A \equiv \left[a_{ij} \equiv t_{ij}^{-\theta} \right]$.

• Note $a_{ij} \in [0, 1]$, with $a_{ij} = 0 \iff i$ and j are not connected.
Expected trade costs

- From EK '02, the expected trade cost from \(i \) to \(j \) is:

\[
\tau_{ij} = c \left(\sum_{K=0}^{\infty} \sum_{p \in P_{ij,K}} \tau_{ij}(p)^{-\theta} \right)^{-\frac{1}{\theta}},
\]

- where \(c \equiv \Gamma \left(\frac{\theta-1}{\theta} \right) \).

- Define the weighted adjacency matrix \(A \equiv [a_{ij} \equiv \tau_{ij}^{-\theta}] \).

- Note \(a_{ij} \in [0, 1] \), with \(a_{ij} = 0 \iff i \) and \(j \) are not connected.

- Use equation (1) to write expected trade costs as:

\[
\tau_{ij}^{-\theta} = c^{-\theta} \sum_{K=0}^{\infty} \sum_{p \in P_{ij,K}} \prod_{k=1}^{K} a_{p_{k-1},p_k}
\]
Expected trade costs (ctd.)

- From last slide:

\[
\tau_{ij}^{\theta} = c^{-\theta} \sum_{K=0}^{\infty} \sum_{p \in P_{ij,K}} \prod_{k=1}^{K} a_{p_{k-1},p_k}
\]
Expected trade costs (ctd.)

- From last slide:
 \[
 \tau_{ij}^{-\theta} = c^{-\theta} \sum_{K=0}^{\infty} \sum_{p \in \mathcal{P}_{ij,K}} \prod_{k=1}^{K} a_{p_{k-1},p_k}
 \]

- Now we explicitly enumerate all possible paths of length \(K \) from \(i \) to \(j \):
 \[
 \left(\frac{\tau_{ij}}{c} \right)^{-\theta} = \sum_{K=0}^{\infty} \left(\sum_{k_1=1}^{N} \ldots \sum_{k_{K-1}=1}^{N} (a_{i,k_1} \times a_{k_{1},k_2} \times \ldots \times a_{k_{K-2},k_{K-1}} \times a_{k_{K-1},j}) \right)
 \]
Expected trade costs (ctd.)

- From last slide:

\[
\tau_{ij}^{-\theta} = c^{-\theta} \sum_{K=0}^{\infty} \sum_{p \in P_{ij,K}} \prod_{k=1}^{K} a_{p_{k-1}, p_k}
\]

- Now we explicitly enumerate all possible paths of length \(K \) from \(i \) to \(j \):

\[
\left(\frac{\tau_{ij}}{c} \right)^{-\theta} = \sum_{K=0}^{\infty} \left(\sum_{k_1=1}^{N} \ldots \sum_{k_{K-1}=1}^{N} (a_{i,k_1} \times a_{k_1,k_2} \times \ldots \times a_{k_{K-2},k_{K-1}} \times a_{k_{K-1},j}) \right)
\]

- Define \(A^K_{ij} \equiv [A^K]_{ij} \), i.e. \(A^K_{ij} \) is the \((i,j)\) element of matrix \(A \) taken to the matrix power \(K \). Then expected trade costs can be written as:

\[
\tau_{ij}^{-\theta} = c^{-\theta} \sum_{K=0}^{\infty} A^K_{ij}
\]
Expected trade costs (ctd.)

• From last slide:

$$\tau_{ij}^{-\theta} = c^{-\theta} \sum_{K=0}^{\infty} \sum_{p \in P_{ij,K}} \prod_{k=1}^{\infty} a_{p_{k-1}, p_k}$$

• Now we explicitly enumerate all possible paths of length K from i to j:

$$\left(\frac{\tau_{ij}}{c}\right)^{-\theta} = \sum_{K=0}^{\infty} \left(\sum_{k_1=1}^{N} \ldots \sum_{k_{K-1}=1}^{N} (a_{i,k_1} \times a_{k_1,k_2} \times \ldots \times a_{k_{K-2},k_{K-1}} \times a_{k_{K-1},j}) \right)$$

• Define $A_{ij}^K \equiv [A^K]_{ij}$, i.e. A_{ij}^K is the (i, j) element of matrix A taken to the matrix power K. Then expected trade costs can be written as:

$$\tau_{ij}^{-\theta} = c^{-\theta} \sum_{K=0}^{\infty} A_{ij}^K$$

• Note: $A_{ij}^0 = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$, so we allow traders going from i to i to not travel and incur no costs.
Expected trade costs (ctd.)

• Define $\mathbf{B} \equiv (\mathbf{I} - \mathbf{A})^{-1}$ and $b_{ij} \equiv [\mathbf{B}]_{ij}$. If $\rho(\mathbf{A}) < 1$, then:

$$\tau_{ij} = cb_{ij}^{-\frac{1}{\theta}} \quad (2)$$
Expected trade costs (ctd.)

- Define $\mathbf{B} \equiv (\mathbf{I} - \mathbf{A})^{-1}$ and $b_{ij} \equiv [\mathbf{B}]_{ij}$. If $\rho(\mathbf{A}) < 1$, then:

$$\tau_{ij} = cb_{ij}^{-\frac{1}{\theta}}$$

- Analytical mapping from transportation infrastructure network to endogenous bilateral trade costs (!)
Expected trade costs (ctd.)

- Define $\mathbf{B} \equiv (\mathbf{I} - \mathbf{A})^{-1}$ and $b_{ij} \equiv [\mathbf{B}]_{ij}$. If $\rho(\mathbf{A}) < 1$, then:

\[\tau_{ij} = cb_{ij}^{-\frac{1}{\theta}} \]

(2)

- Analytical mapping from transportation infrastructure network to endogenous bilateral trade costs (!)

- Notes:
Expected trade costs (ctd.)

- Define $B \equiv (I - A)^{-1}$ and $b_{ij} \equiv [B]_{ij}$. If $\rho(A) < 1$, then:

 $$\tau_{ij} = cb_{ij}^{-\frac{1}{\theta}}$$ \hspace{1cm} (2)

- Analytical mapping from transportation infrastructure network to endogenous bilateral trade costs (!)

- Notes:
 - Sufficient condition for $\rho(A) < 1$:

 $$\sum_{j=1}^{N} t_{ij}^{-\theta} < 1 \ \forall i \in \{1, ..., N\}$$
Expected trade costs (ctd.)

- Define $B \equiv (I - A)^{-1}$ and $b_{ij} \equiv [B]_{ij}$. If $\rho(A) < 1$, then:

$$\tau_{ij} = c b_{ij}^{-\frac{1}{\theta}}$$

(2)

- Analytical mapping from transportation infrastructure network to endogenous bilateral trade costs (!)

- Notes:
 - Sufficient condition for $\rho(A) < 1$:

$$\sum_{j=1}^{N} t_{ij}^{-\theta} < 1 \forall i \in \{1, \ldots, N\}$$

- Occurs if trade costs large and/or connections are sufficiently sparse and/or θ large.
Expected trade costs (ctd.)

- Define $\mathbf{B} \equiv (\mathbf{I} - \mathbf{A})^{-1}$ and $b_{ij} \equiv [\mathbf{B}]_{ij}$. If $\rho(\mathbf{A}) < 1$, then:

$$
\tau_{ij} = cb_{ij}^{-1/\theta}
$$

(2)

- Analytical mapping from transportation infrastructure network to endogenous bilateral trade costs (!)

- Notes:
 - Sufficient condition for $\rho(\mathbf{A}) < 1$:

$$
\sum_{j=1}^{N} t_{ij}^{-\theta} < 1 \quad \forall i \in \{1, ..., N\}
$$

- Occurs if trade costs large and/or connections are sufficiently sparse and/or θ large.
- As $\theta \rightarrow \infty$, τ_{ij} converges to trade costs of least cost route (generalizes Dijkstra algorithm).
Outline of Talk

Introduction

Geographic component: Endogenous transportation costs
 Setup
 Trade costs along the optimal route
 Properties of endogenous trade costs

Economic component: The welfare effect of improving infrastructure

Empirical component: The Interstate Highway Network

Next steps
Properties of endogenous trade costs: Overview

It turns out that there are tractable and intuitive expressions for the following objects:

1. The probability a trader going from i to j uses the connection from k to l, π_{kl}^{ij}.
 - Helpful for intuition.

2. The elasticity of bilateral trade costs between i and j to a change in infrastructure between k and l, $\frac{\partial \ln \tau_{ij}}{\partial \ln t_{kl}}$.
 - Necessary for calculating elasticity of welfare to changes in infrastructure.

3. The mean distance traveled from i to j, $E[d_{ij}]$.
 - Necessary for estimating the model.
Properties of endogenous trade costs: Overview

It turns out that there are tractable and intuitive expressions for the following objects:

1. The probability a trader going from i to j uses the connection from k to l, π_{ij}^{kl}.
 - Helpful for intuition.

2. The elasticity of bilateral trade costs between i and j to a change in infrastructure between k and l, $\frac{\partial \ln \tau_{ij}}{\partial \ln t_{kl}}$.
 - Necessary for calculating elasticity of welfare to changes in infrastructure.

3. The mean distance traveled from i to j, $E[d_{ij}]$.
 - Necessary for estimating the model.
Properties of endogenous trade costs: Overview

It turns out that there are tractable and intuitive expressions for the following objects:

1. The probability a trader going from i to j uses the connection from k to l, π_{ij}^{kl}.
 - Helpful for intuition.

2. The elasticity of bilateral trade costs between i and j to a change in infrastructure between k and l, $\frac{\partial \ln \tau_{ij}}{\partial \ln t_{kl}}$.
 - Necessary for calculating elasticity of welfare to changes in infrastructure.
Properties of endogenous trade costs: Overview

It turns out that there are tractable and intuitive expressions for the following objects:

1. The probability a trader going from i to j uses the connection from k to l, π_{ij}^{kl}.
 - Helpful for intuition.

2. The elasticity of bilateral trade costs between i and j to a change in infrastructure between k and l, $\frac{\partial \ln \tau_{ij}}{\partial \ln t_{kl}}$.
 - Necessary for calculating elasticity of welfare to changes in infrastructure.

3. The mean distance traveled from i to j, $E[d_{ij}]$.
 - Necessary for estimating the model.
Probability of a trader going from i to j using link kl

Proposition

The probability of a trader going from i to j using link kl, π_{ij}^{kl} is:

$$
\pi_{ij}^{kl} = \left(\frac{1}{c \frac{\tau_{ij}}{\tau_{ik} t_{kl} \tau_{lj}}} \right)^\theta.
$$
Probability of a trader going from i to j using link kl

Proposition

The probability of a trader going from i to j using link kl, π_{ij}^{kl}, is:

$$\pi_{ij}^{kl} = \left(\frac{1}{c \frac{\tau_{ij}}{\tau_{ik} t_{kl} \tau_{lj}}} \right)^{\theta}.$$

• Intuition:
 • Denominator $\tau_{ik} t_{kl} \tau_{lj}$ is the expected least cost from i to j going through link kl.
Proposition

The probability of a trader going from \(i \) to \(j \) using link \(kl \), \(\pi_{ij}^{kl} \) is:

\[
\pi_{ij}^{kl} = \left(\frac{1}{c \ \tau_{ik} t_{kl} \tau_{lj}} \right)^{\theta} \frac{\tau_{ij}}{\tau_{ik} t_{kl} \tau_{lj}}.
\]

• Intuition:
• Denominator \(\tau_{ik} t_{kl} \tau_{lj} \) is the expected least cost from \(i \) to \(j \) going through link \(kl \).
• \(\frac{\tau_{ij}}{\tau_{ik} t_{kl} \tau_{lj}} \in [0, 1] \) since \(\tau_{ij} \) is the unconditional expected least cost.
Probability of a trader going from i to j using link kl

Proposition
The probability of a trader going from i to j using link kl, π_{ij}^{kl} is:

$$\pi_{ij}^{kl} = \left(\frac{1}{c \frac{\tau_{ij}}{\tau_{ik} t_{kl} \tau_{lj}}} \right)^\theta .$$

- Intuition:
 - Denominator $\frac{\tau_{ij}}{\tau_{ik} t_{kl} \tau_{lj}}$ is the expected least cost from i to j going through link kl.
 - $\frac{\tau_{ij}}{\tau_{ik} t_{kl} \tau_{lj}} \in [0, 1]$ since τ_{ij} is the unconditional expected least cost.
 - The less “out of the way” link kl is on the path from i to j, the larger $\frac{\tau_{ij}}{\tau_{ik} t_{kl} \tau_{lj}}$ and hence the higher the probability.
Example path probability

Probability of traveling across each link from i=1 to j=25
Example path probability #2

Probability of traveling across each link from $i=1$ to $j=15$
Proof (sketch)

• Probability of taking path p of length K from i to j is:

$$\pi_{ij}(p) = \frac{\tilde{\tau}_{ij}(p)^{-\theta}}{\sum_{K=0}^{\infty} \sum_{p' \in P_{ij,K}} \tilde{\tau}_{ij}(p')^{-\theta}} = \frac{1}{b_{ij}} \prod_{k=1}^{K} a_{p_{k-1},p_k}.$$
Proof (sketch)

- Probability of taking path p of length K from i to j is:

\[
\pi_{ij}(p) = \frac{\tilde{\tau}_{ij}(p)^{-\theta}}{\sum_{K=0}^{\infty} \sum_{p' \in \mathbb{P}_{ij,K}} \tilde{\tau}_{ij}(p')^{-\theta}} = \frac{1}{b_{ij}} \prod_{k=1}^{K} a_{p_{k-1},p_{k}}.
\]

- Let $\mathbb{P}_{ij,K}^{kl}$ be the set of all paths from i to j going through link kl of length K. Then:

\[
\pi_{ij}^{kl} = \frac{1}{b_{ij}} \sum_{K=0}^{\infty} \sum_{p \in \mathbb{P}_{ij,K}^{kl}} \prod_{k=1}^{K} a_{p_{k-1},p_{k}}.
\]
Proof (sketch)

• Probability of taking path p of length K from i to j is:

$$\pi_{ij}(p) = \frac{\tilde{\tau}_{ij}(p)^{-\theta}}{\sum_{K=0}^{\infty} \sum_{p' \in P_{ij,K}} \tilde{\tau}_{ij}(p')^{-\theta}} = \frac{1}{b_{ij}} \prod_{k=1}^{K} a_{p_{k-1},p_{k}}.$$

• Let $P_{ij,K}^{kl}$ be the set of all paths from i to j going through link kl of length K. Then:

$$\pi_{ij}^{kl} = \frac{1}{b_{ij}} \sum_{K=0}^{\infty} \sum_{p \in P_{ij,K}^{kl}} \prod_{k=1}^{K} a_{p_{k-1},p_{k}}.$$

• Enumerate all paths in set $P_{ij,K}^{kl}$:

$$\pi_{ij}^{kl} = \frac{1}{b_{ij}} \sum_{K=0}^{\infty} \sum_{B=0}^{K-1} \left(\sum_{k_{1}=1}^{N} \cdots \sum_{k_{B-1}=1}^{N} a_{i,k_{1}} \times \cdots \times a_{k_{B-1},k} \right) \times a_{k_{l}} \times \left(\sum_{k_{1}=1}^{N} \cdots \sum_{k_{K-B-1}=1}^{N} a_{l,k_{1}} \times \cdots \times a_{k_{K-B-1},j} \right).$$
Proof (sketch, ctd.)

• Write as matrix powers:

\[\pi_{ij}^{kl} = \frac{1}{b_{ij}} \sum_{K=0}^{\infty} \sum_{B=0}^{K-1} A_{ik}^B \times a_{kl} \times A_{lj}^{K-B-1}. \]
Proof (sketch, ctd.)

- Write as matrix powers:

\[
\pi_{ij}^{kl} = \frac{1}{b_{ij}} \sum_{K=0}^{\infty} \sum_{B=0}^{K-1} A_{ik}^B \times a_{kl} \times A_{lj}^{K-B-1}.
\]

- Prove using matrix calculus that for any matrix \(C \) we have:

\[
\sum_{K=0}^{\infty} \sum_{B=0}^{K-1} A^B C A^{K-B-1} = (I - A)^{-1} C (I - A)^{-1}
\]
Proof (sketch, ctd.)

- Write as matrix powers:

\[\pi_{kl}^{ij} = \frac{1}{b_{ij}} \sum_{K=0}^{\infty} \sum_{B=0}^{K-1} A^{B} \times a_{kl} \times A^{K-B-1}_{ij}. \]

- Prove using matrix calculus that for any matrix \(C \) we have:

\[\sum_{K=0}^{\infty} \sum_{B=0}^{K-1} A^{B} C A^{K-B-1} = (I - A)^{-1} C (I - A)^{-1} \]

- Set \(C \equiv \begin{cases} a_{kl} & \text{if } i = k, j = l \\ 0 & \text{otherwise} \end{cases} \), yielding the desired result:

\[\pi_{kl} = \frac{b_{ik} a_{kl} b_{lj}}{b_{ij}} = \left(\frac{1}{c} \frac{\tau_{ij}}{\tau_{ik} t_{kl} \tau_{lj}} \right)^{\theta}. \]
Elasticity of trade costs from i to j to a change in t_{kl}

Proposition

The elasticity of trade costs between i and j to a change in the infrastructure link kl is:

$$\frac{\partial \ln \tau_{ij}}{\partial \ln t_{kl}} = \left(\frac{1}{c} \frac{\tau_{ij}}{\tau_{ik} t_{kl} \tau_{lj}} \right)^\theta.$$

Note: trade cost τ_{ij} elasticity to infrastructure improvements in link kl is equal to the probability traders from i to j use the link.

Intuition:

• "Out of the way" links are less likely to be used and have smaller effects on bilateral trade flows.
• Similar to EK'02, where price distribution of goods purchased are equalized across source countries.
Elasticity of trade costs from i to j to a change in t_{kl}

Proposition

The elasticity of trade costs between i and j to a change in the infrastructure link kl is:

$$\frac{\partial \ln \tau_{ij}}{\partial \ln t_{kl}} = \left(\frac{1}{c \tau_{ik} t_{kl} \tau_{lj}} \right)^{\theta} \cdot$$

- Note: trade cost τ_{ij} elasticity to infrastructure improvements in link kl is equal to the probability traders from i to j use the link.
Elasticity of trade costs from i to j to a change in t_{kl}

Proposition

The elasticity of trade costs between i and j to a change in the infrastructure link kl is:

$$\frac{\partial \ln \tau_{ij}}{\partial \ln t_{kl}} = \left(\frac{1}{c \tau_{ik} t_{kl} \tau_{lj}} \right)^\theta.$$

- **Note:** trade cost τ_{ij} elasticity to infrastructure improvements in link kl is equal to the probability traders from i to j use the link.

- **Intuition:**
 - “Out of the way” links are less likely to be used and have smaller effects on bilateral trade flows.
Elasticity of trade costs from i to j to a change in t_{kl}

Proposition

The elasticity of trade costs between i and j to a change in the infrastructure link kl is:

$$\frac{\partial \ln \tau_{ij}}{\partial \ln t_{kl}} = \left(\frac{1}{c \tau_{ik} t_{kl} \tau_{lj}} \right)^{\theta} \tau_{ij}.$$

- Note: trade cost τ_{ij} elasticity to infrastructure improvements in link kl is equal to the probability traders from i to j use the link.

- Intuition:
 - “Out of the way” links are less likely to be used and have smaller effects on bilateral trade flows.
 - Similar to EK’02, where price distribution of goods purchased are equalized across source countries.
Proof (sketch)

- Recall $\tau_{ij} = c b_{ij}^{-\theta}$ and $a_{ij} = t_{ij}^{-\theta}$, so that $\frac{\partial \ln \tau_{ij}}{\partial \ln t_{kl}} = \frac{\partial \ln b_{ij}}{\partial \ln a_{kl}}$.

- Since $B \equiv (I - A)^{-1}$, we have:
 $$\frac{\partial \ln b_{ij}}{\partial \ln a_{kl}} = \left[d \left(I - A_{kl}(t) \right)^{-1} dt \right]_{ij} a_{kl} b_{ij},$$
 where $A_{kl}(t) = \begin{cases} a_{ij} & \text{if } k \neq i \text{ or } l \neq j \\ t & \text{if } k = i \text{ and } l = j \end{cases}$.

- Show that:
 $$d \left(I - A_{kl}(t) \right)^{-1} dt = -BE_{kl}B,$$
 where $E_{kl} = \begin{cases} 0 & \text{if } k \neq i \text{ or } l \neq j \\ 1 & \text{if } k = i \text{ and } l = j \end{cases}$.

- Hence
 $$\frac{\partial \ln b_{ij}}{\partial \ln a_{kl}} = b_{ik} a_{kl} b_{lj} b_{ij} = \left(1 - \frac{\tau_{ik} \tau_{lj}}{\tau_{ij}} \right) \theta.$$
Proof (sketch)

• Recall \(\tau_{ij} = c b_{ij}^{-\theta} \) and \(a_{ij} = t_{ij}^{-\theta} \), so that \(\frac{\partial \ln \tau_{ij}}{\partial \ln t_{kl}} = \frac{\partial \ln b_{ij}}{\partial \ln a_{kl}} \).

• Since \(B \equiv (I - A)^{-1} \), we have:

\[
\frac{\partial \ln b_{ij}}{\partial \ln a_{kl}} = \left[\frac{d (I - A_{kl}(t))^{-1}}{dt} \right]_{ij} \times \frac{a_{kl}}{b_{ij}},
\]

where \(A_{kl}(t) = \begin{cases} a_{ij} & \text{if } k \neq i \text{ or } l \neq j \\ t & \text{if } k = i \text{ and } l = j \end{cases} \).
Proof (sketch)

- Recall $\tau_{ij} = c b_{ij}^{-\theta}$ and $a_{ij} = t_{ij}^{-\theta}$, so that $\frac{\partial \ln \tau_{ij}}{\partial \ln t_{kl}} = \frac{\partial \ln b_{ij}}{\partial \ln a_{kl}}$.

- Since $B \equiv (I - A)^{-1}$, we have:

$$\frac{\partial \ln b_{ij}}{\partial \ln a_{kl}} = \left[\frac{d (I - A_{kl}(t))^{-1}}{dt} \right]_{ij} \times \frac{a_{kl}}{b_{ij}},$$

where $A_{kl}(t) = \begin{cases} a_{ij} & \text{if } k \neq i \text{ or } l \neq j \\ t & \text{if } k = i \text{ and } l = j \end{cases}$.

- Show that:

$$\frac{d (I - A_{kl}(t))^{-1}}{dt} = -B E_{kl} B,$$

where $E_{kl} = \begin{cases} 0 & \text{if } k \neq i \text{ or } l \neq j \\ 1 & \text{if } k = i \text{ and } l = j \end{cases}$.
Proof (sketch)

• Recall $\tau_{ij} = cb_{ij}^{-\theta}$ and $a_{ij} = t_{ij}^{-\theta}$, so that $\frac{\partial \ln \tau_{ij}}{\partial \ln t_{kl}} = \frac{\partial \ln b_{ij}}{\partial \ln a_{kl}}$.

• Since $B \equiv (I - A)^{-1}$, we have:

$$\frac{\partial \ln b_{ij}}{\partial \ln a_{kl}} = \left[\frac{d (I - A_{kl} (t))^{-1}}{dt} \right]_{ij} \times \frac{a_{kl}}{b_{ij}},$$

where $A_{kl} (t) = \begin{cases} a_{ij} & \text{if } k \neq i \text{ or } l \neq j \\ t & \text{if } k = i \text{ and } l = j \end{cases}$.

• Show that:

$$\frac{d (I - A_{kl} (t))^{-1}}{dt} = -BE_{kl}B,$$

where $E_{kl} = \begin{cases} 0 & \text{if } k \neq i \text{ or } l \neq j \\ 1 & \text{if } k = i \text{ and } l = j \end{cases}$.

• Hence $\frac{\partial \ln b_{ij}}{\partial \ln a_{kl}} = \frac{b_{ik}a_{kl}b_{lj}}{b_{ij}} = \left(\frac{1}{c \tau_{ij} t_{kl} \tau_{lj}} \right)^{\theta}$.
Mean of distance traveled by traders

Proposition

The expected distance traveled from i to j is:

$$E[d_{ij}] = \sum_{k=1}^{N} \sum_{l=1}^{N} d_{kl} \left(\frac{1}{c \tau_{ik} \tau_{kl} \tau_{lj}} \right)^\theta.$$

Proof.

See paper.
Outline of Talk

Introduction

Geographic component: Endogenous transportation costs

Economic component: The welfare effect of improving infrastructure
 Setup and Equilibrium
 Elasticity of welfare to changes in infrastructure

Empirical component: The Interstate Highway Network

Next steps
Economic component: overview

- Goal: analytical formula for the elasticity of equilibrium welfare to a change in infrastructure network.
- Consider both “trade” and “economic geography” versions of the Armington model.
Economic component: overview

- Goal: analytical formula for the elasticity of equilibrium welfare to a change in infrastructure network.
 - Consider both “trade” and “economic geography” versions of the Armington model.
- New technique to derive the elasticity of aggregate welfare to changes in (endogenous) bilateral trade flows.
 - Takes the same form in both model variants.
Economic component: overview

• Goal: analytical formula for the elasticity of equilibrium welfare to a change in infrastructure network.
 • Consider both “trade” and “economic geography” versions of the Armington model.

• New technique to derive the elasticity of aggregate welfare to changes in (endogenous) bilateral trade flows.
 • Takes the same form in both model variants.

• We then combine with the results above to derive the welfare effects of changes in infrastructure, as desired.
Model Setup

- Exogenous measure \bar{L} of agents inhabit the world.
Model Setup

• Exogenous measure \bar{L} of agents inhabit the world.

• Production:
 • Labor is the only factor of production; perfect competition.
 • Each location $i \in \{1, \ldots, N\}$ produces a differentiated variety.
 • Agent in location i supplies her unit of labor inelastically, produces A_i products, and is compensated with wage w_i.

• Consumption:
 • Agents use their wage income to purchase a CES bundle of differentiated varieties with elasticity of substitution σ.
 • To purchase goods, agents randomly matched with traders (so trade costs are equal to expected trade costs τ_{ij} above).
Model Setup

- Exogenous measure \bar{L} of agents inhabit the world.

- Production:
 - Labor is the only factor of production; perfect competition.
 - Each location $i \in \{1, ..., N\}$ produces a differentiated variety.
 - Agent in location i supplies her unit of labor inelastically, produces A_i products, and is compensated with wage w_i.

- Consumption:
 - Agents use their wage income to purchase a CES bundle of differentiated varieties with elasticity of substitution σ.
 - To purchase goods, agents randomly matched with traders (so trade costs are equal to expected trade costs τ_{ij} above).
Equilibrium

- Perfect competition + CES preferences yield following expression for value of trade flows from i to j:

$$X_{ij} = r_{ij}^{1-\sigma} A_i^{\sigma-1} w_i^{1-\sigma} P_j^{\sigma-1} E_j,$$

- P_j is the Dixit Stiglitz price index and E_j is total expenditure by agents in location j.
Equilibrium

- Perfect competition + CES preferences yield following expression for value of trade flows from i to j:

 \[X_{ij} = \tau_{ij}^{1-\sigma} A_i^{\sigma-1} w_i^{1-\sigma} P_j^{\sigma-1} E_j, \]

- P_j is the Dixit Stiglitz price index and E_j is total expenditure by agents in location j.

- Equilibrium conditions:
 - Income is equal to total sales: $Y_i = \sum_{j=1}^{N} X_{ij}$ for all i.
 - Expenditure is equal to total purchases: $E_i = \sum_{j=1}^{N} X_{ji}$ for all i.
 - Budget constraint: Income equals expenditure equals wage \times labor: $Y_i = E_i = w_i L_i$.

- Welfare of agent in location i is $W_i \equiv w_i P_i u_i$, where u_i is an amenity value.
Equilibrium

- Perfect competition + CES preferences yield following expression for value of trade flows from i to j:

$$X_{ij} = \tau_{ij}^{1-\sigma} A_i^{\sigma-1} w_i^{1-\sigma} P_j^{\sigma-1} E_j,$$

- P_j is the Dixit Stiglitz price index and E_j is total expenditure by agents in location j.

- Equilibrium conditions:
 - Income is equal to total sales: $Y_i = \sum_{j=1}^{N} X_{ij}$ for all i.
 - Expenditure is equal to total purchases: $E_i = \sum_{j=1}^{N} X_{ji}$ for all i.
 - Budget constraint: Income equals expenditure equals wage \times labor: $Y_i = E_i = w_i L_i$.

- Welfare of agent in location i is $W_i \equiv \frac{w_i}{P_i} u_i$, where u_i is an amenity value.
Equilibrium (ctd.)

- Re-write gravity equation as a function of welfare:

\[X_{ij} = \left(\frac{\tau_{ij}}{A_i u_j} \right)^{1-\sigma} w_i^{1-\sigma} W_j^{1-\sigma} w_j^\sigma L_j. \]
Equilibrium (ctd.)

- Re-write gravity equation as a function of welfare:

\[X_{ij} = \left(\frac{\tau_{ij}}{A_i u_j} \right)^{1-\sigma} W_i^{1-\sigma} W_j^{1-\sigma} w_j^{\sigma} L_j. \]

- Equilibrium can be written as:

\[
\begin{align*}
 w_i L_i &= \sum_{j=1}^{N} \left(\frac{\tau_{ij}}{A_i u_j} \right)^{1-\sigma} W_i^{1-\sigma} W_j^{1-\sigma} w_j^{\sigma} L_j \\
 w_i L_i &= \sum_{j=1}^{N} \left(\frac{\tau_{ji}}{A_j u_i} \right)^{1-\sigma} W_j^{1-\sigma} W_i^{1-\sigma} w_i^{\sigma} L_i
\end{align*}
\]
Equilibrium (ctd.)

- Re-write gravity equation as a function of welfare:

\[X_{ij} = \left(\frac{\tau_{ij}}{A_i u_j} \right)^{1-\sigma} w_i^{1-\sigma} W_j^{1-\sigma} w_j^{\sigma} L_j. \]

- Equilibrium can be written as:

\[w_i L_i = \sum_{j=1}^{N} \left(\frac{\tau_{ij}}{A_i u_j} \right)^{1-\sigma} w_i^{1-\sigma} W_j^{1-\sigma} w_j^{\sigma} L_j \tag{3} \]

\[w_i L_i = \sum_{j=1}^{N} \left(\frac{\tau_{ji}}{A_j u_i} \right)^{1-\sigma} w_j^{1-\sigma} W_i^{1-\sigma} w_i^{\sigma} L_i \tag{4} \]

- Two alternative setups:
Equilibrium (ctd.)

- Re-write gravity equation as a function of welfare:

\[X_{ij} = \left(\frac{\tau_{ij}}{A_i u_j} \right)^{1-\sigma} w_i^{1-\sigma} W_j^{1-\sigma} w_j^\sigma L_j. \]

- Equilibrium can be written as:

\[w_i L_i = \sum_{j=1}^{N} \left(\frac{\tau_{ij}}{A_i u_j} \right)^{1-\sigma} w_i^{1-\sigma} W_j^{1-\sigma} w_j^\sigma L_j \quad (3) \]

\[w_i L_i = \sum_{j=1}^{N} \left(\frac{\tau_{ji}}{A_j u_i} \right)^{1-\sigma} w_j^{1-\sigma} W_i^{1-\sigma} w_i^\sigma L_i \quad (4) \]

- Two alternative setups:
 - Trade framework: Labor is perfectly immobile, \(L_i \) is exogenous, solve equations (3) and (4) for \(\{w_i, W_i\}_i \).
Equilibrium (ctd.)

• Re-write gravity equation as a function of welfare:

\[X_{ij} = \left(\frac{\tau_{ij}}{A_i u_j} \right)^{1-\sigma} w_i^{1-\sigma} W_j^{1-\sigma} w_j^\sigma L_j. \]

• Equilibrium can be written as:

\[w_i L_i = \sum_{j=1}^{N} \left(\frac{\tau_{ij}}{A_i u_j} \right)^{1-\sigma} w_i^{1-\sigma} W_j^{1-\sigma} w_j^\sigma L_j \quad (3) \]

\[w_i L_i = \sum_{j=1}^{N} \left(\frac{\tau_{ji}}{A_j u_i} \right)^{1-\sigma} w_j^{1-\sigma} W_i^{1-\sigma} w_i^\sigma L_i \quad (4) \]

• Two alternative setups:
 • Trade framework: Labor is perfectly immobile, \(L_i \) is exogenous, solve equations (3) and (4) for \(\{w_i, W_i\}_i \).
 • Economic geography framework: Labor is perfectly mobile, \(L_i \) is endogenous, solve equations (3) and (4) for \(\{\{w_i, L_i\}_i, W\} \).
Outline of Talk

Introduction

Geographic component: Endogenous transportation costs

Economic component: The welfare effect of improving infrastructure
 Setup and Equilibrium
 Elasticity of welfare to changes in infrastructure

Empirical component: The Interstate Highway Network

Next steps
Trade framework

- Consider a “planner” problem that maximizes weighted (log) welfare:

\[
\max_{\{w_i, W_i\}_i} \sum_{i=1}^{N} \omega_i \ln W_i
\]
Trade framework

- Consider a “planner” problem that maximizes weighted (log) welfare:

\[
\max_{\{w_i, W_i\}_i} \sum_{i=1}^{N} \omega_i \ln W_i
\]

- subject to aggregate labor income equaling aggregate trade income:

\[
\sum_{i=1}^{N} w_i L_i = \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\frac{\tau_{ij}}{A_i u_j} \right)^{1-\sigma} w_i^{1-\sigma} W_j^{1-\sigma} w_j^\sigma L_j
\]

- where \(\omega_i = \frac{w_i L_i}{\sum_{i=1}^{N} w_i L_i} = \frac{Y_i}{Y}W\)

- FOCs of this maximization problem yield (3) and (4).

- A direct application of the envelope theorem yields:

\[
- \sum_{i=1}^{N} \left(\frac{Y_i}{Y}W \right) \frac{\partial \ln W_i}{\partial \ln \tau_{ij}} = X_{ij} Y W
\]

- New method, old result (Atkeson and Burstein ’10, Fan, Lai, and Qi ’13).
Trade framework

- Consider a “planner” problem that maximizes weighted (log) welfare:

\[
\max_{\{w_i, W_i\}} \sum_{i=1}^{N} \omega_i \ln W_i
\]

- subject to aggregate labor income equaling aggregate trade income:

\[
\sum_{i=1}^{N} w_i L_i = \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\frac{\tau_{ij}}{A_i u_j} \right)^{1-\sigma} w_i^{1-\sigma} W_j^{1-\sigma} w_j^{\sigma} L_j,
\]

- where \(\omega_i = \frac{w_i L_i}{\sum_{i=1}^{N} w_i L_i} = \frac{Y_i}{Y_W} \) are the Pareto weights.

- FOCs of this maximization problem yield (3) and (4).

- A direct application of the envelope theorem yields:

\[
- \sum_{i=1}^{N} \left(\frac{Y_i}{Y_W} \right) \frac{\partial \ln W_i}{\partial \ln \tau_{ij}} = X_{ij} Y_W
\]

- New method, old result (Atkeson and Burstein ’10, Fan, Lai, and Qi ’13).
Trade framework

- Consider a “planner” problem that maximizes weighted (log) welfare:

\[
\max_{\{w_i,W_i\}_i} \sum_{i=1}^{N} \omega_i \ln W_i
\]

- subject to aggregate labor income equaling aggregate trade income:

\[
\sum_{i=1}^{N} w_i L_i = \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\frac{T_{ij}}{A_i u_j} \right)^{1-\sigma} w_i^{1-\sigma} W_j^{1-\sigma} w_j^\sigma L_j,
\]

- where \(\omega_i = \frac{w_i L_i}{\sum_{i=1}^{N} w_i L_i} = \frac{Y_i}{Y} \) are the Pareto weights.

- FOCs of this maximization problem yield (3) and (4).

\[
- \sum_{i=1}^{N} (Y_i Y W)^2 \frac{\partial \ln W_i}{\partial \ln \tau_{ij}} = X_{ij} Y W
\]

- New method, old result (Atkeson and Burstein ’10, Fan, Lai, and Qi ’13).
Trade framework

- Consider a “planner” problem that maximizes weighted (log) welfare:
 \[
 \max_{\{w_i, W_i\}} \sum_{i=1}^{N} \omega_i \ln W_i
 \]
 subject to aggregate labor income equaling aggregate trade income:
 \[
 \sum_{i=1}^{N} w_i L_i = \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\frac{\tau_{ij}}{A_i u_j} \right)^{1-\sigma} w_i^{1-\sigma} W_j^{1-\sigma} w_j^{\sigma} L_j,
 \]
 where \(\omega_i = \frac{w_i L_i}{\sum_{i=1}^{N} w_i L_i} = \frac{Y_i}{Y^W}\) are the Pareto weights.

- FOCs of this maximization problem yield (3) and (4).

- A direct application of the envelope theorem yields:
 \[
 - \sum_{i=1}^{N} \left(\frac{Y_i}{Y^W} \right) \frac{\partial \ln W_i}{\partial \ln \tau_{ij}} = \frac{X_{ij}}{Y^W}
 \]
Trade framework

- Consider a “planner” problem that maximizes weighted (log) welfare:

\[
\max \{w_i, W_i\}_i \sum_{i=1}^N \omega_i \ln W_i
\]

- subject to aggregate labor income equaling aggregate trade income:

\[
\sum_{i=1}^N w_i L_i = \sum_{i=1}^N \sum_{j=1}^N \left(\frac{\tau_{ij}}{A_i u_j} \right)^{1-\sigma} w_i^{1-\sigma} W_j^{1-\sigma} w_j^{\sigma} L_j,
\]

- where \(\omega_i = \frac{w_i L_i}{\sum_{i=1}^N w_i L_i} = \frac{Y_i}{YW}\) are the Pareto weights.

- FOCs of this maximization problem yield (3) and (4).

- A direct application of the envelope theorem yields:

\[
- \sum_{i=1}^N \left(\frac{Y_i}{YW} \right) \frac{\partial \ln W_i}{\partial \ln \tau_{ij}} = \frac{X_{ij}}{YW}
\]

- New method, old result (Atkeson and Burstein ’10, Fan, Lai, and Qi ’13).
Economic geography framework

- Consider an alternative “planner” problem that maximizes (log) welfare:

\[
\max \quad \ln W \\
\left\{ \{w_i, L_i\}_i, W \right\}
\]

- Again, FOCs of this maximization problem yield (3) and (4) (with welfare equalized).

- Implication: A direct application of the envelope theorem yields:

\[
\frac{\partial \ln W}{\partial \ln \tau_{ij}} = X_{ij} Y W
\]

- New method, new result!
Economic geography framework

- Consider an alternative “planner” problem that maximizes (log) welfare:

\[
\max \ln W \quad \left\{ \{w_i, L_i\}_i, W \right\}
\]

- subject to aggregate labor income equaling aggregate trade income (and welfare being equalized):

\[
\sum_{i=1}^{N} w_i L_i = \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\frac{\tau_{ij}}{A_i u_j} \right)^{1-\sigma} w_i^{1-\sigma} W^{1-\sigma} w_j^{\sigma} L_j.
\]

- Again, FOCs of this maximization problem yield (3) and (4) (with welfare equalized).

- Implication: A direct application of the envelope theorem yields:

\[
- \frac{\partial \ln W}{\partial \ln \tau_{ij}} = X_{ij} Y W
\]

- New method, new result!
Economic geography framework

- Consider an alternative “planner” problem that maximizes (log) welfare:

\[
\max \ln W \\
\left\{ \{w_i, L_i\}_i, W \right\}
\]

- subject to aggregate labor income equaling aggregate trade income (and welfare being equalized):

\[
\sum_{i=1}^{N} w_i L_i = \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\frac{\tau_{ij}}{A_i u_j} \right)^{1-\sigma} w_i^{1-\sigma} W^{1-\sigma} w_j^\sigma L_j.
\]

- Again, FOCs of this maximization problem yield (3) and (4) (with welfare equalized).
Economic geography framework

- Consider an alternative “planner” problem that maximizes (log) welfare:

\[
\max \ln \mathcal{W} \quad \text{subject to aggregate labor income equaling aggregate trade income (and welfare being equalized)}:
\]

\[
\sum_{i=1}^{N} w_i L_i = \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\frac{\tau_{ij}}{A_i u_j} \right)^{1-\sigma} w_i^{1-\sigma} W^{1-\sigma} w_j^{\sigma} L_j.
\]

- Again, FOCs of this maximization problem yield (3) and (4) (with welfare equalized).

- Implication: A direct application of the envelope theorem yields:

\[
- \frac{\partial \ln \mathcal{W}}{\partial \ln \tau_{ij}} = \frac{X_{ij}}{Y^W}.
\]
Economic geography framework

- Consider an alternative “planner” problem that maximizes (log) welfare:

\[
\max \{ \begin{array}{l}
\ln W \\
\{(w_i, L_i)_i, W\}
\end{array}
\]

- subject to aggregate labor income equaling aggregate trade income (and welfare being equalized):

\[
\sum_{i=1}^{N} w_i L_i = \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\frac{\tau_{ij}}{A_i u_j} \right)^{1-\sigma} w_i^{1-\sigma} W^{1-\sigma} w_j^\sigma L_j.
\]

- Again, FOCs of this maximization problem yield (3) and (4) (with welfare equalized).

- Implication: A direct application of the envelope theorem yields:

\[
- \frac{\partial \ln W}{\partial \ln \tau_{ij}} = \frac{X_{ij}}{Y^W}
\]

- New method, new result!
Elasticity of welfare to changes in infrastructure

- Elasticity of welfare to changes in infrastructure:

\[
\frac{\partial \ln W}{\partial \ln t_{ij}} = \sum_{k=1}^{N} \sum_{l=1}^{N} \frac{\partial \ln W}{\partial \ln \tau_{kl}} \frac{\partial \ln \tau_{kl}}{\partial \ln t_{ij}}
\]
Elasticity of welfare to changes in infrastructure

- Elasticity of welfare to changes in infrastructure:

\[
\frac{\partial \ln W}{\partial \ln t_{ij}} = \sum_{k=1}^{N} \sum_{l=1}^{N} \frac{\partial \ln W}{\partial \ln \tau_{kl}} \frac{\partial \ln \tau_{kl}}{\partial \ln t_{ij}}
\]

- “Matrix notation”:

\[
- \frac{\partial \ln W}{\partial \ln t_{ij}} = \sum_{k=1}^{N} \sum_{l=1}^{N} X_{kl} b_{ki} a_{ij} b_{jl} \frac{\partial \ln W}{\partial b_{kl}}
\]

Simple intuition: Welfare elasticity equal to trade value flowing through a connection!
Elasticity of welfare to changes in infrastructure

- Elasticity of welfare to changes in infrastructure:

 \[
 \frac{\partial \ln W}{\partial \ln t_{ij}} = \sum_{k=1}^{N} \sum_{l=1}^{N} \frac{\partial \ln W}{\partial \ln \tau_{kl}} \frac{\partial \ln \tau_{kl}}{\partial \ln t_{ij}}
 \]

- “Matrix notation”:

 \[
 - \frac{\partial \ln W}{\partial \ln t_{ij}} = \sum_{k=1}^{N} \sum_{l=1}^{N} \frac{X_{kl}}{Y^W} \frac{b_{ki} a_{ij} b_{jl}}{b_{kl}}
 \]

- “Trade notation”:

 \[
 - \frac{\partial \ln W}{\partial \ln t_{ij}} = c^\theta \sum_{k=1}^{N} \sum_{l=1}^{N} \frac{X_{kl}}{Y^W} \left(\frac{\tau_{kl}}{\tau_{ki} t_{ij} \tau_{jl}} \right)^\theta
 \]
Elasticity of welfare to changes in infrastructure

- Elasticity of welfare to changes in infrastructure:

\[
\frac{\partial \ln W}{\partial \ln t_{ij}} = \sum_{k=1}^{N} \sum_{l=1}^{N} \frac{\partial \ln W}{\partial \ln \tau_{kl}} \frac{\partial \ln \tau_{kl}}{\partial \ln t_{ij}}
\]

- "Matrix notation":

\[
- \frac{\partial \ln W}{\partial \ln t_{ij}} = \sum_{k=1}^{N} \sum_{l=1}^{N} \frac{X_{kl}}{Y^W} \frac{b_{ki} a_{ij} b_{jl}}{b_{kl}}
\]

- "Trade notation":

\[
- \frac{\partial \ln W}{\partial \ln t_{ij}} = c^\theta \sum_{k=1}^{N} \sum_{l=1}^{N} \frac{X_{kl}}{Y^W} \left(\frac{\tau_{kl}}{\tau_{ki} t_{ij} \tau_{jl}} \right)^\theta
\]

- Simple intuition: Welfare elasticity equal to trade value flowing through a connection!
Example welfare elasticity to changes in infrastructure

Welfare effect of improving a link
Outline of Talk

Introduction

Geographic component: Endogenous transportation costs

Economic component: The welfare effect of improving infrastructure

Empirical component: The Interstate Highway Network
 The Interstate Highway Network
 Estimation
 The welfare effects of improving the IHS

Next steps
The Interstate Highway Network: Overview

- We assess the welfare impact of improving each segment of the U.S. Interstate Highway Network (IHS).
The Interstate Highway Network: Overview

- We assess the welfare impact of improving each segment of the U.S. Interstate Highway Network (IHS).

- IHS Facts:
The Interstate Highway Network: Overview

- We assess the welfare impact of improving each segment of the U.S. Interstate Highway Network (IHS).

- IHS Facts:
 - Largest public works projects in history.
The Interstate Highway Network: Overview

- We assess the welfare impact of improving each segment of the U.S. Interstate Highway Network (IHS).

- IHS Facts:
 - Largest public works projects in history.
 - Construction cost >$500 billion.
The Interstate Highway Network: Overview

- We assess the welfare impact of improving each segment of the U.S. Interstate Highway Network (IHS).

- IHS Facts:
 - Largest public works projects in history.
 - Construction cost >$500 billion.
 - Annual maintenance cost >$100 billion.
The Interstate Highway Network: Overview

- We assess the welfare impact of improving each segment of the U.S. Interstate Highway Network (IHS).

- IHS Facts:
 - Largest public works projects in history.
 - Construction cost >$500 billion.
 - Annual maintenance cost >$100 billion.

- Widespread consensus of the pressing need for greater investment:
The Interstate Highway Network: Overview

• We assess the welfare impact of improving each segment of the U.S. Interstate Highway Network (IHS).

• IHS Facts:
 • Largest public works projects in history.
 • Construction cost >$500 billion.
 • Annual maintenance cost >$100 billion.

• Widespread consensus of the pressing need for greater investment:
 • “Increase federal infrastructure funding by $275 billion over a five-year period” (Hillary Clinton)
The Interstate Highway Network: Overview

- We assess the welfare impact of improving each segment of the U.S. Interstate Highway Network (IHS).

- IHS Facts:
 - Largest public works projects in history.
 - Construction cost >$500 billion.
 - Annual maintenance cost >$100 billion.

- Widespread consensus of the pressing need for greater investment:
 - “Increase federal infrastructure funding by $275 billion over a five-year period” (Hillary Clinton)
 - “We need much more money to rebuild our infrastructure... I would say at least double her numbers” (Donald Trump)
The Interstate Highway Network
Data

- Use recently released public use microdata from 2012 Commodity Flow Survey.
Data

- Use recently released public use microdata from 2012 Commodity Flow Survey.

- Observe 696,021 shipments between 67 metropolitan statistical areas (MSAs) shipped by for-hire trucks.
 - Comprises 60% of value of commodity flows in the U.S.
 - Observe origin MSA, destination MSA, value of shipment, and distance traveled.
Data

- Use recently released public use microdata from 2012 Commodity Flow Survey.

- Observe 696,021 shipments between 67 metropolitan statistical areas (MSAs) shipped by for-hire trucks.
 - Comprises 60% of value of commodity flows in the U.S.
 - Observe origin MSA, destination MSA, value of shipment, and distance traveled.

- For each pair of MSAs, determine if the shortest path via IHS goes through another city.
 - If so, then the two MSAs are not connected.
 - If not, then the two MSAs are connected. Calculate distance d_{ij} and travel time $time_{ij}$ using Google Maps.
The IHS: A graphical representation
Outline of Talk

Introduction

Geographic component: Endogenous transportation costs

Economic component: The welfare effect of improving infrastructure

Empirical component: The Interstate Highway Network
 The Interstate Highway Network
 Estimation
 The welfare effects of improving the IHS

Next steps
Estimation

- Assume components of infrastructure matrix depend on travel time along the direct route:

\[t_{ij} = \exp (\kappa \times \text{time}_{ij}) \]

- Unknown parameters: cost of travel time (\(\kappa \)), trader heterogeneity (\(\theta \)), elasticity of substitution (\(\sigma \)).

- Estimate parameters via GMM using three sets of moments:
 - Value of trade flows between each origin MSA - destination MSA:
 \[\ln X_{ij} = (\sigma - 1) \ln \left[I - \left[\exp (-\theta \kappa \text{time}_{ij}) \right] \right] - 1_{ij} + \ln \gamma_i + \ln \delta_j + \varepsilon_{ij} \]
 - Mean distance traveled between each origin MSA - destination MSA:
 \[\bar{d}_{ij} = \frac{1}{N} \sum_{k,l=1}^{N} d_{kl} \left[I - \left[\exp (-\theta \kappa \text{time}_{ij}) \right] \right] - 1_{ki} \times \exp (-\theta \kappa \text{time}_{ij}) \times \left[I - \left[\exp (-\theta \kappa \text{time}_{ij}) \right] \right] - 1_{jl} \times \left[I - \left[\exp (-\theta \kappa \text{time}_{ij}) \right] \right] - 1_{kl} \]
 - Average trade cost of 20% ad valorem equivalent (e.g. Anderson and van Wincoop '04). [work in progress].
Estimation

- Assume components of infrastructure matrix depend on travel time along the direct route:
 \[t_{ij} = \exp(\kappa \times \text{time}_{ij}) \]

- Unknown parameters: cost of travel time (\(\kappa\)), trader heterogeneity (\(\theta\)), elasticity of substitution (\(\sigma\)).
Estimation

- Assume components of infrastructure matrix depend on travel time along the direct route:
 \[t_{ij} = \exp (\kappa \times time_{ij}) \]

- Unknown parameters: cost of travel time (\(\kappa \)), trader heterogeneity (\(\theta \)), elasticity of substitution (\(\sigma \)).

- Estimate parameters via GMM using three sets of moments:
Estimation

- Assume components of infrastructure matrix depend on travel time along the direct route:

\[t_{ij} = \exp (\kappa \times \text{time}_{ij}) \]

- Unknown parameters: cost of travel time (\(\kappa \)), trader heterogeneity (\(\theta \)), elasticity of substitution (\(\sigma \)).

- Estimate parameters via GMM using three sets of moments:
 - Value of trade flows between each origin MSA - destination MSA:
 \[
 \ln X_{ij} = \left(\frac{\sigma - 1}{\theta} \right) \ln \left(\left[I - [\exp (-\theta \kappa \text{time}_{ij})]_{ij}^{-1} \right] \right) + \ln \gamma_i + \ln \delta_j + \varepsilon_{ij}
 \]
Estimation

• Assume components of infrastructure matrix depend on travel time along the direct route:

\[t_{ij} = \exp (\kappa \times \text{time}_{ij}) \]

• Unknown parameters: cost of travel time (\(\kappa \)), trader heterogeneity (\(\theta \)), elasticity of substitution (\(\sigma \)).

• Estimate parameters via GMM using three sets of moments:
 • Value of trade flows between each origin MSA - destination MSA:
 \[\ln X_{ij} = \left(\frac{\sigma - 1}{\theta} \right) \ln \left(\left[I - \left[\exp (-\theta \kappa \text{time}_{ij}) \right] \right]_{ij}^{-1} \right) + \ln \gamma_i + \ln \delta_j + \varepsilon_{ij} \]
 • Mean distance traveled between each origin MSA - destination MSA:
 \[\bar{d}_{ij} = \sum_{k,l=1}^{N} d_{kl} \left(\frac{[I - \left[\exp (-\theta \kappa \text{time}_{ij}) \right]^{-1} \times \exp (-\theta \kappa \text{time}_{ij}) \times [I - \left[\exp (-\theta \kappa \text{time}_{ij}) \right]^{-1} \times \exp (-\theta \kappa \text{time}_{ij}) \times [I - \left[\exp (-\theta \kappa \text{time}_{ij}) \right]^{-1}]}{[I - \left[\exp (-\theta \kappa \text{time}_{ij}) \right]^{-1}\times \exp (-\theta \kappa \text{time}_{ij}) \times [I - \left[\exp (-\theta \kappa \text{time}_{ij}) \right]^{-1} \times \exp (-\theta \kappa \text{time}_{ij}) \times [I - \left[\exp (-\theta \kappa \text{time}_{ij}) \right]^{-1}}{[I - \left[\exp (-\theta \kappa \text{time}_{ij}) \right]^{-1}}} \right) \]
Estimation

- Assume components of infrastructure matrix depend on travel time along the direct route:

\[t_{ij} = \exp (\kappa \times time_{ij}) \]

- Unknown parameters: cost of travel time (\(\kappa \)), trader heterogeneity (\(\theta \)), elasticity of substitution (\(\sigma \)).

- Estimate parameters via GMM using three sets of moments:
 - Value of trade flows between each origin MSA - destination MSA:
 \[\ln X_{ij} = \left(\frac{\sigma - 1}{\theta} \right) \ln \left(\left[I - \left[\exp (-\theta \kappa time_{ij}) \right] \right]^{-1} \right) + \ln \gamma_i + \ln \delta_j + \varepsilon_{ij} \]
 - Mean distance traveled between each origin MSA - destination MSA:
 \[\bar{d}_{ij} = \sum_{k,l=1}^{N} d_{kl} \frac{\left[I - \left[\exp (-\theta \kappa time_{ij}) \right] \right]^{-1}_{ki} \times \exp (-\theta \kappa time_{ij}) \times \left[I - \left[\exp (-\theta \kappa time_{ij}) \right] \right]^{-1}_{ji}}{\left[I - \left[\exp (-\theta \kappa time_{ij}) \right] \right]^{-1}_{kl}} \]
 - Average trade cost of 20% ad valorem equivalent (e.g. Anderson and van Wincoop ’04). [work in progress].
Table: Estimation

Model parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Moment</th>
<th>Estimated value</th>
<th>Correlation: predicted vs. observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect of distance on direct trade cost</td>
<td>κ</td>
<td>Mean path distance</td>
<td>0.0108</td>
<td>0.997</td>
</tr>
<tr>
<td>Trader heterogeneity</td>
<td>θ</td>
<td>Trade flows</td>
<td>136.13</td>
<td>0.737</td>
</tr>
<tr>
<td>Elasticity of substitution</td>
<td>σ</td>
<td>Trade costs</td>
<td>7.9237</td>
<td>1</td>
</tr>
</tbody>
</table>

Implied trade costs

<table>
<thead>
<tr>
<th>Mean</th>
<th>25% perc.</th>
<th>Median</th>
<th>75% perc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 (calibrated)</td>
<td>1.104</td>
<td>1.169</td>
<td>1.271</td>
</tr>
</tbody>
</table>

Notes: This table reports the estimated parameter values and summary statistics for the implied bilateral trade costs. The three parameters were estimated to most closely match the three reported moments; note that the estimation procedure simultaneously estimated all parameters by minimizing all moments, so the assignment of parameter to moment above is heuristic.
Model fit

Mean distance

Correlation: 0.997

Log Trade Flows

Correlation: 0.737
Outline of Talk

Introduction

Geographic component: Endogenous transportation costs

Economic component: The welfare effect of improving infrastructure

Empirical component: The Interstate Highway Network
 The Interstate Highway Network
 Estimation
 The welfare effects of improving the IHS

Next steps
The welfare effects of improving the IHS

Welfare elasticity

- 0.000367 - 0.001347
- 0.001348 - 0.002593
- 0.002594 - 0.003803
- 0.003804 - 0.004815
- 0.004816 - 0.006455
- 0.006456 - 0.008267
- 0.008268 - 0.010332
- 0.010333 - 0.014548
- 0.014549 - 0.021815
- 0.021816 - 0.044808
Table: Top 20 Highways

<table>
<thead>
<tr>
<th>Origin City</th>
<th>Destination City</th>
<th>Interstate</th>
<th>Welfare Elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York</td>
<td>Philadelphia</td>
<td>95 (South)</td>
<td>0.04481</td>
</tr>
<tr>
<td>Baltimore</td>
<td>Washington</td>
<td>95 (South)</td>
<td>0.04477</td>
</tr>
<tr>
<td>Columbus</td>
<td>Dayton</td>
<td>70 (West)</td>
<td>0.0438</td>
</tr>
<tr>
<td>Dayton</td>
<td>Columbus</td>
<td>70 (East)</td>
<td>0.04094</td>
</tr>
<tr>
<td>Dayton</td>
<td>Cincinnati</td>
<td>75 (South)</td>
<td>0.04007</td>
</tr>
<tr>
<td>Philadelphia</td>
<td>Baltimore</td>
<td>95 (South)</td>
<td>0.03961</td>
</tr>
<tr>
<td>Cincinnati</td>
<td>Dayton</td>
<td>75 (North)</td>
<td>0.03691</td>
</tr>
<tr>
<td>Philadelphia</td>
<td>New York</td>
<td>95 (South)</td>
<td>0.03292</td>
</tr>
<tr>
<td>Washington</td>
<td>Baltimore</td>
<td>95 (North)</td>
<td>0.03069</td>
</tr>
<tr>
<td>Washington</td>
<td>Richmond, VA</td>
<td>95 (South)</td>
<td>0.03025</td>
</tr>
<tr>
<td>Beaumont</td>
<td>Houston</td>
<td>10 (West)</td>
<td>0.02874</td>
</tr>
<tr>
<td>Tulsa</td>
<td>Oklahoma City</td>
<td>44 (West)</td>
<td>0.02874</td>
</tr>
<tr>
<td>Pittsburgh</td>
<td>Columbus</td>
<td>70 (West)</td>
<td>0.02868</td>
</tr>
<tr>
<td>Lake Charles, LA</td>
<td>Beaumont</td>
<td>10 (West)</td>
<td>0.02858</td>
</tr>
<tr>
<td>Baltimore</td>
<td>Philadelphia</td>
<td>95 (North)</td>
<td>0.02793</td>
</tr>
<tr>
<td>Columbus</td>
<td>Cincinnati</td>
<td>71 (South)</td>
<td>0.02742</td>
</tr>
<tr>
<td>Cincinnati</td>
<td>Louisville/Jefferson County</td>
<td>71 (South)</td>
<td>0.02662</td>
</tr>
<tr>
<td>Louisville/Jefferson County</td>
<td>Nashville</td>
<td>65 (South)</td>
<td>0.02659</td>
</tr>
<tr>
<td>Columbus</td>
<td>Cleveland</td>
<td>71 (North)</td>
<td>0.02629</td>
</tr>
<tr>
<td>Nashville</td>
<td>Memphis, TN</td>
<td>40 (West)</td>
<td>0.02617</td>
</tr>
</tbody>
</table>

Most important highways are either between major cities or comprise major trade corridors.
Next step: Congestion

- Congestion: the more an infrastructure link is used, the slower the speed along the link.
- Empirically relevant, but usually ignored in general equilibrium spatial models.
- Framework developed above allows us to incorporate congestion in a tractable manner. Suppose:

\[t_{ij} = \exp (\kappa \times \text{time}_{ij}) \]

\[\text{time}_{ij} = \bar{\text{time}}_{ij} + \gamma \sum_{k=1}^{N} \sum_{l=1}^{N} X_{kl}^{ij} \]

\[\text{value of trade along link} \]

- Recall closed form solution for value of trade along link:

\[\sum_{k=1}^{N} \sum_{l=1}^{N} X_{kl}^{ij} \equiv \sum_{k=1}^{N} \sum_{l=1}^{N} \frac{X_{kl}^{ij} b_{ki} a_{ij} b_{jl}}{b_{kl}}. \]
Next step: Congestion

Congestion parameter $\gamma = 0$

Population

0

0.5

1

1.5

2

2.5

3
Next step: Congestion

Congestion parameter $\gamma = 1$

Population

0
0.5
1
1.5
2
2.5
3
Next step: Congestion

Congestion parameter $\gamma = 5$

Population

0
0.5
1
1.5
2
2.5
3
Next step: Congestion

Congestion parameter $\gamma = 10$

Population

0
0.5
1
1.5
2
2.5
3
Next step: Congestion

Trade flows across infrastructure links

Congestion parameter $\gamma = 0$
Next step: Congestion

Trade flows across infrastructure links

Congestion parameter $\gamma = 1$
Next step: Congestion

Trade flows across infrastructure links

Congestion parameter $\gamma=5$
Next step: Congestion

Trade flows across infrastructure links

Congestion parameter $\gamma=10$
Conclusion

Conclusion

- Intuitive analytical solutions with straightforward mapping to the data.
Conclusion

- Intuitive analytical solutions with straightforward mapping to the data.
- Necessary steps toward the design of the optimal transportation network.