LAKSHYA (JEE)

Magnetism and Matter

DPP-02

1. The distance of two points on the axis of a magnet from its centre is 10 cm and 20 cm respectively. The ratio of magnetic intensity at these points is 12.5 : 1. The length of the magnet will be

(A)	5 cm	(B)	25 cm
(C)	10 cm	(D)	20 cm

- 2. The magnetic field at a point *x* on the axis of a small bar magnet is equal to the field at a point *y* on the equator of the same magnet. The ratio of the distances of *x* and *y* from the centre of the magnet is
 - (A) 2^{-3} (B) $2^{-1/3}$
 - (C) 2^3 (D) $2^{1/3}$
- **3.** The small magnets each of magnetic moment 10 A-m² are placed end-on position 0.1 m apart from their centres. The force acting between them is

(A) 0.6×10^7 N	(B) 0.06×10^7 N
(C) 0.6 N	(D) 0.06 N

4. The magnetic potential at a point on the axial line of a bar magnet of dipole moment *M* is *V*. What is the magnetic potential due to a bar magnet of dipole moment $\frac{M}{4}$ at the same

point?

- (A) 4 V (B) 2 V(C) $\frac{V}{2}$ (D) $\frac{V}{4}$
- 5. Two identical magnetic dipoles of magnetic moments $1.0 \text{ A}\text{-m}^2$ each, placed at a separation of 2 m with their axis perpendicular to each other. The resultant magnetic field at a point midway between the dipoles is
 - (A) 5×10^{-7} T (B) $\sqrt{5} \times 10^{-7}$ T (C) 10^{-7} T (D) None of these

- 6. Two identical short bar magnets, each having magnetic moment of 10 Am², are arranged such that their axial lines are perpendicular to each other and their centres be along the same straight line in a horizontal plane. If the distance between their centres is 0.2 m, the resultant magnetic induction at a point midway between them is
 - $(\mu_0 = 4\pi \times 10^{-7} \text{ Hm}^{-1})$
 - (A) $\sqrt{2} \times 10^{-7}$ Tesla (B) $\sqrt{5} \times 10^{-7}$ Tesla
 - (C) $\sqrt{2} \times 10^{-3}$ Tesla (D) $\sqrt{5} \times 10^{-3}$ Tesla
- 7. The distance between the poles of a horse shoe magnet is 0.1 m and its pole strength is 0.01 amp-m. The induction of magnetic field at a point midway between the poles will be

- 8. A magnet of magnetic moment 20 C.G.S. units is freely suspended in a uniform magnetic field of intensity 0.3 C.G.S. units. The amount of work done in deflecting it by an angle of 30° in C.G.S. units is
 - (A) 6 (B) $3\sqrt{3}$ (C) $3(2-\sqrt{3})$ (D) 3
- **9.** A magnetic needle lying parallel to a magnetic field requires W units of work to turn it through 60° . The torque required to maintain the needle in this position will be

(A)
$$\sqrt{3}$$
 W (B) W
(C) $\frac{\sqrt{3}}{2}$ W (D) 2 W

- 10. A bar magnet of magnetic moment 10^4 J/T is free to rotate in a horizontal plane. The work done in rotating the magnet slowly from a direction parallel to a horizontal magnetic field of 4×10^{-5} T to a direction 60° from the field will be
 - (A) 0.2 J (B) 2.0 J
 - (C) 4.18 J (D) 2×10^2 J
- 11. If a magnet of length 10 cm and pole strength 40 A-m is placed at an angle of 45° in an uniform induction field of intensity 2×10^{-4} T, the couple acting on it is
 - (A) 0.5656×10^{-4} N-m
 - (B) 0.5656×10^{-3} N-m
 - (C) 0.656×10^{-4} N-m
 - (D) 0.656×10^{-5} N-m

- **12.** A bar magnet is held perpendicular to a uniform magnetic field. If the couple acting on the magnet is to be halved by rotating it, then the angle by which it is to be rotated is
 - (A) 30° (B) 45°
 - (C) 60° (D) 90°

ANSWER KEY

- **1.** (C)
- 2. (D)
- **3.** (C)
- **4.** (**D**)
- 5. (B)
- 6. (D)
- 7. (C)
- 8. (C)
- 9. (A)
- 10. (A)
- **11.** (**B**)
- 12. (C)

Note - If you have any query/issue

Mail us at support@physicswallah.org

