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Abstract
1. 	Respirometry is a ubiquitous practice in experimental biology, but there is a lack 
of standard practices when analysing the resulting data, limiting transparency and 
reproducibility. As respirometry datasets become increasingly large and analytical 
approaches more complex, manipulating the data remains a challenge and often 
intractable with existing tools.

2. 	Here we describe the respR R package, a collection of functions that implement 
a workflow-based approach to automate the analysis and visualisation of respirom-
etry data. The package can be used for closed, intermittent flow, flow-through and 
open-tank respirometry and uses well-defined sets of rules to reliably and rapidly 
generate reproducible results.

3. 	We demonstrate how respR uses novel computing methods such as rolling re-
gressions and kernel density estimates to reliably detect maximum, minimum and 
most linear sections of the data, and critical oxygen tension, Pcrit.

4. 	Although designed specifically with aquatic respirometry in mind, the object-ori-
ented approach of the package and the unit-less nature of its analytical functions 
mean that parts of the package can easily be used to estimate linear relationships 
from a range of applications in many research disciplines.
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1   | INTRODUC TION

Metabolic rate is a fundamental trait associated with virtually all bio-
logical functions and is key in predicting patterns in ecology and con-
servation biology, from populations (Barneche et al., 2014; Seibel & 
Drazen, 2007) to ecosystems (Brown, Gillooly, Allen, Savage, & West, 
2004). It has been widely investigated in studies of the effects of ex-
ternal stressors on organisms and is increasingly used to study resil-
ience in climate change-related studies where warming is expected 
to drive increased metabolism in ectotherms (e.g. Carey, Harianto, & 
Byrne, 2016; Delorme & Sewell, 2016; Pörtner, 2002). It is also is by 

far the most common metric used to assess physiological performance 
in whole organisms, tissues and cells (White & Kearney, 2013). While 
there are other methods such as monitoring heart or ventilatory rates, 
metabolic rate is typically quantified using respirometry, which mea-
sures the rate of oxygen uptake over time (Lighton, 2008).

Depending on the experiment, different metabolic rate param-
eters may be of interest to researchers. These include maximum 
metabolic rate (MMR, or ṀO2,max), rates under high activity or ex-
haustive exercise and minimal metabolic rate (ṀO2,min), which may 
be termed standard (SMR), basal (BMR) or resting metabolic rate, 
and typically represents the minimum metabolic cost of maintain-
ing biological functioning (Chabot, Steffensen, & Farrell, 2016; 
White & Kearney, 2013). Routine metabolic rate (RMR) is similar *Nicholas Carey is a joint corresponding author as well as joint first author. 
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to ṀO2,min, but takes into account that in some organisms energy 
is expended on small, spontaneous movements to maintain pos-
ture or position (Rogers, Urbina, Reardon, McKenzie, & Wilson, 
2016). Another metric of interest is the critical oxygen tension, 
which represents the lowest level of oxygen at which aerobic me-
tabolism is independent of the ambient partial pressure of oxygen 
(Pcrit; Hochachka & Somero, 2002; Yeager & Ultsch, 1989).

Respirometry studies are increasingly outputting large, 
high-resolution data conducted over long periods (e.g. 20 hr; Norin 
& Malte, 2012). In many cases, processing the data involves an ad 
hoc selection of data points with poorly reported criteria, and sub-
sequent manual processing of the data subset(s) using a spread-
sheet program (e.g. Microsoft Excel) or an integrated development 
environment (IDE, e.g. R or Matlab). These approaches can be te-
dious and time-consuming especially when spreadsheet programs 
struggle with the vast datasets that are generated, while IDEs re-
quire a degree of expertise to use and have substantial learning 
curves. Dedicated software are also available to perform meta-
bolic rate analyses, but many have costly licensing requirements 
(e.g. AutoResp by Loligo Systems), complicating or preventing their 
use on multiple machines, and are proprietary and closed-source, 
hindering scientific reproducibility and transparency.

A number of open-source R software packages have re-
cently become available which are designed for, or are suitable 
to analyse data from respirometry. The respirometry package 
(https://CRAN.R-project.org/package=respirometry) contains a 
comprehensive collection of tools to explore and evaluate exper-
imental parameters in aquatic respirometry and is useful for the 
design and diagnosis of experimental setups. The rMR package 
(https://CRAN.R-project.org/package=rMR) performs interval-based 
metabolic rate calculations and has a method to analyse Pcrit using 
the “broken-stick” regression method (Yeager & Ultsch, 1989). 
FishResp (Morozov, McCairns, & Merilä, 2019) is focused on the 
analysis of intermittent respirometry and performs background res-
piration corrections. The package LoLinR (Olito, White, Marshall, & 
Barneche, 2017), while not specifically coded for respirometry, pro-
vides a statistically robust method of detecting a “best-fit” regression, 
and performs well at identifying truly linear subsets of a data series.

Here, we describe respR, an open-source R package designed 
to provide an efficient and reproducible workflow for the analysis 
of respirometry data (Table 1). The package contains utilities to: 
(a) analyse closed, intermittent, flow-through and open-tank respi-
rometry data (see Lighton, 2008; Svendsen, Bushnell, & Steffensen, 
2016), (b) determine volume and mass specific oxygen uptake rates, 
(c) automatically detect maximal and minimal rates, Pcrit, and (d) de-
tect the most linear sections of data using novel rolling regression 
and kernel density estimation techniques. In addition, the package 
contains ‘housekeeping’ functions for data import and export as 
supplementary material at all stages of respirometry analysis, in-
cluding saving raw data, subsetting criteria, background corrections, 
units of measure and resulting metabolic rates. This streamlines 
the reporting of analytical methods and allows reviewers or other 

investigators to fully reproduce or scrutinise the results. Additional 
functions useful in processing respirometry data are available, and 
are described in more detail in our online documentation (https://
januarharianto.github.io/respR/). A comprehensive series of vi-
gnettes, which explain all package functions, discuss best practices 
and alternative methods are also available (Table 2).

2   | PACK AGE OVERVIE W

The respR package streamlines the analysis of respirometry data by 
partitioning the data processing workflow into several independent 
actions: (a) initially, data are imported, checked for common errors, 
plotted for visual inspection and exported as an object; (b) the object 
is then analysed to estimate the desired rate parameter; (c) diagnostic 
plots are automatically generated and the data can be further ex-
plored using the generic S3 print(), plot() and summary() com-
mands to verify the results; (d) adjustments to the data from 
background respiration are applied; and (e) volume- or mass-specific 
rate conversions, specific to the respiratory chamber and specimen(s), 
are calculated where necessary (Figure 1). By design, each step of the 
workflow requires minimal manual manipulation of the data, and the 
user can pass the output of each function to the next. This object-
oriented approach makes respR easy to use, even for novice users of 
R, and allows R programmers to extend the functionality of the pack-
age easily. Note, we use Ȯ2 in the text to represent the unit-less rate 
of O2 use with regard to the time unit, and to distinguish it from other 
commonly reported metrics (e.g. ṀO2, V̇O2). Installation of respR can 
be performed directly via the R console using devtools: 

To illustrate the main features of the package, five example data-
sets (sardine.rd, urchin.rd, intermittent.rd, squid.rd 
and zeb _ intermittent.rd) are distributed with respR.

3   | DATA IMPORT AND E XPLOR ATION

Data should be formatted correctly before use in respR. The function 
inspect() extracts a two-column data frame from a multicolumn 
dataset and performs error checks while plotting the data for quick data 
visualisation. Time data, being a continuous variable, should be sequen-
tial, without duplicates. Ideally, sampling frequency will be monotonic, 
but in many instances this may not be the case, such as experiments 
with irregular sampling intervals, or because machine drift and/or data 
dropouts frequently occur during regular sampling. The information ob-
tained from the checks allow us to make informed decisions on how 
to best analyse the data, and fix any cryptic errors (e.g. non-numeric 
data) easily. In particular, knowing whether a timeseries is irregular, or 
not, will allow us to decide whether to use time-based data extraction 
methods to obtain data segments of predetermined time intervals.

https://CRAN.R-project.org/package=respirometry
https://CRAN.R-project.org/package=rMR
https://januarharianto.github.io/respR/
https://januarharianto.github.io/respR/
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TABLE  1 Main functions available in respR

Treatment A Treatment B

import _ data() Automatically import and format raw data files from commonly used respirometry devices

inspect() Checks data for errors, extracts a two-column dataframe for analysis, and plots the data for quick visualisation

calc _ rate.bg() Calculates background oxygen uptake rate

calc _ rate() Calculates oxygen uptake rate from precise segment(s) of the data

calc _ rate.ft() Calculates oxygen uptake rate in flowthrough experiments

auto _ rate() Calculates ‘max’, ‘min’, ‘interval’ or ‘best-fit’ rates

adjust _ rate() Corrects data for background changes in oxygen concentration

convert _ DO() Converts between units of oxygen concentration

convert _ rate() Converts experimental rates to specific units

pcrit() Calculates critical oxygen tension, Pcrit

subsample() Reduces the size of a large data frame, by extracting every n-th row

subset _ data() Extract a subset of a data frame

intermittent.rd.rda Respirometry data for a single sea urchin specimen (Heliocidaris erythrogramma) collected using intermittent 
respirometry. Data were collected over 80 min

sardine.rd.rda Respirometry data for a single sardine specimen, Sardinops sagax. Data were collected over 2 hr

squid.rd.rda Respirometry data for a single squid specimen, Doryteuthis opalescens, to determine Pcrit. Data were collected over a 
9-hr period

urchins.rd.rda Multi-column dataset containing respirometry and background respirometry data for 16 sea urchin specimens 
(Heliocidaris erythrogramma). Data for each urchin were collected over 45 min

zeb _ intermittent.
rd.rda

Multiple measurements (106 replicates, plus initial and end background measurements) of oxygen consumption in a 
zebrafish, Danio rerio, obtained using intermittent flow respirometry

TABLE  2 R Vignettes for the respR package, with worked examples, discussions and comparisons to other R package functions. 
Available online: https://januarharianto.github.io/respR/articles/respR.html

Treatment A Treatment B

Getting Started Introduction to respirometry and respR

Importing your data How to import and format data using respR

Closed-chamber respirometry A typical workflow example that introduces the main functions of respR

auto _ rate(): Automatic detection of metabolic rates Introduction to the auto _ rate() function

Performance of auto _ rate() in detecting linear 
regions

Assessing the accuracy of auto _ rate() using custom performance tests

Comparative performance of auto _ rate() and 
LoLinR

A comparison of auto _ rate() with a similar function in LoLinR (Olito et al., 
2017)

Intermittent-flow respirometry: Simple example How to analyse simple intermittent-flow data

Intermittent-flow respirometry: Complex example A more complex example on the analysis of intermittent-flow data from a larger 
experiment

Flowthrough respirometry How to analyse flowthrough respirometry data

Pcrit analysis How to estimate Pcrit

Reproducibility Using respR to promote open, reproducible respirometry analyses

respR and the tidyverse A quick guide on how to integrate respR functions with the popular dplyr package, 
and more

A comparison of respR with other R packages Comparing outputs of respR to other R package functions, and a discussion of the 
advantages of using respR

When to use respR A discussion of what respR offers and when users should consider using the 
package for respirometry analyses

https://januarharianto.github.io/respR/articles/respR.html
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Using inspect() is optional—the main functions in our pack-
age will readily work with data frames that were not processed 
by the function. Running inspect() is an exploratory step that 
flags potential issues before analysis. Error check results are 
summarised in the R console and all tests are saved in the output 
object with the locations (i.e. row numbers), if any, of the errors: 

4   | DATA ANALYSIS

4.1  | Calculating background rate

Background oxygen consumption rate is often measured to ac-
count for the contribution of microbial respiration, and applied as a 
correction to experimental rates (Rogers et al., 2016). Background 
rates typically account for a small percentage of experimental 
rates, and multiple ‘blank’ experiments are usually conducted 
and the rates averaged to obtain a more accurate estimate of the 
correction (e.g. Carey & Sigwart, 2014; Daoud, Chabot, Audet, & 
Lambert, 2007). The function calc_rate.bg() uses simple lin-
ear regression to process multiple background rate measurements 
simultaneously. Data segments can be truncated before analysis 
by time period or row numbers. The results are stored as an object 
for later use.

F IGURE  1 Diagram showing steps in a typical workflow in the analysis of respirometry data using respR. (a) Data are first checked for 
errors before (b) main functions are used to extract and analyse segments of the data. (c) Summarised results and diagnostic plots provide 
immediate visual feedback on the outcome of the analyses. (d) Once the rate estimates are obtained, they can be converted into volume 
and/or mass-specific rates

F IGURE  2  Illustration showing the 
sampling method used by auto _ rate() 
during (a) interval regression analysis, 
where sample windows do not overlap 
and (b) rolling regression analysis, where 
sample windows overlap and move 
forward by one sample unit at a time
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4.2  | Processing respirometry data

Typically, the analysis of respirometry data requires the selection 
one or more linear sections of the data for more accurate calcu-
lations of Ȯ2 (e.g. Carey et al., 2016; Chu & Gale, 2017; Gordon, 
Chin, & Vojkovich, 1989). The function calc_rate() can manu-
ally extract and process data subset from respirometry data. Data 
subsets can be selected by (a) time period, (b) row numbers, (c) O2 
decrease or (d) proportion, which should accommodate most, if not 
all, manual data selection requirements and allow for consistent re-
porting of methods and results. Rates are determined using linear 
regression.

For more complex respirometry parameters, the function 
auto _ rate() uses a novel method of combining rolling regression 
and kernel density estimate algorithms to detect patterns in respi-
rometry data. First, auto _ rate() always performs a rolling linear 
regression on the data before additional methods are applied. The 
rolling regression runs all possible ordinary least-squares linear re-
gressions (y = �0 + �1X + �) of a fixed sample width across the entire 
data series, and is expressed as: 

where n is the window of width n < T, T is the total length of the data-
set, yt(n) is the vector of observations (e.g. oxygen concentration), 

Xt(n) is the matrix of explanatory variables, β(n) is a vector of regres-
sion parameters and �t(n) is a vector of error terms. Thus, a total of 
(T − n) + 1 number of overlapping regressions are fitted. Here, we can 
obtain maximum and minimum rate values of width n by ranking the 
regressions, and if a periodic, interval-based regression is required, the 
function automatically selects regression metrics for non-overlapping 
sections of the data (Figure 2).

The auto_rate() function can also automatically select the 
most stable (i.e. most linear) sections of noisy data by applying addi-
tional analytical techniques. First, we take advantage of the key as-
sumption that linear sections of a data series are reflected by stable 
parameters across the rolling estimates, a property that is often ap-
plied in financial statistics to evaluate model stability and make for-
ward predictions on time-series data (Zivot & Wang, 2006). We use 
kernel density estimation (KDE) techniques, often applied in various 
inference procedures such as machine learning, pattern recognition 
and computer vision, to automatically aggregate stable (i.e. linear) seg-
ments as they naturally form one or more local maximums (‘modes’) in 
the probability density estimate.

Kernel density estimation requires no assumption that the data 
is from a parametric family, and learns the shape of the density auto-
matically without supervision. KDE can be expressed as: yt(n) = Xt(n)�(n)+�t(n), t =n,… ,T

f̂(x)=
1

nhd

n
∑

i=1

K

(

x−Xi

h

)

F IGURE  3 Depending on the method 
input, the function, auto _ rate() 
is able to show: (a) the maximum 
rate detected; (b) the minimum rate 
detected; (c) the most linear region as 
determined by kernel density estimates; 
and (d) calculation of rate by fixed-width 
intervals. Data obtained from analysis of 
the sardine.rd dataset
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where f is the density function from an unknown distribution P for 
X1, … ,Xn, K is the kernel function and h is the optimal smoothing band-
width. The smoothing bandwidth is computed using the solve-the-
equation plug-in method (Jones, Marron, & Sheather, 1996; Sheather 
& Jones, 1991) which works well with multimodal or non-normal den-
sities (Raykar & Duraiswami, 2006).

We then use h to select all values in the rolling regression output that 
match the range of values around each mode (�n) of the KDE (i.e. �n±h). 
These rolling estimates are grouped and ranked by size, and the upper and 
lower bounds of the data windows they represent are used to reselect linear 
segments from the original data series. The rolling estimates are then dis-
carded while the ranked data segments are analysed using linear regression. 
Summary diagnostics and visual plots provide supporting information on the 
technique and the validity of the results (Figures 3 and 4). The performance 
of this particular method is further discussed in Appendix S1.

4.3  | Estimating rate from flow-through respirometry

The function calc_rate.ft() is used to specifically analyse flow-
through respirometry data, and is similar to calc_rate() in function-
ality. However, it accepts additional inputs of incurrent and excurrent 
oxygen concentration, and flow rate, based on the equation: 

 where Ȯ2 is the rate of O2 uptake over time, CiO2 and CeO2 are the 
incurrent and excurrent O2 concentrations and FR is the flow rate of 
water through the system (Lighton, 2008).

4.4  | Estimating critical oxygen tension, Pcrit

We provide two methods of estimating Pcrit. The first is a “broken-
stick” regression (BSR) approach, adopted from Yeager and Ultsch 
(1989) in which two segments of the data are iteratively fitted and 
the intersection with the smallest sum of the residual sum of squares 
between the two linear models is the estimated critical point. The 
second method is a wrapper for the segmented, or nonlinear ‘broken-
line’ regression approach, presented by Muggeo (2003) and available 
as part of the segmented R package (Muggeo, 2008), which esti-
mates the critical point by iteratively fitting two intersecting models 
on the data and selecting the point that minimises the ‘gap’ between 
the two fitted lines. Both methods are well-used in the literature 
(Chu & Gale, 2017; Hansen, Byriel, Jensen, Steffensen, & Svendsen, 
2017; Labra, Bogdanovich, & Bozinovic, 2016; Regan & Richards, 
2017; Svendsen et al., 2016). Note that the accuracy of the BSR 
method to describe non-linear traits is increasingly being debated 
(Marshall, Bode, & White, 2013) and is discussed in greater detail in 
our vignettes (see Appendix S1).Ȯ2= (CiO2−CeO2)FR

F IGURE  4 Diagnostic plots produced 
by the function, auto _ rate(): (a) the 
rolling regression of rate as a function 
of time, with dotted lines indicating the 
region used to estimate the parameter; 
(b) a kernel density plot that shows only 
when the linear method is called; (c) a 
residual plot of the regression; and (d) a 
normal Q-Q plot of the residuals of the 
regression. Data obtained from analysis of 
the sardine.rd dataset
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As Pcrit is the break point in the relationship between ambient dis-
solved oxygen (O2) and rate of oxygen uptake (Ȯ2), the user has two op-
tions to input data. With an O2 ∼  timeseries dataset, the function will 
automatically perform both a rolling mean and a rolling regression of O2 
data over time to produce the required Ō2 ∼ Ȯ2 dataset (Figure 5). This 
computationally intensive, but fast, method is unique to respR as most 
other methods use non-overlapping intervals to characterise their data, 
but rolling metrics are more sensitive to Pcrit analysis due to their high res-
olution. Alternatively, the user can input previously-determined rate ∼ Ȯ2 
data and the function will determine Pcrit using the input data directly.

5   | CORREC TING , CONVERTING AND 
SC ALING DATA

5.1  | Corrections for background respiration

The function adjust.rate() can be used to correct Ȯ2 estimates 
for background respiration. As the oxygen consumption units are 
not mass specific at the point of correction, the function adjusts Ȯ2 
directly without bias using the equation: 

where �d is the air–water oxygen flux as determined by Fick’s Law 
(Leclercq, Gattuso, & Jaubert, 1999) and Ȯ2(bg) is background respiration.

5.2  | Rate conversions

Because respR does not make any underlying assumptions on the units 
used to calculate metabolic rate, we provide two functions, convert_
DO() and convert_rate(), to transform Ȯ2 into volume-adjusted 
or mass-specific units. These functions are comprehensive and can 
currently convert between 168 combinations of units and has support 
for changes in temperature, salinity and pressure (Table 3). This unique 
approach has the advantage of allowing rate calculations for data that 
may not be entirely supported by the respR workflow. For example, 
measurements of respiration can be scaled to surface area (e.g. diatoms 
& coral, Iversen & Ploug, 2013; Naumann, Orejas, & Ferrier-Pagès, 2014), 

Ȯ2(correction)= Ȯ2− (𝜙d+ Ȯ2(bg))

F IGURE  5 Output plots of the 
function pcrit(), used in the calculation 
of critical oxygen tension, Pcrit. (a) To 
determine Pcrit in a regular O2 time series, 
the function performs a rolling regression 
against the rolling mean of the data. This 
step is skipped if similar data is already 
provided, and the argument has.rate 
= TRUE is used in the function. This 
produces (b, c) data that represents the 
rate of O2 consumption as a function of O2 
concentration. Regression lines are then 
fitted iteratively, based on the broken-
stick methods of Yeager and Ultsch (1989) 
and the segmented approach of Muggeo 
(2003), until convergence is achieved. The 
output then highlights the critical points 
as indicated by the coloured lines. (d) A 
close-up plot of the results in (b) and (c) 
is provided for the user to visualise the 
positions of the dotted lines relative to 
the x-axis

TABLE  3 Units available for conversions in convert _ DO() 
and convert _ rate() functions in respR

Parameter Used in Units

Oxygen; O2 convert _ DO(), 
convert _ rate()

mg L−1, μg L−1, 
μmol L−1, mL L−1, 
μg kg−1, mg kg−1, 
μmol kg−1, 
mmol kg−1, mL kg−1, 
hPa, kPa, mmHg, 
inHg

Mass convert _ rate() μg, mg, g, kg

Time convert _ rate() second, minute, hour
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volume (e.g. copepod eggs Hammervold, Glud, Evjemo, Hagemann, & 
Hansen, 2015) or density (e.g. sea urchin larvae Stumpp, Wren, Melzner, 
Thorndyke, & Dupont, 2011), all of which are not yet supported in  
respR’s conversion functions. Thus, any respirometry data may still be 
analysed without any restriction until conversion is required, in which 
users at this point perform those conversions manually.

The function convert _ DO() is used to convert units of oxy-
gen concentration only (e.g. mg/L or %; Table 2). For ease of use, 
we implemented a simple fuzzy string-matching algorithm to match 
relevant units (e.g. “mg/L,” “mg/l,” “mg L−1” and “mg I−1” are identi-
fied as the same units). The function convert _ rate() is concep-
tually similar to convert _ DO(), but it focuses on volumetric and 
mass-specific conversions (e.g. mgh−1 kg−1).

6   | CONCLUDING REMARKS AND FUTURE 
IMPROVEMENTS

The package respR implements a number of methods not available in 
any other R package or software. These include the use of rolling regres-
sion techniques to estimate ṀO2,max, ṀO2,min and Pcrit, the use of kernel 
density estimation techniques to detect and rank linear segments of the 
data, support for unevenly spaced time data, and the ability to extract 
and analyse data precisely by time, row, or O2 concentration. It is impor-
tant to note, however, that while respR contains automated methods 
to assist in processing difficult data, no amount of data manipulation can 
fix poor data. Users should still ensure that their data has been collected 
using acceptable methods (e.g. closed respirometry setups should al-
ways be equipped with mixing devices, see Clark, Sandblom, & Jutfelt, 
2013) before performing analyses of any kind. Nevertheless, respR 
adheres to well-defined rules to obtain rates of interest, is extensively 
documented online, and its methods and results are transparent and 
fully reproducible. The respR package allows for more effective and 
less time-consuming handling and processing of the broad datasets that 
are increasingly common in respirometry research.
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