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FIML Estimation for Multivariate Normal Data with Newton’s Algorithm 

 This document provides the mathematical building blocks for applying 

Newton’s algorithm to obtain maximum likelihood estimates of a mean vector and 

covariance matrix, 𝛍 and 𝚺. The accompanying R program shows the computations for 

a bivariate normal estimation problem. 

Derivative Equations 

The Matrix Cookbook is good resource that gives details behind some of the 

expressions and matrix derivatives in this document. The Cookbook is available at 

www.math.uwaterloo.ca/~hwolkowi//matrixcookbook.pdf. To begin, the first 

derivatives of the log-likelihood with respect to 𝛍 and 𝚺 are as follows. 
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Note that Equation 1 is a vector but Equation 2 is itself a matrix (a 2 by 2 matrix in the 

bivariate illustration). 

Second derivatives quantify the curvature or steepness of the log-likelihood 

function near its peak (i.e., the rate at which the first-order slopes change across the 

range of parameter values). Second derivatives are obtained by applying matrix 

calculus rules to the previous equations, and the Hessian collects these equations in a 

symmetric matrix with P rows and columns, where P is the number of unique 

parameters in 𝛍 and 𝚺. The Hessian consists of three unique blocks: a block each for 𝛍 

and 𝚺 and a block for the cross-product derivatives involving and element from 𝛍 and 

an element from 𝚺. 
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The second derivative equations below are the building blocks for the observed 

information matrix, the inverse of which is the variance–covariance matrix of the 

estimates with squared standard errors on the diagonal. The blocks of the Hessian 

matrix are as follows. 
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The ⊗ symbol is a Kronecker product that multiplies one matrix by each element of 

another matrix, and 𝐃𝑉  is the duplication matrix (Magnus & Neudecker, 1999). Each 

covariance term appears only once in the Hessian (and similarly, only once in the 

variance–covariance matrix of the estimates). The duplication matrix combines 

redundant off-diagonal terms into a single value. Substituting the maximum likelihood 

estimates into the derivative expressions, multiplying 𝑯&(𝛉7) by −1, then taking its 

inverse gives the variance–covariance matrix of the estimates. 

Newton’s Algorithm 

With Newton’s algorithm, the jump from the current to the updated parameter 

value was as follows. 
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The step size, computed as the ratio of the first and second derivatives at the current 

parameter value θ𝑡, corresponds to the horizontal distance between the current estimate 

and the peak of the projected quadratic curve (the point at which the first derivative of 

the quadratic approximation equals 0). The updating step extends to more complex 

models with multiple parameters. In this case, the multivariate updating equation is 

𝛉(𝑡+") = 𝛉(𝑡) −  𝑯&
−")𝛉(𝑡)*𝛁𝐿𝐿(𝑡) (8) 

where 𝛉 is a vector of parameter values, t indexes the iterations, 𝑯&
−")𝛉(𝑡)* is the inverse 

of the Hessian (the matrix of second derivatives) evaluated at the current parameter 

estimates at iteration t, and 𝛁𝐿𝐿(𝑡) is a vector of first derivatives (the gradient vector) 

evaluated at the current estimates. 
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Recall that Equation 1 (the first derivatives with respect to 𝛍) returned a vector, 

and these quantities appear as the first two elements of the gradient vector. However, 

the first derivative of the log-likelihood with respect to 𝚺 in Equation 2 returns matrix (a 

2 by 2 matrix in the bivariate example). The vec function in the equation below stacks all 

matrix elements into a vector (e.g., a 4-element vector if 𝚺 is a 2 by 2 matrix), and the 

duplication matrix combines the two identifical off-diagonal elements into a single 

quantity. 
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For example, vector if 𝚺 is a 2 by 2 matrix, Equation 10 returns a 3-element vector, one 

element for each unique estimate in 𝚺. 

 

 


