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TIME SERIES PROPERTIES

Series have trends.

Serial correlation.

We see one realization of events.

Stationarity and ergodicity required for valid inference.
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STATIONARITY

Let {yt} denote a sequence of random variables. The process yt is strictly
stationary if the joint distribution of (yt ,yt+1, . . . ,yt+k) is the same for all
t. For example, (y1,y5) has the same joint distribution as (y12,y16).

Define the following moments:

Conditional mean: µt = E [yt ];

Conditional variance: γt(0) = var(yt) = E [yt −µt ]
2;

Autocovariance at lag k :
γt(k) = cov(yt ,yt−k) = E [(yt −µt)(yt−k −µt−k)];

Autocorrelation at lag k : ρt(k) = γt(k)/γt(0).

A stochastic process {yt} is covariance stationary if the first and second
moments do not depend on t and are finite. That is, for all t,

E [yt ] = µ < ∞;

γt(0) = γ(0) < ∞;

γt(k) = γ(k).
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ERGODICITY

A stationary process {yt} is said to be ergodic if for any two bounded
functions f and g :

lim
T→∞

|E [f (yt , . . . ,yt+k)g (yt+T , . . . ,yt+T+k)]|

= |E [f (yt , . . . ,yt+k)]| |E [g (yt+T , . . . ,yt+T+k)]|

In words, ergodicity says that if two sequences of y are “far enough”
apart, then one can treat them as independent (the covariance of any
two functions of the sequences is zero).

Excludes permanent path dependence. For example:

xt ∼ iidN(0,1),z ∼ N(0,1),yt = xt + z ⇒ Cov(yt ,yt−j) = var(z) = 1.

If we have one long history, ergodicity and stationarity mean we can
make inference (LLN, CLT) about other potential histories.
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INNOVATIONS

yt is a serially uncorrelated process if γ(k) = 0 for all k ≥ 1.

Type 1 (white noise): E [et ] = 0, E [etes ] = 0 for t 6= s.

Type 2 (independent white noise): et ∼ iid(0,σ2). Note that

I E [et ] = 0,

I E [etes ] = 0 if t 6= s,

I E [e2
t ] = σ 2.

Type 3 (martingale difference sequence): Let yt = yt−1 + et . et is
a MDS if E [et |et−1,et−2, . . . ,yt−1,yt−2, . . .] = 0.

I The process yt is a martingale if E [yt |yt−1,yt−2, . . .] = yt−1.

IWN ⇒MDS ⇒WN.
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LAG OPERATOR

Definition:
Lyt = yt−1.

Commutative with multiplication:

L(αyt) = αLyt .

Distributive over addition:

L(xt + yt) = Lxt +Lyt .

“Powers up”:
Lpyt = yt−p.
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AUTOREGRESSIVE MOVING-AVERAGE (ARMA)
OVERVIEW

Let et be a white noise process.

General ARMA(p,q) process:

yt = α1yt−1 + . . .+ αpyt−p + et + θ1et−1 + . . .θqet−q

⇔ (1−α1L− . . .−αpL
p)yt = (1 + θ1L+ . . .+ θqL

q)et

⇔ α(L)yt = θ(L)et

⇔ yt =
θ(L)

α(L)
et = ψ(L)et .

Note: yt is mean zero (why?). But this is WLOG, because we can
always demean a series before analyzing it.
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MOVING AVERAGE

yt = µ + et + θ1et−1 + . . .+ θqet−q = µ + θ(L)et .

Properties:

Mean:
E [yt ] = µ.

Variance:

γ(0) = E [(yt −µ)2] =
(
1 + θ

2
1 + . . .+ θ

2
q

)
σ

2.

Auto-covariance:

γ(j) =

{
E [(yt −µ)(yt−j −µ)] = (θj + θj+1θ1 + . . .+ θqθq−j)σ2, j ≤ q

0, j > q.

⇒ Serial correlation dies out after q lags.
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AUTO REGRESSIVE

yt = c + α1yt−1 + . . .+ αpyt−p + et

⇔ α(L)(yt −µ) = et ,

µ = c/α(1) = c/[1−α1−α2− . . .−αp].

If the roots of 1−α1z−α2z
2− . . .−αpz

p = 0 all lie outside the unit
circle, then can invert to obtain covariance stationary MA
representation:

yt = µ + θ(L)et .

Impulse response of yt to et−j is θj .
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AR(1) EXAMPLE

yt = c + αyt−1 + et .

Mean:
E [yt ] = µ =

c

1−α
.

Variance:

γ(0) =
σ2

1−α2
.

Autocorrelation:
ρ(j) = α

j .

Stability criterion: |α−1|> 1 =⇒ |α|< 1.
MA(∞) representation:

yt = µ +
∞

∑
j=0

α
jet−j .
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IMPULSE RESPONSE EXAMPLES
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MODEL SELECTION

Parsimony: use smallest number of parameters for adequate fit.

Information criterion:

k̂ = argmink∈[0,kmax] ln σ̂
2 +

1

T
CT (k).

I k = p+q+d , d is number of deterministic terms.
I IC = ln σ̂ 2 + 1

T CT (k) is information criterion.

I σ̂ 2 = 1
T ∑

T
t=1 ê

2
t non-increasing in k , 1

T CT (k) is penalty.

AIC : CT (k) = 2k .

BIC : CT (k) = k log(T ).

Finite order AR(p) models: BIC consistently estimates p, AIC
over-parameterizes with positive probability.

Models with MA components: BIC tends to under-parameterize.

Implementation: fix sample based on maximum lag length considered.

Other alternatives in machine-learning literature.
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OVERVIEW

xt = G (L)yt , ct = yt −xt = [1−G (L)]yt .

For business cycle analysis, we want to remove long-term trends and
short-term noise. Filtered series can induce stationarity and ergodicity.

For a time series yt , ct is the cycle.

Deterministic filters: linear trend, quadratic trend, etc.

Two popular filters: Hodrick-Prescott and Baxter-King filters.

The HP filter uses a penalty function to extract a smooth trend. The
residual component is the cycle.

The BK filter estimates the spectrum and retains components with
frequencies within a specified interval.
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HP FILTER (JME 1999)

min
{xt}

T

∑
t=1

(yt −xt)
2 + λ

T−1

∑
t=2

[(xt+1−xt)− (xt −xt−1)]2 .

Objective: minimize cycle ct = yt −xt , but penalize changes in
τt = ∆xt .

λ parameterizes the cost of changes in the trend τ.

I λ → 0: trend is original series.

I λ → ∞: trend is least squares linear trend.

If ct = yt −xt ∼ iidN(0,σ2
c ),∆τt ∼ iidN(σ2

τ ), then λ = σ2
c /σ2

τ will
consistently recover the true {xt}.
HP heuristic: at quarterly frequency, σc/στ ≈ 40 =⇒ λ = 1600.

I Ravn and Uhlig (RESTAT 2002) suggest scaling to 4th power of
frequency ratio for alternative frequencies: 6.25 annual, 129,000
monthly, etc.
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HP FILTER

min
{xt}

T

∑
t=1

(yt −xt)
2 + λ

T−1

∑
t=2

[(xt+1−xt)− (xt −xt−1)]2 .

Interior FOC:

yt = xt + λ [(xt −xt−1)− (xt−1−xt−2)]

−2λ [(xt+1−xt)− (xt −xt−1)]

+ λ [(xt+2−xt+1)− (xt+1−xt)]

= [1 + λ
(
L−2−4L−1 + 6−4L+L2

)
]xt

= H(L)xt .

Boundary FOC:

x1 : y1 = x1 + λ [(x3−2x2 + x1)]

x2 : y2 = x2 + λ [−2(x3−2x2 + x1) + (x4−2x3 + x2)]

xT−1 : yT−1 = xT−1 + λ [(xT−1−2xT−2 + xT−3)−2(xT −2xT−1 + xT−2)]

xT : yT = xT + λ [(xT −2xT−1 + xT−2)] .
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HP FILTER



y1

y2

y3

y4

...
yT−3

yT−2

yT−1

yT


=



1 + λ −2λ λ 0 0 0 . . . 0
−2λ 1 + 5λ −4λ λ 0 0 . . . 0

λ −4λ 1 + 6λ −4λ λ 0 . . . 0
0 λ −4λ 1 + 6λ −4λ λ 0 . . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 . . . λ −4λ 1 + 6λ −4λ λ 0
0 . . . 0 λ −4λ 1 + 6λ −4λ λ

0 . . . 0 0 λ −4λ 1 + 5λ −2λ

0 . . . 0 0 0 λ −2λ 1 + λ





x1

x2

x3

x4

...
xT−3

xT−2

xT−1

xT



H(L) is a matrix. Invert it to obtain xt .

ct = yt −xt .
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BK FILTER (RESTAT 1999)

Ideal bandpass filter

Gain

ω

1

ωL ωH

Basic idea: decompose yt into low frequency, medium frequency, and
high frequency movements, and retain the medium frequency
movements as the business cycle component of the series.

To flesh this out a bit, need to digress onto the frequency domain.
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SINUSOIDAL PROCESS: 1 ELEMENT
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SINUSOIDAL PROCESS: 2 ELEMENTS
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SINUSOIDAL PROCESS: ADD LOW FREQUENCY
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SINUSOIDAL PROCESS: ADD HIGH FREQUENCY
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BANDPASS FILTER: REMOVE HIGH & LOW FREQUENCY
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DETERMINISTIC PROCESSES

Yt = cos(ωt)

ω = π ω = 1 ω = 0.5 ω = 0.25

The period is equal to 2π

ω
, Y0 = 1, and the amplitude equals 1.

Next consider Yt = acos(ωt) +b sin(ωt). The period remains equal
to 2π

ω
, Y0 = a, and the amplitude is now

√
a2 +b2.
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STOCHASTIC PROCESSES

Now let Yt = acos(ωt) +b sin(ωt), a and b mutually-uncorrelated,
mean-zero, random variables with common variance σ2:

E [Yt ] = 0

Var [Yt ] = Var [acos(ωt) +b sin(ωt)]

= cos2 (ωt)Var [a] + sin2 (ωt)Var [b]

= σ
2

Cov [Yt,Yt−k ] = Cov [acos(ωt) +b sin(ωt) ,acos(ω [t−k]) +b sin(ω [t−k])]

= σ
2 [cos(ωt)cos(ω [t−k]) + sin(ωt)sin(ω [t−k])]

= σ
2
{

cos(ωt) [cos(ωt)cos(ωk) + sin(ωt)sin(ωk)]

+ sin(ωt) [sin(ωt)cos(ωk)− cos(ωt)sin(ωk)]
}

= σ
2 cos(ωk) .

The way to think about this is drawing a,b once and for all, and then
generating the periodic series.
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STOCHASTIC PROCESSES, MORE ELEMENTS

Next consider Yt = ∑
N
j=1 aj cos(ωj t) +bj sin(ωj t), where aj and bj are

mutually-uncorrelated mean-zero random variables with variance σ2
j .

Yt is now the sum of multiple series each with its own periodicity:

E [Yt ] = 0

Var [Yt ] =
N

∑
j=1

σ
2
j

Cov [Yt,Yt−k ] =
N

∑
j=1

σ
2
j cos(ωjk) .

The variance of Yt can be decomposed into the variance of elements
with different frequencies.

Spectral analysis describes the relationship between frequency and the
contribution to the variance.
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STOCHASTIC PROCESSES, EVEN MORE ELEMENTS

Now add even more components:

Yt =
∫

π

0
cos(ωt)da (ω) +

∫
π

0
sin(ωt)db (ω) .

As before, da (ω) and db (ω) are mutually-uncorrelated mean-zero
random variables, with common variance that depends on frequency.

The variance function S(ω) is called the spectrum.

The Cramer representation theorem states that any
covariance-stationary process has this representation.
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CHANGE OF NOTATION
Recall the Euler formula e iωt = cos(ωt) + i sin(ωt).
Scalar representation:

Yt = acos(ωt) +b sin(ωt)

=
1

2
[cos(ωt) + i sin(ωt)] [a− ib] +

1

2
[cos(ωt)− i sin(ωt)] [a+ ib]

=
1

2
e iωt [a− ib] +

1

2
e−iωt [a+ ib] = e iωtZ + e−iωt Z̄ ,

Z ≡ 1
2 [a− ib] and Z̄ ≡ 1

2 [a+ ib] is the complex conjugate of Z .
Integral representation:

Yt =
∫

π

0
cos(ωt)da (ω) +

∫
π

0
sin(ωt)db (ω)

=
∫

π

0
e iωtdZ (ω) +

∫
π

0
e−iωtdZ̄ (ω) =

∫
π

−π

e iωtdZ (ω) ,

dZ (ω) = 1
2 [da (ω)− idb (ω)] if ω ≥ 0,

dZ (−ω) = 1
2 [da (ω) + idb (ω)] = dZ̄ (ω) if ω < 0.
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SPECTRUM
Note:

E [dZ (ω)] = 0

Var [dZ (ω)] = E
[
dZ (ω)dZ̄ (ω)

]
≡ S (ω)dω.

S (ω) is the spectrum and relates frequency ω to its variance.
Autocovariance function (use E [dZ (ω)dZ (ω ′)] = 0 for ω 6= ω ′):

γk ≡ E [YtYt−k ] = E
[
YtȲt−k

]
= E

[∫
π

−π

e iωtdZ (ω)
∫

π

−π

e−iω(t−k)dZ̄ (ω)

]
=
∫

π

−π

e iωte−iω(t−k)E
[
dZ (ω)dZ̄ (ω)

]
=
∫

π

−π

e iωkS (ω)dω.

Spectral representation theorem:

S (ω) =
1

2π

[
∞

∑
k=−∞

γke
−iωk

]
=

1

2π

[
γ0 + 2

∞

∑
k=1

γk cos(ωk)

]
.
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FREQUENCY DOMAIN FILTER

Idea is to amplify certain frequencies and mute other frequencies.

Can also do phase shift, but less common.

We call the gain the amplitude multiplicand at frequency ω.

A linear filter is just the sum of the gain and phase shift applied to
each frequency.

Final task is to translate frequency domain filter into time domain
weights:

ct = [1−G (L)]yt = ∑
j

ajyt−j .
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BK FILTER
Ideal bandpass filter

Gain

ω

1

ωL ωH

With infinite observations, exact time domain weights are

j 6= 0 : aj =
sin(ωLj)− sin(ωH j)

π j
,

j = 0 : a0 =
ωL−ωH

π
.

In finite sample, truncate at q observations, and apply correction:

bj = aj −θ , j = 1,2, . . .q,

θ ≡
∑
q
j=−q aj

2q+ 1
.
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PRACTICAL DETAILS

Exact time domain weights require infinite observations because ideal
weights do not decay. Intuition from the frequency domain is that
with finite data we cannot obtain the exact spectrum from estimated
autocovariances.

Baxter and King suggest setting q to equivalent of 3 years.

Higher q ⇒ weights closer to ideal, but at loss of data at sample start
and end.

Burns and Mitchell define business cycle as 1.5-8 years. Set ωL,ωH

accordingly.
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LOG GDP AND ITS TREND
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HP VERSUS BK
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HAMILTON (RESTAT 2018) CRITIQUE

HP and BK are both two-sided filters. Use caution when applying to
expectational errors, Granger causality, etc.

Recovered trends are functions of full time series. This can induce a
correlation structure where none existed. (But so is
seasonally-adjusted data.)

Two-sided filters may perform poorly at sample start and end.

If comparing data to model simulated data, filter both.
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HAMILTON (RESTAT 2018) FILTER

Regress yt+h on yt ,yt−1, . . . ,yt−p.

Intuitively, cyclical component is unforecastable part of series.

Hamilton proves induces stationarity in wide class of settings.

Suggests setting h = 2 years (i.e. h = 8 if quarterly data), p−4.
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HP VERSUS BK VERSUS JH
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OVERVIEW

Dominant methodology from mid 1980s to mid 2000s.

Joint system of equations, usually estimated by OLS.

Identify shocks from restrictions on moments of the residuals.

Produce easily interpretable impulse response functions which can
guide and discipline theory and policy.

Usually associated with transparent identification assumptions.

Identification assumptions not always plausible.

Source of variation in treatment not always transparent.
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SIMS’ EMCA 1980 CRITIQUE

...what “economic theory” tells us about them is mainly that any variable
which appears on the right-hand-side of one of these equations belongs in
principle on the right-hand-side of all of them. To the extent that models
end up with very different sets of variables on the right-handsides of these
equations, they do so not by invoking economic theory, but (in the case of
demand equations) by invoking an intuitive, econometrician’s version of
psychological and sociological theory, since constraining utility functions is
what is involved here. Furthermore, unless these sets of equations are
considered as a system in the process of specification, the behavioral
implications of the restrictions on all equations taken together may be
much less reasonable than the restrictions on any one equation taken by
itself.
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REDUCED FORM VAR
Consider a system with k equations, T +p observations, and p lags.
The j , t equation of the reduced form VAR take the form:

yj ,t = βj1,1L
1y1,t + . . .+ βjk,1L

1yk,t + βj1,2L
2y1,t + . . .βjk,pL

pyk,t + ej ,t .

The k period t equations take the form:


y1,t

.

.

.
yk,t


︸ ︷︷ ︸
Yt :kx1

=


β11,1 β12,1 . . . β1k,1
β21,1 β22,1 . . . β2k,1

.

.

.

.

.

.
. . .

.

.

.
βk1,1 βk2,1 . . . βkk,1


︸ ︷︷ ︸

B1:kxk

L


y1,t

.

.

.
yk,t

+ . . .+


β11,p β12,p . . . β1k,p
β21,p β22,p . . . β2k,p

.

.

.

.

.

.
. . .

.

.

.
βk1,p βk2,p . . . βkk,p


︸ ︷︷ ︸

Bp :kxk

Lp


y1,t

.

.

.
yk,t

+


e1,t

.

.

.
ek,t


︸ ︷︷ ︸
et :kx1

Let Bl be a matrix containing {βij ,l}, Yt = (y1,t . . .yk,t)
′:

Yt = B1LYt + . . .BpL
pYt + et .

B (L)Yt = et , E
[
ete
′
t

]
= Ωt .
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MA REPRESENTATION

Yt = B1LYt + . . .BpL
pYt + et .

VAR(p) is covariance stationary if all values of z satisfying

|Ik −B1z− . . .−Bpz
p|

lie outside the unit circle.

A covariance stationary VAR has the vector MA(∞) representation

Yt = Ψ̃(L)et = et + Ψ̃1et−1 + Ψ̃2et−2 + . . .

.

Ψ̃j gives impulse response at horizon j .
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VAR AS SUR
Write the jth equation as:

yj︸︷︷︸
(T−p)x1

=
(
Ly1 . . . Lpy1 . . . Lyj . . .  Lpyj . . .Lpyk

)︸ ︷︷ ︸
Xj :(T−p)x(pk)

βj(L)︸ ︷︷ ︸
(pk)x1

+ ej︸︷︷︸
(T−p)x1

.

I Note: X1 = X2 = . . . = Xk .

Stacking equations:y1
...
yk

=

X1 0 0

0
. . . 0

0 0 Xk


β1

...
βk

+

e1
...
ek

 .

More compactly:
Y = Xβ + e.
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COMMENTS

Reduced form VARs have proved popular for forecasting.

Kruskal theorem: if the right hand side variables are the same for
every equation, OLS coincides with GLS. In practice, use
equation-by-equation OLS to estimate B̂(L) and êt .

Lag selection:

AIC = log
∣∣Ω∣∣+ 2n/T .

BIC = log
∣∣Ω∣∣+n log(T )/T .

I n = k2p.

I Log likelihood with normal errors is −T
2

[
ln2π + log

∣∣Ω∣∣+k
]
. IC based

on log likelihood after dropping constants.

Alternative: likelihood ratio test.
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STRUCTURAL VAR

The structural VAR has the form:

A0Yt = A1LYt + . . .ApL
pYt + vt ,

where
E
[
vtv
′
t

]
= Σt ,

and Σt is diagonal matrix with positive entries on the main diagonal.

Σ diagonal means that innovations are uncorrelated. In economic
terms, can think of a disturbance to only one part of the system.
(WLOG?)

Define: A(L)≡ [A0−A1L− . . .−ApL
p]:

A(L)Yt = vt .
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COMPARISON

Reduced form:

Yt = B1LYt + . . .BpL
pYt + et , E

[
ete
′
t

]
= Ωt .

Structural:

A0Yt = A1LYt + . . .ApL
pYt + vt , E

[
vtv
′
t

]
= Σt .

Comparing:

Ai = A0Bi ,

A(L) = A0B(L),

vt = A0et ,

Var [et ] = Ωt = A−1
0 ΣtA

−1′
0 .
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RANK/INVERTIBILITY CONDITION

Invertibility: vt = Proj[vt |Yt ,Yt−1, . . .].

In words: structural shocks vt linearly determined by current and
lagged observables.

Invertibility ⇒ et = A−1
0 vt .

In words: observable innovations are linear combinations of the
structural shocks and span the same space.

With invertibility, structural shocks are redundant for forecasting:
Proj[Yt |Yt−1,Yt−2, . . . ,vt−1,vt−2, . . .] = Proj[Yt |Yt−1,Yt−2, . . .].

Interpretation: if structural shocks add forecasting power to
observables, then VAR has omitted variables.

Structural VARs always assume invertibility, even if it is not explicitly
stated as an identification assumption.
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ORDER CONDITION FOR IDENTIFICATION

Assume Ωt = Ω, Σt = Σ, and invertibility holds.

Estimate Ω̂ from matrix of reduced form residuals,
Ω̂ = 1

T ∑
T
t=1 êt êt

′→p Ω.

Symmetry of Ω̂ implies k(k + 1)/2 free parameters.

The decomposition A−1
0 ΣtA

−1′
0 has k2 +k free parameters.

Identification requires
[
k2 +k

]
− k(k+1)

2 = k(k+1)
2 additional

restrictions.

k restrictions come from normalizing either Σ = I or diag (A0) = I ,

leaving k(k−1)
2 behavioral restrictions to be imposed (interpret).

This is the order condition for identification.
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CHOLESKY

Leading example of additional restrictions: Cholesky ordering.

Linear algebra fact: any symmetric, positive definite matrix can be
written as Ω = RR ′, where R is lower triangular and unique.
I Constructive proof using LU factorization.

Covariance matrices are symmetric positive definite.

Compare: Ω = A−1
0 ΣA−1′

0 = RR ′ =⇒ A−1
0 Σ

1
2 = R.

R lower triangular imposes recursive structure on contemporaneous
response to structural shocks.

R unique given Ω̂, but Ω̂ depends on ordering of variables in VAR.
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CHOLESKY EXAMPLE

Bivariate VAR in government purchases and output, government
purchases ordered first:

Yt = {Government spendingt ,Outputt}′.(
gt
yt

)
=

p

∑
i=1

Bi

(
gt−i
yt−i

)
+

(
1 0
ryg 1

)(
vg ,t
vy ,t

)
.

Σ un-normalized.

Identification assumption: government spending does not respond to
contemporaneous shocks to output, but output responds to
contemporaneous shocks to government spending.

Recursive intuition: regress gt on lags of gt and lags of yt , recovering
the structural residuals vg ,t . Then regress yt on lags of yt , lags of gt ,
and vg ,t to recover the structural residuals vy ,t .

Invertibility: are there other shocks that also affect g and y?
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IMPULSE RESPONSE FUNCTIONS

Moving average representation of Yt :

Yt = [Ψ0 + Ψ1L+ . . .+]vt = Ψ(L)vt .

The matrix Ψj gives the impulse response of Y at horizon j .

Following the earlier example, the impulse response provides the effect
on output j quarters after the government increases spending. It is
directly of interest, and also can help to discipline models.
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COMPUTING IMPULSE RESPONSE FUNCTIONS

Yt = Ψ(L)vt = Ψ(L)A(L)Yt . Since this equality must hold for all Yt :

I = Ψ(L)A(L)

= [Ψ0 + Ψ1L+ . . .+][A0−A1L− . . .−ApL
p]

= Ψ0A0 + [Ψ1A0−Ψ0A1]L+ [Ψ2A0−Ψ1A1−Ψ0A2]L2

+ . . .+

[
ΨjA0−

j

∑
i=1

Ψj−iAi

]
Lj + . . .+ .

Taking the roots of this polynomial,

I = Ψ0A0,

ΨjA0 =
j

∑
i=1

Ψj−iAi ∀j > 0.
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COMPUTING IMPULSE RESPONSE FUNCTIONS

I = Ψ0A0,

ΨjA0 =
j

∑
i=1

Ψj−iAi ∀j > 0.

Recursive computation:

Ψ0 = A−1
0 ,

Ψj =

[
j

∑
i=1

Ψj−iAi

]
A−1

0 for j > 0.
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COMPUTING IMPULSE RESPONSE FUNCTIONS
Reduced form impulse response found from above setting B0 = I :

Ψ̃0 = I ,

Ψ̃j =

[
j

∑
i=1

Ψ̃j−iBi

]
for j > 0.

Relationship:

Initial step: Ψ0 = A−1
0 = Ψ̃0A

−1
0 .

Conjecture: Ψj−1 = Ψ̃j−1A
−1
0 .

Induction step: Ψj =

[
j

∑
i=1

Ψj−iAi

]
A−1

0 =

 j

∑
i=1

Ψj−i︷ ︸︸ ︷
Ψ̃j−iA

−1
0

Ai︷ ︸︸ ︷
A0Bi

A−1
0

=

[
j

∑
i=1

Ψ̃j−iBi

]
A−1

0 = Ψ̃jA
−1
0 .

Often easiest to obtain Ψ̃j using B and then convert to Ψj using A−1
0 .
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IMPULSE RESPONSE INTUITION
Let dYt+j = Ψjv = Ψ̃je be the average change in Yt+j given
vt = v ,et = e:

dYt+j = E [Yt+j |et = e,vt = v ,Yt−1, . . .]−E [Yt+j |et = vt = 0,Yt−1, . . .].

Then:

Reduced form Structural

dYt = Ψ̃0et = e = Ψ0v = A−1
0 v = e

dYt+1 = Ψ̃1e = B1e = Ψ1v = Ψ0A1A
−1
0 v = B1A

−1
0 v

dYt+2 = Ψ̃2e =
(

Ψ̃1B1 +B2

)
e = Ψ2v = (Ψ1A1 + Ψ0A2)A−1

0 v

=
(

Ψ̃1B1 +B2

)
A−1

0 v

...

48 / 103



FORECAST VARIANCE DECOMPOSITION

Example: what fraction of output variance 4 quarters ahead caused by
monetary policy shocks?

Let et+h|t ≡ Yt+h−EtYt+h denote the h step ahead forecast error:

et+h|t = Ψ0vt+h + Ψ1vt+h−1 + . . .+ Ψh−1vt+1 =
h−1

∑
j=0

Ψjvt+h−j .

Forecast variance, where Ψj ,rc denotes the (r ,c) entry of Ψj :

Var
(
et+h|t

)
= Var

(
h−1

∑
j=0

Ψjvt+h−j

)
=

h−1

∑
j=0

Var
(
Ψjvt+h−j

)
=

h−1

∑
j=0

ΨjΣΨ′j

=
h−1

∑
j=0

 ∑
k
m=1 Ψ2

j ,1mσ 2
m . . . ∑

k
m=1 Ψj ,1mΨj ,kmσ 2

m
...

. . .
...

∑
k
m=1 Ψj ,kmΨj ,1mσ 2

m . . . ∑
k
m=1 Ψ2

j ,kmσ 2
m

 .

Contribution of variable c to horizon h variance of variable r :

∑
h−1
j=0 Ψ2

j ,rcσ 2
c

∑
k
m=1 ∑

h−1
j=0 Ψj ,rmσ 2

m

.
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BLOCK RECURSIVE (KEATING, JEDC 1996)

Suppose R = A−1
0 has the structure:1(

R11 0
R21 R22

)(
v1,t

v2,t

)
=

(
e1,t

e2,t

)
,

where R11 and R21 are unrestricted matrices, R22 is lower triangular.

Then:

e1,t = R11v1,t

e2,t = R21v1,t +R22v2,t = R21R
−1
11 e1,t +R22v2,t ,

E [e2,t |e1,t ] = R21R
−1
11 e1,t .

1Note that A0 is also block recursive with: R =

(
A−1

0,11 0

−A−1
0,22A0,21A

−1
0,11 A−1

0,22

)
.
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BLOCK RECURSIVE (KEATING, JEDC 1996)

Let C = chol(Ω) and µt = C−1et :(
C11 0
C21 C22

)(
µ1,t

µ2,t

)
=

(
e1,t

e2,t

)
.

Following the same steps as before: E [e2,t |e1,t ] = C21C
−1
11 e1,t . Then:

R21R
−1
11 = C21C

−1
11 ,

e2,t = C21C
−1
11 e1,t +R22v2,t ,

R22v2,t = C22µ2,t .

Then R22R
′
22 = E [R22v2,tv

′
2,tR

′
22] = E [C22µ2,tµ

′
2,tC

′
22] = C22C

′
22.

Since Cholesky factors are unique, R22 = C22.

Then v2,t = µ2,t , i.e. v2,t is identified from Cholesky factor.
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NON-RECURSIVE SYSTEM DIRECT ESTIMATION: GMM

Suppose A0 is not lower triangular but the order condition is satisfied,
and let R = A−1

0 . Write:

R =

r ′1.
...
r ′k.

 , Ω = RR ′ =


r ′1.r1. r ′1.r2. . . . r ′1.rk.
r ′2.r1. r ′2.r2. . . . r ′2.rk.

...
...

. . . . . .
r ′k.r1. r ′k.r2. . . . r ′k.rk.

 .

This gives k(k+1)
2 moment conditions E

[
vech

(
Ω̂
)
−vech (RR ′)

]
= 0,

where vech(X ) is the column vector that stacks the entries on or
below the main diagonal of matrix X .

Additional restrictions from imposing zeros or other known
coefficients.
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NON-RECURSIVE SYSTEM DIRECT ESTIMATION: MLE

If vt ∼ N(0, I ), then LLH is:2

L (Ω|ê1, . . . , êT ) =−
T

∑
t=1

[
k

2
ln2π +

1

2
ln |Ω|+ 1

2
e ′tΩ

−1et

]
=−Tk

2
ln2π− T

2
ln |Ω|− 1

2

T

∑
t=1

e ′tΩ
−1et

=−Tk

2
ln2π− T

2
ln
∣∣A−1

0 A−1′
0

∣∣− T

2

[
tr
(
A′0A0Ω̂

)]
=−Tk

2
ln2π +T ln(|A0|)−

T

2

[
tr
(
A′0A0Ω̂

)]
.

Maximize ln(|A0|)− 1
2

[
tr
(
A′0A0Ω̂

)]
over the free parameters in A0.

2Third line: ∑
T
t=1 e

′
tΩ−1et = ∑

T
t=1 tr

(
e ′tΩ−1et

)
= ∑

T
t=1 tr

(
Ω−1ete

′
t

)
=

tr
(

Ω−1
∑
T
t=1 (ete

′
t)
)

= T
[
tr
(

Ω−1Ω̂
)]

= T
[
tr
(
A′0A0Ω̂

)]
.

Fourth line: det(AB) = det(A)det(B) , det(A′) = det(A)det
(
A−1

)
= det(A)−1⇒

ln
∣∣∣A−1

0 A−1′
0

∣∣∣= ln
∣∣∣A−1

0 A−1
0

∣∣∣= ln

(∣∣∣A−1
0

∣∣∣2)= ln
(
|A0|−2

)
=−2ln(|A0|) .
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BLANCHARD-QUAH (1989) LONG-RUN RESTRICTIONS

Output growth ∆xt , unemployment ut , demand shock vdt , supply shock v st :

Structural:

(
∆xt
ut

)
=

(
Ψ11(L) Ψ12(L)
Ψ21(L) Ψ22(L)

)(
vdt
v st

)
,

Reduced form:

(
∆xt
ut

)
=

(
Ψ̃11(L) Ψ̃12(L)

Ψ̃21(L) Ψ̃22(L)

)(
e1t

e2t

)
.

Relationship of residuals:

et =

(
e1t

e2t

)
=

(
∆xt
ut

)
−Et−1

(
∆xt
ut

)
=

(
Ψ11(0) Ψ12(0)
Ψ21(0) Ψ22(0)

)(
vdt
v st

)
= Rvt .

Normalization: Σ = Var(vt) =

(
1 0
0 1

)
.

Observable moments:

Var(et) = RR ′ =

(
r2
11 + r2

12 r11r21 + r12r22

r11r21 + r12r22 r2
21 + r2

22

)
.

Three moments and four unknowns in R. So far just the order restriction.

Assumption: only supply shocks v st can have long run effect on level of GDP.
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BLANCHARD-QUAH (1989) LONG-RUN RESTRICTIONS

Step 1: solve for reduced-form MA representation of
(
∆xt ut

)′
:(

∆xt
ut

)
=

p

∑
j=1

Bj

(
∆xt−j
ut−j

)
+ et =

(
I −

p

∑
j=1

BjL
j

)−1

et

=

(
1−∑

p
j=1Bj ,11L

j −∑
p
j=1Bj ,12L

j

−∑
p
j=1Bj ,21L

j 1−∑
p
j=1Bj ,22L

j

)−1

et

=
1

det
(
I −∑

p
j=1BjLj

) (1−∑
p
j=1Bj ,22L

j
∑
p
j=1Bj ,12L

j

∑
p
j=1Bj ,21L

j 1−∑
p
j=1Bj ,11L

j

)
et .

Step 2: Substitute structural shocks:

∆xt =

(
1−∑

p
j=1Bj ,22L

j
)
e1t + ∑

p
j=1Bj ,12L

je2t

det
(
I −∑

p
j=1BjLj

)
=

(
1−∑

p
j=1Bj ,22L

j
)(

r11v
d
t + r12v

s
t

)
+ ∑

p
j=1Bj ,12L

j
(
r21v

d
t + r22v

s
t

)
det
(
I −∑

p
j=1BjLj

) .
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BLANCHARD-QUAH (1989) LONG-RUN RESTRICTIONS

Step 1: solve for reduced-form MA representation of
(
∆xt ut

)′
:(

∆xt
ut

)
=

p

∑
j=1

Bj

(
∆xt−j
ut−j

)
+ et =

(
I −

p

∑
j=1

BjL
j

)−1

et

=

(
1−∑

p
j=1Bj ,11L

j −∑
p
j=1Bj ,12L

j

−∑
p
j=1Bj ,21L

j 1−∑
p
j=1Bj ,22L

j

)−1

et

=
1

det
(
I −∑

p
j=1BjLj

) (1−∑
p
j=1Bj ,22L

j
∑
p
j=1Bj ,12L

j

∑
p
j=1Bj ,21L

j 1−∑
p
j=1Bj ,11L

j

)
et .

Step 2: Substitute structural shocks:

∆xt =

(
1−∑

p
j=1Bj ,22L

j
)
e1t + ∑

p
j=1Bj ,12L

je2t

det
(
I −∑

p
j=1BjLj

)
=

(
1−∑

p
j=1Bj ,22L

j
)(

r11v
d
t + r12v

s
t

)
+ ∑

p
j=1Bj ,12L

j
(
r21v

d
t + r22v

s
t

)
det
(
I −∑

p
j=1BjLj

) .
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BLANCHARD-QUAH (1989) LONG-RUN RESTRICTIONS

Step 3: Impose restriction as ∑
∞
h=0 Ψ11(h) = 0:

0 =
∞

∑
h=0

Ψ11(h)

=

(
1−

p

∑
j=1

Bj ,22L
j

)
r11 +

p

∑
j=1

Bj ,12L
j r21

=

(
1−

p

∑
j=1

Bj ,22

)
r11 +

p

∑
j=1

Bj ,12r21.

Step 4: use four moment conditions to solve for four elements of matrix R.

In practice, can be sensitive to number of lags and some demand shocks
may be very persistent.
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BLANCHARD-QUAH AND ESTIMATES OF POTENTIAL

OUTPUT

Many government forecasting agencies provide estimates of potential
output and output gap (Federa; Reserve, CBO, IMF, etc.)

Guide whether policy should be loose or tight.

Used by academics e.g. to estimate Phillips curve.

Following slides from Coibon, Gorodnichenko, Ulate (BPEA 2018).
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360	 Brookings Papers on Economic Activity, Fall 2018

Percent per year

Sources: Orphanides (2004); Federal Reserve Greenbooks; Federal Reserve Bank of Philadelphia.
a. All series are real time at the quarterly frequency. Potential output for the pre-1987 period is from 

Orphanides (2004). Potential output for 1987–2011 is from the Federal Reserve Bank of Philadelphia. 
Potential output is measured as the growth rate of potential output between a given quarter and the next 
three quarters. HP-filtered actual output (HP = Hodrick–Prescott) is calculated as the value of the 
one-sided HP filter trend for the quarter given the first vintage of GDP data that covers the given quarter, 
with HP filter smoothing parameter of 500,000. MA (20) actual output is calculated as the 20-quarter 
moving average over the current and preceding 19 quarters reported in the first vintage of GDP data that 
covers the given quarter. MA (20) total factor productivity for a given quarter is calculated as the 20-quarter 
moving average running on the current quarter and the preceding 19 quarters.

Year

0

2

4

1980 1990 2000 2010

Potential GDP (Orphanides 2004)

Potential GDP 
(Fed Greenbooks)

HP-filtered actual 
GDP, λ = 500,000

MA (20) actual GDP

MA (20) total 
factor productivity

Figure 3.  Real-Time Estimates of U.S. Potential Output Growth Rate and Trends  
in Actual Output Growth Ratea

different from zero. The results are different for international data, with 
coefficients on past OECD revisions being not different from zero and with 
those on past IMF and Consensus Economics revisions exhibiting negative 
predictability.

II. � How Estimates of U.S. Potential Output Are Adjusted  
after Economic Shocks

Although a limited unconditional predictability is a desirable attribute of 
estimates of potential GDP, it does not imply that there is no predictability 
in estimates of potential output conditional on different economic shocks. 
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Output growth rate, percent, annualized

Total factor productivity shock (Fernald 2012)

Output growth rate, percent, annualized

Tax shock (Romer and Romer 2010)

Output growth rate, percent, annualized

Oil supply shock (Kilian 2009)

Panel A: Supply Shocks

Actual output (0.296) [0.020]

66% CI

Potential output (0.001) [0.126]

66% CI

Actual output = potential 
output (0.962) [0.174]

2 4 6
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1.0

1.5

Actual output (0.106) [0.002]

66% CI

Potential output (0.000) [0.000]

66% CI

Actual output = potential 
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Sources: Authors’ calculations, with potential output from Federal Reserve Greenbooks and identified 
shocks from Fernald (2012); Romer and Romer (2004, 2010); Kilian (2009); Ramey (2016); Auerbach 
and Gorodnichenko (2012a, 2012b).

a. This figure reports impulse response functions (IRFs) estimated using equations 2 and 3. The 
estimation sample covers the longest possible period with nonmissing observations for shocks and 
potential output (output gap) available at the Federal Reserve Bank of Philadelphia. In parentheses, we 
report the p values for a test of whether the response of actual (potential) output is different from zero at the 
maximum horizon (eight quarters). In square brackets, we show the p values for a test of whether the path 
of the response of actual (potential) output is different from zero over the entire duration of the IRF. The 
last row of the legend—for which there is no line in the graphs—reports p values for a test of equality of 
responses of actual and potential output at the maximum horizon (parentheses) and a test of equality of the 
paths of the responses for actual and potential output are equal across horizons. CI = confidence interval.
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Sources: Authors’ calculations, with potential output from Federal Reserve Greenbooks and identified 
shocks from Fernald (2012); Romer and Romer (2004, 2010); Kilian (2009); Ramey (2016); Auerbach 
and Gorodnichenko (2012a, 2012b).

a. SVAR = structural vector autoregression. This figure reports impulse response functions (IRFs) 
estimated using equations 2 and 3. The “BQ supply component” is the historical contribution of 
supply-side shocks—as identified by Blanchard and Quah (1989)—to the output growth rate. The 
estimation sample covers the longest possible period with nonmissing observations for shocks and 
potential output (output gap) using output gap data starting in 1970. In parentheses, we report the p values 
for a test of whether the response of actual (potential) output is different from zero at the maximum 
horizon (eight quarters). In square brackets, we show the p values for a test of whether the path of the 
response of actual (potential) output is different from zero across all horizons of the IRF. The last row of 
the legend—for which there is no line in the graphs—reports p values for a test of equality of responses 
of actual and potential output at the maximum horizon (parentheses) and for a test of equality of the paths 
of the responses for actual and potential output are equal across horizons. CI = confidence interval.
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HETEROSKEDASTIC IDENTIFICATION (LUTKEPOHL

(2012))

Suppose structural variance matrix is I in first t1 periods and Σt2 in
next t2 periods with all non-unity diagonal elements. Then:

Ωt1 = A−1
0 A−1′

0 ,

Ωt2 = A−1
0 Σt2A−1′

0 .

Ωt1 6= Ωt2 provides k(k+1)
2 + k(k+1)

2 restrictions, exactly enough to
identify k2 parameters in A−1

0 and k variances in Σt2 .

Advantage is less structure, disadvantage is opacity of identification
and interpretation of structural shocks.

Lewis (RESTUD, forthcoming) generalizes to arbitrary time-varying
volatility.
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EXTERNAL INSTRUMENTS

Measure shock or proxy for shock external to VAR.

Contrast to “internal instruments” that are restrictions on residuals
estimated in the VAR.

Example: part of tax changes taken for reasons unrelated to business
cycle trajectory.

More next time.
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GRANGER CAUSALITY

y1,t = c1 + Φ1,1(L)y1,t−1 + Φ1,2(L)y2,t−1 + e1,t

y2,t = c2 + Φ2,1(L)y1,t−1 + Φ2,2(L)y2,t−1 + e2,t .

y1,t ,y2,t are univariate processes.

y2 does not Granger cause y1 if Φ1,2 = 0.

Interpret: y2 Granger causes y1 if it helps to forecast y1 beyond what
past values of y1 would predict.
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GRANGER CAUSALITY AND VARS

VAR restrictions generate time series of structural shocks.

If Cholesky, by construction shocks not Granger caused by variables in
the VAR because they are linear combinations of OLS residuals.

Can test whether variables excluded from the VAR Granger cause
shock series.

I If yes, suggests agents in the world have more information than does
the VAR. If agents’ response to this information affects variables in the
VAR, there is an omitted variables problem.

I Formally, invertibility fails: VAR variables do not span space of shocks.

Absence of Granger causality of structural shocks not sufficient to
prove proper identification.
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EXAMPLE: RAMEY (QJE 2011)

Structural residuals from VAR in government spending and output a
la Blanchard and Perotti (more in next lecture).

Simple test: do forecasts of government spending or war dates
Granger cause VAR residuals? ID

E
N

T
IF

Y
IN

G
G

O
V

E
R

N
M

E
N

T
S

P
E

N
D

IN
G

S
H

O
C

K
S

19

TABLE I
GRANGER CAUSALITY TESTS

Hypothesis tests p-value in parenthesis

  Do war dates Granger-cause VAR shocks?  1948:1–2008:4 Yes (0.012)
Do one-quarter ahead professional forecasts Granger-cause VAR shocks?   1981:3–2008:4 Yes (0.032)
Do four-quarter ahead professional forecasts Granger-cause VAR shocks?   1981:3–2008:4 Yes (0.016)
Do VAR shocks Granger-cause war dates? 1948:1–2008:4 No (0.115)

Notes. VAR shocks were estimated by regressing the log of real per capita government spending on 4 lags of itself, the Barro–Redlick tax rate, log real per capita GDP, log real
per capita nondurable plus services consumption, log real per capita private fixed investment, log real per capita total hours worked, and log compensation in private business divided
by the deflator for private business. Except for the professional forecasts, 4 lags were also used in the Granger-causality tests. For the professional forecaster test, the VAR shock in
period t is regressed on either the forecast made in period t-1 of the growth rate of real federal spending from t-1 to t for the forecast made in period t-4 of the growth from t-4 to t.
The professional forecast regressions were estimated from 1981:3 to 2008:4 because this forecast was only available for that period. The war dates are a variable that takes a value
of unity at 1950:3, 1965:1, 1980:1, and 2001:3.

 by guest on September 11, 2014 http://qje.oxfordjournals.org/ Downloaded from 

What other variables might one want to test?
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SOLVING OMITTED VARIABLE PROBLEM

Suppose you find an omitted variable. What then?

Can add to VAR with appropriate ordering (this is what Ramey does).

If original VAR system included p lags and k variables, adds pk
coefficients to be estimated.

This is VAR “curse of dimensionality.”

FAVAR as one possible solution: next lecture.
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SIGN RESTRICTIONS OVERVIEW (MY NOTATION)

Recall short run restrictions:

A0Yt = A1Yt−1 + . . .ApYt−p + vt , Var(vt) = I ,

Yt = B1Yt−1 + . . .BpYt−p + et , Var(et) = Ω,

et = Rvt .

Conditional on the estimated reduced form coefficient matrices,
R = A−1

0 uniquely defines the impulse responses to structural shocks.

Researchers will sometimes justify restrictions by appealing to
“reasonableness” of the impulse response functions.

Sign restrictions formalize this and take it to the logical limit: a priori
define what a resonable impulse response function looks like, then
identify set of R matrices that give rise to such impulse responses.
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SIGN RESTRICTIONS DETAILS

Specify only enough restrictions to recover the shocks of interest.

Brute force.

I Estimate B(L) and Ω with OLS. For every possible R, compute IRFs
and verify whether restrictions are satisfied. Set identifies IRFs.

Penalty function.

I Assign score to each admissable draw.

I A0s that generate strong comovement viewed as more likely to be
truth. Justification is combination of other shocks could “accidentally”
result in weak comovement of required sign, but actual shock should
generate stronger comovement.

I Generates point estimate and standard error bands.

Bayesian estimation.

I Uhlig argues conceptually cleaner: draws from posterior treated as
candidate truths, and either satisfy sign restrictions or not.
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BAYESIAN APPROACH

Uhlig (JME 2005), Rubio-Ramirez, Waggoner, Zha (RESTUD 2010).

If et = Rvt (R is instantaneous IRF), and C is cholesky factor of
Ω = Var(et), then R = CQ, where Q is orthonormal matrix:

Ω = CC ′ = RR ′⇒ I = C−1RR ′C ′−1⇒ C−1R = Q⇒ R = CQ.

Specify joint prior on (B(L),Ω,Q) with (B(L),Ω) independent of Q.

Take joint draw from posterior on (B(L),Ω) and uniform (HAAR)
distribution for Q. Construct IRF and keep if satisfy sign restrictions.

Note: for uninformative prior on B(L),Ω, posterior draw is random
draw from asymptotic distribution of OLS estimates.

Note: data are informative about (B(L),Ω) but not about Q. In large
sample, should be similar to brute force approach.
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TYPICAL ALGORITHM

1 Estimate reduced form VAR B(L)Yt = et and form
Ω̂t = T−1

∑
T
t=1 êt ê

′
t .

2 Draw M random values Ω(m),B(m)(L) from asymptotic distribution of
OLS estimates Ω̂t , B̂(L). Define C (m) as Cholesky factor of Ω(m).

3 Draw orthonormal matrix Q(m) from HAAR prior (more soon) and
define R(m) = C (m)Q(m).

4 Check sign restrictions for structural impulse responses given Rm.

5 Plot distribution (median, 16% upper and lower values) of retained
draws.
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MOUNTFORD AND UHLIG (JOE 2009)

VAR in GDP, private consumption, total government expenditure,
total government revenue, real wages, private non-residential
investment, interest rate, adjusted reserves, the producer price index
for crude materials and the GDP deflator.

Quarterly frequency, 1955-2000, six lags.

Combines sign restrictions with recursive identification:

I First identify general business cycle shock to satisfy comovement.

I Monetary shock has required signs and is orthogonal to business cycle
shock.

I Goverment spending and revenue shocks orthogonal to monetary and
business cycle shocks.
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WHAT ARE THE EFFECTS OF FISCAL POLICY SHOCKS? 965

Table I. Identifying sign restrictions

Gov. revenue Gov. spending GDP, cons, non-res.inv. Interest rate Adjusted reserves Prices

Non-fiscal shocks
Business cycle C C
Monetary policy C � �
Basic fiscal policy shocks
Government revenue C
Government spending C

This table shows the sign restrictions on the impulse responses for each identified shock. ‘Cons’ stands for private
consumption and ‘Non-res. inv.’ stands for non-residential investment. A ‘C’ means that the impulse response of the
variable in question is restricted to be positive for four quarters following the shock, including the quarter of impact.
Likewise, a ‘�’ indicates a negative response. A blank entry indicates that no restrictions have been imposed.

restriction that government revenues increase with output in the business cycle shock should
be emphasized. This is our crucial identifying assumption for fiscal policy shocks: when output
and government revenues move in the same direction, we essentially assume that this must be
due to some improvement in the business cycle generating the increase in government revenue,
not the other way around. We regard this is as a reasonable assumption and consistent with a
number of theoretical views. Furthermore, our identifying assumptions are close to minimal: some
assumptions are needed to say anything at all. The orthogonality assumption a priori excludes the
view that positive co-movements of government revenues and output are caused by some form of
short term ‘Laffer curve’ or ‘fiscal consolidation’ effect from a surprise rise in taxes.4

A monetary policy shock moves interest rates up and reserves and prices down for four quarters
after the shock. These identifying restrictions are close to those used in Uhlig (2005). We also
require the monetary policy shock to be orthogonal to the business cycle shock. The main purpose
of characterizing the business cycle and monetary shocks is to filter out the effects of these shocks
on the fiscal variables. The additional orthogonalization among these two shocks has no effect on
that.

Fiscal policy shocks are identified only through restricting the impulse responses of the fiscal
variables and through the requirement that they are orthogonal to both business cycle shocks
as well as monetary policy shocks. As stated above, we identify two basic fiscal shocks—a
‘government spending shock’ and a ‘government revenue shock’—employing tight identifying
restrictions where the responses of fiscal variables are restricted for a defined period after the
shock. For example, a basic government spending shock is defined as a shock where government
spending rises for a year after the shock. These tight restrictions are designed to rule out very
transitory shocks to fiscal variables where, for example, government spending rises on impact
but falls after one or two quarters. Nonetheless we have checked that our results are robust to
weaker identifying restrictions where responses are only restricted on impact. Finally, it should be
noted that we do not restrict the behavior of government revenue when identifying the government
spending shock or vice versa. This is not necessary since all that is required to describe the two-
dimensional space of fiscal policy shocks are two linearly independent vectors. However, it is

4 The ‘Laffer curve’ is a phenomenon which, if it exists, may be expected to operate over the medium term and so would
not be ruled out by the short-run sign restrictions imposed. Indeed Figure 11 shows that the responses of government
revenue in response to a tax cut can be positive in the medium term. See Trabandt and Uhlig (2006), Giavazzi et al.
(1990, 2000) and Perotti (1999) for analysis on this issue.

Copyright  2009 John Wiley & Sons, Ltd. J. Appl. Econ. 24: 960–992 (2009)
DOI: 10.1002/jae
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BAUMEISTER AND HAMILTON (ECMA 2015) CRITIQUE

Attraction of sign restrictions is agnostic over R.

But uniform prior on one parameter in R does not imply uniform prior
over other parameters.

2 variable example: e1t = r11v1t + r12v2t . Require r11 > 0.

I Var(e1t) = ω2
1 = r2

11 + r2
12⇒ r11 ≤ ω1, r12 =

√
ω2

1 − r2
11.

I Uniform prior: r11|Ω∼ U(0,ω1). What is distribution ofr12?

I 0.1 = Pr (r11 < 0.1ω1) = Pr
(
r12 >

√
ω2

1 − (0.1)2ω2
1

)
=

Pr
(
r12 >

√
0.99ω1

)
. Density of r12 sharply nonuniform.

I Can show other parameters (e.g. r21) also nonuniform.

“Researchers using the traditional methodology can end up
performing hundreds of thousands of calculations, ostensibly
analyzing the data, but in the end are doing nothing more than
generating draws from a prior distribution that they never even
acknowledged that they had assumed.”
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SIGN RESTRICTIONS AND VECTOR AUTOREGRESSIONS 1979

FIGURE 3.—Prior densities when a uniform prior is used for the effect of shock 1 and the
number of variables is 2. Panel A: Prior density for response of variable 1 to structural shock 1.
Panel B: Prior density for response of variable 1 to structural shock 2.

the results would be to calculate the effect on output if the Fed raised interest
rates by 25 basis points, namely h21/h11. A uniform prior on h11 and h21 implies
a nonuniform prior for h21/h11.

These are all illustrations of the general principle that a uniform prior for any
parameter implies a nonuniform prior for nonlinear functions of that parame-
ter (e.g., Datta and Ghosh (1996)). Because the objects of interest in structural
VARs are highly nonlinear functions of the underlying parameters, the quest
for “noninformative” priors for structural VARs is destined to fail.

Our recommendation is that rather than regard these procedures as some-
thing that can be implemented without thinking, it is preferable to spell out
explicitly the class of structural models that the researcher has in mind and ex-
actly what is known and unknown about the model. Our proposed formulation
of the problem does exactly this. The coefficients in A are written in the natural
units of a true structural model in which the elements correspond to parame-
ters governing elasticities, policy rules, and first-order conditions. When the
model is written in this way, it is possible (as we illustrate in Section 5) to draw
on literally hundreds of previous studies for what might be known about plau-
sible values for the parameters, as well as to find the correct implications for
any objects of interest when little is known about the structural model. By con-
trast, prior beliefs about the elements of H would at best be based on loose
intuition about how the structural parameters in A interact when the matrix is
inverted. We nevertheless note that since Proposition 1 describes the inference
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SIGN RESTRICTIONS SUMMARY

Within the class of admissable IRFs, data are not informative about
which is correct ⇒ plot only bounds!.

Can do inference on identified set, such as minimum and maximum
IRFs ( Gafarov,Meier,Olea, JOE 2018).

I Unfortunately, just sign restrictions appear not to restrict the identified
set much (Giacomini,Kitagawa, ECMA forthcoming).

I “Masquerading shocks”: even if restrictions uniquely identify a single
shock, combinations of other shocks may satisfy restrictions. But these
other shock combinations may have very different implications for other
variables (Wolf, AEJ:Macro, 2020).

Plagborg-Møller (QE 2019) offers flexible approach to identification
from impulse response functions.

I “Correct” way to impose uninformed prior given sign restriction.
I Can add other restrictions on smoothness, maximum response, etc.

Embrace Bayesian justification and treat sign restrictions as Bayesian
prior (next time).
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OVERVIEW

VARs combine identification of structural shocks and construction of
impulse response functions into a single step.

Recursive structure of VAR impulse response functions can compound
errors at long horizions if VAR is mis-specified.

Alternative approach: estimate reduced form impulse matrices
directly.

Seminal reference is Jorda (AER 2005), but article contains strange
notation and some unfortunate typos.
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FRISCH-WAUGH-LOVELL STATEMENT

Model:
y = Xβ +u = X1β1 +X2β2 +u.

y ∼ (Tx1),X1 ∼ (TxK1),β1 ∼ (K1x1),X2 ∼ (Tx1),β2 ∼ (1x1),X =(
X1 X2

)
∼ (T ×K ) ,u ∼ (Tx1).

Claim: β̂2 from regressing y on X1 and X2, and β̃2 from regressing y
on the residuals from a regression of X2 on X1, are the same.
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FRISCH-WAUGH-LOVELL NOTATION

Some notation:

PX = X (X ′X )−1X ′ ∼ (K ×K ),

MX = I −PX ∼ (K ×K ),

P1 = X1(X ′1X1)−1X ′1 ∼ (K1×K1),

M1 = I −P1 ∼ (K1×K1).

P is a “hat” matrix: PX y = X β̂ = ŷ .

M is a residual matrix: MX y = y −X β̂ = û.

P,M are projection matrices, and hence symmetric and idempotent.

PXX = X ,MXX = 0.
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FRISCH-WAUGH-LOVELL PROOF
The residuals from a regression of X2 on X1 are M1X2. Thus

β̃2 =
(
(M1X2)′M1X2

)−1
(M1X2)′y

=
(
X ′2M1X2

)−1
X ′2M1y

=
(
X ′2M1X2

)−1
X ′2M1 (PX + I −PX )y

=
(
X ′2M1X2

)−1
X ′2M1 (PX y +MX y)

=
(
X ′2M1X2

)−1
X ′2M1

(
X1β̂1 +X2β̂2 +MX y

)
= β̂2.

The last line follows from M1X1 = 0, and

X ′2M1MX = X ′2 (I −P1)MX

= X ′2 (MX −P1MX )

= X ′2
(
MX − (MXP1)′

)
= X ′2MX

= 0.
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LOCAL PROJECTION

Definition of IR at horizon h to reduced form disturbance e at time t:

Ψ̃h = E [Yt+h|et = e;Yt , . . . ,Yt−p]−E [Yt+h|et = 0;Yt , . . . ,Yt−p] .

Consider the direct regression

Yt+h = αh +Ch,0Yt +Ch,1Yt−1 + · · ·+Ch,pYt−p +ut+h. (1)

By FWL, can also recovery Ch,0 from the two step procedure:

Yt = F̂0 + F̂1Yt−1 + · · ·+ F̂pYt−p + êt , (2)

Yt+h = Ch,0êt . (3)

(2) is a standard VAR.
From (3), Ch,0 = Ψ̃h can be estimated directly using (1).
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IMPLEMENTATION

Yt+h = αh +Ch,0Yt +Ch,1Yt−1 + · · ·+Ch,pYt−p +ut+h

Local projection because IR estimated independently for each
horizon.

Lag length p can vary across horizons.

To obtain structural IRFs, either

I Multiply local IR by VAR estimate of A−1
0 , or

I If Cholesky ordering, replace Ch,0Yt with Ch,0

(
y1t 0 . . . 0

)′
to

construct response to Cholesky shock directly.
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EQUIVALENCE RESULT TO VARS

VAR uses iterative forecast for IRF while LP uses direct projection.

LP(∞) and VAR(∞) give exactly the same IRFs (Plagborg-Moller and
Wolf, ECMA forthcoming).

Intuition: VAR(∞) perfectly captures all covariance properties of the
data, so VAR iterated forecasts perfectly coincide with local
projection direct forecasts.

LP(p) and VAR(p) give approximately the same IRF up to horizon p
in finite samples.

I Approximate because horizon h LP depends on first p+h
autocovariances of data, while VAR(p) captures only first p
autocovariances.

I Exact if LP regressor is a “shock” that is uncorrelated with past data
(so can run LP with 0 lags).
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COMPARISON TO VARS

Any structural SVAR identification implementable in LP.

In practice, sometimes easier to implement LP:

I Confidence bands straightforward, including HAR standard errors.

I Easily extend to nonlinear settings.

LP IRFs can look “weird” since they don’t impose smoothness of
VAR step-ahead forecasts. Can “tune” optimal smoothness
(Plagborg-Moller, 2019).

More generally, bias-variance trade-off in small samples.

Other advantages from flexibility of LP: for example, obtain IRFs for
variables not in shock information set – avoid curse of dimensionality.

More flexibility is good, but beware of the Sims critique.
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EXAMPLE: STATE-DEPENDENT FISCAL MULTIPLIERS

Question: are government spending multipliers larger in recessions
than expansions?

Auerbach and Gorodnichenko (AEJ Policy 2012) trivariate VAR,
government spending ordered first:

Yt = {Government spendingt ,Taxest ,Outputt}′,
Yt = [1−F (zt−1)]ΠE (L)Yt−1 +F (zt−1)ΠR(L)Yt−1 +ut ,

F (zt) =
exp(−γzt)

1 + exp(−γzt)
.

zt = deviation of output growth from trend is an index of the
business cycle.

Paper includes controls for forecasts of government spending and
output – more in a few weeks.

Highly nonlinear system: VAR estimated using MCMC methods.
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EXAMPLE: STATE-DEPENDENT FISCAL MULTIPLIERS

Auerbach and Gorodnichenko (2013) instead use local projection.

For any response variable xt , they estimate (essentially):

xt+h = αh +F (zt)ΠR,h(L)yt−1 + [1−F (zt−1)]ΠE ,h(L)yt−1

+F (zt)ΦR,h(L)gt−1 + [1−F (zt−1)]ΦE ,h(L)gt−1

+F (zt)ΨR,hgt + [1−F (zt−1)]ΨE ,hgt .

Shock is equivalent to a Cholesky shock.

Easy to examine response of variables such as private consumption,
hours, etc. without overwhelming number of variables in the VAR.

After appropriately interacting variables, this is a linear regression.
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Figure 1. Comparison of impulse responses from VAR and direct projection 

Panel A: Full sample, 1960-2010. 

 
Panel B: Sample for which OECD forecasts are available, 1985-2010. 
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Figure 4. State-dependent vs. Linear responses 

Panel A. Real GDP 

 
Panel B. Private consumption 
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Panel C. Private investment 

 
Panel D. Total employment 
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LP WITHOUT VARS

Jorda specification:
Yt+h = αh +Ch,0Yt +Ch,1Yt−1 + · · ·+Ch,pYt−p +ut+h.

Suppose instead: Yt+h = αh +Ch,0Y1,t .

Valid only if Y1,t is a structural shock.

Close cousin: excluded instrument for Y1,t . LP-IV most common use
in practice.

Return to it when we discuss excluded instruments.
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OUTLINE

1 ARMA PROCESSES

2 FILTERS

3 VARS

4 LOCAL PROJECTION

5 PRINCIPAL COMPONENTS ANALYSIS



OVERVIEW

Data reduction technique to extract common component of series.

Many models in finance and macro have “factor-loading” structure.

PCA does not generate economic interpretation of factors.

I Compare to observed factors such as Fama-French.

PCA does efficiently condense information from large number of
series into a few factors.

Sometimes possible to interpret principal component factors.

I Example: term structure as level, slope, curvature.

Used in FAVAR (next time).
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SETUP

et ≡
(
e1,t e2,t . . . eS ,t

)′
: vector of observations at time t on S

variables. WLOG, assume the mean of each element of et is zero.

Factor model (observation t):

et︸︷︷︸
Sx1

= Λ︸︷︷︸
SxK

Ft︸︷︷︸
Kx1

+ εt︸︷︷︸
Sx1

,

I Λ: matrix of factor-loadings.
I Ft : vector of K factors.

Λ and Ft are identified only up to a rotation, i.e. ΛFt = ΛQ ′QFt for
an orthonormal matrix Q.
I Impose a normalization such as Var [Ft ] = I .

Factor model (full system):

e︸︷︷︸
TxS

= F︸︷︷︸
TxK

Λ′+ ε︸︷︷︸
TxS

.

92 / 103



OBSERVATION t


e1,t

e2,t
...

eS ,t

=


λ1,1 λ1,2 . . . λ1,K

λ2,1 λ2,2
... λ2,K

...
...

. . .
...

λS ,1 λS ,2 . . . λS ,K



f1,t
f2,t

...
fK ,t

+


ε1t

ε2,t
...

εS ,t

 .
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FULL SYSTEM


e ′1
e ′2
...
e ′T

=


e1,1 e2,1 . . . eS ,1

e1,2 e2,2
... eS ,2

...
...

. . .
...

e1,T e2,T . . . eS ,T



=


f1,1 f2,1 . . . fK ,1

f1,2 f2,2
... fK ,2

...
...

. . .
...

f1,T f2,T . . . fK ,T




λ1,1 λ1,2 . . . λ1,K

λ2,1 λ2,2
... λ2,K

...
...

. . .
...

λS ,1 λS ,2 . . . λS ,K


′

+


ε1,1 ε2,1 . . . εS ,1

ε1,2 ε2,2
... εS ,2

...
...

. . .
...

ε1,T ε2,T . . . εS ,T

 .
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FIRST PC

First PC maximizes explained variance in et from a single factor.

With one factor,
e = F1λ

′
1 + ε.

Variance:
TVar [e] = e ′e = λ1F

′
1F1λ

′
1 + ε

′
ε.

Letting tr {�} denote the trace function, the minimization problem is

min
F1,λ1

S

∑
s=1

T

∑
t=1

ε
2
s,t = min tr

{
ε
′
ε
}
.
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MINIMIZATION

min
F1,λ1

S

∑
s=1

T

∑
t=1

ε
2
s,t = min tr

{
ε
′
ε
}
.

Some algebra:

tr
{

ε
′
ε
}

= tr
{(

e−F1λ
′
1

)′ (
e−F1λ

′
1

)}
= tr

{
e ′e−λ1F

′
1e− e ′F1λ

′
1 + λ1F

′
1F1λ

′
1

}
= tr

{
e ′e−2λ1F

′
1e + λ

′
1λ1

}
.

I Third equality uses the fact that trace passes under a sum,
tr {AB}= tr {BA}, and the normalization F ′F = I .

FOC w.r.t λ ′1:
−2e ′F1 + 2λ1 = 0 =⇒ e ′F1 = λ1.

I Use: ∂ tr{AZB}
∂Z =

∂ tr{B ′Z ′A′}
∂Z = BA,

∂ tr{AZBZ ′C}
∂Z = BZ ′CA+B ′Z ′A′C ′.
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...CONTINUED
Use FOC e ′F1 = λ1 to concentrate the objective function:

tr
{

ε
′
ε
}

= tr
{
e ′e−2λ1F

′
1e + λ

′
1λ1

}
= tr

{
e ′e−2e ′F1F

′
1e +F ′1ee

′F1

}
= tr

{
e ′e−F ′1ee

′F1

}
.

Drop the first term (which does not depend on F1) and restate
problem as:

max
F1

tr
{
F ′1ee

′F1

}
s.t.F ′1F1 = I .

Let d1 denote the lagrange multiplier on the constraint. The FOC
w.r.t F ′1 is

0 = ee ′F1 + ee ′F1−2d1F1

=
(
ee ′−d1I

)
F1.
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FIRST PC SOLUTION

FOC: (
ee ′−d1I

)
F1 = 0.

F1 is an eigenvector of ee ′ and d1 is its eigenvalue.

Linear algebra fact: the largest eigenvalue maximizes the quadratic
form fee ′f over all unit vectors f .

Premultiplying FOC by e ′:

0 =
(
e ′ee ′−d1Ie

′)F1 =
(
e ′e−d1I

)
e ′F1 =

(
e ′e−d1I

)
λ1.

λ1 is the eigenvector of e ′e corresponding to the same eigenvalue as
F1.

In sum, the vector of the first principal components is the eigenvector
corresponding to the largest eigenvalue of of ee ′, and the eigenvector
corresponding to the same eigenvalue of e ′e provides the loadings.
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ADDITIONAL PCS

Suppose j principal components have been identified:

e = FjΛ
′
j + ε.

I Λj =
(
λ1 λ2 . . . λj

)
; Fj =

(
f1 f2 . . . fj

)
.

The j + 1’th PC maximizes the explained variance remaining after the
first j PCs, i.e. it chooses {fj+1,λj+1} to minimize ε̃ ′ε̃, where 3

ẽ = e−FjΛ
′
j

= fj+1λ
′
j+1 + ε̃.

Following the same logic as above, the j + 1 PC will be the
eigenvector associated with the largest eigenvalue of ẽ ẽ ′, and the
j + 1 factor loading will be the eigenvector of ẽ ′ẽ associated with the
same eigenvalue.

3Note that ẽ ′ẽ = e ′e− e ′FjΛ
′
j −ΛjF

′
j e + ΛjF

′
j FjΛ

′
j = e ′e−ΛjF

′
j FjΛ

′
j .
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ADDITIONAL PCS, MORE DIRECTLY
Claim: The largest eigenvalue of ẽ ′ẽ is also the j + 1’th largest eigenvalue of e ′e, and
the corresponding eigenvector is also the eigenvector corresponding to the same
eigenvalue of e ′e.
Proof: By induction.

1 Claim holds trivially for first eigenvalue and eigenvector.
2 Suppose it holds for the first j eigenvalues and eigenvectors. Let

(
dj+1,λj+1

)
denote the j + 1’th largest eigenvalue and associated eigenvector of e ′e and ee ′:(

e ′e−dj+1I
)

λj+1 = 0.

3 λj+1 is orthogonal to each column of Λj by the induction assumption (the columns
of Λj contain eigenvectors corresponding to distinct eigenvalues of e ′e). In
particular,

ΛjΛ
′
jλj+1 = 0.

4 Subtracting the last equation from the penultimate:

0 =
(
e ′e−ΛjΛ

′
j −dj+1I

)
λj+1

=
(
ẽ ′ẽ−dj+1I

)
λj+1.
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SINGULAR VALUE DECOMPOSITION

Singular value decomposition of e:

e = FD
1
2 Λ′.

I F is orthonormal matrix of factors.

I Λ is orthonormal matrix of loadings.

I D is diagonal matrix of factor variances.

Confirm:

e ′e = ΛD
1
2F ′FD

1
2 Λ′ = ΛDΛ′.

ee ′ = FD
1
2 Λ′ΛD

1
2F ′ = FDF ′.

Intuition: S linearly independent factors span the subspace of e, so
with full set of factors, error term disappears.
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SELECTING NUMBER OF FACTORS

Informal criteria using scree plots of eigenvalues or threshold for
explained variance.

Bai and Ng (ECMA 2002) criteria:

ICp1(k) = logV (k , F̂ k) +k

(
S +T

ST

)
log

(
ST

S +T

)
ICp2(k) = logV (k , F̂ k) +k

(
S +T

ST

)
log
(
C 2
ST

)
ICp3(k) = logV (k , F̂ k) +kC−2

ST log
(
C 2
ST

)
.

I V (k , F̂ k) = minΛ(ST )−1
∑
S
s=1 ∑

T
t=1

(
es,t − λ̂s(k)′F̂t(k)

)2
measures the

goodness of fit with k factors, and

I CST = min
(√

T ,
√
S
)

captures the speed of convergence.
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COMMENTS

Matrix decomposition very fast to compute.

Can do PCA on covariance or correlation matrix, depending whether
you want to upweight data series with larger variances. If covariance
matrix, make sure series have comparable units.

Always pay attention to what the default normalization is in
statistical software.

If SVD, check ordering of factors and explained shares.

Often only a few factors will explain more than 80 or 90 percent of
the variance.

When factors or factors and loadings are to be included in subsequent
model, one can instead directly estimate in one step. See Bai (ECMA
2009) for recent treatment.
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