Asymmetric CP 0000 CP and gravity FDI 000000 Empirical framework

Results 000000000 Concluding remarks

Asymmetric Cultural Proximity and Greenfield FDI

Matteo Fiorini * Giorgia Giovannetti [†]* Mauro Lanati * Filippo Santi [†]

* European University Institute [†] University of Florence

March 6 2018

GTDW, Geneva

Asymmetric CP 0000 CP and gravity FDI 000000 Empirical framework

Results 0000000000 Concluding remarks 00

Santiago 2012

Notes: Fans at a pop concert in Santiago March 9, 2012. Photo from REUTERS.

Asymmetric CP 0000 CP and gravity FDI 000000 Empirical framework

Results 00000000000 Concluding remarks 00

Santiago 2012

Notes: K-Pop group JYJ perform in Santiago March 9, 2012. Photo from REUTERS.

• Asymmetric and time-dependent dimensions in bilateral cultural relationship: e.g. trust, preferences for cultural systems . . .

- Asymmetric and time-dependent dimensions in bilateral cultural relationship: e.g. trust, preferences for cultural systems . . .
- Background question: what role for bilateral economic interactions?

- Asymmetric and time-dependent dimensions in bilateral cultural relationship: e.g. trust, preferences for cultural systems . . .
- Background question: what role for bilateral economic interactions?
- This paper: how cultural proximity affects greenfield FDI accounting for asymmetric cultural preferences

Asymmetric CP 0000 CP and gravity FDI 000000 Empirical framework

Results 0000000000 Concluding remarks

What we do, what we get

• Main ingredients of the paper

- definition and empirical proxies for asymmetric cultural proximity (CP)
- conceptual framework for asymmetric CP in structural gravity equation of FDI
- empirical estimation

Asymmetric CP 0000 CP and gravity FDI 000000 Empirical framework

Results 0000000000 Concluding remarks

What we do, what we get

• Main ingredients of the paper

- definition and empirical proxies for asymmetric cultural proximity (CP)
- conceptual framework for asymmetric CP in structural gravity equation of FDI
- empirical estimation

• Preview of results

- 1 general positive role of CP as a determinant of Greenfield FDI
- 2 driven by Destination preferences toward Origin's culture

Introduction	Asymmetric CP	CP and gravity FDI	Empirical framework	Results
000000	0000	000000	0000	00000000000

We contribute to

• existing theories of bilateral FDI

- Head and Ries (2008)
- de Sousa and Lochard (2011)

Concluding remarks

Introduction	Asymmetric CP	CP and gravity FDI	Empirical framework	Results	Concluding remarks
000000	0000	000000	0000	0000000000	00

We contribute to

- existing theories of bilateral FDI
 - Head and Ries (2008)
 - de Sousa and Lochard (2011)
- existing critique of symmetric and time invariant CP [diagram]
 - Guiso et al. (2009)
 - Disdier et al. (2010)
 - Felbermayr and Toubal (2010)
 - International business literature (Shenkar, 2001; Tung and Verbeke, 2010; Li et al., 2017)

Introduction	Asymmetric CP	CP and gravity FDI	Empirical framework	Results	Concluding remarks
0000000	0000	000000	0000	00000000000	00
		De	finitions		

• **Culture**: system of ideas (values, beliefs, norms) and practices (behavioral patterns) prevailing among groups of agents (Leung et al., 2005)

- **Culture**: system of ideas (values, beliefs, norms) and practices (behavioral patterns) prevailing among groups of agents (Leung et al., 2005)
- Cultural proximity b/w 'target' n and 'observer' i:

$$CP_{ni,t} = f(\mathbf{S}_{ni} \; ; \; \mathbf{A}_{ni,t}) \tag{1}$$

- $S_{ni} = S_{in}$ similarity
- $A_{ni,t}$ attractiveness of n's culture for individuals in i
- f strictly increasing in both arguments

Introduction	Asymmetric CP	CP and gravity FDI 000000	Empirical framework	Results 00000000000	Concluding remarks
		Measurament (Disdier et al.,	2010)	

• $CP_{ni,t}$ proxied by *i*'s IMPORTS of cultural goods from *n* (CulIMP_{*ni*,t})

Asymmetric CP

CP and gravity FDI 000000 Empirical framework 0000 Results 00000000000 Concluding remarks

Measurament (Disdier et al., 2010)

- $CP_{ni,t}$ proxied by *i*'s IMPORTS of cultural goods from *n* (CulIMP_{*ni*,t})
- trade data from BACI (CEPII) and UNCTAD classification of cultural goods

173 countries, 2003-2014, 2.7% of total trade, top 5 exp (CHN, DEU, USA, ITA, FRA) 55%

Core Cultural Goods	Optional Cultural Goods		
Arts (Performing and Visual)	Heritage (Arts Crafts)		
Music (CD, Tapes), Printed Music, Painting, Photography, Sculpture and Antiques	Carpets, Celebration, Paperware, Wickerware, Yarn and Other		
Media (Publishing and Audio-Visual)	Functional Creations (Design and New-Media)		
Books, Newspaper, Other Printed Matter, Film	Architecture, Fashion, Interior, Glass- ware, Jewellery, Toys, Recorded Me- dia and Video Games		

- direct correspondence b/w cultural imports and cultural preferences, i.e. ${\rm CulIMP}_{ni,t}$ and ${\rm A}_{ni,t}$
- correlation b/w $CulIMP_{ni,t}$ and S_{ni} [table]

Asymmetric CP

CP and gravity FDI 000000 Empirical framework

Results 0000000000 Concluding remarks

A descriptive detour on asymmetry

- Measure of asymmetry in cultural preferences
 - CulIMP_{*ni*,t} = $\delta_{i,t} + \gamma_{ni} + \varepsilon_{ni,t}$
 - Cultural asymmetry as $CA_{ni} = |\hat{\gamma}_{ni} \hat{\gamma}_{in}|$
 - Estimate CA for 4137 pairs (56% cultural trade)
 - mean 2.932 and median 2.614

Asymmetric CP

CP and gravity FDI 000000 Empirical framework

Results 0000000000 Concluding remarks

A descriptive detour on asymmetry

- Measure of asymmetry in cultural preferences
 - CulIMP_{*ni*,t} = $\delta_{i,t} + \gamma_{ni} + \varepsilon_{ni,t}$
 - Cultural asymmetry as $CA_{ni} = |\hat{\gamma}_{ni} \hat{\gamma}_{in}|$
 - Estimate CA for 4137 pairs (56% cultural trade)
 - mean 2.932 and median 2.614

Country n	$Country\;i$	Attractiveness premium of i for n ($\hat{\gamma}_{ni}$)	Attractiveness premium of n for i ($\hat{\gamma}_{in}$)	Asymmetry $(\hat{\gamma}_{ni} - \hat{\gamma}_{in})$
China	Paraguay	7.211	-3.686	10.897
Morocco	Singapore	0.047	0.046	0.001
South Korea	Chile	2.470	-2.212	4.682
South Korea	Peru	3.312	-1.189	4.502

- Time average $\overline{\mathrm{CulIMP}}_{\mathrm{CHN PRY}}$: USD 273,137,000 (131 times the average value across cultural exporters to PRY).
- $\overline{\rm CulIMP}_{\rm PRY\ CHN}$: USD 23,000 (0.08% of the average value across cultural exporters to CHN)

Asymmetric CP

CP and gravity FDI 000000 Empirical framework

Results 0000000000 Concluding remarks 00

CA between UK and the world

Introduction Asymmetric CP 0000000 0000

CP and gravity FDI
 OOOOOO

Empirical framework

Results 0000000000 Concluding remarks

de Sousa and Lochard (2011) framework (I)

- partial equilibrium (origin-side), multilateral frictions in investment decisions
- Greenfield FDI project as inspection game $b/w\ MM$ and Sub
- MM payoff decreasing in
 - inspection costs \boldsymbol{c}
 - transaction costs $\tau\colon$ e.g. currency risks, differentials of taxation/accounting/legal standards . . .
- c and τ functions of formal investment policies, geographic and cultural proximity

Introduction Asymmetric CP 0000000 0000

CP CP and gravity FDI OOOOOO Empirical framework

Results 0000000000 Concluding remarks 00

de Sousa and Lochard (2011) framework (II)

- multi country framework and stochastic MNE's payoff functions
- $\Rightarrow\,$ MM invests where the highest payoff (value of a project) is higher than the highest value of projects elsewhere
- \Rightarrow number of greenfield projects from i to n as

$$FDI_{ni} = K_i Z_i^{-1} M_n T_{ni} \tag{2}$$

- K_i embeds origin country specific parameters (e.g. capital stock)
- Z_i^{-1} multilateral resistance component (attractiveness of alternative locations for MM)
- M_n destination specific parameters (e.g. number of potential projects)
- T_{ni} function of c and au

Asymmetric CP 0000 CP and gravity FDI

Empirical framework

Results 0000000000 Concluding remarks

T_{ni} and asymmetric CP

ASS0: c and τ decrease with S_{ni}

Standard mechanisms: easier to monitor with same language; lower differentials in accounting/legal standards

Asymmetric CP 0000 CP and gravity FDI

Empirical framework

Results 00000000000 Concluding remarks

T_{ni} and asymmetric CP

ASS0: c and τ decrease with S_{ni}

Standard mechanisms: easier to monitor with same language; lower differentials in accounting/legal standards

ASS1: c and τ decrease with $A_{ni,t}$

Mechanism: higher utility from operating in environment whose cultural system is more appreciated

ASS2: c and τ decrease with $A_{in,t}$

Mechanism: higher utility from operating in environment where your cultural system is more appreciated

ASS3: $A_{in,t}$ increases T_{ni} beyond its effect on c and τ

Mechanisms: destination consumers demand & destination political economy $% \left({{{\rm{A}}_{{\rm{B}}}} \right)$

Asymmetric CP CP and gravity FDI Introduction Empirical framework Results Concluding remarks 000000

Destination consumers demand

• if project in destination (n) serves the domestic n market

 Introduction
 Asymmetric CP
 CP and gravity FDI
 Empirical framework
 Results
 Concluding remarks

 000000
 0000
 0000
 0000
 00000000
 00

Destination consumers demand

- if project in destination (n) serves the domestic n market
- \Rightarrow the value that consumers in n put on the output of $i{\rm 's}$ MNE increases average payoff from a project in n
 - this value positively affected by cultural preferences toward *i* conditionally on cultural preferences toward other countries

 Introduction
 Asymmetric CP
 CP and gravity FDI
 Empirical framework
 Results
 Concluding remarks

 0000000
 0000
 0000
 0000
 00000000
 00

Destination consumers demand

- if project in destination (n) serves the domestic n market
- \Rightarrow the value that consumers in n put on the output of $i{\rm 's}$ MNE increases average payoff from a project in n
 - this value positively affected by cultural preferences toward i conditionally on cultural preferences toward other countries
- $\Rightarrow A_{in,t}$ increases T_{ni}

Introduction	Asymmetric CP	CP and gravity FDI	Empirical framework	Results	Concluding remarks
0000000	0000	000000	0000	00000000000	00
		Destination	political econo	my	

- if political pressures in the destination (n) affect the value of investment and ...
- under political accountability

		Dectination	political ocono	mv	
Introduction 0000000	Asymmetric CP 0000	CP and gravity FDI 0000€0	Empirical framework	Results 00000000000	Concluding remarks

Destination political economy

- if political pressures in the destination (n) affect the value of investment and ...
- under political accountability
- \Rightarrow the allocation of pressures affected by voters cultural preferences toward i conditionally on cultural preferences toward other countries

		Doctination	nalitical acono	m)/	
0000000	0000	000000	0000	00000000000	00
Introduction	Asymmetric CP	CP and gravity EDI	Empirical framework	Results	Concluding remarks

Destination political economy

- if political pressures in the destination (n) affect the value of investment and ...
- under political accountability
- \Rightarrow the allocation of pressures affected by voters cultural preferences toward i conditionally on cultural preferences toward other countries
- $\Rightarrow A_{in,t}$ increases T_{ni}

		EDI and	a au una una atuda C	D	
Introduction 0000000	Asymmetric CP 0000	CP and gravity FDI 00000●	Empirical framework	Results 00000000000	Concluding remarks

 FDI_{ni} and asymmetric CP

• 'destination-side' mechanisms imply multilateral resistance for destination

$$FDI_{ni} = K_i Z_i^{-1} M_n B_n^{-1} T_{ni}$$
(3)

Introduction	Asymmetric CP	CP and gravity FDI	Empirical framework	Results	Concluding remarks
0000000	0000	00000●	0000	00000000000	00
		FDI_{ni} and	asymmetric Cl	Р	

· 'destination-side' mechanisms imply multilateral resistance for destination

$$FDI_{ni} = K_i Z_i^{-1} M_n B_n^{-1} T_{ni}$$
(3)

- positive effect of $CP_{ni,t}$ and $CP_{in,t}$ on greenfield FDI from i to n
- · no theoretical ambiguity on the sign of the effect
- relative strength an empirical question

Introduction	Asymmetric CP	CP and gravity FDI	Empirical framework	Results	Concluding remarks		
0000000	0000	000000	●000	00000000000	00		
Empirical model (I)							

- PPML regression from $FDI_{ni,t} = K_{i,t}Z_{i,t}^{-1}M_{n,t}B_{n,t}^{-1}T_{ni,t}$
- $FDI_{ni,t}$ number of greenfield project from i to n at t from fDiMarket
- origin $\times time$ and destination $\times time$ fixed effects

Asymmetric CP 0000 CP and gravity FDI 000000 Empirical framework

Results 0000000000 Concluding remarks 00

Empirical model (II)

• CP elements of bilateral component $T_{ni,t}$

- 1 $A_{ni,t}$: CulIMP_{ni,t}
- 2 $A_{in,t}$: CulEXP_{ni,t}
- 3 former colony dummy: $colony_{ni}$
- 4 linguistic proximity: $lang_{ni}$
- 5 religious proximity: $comrelig_{ni}$
- 6 institutional proximity: $com leg_{ni}$
- other elements of bilateral component $T_{ni,t}$
 - 1 log of the distance: $\ln \operatorname{dist}_{ni}$
 - 2 dummy for geographical contiguity: $contig_{ni}$
 - **3** FTAs involving i and n in force at t: FTA_{ni,t}
 - 4 BITs involving i and n in force at t: BIT_{ni,t}
- Sources: UNCTAD and CEPII (geodist and gravdata)

Introduction 0000000	Asymmetric CP 0000	CP and gravity FDI 000000	Empirical framework	Results 00000000000	Concluding remarks
Main endogeneity issues					

Main endogeneity issues

- Unobserved confounding heterogeneity
 - with ni variability (e.g. bilateral initial conditions) \Rightarrow origin×destination FE
 - with nit variability \Rightarrow control for non-cultural trade and migration

 Introduction
 Asymmetric CP
 CP and gravity FDI
 Empirical framework
 Results
 Concluding remarks

 000000
 00000
 00000
 00000
 00000000000
 00

Main endogeneity issues

- Unobserved confounding heterogeneity
 - with ni variability (e.g. bilateral initial conditions) \Rightarrow origin×destination FE
 - with nit variability \Rightarrow control for non-cultural trade and migration
- Reverse causality
 - 2 and 5 years lagged $\operatorname{CulIMP}_{ni,t}$ and $\operatorname{CulEXP}_{ni,t}$
 - IV with 12 years lagged $\text{CulIMP}_{ni,t}$ and $\text{CulEXP}_{ni,t}$ as excludable instruments (Combes et al., 2005; Briant et al., 2014; Felbermayr and Toubal, 2010)

• 144 origins and 178 destinations, 2003-2014: 87,448 obs

Variable	Mean	Median	sd	Min	Max
FDI _{ni,t}	1.551	0	8.897	0	400
$\ln {\rm dist}_{ni}$	8.482	8.747	0.910	4.107	9.892
$colony_{ni}$	0.032	0	0.177	0	1
$lang_{ni}$	0.157	0	0.364	0	1
$\operatorname{comrelig}_{ni}$	0.173	0.033	0.266	0	0.989
$\operatorname{contig}_{ni}$	0.038	0	0.190	0	1
$\operatorname{comleg}_{ni}$	0.293	0	0.455	0	1
$FTA_{ni,t}$	0.269	0	0.444	0	1
$BIT_{ni,t}$	0.393	0	0.488	0	1
$\ln {\rm CultIMP}_{ni,t}$	-0.454	-0.429	3.273	-6.908	10.644
$\ln {\rm CultEXP}_{ni,t}$	-0.145	-0.086	3.114	-6.908	10.644

Asymmetric CP 0000 CP and gravity FDI 000000 Empirical framework

Results •0000000000 Concluding remarks

Baseline $FDI_{ni,t}$ model (I)

	(1)	(2)	(3)
$\ln {\rm CultIMP}_{ni,t}$	0.165*** (11.87)		0.0690*** (5.90)
$\ln \mathrm{CultEXP}_{ni,t}$		0.330*** (23.71)	0.305*** (21.91)
$\operatorname{colony}_{ni}$	0.478***	0.387***	0.366***
	(7.89)	(6.95)	(6.85)
lang_{ni}	0.254***	0.189***	0.181**
	(4.20)	(3.73)	(3.53)
$\operatorname{comrelig}_{ni}$	1.002***	0.893***	0.883***
	(9.47)	(9.51)	(9.21)
$\operatorname{comleg}_{ni}$	0.253***	0.170***	0.153***
	(6.01)	(4.59)	(4.06)
$\ln {\rm dist}_{ni}$	-0.407***	-0.214***	-0.179***
	(-11.60)	(-6.19)	(-5.13)
$\operatorname{contig}_{ni}$	-0.114	0.0752	-0.0977
	(-1.71)	(-1.21)	(-1.61)
$FTA_{ni,t}$	0.172**	0.135*	0.118*
	(3.02)	(2.49)	(2.19)
$\mathrm{BIT}_{ni,t}$	0.0398	0.0119	0.0115
	(0.93)	(0.29)	(0.29)
Imp×Year FE	\checkmark	\checkmark	
Exp×Year FE	\checkmark	\checkmark	\checkmark
Obs	87448	87448	87448
% ∠eros	0.749	0.749	0.749
R	0.9050	0.9210	0.9221
Estimator	DDMI	DDMI	
Estimator	FFIVIL		PPIVIL

Notes: * p < 0.05, ** p < 0.01, *** p < 0.001. z-statistics in parentheses. Standard errors are clustered by trading-pair.

Adding country pair FE

	(1)	(2)	(3)	(4)
$\ln \mathrm{CultIMP}_{ni,t}$	0.145*** (10.35)		0.0522*** (4.43)	0.00677 (0.78)
$\ln \mathrm{CultEXP}_{ni,t}$		0.314*** (22.57)	0.295*** (21.04)	0.0499*** (3.72)
Imp imes Year FE	\checkmark	\checkmark	\checkmark	\checkmark
$Exp \times Year FE$	\checkmark	\checkmark	\checkmark	\checkmark
Country Pair FE				\checkmark
Obs	49702	49702	49702	49027
% Zeros	55.99	55.99	55.99	55.99
\mathbb{R}^2	0.9053	0.9222	0.9224	0.9686
Estimator	PPML	PPML	PPML	PPML

Notes: * p < 0.05, ** p < 0.01, *** p < 0.001. z-statistics in parentheses. Standard errors are clustered by trading-pair.

Introduction 0000000	Asymmetric CP 0000	CP and gravity FDI 000000	Empirical framework	Results	Concluding remarks
		Controlling for	^r bilateral migra	tion	
		(1)	(2)	(3)	
	$\ln \operatorname{CultIMP}_{ni,t}$	0.0507** (3.27)	0.0368 (1.90)	0.020 (0.93)4 3)
	$\ln {\rm CultEXP}_{ni,t}$	0.290*** (15.12)	0.296*** (12.94)	0.290* (11.3	*** 7)
	$\ln {\rm migstock}_{ni,t}$	0.0810*** (5.13)		0.0579 (2.63)** 3)
	$\ln {\rm migstock}_{in,t}$		0.0788*** (4.29)	* 0.029 (1.33	93 3)
	lmp×Year FE Exp×year FE	\checkmark	$\sqrt[]{}$	$\sqrt[]{}$	
	Obs	9619	8756	5853	3
	% Zeros	67%	67%	60%	, D
	\mathbb{R}^2	0.91	0.92	0.92	2
	Estimator	PPML	PPML	PPM	IL

Notes: * p < 0.05, ** p < 0.01, *** p < 0.001. z-statistics in parentheses. Standard errors are clustered by trading-pair.

The reduced number of observations is due to the availability of the migration data that allow to use only two points in time (2010 and 2013) for the period covered in the analysis (Source: The World Bank).

Introduction	Asymmetric CP	CP and gravity FDI	Empirical framework	Results	Concluding remarks
0000000	0000	000000	0000	000●0000000	
		с. III с	1. I.		

Controlling for non-cultural trade

	(1)	(2)
$\ln {\rm CultIMP}_{ni,t}$	0.0690***	0.0838***
	(5.90)	(6.01)
$\ln \text{CultEXP}_{ni,t}$	0.305***	0.324***
	(21.91)	(14.64)
$\ln {\rm bil_trade_NC}_{ni,t}$		-0.0352
		(-1.24)
Imp×Year FE	\checkmark	\checkmark
Exp imesyear FE	\checkmark	\checkmark
Obs	87448	87448
% Zeros	0.749	0.749
\mathbb{R}^2	0.9221	0.9221
Estimator	PPML	PPML

<u>Notes:</u> * p < 0.05, ** p < 0.01, *** p < 0.001. z-statistics in parentheses. Standard errors are clustered by trading-pair.

Asymmetric CP 0000 CP and gravity FDI 000000 Empirical framework

Results

Concluding remarks

Lags and IV

	2 year lag	5 year lag	Baseline	IV
	(1)	(2)	(3)	(4)
$\ln {\rm CultIMP}_{ni,t}$			0.0658** (2.96)	0.0736 (1.35)
$\ln \mathrm{CultEXP}_{ni,t}$			0.247*** (9.43)	0.619*** (6.54)
$\ln \text{lagged CultIMP}_{ni,t-2}$	0.0740*** (6.32)			
$\ln \text{lagged CultEXP}_{ni,t-2}$	0.296*** (21.27)			
$\ln \text{lagged CultIMP}_{ni,t-5}$		0.0784*** (6.59)		
$\ln \text{lagged CultEXP}_{ni,t-5}$		0.286*** (19.51)		
Imp imes Year FE	\checkmark	\checkmark	\checkmark	\checkmark
Exp imes Year FE	\checkmark	\checkmark	\checkmark	\checkmark
Obs	84568	80057	10596	10040
Estimator	PPML	PPML	PPML	IV PPML

Notes: * p < 0.05, ** p < 0.01, *** p < 0.001. z statistics in parentheses. Standard errors are clustered by trading pair.

To reach convergence the sample in columns (3) and (4) is reduced to the subset of importing and exporting countries as in Felbermayr and Toubal (2010).

Introduction	Asymmetric CP	CP and gravity FDI	Empirical framework	Results	Concluding remarks
0000000	0000	000000	0000	00000000000	00
		E			

Further robustness tests

- Alternative dependent variables
 - FDI total value [table]
 - FDI average value (intensive margins) [table]
- Core VS Optional cultural trade [table]

Asymmetric CP 0000 CP and gravity FDI 000000 Empirical framework

Results

Concluding remarks

Destination-side channels

• Focus on relative strength of $A_{in,t}$ with respect to $A_{ni,t}$

tion	Asymmetric CP	CP and gravity FDI	Empirical framework	Results
000	0000	000000	0000	000000000000

Concluding remarks

Destination-side channels

- Focus on relative strength of $A_{in,t}$ with respect to $A_{ni,t}$
- Destination consumers demand channel: relative strength of $A_{in,t}$ higher when FDI targets consumers demand in destination n
 - \Rightarrow test heterogeneity across sectors:

Introdua

- MORE likely to target consumers: beverages, consumer electronics, consumer product, financial services, food and tobacco, leisure and entertainment, software and ICT devices, and transportation
- 2 LESS likely to target consumers: automotive components, biotech, building and construction material, ceramics, glasses, chemical, coal, oil gas, electronic component, engines and turbines, industrial machinery, metals, minerals, plastic, rubber, semiconductors

Introduction	Asymmetric CP	CP and gravity FDI	Empirical framework	Results
0000000	0000	000000	0000	00000000

Concluding remarks

Destination-side channels

- Focus on relative strength of $A_{in,t}$ with respect to $A_{ni,t}$
- Destination consumers demand channel: relative strength of $A_{in,t}$ higher when FDI targets consumers demand in destination n
 - \Rightarrow test heterogeneity across sectors:
 - MORE likely to target consumers: beverages, consumer electronics, consumer product, financial services, food and tobacco, leisure and entertainment, software and ICT devices, and transportation
 - 2 LESS likely to target consumers: automotive components, biotech, building and construction material, ceramics, glasses, chemical, coal, oil gas, electronic component, engines and turbines, industrial machinery, metals, minerals, plastic, rubber, semiconductors
- Destination political economy channel: relative strength of $A_{in,t}$ higher under political accountability
 - ⇒ test heterogeneity across destinations: below (above) sample median of accountability index (Source: World Bank CPIA indicators on Corruption, Accountability and Transparency perception).

Asymmetric CP 0000 CP and gravity FDI 000000 Empirical framework

Results

Concluding remarks

Destination consumers demand

FDI targeting consumers in n	Less likely	More likely
	(1)	(2)
$\ln \operatorname{CultIMP}_{ni,t}$	0.0731*** (4.12)	0.0768*** (5.85)
$\ln {\rm CultEXP}_{ni,t}$	0.255*** (14.70)	0.317*** (20.12)
$Imp imesYear\;FE$	\checkmark	\checkmark
Exp imes Year FE	\checkmark	\checkmark
Obs	62989	78697
% Zeros	0.83	0.82
\mathbb{R}^2	0.88	0.90
Estimator	PPML	PPML
Ratio	3.488	4.128

Notes: * p < 0.05, ** p < 0.01, *** p < 0.001. z-statistics in parentheses. Standard errors are clustered by trading-pair.

Asymmetric CP 0000 CP and gravity FDI 000000 Empirical framework

Results

Concluding remarks

Destination political economy

· · · · ·		
Accountability in n	Low	High
	(1)	(2)
$\ln \text{CultIMP}_{ni,t}$	0.107***	0.0526
	(6.03)	(1.36)
$\ln \text{CultEXP}_{ni,t}$	0.294***	0.498***
	(13.91)	(9.35)
lmp×Year FE	\checkmark	\checkmark
$Exp \times Year FE$	\checkmark	\checkmark
Obs	9817	2376
% Zeros	0.76	0.68
\mathbb{R}^2	0.85	0.99
Estimator	PPML	PPML
Ratio	2.748	9.467

Notes: * p < 0.05, ** p < 0.01, *** p < 0.001. z-statistics in parentheses. Standard errors are clustered by trading-pair.

Asymmetric CP 0000 CP and gravity FDI 000000 Empirical framework

Results 000000000●0 Concluding remarks

$(A_{in,t}, A_{ni,t})$ and S_{ni} : cmpl or subst?

- **Question**: how asymmetric and time-dependent dimensions of CP affect FDI at different levels of the symmetric and time-invariant CP?
- Test heterogeneity of ni-FE model across ni pairs: below (above) sample median of symmetric and time-invariant CP
 - religious proximity
 - linguistic proximity I: Melitz and Toubal (2014) CSL
 - linguistic proximity II: Adsera and Pytlikova (2015) (AP) index

Asymmetric CP 0000 CP and gravity FDI 000000 Empirical framework

Results

Concluding remarks

Higher effect of $A_{in,t}$ at low $S_{ni,t}$

	Religion		CSL		AP index	
	(1-50 pct)	(51-100 pct)	(1-50 pct)	(51-100 pct)	(1-50 pct)	(51-100 pct)
	(1)	(2)	(3)	(4)	(5)	(6)
$\ln {\rm CultIMP}_{ni,t}$	0.00639 (0.53)	-0.000994 (-0.07)	0.00920 (0.82)	-0.0151 (-1.03)	-0.00908 (-0.57)	-0.0434 (-0.92)
$\ln {\rm CultEXP}_{ni,t}$	0.0554*** (3.34)	0.0122 (0.75)	0.0604*** (3.59)	0.00995 (0.66)	0.0713*** (3.51)	-0.0779 (-1.26)
Imp imes Year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$Exp \times year FE$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Country Pair FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Obs	23209	23916	22657	23465	12487	23465
% Zeros	59.78%	55.25%	64.04%	51.00%	45.77%	4.47%
\mathbb{R}^2	0.9687	0.9770	0.9721	0.9791	0.9730	0.9895
Estimator	PPML	PPML	PPML	PPML	PPML	PPML

Notes: * p < 0.05, ** p < 0.01, *** p < 0.001. z-statistics in parentheses. Standard errors are clustered by trading-pair. All models include $FTA_{ni,t}$ and $BIT_{ni,t}$.

- **Recap**: assess the link b/w CP and FDI explicitly accounting for asymmetric and time-dependent dimension of CP
 - Novel contribution: identify stronger predictor in the Destination's preferences toward Origin's culture
 - Policy implication: soft power / cultural tools in investment promotion

Asymmetric CP 0000 CP and gravity FDI 000000 Empirical framework

Results 00000000000000 Concluding remarks

Welcoming foreign investment ormaking Chinese investment be welcome?

Notes: Beijing 2008. Photo from olympic ceremony database.

Asymmetric CP 0000 CP and gravity FDI 000000 Empirical framework

Results 00000000000 Concluding remarks 00

Thank You.

Guiso et al. (2009)

Disdier et al. (2010)

Felbermayr and Toubal (2010)

 $CulIMP_{ni,t}$ and $S_{ni,t}$

Dep. Var.	$\ln {\rm CultIMP}_{ni,t}$	$\ln {\rm CultIMP}_{ni,t}$	$\ln {\rm CultIMP}_{ni,t}$
	(1)	(2)	(3)
$\operatorname{comrelig}_{ni}$	0.236***	0.440*	0.235
	(3.55)	(2.28)	(1.26)
$\operatorname{comleg}_{ni}$	0.281***	0.303***	0.411**
	(8.66)	(4.43)	(2.68)
$\operatorname{colony}_{ni}$	0.500***	0.383***	0.763***
	(5.67)	(3.65)	(3.45)
COL_{ni}	0.374***	0.0786	-0.0000199
	(6.13)	(0.55)	(-0.00)
CSL_{ni}	0.683***	-0.350	-0.394
	(6.52)	(-1.45)	(-0.74)
CNL_{ni}	0.0691	0.209	-0.402
	(0.48)	(0.71)	(-0.92)
$Hofstede_{ni}$			-1.034*** (-4.01)
Imp×Year FE	√	√	√
Exp×year FE	√	√	√
Obs	24620	54525	684
% Zeros	-	0.5485	-
R ²	0.7476	0.8993	0.9118
Estimator	OLS	PPML	OLS

Notes: * p < 0.05, ** p < 0.01, *** p < 0.001. t (z) -statistics in parentheses. Standard errors are clustered

build by trading-point by trading-point

The sample in the third column is reduced due to those countries for which the Hofstede Index of Cultural Proximity is available (see Belot and Ederveen, 2012).

Total value of FDI

Dep. Var.	Value $V_{ni,t}$		
	(1)	(2)	(3)
$\ln \operatorname{CultIMP}_{ni,t}$	0.0984*** (4.82)		0.0221 (1.07)
$\ln \mathrm{CultEXP}_{ni,t}$		0.277*** (13.28)	0.269*** (11.44)
Imp×Year FE	\checkmark	\checkmark	\checkmark
$Exp \times Year FE$	\checkmark	\checkmark	\checkmark
Obs	87448	87448	87448
% Zeros	0.749	0.749	0.749
\mathbb{R}^2	0.9056	0.9216	0.9221
Estimator	PPML	PPML	PPML

 $\rm Notes:$ * p < 0.05, ** p < 0.01, *** p < 0.001. z-statistics in parentheses. Standard errors are clustered by trading-pair.

Average value (intensive margins) FDI

Dep. Var.	Average Value $ar{\mathrm{V}}_{ni,t}$		
	(1)	(2)	(3)
$\ln {\rm CultIMP}_{ni,t}$	0.0705*** (3.96)		0.0390* (2.11)
$\ln \text{CultEXP}_{ni,t}$		0.147*** (6.99)	0.137*** (6.11)
Imp×Year FE			\checkmark
$Exp \times Year FE$			
Obs	87448	87448	87448
% Zeros	0.749	0.749	0.749
\mathbb{R}^2	0.4555	0.5016	0.4961
Estimator	PPML	PPML	PPML

Notes: * p < 0.05, ** p < 0.01, *** p < 0.001. z-statistics in parentheses. Standard errors are clustered by trading-pair.

Core VS Optional cultural goods

	Total cultural trade	Core cultural trade	Optional cultural trade
	(1)	(2)	(3)
$\ln {\rm CultIMP}_{ni,t}$	0.0690***	0.0925***	0.0525***
	(5.90)	(8.22)	(4.34)
$\ln \text{CultEXP}_{ni,t}$	0.305***	0.285***	0.249***
	(21.91)	(20.18)	(19.43)
Imp×Year FE	\checkmark		\checkmark
$Exp \times Year FE$	\checkmark	\checkmark	\checkmark
Obs	87448	67192	76951
% Zeros	75%	69%	71%
\mathbb{R}^2	0.91	0.92	0.91
Estimator	PPML	PPML	PPML

<u>Notes:</u> * p < 0.05, ** p < 0.01, *** p < 0.001. z-statistics in parentheses. Standard errors are clustered by trading-pair.

Wald test

- Wald test: $\ln \text{CultIMP}_{ni,t} \ln \text{CultEXP}_{ni,t} = 0$
- $\chi^2_{(1)} = 141.82$
- p = 0.0000