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a b s t r a c t

A new non-rigid registration method combining image intensity and a priori shape knowledge of the

objects in the image is proposed. This method, based on optical flow theory, uses a topology correction

strategy to prevent topological changes of the deformed objects and the a priori shape knowledge to

keep the object shapes during the deformation process. Advantages of the method over classical

intensity based non-rigid registration are that it can improve the registration precision with the a priori

knowledge and allows to segment objects at the same time, especially efficient in the case of

segmenting adjacent objects having similar intensities. The proposed algorithm is applied to segment

brain subcortical structures from 15 real brain MRI images and evaluated by comparing with ground

truths. The obtained results show the efficiency and robustness of our method.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, the analysis of anatomical structures and sub-
structures from medical images develop rapidly [1,2] due to the
widespread research on brain functions and brain disorders. Brain
internal structures play a central role in the intellectual
capabilities of the human brain. Additionally, these structures
are also relevant to a set of clinical conditions, such as Parkinson’s
and Creutzfeldt-Jakob diseases. However, segmenting these
structures from MRI images remains a challenging task due to
their complex shapes, partial volume effects, anatomical varia-
bility, and the lack of clearly defined edges.

A variety of computer-assisted methods have been studied to
automatically segment brain internal structures [3–9]. We can cite
deformable models or active contour evolution based methods
[4,5,7], which can be good solutions to the problem because of their
abilities to capture the information of the shapes or structures of
interest. Although combining a registration process would be good
solutions to the initialization problem [7], such methods still suffer
from poor image contrast and missing boundaries. Methods based on
expert or atlas knowledge are very attractive to make segmentation
automatic [8,10]. In [8], the authors use information fusion to
combine medical expertise with fuzzy maps of morphological,
topological, and tissue composition data for anatomical structures
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segmentation in brain MRIs. In [10], a fuzzy model was introduced to
represent more appropriately the knowledge of distance, shape and
relationship of structures mainly derived from an anatomic atlas.
Then a precise labeling of the desired structures is achieved using
GAs followed by a voxel-wise amendment using parallel region
growing. The published experiment results confirmed the value of
knowledge integration in image segmentation and labeling. Another
crucial technology is registration based image segmentation methods
[1,6,9,11,12], referred to as registration-segmentation. These meth-
ods rely on a reference image volume with a corresponding atlas in
which structures of interest have been carefully segmented by
experts. To segment a new image volume, a transformation that
registers the reference volume to the target volume is computed,
which gives a spatial correspondence between the two image
volumes. Then regions labeled in the atlas can be projected onto
the volume of interest using the obtained transformation. Hence the
segmentation problem is converted to a registration problem. These
methods take advantage of the prior knowledge provided by the atlas
(structure shape, relative positions between the structures and so
on). Such strategy is helpful to the segmentation of the anatomical
structures which are not clearly defined in the input images. The
proposed method is based on this type of method.

The key of such registration-segmentation methods is to ensure
the obtained spatial transformation accurate, robust and physically
reasonable, where the topology preservation is an important
constraint. Topology preservation means the unchanged connectivity
inside a structure and the relationships between the neighboring
structures in the deformed image. There is no tearing, no folding and
no appearance or disappearance of structures. By adding this
constraint on the deformation field, the optimal solution space can
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be limited to physically accepted ones. Topology preservation can be
generally implemented by ensuring a positive Jacobian of the
transformation [13–16]. One way to enforce topology preservation
consists in adding further constraints on the deformation model such
as penalization of small Jacobian values [9,15–17]. Another way is to
track the Jacobian during the registration procedure [18,19]. Here we
preserve the topology of a transformation using a local displacements
correction method based on analyzing the geometrical features of a
vector field.

In this paper, a new non-rigid registration method based on
optical flow theory combining both image intensity and structure
shape information is proposed to segment the brain MRI internal
structures. The main contributions of the proposed method are
twofold: (1) a new designed cost function, which combines a

priori shape knowledge with the intensity information, and is
represented efficiently by a distance map; and (2) a topology
correction strategy, which ensures the consistency of the vector
field obtained by optical flow based registration. This paper is
organized as follows. In Section 2 the principle of the intensity
based non-rigid registration is described. Based on this principle,
the proposed method is presented in detail in Section 3. Then
experimental results on MRI images are shown in Section 4. In
Section 5, the conclusion is finally given.
2. Intensity based non-rigid registration

Image registration is a well studied problem [20–24]. This
problem can be described as finding an optimal spatial transfor-
mation T� for matching the transformed reference image to the
target image. In addition to intensities, the positions should be
considered for image data in image processing. A transformation T
is a spatial mapping that relates the position of features in one
image or coordinate space with the position of the corresponding
features in another image or coordinate space. In general the
optimal transformation T� is acquired by minimizing the overall
cost function E:

T� ¼ arg min
T AG

fEðTÞg ¼ arg min
T AG

fEsimðB;A3TÞþEregðTÞg ð1Þ

where A and B denote the reference image and the target image
respectively. The set G is the space of admissible transformations.
EsimðB;A3TÞ as the first part of E denotes the data similarity
measure and EregðTÞ as the second part denotes the regularization
term to penalize the undesirable transformations.

Different features can be used to construct the similarity
measure among which the sum of squared differences (SSD) is a
simpler one. The formulation of such metric is

EsimðB;A3TÞ ¼ Eintensity
SSD ðB;A3TÞ ¼ 1

2JB�A3TJ2
ð2Þ

The SSD forms the basis of the intensity-based image
registration algorithms and the optimal solution can be obtained
by classical optimization algorithms. Among many different
intensity based non-rigid image registration algorithms, the
Demons algorithm (using SSD metric) [25] and its variants [26–28]
are proved to be one of the most efficient methods. As is well
known, a simple optimization of Eq. (2) over the space of non-
parametric transformations leads to unstable and non-smooth
solutions. The added regularization term EregðTÞ is exactly used to
overcome such problem. Here the defined regularization term is

EregðTÞ ¼ qjjrT jj2 ð3Þ

where q controls the amount of regularization. Therefore, the cost
function can be written as

E¼ EsimðB;A3TÞþEregðTÞ ¼ Eintensity
SSD ðB;A3TÞþEregðTÞ ¼ 1

2JB�A3TJ2
þqjjrTjj2

ð4Þ
However, Eq. (4) will in general lead to computational
intensive optimization steps. Ref. [25] provides a very ingenious
scheme that optimizes the data similarity measure and the
regularization term alternately. In this scheme, the deformation
field is regularized by simple Gaussian smoothing. The details of
the regularization problems can be found in [20]. On the other
hand, the optimization of the data similarity term can be studied
from the viewpoint of optical flow theory. Under the assumption
of intensity preservation, the image moving velocity v is
computed. Generally v is considered simply as a displacement
vector field u¼�v in image registration problem. Then at each
point p of the image, the displacement vector is

uðpÞ ¼ �
ðA3TðpÞ�BðpÞÞ

ðA3TðpÞ�BðpÞÞ2þJrBðpÞJ2
rBðpÞ ð5Þ

The detailed derivation of the displacement vector field can be
found in [25].

In summary, the optimization process of the spatial transfor-
mation is an alternately iterative process. The main steps can be
described by the following iterations:
(a)
 Given the current transformation TðnÞ, compute the displace-
ment field uðnÞ.
(b)
 Smooth the displacement field uðnÞ: uðnÞ’Gs�uðnÞ, where Gs
is Gaussian smoothing filter.
(c)
 Compute the new transformation Tðnþ1Þ’TðnÞþuðnÞ.
3. Method

It can be seen from Eq. (4) that only image intensity
information is used in the cost function for matching under the
constraint of a smooth deformation field. It is enough in some
applications when the multi homologous objects in the two
images do not have a large deformation. However it is insufficient
in some situations. For example, if only a narrow gap exists
between two objects with very similar intensities in the target
image, and if one of the corresponding objects in the reference
image overlaps with both the two target objects, a split problem
will occur. Such situation is not a particular case and is common
especially for brain deep gray structures. The final registration
result might be good in visual inspection for such cases if we only
see image intensities. However, if we follow up the displacements
of the points on the structures, the corresponding points after the
transformation could not correctly represent the structures.
Therefore some complementary information must be taken into
account. Features extracted by special feature extraction algo-
rithms, such as points, lines and surfaces, are commonly used as
the complementary information. The hybrid intensity and feature
based techniques integrate the strengths of both intensity and
feature based registration method, which would be favorite to
many applications [28–30].

3.1. Combined intensity with shape non-rigid registration

An atlas of the structures superposed on the reference image,
can provide a priori knowledge, such as the shapes of the
structures, the relative positions between them. In common
sense, homologous subcortical structures among normal subjects
should have similar shapes. Therefore adding a shape similarity
term in the cost function would be reasonable. To achieve the
goals, an appropriate representation for the shapes of interest is
important. Inspired by [10,31,32], we choose the distance trans-
form to represent the shape of interest. The role of a distance
function in improving registration quality has been mentioned in
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other early work, such as [33], where a chamfer distance function
was used for the improvement of sulcal-based registration.

Let FS : O-Rþ be a distance transform of a shape S, which
defines a partition of the image domain O. Let o denote the region
that is enclosed by S, and O�o denote the background region, the
shape representation will be

FSðpÞ ¼

0; pAS

dðp; SÞ; pAo
�dðp; SÞ; pAO�o

8><
>:

ð6Þ

Where dðp; SÞ refers to the minimum distance between image
point p and the shape S. Here Euclidean distance is used as the
distance metric. Fig. 1 is an example of the shape representation.
Here Fig. 1(a) represents the shape of the putamen in one brain
MRI slice and Fig. 1(b) is its corresponding distance
representation map using Euclidean distance. Darker the
intensity is, farther away the distance from the edge of the
putamen. This distance map allows one to get a deformation
measure compared to the original shape. It can be easily proved
that the gradient vector of the shape distance map is in the
normal direction of the shape.

This representation provides supplementary shape informa-
tion related to the intensity image that can be conveniently used
as a new similarity term

Eshape
SSD ðFSðAÞ;FSðA3TÞÞ ¼ 1

2JFSðA3TÞ�FSðAÞJ
2

ð7Þ

Where FSðAÞ is the shape representation of the structure in the
atlas on the reference image A and FSðA3TÞ is the shape
representation of the corresponding structure in the deformed
atlas after the transformation T . Under the constraint of the shape
similarity term, the optimal transform would lead to the final
segmented structure shape as closer as that in the atlas. Therefore
the above overall cost function can be modified as

E¼ EsimðB;A3TÞþEregðTÞ ¼ Eintensity
SSD ðB;A3TÞþEshape

SSD ðFSðAÞ;FSðA3TÞÞþEregðTÞ

ð8Þ

By extending the original Demons registration algorithm [25],
an optimal solution can be obtained by the alternating strategy.
The displacement vectors related to the intensity and the shape at
the point p of interest regions are

uintensityðpÞ ¼�
ðA3TðpÞ�BðpÞÞ

ðA3TðpÞ�BðpÞÞ2þJrBðpÞJ2
rBðpÞ ð9Þ

ushapeðpÞ ¼�
ðFSðA3TðpÞÞ�FSðAðpÞÞÞ

ðFSðA3TðpÞÞ�FSðAðpÞÞÞ
2
þJrFSðAðpÞÞJ

2
rFSðAðpÞÞ

ð10Þ

The combined displacement vector is

uðpÞ ¼ ð1�bÞuintensityðpÞþbushapeðpÞ ð11Þ
Fig. 1. An example of the shape representation (a) the putamen (b) its shape

distance representation map.
Here the parameter bA ½0;1� is used to balance the contribution of
the intensity metric and the shape metric: b¼ 0 means a pure
intensity contribution and b¼ 1 means a pure shape contribution.

A simple piecewise linear function is used to adjust adaptively
the weight of the parameter, which is depicted in Fig. 2. The
symbols used in Fig. 2 are as follows:

x: the intensity I of the target image in the region of interest.
x0 ¼meanðIstructureÞ: the average intensity of the structure
region enclosed by the boundary of the deformed atlas
structure.
x�0 ¼ x0�lsstructure and xþ0 ¼ x0þlsstructure: key intensity values
where the intensity metric and the shape metric have the same
importance. Herein sstructure denotes the intensity standard
deviation of the structure region enclosed by the boundary of
the deformed atlas structure. l is an empirical parameter to
control the dynamic intensity range in which the shape metric
is more or less important than the intensity metric according
to the intensity value near to or far from the intensity mean x0.

In our previous preliminary work [34], the structure of interest
was registered and segmented one by one sequentially. Such
procedure was time consuming, especially for multi-structures
segmentation. Here an improvement is proposed. The new
strategy can register and segment multi-objects with very similar
intensities in one time. Let si, i¼ 1; . . . ;N be N different structures
of interest. At any point p, the shape representation of si is FSi

ðpÞ.
Then the N different shape representations are integrated into a
unified shape map MðpÞ according to the following principles:

MðpÞ ¼

Fsi
ðpÞ if Fsi

ðpÞZ0

maxðFsi
ðpÞÞ if Fsi

ðpÞo0 and jmaxðFsi
ðpÞÞjre

0 if Fsi
ðpÞo0 and jmaxðFsi

ðpÞÞj4e

8><
>:

ð12Þ

where e is the threshold, e¼minifmaxpðFsi
ðpÞÞg. Therefore, FSð dÞ

in Eqs. (7), (8) and (10) should be replaced by Mð dÞ in the
implementation procedure.

3.2. Topology correction strategy

As is mentioned, topology preservation of a deformation field
is important in registration-segmentation method for normal
brain case. Although bijectivity and smoothing techniques
adopted in optimizing the cost function like Eq. (4) or (8) can be
helpful for preventing topology change, it is hard to be verified in
theory. The topology preservation problem of the Demons
algorithm has been investigated in recent years [35–37]. Some
cases without topology preservation using this method have been
found in some published reliable experiments [35] and our
experiments. By optimizing the cost function over a space of
diffeomorphism, a diffeomorphic Demons algorithm was pro-
posed [36,37]. In this paper, a different simple topology correction
method is proposed based on the vector field analysis.

Let T ¼ ðX;Y ; ZÞ denote the deformation field, where ðX;Y ; ZÞ is
the new position of point p ðx; y; zÞ after deformation. Then its
x
0x 0x

+
0x
−

β1

0.5

Fig. 2. The function of the balance parameter b.



ARTICLE IN PRESS

X. Lin et al. / Pattern Recognition 43 (2010) 2418–2427 2421
Jacobian at point p is

JT ðpÞ ¼ det½@X=@x @X=@y @X=@z; @Y=@x @Y=@y @Y=@z; @Z=@x @Z=@y @Z=@z�

ð13Þ

A topology preservation deformation field must satisfy JT ðpÞ40 at
any point.

3.2.1. Deformation field analysis

The obtained deformation field in image registration is a vector
field from Eq. (4), which reflects the spatial transformation
between the corresponding structures in the two images. To
improve the understanding of the underlying physical procedure
and the implied topology information described by the deforma-
tion field, it is useful to analyze the characteristics of the vector
field. A vector field can be characterized by its critical points [38].
The most important critical points are attractors, repellors and
vortices, which are depicted in Fig. 3.

The displacement vector field is a function of the gradient of a
scalar field according to Eq. (5). In this discussed deformation
field, only attractors and repellors are considered because of the
irrotationality of a gradient vector field. The critical points of the
vector field represent different physical properties, which is
dependent on the applications. For inter-subject brain MRI image
registration, the attractors characterize the expansion of the
corresponding brain structures, while the repellors characterize
the contraction. Such intrinsic relationship coincides with the
relationship between the Jacobian and the real physical proper-
ties. JT 41 means the expansions of the brain structures, JT o1
means the contractions, JT ¼ 1 means volume preservations and
JT r0 means the changed topologies [16,38,39]. As is mentioned
above, topology violation induced by image deformation mainly
shows tears or overlaps. According to the diagrammatic char-
acteristics of the critical points (Fig. 3), it is easy to see that
overlaps due to extrusions or folds will occur in attractors and
tears due to over expansions will occur in repellors. The common
situations in 2D are shown in Fig. 4.

The numbers 1, 2, 3, 4 in Fig. 4 represent the four vertexes of an
initial rectangle grid. The thick line denotes the deformed grid,
whose vertexes numbered 10, 20, 30, 40. They correspond to the
initial four points. The dashed line represents the deformation
path of each vertex. It can be seen from Fig. 4(a) that overlap due
to folds occurs during the deformation procedure, just like a plane
not only changed in the shape but also reversed. Fig. 4(b) depicts
the overlap due to extrusions, where points 2 and 3 cross in the
Fig. 3. Important critical points of a vector field: (a) attractor; (b) repellor and

(c) vortice.
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Fig. 4. Paradigm of the changed topology in 2D space due to the deformations:

(a) fold; (b) overlap and (c) tear.
deformation procedure and the grid twists. Fig. 4(c) depicts the
tears because of the over expansions that exceed the permitted
tension strength. Here 50 and 60 are new inserted points coming
from surrounding regions to fill the gap.

It can be clearly seen that if the displacement magnitudes of
the adjacent points along the primary deformation direction are
not suitable, the new position of the point behind overlaps the
new position of the point ahead after deformation, folds will
occur. If the deformation directions of the adjacent points near the
attractors are opposite and they have unexpected large displace-
ment magnitudes, crosses will occur. Therefore both intuitive and
easy solutions are to change such points’ displacements in a
proper way in order to preserve the topologies, where the
prerequisite is to preserve the geometrical features of the original
deformation fields as much as possible.

3.2.2. Correction strategies

If a continuously differentiable deformation field is topology
preservation, its Jacobian should be positive everywhere in its
domain. A digital image limited by the resolution is defined in the
discrete grid, which is not a continuous function. So the
corresponding deformation field is discrete. As is mentioned in
Ref. [40], if a continuous deformation field is determined by its
discrete counterpart via the bilinear interpolation, its character-
istics depend on the discrete deformation field. Therefore, if the
Jacobians of various discrete grid points of the discrete deforma-
tion field are positive, its continuous counterpart preserves
topology in its domain.

Let a continuous deformation field be described as

Xðx; y; zÞ ¼ xþuxðx; y; zÞ ð14Þ

Yðx; y; zÞ ¼ yþuyðx; y; zÞ ð15Þ

Zðx; y; zÞ ¼ zþuzðx; y; zÞ ð16Þ

where uxðx; y; zÞ, uyðx; y; zÞ and uzðx; y; zÞ are the displacement field
components of a point pðx; y; zÞ along xyz axes. The Jacobian of the
point pðx; y; zÞ is Jðx; y; zÞ. Define another deformation field Tk as

Xkðx; y; zÞ ¼ xþkuxðx; y; zÞ ð17Þ

Ykðx; y; zÞ ¼ yþkuyðx; y; zÞ ð18Þ

Zkðx; y; zÞ ¼ zþkuzðx; y; zÞ ð19Þ

Let Jkðx; y; zÞ denote the Jacobian of Tk at point pðx; y; zÞ. It is easy to
see that when k¼ 0, Jkðx; y; zÞ ¼ 1 and when k¼ 1,
Jkðx; y; zÞ ¼ Jðx; y; zÞ. If the Jacobian of Tk at point pðx; y; zÞ is
Jðx; y; zÞo0, the topology preservation is violated. From the
continuity of Jkðx; y; zÞ with respect to k, there exists k�A ½0;1�
such that Jk� ðx; y; zÞ40. Because sampling a continuous deforma-
tion field results in a discrete deformation field, the topology
attributes of a discrete deformation field can be corrected by
multiplying a proper factor between 0 and 1 in the original
displacement field. According to Eq. (13), the Jacobian of a
deformation field is related to its gradient. Here central-difference
method [41] is adopted to compute the discrete gradients. Those
points situated in both sides of the central point are named
association points.

3.3. Algorithm

In summary, given a reference image A with its pre-labeled
image (the atlas) and the target image B, the overall registration
procedure is proposed as follows (after the brain extraction):
1.
 Initializing A by a global registration by FSL [42].
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2.
Fig
def

cor

top
Performing the intensity based Demons non-rigid registration
between the global transformed reference image A and the
target image B with the following topology correction for the
obtained deformation field:
(1) Computing Jðx; y; zÞ of each point according to the obtained

deformation field;
(2) Decreasing the k value from k¼ 1 with a same step if

Jðx; y; zÞo0, and the new displacements of the association
points around the central point ðx; y; zÞ will be acquired.
Computing Jkðx; y; zÞ according to the new displacements.
Repeating it until the proper k� is found, such that for all
points of the deformation field, Jk� ðx; y; zÞ40;

(3) Evaluating the similarity between the deformed reference
image by the obtained Tk�and the target image. If the result
does not meet the requirement, change the reference
image with the obtained deformed reference and register
again.
. 5. C

orme

rectio

ology
3.
 Performing the proposed non-rigid registration algorithm with
integration shape knowledge to refine the match of subtle
structures. This refinement allows resolving the narrow gap
problem existing between two objects with very similar
intensities. Similarly a topology correction as described in
step 2 is applied to the obtained deformation field.
4. Experiments and results

The proposed non-rigid registration algorithm aims to seg-
ment multi-objects having very similar intensities in images
simultaneously. In this paper only T1 weighted brain MRI images
is used because of its good intensity contrast of the structures.
Topology preservation of the proposed algorithm makes many
benefits for this aim. It maintains the integrality of a deformed
object and prevents the appearance or disappearance of objects as
much as possible. Another contribution of the proposed algorithm
omparisons of the deformation fields between registration with and without t

d template image based on the deformation field without topology correction

n; (e) the enlarged highlight region of (c); (f) the enlarged highlight region of (d

correction.
is that a shape similarity metric based on distance map is
integrated to the classical intensity based non-rigid registration
algorithm. It makes the segmentation of adjacent objects having
similar intensities more accurate and automatic.

The proposed algorithm is tested by segmenting the brain
subcortical structures from MRI images. The reference image used
in the experiment is the one offered from the Surgical Planning
Laboratory of Harvard Medical School [43]. It consists of
256�256�160 voxels with a spatial resolution of 0.9375 mm�
0.9375 mm�1.5 mm. The test images are real brain MRI images
of 15 normal subjects provided by the Center for Morphometric
Analysis at Massachusetts General Hospital and available from
Internet Brain Segmentation Repository (IBSR) [44].

As is mentioned in [25], if the two objects to be matched do
not overlap, the Demons algorithm is inefficient. So a fast global
registration and an image intensity match procedures should be
performed before the Demons non-rigid registration. Here we
firstly use the software FSL [42] to do the initial registration.

In the experiment, one should remember that the combined
intensity and shape non-rigid registration is performed only on
structures of interest. The additional transform of structures
should influence other regions as little as possible. Therefore a
region of interest selection must be done before refinement
according to Eq. (12). The selection of the parameter l is to be
mentioned. It can be seen from Fig. 2 that the parameter b varies
with intensities of structures. Therefore only parameter l is
constant and will be determined empirically. Its value is not
arbitrary but is easy to find a convenient one. Because a relative
good intensity match has been obtained after the previous
registration, more weightiness should be given to the shape
metric. Hence a larger parameter l should be convenient. We set
it to be 0.7 in our experiments for all cases.

The experiment results in Fig. 5 show some cases of topologic
changes after using a classical Demons registration which uses
only bijectivity and smooth techniques. The Jacobians are not
opology correction strategy: (a) the template image; (b) the target image; (c) the

; (d) the deformed template image based on the deformation field with topology

) and (g) the magnitude differences of the two deformation fields with and without
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positive in some regions in these cases. The deformable reference
image and the target image are showed in Fig. 5(a) and (b),
respectively, while Fig. 5(c) is the deformed reference image by
Fig. 6. Exemplifications of the proposed contributions (a) no topology correction and sh

correction and shape knowledge are used.

Fig. 7. Segmentation results comparison between the original Demons algorithm and t

(c) segmentation using the proposed method and (d) 3D views (left—ground truth, mi
the deformation field without topology correction. It can be seen
that the similarity between the deformed reference image and the
target image is high in visual inspection. The white parts in
ape knowledge are used; (b) only topology correction is used and (c) both topology

he proposed method: (a) MRI image; (b) segmentation using the original method;

ddle—original method, right—the proposed method).
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Fig. 5(c) represent the positions with negative Jacobians in the
deformation field, which means the topology violation in these
positions. One typical region with changed topologies is
highlighted using white rectangle. The enlarged deformation
field diagram of the highlighted region is depicted in Fig. 5(e),
where crosses can be observed near the attractors. Fig. 5(d) is the
deformed reference image by the deformation field with topology
correction, where the same region as in Fig. 5(c) is highlighted and
its enlarged diagram is depicted in Fig. 5(f). The disappeared
white parts in Fig. 5(d) indicate that the Jacobians of the topology
corrected deformation field satisfy the topology preservation
requirements. Compared to Fig. 5(e), the deformation field with
topology preservation (Fig. 5(f)) is more regular and much
smoother. In the experiments, the parameter k changes with a
step of 0.01. If the cross correlation between the deformed
reference image and the target image equals or exceeds the set
threshold or the passes of re-registration using the deformed
image as the new reference image reach the upper limit (here it is
three), the algorithm will stop. Here the cross correlation
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Fig. 8. Comparisons of KI values: (a) left caudate; (b) right caudate; (c) left
threshold is CCt ¼ ð1�CC0Þ=aþCC0, where CC0 is the initial cross
correlation between the reference and the target images. The
value of 1.2 is suitable for parameter a in the experiment. Fig. 5(g)
is the magnitude differences of the two deformation fields with
and without topology correction. The brighter the intensity is, the
larger the difference is. Here the averaged max difference is 2.18
pixels, which means the corrected deformation field is generally
able to preserve the original properties of the deformation field.

Fig. 6 describes the influences of the topology preservation and
the a prior shape knowledge to the object segmentation. The
segmentation results of the thalamus based on different strategies
are depicted in Fig. 6(a)–(c), respectively, where (a) shows the
result in the case of no topology correction and shape knowledge
being used, (b) shows the result in the case of only topology
correction being used and (c) shows the result in the case of both
topology correction and shape knowledge being used. Obviously,
the segmentation in Fig. 6(c) is better than the other two. It can be
seen that tears occur in Fig. 6(a). Though correcting the topology
of the deformation field can preserve the object’s topology, it
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putamen; (d) right putamen; (e) left thalamus and (f) right thalamus.
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cannot ensure a satisfied segmentation, which is shown in
Fig. 6(b). Under the joint constrains of the intensity and the
shape knowledge, as well as the topology correction procedure, a
better segmentation is obtained in Fig. 6(c).

Comparative studies between the original Demons method
and the proposed method are carried out by segmenting brain
internal structures from all volumes. Fig. 7 shows some typical
slices of one volume, which provides an intuitive way to evaluate
the segmentation. Fig. 7(a) is the target image and the
segmentation results using the original Demons algorithm and
the proposed method are depicted in Fig. 7(b) and (c),
respectively. The figure shows three colors. The red color
describes the ‘ground truth’ segmentations, which are provided
by IBSR database. The green color represents the automatically
segmented results and the overlap parts with the ‘ground truth’
are described in yellow color. The final 3D views are presented in
Fig. 7(d). The results show significant improvements, especially in
left putamen (top right slice and down left slice), when the
proposed method is adopted.

To validate the results quantitatively, the criterion widely used
in atlas-based segmentation [2,7,9,45,46], a kappa statistic based
similarity index is adopted in this paper. The similarity index
measures the overlap ratio between the segmented structure and
the ground truth, which is defined as

KI¼
2� TP

2� TPþFNþFP
ð20Þ

The definitions of the parameters are as follows:
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TP¼ G \ E: the number of true positive;
FP¼ G \ E: the number of false positive; and
FN¼ G \ E: the number of false negative;
where G is the ground truth segmentation of a given structure, E is
the estimated segmentation of the same structure, and O denotes
the complement of a set O. Perfect spatial correspondence
between the two segmentations will result in KI=1, whereas no
correspondence will result in KI=0.

The KI values are computed for all the structures of all the
volumes. The results are presented in Fig. 8, and the associated
critical values are summarized in Table 1. The segmented
le 2
parison of averaged KI value between our results and the results published in [9].

ethod Ref. [9]

Btopo B B0.5o Jo2 Btopo(l=1) DItk

I (SD) 0.765 (0.107) 0.727 (0.152) 0.710 (0.142) 0.777 (0.116) 0.7

bols: Btopo—B-spline-based registration with topology preservation and without r

hout regularization; B0.5o Jo2—B-spline-based registration with the constraint Jmin

ed registration with topology preservation and with regularization; DItk—the Dem

malization; Affine—affine registration with 12 parameters; Proposed—The propose

le 1
KI value for the target segmentation.

ructure L-caudate R-caudate L-putamen

ethod Pro. Ori. Pro. Ori. Pro. Ori

ax 0.812 0.729 0.813 0.691 0.831 0.7

in 0.539 0.537 0.567 0.571 0.694 0.6

ean 0.739 0.699 0.717 0.658 0.767 0.7

0.072 0.049 0.062 0.031 0.037 0.02
structures are left and right caudate (L-Caudate, R-Caudate),
putamen (L-Putamen, R-Putamen) and thalamus (L-Thalamus, R-

Thalamus). The proposed method and the original method are
represented by ‘Pro.’ and ‘Ori.’ in Table 1, respectively. The ‘max’,
‘min’, ‘mean’ and ‘SD’ items list the maximum, minimum, mean
and standard deviation of KI values counted from all volumes.
These results indicate that in most cases, the proposed method
gives better segmentations than the original method. As is known,
the brain subcortical structures have relatively small sizes,
complex shapes. Moreover, there is only small spacing between
different structures, while their intensities in MRI images are very
similar. All these negative factors make the fully automatically
accurate segmentation a challenging task. As explained in [47], a
value of KI 40.7 indicates a strong agreement. So the results are
satisfactory as the KI of the segmented structures is larger than
0.7 for almost all 15 cases.

We also compared our structures segmentation results with
those using original Demons algorithm and those reported in
[9,17], because all the adopted algorithms belong to registration-
segmentation method and the used validation data are from the
same public database. In [9], the validation criterion is the same
as Eq. (20) and the results were averaged on 34 structures. While
the validation criterion in [17] named the relative overlap (RO) is
different, which is defined as

RO¼
G \ E

G [ E
� 100 ð21Þ

The comparison results are presented in Tables 2 and 3,
respectively. It can be seen that both the validation criteria
indicate a better segmentation of the proposed algorithm than
that of the Demons registration. And the obtained KI value
reaches the best result in [9] well, while the standard deviation
(SD) is much smaller, which means a more robust segmentation
for different data. Table 3 depicts the comparison of the RO value
between our results and the results published in [17], where ‘best’
and ‘worst’ mean the best results and the worst results of the
involved algorithms in [17]. As it can be seen, our results are
inferior to those published in [17]. Nevertheless, there are too
many parameters to be selected in [17], which is a challenge for
unskilled users.
Ours

D10� JHGM Affine Proposed Dmat

54 (0.105) 0.778 (0.105) 0.627 (0.150) 0.770 (0.064) 0.717 (0.072)

egularization; B—B-spline-based registration without topology preservation and

=0.5 and Jmax=2 on the Jacobian and without regularization; Btopo(l=1)—B-spline-

ons algorithm based on ITK; D10-JHGM—the Demons algorithm using the intensity

d method in this paper; Dmat—the demons algorithm based on our Matlab code.

R-putamen L-thalamus R-thalamus

. Pro. Ori. Pro. Ori. Pro. Ori.

52 0.829 0.759 0.857 0.806 0.850 0.788

33 0.743 0.666 0.735 0.680 0.747 0.665

25 0.783 0.739 0.809 0.740 0.801 0.730

9 0.031 0.027 0.031 0.032 0.030 0.032
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Table 3
Comparison of RO value between our results and the results published in [17].

Method L-caudate R-caudate L-putamen R-putamen L-thalam R-thalam

Ours Proposed 58.6 56.3 62.3 65.3 68.2 68.1

Dmat 53.8 49.0 56.9 58.7 58.7 57.5

Btopo Best 62.7 – 68.9 – 73.7 –

Ref. [17] Worst 56.7 – 66.4 – 71.5 –

DItk Best 61.3 – 61.0 – 69.4 –

Worst 54.2 – 56.8 – 67.2 –

Symbols: Proposed—The proposed method in this paper; Dmat—the Demons algorithm based on our Matlab code; Btopo—B-spline-based registration with topology

preservation; DItk—the Demons algorithm based on ITK.
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5. Conclusions

In this paper, a new non-rigid registration algorithm combined
intensity and shape knowledge is proposed. It is derived by
integrating shape information into a classical intensity based non-
rigid registration algorithm. The new added shape metric in the
overall cost function provides a remedy to the commonly used
SSD intensity metric. Furthermore it has a simple form, is easy to
understand and fully automatic. From the perspective of geome-
trical features of a vector field, the reason causing topological
changes is analyzed theoretically. Then a corresponding topology
correction strategy to the deformation field is designed, which is
important for registration-segmentation problem. The experi-
ment results indicate that the proposed method could be a
solution for segmenting multi-objects having very close spacing
and similar intensities that lack clearly defined intensity bound-
aries.

The program is written in Matlab and run on a PC-Windows,
Intel core 2 at 1.86 GHz. Without any code optimization, the
average processing time for one volume of 256�256�128 is
about 160 min. Therefore one future work should be the run time
reduction. Fortunately with the advent of large scale distributed
computational infrastructure, the trend of increasing core counts
in the face of declining hardware costs, and the optimized code
rewritten in a lower-level language such as C, significantly
reducing the run time is hopeful. Another future work will be
conducting more thorough evaluation by acquiring additional test
data from other scanner platforms or pulse sequences, and other
imaging modalities.
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