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Introduction to Linear Block Codes
We assume that the output of an information source is 
a sequence of binary digits “0” or “1”
This binary information sequence is segmented into 
message block of fixed length, denoted by u.

Each message block consists of k information digits.
There are a total of 2k distinct message.

The encoder transforms each input message u into a 
binary n-tuple v with n > k

This n-tuple v is referred to as the code word ( or code 
vector ) of the message u.
There are distinct 2k code words.
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Introduction to Linear Block Codes
This set of 2k code words is called a block code.
For a block code to be useful, there should be a one-to-one 
correspondence between a message u and its code word v.
A desirable structure for a block code to possess is the linearity.  
With this structure, the encoding complexity will be greatly 
reduced.

Encoderu v

Message block

(k info. digits)

(2k distinct message)

Code word

(n-tuple , n > k )

(2k distinct code word)
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Introduction to Linear Block Codes
Definition 3.1. A block code of length n and 2k code 
word is called a linear (n, k) code iff its 2k code words 
form a k-dimensional subspace of the vector space of all 
the n-tuple over the field GF(2).

In fact, a binary block code is linear iff the module-2 
sum of two code word is also a code word

0 must be code word.
The block code given in Table 3.1 is a (7, 4) linear code.
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Introduction to Linear Block Codes

For large k, it is virtually impossible to build up the loop up table.



8

Introduction to Linear Block Codes
Since an (n, k) linear code C is a k-dimensional 
subspace of the vector space Vn of all the binary n-
tuple, it is possible to find k linearly independent code 
word, g0 , g1 ,…, gk-1 in C

where ui = 0 or 1 for 0 ≤ i < k

(3.1)                    111100 −−+⋅⋅⋅++= kkuuu gggv
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Introduction to Linear Block Codes
Let us arrange these k linearly independent code words as 
the rows of a k × n matrix as follows:

where gi = (gi0, gi1,…,gi,n-1)  for 0 ≤ i < k
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Introduction to Linear Block Codes
If u = (u0,u1,…,uk-1) is the message to be encoded, the 
corresponding code word can be given as follows:

0

1

0 1 1

1

0 0 1 1 1 1

.
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Introduction to Linear Block Codes
Because the rows of G generate the (n, k) linear code C, the 
matrix G is called a generator matrix for C

Note that any k linearly independent code words of an  (n, k) 
linear code can be used to form a generator matrix for the 
code

It follows from (3.3) that an (n, k) linear code is completely 
specified by the k rows of a generator matrix G
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Introduction to Linear Block Codes
Example 3.1

the (7, 4) linear code given in Table 3.1 has the following matrix as 
a generator matrix :

If u = (1 1 0 1) is the message to be encoded, its corresponding
code word, according to (3.3), would be
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Introduction to Linear Block Codes
A desirable property for a linear block code is the 
systematic structure of the code words as shown in Fig. 3.1

where a code word is divided into two parts
The message part consists of k information digits
The redundant checking part consists of n − k parity-check digits

A linear block code with this structure is referred to as a 
linear systematic block code

Fig. 3.1 Systematic format of a code word

Redundant checking part Message part

n - k digits k digits
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Introduction to Linear Block Codes
A linear systematic (n, k) code is completely specified by a 
k × n matrix G of the following form :

where pij = 0 or 1
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Introduction to Linear Block Codes
Let u = (u0, u1, … , uk-1) be the message to be encoded 
The corresponding code word is 

It follows from (3.4) & (3.5) that the components of v are
vn-k+i = ui for 0 ≤ i < k (3.6a)

and
vj = u0 p0j + u1 p1j + ··· + uk-1 pk-1, j for 0 ≤ j < n-k (3.6b)

0 1 2 1

0 1 -1

( , , ,..., )
 ( , ,..., )                    (3.5)
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Introduction to Linear Block Codes
Equation (3.6a) shows that the rightmost k digits of a code 
word v are identical to the information digits u0, u1,…uk-1 to 
be encoded

Equation (3.6b) shown that the leftmost n – k redundent
digits are linear sums of the information digits

The n – k equations given by (3.6b) are called parity-check
equations of the code
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Introduction to Linear Block Codes
Example 3.2

The matrix G given in example 3.1
Let u = (u0, u1, u2, u3) be the message to be encoded
Let v = (v0, v1, v2, v3, v4, v5,v6) be the corresponding code word
Solution :
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Introduction to Linear Block Codes
By matrix multiplication, we obtain the following digits of the 
code word v

The code word corresponding to the message (1 0 1 1) is (1 0 0 1 0 1 1)

3200

2101

3212

03

14

25

36

uuuv
uuuv
uuuv

uv
uv
uv
uv
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=
=
=
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Introduction to Linear Block Codes
For any k × n matrix G with k linearly independent rows, there exists 
an (n-k) ×n matrix H with n-k linearly independent rows such that any 
vector in the row space of G is orthogonal to the rows of H and any 
vector that is orthogonal to the rows of H is in the row space of G.
An n-tuple v is a code word in the code generated by G if and only if 
v • HT = 0
This matrix H is called a parity-check matrix of the code
The 2n-k linear combinations of the rows of matrix H form an (n, n – k) 
linear code Cd

This code is the null space of the (n, k) linear code C generated by 
matrix G
Cd is called the dual code of C
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Introduction to Linear Block Codes
If the generator matrix of an (n,k) linear code is in the systematic form 
of (3.4), the parity-check matrix may take the following form : 

[ ]
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Introduction to Linear Block Codes
Let hj be the jth row of H

for 0 ≤ i < k and 0 ≤ j < n – k

This implies that G • HT = 0

0=+=⋅ ijijji pphg
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Introduction to Linear Block Codes
Let u = (u0, u1, …, uk-1) be the message to be encoded 
In systematic form the corresponding code word would be 

v = (v0, v1, … , vn-k-1, u0,u1, … , uk-1)
Using the fact that v • HT = 0, we obtain

vj + u0 p0j + u1 p1j + ··· + uk-1 pk-1,j = 0                (3.8)
Rearranging the equation of (3.8), we obtain the same 
parity-check equations of (3.6b)
An (n, k) linear code is completely specified by its parity-
check matrix
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Introduction to Linear Block Codes
Example 3.3

Consider the generator matrix of a (7,4) linear code given in 
example 3.1
The corresponding parity-check matrix is
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Introduction to Linear Block Codes
For any (n, k) linear block code C, there exists a k × n
matrix G whose row space given C

There exist an (n – k) × n matrix H such that an n-tuple v is 
a code word in C if and only if v • HT = 0

If G is of the form given by (3.4), then H may take form 
given by (3.7), and vice versa
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Introduction to Linear Block Codes
Based on the equation of (3.6a) and (3.6b), the encoding 
circuit for an (n, k) linear systematic code can be 
implemented easily 
The encoding circuit is shown in Fig. 3.2

where 
denotes a shift-register stage (flip-flop)
denotes a connection if pij = 1 and no connection if pij = 0
denotes a modulo-2 adder 

As soon as the entire message has entered the message register, the n-k
parity-check digits are formed at the outputs of the n-k module-2 adders

The complexity of the encoding circuit is linear proportional to the 
block length
The encoding circuit for the (7,4) code given in Table 3.1 is shown 
in Fig 3.3

Pij
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Introduction to Linear Block Codes
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Introduction to Linear Block Codes



Syndrome and Error Detection
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Syndrome and Error Detection
Let v = (v0, v1, …, vn-1) be a code word that was transmitted 
over a noisy channel
Let r = (r0, r1, …, rn-1) be the received vector at the output 
of the channel

e = r + v = (e0, e1, …, en-1)  is an n-tuple
ei = 1 for ri ≠ vi
ei = 0 for ri = vi
The n-tuple e is called the error vector (or error pattern)

v

e

r = v + e
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Syndrome and Error Detection
Upon receiving r, the decoder must first determine whether 
r contains transmission errors
If the presence of errors is detected, the decoder will take 
actions to locate the errors 

Correct errors (FEC)
Request for a retransmission of v (ARQ)

When r is received, the decoder computes the following   
(n – k)-tuple : 

s = r • HT

= (s0, s1, …, sn-k-1)                  (3.10)
which is called the syndrome of r
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Syndrome and Error Detection
s = 0 if and only if r is a code word and receiver accepts r
as the transmitted code word
s≠0 if and only if r is not a code word and the presence of 
errors has been detected
When the error pattern e is identical to a nonzero code word 
(i.e., r contain errors but s = r • HT = 0), error patterns of 
this kind are called undetectable error patterns

Since there are 2k – 1 nonzero code words, there are 2k – 1 
undetectable error patterns
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Syndrome and Error Detection
Based on (3.7) and (3.10), the syndrome digits are as 
follows :
s0 = r0 + rn-k p00 + rn-k+1 p10 + ··· + rn-1 pk-1,0
s1 = r1 + rn-k p01 + rn-k+1 p11 + ··· + rn-1 pk-1,1
. (3.11)
. 

sn-k-1 = rn-k-1 + rn-k p0,n-k-1 + rn-k+1 p1,n-k-1 + ··· + rn-1 pk-1,n-k-1
The syndrome s is the vector sum of the received parity 
digits (r0,r1,…,rn-k-1) and the parity-check digits recomputed 
from the received information digits (rn-k,rn-k+1,…,rn-1).
A general syndrome circuit is shown in Fig. 3.4
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Syndrome and Error Detection
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Syndrome and Error Detection
Example 3.4

The parity-check matrix is given in example 3.3
Let r = (r0, r1, r2, r3, r4, r5, r6, r7) be the received vector
The syndrome is given by

⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
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111
110
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100
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001

) , , , , , ,(),,( 6543210210 rrrrrrrssss



35

Syndrome and Error Detection
Example 3.4

The syndrome digits are 
s0 = r0 + r3 + r5 + r6
s1 = r1 + r3 + r4 + r5
s2 = r2 + r4 + r5 + r6

The syndrome circuit for this code is shown below
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Syndrome and Error Detection
Since r is the vector sum of v and e, it follows from (3.10) 
that 

s = r • HT = (v + e) • HT = v • HT + e • HT

however,
v • HT = 0

consequently, we obtain the following relation between the 
syndrome and the error pattern : 

s = e • HT                                                (3.12)
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Syndrome and Error Detection
If the parity-check matrix H is expressed in the systematic 
form as given by (3.7), multiplying out e • HT yield the 
following linear relationship between the syndrome digits 
and the error digits :

s0 = e0 + en-k p00 + en-k+1 p10 + ··· + en-1 pk-1,0

s1 = e1 + en-k p01 + en-k+1 p11 + ··· + en-1 pk-1,1

.        

.                                                              (3.13)
sn-k-1 = en-k-1 + en-k p0,n-k-1 + ··· + en-1 pk-1,n-k-1
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Syndrome and Error Detection
The syndrome digits are linear combinations of the error 
digits
The syndrome digits can be used for error correction
Because the n – k linear equations of (3.13) do not have a 
unique solution but have 2k solutions 
There are 2k error pattern that result in the same syndrome, 
and the true error pattern e is one of them
The decoder has to determine the true error vector from a 
set of 2k candidates
To minimize the probability of a decoding error, the most 
probable error pattern that satisfies the equations of (3.13) 
is chosen as the true error vector
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Syndrome and Error Detection
Example 3.5

We consider the (7,4) code whose parity-check matrix is given in 
example 3.3
Let v = (1 0 0 1 0 1 1) be the transmitted code word 
Let r = (1 0 0 1 0 0 1) be the received vector
The receiver computes the syndrome

s = r • HT = (1 1 1)
The receiver attempts to determine the true error vector 
e = (e0, e1, e2, e3, e4, e5, e6), which yields the syndrome above

1 = e0 + e3 + e5 + e6
1 = e1 + e3 + e4 + e5
1 = e2 + e4 + e5 + e6

There are 24 = 16 error patterns that satisfy the equations above
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Syndrome and Error Detection
Example 3.5

The error vector e = (0 0 0 0 0 1 0) has the smallest number of 
nonzero components
If the channel is a BSC, e = (0 0 0 0 0 1 0) is the most probable 
error vector that satisfies the equation above
Taking e = (0 0 0 0 0 1 0) as the true error vector, the receiver 
decodes the received vector r = (1 0 0 1 0 0 1) into the following 
code word  

v* = r + e = (1 0 0 1 0 0 1) + (0 0 0 0 0 1 0)
= (1 0 0 1 0 1 1)

where v* is the actual transmitted code word



The Minimum Distance of a Block Code
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The Minimum Distance of a Block Code

Let v = (v0, v1, … , vn-1) be a binary n-tuple, the Hamming 
weight (or simply weight) of v, denote by w(v), is defined as 
the number of nonzero components of v

For example, the Hamming weight of v = (1 0 0 0 1 1 0) is 4

Let v and w be two n-tuple, the Hamming distance between 
v and w, denoted d(v,w), is defined as the number of places 
where they differ

For example, the Hamming distance between v = (1 0 0 1 0 1 1) 
and w = (0 1 0 0 0 1 1) is 3
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The Minimum Distance of a Block Code

The Hamming distance is a metric function that satisfied the 
triangle inequality 

d(v, w) + d(w, x) ≥ d(v, x)                   (3.14)
the proof of this inequality is left as a problem

From the definition of Hamming distance and the definition 
of module-2 addition that the Hamming distance between 
two n-tuple, v and w, is equal to the Hamming weight of the 
sum of v and w, that is

d(v, w) = w(v + w)                          (3.15)
For example, the Hamming distance between v = (1 0 0 1 0 1 1) 
and w = (1 1 1 0 0 1 0) is 4 and the weight of v + w = (0 1 1 1 0 0 1)
is also 4
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The Minimum Distance of a Block Code

Given, a block code C, the minimum distance of C, denoted dmin, 
is defined as 

dmin = min{d(v, w) : v, w C, v ≠ w}         (3.16)
If C is a linear block, the sum of two vectors is also a code vector
From (3.15) that the Hamming distance between two code 
vectors in C is equal to the Hamming weight of a third code 
vector in C

dmin = min{w(v + w): v, w C, v ≠ w}
= min{w(x): x C, x ≠0}                    (3.17)
≣ wmin

∈

∈

∈
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The Minimum Distance of a Block Code

The parameter wmin ≣ {w(x): x C, x ≠0} is called the 
minimum weight of the linear code C
Theorem 3.1 The minimum distance of a linear block code is 
equal to the minimum weight of its nonzero code words
Theorem 3.2 Let C be an (n, k) linear code with parity-check 
matrix H. 

For each code vector of Hamming weight l, there exist l columns of H
such that the vector sum of these l columns is equal to the zero vector
Conversely, if there exist l columns of H whose vector sum is the zeros 
vector, there exists a code vector of Hamming weight l in C

∈

.
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The Minimum Distance of a Block Code

Proof
Let the parity-check matrix be

H = [ho, h1, … , hn-1]
where hi represents the ith column of H
Let v = (v0, v1, … , vn-1) be a code vector of weight l and v has l 
nonzero components
Let vi1, vi2, …, vil be the l nonzero components of v, 
where 0 ≤ i1 < i2 < ··· < il ≤ n-1, then vi1 = vi2 = ··· = vil = 1
since v is code vector, we must have

0 = v • HT

= voh0 + v1h1 + ··· + vn-1hn-1
= vi1hi1 + vi2hi2 + ··· + vilhil
= hi1 + hi2 + ··· + hil
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The Minimum Distance of a Block Code

Proof
Suppose that hi1, hi2, … , hil are l columns of H such that

hi1 + hi2 + ··· + hil = 0                                (3.18)
Let x = (x1, x2, … , xn-1) whose nonzero components are xi1, xi2, xil

x • HT = x0h0 + x1h1 + ··· + xn-1hn-1

= xi1hi1 + xi2hi2 + ··· + xilhil

= hi1 + hi2 + ··· + hil

It following from (3.18) that x • HT = 0, x is code vector of weight 
l in C
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The Minimum Distance of a Block Code

Let C be a linear block code with parity-check matrix H

Corollary 3.2.1 If no d-1 or fewer columns of H add to 0, 
the code has minimum weight at least d

Corollary 3.2.2 The minimum weight of C is equal to the 
smallest number of columns of H that sum to 0



Error-Detecting and Error-Correcting 
Capabilities of a Block Code
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Error-Detecting and Error-Correcting 
Capabilities of a Block Code

If the minimum distance of a block code C is dmin, any two 
distinct code vector of C differ in at least dmin places
A block code with minimum distance dmin is capable of 
detecting all the error pattern of dmin – 1 or fewer errors
However, it cannot detect all the error pattern of dmin errors 
because there exists at least one pair of code vectors that 
differ in dmin places and there is an error pattern of dmin
errors that will carry one into the other
The random-error-detecting capability of a block code with 
minimum distance dmin is dmin – 1
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Error-Detecting and Error-Correcting 
Capabilities of a Block Code

An (n, k) linear code is capable of detecting 2n – 2k error 
patterns of length n
Among the 2n – 1 possible nonzero error patterns, there are 
2k – 1 error patterns that are identical to the 2k – 1 nonzero 
code words
If any of these 2k – 1 error patterns occurs, it alters the 
transmitted code word v into another code word w, thus w
will be received and its syndrome is zero
There are 2k – 1 undetectable error patterns
If an error pattern is not identical to a nonzero code word, 
the received vector r will not be a code word and the 
syndrome will not be zero 
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Error-Detecting and Error-Correcting 
Capabilities of a Block Code

These 2n – 2k error patterns are detectable error patterns
Let Al be the number of code vectors of weight i in C, the 
numbers A0, A1,..., An are called the weight distribution of C
Let Pu(E) denote the probability of an undetected error
Since an undetected error occurs only when the error pattern 
is identical to a nonzero code vector of C

where p is the transition probability of the BSC
If the minimum distance of C is dmin, then A1 to Admin – 1 are 
zero

1
( ) (1 )

n
i n i

u i
i

P E A p p −

=

= −∑
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Error-Detecting and Error-Correcting 
Capabilities of a Block Code

Assume that a block code C with minimum distance dmin is used 
for random-error correction.  The minimum dmin distance is either 
odd or even.  Let t be a positive integer such that:

2t+1≤ dmin ≤2t+2
Fact 1: The code C is capable of correcting all the error patterns 
of t or fewer errors.
Proof:

Let v and r be the transmitted code vector and the received 
vector, respectively.  Let w be any other code vector in C.

d(v,r) + d(w,r) ≥ d(v,w)
Suppose that an error pattern of t’ errors occurs during the 
transmission of v.  We have d(v,r)=t’.
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Error-Detecting and Error-Correcting 
Capabilities of a Block Code

Since v and w are code vectors in C, we have
d(v,w)≥ dmin ≥2t+1.
d(w,r)≥d(v,w)-d(v,r)

≥ dmin-t’
≥2t+1-t’
≥t+1>t   (if t ≥t’)

The inequality above says that if an error pattern of t or fewer 
errors occurs, the received vector r is closer (in Hamming 
distance) to the transmitted code vector v than to any other code 
vector w in C.
For a BSC, this means that the conditional probability P(r|v) is 
greater than the conditional probability P(r|w) for w≠v.  Q.E.D.
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Error-Detecting and Error-Correcting 
Capabilities of a Block Code

Fact 2: The code is not capable of correcting all the error patterns 
of l errors with l > t, for there is at least one case where an error 
pattern of l errors results in a received vector which is closer to an 
incorrect code vector than to the actual transmitted code vector.
Proof:

Let v and w be two code vectors in C such that d(v,w)=dmin.
Let e1 and e2 be two error patterns that satisfy the following 
conditions:

e1+ e2=v+w
e1 and e2 do not have nonzero components in common 
places.

We have w(e1) + w(e2) = w(v+w) = d(v,w) = dmin.  (3.23)



56

Error-Detecting and Error-Correcting 
Capabilities of a Block Code

Suppose that v is transmitted and is corrupted by the error 
pattern e1, then the received vector is 

r = v + e1

The Hamming distance between v and r is
d(v, r) = w(v + r) = w(e1).  (3.24)

The Hamming distance between w and r is 
d(w, r) = w(w + r) = w(w + v + e1) = w(e2)  (3.25)

Now, suppose that the error pattern e1 contains more than t
errors [i.e. w(e1) ≥t+1].
Since 2t + 1 ≤ dmin ≤ 2t +2, it follows from (3.23) that

w(e2) = dmin- w(e1) ≤ (2t +2) - (t+1) = t + 1
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Error-Detecting and Error-Correcting 
Capabilities of a Block Code

Combining (3.24) and (3.25) and using the fact that w(e1) ≥
t+1 and w(e2) ≤ t + 1, we have 

d(v, r) ≥ d(w, r)
This inequality say that there exists an error pattern of l (l > t) 
errors which results in a received vector that is closer to an 
incorrect code vector than to the transmitted code vector.
Based on the maximum likelihood decoding scheme, an 
incorrect decoding would be committed.   Q.E.D.
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Error-Detecting and Error-Correcting 
Capabilities of a Block Code

A block code with minimum distance dmin guarantees 
correcting all the error patterns of t =                    or fewer 
errors, where                     denotes the largest integer no
greater than (dmin – 1)/2
The parameter t =                    is called the random-error 
correcting capability of the code
The code is referred to as a t-error-correcting code
A block code with random-error-correcting capability t is 
usually capable of correcting many error patterns of t + 1 or 
more errors
For a t-error-correcting (n, k) linear code, it is capable of 
correcting a total 2n-k error patterns (shown in next section).

min( 1) / 2d −⎢ ⎥⎣ ⎦
min( 1) / 2d −⎢ ⎥⎣ ⎦

min( 1) / 2d −⎢ ⎥⎣ ⎦
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Error-Detecting and Error-Correcting 
Capabilities of a Block Code

If a t-error-correcting block code is used strictly for error 
correction on a BSC with transition probability p, the probability 
that the decoder commits an erroneous decoding is upper 
bounded by:

In practice, a code is often used for correctingλor fewer errors 
and simultaneously detecting l (l >λ) or fewer errors.  That is, 
whenλor fewer errors occur, the code is capable of correcting 
them; when more than λbut fewer than l+1 errors occur, the 
code is capable of detecting their presence without making a 
decoding error.
The minimum distance dmin of the code is at least λ+ l+1.
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Standard Array and Syndrome Decoding

Let v1, v2, …, v2k be the code vector of C
Any decoding scheme used at the receiver is a rule to 
partition the 2n possible received vectors into 2k disjoint 
subsets D1, D2, …, D2k such that the code vector vi is 
contained in the subset Di for 1 ≤ i ≤ 2k 

Each subset Di is one-to-one correspondence to a code 
vector vi
If the received vector r is found in the subset Di,  r is 
decoded into vi
Correct decoding is made if and only if the received vector r
is in the subset Di that corresponds to the actual code vector 
transmitted
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A method to partition the 2n possible received vectors into 
2k disjoint subsets such that each subset contains one and 
only one code vector is described here

First, the 2k code vectors of C are placed in a row with the all-zero 
code vector v1 = (0, 0, …, 0) as the first (leftmost) element
From the remaining 2n – 2k n-tuple, an n-tuple e2 is chosen and is 
placed under the zero vector v1
Now, we form a second row by adding e2 to each code vector vi in 
the first row and placing the sum e2 + vi under vi
An unused n-tuple e3 is chosen from the remaining n-tuples and is 
placed under e2.
Then a third row is formed by adding e3 to each code vector vi in 
the first row and placing e3 + vi under vi .
we continue this process until all the n-tuples are used.
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Then we have an array of rows and columns as shown in 
Fig 3.6 
This array is called a standard array of the given linear 
code C
Theorem 3.3 No two n-tuples in the same row of a 
standard array are identical. Every n-tuple appears in one 
and only one row
Proof

The first part of the theorem follows from the fact that all the code 
vectors of C are distinct
Suppose that two n-tuples in the lth rows are identical, say el + vi = 
el + vj with i ≠j
This means that vi = vj, which is impossible, therefore no two       
n-tuples in the same row are identical
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Standard Array and Syndrome Decoding

Proof
It follows from the construction rule of the standard array that
every n-tuple appears at least once
Suppose that an n-tuple appears in both lth row and the mth row 
with l < m
Then this n-tuple must be equal to el + vi for some i and equal to  
em + vj for some j
As a result, el + vi = em + vj
From this equality we obtain em = el + (vi + vj)
Since vi and vj are code vectors in C, vi + vj is also a code vector in 
C, say vs
This implies that the n-tuple em is in the lth row of the array, which 
contradicts the construction rule of the array that em, the first 
element of the mth row, should be unused in any previous row
No n-tuple can appear in more than one row of the array
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From Theorem 3.3 we see that there are 2n/2k = 2n-k disjoint 
rows in the standard array, and each row consists of 2k

distinct elements
The 2n-k rows are called the cosets of the code C
The first n-tuple ej of each coset is called a coset leader
Any element in a coset can be used as its coset leader
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Standard Array and Syndrome Decoding

Example 3.6 consider the (6, 3) linear code generated by 
the following matrix : 

The standard array of this code is shown in Fig. 3.7

0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

G
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
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Standard Array and Syndrome Decoding
A standard array of an (n, k) linear code C consists of 2k

disjoint columns
Let Dj denote the jth column of the standard array, then

Dj = {vj, e2+vj, e3+vj, …, e2n-k + vj}               (3.27)
vj is a code vector of C and e2, e3, …, e2n-k are the coset leaders

The 2k disjoint columns D1, D2, …, D2k can be used for 
decoding the code C.
Suppose that the code vector vj is transmitted over a noisy 
channel, from (3.27) we see that the received vector r is in 
Dj if the error pattern caused by the channel is a coset leader
If the error pattern caused by the channel is not a coset
leader, an erroneous decoding will result
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Standard Array and Syndrome Decoding

The decoding is correct if and only if the error pattern 
caused by the channel is a coset leader
The 2n-k coset leaders (including the zero vector 0) are 
called the correctable error patterns
Theorem 3.4 Every (n, k) linear block code is capable of 
correcting 2n-k error pattern
To minimize the probability of a decoding error, the error 
patterns that are most likely to occur for a given channel 
should be chosen as the coset leaders
When a standard array is formed, each coset leader should 
be chosen to be a vector of least weight from the remaining 
available vectors
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Each coset leader has minimum weight in its coset
The decoding based on the standard array is the minimum 
distance decoding (i.e. the maximum likelihood decoding)
Let αi denote the number of coset leaders of weight i, the 
numbers α0 , α1 ,…,αn are called the weight distribution
of the coset leaders
Since a decoding error occurs if and only if the error pattern 
is not a coset leader, the error probability for a BSC with 
transition probability p is 

0
(E) =1 (1 )

n
i n i

i
i

P p pα −

=

− −∑
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Standard Array and Syndrome Decoding

Example 3.7
The standard array for this code is shown in Fig. 3.7
The weight distribution of the coset leader is α0 =1, α1 = 6, α2=1
and α3 =α4 =α5 =α6 = 0
Thus, 

P(E) = 1 – (1 – p)6 – 6p(1 – p)5 – p2(1 – p)4

For p = 10-2, we have P(E) ≈ 1.37 × 10-3
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An (n, k) linear code is capable of detecting 2n – 2k error 
patterns, it is capable of correcting only 2 n–k error patterns
The probability of a decoding error is much higher than the 
probability of an undetected error
Theorem 3.5

(1)  For an (n, k) linear code C with minimum distance dmin, all the   
n-tuples of weight of t =                         or less can be used as coset
leaders of a standard array of C.      
(2)  If all the n-tuple of weight t or less are used as coset leader, 
there is at least one n-tuple of weight t + 1 that cannot be used as a 
coset leader

min( 1) / 2d −⎢ ⎥⎣ ⎦
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Proof of the (1)
Since the minimum distance of C is dmin , the minimum weight of 
C is also dmin

Let x and y be two n-tuples of weight t or less
The weight of x + y is

w(x + y) ≤ w(x) + w(y) ≤ 2t < dmin (2t+1≤ dmin ≤2t+2)
Suppose that x and y are in the same coset, then x + y must be a 
nonzero code vector in C
This is impossible because the weight of x+y is less than the 
minimum weight of C.
No two n-tuple of weight t or less can be in the same coset of C
All the n-tuples of weight t or less can be used as coset leaders
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Proof of the (2)
Let v be a minimum weight code vector of C ( i.e., w(v) = dmin )
Let x and y be two n-tuples which satisfy the following two 
conditions:

x + y = v
x and y do not have nonzero components in common places

It follows from the definition that x and y must be in the same 
coset and 

w(x) + w(y) = w(v) = dmin

Suppose we choose y such that w(y) = t + 1
Since 2t + 1 ≤ dmin ≤ 2t + 2, we have w(x)=t or t+1.
If x is used as a coset leader, then y cannot be a coset leader.
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Theorem 3.5 reconfirms the fact that an (n, k) linear code 
with minimum distance dmin is capable of correcting all the 
error pattern of                     or fewer errors
But it is not capable of correcting all the error patterns of 
weight t + 1
Theorem 3.6 All the 2k n-tuples of a coset have the same 
syndrome. The syndrome for different cosets are different
Proof 

Consider the coset whose coset leader is el
A vector in this coset is the sum of el and some code vector vi in C
The syndrome of this vector is 

(el + vi)HT = elHT + viHT = elHT

min( 1) / 2d −⎢ ⎥⎣ ⎦
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Proof 
Let ej and el be the coset leaders of the jth and lth cosets
respectively, where j < l
Suppose that the syndromes of these two cosets are equal
Then,

ejHT = elHT

(ej + el)HT = 0
This implies that ej + el is a code vector in C, say vj

Thus, ej + el = vi and el = ej + vi

This implies that el is in the jth coset, which contradicts the 
construction rule of a standard array that a coset leader should be 
previously unused



78

Standard Array and Syndrome Decoding

The syndrome of an n-tuple is an (n–k)-tuple and there are 
2n-k distinct (n–k)-tuples
From theorem 3.6 that there is a one-to-one correspondence 
between a coset and an (n–k)-tuple syndrome
Using this one-to-one correspondence relationship, we can 
form a decoding table, which is much simpler to use than a 
standard array
The table consists of 2n-k coset leaders (the correctable error 
pattern) and their corresponding syndromes
This table is either stored or wired in the receiver
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The decoding of a received vector consists of three steps:
Step 1. Compute the syndrome of r, r • HT

Step 2. Locate the coset leader el whose syndrome is equal to          
r • HT, then el is assumed to be the error pattern caused by 
the channel

Step 3. Decode the received vector r into the code vector v
i.e., v = r + el

The decoding scheme described above is called the 
syndrome decoding or table-lookup decoding
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Example 3.8 Consider the (7, 4) linear code given in 
Table 3.1, the parity-check matrix is given in example 3.3

The code has 23 = 8 cosets
There are eight correctable error patterns (including the all-zero 
vector)
Since the minimum distance of the code is 3, it is capable of 
correcting all the error patterns of weight 1 or 0
All the 7-tuples of weight 1 or 0 can be used as coset leaders
The number of correctable error pattern guaranteed by the 
minimum distance is equal to the total number of correctable error 
patterns
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The correctable error patterns and their corresponding syndromes
are given in Table 3.2
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Suppose that the code vector v = (1 0 0 1 0 1 1) is 
transmitted and r = (1 0 0 1 1 1 1) is received
For decoding r, we compute the syndrome of r

( ) ( )

1 0 0
0 1 0
0 0 1

1 0 0 1 1 1 1 0 1 11 1 0
0 1 1
1 1 1
1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

s
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From Table 3.2 we find that (0 1 1) is the syndrome of the 
coset leader e = (0 0 0 0 1 0 0), then r is decoded into 

v* = r + e
= (1 0 0 1 1 1 1) + (0 0 0 0 1 0 0)
= (1 0 0 1 0 1 1)

which is the actual code vector transmitted
The decoding is correct since the error pattern caused by the 
channel is a coset leader
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Suppose that v = (0 0 0 0 0 0 0) is transmitted and
r = (1 0 0 0 1 0 0) is received
We see that two errors have occurred during the 
transmission of v
The error pattern is not correctable and will cause a 
decoding error
When r is received, the receiver computes the syndrome

s = r • HT = (1 1 1)
From the decoding table we find that the coset leader 
e = (0 0 0 0 0 1 0) corresponds to the syndrome s = (1 1 1)
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r is decoded into the code vector 
v* = r + e

= (1 0 0 0 1 0 0) + (0 0 0 0 0 1 0)
= (1 0 0 0 1 1 0)

Since v* is not the actual code vector transmitted, a 
decoding error is committed 
Using Table 3.2, the code is capable of correcting any single 
error over a block of seven digits
When two or more errors occur, a decoding error will be 
committed
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The table-lookup decoding of an (n, k) linear code may be 
implemented as follows
The decoding table is regarded as the truth table of n switch 
functions : 

where s0, s1, …, sn-k-1 are the syndrome digits
where e0, e1, …, en-1 are the estimated error digits

0 0 0 1 1

1 1 0 1 1

1 1 0 1 1

( ,  ,...,  )
( ,  ,...,  )

    .
    .

( ,  ,...,  )

n k

n k

n n n k

e f s s s
e f s s s

e f s s s

− −

− −

− − − −

=
=

=
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The general decoder for an (n, k) linear code based on the 
table-lookup scheme is shown in Fig. 3.8
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Example 3.9 Consider the (7, 4) code given in Table 3.1
The syndrome circuit for this code is shown in Fig. 3.5 
The decoding table is given by Table 3.2
From this table we form the truth table (Table 3.3)
The switching expression for the seven error digits are

where Λ denotes the logic-AND operation
where s’ denotes the logic-COMPLENENT of s

' ' ' '
0 0 1 2 1 0 1 2

' ' '
2 0 1 2 3 0 1 2

'
4 0 1 2 5 0 1 2

'
6 0 1 2

                   

                   

                   

    

e s s s e s s s

e s s s e s s s

e s s s e s s s

e s s s

= Λ Λ = Λ Λ

= Λ Λ = Λ Λ

= Λ Λ = Λ Λ

= Λ Λ
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The complete circuit of the decoder is shown in Fig. 3.9



Probability of An Undetected Error 
for Linear Codes Over a BSC
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Probability of An Undetected Error 
for Linear Codes Over a BSC

Let {A0, A1, …, An} be the weight distribution of an (n, k) 
linear code C
Let {B0, B1, …, Bn} be the weight distribution of its dual 
code Cd
Now we represent these two weight distribution in 
polynomial form as follows :

A(z) = A0 + A1z + ··· + Anzn

B(z) = B0 + B1z + ··· + Bnzn (3.31)
Then A(z) and B(z) are related by the following identity :

A(z) = 2 -(n-k) (1 + z)n B(1 – z / 1 + z)     (3.32)
This identity is known as the MacWilliams identity
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Probability of An Undetected Error 
for Linear Codes Over a BSC

The polynomials A(z) and B(z) are called the weight 
enumerators for the (n, k) linear code C and its dual Cd

Using the MacWilliams identity, we can compute the 
probability of an undetected error for an (n, k) linear code 
from the weight distribution of its dual.
From equation 3.19:
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Probability of An Undetected Error 
for Linear Codes Over a BSC

Substituting z = p/(1 – p) in A(z) of (3.31) and using the fact 
that A0 = 1, we obtain 

Combining (3.33) and (3.34), we have the following 
expression for the probability of an undetected error

1

1                  (3.34)
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Probability of An Undetected Error 
for Linear Codes Over a BSC

From (3.35) and the MacWilliams identity of (3.32), we 
finally obtain the following expression for Pu(E) :

Pu(E) = 2-(n – k) B(1 – 2p) – (1 – p)n (3.36)
where

Hence, there are two ways for computing the probability of 
an undetected error for a linear code; often one is easier than 
the other.
If n-k is smaller than k, it is much easier to compute Pu(E) 
from (3.36); otherwise, it is easier to use (3.35).

0
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Probability of An Undetected Error 
for Linear Codes Over a BSC

Example 3.10 consider the (7, 4) linear code given in Table 3.1
The dual of this code is generated by its parity-check matrix

Taking the linear combinations of the row of H, we obtain the 
following eight vectors in the dual code

(0 0 0 0 0 0 0), (1 1 0 0 1 0 1),
(1 0 0 1 0 1 1), (1 0 1 1 1 0 0),
(0 1 0 1 1 1 0), (0 1 1 1 0 0 1),
(0 0 1 0 1 1 1), (1 1 1 0 0 1 0)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1110100
0111010
1101001

H
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for Linear Codes Over a BSC

Example 3.10
Thus, the weight enumerator for the dual code is          

B(z) = 1 + 7z4

Using (3.36), we obtain the probability of an undetected error for 
the (7, 4) linear code given in Table 3.1

Pu(E) = 2-3[1 + 7(1 – 2p)4] – (1 – p)7

This probability was also computed in Section 3.4 using the weight 
distribution of the code itself
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Probability of An Undetected Error 
for Linear Codes Over a BSC

For large n, k, and n – k, the computation becomes 
practically impossible 

Except for some short linear codes and a few small classes 
of linear codes, the weight distributions for many known 
linear code are still unknown

Consequently, it is very difficult to compute their 
probability of an undetected error
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for Linear Codes Over a BSC

It is quite easy to derive an upper bound on the average probability of 
an undetected error for the ensemble of all   (n, k) linear systematic 
codes

Since [1 – (1 – p)n] ≤ 1, it is clear that Pu(E) ≤ 2–(n – k).
There exist (n,k) linear codes with probability of an undetected error, 
Pu(E), upper bounded by 2-(n-k).
Only a few small classes of linear codes have been proved to have 
Pu(E) satisfying the upper bound 2-(n-k).
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Hamming Codes
These codes and their variations have been widely used for 
error control in digital communication and data storage 
systems
For any positive integer m ≥ 3, there exists a Hamming code 
with the following parameters :

Code length: n = 2m – 1 
Number of information symbols: k = 2m – m – 1 
Number of parity-check symbols: n – k = m
Error-correcting capability : t = 1( dmin = 3)
The parity-check matrix H of this code consists of all the nonzero 
m-tuple as its columns (2m-1).
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Hamming Codes
In systematic form, the columns of H are arranged in the 
following form :

H = [Im Q]
where Im is an m × m identity matrix 
The submatrix Q consists of 2m – m – 1 columns which are the    
m-tuples of weight 2 or more

The columns of Q may be arranged in any order without 
affecting the distance property and weight distribution of 
the code
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In systematic form, the generator matrix of the code is 

G = [QT I2m–m–1]
where QT is the transpose of Q and I 2m–m–1 is an (2m – m – 1) ×
(2m – m – 1) identity matrix

Since the columns of H are nonzero and distinct, no two 
columns add to zero
Since H consists of all the nonzero m-tuples as its columns, 
the vector sum of any two columns, say hi and hj, must also 
be a column in H, say hl

hi + hj + hl = 0 
The minimum distance of a Hamming code is exactly 3
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The code is capable of correcting all the error patterns with 
a single error or of detecting all the error patterns of two or 
fewer errors

If we form the standard array for the Hamming code of 
length 2m – 1

All the (2m–1)-tuple of weight 1 can be used as coset leaders
The number of (2m–1)-tuples of weight 1 is 2m – 1
Since n – k = m, the code has 2m cosets
The zero vector 0 and the (2m–1)-tuples of weight 1 form all the 
coset leaders of the standard array
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A t-error-correcting code is called a perfect code if its 
standard array has all the error patterns of t or fewer errors 
and no others as coset leader

Besides the Hamming codes, the only other nontrivial 
binary perfect code is the (23, 12) Golay code (section 5.3)

Decoding of Hamming codes can be accomplished easily 
with the table-lookup scheme
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We may delete any l columns from the parity-check matrix 
H of a Hamming code
This deletion results in an m × (2m – l – 1) matrix H'
Using H' as a parity-check matrix, we obtain a shortened 
Hamming code with the following parameters : 

Code length: n = 2m – l – 1 
Number of information symbols: k = 2m – m – l – 1 
Number of parity-check symbols: n – k = m
Minimum distance : dmin ≥ 3
If we delete columns from H properly, we may obtain a shortened 
Hamming code with minimum distance 4
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For example, if we delete from the submatrix Q all the columns of 
even weight, we obtain an m x 2m-1 matrix.

H’=[Im Q’]
Q’ consists of 2m-1-m columns of odd weight.
Since all columns of H’ have odd weight, no three columns add to 
zero.
However, for a column hi of weight 3 in Q’, there exists three 
columns hj, hl, and hs in Im such that hi +hj+hl+hs=0.
Thus, the shortened Hamming code with H’ as a parity-check 
matrix has minimum distance exactly 4.
The distance 4 shortened Hamming code can be used for 
correcting all error patterns of single error and simultaneously
detecting all error patterns of double errors
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When a single error occurs during the transmission of a code 
vector, the resultant syndrome is nonzero and it contains an odd
number of 1’s  (e x H’T corresponds to a column in H’)
When double errors occurs, the syndrome is nonzero, but it 
contains even number of 1’s

Decoding can be accomplished in the following manner : 
If the syndrome s is zero, we assume that no error occurred 
If s is nonzero and it contains odd number of 1’s, we assume that a 
single error occurred. The error pattern of a single error that 
corresponds to s is added to the received vector for error correction
If s is nonzero and it contains even number of 1’s, an uncorrectable 
error pattern has been detected
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The dual code of a (2m–1, 2m–m–1) Hamming code is a  
(2m–1,m) linear code
If a Hamming code is used for error detection over a BSC, 
its probability of an undetected error, Pu(E), can be 
computed either from (3.35) and (3.43) or from (3.36) and 
(3.44)
Computing Pu(E) from (3.36) and (3.44) is easier
Combining (3.36) and (3.44), we obtain 

Pu(E) = 2-m{1+(2m – 1)(1 – 2p)2m-1} – (1 – p)2m–1 

The probability Pu(E) for Hamming codes does satisfy the 
upper bound 2–(n–k) = 2-m for p ≤ ½ [i.e., Pu(E) ≤ 2-m]
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Codes, and Self-Dual Codes
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Single-Parity-Check Codes, Repetition 
Codes, and Self-Dual Codes

A single-parity-check (SPC) code is a linear block code with a 
single parity-check digit.

Let u=(u0,u1,…,uk-1) be the message to be encoded. The single 
parity-check digit is given by

p= u0+u1+…+uk-1

which is simply the modulo-2 sum of all the message digits.
Adding this parity-check digit to each k-digit message results 
in a (k+1,k) linear block code. Each codeword is of the form

v=(p,u0,u1,…,uk-1)
p=1(0) if the weight of message u is odd(even).
All the codewords of a SPC code have even weights, and the 
minimum weight (or minimum distance) of the code is 2.
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The generator of the code in systematic form is given by

The parity-check matrix of the code is

A SPC code is also called an even-parity-check code.
All the error patterns of odd weight are detectable.

1 1 0 0 0 0 1
1 0 1 0 0 0 1
1 0 0 1 0 0 1

1 0 0 0 0 1 1

k

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

G I

[ ]1 1 1=H
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A repetition code of length n is an (n,1) linear block code that
consists of only two codewords, the all-zero codeword (00…0) 
and the all-one codeword (11…1).

This code is obtained by simply repeating a single message bit 
n times. The generator matrix of the code is

From the generator matrixes, we see that the (n,1) repetition code 
and the (n,n-1) SPC code are dual codes to each other.
A linear block code C that is equal to its dual code Cd is called a 
self-dual code.
For a self-dual code, the code length n must be even, and the 
dimension k of the code must be equal to n/2. => Rate=1/2.

[ ]1 1 1=H
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Let G be a generator matrix of a self-dual code C. Then, G is also 
a generator matrix of its dual code Cd and hence is a parity-check 
matrix of C. Consequently,

G·GT=0
Suppose G is in systematic form, G=[P In/2]. We can see that

P·PT=In/2

Conversely, if a rate ½ (n,n/2) linear block code C satisfies the 
condition of G·GT=0 or P·PT=In/2, then it is a self-dual code.
Example: the (8,4) linear block
code generated by the following
matrix has a rate R= ½ and is a
self-dual code since G·GT=0.

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦
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