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Abstract

If chances are propensities, what reason do we have to expect them to be probabili-

ties? I will offer a new answer to this question. It comes in two parts. First, I will

defend an accuracy-centred account of what it is for a causal system to have precise

propensities in the first place. Second, I will prove that, given some pretty weak

assumptions about the nature of comparative causal dispositions, and some fairly

standard assumptions about reasonable measures of inaccuracy, propensities must be

probabilities.
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1 Introduction

Suppose you toss a die. Your arm, hand, the die, the table that the die lands on, the air and

surroundings — they all make up a causal system. Your toss causes the die to fly into the

air and rotate. How it moves depends on the initial states of various parts of the system:

the angle of your arm, how hard you flick your wrist, how the die’s mass is distributed,

etc. As the die rotates, chemical bonds between its faces and the air molecules break,
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which alters how it moves. When the die hits the table, the state of the table’s surface —

how hard it is, how flat it is, etc. — affects how the die tumbles and falls.

The initial state of this causal system, together with the dynamical laws governing it,

ground a certain ‘disposition’ or ‘tendency’ to produce a particular final state: a ‘1’, ‘2’,

‘3’, ‘4’, ‘5’ or ‘6’ state. The die’s propensity to land ‘1’, or ‘2’, or ‘3’, etc., given these initial

conditions, is a measure of the strength of this causal disposition or tendency.1

Propensity theorists make two important claims. First, they say that chances — the

chance of a die landing ‘6’, the chance of a polonium atom decaying within 138.4 days,

the chance of rain tomorrow evening — are best thought of as propensities (cf. Popper

(1959, 1983, 1990), Giere (1973), Fetzer (1982, 1983), and Miller (1994, 1996)).2 Second,

they afford propensities a certain degree of explanatory fundamentality. Propensities are

not reducible to, or otherwise grounded in frequencies (actual finite frequencies or limit-

ing frequencies of hypothetical sequences) — at least, not in a way that makes causal dis-

positions dispensable. Rather, those dispositions and their attendant propensities explain

why the system produces outcomes with stable relative frequencies in long sequences of

trials (cf., Giere (1973), Fetzer (1981), and Hitchcock (2002)).

Of course, propensity theories come in all sorts of shapes and sizes. For example,

Gillies (2000) follows Popper (1957) in defending what he calls long-run propensity the-

ory. According to long-run theories, propensities are the frequencies that causal systems

have the strongest tendency to produce in long sequences of trials. Causal systems, on this

view, do have dispositions of various strengths to produce various different final states.

1If you doubt that die tosses, coin flips, etc., are genuinely chancy processes, consider “that air resis-
tance depends partly on the chance making and breaking of chemical bonds between the coin and the air
molecules it encounters” (Lewis, 1980, p. 266).

2More carefully, certain conditional chances are best thought of as propensities. In particular, the
chance of a target variable taking a particular value, conditional on its ‘parents’ (the variables that ex-
ert direct causal influence on it) taking certain values, is best thought of as a propensity. The remaining
chances are the probabilities that arise from propensities via the Causal Markov Condition. See Hitchcock
(2012).
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But propensities do not measure these strengths directly. Rather, they reflect one prop-

erty (relative frequency) of one privileged sequence: the sequence that the system is most

strongly disposed to produce. In contrast, Giere (1973), Fetzer (1982, 1983) and Miller

(1994, 1996) defend single-case propensities theories. Single-case theories say just the op-

posite: propensities are straightforward measures of how strongly a system is disposed to

produce one state or other on a particular occasion. As Hajek (2012) puts it, long-run the-

orists maintain that “a fair die has a propensity — an extremely strong tendency — to land

‘3’ with long-run relative frequency 1/6. The small value of 1/6 does not measure this

tendency. Single-case theorists maintain that “the die has a weak tendency to land ‘3’. The

value of 1/6 does measure this tendency.” We will continue to understand propensities as

single-case propensities.3

Problem: the two big claims of propensity theory make propensities rather perplex-

ing. On the one hand, if chances are propensities, then propensities must be probabil-

ities. After all, chances must be probabilities to play the theoretical role that they do.

For example, the Principal Principle implores us to treat chance as an epistemic expert.

When we learn that chance’s probability for X at t is x, we should straightaway adopt

x as our new credence for X (unless we have information that chance lacks at t ). But

for chances to be worthy of such epistemic deference, they must be probabilities.4 So

if chances are propensities, then propensities must be probabilities too. On the other

hand, it is prima facie unclear why propensities should be probabilities. Frequencies are

probabilities, of course. But on the (single-case) propensity theorist’s view, propensities

lack any straightforward connection to frequencies that would allow them to inherit the

latter’s mathematical structure. On the face of it, it is no more obvious that propensities

3A further wrinkle: Miller (1994, pp. 18-56), and Popper (1990) take propensities to be properties
not of local causal systems, but rather, of the entire universe at a given time. We will continue, however,
to understand propensities as properties of local causal systems, or as Fetzer puts it, “a complete set of
(nominally and/or causally) relevant conditions” (Fetzer, 1982, p. 195).

4See Joyce (1998, 2009) and Predd et al. (2009).
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— measures of the strength of causal dispositions — are probabilities than it is that the

numbers measuring the strength of Winnie the Pooh’s desires, or Scooby-Doo’s fears are

probabilities.

This mystery is what Hitchcock (2012) calls the problem of mathematical structure.

Our aim is to clear it up.5 Our solution comes in two parts. Firstly, we will defend an

accuracy-centred account of what it is for a causal system to have precise propensities at

all. Secondly, we will show that, if this account is right, then given some pretty weak as-

sumptions about the nature of causal dispositions or tendencies, and some fairly standard

assumptions about reasonable measures of inaccuracy, propensities must be probabilities.

Cards on the table: our accuracy-centred account will be non-reductive. We will as-

sume that various causal systems have comparative causal dispositions or tendencies: they

are more strongly disposed to produce certain final states, given certain initial conditions,

than others. So we will say nothing to allay the concerns of those who find causal dis-

positions altogether too spooky to be taken seriously. What we will do is this: explain

what it is for those dispositions to have precise strengths, and show that, given some weak

assumptions, the numbers measuring those precise strengths (when they exist) must be

probabilities.

2 An Accuracy-Centred Account of Propensities

Propensities are, on the face of it, just one kind of dispositional quantity: quantities that

summarise (somehow or other) which values other quantities are disposed to take under

certain conditions. For example, the elastic modulus of a material measures the extent to

which it is disposed to (or tends to) deform elastically (temporarily) when a certain force

is applied to it. Rubber has a low elastic modulus (≈ 0.1 GPa), which reflects the fact that

5See Hitchcock (2012) for an overview of extant answers to the problem of mathematical structure.
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stressing it a bit tends to produce a lot of strain, or deformation. (Elastic modulus is the

ratio of stress to strain. So holding stress fixed, the higher the strain/deformation, the

lower the modulus.) Steel, on the other hand, has a high elastic modulus (≈ 200 GPa),

which reflects the fact that stressing it a bit tends to produce very little strain.

Or take another example: molar absorptivity. Molar absorptivity measures the extent

to which a chemical compound is disposed to (or tends to) absorb light of a particular

wavelength. Blue dye, for example, has a high molar absorptivity for red wavelengths

(wavelengths around 625 nm). This reflects the fact that it has a strong disposition to

absorb red light (the ratio of red light in to red light out tends to be very high: ≈ 98,000

M−1cm−1).

But what does having a precise elastic modulus, e.g., 0.1, or a precise molar absorptivity,

e.g., 98,000, amount to exactly? In virtue of what does 0.1 — that very specific value —

“sum up” how much strain, or deformation a bit of stress on a piece of rubber tends to

produce. (Why does 0.1, rather than 0.2, count as summing up the value that the ratio

of stress to strain tends to take?) In virtue of what does 98,000 sum up how much red

light a particular dye tends to absorb? (Why does 98,000, rather than 99,0000, count as

summing up the value that the ratio of light in to light out tends to take?)

In part, this is a matter of convention. Why does 0.1, rather than 0.2, or 0.3, best sum-

marise how much strain a bit of stress on a piece of rubber tends to produce? Partly be-

cause of a conventional choice to measure stress by gigapascals (GPa), rather than pounds

per square inch (psi), or some other unit. But this is only part of the answer. The ques-

tion remains: even once we have fixed our units of measurement, why 0.1, rather than

0.2, or 0.3 GPa? Why 98,000, rather than 99,0000, or 100,000 M−1cm−1? In virtue of what

do these very specific numbers best summarise the values that their respective quantities

(stress-to-strain ratio, red-light-in-to-red-light-out ratio) are disposed to take under certain

conditions?
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Here is one simple answer:

ACCURACY-CENTRED ACCOUNT (UNOFFICIAL): If a unique real number x best sum-

marises which value a quantity Q tends to take in conditions C , then it does so in

virtue of the fact that:

(Æ) x tends to be the most accurate estimate of Q in C .

To make this more precise, in particular by swapping out (Æ) for something a bit more

careful, let’s introduce some notation. Let Q(x, y) be the proposition that is true exactly

when the causal system S in question produces a state in which Q takes a value z that

is ‘closer’ to x than to y, i.e., exactly when x is a more accurate estimate of Q than y.

Shorter: Q(x, y) says that x is closer to Q’s true value — and so more accurate — than y.

For example, suppose that you have a rubber balloon. You blow into it. This pro-

duces a stress of 0.05 GPa. Now consider two estimates of the resulting stress-to-strain

ratio R: x = 0.09 and y = 0.1. If applying 0.05 GPa of stress produces a strain, or defor-

mation greater than 0.05/0.095≈ 0.526 on this occasion, then R is less than 0.095. So R’s

true value is closer to x than to y, in which case x is a more accurate estimate of R than y:

R(x, y) is true. If it produces a strain less than 0.526, then R is greater than 0.095. So R’s

true value is closer to y than to x, in which case y is a more accurate estimate of R than

x: R(y, x) is true. In diagram form:

R< 0.095

0.09 0.095 0.1

x R y

R= 0.095 0.095< R

0.09 0.095 0.1

x R y

R(x, y) is true R(y, x) is true
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A bit more precisely, then:

ACCURACY-CENTRED ACCOUNT (OFFICIAL): If a unique real number x best sum-

marises which value a quantity Q tends to take in conditions C , then it does so in

virtue of the fact that x tends to be the most accurate estimate of Q in C , in the

following sense:

(ÆÆ) For any y 6= x, S has a stronger tendency in C to make Q(x, y)

true than it does to make Q(y, x) true.

In virtue of what, then, does 0.1 sum up how much strain, or deformation a bit of stress

tends to produce? In virtue of the fact that 0.1 tends to be the most accurate estimate of

the material’s stress-to-strain ratio, according to the accuracy-centred account. Stressing

the material in question (rubber in this case) tends to produce a stress-to-strain ratio R

that is closer to 0.1 than 0.2, 0.3, or any other estimate. That is, for any other estimate y,

the causal system S in question (the rubber, the instrument used to apply the force, etc.)

has a stronger tendency to make R(0.1, y) true (0.1 is closer to R’s true value — and so

more accurate — than y) than it does to make R(y, 0.1) true. In just this sense, 0.1 tends

to be the most accurate estimate of R. And this is just what is required for 0.1 to best

summarise which value R is disposed to take, on the accuracy-centred view.

No doubt there are other ways one might try to explain what having a precise elas-

tic modulus, or a precise molar absorptivity amounts to. But the explanation that the

accuracy-centred account furnishes is elegant and unifying. So we will explore what else

the account might do for us.

What, then, does the accuracy-centred account say about propensities? As it stands,

not much. But suppose we add two little bits. First, suppose that we understand the

accuracy-centred account broadly, as applying not just to single real-valued estimates x of

single quantities Q, but also to assignments of estimates p :Q→R to sets of quantitiesQ.
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ACCURACY-CENTRED ACCOUNT (GENERAL): If a unique assignment of real num-

bers p :Q→R to a set of quantitiesQ best summarises which values those quanti-

ties tend to take in conditions C , then it does so in virtue of the fact that:

(�) p tends to be the most accurate assignment of estimates toQ in C .

There is good reason to understand the account broadly. Just as a single estimate x of

a single quantity Q can be closer or further from the true value of that quantity — i.e.,

more or less accurate — so can an assignment of estimates p to a set of quantities Q be

more or less accurate. Indeed, epistemic scoring rules or inaccuracy scores give us the means

to measure such accuracy, as we will see in §3 (see the appendix for formal details). And

just as x can tend to be the most accurate estimate Q, so can p tend to be the most the

most accurate assignment of estimates to quantities inQ (see §3-4). So we can understand

the accuracy-centred account broadly. And we should: doing so allows us to provide a

unified explanation of a more diverse range of phenomena.

Suppose also that we take on board the following auxiliary assumption: if some as-

signment of real numbers p : Ω→ [0,1] to propositions X in an algebra Ω captures the

propensities of those propositions — the precise strength of a causal system S’s disposition

to produce a state in which those propositions X are true — then p(X ) best summarises,

in some appropriate sense, what truth-value X is disposed to take (‘1’ for true, ‘0’ for

false). If this is right, then propensities, elastic moduli, and molar absorptivity are all of

a kind: they summarise which values other quantities are disposed to take. And in that

case, the (general) accuracy-centred account says:

ACA-PROPENSITIES (UNOFFICIAL): If a unique assignment of real numbers p : Ω→

[0,1] to propositions in an algebra Ω captures the propensities of those proposi-

tions in conditions C , and so best summarises what truth-values those propositions

are disposed to take in C , then it does so in virtue of the fact that:
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(♣) p tends to be the most accurate assignment of truth-value estimates

to Ω in C .

To make this more precise, by swapping out (♣) for something a bit more careful,

let’s introduce some notation. Let Ω be a Boolean algebra of propositions (closed under

negation and disjunction) whose truth-values are determined by the final state of the

causal system S under consideration. And let T (p, q) be the proposition that is true

exactly when S produces a state that determines an assignment of truth-values — 1 to all

truths and 0 to all falsehoods — which is ‘closer’ to p than to q . That is, let T (p, q) say

that p is closer to the truth — i.e., more accurate — than q .

H ¬H

p 2/3 1/3

q 1/3 2/3

Figure 1: p, q .

For example, suppose that you have a coin. You flip it. Let H be the

proposition that it comes up heads, and ¬H be the proposition that it

comes up tails. Now consider two assignments of truth-value estimates

to these propositions, p : {H ,¬H} → [0,1] and q : {H ,¬H} → [0,1],

defined by figure 1. If the coin comes up heads on this particular toss,

then the actual assignment of truth-values T — which assigns 1 to all

truths and 0 to all falsehoods — is given byωH (figure 2). AndωH is ‘closer’ to p than to

H ¬H

ωH 1 0

ω¬H 0 1

Figure 2: ωH ,ω¬H .

q on any reasonable way of thinking about their respective prox-

imities. (The reason: the truth-value estimates encoded by p are

uniformly closer to the the actual truth-values, given by ωH , than

those encoded by q). Put differently, according to any reasonable

measure of accuracy, p is more accurate than q .6 So T (p, q) is

true. If the coin comes up tails, on the other hand, then the actual

assignment of truth-values T is given byω¬H . Andω¬H is closer to q than to p. That is,

q is closer to the truth — more accurate — than p. So T (q , p) is true.

6More carefully, according to any truth-directed inaccuracy score, p is more accurate than q relative to
ωH . See appendix for details.
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We can now state the accuracy-centred account of propensities more precisely:

ACA-PROPENSITIES (OFFICIAL): If a unique assignment of real numbers p : Ω →

[0,1] to propositions in Ω captures the propensities of those propositions in condi-

tions C , and so best summarises what truth-values those propositions are disposed

to take in C , then it does so in virtue of the fact that p tends to be the most accurate

assignment of truth-value estimates to Ω in C , in the following sense:

(♣♣) For any q 6= p, S has a stronger tendency in C to make T (p, q)

true than it does to make T (q , p) true.

In virtue of what, then, does a fair die have a propensity of exactly 1/6 to land ‘1’, or

‘2’, or ‘3’, etc.? In virtue of the fact that for some algebra of propositions Ω, describing

the outcome of some series of tosses, there is a unique assignment of truth-value estimates

p : Ω→ [0,1] with p(X1)=...=p(X6)=1/6 that tends to be more accurate than any other

assignment (read Xi as: the die lands on side i on the x th toss). Tossing a fair die has

a stronger tendency to make T (p, q) true than it does to make T (q , p) true, for any

other q . In words: when you toss a fair die, you have a stronger tendency to produce an

outcome in which p is more accurate than q than you do to produce one in which q is

more accurate than p. And this is just what is required for 1/6, and the rest of the truth-

value estimates encoded by p, to best summarise the truth-values that propositions in Ω

are disposed to take, on the accuracy-centred view, and hence to capture their propensities.

The accuracy-centred account explains, in an elegant and unifying way, what hav-

ing a precise propensity amounts to in the first place. (Though, of course, it does not

explain what having a comparative causal disposition amounts to, e.g., a stronger dispo-

sition to make T (p, q) true than to make T (q , p) true. Our accuracy-centred account is

non-reductive.) And importantly, it delivers genuine single-case propensities (unlike long-

run accounts, e.g., Gillies (2000)) — the sort of propensities that are fit to figure into
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causal explanations of singular events, and all the rest (cf. Fetzer (1981)). According to

the accuracy-centred account, the propensity of a die to land ‘1’, or ‘2’, or ‘3’, etc., on a

particular toss, genuinely measures the strength of the die’s disposition to produce that

particular state on that particular occasion. The propensity-determining truth-value esti-

mate attaches to the proposition that the die will land ‘1’, or ‘2’, or ‘3’, etc., on that very

toss. It does not attach to some proposition describing the outcome of a sequence of tosses.

(See §4 for additional discussion of the role of sequences of trials on the accuracy-centred

account.)

Also worth emphasising: the accuracy-centred account, all on its own, genuinely

leaves open the question of whether propensities are probabilities. So we have not simply

assumed what we hope to explain. For all the accuracy-centred account says, the unique

assignment of truth-value estimates that captures a causal system’s precise propensities

could end up being probabilistically incoherent.

Our aim now is to show that this possibility is never realised. We will show that if

the accuracy-centred account account is right, then given some pretty weak assumptions

about the nature of comparative causal dispositions or tendencies, and some fairly stan-

dard assumptions about reasonable measures of inaccuracy, propensities must be proba-

bilities.

3 Probabilistic Structure

The short story of why propensities must be probabilities is this: propensities are the

truth-value estimates that tend to be most accurate. That is what the accuracy-centred

account tells us. But probabilistically incoherent truth-value estimates could not possibly

tend to be most accurate. The reason: they are accuracy-dominated by coherent truth-

value estimates (cf., Joyce (1998, 2009) and Predd et al. (2009)). For every incoherent
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assignment of truth-value estimates p : Ω → [0,1] to propositions in Ω, there is some

coherent assignment q : Ω → [0,1] that is more accurate come what may. And any

assignment that is necessarily more accurate surely tends to be more accurate.

In fact, we can say much more than our short story does about the nature of propen-

sities — not just that they are probabilities. Let S be an arbitrary causal system with final

states F1, F2, ... in F . Let Ω be a Boolean algebra of propositions (closed under negation

and disjunction) whose truth-values are determined by the final state of S. And for each

consistent assignment of truth-valuesω :Ω→{0,1} to propositions in Ω, let wω be ‘the’

possible world that agrees with ω: X is true at wω iff ω(X ) = 1, for all X ∈ Ω.7 Let W

be the set of all such worlds.

Finally, assume that S comes equipped with some minimal dispositional structure.

In particular, assume that S determines a comparative propensity ordering over Ω, �, that

captures which propositions S is more or less strongly disposed to make true:

• For any X ,Y ∈ Ω, X � Y iff S has at least as strong of a disposition to produce a

final state F ∈F (or a collection of states in a sequence of trials) that makes X true

and Y false as it does to produce one that makes Y true and X false.

• For any X ,Y ∈ Ω, X � Y (shorthand for X � Y and Y 6� X ) iff S has a strictly

stronger disposition to produce a final state (or a collection of states) that makes X

true and Y false than it does to produce one that makes Y true and X false.

At the outset, we assume nothing further about �. Our aim: identify some pretty

weak assumptions about � — about the nature of comparative causal dispositions —

which, in conjunction with some fairly standard assumptions about reasonable measures

of inaccuracy, guarantee that propensities are probabilities.

7The differences between worlds that agree on the truth-values of all propositions in Ω do not matter,
for our purposes. So we ignore them. And we drop the subscripts henceforth.
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The real key, for our purposes — for sorting out when certain assignments of truth-

value estimates tend to be more accurate than others — is to identify some plausible as-

sumptions about how � must extend to the space Q of arbitrary real-valued quantities

Q : W → R, given how it orders propositions in Ω. We will examine three assumptions

about �’s extendability, and then put those assumptions to work for us.

First assumption:

DOMINANCE: If quantity Q takes a higher value than quantity QÆ in every possible

world:

Q(w)>QÆ(w) for all w ∈W

then Q � QÆ, which says: S has a strictly stronger disposition to produce a final

state in which Q take a higher value than QÆ than it does to produce one in which

QÆ takes a higher value than Q.

Suppose that a benevolent gambler offers you a bet that pays £10 if some coin comes

up heads on the next flip, and £20 if it comes up tails. She offers your friend a bet that

is bound to pay out a little bit more: £11 if heads, £21 if tails. Then whatever else is

true of our gambler’s dispositions, she must be more strongly disposed to produce more

winnings for your friend than for you than the other way around. This is the thought

behind Dominance.

The next two assumptions are more controversial, but not by much.

SWAPS: If for some k > 0, quantities Q and QÆ satisfy:

• Q takes a value that is greater than QÆ’s by k in any world w that makes X

true and Y false;

• QÆ takes a value that is greater than Q’s by k in any world w ′ that makes X

false and Y true;
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• Q and QÆ take the same value in every other world;

and X � Y , then Q �QÆ.

Suppose that you are bound to get precisely the same grades on your physics and history

exams, except for in two scenarios: if you hire a physics tutor but not a history tutor

(Physics Tutor), or if you hire a history tutor but not a physics tutor (History Tutor). You

will get one grade higher in physics than in history if Physics Tutor is true, e.g., an A and

a B , respectively. Likewise, you will get one grade higher in history than in physics if

History Tutor is true. (So the two scenarios are just the same, but with the difference

in grades swapped.) Finally, suppose that you are more strongly disposed to make Physics

Tutor true than to make History Tutor true. Then we can conclude: you are more strongly

disposed to produce a higher grade in physics than in history than the other way around.

This is the thought behind Swaps.

Finally:

SWEETENINGS: If for some j > k > 0, quantities Q and QÆ satisfy:

• Q takes a value that is greater than QÆ’s by j in any world w that makes X

true and Y false;

• QÆ takes a value that is greater than Q’s by k in any world w ′ that makes X

false and Y true;

• Q takes at least as great a value as QÆ in every other world;

and X ≈ Y , then Q �QÆ.

Imagine a setup much like Swaps. You will get one grade higher in physics than in history

if Physics Tutor is true (call this difference in grades ‘k’). But, unlike Swaps, you will get

two grades higher in history than in physics if History Tutor is true (call this difference in
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grades ‘ j ’). And you will get at least as high a grade in history as in physics in any other

scenario. Finally, suppose that you are equally strongly disposed to make Physics Tutor

and History Tutor true. Then in virtue of the fact that hiring a history tutor is a slightly

sweeter deal (i.e., j > k) we can conclude: you are more strongly disposed to produce a

higher score in history than in physics than the other way around. This is the thought

behind Sweetenings.

Here is the kicker: from these three fairly weak assumptions about comparative causal

dispositions, and some plausible assumptions about reasonable measures of inaccuracy, it

just falls out that the truth-value estimates p : Ω→ [0,1] that our causal system S tends

to make most accurate must have two properties. Not only must they be probabilities,

but they must also weakly represent S’s comparative propensity ordering: X � Y only if

p(X )≥ p(Y ).

More carefully, suppose that we measure inaccuracy by an epistemic scoring rule or

inaccuracy score. An inaccuracy score is a function I, which maps assignments of truth-

value estimates p and worlds w to non-negative real numbers, I(p, w). I(p, w)measures

how inaccurate p is if w is actual. If I(p, w) equals zero, then p is minimally inaccurate at

w (its estimates are maximally close to the truth). Inaccuracy increases as I(p, w) grows

larger.

For notational convenience, let I(p)(·) be shorthand for I(p, ·). So I(p) : W → R is

just a random variable: a function that maps worlds w to real numbers I(p, w). Then

I(p) � I(q) says: S has a strictly stronger disposition to produce a final state in which

p is more inaccurate than q than it does to produce one in which q is more inaccurate

than p. Or, to put it slightly differently, I(p)� I(q) is equivalent to T (p, q)≺ T (q , p).

It says: S has a stronger tendency to make T (q , p) true ( p is less accurate than q) than it

does to make T (p, q) true (q is less accurate than p).

Then we can prove the following (see appendix):

15



MAIN THEOREM: Suppose � satisfies Dominance, Swaps and Sweetenings. Suppose

further that inaccuracy is measured by a Truth-Directed, Continuous, Strictly Proper

and Convex scoring rule I.8 Then an assignment of truth-value estimates p : Ω→

[0,1] tends to be maximally accurate, in the sense that no other q : Ω→ [0,1] is

such that I(p)� I(q), only if p is a probability function, and p weakly represents

�, i.e., X � Y only if p(X )≥ p(Y ), for all X ,Y ∈Ω.

This little theorem contains an important moral. It tells us that, for any causal system

with a little bit of dispositional structure — viz., a comparative propensity ordering, �

— the truth-value estimates that tend to be most accurate (if any such estimates exist)

absolutely must have two properties: (1) they must be probabilities (this follows from

Dominance); (2) they must line up with, or represent � (this follows from Swaps and

Sweetenings). And propensities just are the truth-value estimates that tend to be most

accurate, on the accuracy-centred account. So propensities must have these properties

too. Shorter: propensities must be probabilistic representers.

The upshot: the problem of mathematical structure is really no problem at all. Once

we appreciate the deep relationship between propensities and accuracy, the mathematical

structure of propensities falls out naturally. The fact that propensities are probabilities (or

stronger: probabilistic representers) follows straightforwardly from some fairly standard

assumptions about the nature of accuracy, and few weak assumptions about the nature of

comparative causal dispositions or tendencies.

4 Existence and Uniqueness

Nothing we have said so far tells us when — if ever! — a causal system S has suffi-

ciently rich and specific comparative dispositions or tendencies,�, to end up with precise
8For discussion of these properties, see Joyce (2009).
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propensities, on the accuracy-centred account. All we know so far is that if our system

S determines precise propensities for propositions in some algebra Ω — if some unique

assignment of truth-value estimates p :Ω→ [0,1] tends to be most accurate — then those

propensities will be probabilistic representers.

It would be nice to know if there are conditions that guarantee�’s probabilistic repre-

sentability. It would also be nice to know when� is representable by a unique probability

function. If � is probabilistically representable, but not uniquely so — if there are mul-

tiple assignments of truth-value estimates, p1, p2, ... that tend to be most accurate (in the

sense of our Main Theorem, viz., that no other assignment tends to be more accurate) —

then our causal system S determines imprecise propensities for propositions in Ω. How

strongly it is disposed to make propositions X in Ω true is characterised by a set of prob-

abilities functions. The facts about how strongly S is disposed to make X true are just

the facts that are invariant across all of the members of that set. If � is representable by

a unique probability function, on the other hand, then it determines precise propensities

for those propositions.

Luckily, the answers to our questions are not too hard to come by. Scott (1964), for

example, proves the following:

Scott’s Theorem. There is a probability function p :Ω→ [0,1]which satisfies:

X � Y only if p(X )≥ p(Y )

just in case � satisfies the following conditions:

1. >�⊥

2. X �⊥

3. If X1+ ...+Xn = Y1+ ...+Yn and Xi � Yi for all i , then Xi � Yi for all

i as well.
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Axiom 1 says that the causal system S in question is more strongly disposed to make

tautologies true than it is to make contradictions true. Axioms 2 says that S is at least as

strongly disposed to make tautologies true as it is to make any other proposition X true.

Finally, axiom 3 — sometimes called Scott’s axiom — says that for any two sequences of

propositions, 〈X1, ...,Xn〉 and 〈Y1, ...,Yn〉, which contain the same number of truths as a

matter of logic (i.e. X1 + ...+Xn = Y1 + ...+Yn), if S is at least as strongly disposed to

make Xi true as it is to make Yi true, for each i , then it must be equally strongly disposed

to make the Xi and Yi true; it cannot be more strongly disposed to make X j true than Y j

for some j .

An example will help illustrate Scott’s axiom. Suppose that you have two coins, 1

and 2. Let Hi be the proposition that coin i comes up heads. Then the two sequences

〈H1,¬H1〉 and 〈H2,¬H2〉 contain the same number of truths as a matter of logic (viz.,

1 truth). Scott’s axioms says that you cannot have both H1 � H2 and ¬H1 � ¬H2, for

example. Coin 1 cannot both be at least as strongly disposed to come up heads as coin 2,

and more strongly disposed to come up tails.

Clearly, any system with causal dispositions to speak of determines a comparative

propensity ordering � which satisfies axioms 1-3. No comparative propensity ordering

could possibly violate these axioms. What Scott’s theorem tells us, then, is that in light

of this fact, any comparative propensity ordering � is probabilistically representable.

For any such ordering �, there is a probabilistically coherent assignment of truth-value

estimates p : Ω→ [0,1] that weakly represents it. So any causal system at the very least

comes equipped with imprecise propensities, on the accuracy-centred account. Further,

if � is total, so that X � Y or Y � X for all X ,Y ∈ Ω, and � is non-atomic, so that for

any X ∈Ω such that X �⊥, there is a Y ∈Ω such that X &Y �⊥ and X &¬Y �⊥, then

� is (weakly) representable by a unique probability function. In that case, the system

comes equipped with precise propensities.
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What’s more, these conditions are not terribly recherché. For example, if the propo-

sitions in Ω describe the potential outcomes of an infinite sequence of experiments in-

volving S, where any combination of outcomes for any given trial is possible, then �

will plausibly be non-atomic. So any causal system that determines a total comparative

propensity ordering in this sort of (hypothetical) experimental context plausibly deter-

mines precise propensities. Or if the propositions in Ω describe the potential outcomes

of single experiment involving S, but each outcome can be described in limitless detail

(so that for each proposition X describing an outcome, there is another proposition Y

describing an additional feature of that outcome, such that X can be divided into X &Y

and X &¬Y , respectively), then � will plausibly be non-atomic. So any causal system

that determines a total comparative propensity ordering in this sort of context plausibly

determines precise propensities.

Of course, it could be that very few causal systems determine total comparative propen-

sity orderings in such contexts. The accuracy-centred account per se takes no stand on this

issue. If so, then chances, by and large, are plausibly imprecise.

5 Conclusion

If chances are propensities, it is a bit perplexing why we ought to expect them to be

probabilities. This paper aims to clear up the mystery. It does so in two parts. First, it

motivates and details an accuracy-centred account of what it is for a causal system to have

precise propensities in the first place. Then, it proves that, given some fairly standard

assumptions about the nature of accuracy, and some weak assumptions about the nature

of comparative causal dispositions or tendencies, propensities must be probabilities.

19



6 Appendix

Choose a binary relation � on Ω that satisfies Dominance, Swaps and Sweetenings.

Choose an inaccuracy measure:

I(p, w) =
∑

X∈Ω
s(p(X ), w(X ))

that satisfies Truth-Directedness, Continuity, Strict-Propriety, and Convexity, where s :

[0,1]× {0,1} → [0,∞] is what Joyce (2009) calls a component function, which measures

the inaccuracy of the truth-value estimate p(X ) when X ’s truth-value is w(X ).

• Truth-Directedness: For any p and q , and any world w, if p’s truth-value estimates

are uniformly closer to the truth than q’s at w, so that:

|p(X )−w(X )| ≤ |q(X )−w(X )| for all X ∈Ω,

and:

|p(Y )−w(Y )|< |q(Y )−w(Y )| for some Y ∈Ω,

then I(p, w)< I(q , w).

• Continuity. For any w ∈W , I(p, w) is a continuous function of p.

• Strict Propriety. For any probabilistically coherent p and q 6= p, Expp(I(p)) <

Expp(I(q)).

• Convexity. For any p and q , and any 0 < λ < 1, I(λ · p + (1− λ) · q , w) < λ ·

I(p, w)+ (1−λ) ·I(q , w).

– Corollary: for any p and q , any 0< λ < 1, and any X ∈ Ω, s(λ · p(X ) + (1−

λ) · q(X ), w(X ))< λ · s(p(X ), w(X ))+ (1−λ) · s(q(X ), w(X ))
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Finally, choose an assignment of truth-value estimates p :Ω→ [0,1] to propositions inΩ.

To Show: p tends to be maximally accurate, in the sense that there is no assignment of

truth-value estimates q such that I(p)� I(q), if and only if:

(i) p is a probability function, and

(ii) p weakly represents �, i.e., X � Y only if p(X )≥ p(Y ).

Left-to-Right Direction: Suppose that p is not a probability function. Then, since I is

continuous and strictly proper, there is some probability function q : Ω→ [0,1] that is

more accurate come what may: I(p, w) > I(q , w) for all w ∈W (Predd et al., 2009, p.

4788). By Dominance, then, I(p) � I(q). Hence, there is no q such that I(p) � I(q)

only if p is a probability function.

Now suppose that p does not weakly represent �. So for some X ,Y ∈ Ω, X � Y and

p(X )< p(Y ).

Case 1: X � Y and X 6� Y . Let q(X ) = p(Y ), q(Y ) = p(X ), and q(Z) = p(Z) for all

other Z ∈Ω.

To Show:

(1a) For any w, w ′ ∈W such that:

(a) w(X ) = 1 (b ) w(Y ) = 0

(c ) w ′(X ) = 0 (d ) w ′(Y ) = 1

I(p, w)−I(q , w) = I(q , w ′)−I(p, w ′)> 0.

(1b ) For any w ′′ ∈W such that w ′′(X ) = w ′′(Y ) = 0 or w ′′(X ) = w ′′(Y ) = 1, I(p, w ′′) =

I(q , w ′′).

Proof of (1a): Choose any w, w ′ ∈W that satisfy (a)-(d ). Now note:
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(I) I(p, w)−I(q , w) =
∑

X∈Ω
s(p(X ), w(X ))− s(q(X ), w(X ))

= s(p(X ), w(X ))− s(q(X ), w(X ))

+s(p(Y ), w(Y ))− s(q(Y ), w(Y ))

And also:

(II) I(q , w ′)−I(p, w ′) = s(q(X ), w ′(X ))− s(p(X ), w ′(X ))

+s(q(Y ), w ′(Y ))− s(p(Y ), w ′(Y ))

Since q(X ) = p(Y ) and q(Y ) = p(X ), (II) gives us (III):

(III) I(q , w ′)−I(p, w ′) = s(p(Y ), w ′(X ))− s(q(Y ), w ′(X ))

+s(p(X ), w ′(Y ))− s(q(X ), w ′(Y ))

And since w(X ) = w ′(Y ) and w(Y ) = w ′(X ), (III) gives us (IV ):

(IV ) I(q , w ′)−I(p, w ′) = s(p(Y ), w(Y ))− s(q(Y ), w(Y ))

+s(p(X ), w(X ))− s(q(X ), w(X ))

So I(p, w)−I(q , w) = I(q , w ′)−I(p, w ′), from (I) and (IV ).

It only remains to show that I(p, w) − I(q , w) > 0. To that end, observe that since

p(X )< q(X ),

|q(X )−w(X )|= 1− q(x)< 1− p(X ) = |p(X )−w(X )|.

And since q(Y )< p(Y ),

|q(Y )−w(Y )|= q(Y )< p(Y ) = |p(Y )−w(Y )|.

Finally, since q(Z) = p(Z) for all other Z ∈Ω,

|q(Z)−w(Z)| ≤ |p(Z)−w(Z)|.

So I(p, w)> I(q , w), by Truth-Directedness.
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Therefore:

I(p, w)−I(q , w) = I(q , w ′)−I(p, w ′)> 0.

Proof of (1b): Choose any w ′′ ∈W such that w ′′(X ) = w ′′(Y ) = 0 or w ′′(X ) = w ′′(Y ) = 1.

Then we have:

I(p, w ′′)−I(q , w ′′)

= s(p(X ), w ′′(X ))− s(q(X ), w ′′(X ))

+s(p(Y ), w ′′(Y ))− s(q(Y ), w ′′(Y ))

= s(p(X ), w ′′(X ))− s(p(Y ), w ′′(X ))

+s(p(Y ), w ′′(X ))− s(p(X ), w ′′(X )) = 0

Hence I(p, w ′′) = I(q , w ′′).

Finally, given (1a) and (1b ), and given that X � Y (X � Y and X 6� Y ), we have I(p)�

I(q), by Swaps.

Case 2: X � Y and X � Y . Let q(X ) = p(Y ), q(Y ) = p(X ), and q(Z) = p(Z) for

all other Z ∈ Ω. Let r = 1/2 · p + 1/2 · q . So r (X ) = r (Y ) = (p(X ) + p(Y ))/2, and

r (Z) = p(Z) for all other Z ∈Ω.

To Show:

(2a) For any w, w ′ ∈W such that:

(a) w(X ) = 1 (b ) w(Y ) = 0

(c ) w ′(X ) = 0 (d ) w ′(Y ) = 1

I(p, w)−I(r, w)> I(r, w ′)−I(p, w ′)> 0.

(2a) For any w ′′ ∈W such that w ′′(X ) = w ′′(Y ) = 0 or w ′′(X ) = w ′′(Y ) = 1, I(p, w ′′)≥

I(r, w ′′).

Proof of (2a): Choose any w, w ′ ∈W that satisfy (a)-(d ). As noted in case 1:
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(I∗) I(p, w)−I(r, w) = s(p(X ), w(X ))− s(r (X ), w(X ))

+s(p(Y ), w(Y ))− s(r (Y ), w(Y ))
And:

(II∗) I(r, w ′)−I(p, w ′) = s(r (X ), w ′(X ))− s(p(X ), w ′(X ))

+s(r (Y ), w ′(Y ))− s(p(Y ), w ′(Y ))
By Convexity:

s(r (X ), w(X ))

= s(1/2 · p(X )+ 1/2 · q(X ), w(X ))

< 1/2 · s(p(X ), w(X ))+ 1/2 · s(q(X ), w(X )).

Likewise for s(r (Y ), w(Y )), s(r (X ), w ′(X )) and s(r (Y ), w ′(Y )). Therefore:

(III∗) I(p, w)−I(r, w)>

s(p(X ), w(X ))− [1/2 · s(p(X ), w(X ))+ 1/2 · s(q(X ), w(X ))]

+s(p(Y ), w(Y ))− [1/2 · s(p(Y ), w(Y ))+ 1/2 · s(q(Y ), w(Y ))]

= 1/2 · s(p(X ), w(X ))− 1/2 · s(q(X ), w(X ))

+1/2 · s(p(Y ), w(Y ))− 1/2 · s(q(Y ), w(Y ))

And:

(IV ∗) I(r, w ′)−I(p, w ′)<

= [1/2 · s(p(X ), w ′(X ))+ 1/2 · s(q(X ), w ′(X ))]− s(p(X ), w ′(X ))

+[1/2 · s(p(Y ), w ′(Y ))+ 1/2 · s(q(Y ), w ′(Y ))]− s(p(Y ), w ′(Y ))

= 1/2 · s(q(X ), w ′(X ))− 1/2 · s(p(X ), w ′(X ))

+1/2 · s(q(Y ), w ′(Y ))− 1/2 · s(p(Y ), w ′(Y ))

Lastly, since q(X ) = p(Y ) and q(Y ) = p(X ), (IV ∗) gives us (V ∗):

(V ∗) I(r, w ′)−I(p, w ′)<

= 1/2 · s(p(Y ), w ′(X ))− 1/2 · s(q(Y ), w ′(X ))

24



+1/2 · s(p(X ), w ′(Y ))− 1/2 · s(q(X ), w ′(Y ))

And since w(X ) = w ′(Y ) and w(Y ) = w ′(X ), (V ∗) gives us (VI∗):

(VI∗) I(r, w ′)−I(p, w ′)<

= 1/2 · s(p(Y ), w(Y ))− 1/2 · s(q(Y ), w(Y ))

+1/2 · s(p(X ), w(X ))− 1/2 · s(q(X ), w(X ))

So I(p, w)−I(r, w)> I(r, w ′)−I(p, w ′), from (III∗) and (VI∗). It only remains to show

that I(r, w ′)−I(p, w ′)> 0. To that end, observe that since p(X )< r (X ),

|p(X )−w ′(X )|= p(X )< r (X ) = |r (X )−w ′(X )|.

And since r (Y )< p(Y ),

|p(Y )−w ′(Y )|= 1− p(Y )< 1− r (Y ) = |r (Y )−w ′(Y )|.

Lastly, since r (Z) = p(Z) for all other Z ∈Ω,

|p(Z)−w ′(Z)| ≤ |r (Z)−w ′(Z)|.

So I(p, w ′)< I(r, w ′), by Truth-Directedness.

Therefore:
I(p, w)−I(r, w)> I(r, w ′)−I(p, w ′)> 0.

Proof of (2b): Choose any w ′′ ∈W such that w ′′(X ) = w ′′(Y ) = 0 or w ′′(X ) = w ′′(Y ) = 1.

Then we have:
I(p, w ′′)−I(r, w ′′) =

s(p(X ), w ′′(X ))− s(r (X ), w ′′(X ))

+s(p(Y ), w ′′(Y ))− s(r (Y ), w ′′(Y ))

By Convexity, then, we have:

I(p, w ′′)−I(r, w ′′)>
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s(p(X ), w ′′(X ))− [1/2 · s(p(X ), w ′′(X ))+ 1/2 · s(q(X ), w ′′(X ))]

+

s(p(Y ), w ′′(Y ))− [1/2 · s(p(Y ), w ′′(Y ))+ 1/2 · s(q(Y ), w ′′(Y ))]

= 1/2 · s(p(X ), w ′′(X ))− 1/2 · s(q(X ), w ′′(X ))

+1/2 · s(p(Y ), w ′′(Y ))− 1/2 · s(q(Y ), w ′′(Y ))

= 1/2 · s(p(X ), w ′′(X ))− 1/2 · s(p(Y ), w ′′(X ))

+1/2 · s(p(Y ), w ′′(X ))− 1/2 · s(p(X ), w ′′(X )) = 0

Hence I(r, w ′′)< I(p, w ′′).

Finally, given (2a) and (2b ), and given that X ≈ Y (X � Y and X � Y ), we have I(p)�

I(q), by Sweetenings.

Intermediate conclusion: if q fails to weakly represent �, either per case 1 or 2, then

there is some q such that I(p) � I(q). So there is no q such that I(p) � I(q) only if p

weakly represents �.

Right-to-Left Direction: Suppose that

(i) p is a probability function, and

(ii) p weakly represents �, i.e., X � Y only if p(X )≥ p(Y ).

To Show: p tends to be maximally accurate, in the sense that there is no assignment of

truth-value estimates q such that I(p)� I(q).

Suppose for reductio that there is some q such that I(p)� I(q).

Case 1: I(p) � I(q) follows from Dominance. In that case, I(p, w) > I(q , w) for all

w ∈ W . But no assignment of truth-value estimates q accuracy-dominates any proba-

bilistically coherent p relative to any strictly proper scoring rule I. If it did, we would

have Expp(I(p))> Expp(I(q)). ⇒⇐.

Case 2: I(p) � I(q) follows from Swaps. In that case, there is some X ,Y ∈ Ω such that
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X � Y , and some k > 0 such that

• I(p, w)−I(q , w) = k for any w ∈W such that w(X ) = 1 and w(Y ) = 0

• I(q , w ′)−I(p, w ′) = k for any w ′ ∈W such that w ′(X ) = 0 and w ′(Y ) = 1

• I(p, w ′′) = I(q , w ′′) for any w ′′ ∈W such that w ′′(X ) = w ′′(Y ) = 0 or w ′′(X ) =

w ′′(Y ) = 1

But then by (ii), p(X )≥ p(Y ). And in that case

Expp(I(p))−Expp(I(q)) =
∑

w

p(w)[I(p, w)−I(q , w)]

= k · [p(X &¬Y )− p(¬X &Y )]

= k · [p(X &¬Y )− p(¬X &Y )]+ k · [p(X &Y )− p(X &Y )]

= k · [p(X )− p(Y )]

≥ 0

But since I is strictly proper, Expp(I(p))< Expp(I(q)). ⇒⇐.

Case 3: I(p)� I(q) follows from Sweetenings. In that case, there is some X ,Y ∈Ω such

that X ≈ Y , and some j > k > 0 such that

• I(p, w)−I(q , w) = j for any w ∈W such that w(X ) = 1 and w(Y ) = 0

• I(q , w ′)−I(p, w ′) = k for any w ′ ∈W such that w ′(X ) = 0 and w ′(Y ) = 1

• I(p, w ′′) ≥ I(q , w ′′) for any w ′′ ∈W such that w ′′(X ) = w ′′(Y ) = 0 or w ′′(X ) =

w ′′(Y ) = 1
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But then by (ii), p(X ) = p(Y ). And in that case

Expp(I(p))−Expp(I(q)) =
∑

w

p(w)[I(p, w)−I(q , w)]

≥ j · p(X &¬Y )− k · p(¬X &Y )

> j · [p(X &¬Y )− ·p(¬X &Y )]

= j · [p(X &¬Y )− p(¬X &Y )]+ j · [p(X &Y )− p(X &Y )]

= j · [p(X )− p(Y )]

= 0

But since I is strictly proper, Expp(I(p))< Expp(I(q)). ⇒⇐.

Conclusion: p tends to be maximally accurate, in the sense that there is no assignment

of truth-value estimates q such that I(p)� I(q), if and only if:

(i) p is a probability function, and

(ii) p weakly represents �, i.e., X � Y only if p(X )≥ p(Y ).
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