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Walmart.com maintains an online catalog of over 2M products. Consequently, enabling users to quickly
find products that conform to their specific needs and tastes is especially challenging. Given the difficulty
of its task, Walmart.com’s product search engine does an impressive job of interpretting the user-provided
query and rapidly returning relevant results. Yet, there remains highly significant information that is not fully
leveraged. The details of a user’s online shopping session are indicative of a user’s intent and compliment—
indeed, provide context for—the user-provided query. In this report we describe and analyze an ordering
scheme we call Session Re-Rank (SRR) that can potentially induce a large increase in both click-through-rates
and conversions on the first page of query results.

1 The Technique

SRR works by comparing previously clicked items with the top N items returned by the search engine in
response to a query. Items in the top N that are sufficiently similar to previously clicked items are promoted.
The extent (i.e. number of positions) of the promotion for a particular item is a function of its similarity to
previously clicked items, its original position, and the promotions of other items.

The similarity between an item to be shown and a previously clicked item is determined within five distinct
vector spaces: click-space, cart-space, query-space, title-space, item-space. The non-unique representation of
an item within each of these spaces may be thought of as a binary vector or a set of objects. (MapReduce
jobs process historical query data to construct indexes whose keys are itemids and values are lists of the
appropriate objects. Great care went into ensuring that index entries can be accessed in O(1) time and that
two entries can be merged to compute their intersection or union in linear time.) The similarity Js(A,B) of
two items, A and B, within a particular space s is determined using Jaccard similarity. Similarities within
particular spaces are then weighted and summed to determine the composite similarity

S(A,B) =
∑
s

Cs · (Js(A,B))αs , (1)

where Cs and αs are tuning parameters. The score σ attributed to an item to be shown is then the summation
of composite similarities between itself and all previously clicked items plus the click-through-rate (CTR) Γi
of the item’s original position i

σ(A) =
∑
B∈P

S(A,B) + Γi, (2)

where P is the set of previously clicked items.
Another important parameter of SRR is the insert position I0, which indicates that the top I0 positions of

the original ordering are to remain fixed. For the results discussed in this report, we use I0 = 2, meaning that
we never reorder the first two items of query results. We found this configuration maximized our metrics,
although, we suspect this may largely be due to users’ bias toward clicking on the first one or two positions
independent of what is shown there. That is, I0 = 0 might prove optimal for an online implementation.
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2 Similarity Spaces

The premise behind click-space is that two items are similar if they are both clicked within the same online
shopping session. The dimensions, or objects, of this space are therefore past user-sessions. The clicks-index
for the data presented in this report was contructed using approximately half of the provided data, or about
60M queries (about 120M page views).

Cart-space is based on the notion that two items are similar if they ever appear in a shopping cart together.
The objects of this space are therefore shopping carts. The clicks-index for the data presented in this report
was also contructed using approximately half of the provided data.

Items are also considered similar if they appear in a query together. The objects of query-space are
therefore queries. We make a distinction, however, between user-queries and unique-queries. The former
are the well-defined entities within the raw Walmart data. The latter is an abstraction based on the notion
that multiple user-queries can correspond to a single unique-query. To derive unique-queries from our data,
we cluster user-queries according to following policy: two user-queries with the same search attributes (e.g.
category or price filters) are considered the same unique-query if the strings constructed by concatenating
the space-seperated, stemmed (we use the Python stemming.porter2 module), and forced to lower-case terms
from each of their rawqueries are equal. We point out that while we achieved better results with this policy
compared to simply using user-queries, we have no reason to believe that this is the ideal way to cluster
queries for use within SRR. Indeed, we believe one way to improve SRR is to optimize the query clustering
policy.

Title-space is straightfoward. Each item is associated with a set of terms from its title. We ignore case,
but at present do not stem, discard stop words, or weight terms in any way.

Finally, the structure of item-space is unique because it involves a level of indirection. The premise here
is that if items A and B are clicked in a single user-session and items A and C are clicked in another user-
session, that items B and C are similar because they have item A in common. In this way, a large number of
relationships between items is created. Item-space resembles click-space in that if two items are clicked during
a single session, they will have nonzero similarity. It differs from click-space in two key respects, however.
First, items that have historically never been clicked in the same session can have nonzero similarity if they
were each clicked with a common third item. Second, if items are clicked together in many sessions this will
increase their Jaccard similarity in click-space but not in item-space.

3 An Example

To illustrate the efficacy of our technique, we present a real query example. The only fictitious part of
the example will be our shopper’s name, David. David is interested in the “Primo Ceramic Crock Water
Cooler with Stand” and clicks on this item during his session. Sometime later he navigates to the “Grocery
→Beverages →Water” category and searches for “water”. He is presented with 300+ results and clicks the
90th item, a 3 liter jug of water.

The top six original results are compared to the SRR results in Table 1 where the first and third column
represent the original ordering presented to David. Note that we reorder the 90th item from the original
results to be the 3rd item in the SRR results. Tables 2 and 3 show the similarity scores from each index for
each item in the two orderings compared to David’s lone previously clicked item. In each of these tables, the
first column correponds to Table 1. The remaining columns are calculated from Equations (1) and (2) using
optimal tuning parameters.

We will show the calculation for the item-space similarity for the 90th item in the original ordering. By
referring to the corresponding index for item-space, we can recall that the 90th item was clicked in a same
session with 39 different items and the previously clicked item was clicked in a same session with 455 different
items. The titles of the 13 items found in common are:

Great Value: Distilled Water, 1 Gal

Nestle Waters Bottled Spring Water, 24ct

Primo Mineral Water, 5 gal

Deer Park Sumo Bottle Natural Spring Water, 3l

Arrowhead Mountain Spring Water, 3l
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Original Ordering SRR Ordering

1. Great Value Purified Water, 24ct 1. Great Value Purified Water, 24ct

2.
Nestle Waters Bottled Spring Water,
24ct

2. Nestle Waters Bottled Spring Water, 24ct

3. Voss Water, 16.9 oz (Pack of 24) 90. Arrowhead Mountain Spring Water, 3 l

4. CA Cherry Sparkling Water, 1 l, 12pk 63. Great Value: Distilled Water, 1 Gal

5. CA Water, 1 l, 12ct 38. Arrowhead Mountain Spring Water, 2.5gal

6. CA Peach Sparkling Water, 1 l, 12ct 8. CA Orange Sparkling Water, 1 l, 12pk

Table 1: Original Ordering vs. SRR Ordering for “water” query

σ CTR Clicks Items Carts Queries Titles

1. 0.943 75 0.075 40 0.525 00 0.160 48 0.000 00 0.153 49 0.029 37

2. 1.202 11 0.039 00 0.686 16 0.210 10 0.000 00 0.239 45 0.027 40

3. 0.357 06 0.025 40 0.000 00 0.194 19 0.000 00 0.111 77 0.025 70

4. 0.752 68 0.019 50 0.451 34 0.198 29 0.000 00 0.060 63 0.022 92

5. 0.736 73 0.015 30 0.457 94 0.146 90 0.000 00 0.093 68 0.022 92

6. 0.174 83 0.012 90 0.000 00 0.096 78 0.000 00 0.042 24 0.022 92

Table 2: Index similarity scores of the top six original results to
“Primo Ceramic Crock Water Cooler with Stand”

σ CTR Clicks Items Carts Queries Titles

1. 0.944 00 0.075 40 0.525 00 0.160 00 0.000 00 0.153 00 0.029 47

2. 1.200 00 0.039 00 0.686 00 0.210 00 0.000 00 0.239 00 0.027 43

90. 0.953 00 0.000 23 0.657 00 0.223 00 0.000 00 0.045 50 0.027 44

63. 0.950 00 0.000 49 0.562 00 0.266 00 0.000 00 0.093 20 0.027 46

38. 0.938 00 0.000 91 0.645 00 0.262 00 0.000 00 0.000 00 0.029 40

8. 0.897 00 0.010 00 0.656 00 0.208 00 0.000 00 0.000 00 0.022 90

Table 3: Index similarity scores of the top six SRR results to
“Primo Ceramic Crock Water Cooler with Stand”
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PUR Advanced Faucet Water Filter Vertical - Chrome

Ozarka Natural Spring Water

Formula 409 All Purpose Lemon Scented Cleaner, 32 fl oz

Great Value Spring Water, 1 gal

Nestle Pure Life Purified Water, .5l, 35pk

Arrowhead Mountain Spring Water, 2.5gal

Primo Ceramic Crock Water Cooler with Stand

Augason Farms Emergency Water Storage Kit

We then calculate the similarity of the 90th item and the previously clicked item in item-space to be 13/(455+
39 − 13) = 0.0270. The corresponding score shown in Table 3 was calculated from the optimal tuning
parameters.

We believe this example illustrates how our technique can form subtle relationships between items based
on historical user session data. In this case, we have a shopper who had an interest in a water cooler and
subsequently made a query for “water”. If the shopper had been in a brick-and-mortar store, he likely would
have browsed water jugs to use with the cooler he had picked up. In this case, SRR recognized David’s
previous click on a water cooler, related that water cooler to large water jugs, and showed David the water
jugs he was looking for all along.

4 The Data

Walmart.com has generously supplied us with a large dataset consisting of about 250M pageviews comprising
about 120M query results which occurred over about 30 days. The data includes the user-provided rawqueries
together with search attributes, visitorIds and sessionIds, shown items, clicked items, which items were placed
in a shopping cart, and which items were ultimately purchased. In addition, they have provided detailed item
information including title, description, category, and other details. The query data was randomized with
respect to search time and then segregated into three disjoint sets. The first set, which consists of about half of
the data, was re-structured into indexes that form four of the similarity spaces (click-space, cart-space, query-
space, and item-space) we use to identify relationships between items in realtime (the remaining similarity
space, title-space, was compiled separately using the provided item data). The second set, which consists
of less than 5% of the data, was used for testing and optimization, allowing us to refine our technique and
tune its parameters. And the third set, which includes about 10% of the data, was used in the experiments
described and analyzed in this report.

5 The Technique vs The Experiment

An important distinction should be made between the SRR technique and the experiment described in this
report. Both the technique and the experiment leverage the provided data—however, the experiment is
a simulation and a limited one at that. A key limitation is that the provided query data is confined to
what the user was actually shown. That is, the search engine may have identified several pages worth of
results in response to a user-query, but our dataset consists only of those pages actually seen by the user.
Meanwhile, the concept behind the SRR technique calls for a search engine to deliver to the algorithm the
top N items in response to a user-query independent of the number of items ultimately shown to the user.
As a consequence, it is difficult, if not impossible, to simulate our technique using shown query results that
are truncated because a user only viewed one or two pages. Even more generally, the use of historical data
to demonstrate the consequences of a online ranking algorithm is intrinsically limited by the fact that one
cannot be certain how users would have behaved if presented with different results. Nonetheless, we have
done our best to conduct the most fair and informative experiment and analysis.
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6 The Experiment

A key feature of SRR is that it can only reorder the results of a query if a user has previously clicked on an
item during an online session. Consequently, SRR can only affect the subset of queries that occur in a session
with previous clicks. We denote this subset of queries as ζ and limit our experiment and analysis to this
set. It turns out that 25% of all queries are in ζ. Moreover, 28% of all clicks and 36% of all purchases occur
within the query resultsets of ζ, since there is a correlation between previous clicks and clicks/purchases in
a query. Thus an impact to this subset can have a significant impact overall.

The goal for the experiment is to simulate SRR using the provided historical query data, which is limited
to what users were actually shown. An online implementation of our technique would receive the top N
items from the search engine and reorder them prior to showing any results to a user. Because of this, the
final ordering would be independent of the total number of items actually seen by a user (determined by the
number of pages a user clicked through). Our test set χ therefore consists solely of queries within ζ where
either all items in the query resultset or at least N = 100 items were shown to the user. For example, if a
user stops searching after viewing only the 16 items on the first page (the default number of items on the
first page), this query is not included in χ, since it is unknown which other items would have been considered
for reordering. On the other hand, if the search engine found only 13 items in response to a query, we have
the complete query resultset and can therefore determine how SRR would have reordered the shown items.
Similarly, if more than N = 100 were shown to the user, we can determine the reordering regardless of
whether the query resultset is truncated since SRR only considers and reorders the first N = 100 items. This
dataset χ makes up 30% of ζ, accounting for a total of 7.5% of all queries.

Figure 1: CTR as a function of position from the original data (i.e. not reordered) for the test set χ (blue)
and all queries (red).

To construct χ we must discard all queries with a number of shown results less than N = 100 that are
also divisible by 16. The reason for this is that Walmart.com provides two options for the number of items
shown per page: 16 or 32. Thus, by performing the experiment on this subset of the data we precluded
queries where the top N items are not available to our algorithm. The choice of N = 100, meanwhile, is
somewhat arbitrary and was made by balancing our desire for a large test set with our desire to use a value
appropriately large for an online implementation. It is therefore quite possible that a larger value of N (e.g.
1000) would achieve better results in the actual online scenario.

While we must constrain χ in this way due to the nature of the available data, we stress that this subset
is certainly biased with respect to queries in general. For starters, queries with short resultsets are more
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likely to have all of their resultset seen by a user, and therefore, are more likely to be included in χ. It is
not clear, however, if this particular bias tends to under- or overestimate the effectiveness of SRR since, as
we will show, SRR is more effective on longer query results. Similarly, highly qualified queries—e.g. through
the use of category or price filters—tend to have shorter resultsets, and hence, are more likely to be included
in χ.

Just as interesting are the ways in which the queries and resultsets of χ are not biased. In Fig. 1 we show
click-through-rate (CTR) as a function of position of the original data (i.e. not reordered) for both χ and
query results in general. The two curves shown in the figure are quite similar, indicating that the quantity
and distribution of clicks within χ are essentially representative of those in general. A few other features of
this figure warrant brief comment. First, we see that χ has a larger CTR for the top two positions. This is
likely due to the fact that highly qualified queries, which have shorter results and higher CTRs, make up a
higher proportion of χ than queries in general. While this difference does results in a slightly higher frequency
of clicks in χ, we have no reason to believe that this alone results in a significant bias. Next, we see in the red
curve a discontinuity appears at position 17 as a result of the pagebreak. In the entire dataset, the majoriy of
queries are truncated at the first page, leading to significantly fewer views of items on other pages and thus
fewer clicks. This discontinuity is absent from the blue curve since χ has a less severe dropoff in viewership
from one page to the next. The bump at position 17 can be ascribe to users’ tendency to disproportionately
click on the topmost item shown on a page. Indeed, if we normalize for number of pages viewed by a user,
we see this bump at 17 in the overal dataset as well. Consistent with this analysis, we find another smaller
drop in the red curve and smaller bump in the blue at position 33.

7 Metrics

A true test of the effectiveness of SRR would require online A/B testing. In the meantime, we can simulate
the effect of SSR by running it on historical data and examining the new positions of clicked and purchased
items. Assuming the user would have clicked or purchased the same items in this new ordering, we can
compare the distribution of clicks in the original ordering to that yielded by SRR.

To compare two orderings of shown items, we focus on three key metrics. Our primary metric is the
first-page CTR C, defined as the likelihood that an item presented on the first page receives a click. Special
attention to the first page is reasonable, since 77% of all queries are only one page long. This shows the
importance of bringing desirable items to the first page and it motivates our focus on C. We calculate this
metric by counting the number of items in first-page positions that were clicked and dividing by the number
of total items in first-page positions. More formally

C =

∑
q∈Q

∑Lq

i=1 1 {click @ i ∧ i ≤ 16}∑
q∈Q

∑Lq

i=1 1 {i ≤ 16}
, (3)

where Q is a set of query results, Lq is the number of results for query q, and the number 16 is due to the
fact that 16 items are shown on a page.

Our second metric is the purchasing rate of items on the first page P. This is similar to C, except here we
consider purchases per first-page item instead of clicks. It is calculated as the number of items in first-page
positions that were purchased divided by the total number of items in first-page positions. The importance
of position for purchases is even stronger than that for clicks. While 76% of all clicks were presented on the
first page, that number is 88% for purchases. Formally, we have

P =

∑
q∈Q

∑Lq

i=1 1 {purchase @ i ∧ i ≤ 16}∑
q∈Q

∑Lq

i=1 1 {i ≤ 16}
. (4)

The first two metrics focus on whether or not a desirable item was presented on the first page. To obtain
a more granular picture of where desirable items are positioned, we also compute a third metric which we
call click-position score S. Somewhat similar to normalized discounted cumulative gain (NDCG), which is a
common metric of search engine results, this score weights the value of a clicked item by its position, giving
higher weights to items closer to the top. For S, the weight given to a click in position i is the CTR at
position i, denoted Γi. In this way, we equate how often users click on a certain position to how valuable it
is to put a desirable item there. Formally, we define click-position score as

S =
1

|Q|
∑
q∈Q

Lq∑
i=1

1 {click @ i}Γi. (5)
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These metrics give a sense of an ordering scheme’s success. Each one looks at a slightly different aspect
of the ordering. Indeed, optimizing for one metric does not necessarily optimize for the others. We focus
our optimizations and primary analysis on C as we believe it is the simplest and has the clearest impact to
overall CTRs.

8 Results

Figure 2 shows the click-position score S as a function of each of the coefficients Cs discussed in sections
1 and 2. Here, we vary a single coefficient, corresponding to one of the five similarity spaces—click-space,
cart-space, query-space, title-space, or item-space—while setting the others to zero. The ranking score for
each of the top N = 100 items is then determined by only two terms, as per Eqs. 1 and 2, as

σ(A) =
∑
B∈P

Cs · (Js(A,B))αs + Γi, (6)

where, as before, P is the set of previously clicked items and Γi is the CTR of the original position of item A.
(Note that the exponents αs are held fixed during these measurements.) Thus, since Γi is a monotonically
decreasing function of position i, when Cs = 0, SRR returns the original ordering.

In each case, as Cs is increased from zero, the degree of reordering is enhanced. And for each coefficient,
this reordering is accompanied by an increase in S indicating a greater concentration of clicked items, on
average, in the top positions of query results as compared to the original ordering. Moreover, with the
exception of title-space, the score increases monotonically with each coefficient. In the case of title-space,
a broad maximum can be seen around Cs = 0.05. This indicates that an optimal combination between
the contributions from title-space and CTRs exists, which maximizes S. For all other coefficients, however,
a maximum cannot be found. Rather, the value of S asymptotically increases with value of Cs, which
demonstrates that the optimal average ordering, according to the metric S, is determined solely by the
similarity space irrespective of the original ordering.

Figure 2: Clicks-position score S as a function of individual similarity space coefficients Cs. For each curve,
a single coefficient is varied with all other set to zero.

We employ hueristics to manually optimize the coefficients Cs and exponents αs, which are outside the
scope of this report. We do want to emphasize two important points regarding this optimization, however.
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First, as previously mentioned, we conduct this optimization on a set of data that is both disjoint with
that used to construct the similarity spaces indexes and with that used to conduct the experiment whose
results are shared below. Second, we find that the optimal configuration includes nonzero values for all five
coefficients showing that their contributions are not fully redundant.

With our optimized combination of coefficients we find that SRR significantly outperforms the original
ordering on queries in χ. As shown in Fig. 3, the reordering achieves a 16.9% increase in C compared to
the original ordering. The implication is that items on the first page of the reordering are 16.9% more likely
to be clicked than those in the original ordering. With over 2M queries in our test set χ, these results are
statistically significant, producing a 95% confidence interval of [16.4%, 17.4%] for C. Meanwhile, SRR also
induces an increase in P of 8.8% and in S of 7.9%.

Figure 3: Comparison of the original ordering (blue) to that of random reordering (grey) and SRR (blue)
using all three metrics: front-page CTR C, front-page purchase rate P, and click-position score S. SRR

outperforms the original ordering in all metrics: ∆ C = 16.9%, ∆ P = 8.8%, and ∆ C = 7.9%

Notably, we see these results despite the benefit the original ordering receives from ”position bias”, the
well-established phenomenon that users tend to click on items presented at the top of a list. Figure 1 shows
how dramatically more likely Walmart.com users are to click on items positioned near the top. It seems
reasonable to suppose that ”position bias” contributes to this distribution of CTRs. We compensate for
the large CTR of the first two positions by setting the insert position I0 = 2 such that the top two items
remained fixed. While this does improve the metrics for SRR, we emphasize that choosing I0 = 0 would
not qualitatively change our results. Another obstacle overcome by SRR is that there is little room for
improvement in first-page CTR, since the majority of clicks in χ are already on the first page.

To ensure that these results are not due to an underlying structure of the data, we constructed a Random
Re-Ranker RRR. RRR operates exactly as SRR does, except instead of calculating various similarity scores,
it uniformly chooses at random a number between 0 and 1. This randomized algorithm significantly hurts
the results in all three metrics, suggesting that SRR achieves its success by intelligently deciding which items
are more likely to be clicked.

Indeed, Table 4 compares the average CTR of items SRR moves on or off the first page to those chosen
randomly. By accurately determining a users preference for certain items, SRR promotes items with a
significantly higher CTR than it would by blindly picking items from other pages. Similarly, it demotes
first-page items with a lower CTR than an average item on the first page. With these successful decisions,
SRR manages to outperform the original ordering in the face of a number of disadvantages.

Taking a closer look, we see that the performance of SRR is correlated to query length Lq. Figure 4
shows the percent increase in S as a function of Lq. While it on average outperforms the original ordering
for query results of any length, it gains greater improvement as Lq increases. This is an impressive feature
of SRR, since as Lq increases, the density of clicked items decreases making them more difficult to select.
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CTR of
promoted items

CTR of
demoted items

SRR 6.24% 1.79%

RRR 2.42% 3.67%

Table 4: CTR of items promoted to the first page and demoted off the first page. SRR siginificantly
outperforms random reordering in both categories.

At the same time, longer results provide greater opportunity for improved ordering, which SRR successfully
exploits as shown by the data.

The specific trends within the data are more difficult to understand. There appear to be linear trends for
Lq ∈ [1, 16] and Lq ∈ [17, 32], which correspond to single and double page results, respectively. Meanwhile,
the trend for Lq > 32, while generally increasing, is less clear. We speculate that these trends are due to
idiosyncrasies in user behavior but details remain unclear to us.

Figure 4: Change in click-position score S as a function of query length Lq.

9 Discussion

We have established that SRR significantly improves the ordering of search results by all three metrics on the
dataset χ. Note that χ represents 30% of ζ (the set of all queries occuring in sessions with previously clicked
items) while the remaining 70% of query results were truncated. We call this set of truncated query results
τ . As discussed in Section 6, we cannot accurately test SRR on τ since it would have performed differently
on this set of queries.1

1We ran SRR on all of ζ, treating truncated query results as complete ones of the length shown to the user. The results were
similar to those of χ: ∆ C = 12.5%, ∆ P = 8.7%, and ∆ S = 8.2%. We provide these results for the curious reader but stress
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Extrapolating from χ to τ is difficult due to inherently different characteristics of the two sets and doing
so potentially introduces significant error. For instance, query results in χ were either completely shown or
had at least the first N = 100 items shown to the user. This may result in disproportionately large numbers
of cases where users were dissatisfied with items in the top positions. (Although, the CTR versus position
data of Fig. 1 suggests this is not the case.) Perhaps more significant, queries in χ are on average shorter
than those in τ and, as demonstrated by the data in Fig. 4, SRR performs better on longer queries.

While it is unclear whether SRR would do better or worse on τ , we can infer a very loose lower bound on
C over all of ζ by assuming that SRR performs as badly as it reasonably could on τ . When run on χ, SRR
on average demotes 6.8% of all first-page clicks, but replaces them with even more clicks from other pages.
In the worst case, we assume that when run on τ , it would demote 6.8% of first-page clicks but replace them
with 0 clicks from other pages. Assuming this extremely pessimistic lower bound for the 70% of queries in ζ
that make up τ , SRR would still slightly outperform the original ordering across all queries (+0.004%).

If instead we assume that SRR would perform similarly on τ as it does on χ, we can get a more plausible
estimate of the impact that the algorithm would have overall. Broadening the scope of our results to all
queries (even those outside of ζ which SRR could not impact), we get an overall increase in C of 4.5% and an
overall increase in P by 3.0%. To get a better sense of what this impact means, consider the set of purchases
that occur on the first page, which comprise 88% of all purchases. This implies an overall increase of 2.6%
in purchases, which is quite substantial given the scale of Walmart.com.

10 Conclusion

We have reported on a novel technique of leveraging existing session information in order to improve the
ranking of product search results. The approach taken by Session Re-Rank is to compare items previously
clicked during a user session to the top N items returned by an existing search engine and to assign and rank
by scores based upon their similarity. SRR utilizes historical data of queries, their results, and user actions
to construct several indexes, each representing similarity space in which items can be compared via the
Jaccard similarity of sets of objects. The similarity spaces we have used (click-space, cart-space, query-space,
title-space, item-space) are not exhaustive—certainly others can be realized. We have provided compelling
evidence using these five spaces, however, that SRR can significant improve the quality of Walmart.com’s
existing query result rankings.

Using historical query data with resultsets confined to what was actually shown to a user, we carefully
constructed and qualified an experiment with the goal of demonstrating the effectiveness of SRR. Using the
three well defined metrics of first-page CTR C, first-page purchasing rate P, and click-position score S, we
have clearly shown that SRR indeed induces a significant improvement in the ordering of search results for
a subset of queries (χ). Moreover, by comparing SRR to a similar re-ranking algorithm that assigns scores
randomly, we have demonstrate that the success of SRR is not somehow an artifact of the data. Meanwhile,
we find that the performance of SRR improves dramatically with query result length.

The key results of our experiment include a 16.9% increase in C, 8.8% increase in P, and a 7.9% increase in
S within our test set χ. Extrapolating these results to queries in general is quite challenging. In the case of C,
we establish a very conservative lower bound in which SRR barely shows an improvement. A more plausible
estimate suggests an overall increase in C of 4.5% and in P of 2.6%. Given the scale of Walmart.com’s
operation, we feel this warrants serious consideration for online A/B testing of SRR.

that including truncated query results in this way is a flawed simulation of the online scenario.
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