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BIG PICTURE

Structural models have parameters. Data should inform the numerical
values of those parameters.

This lecture about ways to identify parameters.

I start with solution methods.

Then cover ML, SMM, IRF-matching, Bayesian.

Each of these sub-topics could be a full lecture.

The handbook chapter by Fernández-Villaverde,Rubio-Raḿırez, and
Schorfheide is a comprehensive treatment.

Other useful resources:
https://www.sas.upenn.edu/~jesusfv/teaching.html

http://www.wouterdenhaan.com/notes.htm

Throughout, I use neoclassical growth model to make concepts
concrete.
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IDENTIFICATION

Given a sample Y and a parameter vector θ , identification means
p(Y |θ) = p(Y |θ ′)⇒ θ = θ ′, i.e. the data identify a unique
parameter vector.

In econometrics, parameters are identified or not.

Applied researchers sometimes slip into discussion of “identifying
assumption” or “identified moments”.

An identifying assumption means that under the assumption, the
identified parameter vector is equal to the true value.

An identified moment can be used to identify the true θ from the
data.

Today’s lecture about identification in formal sense.
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MODEL

Problem:

max
{ct+h,kt+1+h}∞

h=0

Et

∞

∑
h=0

β
h
c

1−γ

t+h −1

1− γ

s.t. ct+h +kt+1+h = zt+hk
α

t+h + (1−δ )kt+h,

lnzt = ρ lnzt−1 + σεt , εt ∼ N(0,1),

kt given.

From first order conditions:

Euler: c
−γ

t = Et

[
βc
−γ

t+1

(
αzt+1k

α−1
t+1 + 1−δ

)]
,

Resource constraint: ct +kt+1 = ztk
α
t + (1−δ )kt .

Solution is policy function ct = c(kt ,zt) and transition equation
kt+1 = k(kt ,zt).
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SPECIAL CASE

For γ = 1, δ = 1 (full depreciation):

ct = (1−αβ )ztk
α
t ,

kt+1 = αβztk
α
t .

Verify:

Euler:
1

(1−αβ )ztk
α
t

= Et

[
β

αzt+1k
α−1
t+1

(1−αβ )zt+1k
α
t+1

]
,

Rewrite:
1

ztk
α
t

=
αβ

(αβztk
α
t )

,

Resource: (1−αβ )ztk
α
t + αβztk

α
t = ztk

α
t .

Exact solution because no state variable with full depreciation.

Otherwise, need to approximate.
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OVERVIEW

Much later, we will use a Kalman filter.

Covering it now rather than break flow later.

Kalman filter uses state-space representation.

Recent advances use more flexible particle filters that accommodate
non-linear state spaces and non-normal shocks (e.g. Herbst and
Schorfheide, JoE 2019), but same basic idea.

Given observed data, filter recovers unobserved shocks (e.g.
productivity) and true, latent values of variables observed with
measurement error.

We will use it to compute likelihood given observed data.
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STATE-SPACE REPRESENTATION

Let Yt = {y1,y2, . . . ,yt} be a sequence of observed data.

Observation and state equation:

Observation: yt = Hst +wt ,

State: st = Fst−1 + vt ,

where:

[
wt

vt

]
∼ iidN

([
0
0

]
,

[
R 0
0 Q

])
.

yt ,st may be vector-valued. st may contain latent or hidden states.

Assume H,F ,R,Q known (or have candidate draw in estimation
loop). These encode decision rules and parameter values.

Notation:

xt|t−k = E [xt |Yt−k ] ,

Pt|t−k = Var [st |Yt−k ] .
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STATE SPACE REPRESENTATION OF GROWTH MODEL

Assume model solved for linear policy rules
ct = c(kt ,zt) = ackkt +aczzt ,kt+1 = k(kt ,zt) = akkkt +akzzt .

State equation:

[
kt
zt

]
︸︷︷︸
st

=

[
akk akz
0 ρ

]
︸ ︷︷ ︸

F

[
kt−1

zt−1

]
︸ ︷︷ ︸

st−1

+

[
0
εt

]
︸︷︷︸
vt

.

Observation equation with all variables observed:ctkt
zt


︸ ︷︷ ︸

yt

=

ack acz
1 0
0 1


︸ ︷︷ ︸

H

[
kt
zt

]
︸︷︷︸
st

+

0
0
0


︸︷︷︸
wt

Observation equation with only capital and measurement error uk,t :[
k∗t
]︸︷︷︸

yt

=
[
1 0

]︸ ︷︷ ︸
H

[
kt
zt

]
︸︷︷︸
st

+
[
uk,t
]︸ ︷︷ ︸

wt

.
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UPDATING

Least squares projection formula: if

[
a
b

]
∼ N

([
µa

µb

]
,

[
Σaa Σab

Σba Σbb

])
,

then a|b ∼ N
(
µa + ΣabΣ−1

bb (b−µb) ,Σaa−ΣabΣ−1
bb Σba

)
.

Normality:[
st
yt

]
|Yt−1 ∼ N

([
st|t−1

yt|t−1

]
,

[
Pt|t−1 Pt|t−1H

′

HPt|t−1 HPt|t−1H
′+R

])
.

Apply projection formula: st |Yt−1,yt = st |Yt ∼ N
(
st|t ,Pt|t

)
, where:

st|t = st|t−1 +Kt

(
yt −yt|t−1

)
,

Pt|t = Pt|t−1−KtHPt|t−1,

Kt = Pt|t−1H
′ [HPt|t−1H

′+R
]−1

is Kalman gain.

From observation and state equations:

st|t−1 = Fst−1|t−1,

Pt|t−1 = FPt−1|t−1F
′+Q,

yt|t−1 = Hst|t−1.
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KALMAN FILTER

1 Start with initial values for s0,0,P0,0. For example, model steady state.

2 Obtain s1|0,P1,0,y1,0 using last three equations from previous slide.

3 Use s1|0,P1,0,y1,0 and previous equations for st|t ,Pt|t to obtain
s1|1,P1|1.

4 Repeat from step 2.
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SOLUTION METHODS

Model estimation requires you to first solve the model.

Have to solve model fast, so estimation can loop over solutions.

Active area of research; I am going to give you high-level overview.

Two main approaches: local (perturbation) and global (projection).
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OVERVIEW

You know how to log-linearize a model to solve it.

Perturbation provides a formalization of the linearization approach
and easily extends to higher orders.

Typically extremely fast.

Provides local solution.

Is a local solution sufficient? Perturbation can be quite accurate even
for large shocks, especially with higher order solutions. But less
accurate if model features important non-linearity (zero lower bound,
occasionally binding constraints, etc.).
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IMPLEMENTATION IN NEOCLASSICAL GROWTH MODEL

Introduce perturbation parameter λ :

lnzt = ρ lnzt−1 + λσεt , εt ∼ N(0,1).

I λ = 0: deterministic steady-state with z = 1.

I λ = 1: original model.

Index decision rules by λ :

ct = c(kt ,zt ;λ ),

kt+1 = k(kt ,zt ;λ ).

Steady state for kt = k ,zt = 1,λ = 0:

c(k,1;0) = kα −δk ,

k(k,1;0) = k .

Next build local approximation around (k ,1;0).
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PERTURBATION AND TAYLOR APPROXIMATION

Additional notation:

H (ct ,ct+1,kt ,kt+1,zt ;λ ) = Et

(
c
−γ

t −
[
βc
−γ

t+1

(
αzt+1k

α−1
t+1 + 1−δ

)]
ct +kt+1− ztk

α
t − (1−δ )kt

)
.

Note that:

H (ct ,ct+1,kt ,kt+1,zt ;λ )

= H (c (kt ,zt ;λ ) ,c (k (kt ,zt ;λ ) ,ρzt + λσεt+1;λ ) ,kt ,k (kt ,zt ;λ ) ,zt ;λ )

≡ F (kt ,zt ;λ ) = 0.

Since F (kt ,zt ;λ ) = 0 for any values of its arguments, derivatives of
F (k,1;0) also must be zero. Using the chain rule:

0 = Fk (k,1;0) = H1ck +H2ckkk +H3 +H4kk ,

0 = Fz (k ,1;0) = H1cz +H2ckkz +H4kz +H5.

Four equations (H is 2×1) in four unknowns: ck ,cz ,kk ,kz .

Solve with standard methods (Blanchard–Kahn; Uhlig; Sims; Klein).
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FIRST-ORDER SOLUTION

Coefficients ck ,cz ,kk ,kz characterize linearized policy rules around
(k,1) steady-state.

First-order perturbation is formally equivalent to linearization.

Sometimes implement with change-of-variables, for example by
replacing ct with lnct .

Certainty equivalence:
0 = Fλ (k ,1;0) = H1cλ +H2 (ckkλ + cλ ) +H4kλ +H6 is linear and
homogenous system in cλ ,kλ since H6 = 0. Therefore: cλ = kλ = 0.
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HIGHER-ORDER SOLUTIONS

Take second-order derivatives of F (kt ,zt ;λ ) around k ,1,0 and set
equal to zero.

Substitute coefficients we already know from first-order solution.

Result: 12 equations in 12 unknowns.

Can continue iteration to arbitrary degree.

Recursive ⇒ speed advantage.
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PRUNING

At degree d , drop recursive terms of degree higher than d .

Second-order example (ρ = 0):

Decision rule: k(kt) = a1kt +a2k
2
t +b1εt

Subst. backward: = a1kt +a2

(
a1kt−1 +a2k

2
t−1 +b1εt−1

)2
+b1εt .

Second-order perturbation contains terms in k3
t−1,k

4
t−1.

Suppose at some date t a large realization of εt generates a value of
kt+1 far from the steady-state value. Going forward, this value will be
raised to cubic and higher-order powers and trigger an explosive path.

Intuition: higher order more accurate locally, but not necessarily
globally.
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OVERVIEW

Global methods look for policy rules that satisfy equilibrium
conditions at many points in the state space (nodes).

Can accommodate highly non-linear models.

A lot of art (and some science) to choosing nodes efficiently.

Underlying procedure is Stone-Weierstrass theorem: any continuous
function can be approximated by a polynomial, i.e. if f (x) is
continous on [a,b], there exists h(x) = ∑

n
m=1 ξmx

m such that
∀ε > 0 |f (x)−h(x)|< ε.

Find approximating polynomial that minimizes errors at nodes.

I will illustrate using a particular method known as parameterized
expectations and then return to more general case.
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PARAMETERIZED EXPECTATIONS (PE)

Let g(kt ,zt) = Et

[
βc
−γ

t+1

(
αzt+1k

α−1
t+1 + 1−δ

)]
.

Note: as before, can substitute policy rules to show conditional
expectation must be function only of state variables.

Goal: approximate g(kt ,zt) with a polynomial.

Why g(kt ,zt)? Expectations typically smoother than realizations.

Notation: Pn (kt ,zt ;ξn) is the nth order polynomial in kt ,zt with
coefficients indexed by ξ :

g(kt ,zt)≈ Pn (kt ,zt ;ξn) .

Note: as before, may want to define in terms of logs of variables.
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STOCHASTIC PE ALGORITHM

1 Fix the polynomial order n, an initial capital stock k0, and a randomly
drawn productivity process.

2 Guess (randomly?) values for the polynomial coefficients ξ 1, where
the superscript refers to the number of the iteration.

3 Simulate the economy for T periods using the policy rule
ct = Pn (kt ,zt ;ξn)−1/γ and kt+1 = (1−δ )kt + ztk

α
t − ct to

sequentially update simulated values.

4 Define yt+1 = βc
−γ

t+1

(
αzt+1k

α−1
t+1 + 1−δ

)
as the realized value.

5 Regress yt+1 on an n-order polynomial in kt ,zt and define ξ 2 as the
coefficients from this regression.

6 Return to step 3 and iterate until convergence.

Practical aside: burn periods and add stochastic step in (5).
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NON-STOCHASTIC PE
Perturbation approximates decision rules with polynomial optimized
around one point in k ,z space.

Stochastic PE approximates decision rules with polynomial optimized
for simulated values of kt ,zt .

Non-stochastic PE approximates decision rules with polynomial
optimized for user-defined grid points of k,z .

Calculate for node j and iteration i :

Approximation: c ij = Pn

(
kj ,zj ;ξ

i
n

)−1/γ
,

Resource constraint: k i ′j = (1−δ )kj + zjk
α
j − c ij ,

Expectation: y ij = E
[
Pn

(
k i ′j ,z

′
j ;ξ

i
n

)(
αz ′j

(
k i ′j
)α−1

+ 1−δ

)]
,

where x ′j denotes next period’s value.

Stochastic element in y ij is z ′j . Compute E [] using Monte Carlo (brute
force), numeric integration (e.g. Gaussian Hermite quadrature using
z ′j |zj ∼ N()), or solve PDE.
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NON-STOCHASTIC PE ALGORITHM

1 Fix the polynomial order n and a set of grid points {kj ,zj}.

2 Guess (randomly?) values for the polynomial coefficient ξ 1.

3 For each grid point, calculate y1
j .

4 Regress y1
j on an n-order polynomial in kj ,zj and define ξ 2 as the

coefficients from this regression.

5 Return to step 3 and iterate until convergence.
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CURSE OF DIMENSIONALITY

Neoclassical growth model has two state variables: k ,z .

Suppose discretize each variable into M values.

Tensor grid has M2 nodes.

For N state variables, grid has MN nodes.

Computationally burdensome because evaluate criterion at each node.
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GENERAL PROJECTIONS

Non-stochastic PE is example of projection method.

Generalization: Pn (kj ,zj ;ξn) in terms of general basis functions such
as Chebyshev polynomials.

Generalization: minimize criteria other than Euler equation error.

So 3 choices: minimization criterion, basis functions, grid points.

Can spline basis functions, for example at ZLB or default threshold.

Optimizing these choices is research frontier.

I Sparse grids (e.g. Smolyak): more efficient set of grid points than full
tensor product.

I Adaptive grids: concentrate grid points in places in state space visited
frequently and where model is especially non-linear.

Also recent progress in how to solve for basis function coefficients
(e.g. collocation).
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ASIDE: CHEBYSHEV POLYNOMIALS

Definition: T0(x) = 1,T1(x) = x ,Tn+1(x) = 2xTn(x)−Tn−1(x).

A few: T0(x) = 1,T1(x) = x ,T2(x) = 2x2−1,T3(x) = 4x3−3x ,...

Chebyshev polynomials are basis functions: can write any polynomial
of order N as ∑

N
n=1 anTn(x).

Chebyshev polynomials are orthogonal basis functions.
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GENERAL PROJECTION ALGORITHM

1 Choose basis functions and polynomial order
Ψ0, . . . ,Ψn : Pn(k,z ;ξn) = ∑

n
m=1 ξmΨm(k,z).

2 Choose model policy function(s) to approximate and equation error(s)
to minimize, e.g. c(k,z)≈ Pn(k ,z ;ξn)−1/γ and

d(k,z) = Pn(k,z ;ξn)−E

[
Pn (k ′,z ′;ξn)

(
αz ′j

(
k ′j

)α−1
+ 1−δ

)]
.

3 Choose set of nodes J = {k1,z1},{k2,z2}, . . ..

4 Miminize chosen criterion at nodes, i.e. ξ̂n = arg minξn ∑j∈J d(kj ,zj)
2.
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PARALLELIZATION

For estimation, solution method needs to be fast.

Common bottleneck is evaluating ∑j∈J d(kj ,zj)
2.

Why? At each node, need to compute expectation.

Very parallelizable: calculation of d(k1,z1) independent of d(kj ,zj)
for j 6= 1.

As easy as parfor instead of for in Matlab.

26 / 44



OUTLINE

1 OVERVIEW

2 STOCHASTIC NEOCLASSICAL GROWTH MODEL

3 STATE SPACE REPRESENTATION AND KALMAN FILTER

4 SOLVING MODELS

5 ESTIMATION



OVERVIEW

Assume you have solved the model and obtained policy functions
ct = c (kt ,zt) ,kt = k (kt ,zt).

These are approximations, but we now ignore approximation error.

The policy functions depend on model parameters
θ =

(
α β δ γ ρ σ

)
.

Note: may not depend on all parameters (e.g. σ drops out if
first-order perturbation).

Given data vector Yt , how can you estimate parameters θ?
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OVERVIEW

Simulated method of moments, minimum distance, and indirect
inference all refer to procedures that minimize the distance between a
set of moments generated from simulated data and actual data.

Examples:

I Auto-covariances of data series.

I Coefficient from regressing consumption growth on output growth.

Moments not necessarily causally identified, e.g. consumption growth
and output growth are jointly endogenous variables. Comparison of
model–to–data moments still valid.

Distance metric typically identity matrix or weighted by precision of
data moments.

Analysis extends to GMM, in which case data moments are zeros.
GMM does not necessarily require a full model solution (e.g. single
equation estimation).
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ALGORITHM

1 Collect some moments of the data in the vector m̂.

2 Simulate data given parameters θ by randomly drawing shocks and
using decision rules to calculate endogenous variables. Burn early
observations to reduce dependence on initial conditions.

3 Collect in m(θ) the moments of the simulated data at parameter
vector θ .

4 Obtain θ̂ = arg minθ (m̂−m(θ))′W (m̂−m(θ)) for weight matrix W .

Important to treat data and model exactly the same in this exercise. For
example, if moments computed on de-trended data, should also de-trend
simulated data before computing moments.
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OVERVIEW

Impulse responses are key object of interest in data.

Natural to think about using them for parameter identification.

Especially attractive when researcher is interested in particular aspect
of model. For example, monetary policy.

IRF-matching was subject of fierce debate in early 2000s.

Question: what if model does not admit VAR representation used in
data to estimate IRFs?

Answer (Chari,Kehoe,McGrattan, JME, 2008): compare data IRF to
model IRF computed by estimating VAR on model data.

This is just a special case of indirect inference.
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OVERVIEW

Same procedure as you learned in econometrics.

Rarely used this way in practice because of lack of identification
(likelihood function flat). Can reduce problem by externally
calibrating some parameters or imposing priors (Quasi-Bayesian ML,
covered next).

Likelihood approach also introduces problem of stochastic singularity
(next slide).
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STOCHASTIC SINGULARITY

Recall γ = 1,δ = 1⇒ ct = (1−αβ )ztk
α
t .

In words, consumption-output ratio is flat. (Why?)

In data, consumption-output ratio fluctuates over time. Therefore,
likelihood function is zero for any set of parameters.

Solution:

1 Add measurement error to data (blame inability of model to fit data on
the data).

2 Add unobserved shocks (say to time preference βt).

General rule: for every observable, require at least one unobservable
shock or measurement error.

Measurement error is misnomer since also (mostly) reflects model
mis-specification.
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KALMAN FILTER REDUX

How do you introduce measurement error or unobserved shocks?

Answer: state space representation and Kalman filter. Recall:

Observation: yt = Hst +wt ,

State: st = Fst−1 + vt .

Introduce measurement error via wt , e.g.
[
k∗t
]︸︷︷︸

yt

=
[
1 0

]︸ ︷︷ ︸
H

[
kt
zt

]
︸︷︷︸
st

+
[
uk,t
]︸ ︷︷ ︸

wt

.

Important: agents in model know and use kt , not k∗t .

Introduce unobserved shocks as variables in state but not observation
equation. Important: need to re-solve model (obtain new decision
rules) to reflect new shocks. E.g. consumption and capital would
depend on fluctuations in βt .

Can also obtain unobserved shocks by inverting policy rules. E.g.:
kt+1 = akkkt +akzzt ⇒ zt = (kt+1−akkkt)/akz ,εt = zt −ρzt−1.
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UNOBSERVED SHOCKS VERSUS MEASUREMENT ERROR

Unobserved shocks popularized in Smets and Wouters (2003; 2007):

I Medium-scale DSGE model: RBC core + sticky prices, sticky wages,
habit formation in consumption, investment adjustment costs, variable
capital utilization, etc.

I Seven shocks: TFP, risk premium, investment-specific technology,
wage mark-up, price mark-up, government spending, monetary policy.

Paul Romer critique: leading models “attribute fluctuations in
aggregate variables to imaginary causal forces.”

Some economists dislike measurement error because it is “black box.”

My view: stochastic singularity arises because the model is not a
perfect representation of the true data generating process.
Measurement error is transparent approach to assessing how
mis-specified model is.
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ROMER DESCRIPTION OF SMETS AND WOUTERS SHOCKS

A general type of phlogiston that increases the quantity of
consumption goods produced by given inputs

An “investment-specific” type of phlogiston that increases the
quantity of capital goods produced by given inputs

A troll who makes random changes to the wages paid to all workers

A gremlin who makes random changes to the price of output

Aether, which increases the risk preference of investors

Caloric, which makes people want less leisure
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ROMER ANNOTATION OF SMETS AND WOUTERS

While “demand” shocks such as the [aether AKA] risk premium,
exogenous spending, and investment-specific [phlogiston AKA] technology
shocks explain a significant fraction of the short-run forecast variance in
output, both the [troll’s] wage mark-up (or [caloric AKA] labor supply)
and, to a lesser extent, output-specific [phlogiston AKA] technology
shocks explain most of its variation in the medium to long run. ... Third,
inflation developments are mostly driven by the [gremlin’s] price mark-up
shocks in the short run and the [troll’s] wage mark-up shocks in the long
run (p. 587).
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SERIALLY-CORRELATED MEASUREMENT ERROR

True measurement error possibly serially uncorrelated. Measurement
error due to model mis-specification likely serially correlated.

Suppose k∗t = kt +uk,t , uk,t = γuk,t−1 + ek,t , ek,t ∼ iidN(0,σ2
e,k).

State space representation:

Observation:
[
k∗t
]︸︷︷︸

yt

=
[
1 0 1

]︸ ︷︷ ︸
H

 kt
zt
uk,t


︸ ︷︷ ︸

st

+
[
0
]︸︷︷︸

wt

,

State:

 kt
zt
uk,t


︸ ︷︷ ︸

st

=

akk akz 0
0 ρ 0
0 0 γ


︸ ︷︷ ︸

F

 kt−1

zt−1

uk,t−1


︸ ︷︷ ︸

st−1

+

 0
εt

ek,t


︸ ︷︷ ︸

vt

.
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OVERVIEW

With many parameters, likelihood function typically not well-behaved
enough to do standard ML.

Bayesian ML imposes priors on parameters.

Recall Bayes rule for parameters θ and data Y :

Posterior: p (θ |Y ) =
p (θ ,Y )

p (Y )
=

p (Y |θ)p (θ)

p (Y )
=

L(θ |Y )p (θ)

p (Y )
,

where:

Prior: p (θ) ,

Likelihood: L(θ |Y ) = p (Y |θ) .
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INTERPRETING PRIOR: ARTIFICIAL DATA

Often prior chosen based on information from some other studies and
data.

In case of conjugate prior, can make analogy exact.

Definition: a conjugate prior is a distribution for θ such that the
posterior has the same distribution as the prior.

Often analytically convenient.
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EXAMPLE: BETA DISTRIBUTION AND BERNOULLI

Beta distribution: f (x ;α,β ) = xα−1(1−x)β−1

B(α,β ) , x ⊆ [0,1] , where the Beta

function is: B(α,β ) =
∫ 1

0 xα−1 (1−x)β−1 dx = Γ(α)Γ(β )
Γ(α+β ) .

Moments: Mean: µ (α,β ) = α

α+β
, Variance: σ 2 (α,β ) = αβ

(α+β +1)(α+β )2 .

Suppose data are n Bernoulli trials with s successes and f failures:

Prior: p (θ ;α,β ) =
θ α−1 (1−θ)β−1

B(α,β )
,

Likelihood: p (Y |θ) =

(
s + f
s

)
θ
s (1−θ)f ,

Posterior: p (θ |Y ) =
p (Y |θ)p (θ)∫

p (Y |θ ′)p (θ ′)dθ ′
=

θ α−1+s (1−θ)β−1+f

B(α + s,β + f )
,

Post. mean: µ (α + s,β + f ) =
α + s

α + β + s + f
.

Interpretation: prior based on previous experiment with n0 = α + β

observations.
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WHY MCMC?

We want to compute E [g(θ)|Y ], e.g. the posterior

I mean: g(θ) = θ ,

I coverage ratio: g(θ) = 1{θ ∈ θ c}.

Monte Carlo sampling: randomly draw from posterior and compute
statistics of interest.

But numerical techniques required to evaluate likelihood.

Therefore numerical techniques also required to evaluate posterior.

Sampling directly from posterior would require random number
generator for a numerical and typically unusual distribution.

Instead use Markov Chain Monte Carlo (MCMC).

Popular choice is random walk Metropolis–Hasting algorithm.
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PROPERTIES OF MCMC

MCMC produces sequence {θ i}Ni=1 s.t. {θ i} converges in distribution
to the posterior distribution as N → ∞.

Compute moments and quantiles of posterior from {θ i}.

Basic idea is to construct Markov transition kernel K (θ i |θ i−1) such
that if θ i−1 is draw from the posterior, so is θ i .
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RANDOM-WALK MH ALGORITHM

1 Start with initial value θ 0.

2 In ith iteration, draw θ ∗ ∼ q(θ ∗|θ i−1).

I q(θ ∗|θ i−1) is “stand-in” density. In R-WMH, q(θ ∗|θ i−1) = N(θ i−1,Σ).

3 Set α = min
{

p(θ ∗|Y )
p(θ i−1|Y )

,1
}

. α is the transition probability.

4 Set θ i = θ ∗ with probability α and θ i = θ i−1 otherwise.

Idea: if posterior density of θ i larger than posterior density of θ i−1, always
update to θ i . Otherwise, update with probability declining in ratio to
make sure chain doesn’t get stuck at a local optimum.
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PRACTICAL CONSIDERATIONS

Discard burn-in phase to reduce dependence on θ 0.

Need to parameterize Σ. Can do “on-the-fly” during burn-in period.
Want acceptance rates in the neighborhood of 0.3 (Gelman et al.,
2004).

Can draw whole vector θ or block-by-block. Easier to calibrate Σ if
block-by-block, but need more draws in total.

Generate several independent chains from different starting values.
These should converge to same distribution.

RWMH not necessarily efficient since many draws away from “typical
set.” Fernández-Villaverde and Guerrón-Quintana (“Estimating DSGE
Models”) advocate Hamiltonian Monte Carlo.

Make Dynare your ally, not your master.
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