LAKSHYA (JEE)

Solution

8.

- 1. Which of the following has been arranged in order of decreasing freezing point?
 - (A) 0.05 M KNO₃ > 0.04 M CaCl₂ > 0.140 M sugar > 0.075 M CuSO₄
 - (B) 0.04 M BaCl₂ > 0.140 M sucrose > 0.075 M CuSO₄ > 0.05 M KNO₃
 - (C) 0.075 M CuSO₄ > 0.140 M sucrose > 0.04 M BaCl₂ > 0.05 M KNO₃
 - (D) 0.075 M $CuSO_4 > 0.05$ M $NaNO_3 > 0.140$ M sucrose > 0.04 M $BaCl_2$
- - (C) $-0.31 \,^{\circ}\text{C}$ (D) $-0.53 \,^{\circ}\text{C}$.
- 3. A complex of iron and cyanide ions is 100% ionised at 1m (molal). If its elevation in b.p. is 2.08%. ($K_b = 0.52^{\circ} \text{ mol}^{-1} \text{ kg}$), then the complex is :
 - (A) $K_3[Fe(CN)_6]$ (B) $Fe(CN)_2$ (C) $K_4[Fe(CN)_6]$ (D) $Fe(CN)_4$
- For a solution of 0.849 g of mercurous chloride in 50 g of HgCl₂(l) the freezing point depression is 1.24°C. K_f for HgCl₂ is 34.3. What is the state of mercurous chloride in HgCl₂? (Hg 200, Cl 35.5)
 (A) as Hg₂Cl₂ molecules
 (B) as HgCl molecules
 (C) as Hg² and Cl ions
 - (D) as Hg_2^{2+} and Cl^- ions
- 5. Which will show maximum depression in freezing point when concentration is 0.1 M
 (A) NaCl
 (B) Urea
 (C) Glucose
 (D) K₂SO₄
- 6. Aqueous solution of barium phosphate which is 100% ionised has $\Delta T_f / K_f$ as 0.05. Hence, given solution is (A) 0.01 molal (B) 0.02 molal
 - (C) 0.04 molal (D) 0.05 molal
- 0.5 molal aqueous solutions of a weak acid (HX) is 20% ionised. If k₁ for water is 1.86 K kg mol⁻¹, the lowering in freezing point of the solution is :

(A) – 1.12 K	(B) 0.56 K
(C) 1.12 K	(D) – 0.56 K

	g H ₂ O, the freezing point is changed by -3.82° C.		
	Calculate the van't Hoff factor for Na_2SO_4 .		
	(A) 2.05	(B) 2.63	
	(C) 3.11	(D) 0.381	
9.	The van't Hoff factor i for a compound which undergoes dissociation in one solvent and association		
	in other solvent is respectively :		
	(A) less than one and greater than one.		
	(B) less than one and less than one.		
	(C) greater than one and less than one.		
	(D) greater than o	ne and greater than one.	
10.	A 0.1 molal aqueous solution of a weak acid is 30%		
	ionized. If K _f for water is 1.86°C/m, the freezing		
	point of the solution will be :		
	(A) –0.18°C	(B) –0.54°C	
	(C) -0.36°C	(D) -0.24°C	
11.	0.01 M solution o	f KCl and BaCl ₂ are prepared in $x = 1$	

The freezing point depression constant for water is -1.86° C m⁻¹. If 5.00 g Na SO is dissolved in 45.0

- 11. 0.01 M solution of KCl and BaCl₂ are prepared in water. The freezing points of KCl is found to be 2°C. What is the freezing point of BaCl₂ to be completely ionised ?
 - $\begin{array}{ll} (A) 3^{\circ}C & (B) + 3^{\circ}C \\ (C) 2^{\circ}C & (D) 4^{\circ}C \end{array}$
- 12. If α is the degree of dissociation of Na₃PO₄, the vant Hoff's factor (i) used for calculating the moecular mass is :
 - (A) $1 + \alpha$ (B) 1α (C) $1 + 3\alpha$ (D) $1 - 2\alpha$.
- 13. Consider separate solution of $0.500 \text{ M C}_2\text{H}_5\text{OH}(aq)$, $0.100 \text{ M Mg}_3(\text{PO}_4)_2(aq)$, 0.250 M KBr(aq) and $0.125 \text{ M Na}_3\text{PO}_4(aq)$ at 25°C. Which statement is **true** about these solution, assuming all salts to be strong electrolytes ?
 - (A) They all have the same osmotic pressure.
 - (B) $0.100 \text{ MMg}_3(\text{PO}_4)_2(\text{aq})$ has the highest osmotic pressure.
 - (C) 0.125 M Na₃PO₄(aq) has the highest osmotic pressure.
 - (D) 0.500 M $C_2H_5OH(aq)$ has the highest osmotic pressure.

DPP - 13

[ANSWERS]

- 1. (A)
- 2. (A)
- 3. (A)
- 4. (A)
- 5. (D)
- 6. (A)
- 7. (C) 8. (B)
- 8. (B) 9. (C)
- 9. (C) 10. (D)
- 10. (D) 11. (A)
- 11. (II) 12. (C)
- 13. (A)

Note - If you have any query/issue Mail us at<u>support@physicswallah.org</u>