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Abstract
1.		Respirometry	is	a	ubiquitous	practice	in	experimental	biology,	but	there	is	a	lack	
of	standard	practices	when	analysing	the	resulting	data,	limiting	transparency	and	
reproducibility.	As	respirometry	datasets	become	increasingly	large	and	analytical	
approaches	more	complex,	manipulating	the	data	remains	a	challenge	and	often	
intractable	with	existing	tools.

2.		Here	we	describe	the	respR R	package,	a	collection	of	functions	that	implement	
a	workflow-based	approach	to	automate	the	analysis	and	visualisation	of	respirom-
etry	data.	The	package	can	be	used	for	closed,	intermittent	flow,	flow-through	and	
open-tank	respirometry	and	uses	well-defined	sets	of	rules	to	reliably	and	rapidly	
generate	reproducible	results.

3.		We	demonstrate	how	respR	uses	novel	computing	methods	such	as	rolling	re-
gressions	and	kernel	density	estimates	to	reliably	detect	maximum,	minimum	and	
most	linear	sections	of	the	data,	and	critical	oxygen	tension,	Pcrit.

4.		Although	designed	specifically	with	aquatic	respirometry	in	mind,	the	object-ori-
ented	approach	of	the	package	and	the	unit-less	nature	of	its	analytical	functions	
mean	that	parts	of	the	package	can	easily	be	used	to	estimate	linear	relationships	
from	a	range	of	applications	in	many	research	disciplines.
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1   | INTRODUC TION

Metabolic	rate	is	a	fundamental	trait	associated	with	virtually	all	bio-
logical	functions	and	is	key	in	predicting	patterns	in	ecology	and	con-
servation	biology,	 from	populations	 (Barneche	et	al.,	 2014;	Seibel	&	
Drazen,	2007)	to	ecosystems	(Brown,	Gillooly,	Allen,	Savage,	&	West,	
2004).	It	has	been	widely	investigated	in	studies	of	the	effects	of	ex-
ternal	stressors	on	organisms	and	is	 increasingly	used	to	study	resil-
ience	 in	 climate	 change-related	 studies	where	warming	 is	 expected	
to	drive	increased	metabolism	in	ectotherms	(e.g.	Carey,	Harianto,	&	
Byrne,	2016;	Delorme	&	Sewell,	2016;	Pörtner,	2002).	It	is	also	is	by	

far	the	most	common	metric	used	to	assess	physiological	performance	
in	whole	organisms,	tissues	and	cells	(White	&	Kearney,	2013).	While	
there	are	other	methods	such	as	monitoring	heart	or	ventilatory	rates,	
metabolic	rate	is	typically	quantified	using	respirometry,	which	mea-
sures	the	rate	of	oxygen	uptake	over	time	(Lighton,	2008).

Depending	on	the	experiment,	different	metabolic	rate	param-
eters	may	be	of	interest	to	researchers.	These	include	maximum	
metabolic	rate	(MMR,	or	ṀO2,max),	rates	under	high	activity	or	ex-
haustive	exercise	and	minimal	metabolic	rate	(ṀO2,min),	which	may	
be	termed	standard	(SMR),	basal	(BMR)	or	resting	metabolic	rate,	
and	typically	represents	the	minimum	metabolic	cost	of	maintain-
ing	 biological	 functioning	 (Chabot,	 Steffensen,	 &	 Farrell,	 2016;	
White	&	Kearney,	2013).	Routine	metabolic	rate	(RMR)	is	similar	*Nicholas	Carey	is	a	joint	corresponding	author	as	well	as	joint	first	author.	
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to	ṀO2,min,	but	takes	into	account	that	in	some	organisms	energy	
is	expended	on	small,	spontaneous	movements	to	maintain	pos-
ture	or	 position	 (Rogers,	Urbina,	Reardon,	McKenzie,	&	Wilson,	
2016).	Another	metric	of	 interest	 is	 the	 critical	 oxygen	 tension,	
which	represents	the	lowest	level	of	oxygen	at	which	aerobic	me-
tabolism	is	independent	of	the	ambient	partial	pressure	of	oxygen	
(Pcrit;	Hochachka	&	Somero,	2002;	Yeager	&	Ultsch,	1989).

Respirometry	 studies	 are	 increasingly	 outputting	 large,	
high-resolution	data	conducted	over	long	periods	(e.g.	20	hr;	Norin	
&	Malte,	2012).	In	many	cases,	processing	the	data	involves	an	ad	
hoc	selection	of	data	points	with	poorly	reported	criteria,	and	sub-
sequent	manual	processing	of	 the	data	 subset(s)	using	a	 spread-
sheet	program	(e.g.	Microsoft	Excel)	or	an	integrated	development	
environment	(IDE,	e.g.	R	or	Matlab).	These	approaches	can	be	te-
dious	and	time-consuming	especially	when	spreadsheet	programs	
struggle	with	the	vast	datasets	that	are	generated,	while	IDEs	re-
quire	 a	degree	of	 expertise	 to	use	and	have	 substantial	 learning	
curves.	 Dedicated	 software	 are	 also	 available	 to	 perform	meta-
bolic	 rate	analyses,	but	many	have	costly	 licensing	 requirements	
(e.g.	AutoResp	by	Loligo	Systems),	complicating	or	preventing	their	
use	on	multiple	machines,	and	are	proprietary	and	closed-source,	
hindering	scientific	reproducibility	and	transparency.

A	 number	 of	 open-source	 R	 software	 packages	 have	 re-
cently	 become	 available	 which	 are	 designed	 for,	 or	 are	 suitable	
to	 	analyse	data	 from	 respirometry.	 The	respirometry	 package	
(https://CRAN.R-project.org/package=respirometry)	 contains	 a	
comprehensive	collection	of	 tools	 to	explore	and	evaluate	exper-
imental	 parameters	 in	 aquatic	 respirometry	 and	 is	 useful	 for	 the	
design	 and	 diagnosis	 of	 experimental	 setups.	 The	 rMR	 package	
(https://CRAN.R-project.org/package=rMR)	performs	interval-based	
metabolic	 rate	 calculations	 and	has	 a	method	 to	 analyse	Pcrit	 using	
the	 “broken-stick”	 regression	 method	 (Yeager	 &	 Ultsch,	 1989).	
FishResp	 (Morozov,	McCairns,	&	Merilä,	 2019)	 is	 focused	 on	 the	
analysis	of	intermittent	respirometry	and	performs	background	res-
piration	corrections.	The	package	LoLinR	(Olito,	White,	Marshall,	&	
Barneche,	2017),	while	not	specifically	coded	for	respirometry,	pro-
vides	a	statistically	robust	method	of	detecting	a	“best-fit”	regression,	
and	performs	well	at	identifying	truly	linear	subsets	of	a	data	series.

Here,	we	describe	respR,	an	open-source	R	package	designed	
to	provide	an	efficient	and	reproducible	workflow	for	the	analysis	
of	 respirometry	 data	 (Table	 1).	 The	 package	 contains	 utilities	 to:	
(a)	analyse	closed,	intermittent,	flow-through	and	open-tank	respi-
rometry	data	(see	Lighton,	2008;	Svendsen,	Bushnell,	&	Steffensen,	
2016),	(b)	determine	volume	and	mass	specific	oxygen	uptake	rates,	
(c)	automatically	detect	maximal	and	minimal	rates,	Pcrit,	and	(d)	de-
tect	the	most	linear	sections	of	data	using	novel	rolling	regression	
and	kernel	density	estimation	techniques.	In	addition,	the	package	
contains	 ‘housekeeping’	 functions	 for	 data	 import	 and	 export	 as	
supplementary	material	 at	 all	 stages	 of	 respirometry	 analysis,	 in-
cluding	saving	raw	data,	subsetting	criteria,	background	corrections,	
units	 of	 measure	 and	 resulting	 metabolic	 rates.	 This	 streamlines	
the	reporting	of	analytical	methods	and	allows	reviewers	or	other	

investigators	to	fully	reproduce	or	scrutinise	the	results.	Additional	
functions	useful	in	processing	respirometry	data	are	available,	and	
are	described	 in	more	detail	 in	our	online	documentation	(https://
januarharianto.github.io/respR/).	 A	 comprehensive	 series	 of	 vi-
gnettes,	which	explain	all	package	functions,	discuss	best	practices	
and	alternative	methods	are	also	available	(Table	2).

2   | PACK AGE OVERVIE W

The	respR	package	streamlines	the	analysis	of	respirometry	data	by	
partitioning	 the	data	processing	workflow	 into	 several	 independent	
actions:	 (a)	 initially,	 data	 are	 imported,	 checked	 for	 common	errors,	
plotted	for	visual	inspection	and	exported	as	an	object;	(b)	the	object	
is	then	analysed	to	estimate	the	desired	rate	parameter;	(c)	diagnostic	
plots	 are	 automatically	 generated	 and	 the	 data	 can	 be	 further	 ex-
plored	using	the	generic	S3	print(),	plot() and summary() com-
mands	 to	 verify	 the	 results;	 (d)	 adjustments	 to	 the	 data	 from	
background	respiration	are	applied;	and	(e)	volume-	or	mass-specific	
rate	conversions,	specific	to	the	respiratory	chamber	and	specimen(s),	
are	calculated	where	necessary	(Figure	1).	By	design,	each	step	of	the	
workflow	requires	minimal	manual	manipulation	of	the	data,	and	the	
user	can	pass	 the	output	of	each	 function	 to	 the	next.	This	object-
oriented	approach	makes	respR	easy	to	use,	even	for	novice	users	of	
R,	and	allows	R	programmers	to	extend	the	functionality	of	the	pack-
age	easily.	Note,	we	use	Ȯ2	in	the	text	to	represent	the	unit-less	rate	
of	O2	use	with	regard	to	the	time	unit,	and	to	distinguish	it	from	other	
commonly	reported	metrics	(e.g.	ṀO2,	V̇O2).	Installation	of	respR can 
be	 performed	 directly	 via	 the	 R	 console	 using	 devtools: 

To	illustrate	the	main	features	of	the	package,	five	example	data-
sets	 (sardine.rd,	 urchin.rd,	 intermittent.rd,	 squid.rd 
and zeb _ intermittent.rd)	are	distributed	with	respR.

3   | DATA IMPORT AND E XPLOR ATION

Data	should	be	formatted	correctly	before	use	in	respR.	The	function	
inspect()	 extracts	 a	 two-column	 data	 frame	 from	 a	 multicolumn	
dataset	and	performs	error	checks	while	plotting	the	data	for	quick	data	
visualisation.	Time	data,	being	a	continuous	variable,	should	be	sequen-
tial,	without	duplicates.	Ideally,	sampling	frequency	will	be	monotonic,	
but	in	many	instances	this	may	not	be	the	case,	such	as	experiments	
with	irregular	sampling	intervals,	or	because	machine	drift	and/or	data	
dropouts	frequently	occur	during	regular	sampling.	The	information	ob-
tained	from	the	checks	allow	us	to	make	 informed	decisions	on	how	
to	best	analyse	the	data,	and	fix	any	cryptic	errors	 (e.g.	non-numeric	
data)	easily.	In	particular,	knowing	whether	a	timeseries	is	irregular,	or	
not,	will	allow	us	to	decide	whether	to	use	time-based	data	extraction	
methods	to	obtain	data	segments	of	predetermined	time	intervals.

https://CRAN.R-project.org/package=respirometry
https://CRAN.R-project.org/package=rMR
https://januarharianto.github.io/respR/
https://januarharianto.github.io/respR/
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TABLE  1 Main	functions	available	in	respR

Treatment A Treatment B

import _ data() Automatically	import	and	format	raw	data	files	from	commonly	used	respirometry	devices

inspect() Checks	data	for	errors,	extracts	a	two-column	dataframe	for	analysis,	and	plots	the	data	for	quick	visualisation

calc _ rate.bg() Calculates	background	oxygen	uptake	rate

calc _ rate() Calculates	oxygen	uptake	rate	from	precise	segment(s)	of	the	data

calc _ rate.ft() Calculates	oxygen	uptake	rate	in	flowthrough	experiments

auto _ rate() Calculates	‘max’,	‘min’,	‘interval’	or	‘best-fit’	rates

adjust _ rate() Corrects	data	for	background	changes	in	oxygen	concentration

convert _ DO() Converts	between	units	of	oxygen	concentration

convert _ rate() Converts	experimental	rates	to	specific	units

pcrit() Calculates	critical	oxygen	tension,	Pcrit

subsample() Reduces	the	size	of	a	large	data	frame,	by	extracting	every	n-th	row

subset _ data() Extract	a	subset	of	a	data	frame

intermittent.rd.rda Respirometry	data	for	a	single	sea	urchin	specimen	(Heliocidaris erythrogramma)	collected	using	intermittent	
respirometry.	Data	were	collected	over	80	min

sardine.rd.rda Respirometry	data	for	a	single	sardine	specimen,	Sardinops sagax.	Data	were	collected	over	2	hr

squid.rd.rda Respirometry	data	for	a	single	squid	specimen,	Doryteuthis opalescens,	to	determine	Pcrit.	Data	were	collected	over	a	
9-hr	period

urchins.rd.rda Multi-column	dataset	containing	respirometry	and	background	respirometry	data	for	16	sea	urchin	specimens	
(Heliocidaris erythrogramma).	Data	for	each	urchin	were	collected	over	45	min

zeb _ intermittent.
rd.rda

Multiple	measurements	(106	replicates,	plus	initial	and	end	background	measurements)	of	oxygen	consumption	in	a	
zebrafish,	Danio rerio,	obtained	using	intermittent	flow	respirometry

TABLE  2 R	Vignettes	for	the	respR	package,	with	worked	examples,	discussions	and	comparisons	to	other	R	package	functions.	
Available	online:	https://januarharianto.github.io/respR/articles/respR.html

Treatment A Treatment B

Getting	Started Introduction	to	respirometry	and	respR

Importing	your	data How	to	import	and	format	data	using	respR

Closed-chamber	respirometry A	typical	workflow	example	that	introduces	the	main	functions	of	respR

auto _ rate():	Automatic	detection	of	metabolic	rates Introduction	to	the	auto _ rate()	function

Performance	of	auto _ rate()	in	detecting	linear	
regions

Assessing	the	accuracy	of	auto _ rate()	using	custom	performance	tests

Comparative	performance	of	auto _ rate() and 
LoLinR

A	comparison	of	auto _ rate()	with	a	similar	function	in	LoLinR	(Olito	et	al.,	
2017)

Intermittent-flow	respirometry:	Simple	example How	to	analyse	simple	intermittent-flow	data

Intermittent-flow	respirometry:	Complex	example A	more	complex	example	on	the	analysis	of	intermittent-flow	data	from	a	larger	
experiment

Flowthrough	respirometry How	to	analyse	flowthrough	respirometry	data

Pcrit analysis How	to	estimate	Pcrit

Reproducibility Using	respR	to	promote	open,	reproducible	respirometry	analyses

respR	and	the	tidyverse A	quick	guide	on	how	to	integrate	respR	functions	with	the	popular	dplyr	package,	
and more

A	comparison	of	respR	with	other	R	packages Comparing	outputs	of	respR	to	other	R	package	functions,	and	a	discussion	of	the	
advantages	of	using	respR

When	to	use	respR A	discussion	of	what	respR	offers	and	when	users	should	consider	using	the	
package	for	respirometry	analyses

https://januarharianto.github.io/respR/articles/respR.html


4  |    Methods in Ecology and Evoluon HARIANTO eT Al.

Using	inspect()	is	optional—the	main	functions	in	our	pack-
age	will	readily	work	with	data	frames	that	were	not	processed	
by	the	function.	Running	inspect()	is	an	exploratory	step	that	
flags	 potential	 issues	 before	 analysis.	 Error	 check	 results	 are	
summarised	in	the	R	console	and	all	tests	are	saved	in	the	output	
object	with	the	locations	(i.e.	row	numbers),	if	any,	of	the	errors:	

4   | DATA ANALYSIS

4.1  | Calculating background rate

Background	 oxygen	 consumption	 rate	 is	 often	 measured	 to	 ac-
count	for	the	contribution	of	microbial	respiration,	and	applied	as	a	
correction	to	experimental	rates	(Rogers	et	al.,	2016).	Background	
rates	 typically	 account	 for	 a	 small	 percentage	 of	 experimental	
rates,	 and	 multiple	 ‘blank’	 experiments	 are	 usually	 conducted	
and	the	rates	averaged	to	obtain	a	more	accurate	estimate	of	the	
correction	 (e.g.	Carey	&	Sigwart,	2014;	Daoud,	Chabot,	Audet,	&	
Lambert,	2007).	The	function	calc_rate.bg()	uses	simple	 lin-
ear	regression	to	process	multiple	background	rate	measurements	
simultaneously.	 Data	 segments	 can	 be	 truncated	 before	 analysis	
by	time	period	or	row	numbers.	The	results	are	stored	as	an	object	
for	later	use.

F IGURE  1 Diagram	showing	steps	in	a	typical	workflow	in	the	analysis	of	respirometry	data	using	respR.	(a)	Data	are	first	checked	for	
errors	before	(b)	main	functions	are	used	to	extract	and	analyse	segments	of	the	data.	(c)	Summarised	results	and	diagnostic	plots	provide	
immediate	visual	feedback	on	the	outcome	of	the	analyses.	(d)	Once	the	rate	estimates	are	obtained,	they	can	be	converted	into	volume	
and/or	mass-specific	rates

F IGURE  2  Illustration	showing	the	
sampling	method	used	by	auto _ rate() 
during	(a)	interval	regression	analysis,	
where	sample	windows	do	not	overlap	
and	(b)	rolling	regression	analysis,	where	
sample	windows	overlap	and	move	
forward	by	one	sample	unit	at	a	time
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4.2  | Processing respirometry data

Typically,	 the	 analysis	 of	 respirometry	 data	 requires	 the	 selection	
one	 or	more	 linear	 sections	 of	 the	 data	 for	more	 accurate	 calcu-
lations	 of	Ȯ2	 (e.g.	 Carey	 et	al.,	 2016;	 Chu	&	Gale,	 2017;	 Gordon,	
Chin,	&	Vojkovich,	1989).	The	 function	calc_rate() can manu-
ally	extract	and	process	data	subset	 from	respirometry	data.	Data	
subsets	can	be	selected	by	(a)	time	period,	(b)	row	numbers,	(c)	O2 
decrease	or	(d)	proportion,	which	should	accommodate	most,	if	not	
all,	manual	data	selection	requirements	and	allow	for	consistent	re-
porting	of	methods	and	results.	Rates	are	determined	using	 linear	
regression.

For	 more	 complex	 respirometry	 parameters,	 the	 function	
auto _ rate()	uses	a	novel	method	of	combining	rolling	regression	
and	kernel	density	estimate	algorithms	to	detect	patterns	 in	respi-
rometry	data.	First,	auto _ rate()	always	performs	a	rolling	linear	
regression	on	the	data	before	additional	methods	are	applied.	The	
rolling	regression	runs	all	possible	ordinary	 least-squares	 linear	re-
gressions	(y = �0 + �1X + �)	of	a	fixed	sample	width	across	the	entire	
data	series,	and	is	expressed	as:	

where	n	is	the	window	of	width	n < T,	T	is	the	total	length	of	the	data-
set,	 yt(n)	 is	 the	 vector	 of	 observations	 (e.g.	 oxygen	 concentration),	

Xt(n)	is	the	matrix	of	explanatory	variables,	β(n)	is	a	vector	of	regres-
sion	parameters	and	�t(n)	 is	a	vector	of	error	 terms.	Thus,	a	 total	of	
(T	−	n)	+	1	number	of	overlapping	regressions	are	fitted.	Here,	we	can	
obtain	maximum	and	minimum	rate	values	of	width	n	by	ranking	the	
regressions,	and	if	a	periodic,	interval-based	regression	is	required,	the	
function	automatically	selects	regression	metrics	for	non-overlapping	
sections	of	the	data	(Figure	2).

The	 auto_rate()	 function	 can	 also	 automatically	 select	 the	
most	stable	(i.e.	most	linear)	sections	of	noisy	data	by	applying	addi-
tional	analytical	 techniques.	First,	we	take	advantage	of	 the	key	as-
sumption	that	linear	sections	of	a	data	series	are	reflected	by	stable	
parameters	across	the	rolling	estimates,	a	property	that	 is	often	ap-
plied	 in	financial	statistics	to	evaluate	model	stability	and	make	for-
ward	predictions	on	time-series	data	(Zivot	&	Wang,	2006).	We	use	
kernel	density	estimation	(KDE)	techniques,	often	applied	in	various	
inference	procedures	 such	as	machine	 learning,	 pattern	 recognition	
and	computer	vision,	to	automatically	aggregate	stable	(i.e.	linear)	seg-
ments	as	they	naturally	form	one	or	more	local	maximums	(‘modes’)	in	
the	probability	density	estimate.

Kernel	density	estimation	requires	no	assumption	that	the	data	
is	from	a	parametric	family,	and	learns	the	shape	of	the	density	auto-
matically	without	supervision.	KDE	can	be	expressed	as:	yt(n) = Xt(n)�(n)+�t(n), t =n,… ,T

f̂(x)=
1

nhd

n
∑

i=1

K

(

x−Xi

h

)

F IGURE  3 Depending	on	the	method 
input,	the	function,	auto _ rate() 
is	able	to	show:	(a)	the	maximum	
rate	detected;	(b)	the	minimum	rate	
detected;	(c)	the	most	linear	region	as	
determined	by	kernel	density	estimates;	
and	(d)	calculation	of	rate	by	fixed-width	
intervals.	Data	obtained	from	analysis	of	
the	sardine.rd	dataset
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where	 f	 is	 the	density	 function	 from	an	unknown	distribution	P	 for	
X1, … ,Xn,	K	is	the	kernel	function	and	h	is	the	optimal	smoothing	band-
width.	 The	 smoothing	 bandwidth	 is	 computed	 using	 the	 solve-the-
equation	plug-in	method	(Jones,	Marron,	&	Sheather,	1996;	Sheather	
&	Jones,	1991)	which	works	well	with	multimodal	or	non-normal	den-
sities	(Raykar	&	Duraiswami,	2006).

We	then	use	h	to	select	all	values	in	the	rolling	regression	output	that	
match	the	range	of	values	around	each	mode	(�n)	of	the	KDE	(i.e.	�n±h).	
These	rolling	estimates	are	grouped	and	ranked	by	size,	and	the	upper	and	
lower	bounds	of	the	data	windows	they	represent	are	used	to	reselect	linear	
segments	from	the	original	data	series.	The	rolling	estimates	are	then	dis-
carded	while	the	ranked	data	segments	are	analysed	using	linear	regression.	
Summary	diagnostics	and	visual	plots	provide	supporting	information	on	the	
technique	and	the	validity	of	the	results	(Figures	3	and	4).	The	performance	
of	this	particular	method	is	further	discussed	in	Appendix	S1.

4.3  | Estimating rate from flow-through respirometry

The	 function	calc_rate.ft()	 is	 used	 to	 specifically	 analyse	 flow-
through	respirometry	data,	and	is	similar	to	calc_rate()	in	function-
ality.	However,	 it	accepts	additional	 inputs	of	 incurrent	and	excurrent	
oxygen	concentration,	and	flow	rate,	based	on	the	equation:	

	where	Ȯ2	is	the	rate	of	O2	uptake	over	time,	CiO2 and CeO2	are	the	
incurrent	and	excurrent	O2	concentrations	and	FR	is	the	flow	rate	of	
water	through	the	system	(Lighton,	2008).

4.4  | Estimating critical oxygen tension, Pcrit

We	provide	 two	methods	of	estimating	Pcrit.	The	 first	 is	a	 “broken-
stick”	 regression	 (BSR)	 approach,	 adopted	 from	Yeager	 and	Ultsch	
(1989)	 in	which	two	segments	of	the	data	are	 iteratively	fitted	and	
the	intersection	with	the	smallest	sum	of	the	residual	sum	of	squares	
between	 the	 two	 linear	models	 is	 the	estimated	 critical	 point.	The	
second	method	is	a	wrapper	for	the	segmented,	or	nonlinear	‘broken-
line’	regression	approach,	presented	by	Muggeo	(2003)	and	available	
as	part	of	 the	segmented R	 package	 (Muggeo,	2008),	which	esti-
mates	the	critical	point	by	iteratively	fitting	two	intersecting	models	
on	the	data	and	selecting	the	point	that	minimises	the	‘gap’	between	
the	 two	 fitted	 lines.	 Both	 methods	 are	well-used	 in	 the	 literature	
(Chu	&	Gale,	2017;	Hansen,	Byriel,	Jensen,	Steffensen,	&	Svendsen,	
2017;	 Labra,	 Bogdanovich,	 &	 Bozinovic,	 2016;	 Regan	 &	 Richards,	
2017;	 Svendsen	 et	al.,	 2016).	 Note	 that	 the	 accuracy	 of	 the	 BSR	
method	 to	 describe	 non-linear	 traits	 is	 increasingly	 being	 debated	
(Marshall,	Bode,	&	White,	2013)	and	is	discussed	in	greater	detail	in	
our	vignettes	(see	Appendix	S1).Ȯ2= (CiO2−CeO2)FR

F IGURE  4 Diagnostic	plots	produced	
by	the	function,	auto _ rate():	(a)	the	
rolling	regression	of	rate	as	a	function	
of	time,	with	dotted	lines	indicating	the	
region	used	to	estimate	the	parameter;	
(b)	a	kernel	density	plot	that	shows	only	
when	the	linear	method	is	called;	(c)	a	
residual	plot	of	the	regression;	and	(d)	a	
normal	Q-Q	plot	of	the	residuals	of	the	
regression.	Data	obtained	from	analysis	of	
the	sardine.rd	dataset
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As	Pcrit	 is	the	break	point	 in	the	relationship	between	ambient	dis-
solved	oxygen	(O2)	and	rate	of	oxygen	uptake	(Ȯ2),	the	user	has	two	op-
tions	to	input	data.	With	an	O2 ∼	 	timeseries	dataset,	the	function	will	
automatically	perform	both	a	rolling	mean	and	a	rolling	regression	of	O2 
data	over	time	to	produce	the	required	Ō2 ∼ Ȯ2	dataset	(Figure	5).	This	
computationally	intensive,	but	fast,	method	is	unique	to	respR	as	most	
other	methods	use	non-overlapping	intervals	to	characterise	their	data,	
but	rolling	metrics	are	more	sensitive	to	Pcrit	analysis	due	to	their	high	res-
olution.	Alternatively,	the	user	can	input	previously-determined	rate	∼ Ȯ2 
data	and	the	function	will	determine	Pcrit	using	the	input	data	directly.

5   | CORREC TING , CONVERTING AND 
SC ALING DATA

5.1  | Corrections for background respiration

The	function	adjust.rate()	can	be	used	to	correct	Ȯ2	estimates	
for	 background	 respiration.	 As	 the	 oxygen	 consumption	 units	 are	
not	mass	specific	at	the	point	of	correction,	the	function	adjusts	Ȯ2 
directly	without	bias	using	the	equation:	

where	�d	 is	 the	 air–water	 oxygen	 flux	 as	 determined	 by	 Fick’s	 Law	
(Leclercq,	Gattuso,	&	Jaubert,	1999)	and	Ȯ2(bg)	is	background	respiration.

5.2  | Rate conversions

Because	respR	does	not	make	any	underlying	assumptions	on	the	units	
used	to	calculate	metabolic	rate,	we	provide	two	functions,	convert_
DO() and convert_rate(),	 to	 transform	 Ȯ2	 into	 volume-adjusted	
or	 mass-specific	 units.	 These	 functions	 are	 comprehensive	 and	 can	
currently	convert	between	168	combinations	of	units	and	has	support	
for	changes	in	temperature,	salinity	and	pressure	(Table	3).	This	unique	
approach	has	the	advantage	of	allowing	rate	calculations	for	data	that	
may	not	be	entirely	 supported	by	 the	respR	workflow.	 For	 example,	
measurements	of	respiration	can	be	scaled	to	surface	area	(e.g.	diatoms	
&	coral,	Iversen	&	Ploug,	2013;	Naumann,	Orejas,	&	Ferrier-Pagès,	2014),	

Ȯ2(correction)= Ȯ2− (𝜙d+ Ȯ2(bg))

F IGURE  5 Output	plots	of	the	
function	pcrit(),	used	in	the	calculation	
of	critical	oxygen	tension,	Pcrit.	(a)	To	
determine	Pcrit	in	a	regular	O2	time	series,	
the	function	performs	a	rolling	regression	
against	the	rolling	mean	of	the	data.	This	
step	is	skipped	if	similar	data	is	already	
provided,	and	the	argument	has.rate 
= TRUE	is	used	in	the	function.	This	
produces	(b,	c)	data	that	represents	the	
rate	of	O2	consumption	as	a	function	of	O2 
concentration.	Regression	lines	are	then	
fitted	iteratively,	based	on	the	broken-
stick	methods	of	Yeager	and	Ultsch	(1989)	
and	the	segmented	approach	of	Muggeo	
(2003),	until	convergence	is	achieved.	The	
output	then	highlights	the	critical	points	
as	indicated	by	the	coloured	lines.	(d)	A	
close-up	plot	of	the	results	in	(b)	and	(c)	
is	provided	for	the	user	to	visualise	the	
positions	of	the	dotted	lines	relative	to	
the	x-axis

TABLE  3 Units	available	for	conversions	in	convert _ DO() 
and convert _ rate()	functions	in	respR

Parameter Used in Units

Oxygen;	O2 convert _ DO(),	
convert _ rate()

mg	L−1,	μg	L−1,	
μmol L−1,	mL	L−1,	
μg	kg−1,	mg	kg−1,	
μmol kg−1,	
mmol kg−1,	mL	kg−1,	
hPa,	kPa,	mmHg,	
inHg

Mass convert _ rate() μg,	mg,	g,	kg

Time convert _ rate() second,	minute,	hour
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volume	 (e.g.	 copepod	eggs	Hammervold,	Glud,	Evjemo,	Hagemann,	&	
Hansen,	2015)	or	density	(e.g.	sea	urchin	larvae	Stumpp,	Wren,	Melzner,	
Thorndyke,	 &	 Dupont,	 2011),	 all	 of	 which	 are	 not	 yet	 supported	 in	 
respR’s	conversion	functions.	Thus,	any	respirometry	data	may	still	be	
analysed	without	any	 restriction	until	 conversion	 is	 required,	 in	which	
users	at	this	point	perform	those	conversions	manually.

The	function	convert _ DO()	 is	used	to	convert	units	of	oxy-
gen	 concentration	only	 (e.g.	mg/L	or	%;	Table	2).	 For	 ease	of	use,	
we	implemented	a	simple	fuzzy	string-matching	algorithm	to	match	
relevant	units	 (e.g.	“mg/L,”	“mg/l,”	“mg	L−1”	and	“mg	I−1”	are	 identi-
fied	as	the	same	units).	The	function	convert _ rate()	is	concep-
tually	similar	to	convert _ DO(),	but	it	focuses	on	volumetric	and	
mass-specific	conversions	(e.g.	mgh−1 kg−1).

6   | CONCLUDING REMARKS AND FUTURE 
IMPROVEMENTS

The	package	respR	implements	a	number	of	methods	not	available	in	
any	other	R	package	or	software.	These	include	the	use	of	rolling	regres-
sion	techniques	to	estimate	ṀO2,max,	ṀO2,min and Pcrit,	the	use	of	kernel	
density	estimation	techniques	to	detect	and	rank	linear	segments	of	the	
data,	support	for	unevenly	spaced	time	data,	and	the	ability	to	extract	
and	analyse	data	precisely	by	time,	row,	or	O2	concentration.	It	is	impor-
tant	to	note,	however,	that	while	respR	contains	automated	methods	
to	assist	in	processing	difficult	data,	no	amount	of	data	manipulation	can	
fix	poor	data.	Users	should	still	ensure	that	their	data	has	been	collected	
using	acceptable	methods	 (e.g.	closed	respirometry	setups	should	al-
ways	be	equipped	with	mixing	devices,	see	Clark,	Sandblom,	&	Jutfelt,	
2013)	 before	 performing	 analyses	 of	 any	 kind.	Nevertheless,	respR 
adheres	to	well-defined	rules	to	obtain	rates	of	interest,	is	extensively	
documented	online,	and	 its	methods	and	results	are	 transparent	and	
fully	reproducible.	The	respR	package	allows	for	more	effective	and	
less	time-consuming	handling	and	processing	of	the	broad	datasets	that	
are	increasingly	common	in	respirometry	research.
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