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FIML Estimation for a Path Analysis Model

We previously examined full information maximum likelihood (FIML; i.e., raw-data)
estimation for a multivariate normal model with a mean vector and covariance matrix,
u and X, as its parameters. For three variables, X, M, and Y, the path diagram for this

so-called saturated model is as follows.

A path model imposes structure on the associations, essentially replacing double-
headed curved arrows (covariances) with single-headed straight ones (regression
slopes). This illustration will use the basic single-mediator model shown in the path

diagram below.
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The corresponding univariate regression equations are

Xi=Ix +éx; (1)
Mi:IM'i‘aXi'i‘EMi (2)
Y, =1y + ')/Xl + IBMZ + Eyi (3)

and the matrix version of the model is.
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A key feature of any classic structural equation model (SEM) is that the
regression parameters combine to make predictions about the multivariate normal
distribution’s parameters. That is, weighted combinations of the mediation model
parameters in «, B, and W give a predicted mean vector and covariance matrix, pu(0)
and X(0). The notation conveys that the mean vector and variance-covariance matrix
are functions of the mediation model parameters in 0. Later I refer to individual

elements of these matrices, as shown below.

Lx(0) 0% (0)
w®) =|um@ | E(O)=|oyx(0) o3(0) (5)
uy (6) oyx(0)  oym(0)  0%(6)

The matrix expressions below give the model-predicted parameters of the multivariate

normal distribution.

pO) = 1-pla X0 = A-pw(a-p) (6)

While these expressions are computationally efficient, applying covariance algebra
rules provides greater insight into their, especially for people who are not so familiar
with SEMs.

Covariance Algebra Rules

Covariance algebra is a way to derive the variance and covariances predicted by an
SEM. David Kenny’s out-of-print book Correlation and Causation has an excellent chapter

on covariance algebra, and a pdf copy of the book can be downloaded from the bottom
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of the following website: https:/ /davidakenny.net/cm/causalm.htm. The procedure
starts by specifying the covariance between two variables as cov(X,Y). Next, you
substitute each variable’s names with its regression equation, and you simplify the
expression by applying different combinations of four rules:
1. The covariance between a variable and a constant equals zero. For example,
cou(Y, B) =0.
2. If a variable is multiplied by a constant, the constant can be factored out. For
example, cov(X, BX) = - cov(X,X).
3. The covariance of a variable with itself is the variance of that variable. For
example, cov(X,X) = var(X).
4. The covariance between a variable X and a sum equals the sum of covariances
involving each component of the sum. For example, cov(X, BX + I;) = cov(X, fX)

+ cov(X, Iys).
Model-Predicted Mean Vector and Variance Covariance Matrix

The model-predicted means in p(0) can be obtained by taking expectations of the terms
on the right side of Equations 1 through 3. First, the residual terms drop from the
equation because E(ey;) = E(eps;) = E(ey;) = 0. Thus, the model-predicted mean of X is
just px(6) = Ix. Substituting ux(0) for X in Equation 2 then gives p,,(6), and
substituting px(0) and uy,(6) into Equation 3 gives iy (6). The following expression
shows how each element in p(0) varies as a function of the mediation model

parameters.

#X(Q) Ix
u) =|um(@)| = Iy + alx (7)
ty (0) Iy +yIx + B(Iy + alx)

Next, applying the previous covariance algebra rules gives the mediation
model’s predictions about the variances and covariances in X(0). To begin, the model-

predicted variance of X and the covariance between M and X are as follows.
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0%(0) = cov(X, X) = cov(ly + ex, Iy + €x)

(8)
= cov(ly,Ix) + couv(ly, ex) + cov(ex, Ix) + cov(ex, ex) = 0+ 0+ 0 + var(ey)
onx(0) = cov(M, X) = cov(ly; + aX + ey, Ix + €x)
= cov(lyy + aX + ey, Ix) + cov(ly + aX + €, €x)
=0+ cov(lyy, ex) + cov(aX, €x) + cov(ep, €x) (9)

=0+0+a-cov(X,ex)+0=a-cov(ly + €x,€x)

=a- (cov(lx, ex) + cov(ey, ex)) =a-var(ey)

These equations highlight that any term involving the intercept always produces a zero,
so I drop those terms going forward. After dropping Iy, I further simplify the

expressions by substituting ey for X. The remaining solutions are as follows.

oyx(0) = cov(Y, X) = cov(yX + M + ¢y, €x)
= cov(yX, €x) + cov(BM, €x) + cov(ey, €x)
=7y -cov(ey, ex) + - cov(M,ex) +0

=y -var(ex) + B - cov(aX + &y, €x)

=y -var(ex) + B (cov(aX, ex) + cov(ey, €X)) =7y -var(ex) + af - cov(X, ex) (10)
=B-cov(aX + ey, 6x) =B (0( -cov(X, ex) + cov(ey, ex)) =ap - cov(X, ex)
=7y -var(ex) + af - cov(ex, ex) =7y - var(ex) + af - var(ex, €x)
= (y + ap) - var(ey)
0%,(0) = cov(M, M) = cov(aX + ey, aX + €)
= cov(aey, aex + €yp) + cov(ey, aex + €pp)
=a? - cov(ey, ex) +a - cov(ex, p) + @ - cov(ep, €x) + cov(epy, €u) (11)

=a? - var(ey) + 0+ 0 + var(ey,)

= a? - var(ey) + var(ey)



Craig Enders www.appliedmissingdata.com

oym(0) = cov(Y, M) = cov(y X + BM + ey, aX + €))

=cov(yex, aex + €p) + cov(BM, aex + €pp) + cov(ey, aex + &)

ya - cov(ex, €x) + 7V - covley, ey) + af - cov(M, ex) + B -cov(M, ey) + &
-cov(ey, €x) + cov(ey, €p)
= ya-var(ex) + 0+ af - cov(aX + ey, €x) + B cov(@X + ey, ep) +0+0
= ya-var(ex) +af - (a -cov(ex, €x) + cov(eyy, ex)) + B (12)
. (a - cov(ey, €pp) + cov(ey, SM))
= ya - -var(ex) +af - (a-var(ex) +0) + B+ (O + var(eM))
= ya-var(ex) + a®B - var(ex) + B - var(ey)

= (azﬂ + ya) ~var(ex) + B - var(eyy)

0%(0) = cov(Y,Y) = cov(y X + BM + ey, yX + BM + ¢y)

=cov(yey,Yex + PM + €y) + cov(BM, yex + M + ¢€y)
+ cov(ey,yex + PM + ¢€y)

= cov(yey,yex) + cov(yex, M) + cov(yex, ey) + cov(BM, yex)
+ cov(BM, BM) + cov(BM, €y) + cov(ey, yex) + cov(ey, M)
+ cov(ey, €y)

=2 -var(ex) +yB - cov(ex, aX + &) + 0+ yB - cov(@X + ey, €x) + B2
ccov(aX + ey, aX + epp) + Brcov(aX + ey, ey) + 0+ B
-cov(ey, aX + €yy) + var(ey) (13)

=y? - var(ex) +yB - (cov(ex, aey) + cou(ey, eM)) +vp
: (cov(aex, ex) + cov(eyy, ex)) + B2
. (cov(aex,aex) + cov(aey, aex) + cov(aex, €p)
+ cov(eyy, EM)) +p5- (cov(aex, €y) + cov(eyy, €y)) + B
. (cov(ey, aex) + cov(ey, eM)) + var(ey)

=2 -var(ex) + yap - cov(ey, ex) + yap - cov(ey, ex) + B

. (az -cov(ey, €x) + cov(ey, eM)) + var(ey)
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=2 -var(ex) + yap - var(ex) + yap - var(ex) + f2a? - var(ex) + 2 - var(ey)

+ var(ey)

= (y2 +2yaB + f2a?) - var(ex) + B* - var(ey) + var(ey)

To summarize, the elements of the model-predicted mean vector and variance—

covariance matrix, u(0) and X(0), are computed as follows.

px(0) = Ix
tm(0) = Iy + alx
py(0) = Iy + yIx + p(ly + alx)
0%(6) = var(e)
omx(0) = a - var(ey) (14)
oyx(0) = (y + ap) - var(ex)

02,(0) = a? - var(ey) + var(ey)
oym(0) = (oczﬁ + ya) -var(ex) + B-var(ey)

0%(0) = ()/2 +2yaB + ﬁzaz) -var(ex) + % - var(ey) + var(ey)

Structured Model Derivatives

The previous expressions show that each mean, variance, and covariance in p(6) and
Z(0) is a weighted combination of the mediation model parameters. We previously
used Newton’s algorithm as an optimizer for identifying the values of p and X that
maximize the log-likelihood function (i.e., maximize the data’s evidence). Estimating a
path model requires an additional matrix of derivatives that summarize the linkages
between the mediation model parameters and p(0) and X(0). This matrix A contains
coefficients (derivatives) that capture the amount by which the model-implied moments
in the rows of A change as a function of the mediation model parameters in the columns
of A. To get these derivatives, you differentiate each of the functions in Equation 14
with respect to each of the mediation model parameters. For illustration, the table below
displays each element of A, and more elegant matrix expressions for these quantities are

available in the classic SEM literature (e.g., Bentler & Weeks, 1980).
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Ix v Iy a Y B % Ol Ofy
x(6) 1 0 0 0 0 0 0
1(0) a 1 0 Iy 0 0 0 0 0
@) | y+ap B 1 Blx Iy Iy + aly 0 0 0
a%(0) 0 0 0 0 0 0 1 0 0
onx(6) 0 0 0 2, 0 0 a 0 0
ayx(6) 0 0 0 Bo?, o2, ac?, Y +ap 0 0
a%,(6) 0 0 0 2002, 0 0 a? 1 0
oym(0) 0 0 0 (y+2ap)d, ao?, a?o? + 02, ay +a®B B 0
a%(6) 0 0 0 (y+ap2po?, (y+ap2e2, 202, +20% (®B+ay) Y2 +2afy +a?F B 1

Newton’s Algorithm

Newton'’s algorithm for multivariate normal data used the following updating step
6+ = 90 — Hg'(6®)VLLO (15)

where 0 is a vector of parameter values, t indexes the iterations, Hal(é(t)) is the inverse
of the Hessian (the matrix of second derivatives) evaluated at the current parameter
estimates at iteration ¢, and VLL® is a vector of first derivatives (the gradient vector)
evaluated at the current estimates. In that context, & was a g-element vector containing
all unique elements in p and X, the Hessian was a g by g symmetric matrix, and the
gradient vector was also comprised of g elements. A previous handout gave the analytic
expressions for the derivatives and gradient vector.

Newton'’s algorithm for the mediation model introduces the derivative matrix A

from the previous section as follows
-1
0D = 00 — (ATHG(0®)A) (ATVLL®) (16)

where (ATHO(G(t))A) is the Hessian (second derivative matrix) of the mediation model,

and ATVLL® its gradient vector. Conceptually, the presence of A in the equation
translates the derivative information from the metric of u(0) and X(0) to the metric of
the mediation model parameters. Note that this expression is asymptotic and assumes

that the model is correct (the single-mediation perfectly predicts the means and
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variance-covariance matrix, so that is true here). Savalei and Rosseel (in press) give
more precise expressions for the structured model’s Hessian and gradient vector that do
not require these assumptions. Finally, adding a step size parameter A introduces

flexibility for adaptively tailoring the jump sizes.

0+ = 00 — A(ATHo(0®)A) " (ATVLLO) (17)

The accompanying R program adaptively modifies A during the initial phases of

optimization and sets A =1 at later iterations.
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