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Abstract: Modifications of a well-known predator-prey evolutionary  
multi-objective optimisation algorithm based on the dynamics of predator-prey 
interactions existing in nature is presented. This algorithm is comprised of a 
relatively small number of predators and a much larger number of prey, 
randomly placed on a two dimensional lattice with connected ends. The 
predators are partially or completely biased towards one or more objectives, 
based on which each predator kills the weakest prey in its neighbourhood. A 
stronger prey created through evolution replaces this prey. In case of 
constrained problems, the sum of constraint violations serves as an additional 
objective. The prey remains stationary, while the predators move around in the 
lattice. Modifications have been implemented in this study regarding the 
selection procedure, apparent movement of the predators, mutation strategy, 
and dynamics of convergence to the Pareto front. Further alterations have been 
made making the algorithm capable of handling equality and inequality 
constraints. The final modified algorithm is tested on standard constrained and 
unconstrained multi-objective optimisation problems. 
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1 Introduction 

The last few decades have seen the development of optimisation algorithms inspired by 
the principles of natural evolution. These algorithms, often termed as evolutionary  
multi-objective optimisation algorithms (EMOA), utilise a set of multiple candidate 
solutions (population space) to follow an iterative procedure producing a final set of the 
best compromise solutions, the graphical representation of which is termed Pareto front 
(Deb, 2002). In case of single objective problems, the Pareto front reduces to a single 
optimal solution known as the global minimum or global maximum. Genetic algorithm, 
differential evolution, particle swarm and predator-prey algorithms are some of the most 
prominent EMOAs. 

Most real world systems that demand optimised design are often subject to 
configurational and operational restrictions which should be taken into consideration 
during the process of optimisation. This necessitates optimisation algorithms capable of 
producing solutions that are both optimal as well as feasible with respect to the system 
constraints. These system constraints can be modelled as mathematical constraint 
functions. 

In 1998, Hans Paul Schwefel proposed a new optimisation algorithm (Laummans et 
al., 1998) to search for Pareto-optimal solutions from a randomly generated initial 
population of candidate solutions. This algorithm imitates the natural phenomena that a 
predator kills the weakest prey in its neighbourhood. This prey is then replaced by  
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a new prey that is relatively stronger and more immune to such predator attacks. 
However, this initial PP optimisation algorithm seemed to have difficulty in producing 
well distributed non-dominated solutions along the Pareto front. Since then, several 
modifications of the above algorithm have appeared in literature. Deb (2002)  
suggested an improved version of the algorithm which included certain new features, 
namely, the ‘elite preservation operator’, the ‘recombination operator’ and the ‘diversity 
preservation operator’. A further modified version of the algorithm was proposed by  
Li (2003), where a dynamic spatial structure of the predator-prey population was used.  
It involved the movement of both predators and prey and changing population strength  
of prey. Some other versions of the algorithm have been presented by Grimme and 
Schmitt (2006) and Silva et al. (2002). The former used a modified recombination and 
mutation model. The latter, predominantly a particle swarm optimisation algorithm, 
introduces the concept of predator-prey interactions in the swarm to control the balance 
between exploration and exploitation, hence improving both diversity and rate of 
convergence. 

However, most of the above versions as well as some of the other popular 
evolutionary algorithms find it difficult to produce well distributed set of Pareto optimal 
solutions in a limited number of function evaluations especially when dealing with 
problems with more than two objectives or significantly high number of decision (design) 
variables. The stated can be observed from the reported results of other algorithms 
(results of Deb et al., 2006 and that of Deb and Rao, 2005). In most practical applications 
of optimisation, the calculation time for evaluating model functions dominate. This 
demands optimisation algorithms capable of producing dependable solutions while 
investing the minimum number of function evaluations possible. Moreover, the forms of 
the PP algorithm available in literature (as seen in Deb, 2002; Laumanns et al., 1998; Li, 
2003; Grimme and Schmitt, 2006) do not have the ability to handle constraints, which 
form an integral part of most practical problems. Consequently, there exist very few 
instances of application of any form of the PP algorithm to real world problems. 
Nevertheless, since the modus operandi of the PP algorithm is significantly different 
from other standard EMOAs, there is sufficient basis to believe that the potentials of this 
algorithm have not been fully realised. 

The modified predator-prey (MPP) algorithm presented here is a computationally 
inexpensive EMOA, capable of handling complex design optimisation problems. It has 
been developed through the assimilation of special features of existing PP models, 
modifications of the same and addition of certain new features; the most significant one 
being the ability to handle both linear/non-linear equality and inequality constraints. 

2 Modified predator-prey (MPP) algorithm 

2.1 Overview 

Any general constrained multi-objective problem involving fN  objectives and VN  

design variables can be reformulated as follows. 

minimise   ( ),    n 1,2,...,n n ff f X N= =  (1a) 

where X  is the vector of VN  design variables, that is, 
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1 2( , , ,..., )=
Vv NX x x x x  (1b) 

and gic and hic are inequality and equality constraints, respectively, defined as 

( ) 0,    1, 2,3,...,
( ) 0,    1, 2,...,

= ≤ =

= = = + + +
ic ic

ic ic

g g X ic p
h h X ic p p p q

 (1c) 

The constraints are added up to form the ( 1)fN + th objective in the following way, 

( ) ( )( )1
1 1

minimise   max ,0 max ,0
f

p p q

N ic ic
ic ic p

f g h ε
+

+
= = +

= + −∑ ∑  (2) 

where ε  is the tolerance for equality objectives. Clearly, zero is the true minimum of this 
combined function. It should be noted that in case of maximisation the corresponding 
objective function is multiplied by ‘–1’, to convert it into a general minimisation 
problem. Also, a ‘greater than equal to’ inequality constraint is converted into a ‘less than 
equal to’ constraint by multiplying with ‘–1’. 

The overall structure of the algorithm is presented below in sequential steps. 

• Values of VN  design variables are initialised for a population of SN  candidate 
solutions/prey using Sobol’s (1976) quasi random sequence generator and the 
corresponding fN  objectives are evaluated for each such candidate prey. 

• The SN  prey are placed at the vertices of cells forming a two dimensional grid with 
connected ends hence having a toroidal nature. The grid is allowed to adjust its size 
dynamically according to the prey population size (in case of changing population 
size when working as a component of a hybrid optimisation package) maintaining 
the dimensions I × J, where typically J = 5. This value of J was found to be most 
effective when dealing with a population of hundred or less. However, for larger 
populations other values of J can be tried which might even be problem-dependent 
for real world applications. Consequently I is chosen as the smallest integer for 
which .SN I J< ×  The few empty spaces that might occur (four in the worst case) 
are filled up with random clones of existing population members. Alternatively, 
these empty spaces can be filled with additional solutions newly generated in order 
to preserve diversity in the population. However, in this case the corresponding 
additional function evaluations need to be made. 

• PM  is the number of predators placed on the same 2D unfolded toroidal grid so that 
they occupy random cell centres. PM  is determined as 

20
⎡ ⎞

= ⎟⎢
⎣ ⎠

S
P f

N
M N  (3) 

where [ )r  is the lowest integer greater than ,r  .r R+∈  It was observed that for the 
standard test cases discussed in this paper a higher value of PM  led to premature 
convergence (stalling of solutions) due to excessive selection pressure (compared to 
evolutionary pressure), whereas a lower value of PM  demanded higher number of 
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function evaluations without any improvement in objective function values. Thus, 
the optimum predator strength is dependent on the function topology. 

Each predator is associated with a weighted value of the objectives as follows. 

1=

=∑
Nf

n n
n

f w f  (4) 

Here, nw  is the weight associated with the nth objective function, nf  is the nth 
objective function. The weights are distributed uniformly in case of two-objective 
problems 1 2 1(0 1,  1 )w w w≤ ≤ = − and using Sobol’s (1976) quasi random sequence 
generator in case of problems with more than two objectives. Objective space has not 
been normalised to apply the ‘weighted sum of objectives’ concept, and it did not 
pose any significant hindrance to convergence as seen from the performance of MPP 
in the test cases exhibited in this paper. However, in case of real problems with 
objective functions widely different in magnitude, each objective should be 
normalised with a reference objective value, or a dynamic maximum calculated from 
the existing population. 

• Predators are randomly located in the toroidal grid. Each neighbourhood that 
contains a predator can be termed as an ‘active locality’ as shown in Figure 1. In 
each of these localities/cells, the value of ‘f’ as defined by equation (4) 
corresponding to the local predator, is calculated for each prey. The weakest prey 
(that is, having the maximum value of f) is selected to be killed and replaced by a 
new prey produced by the crossover of the two strongest local prey and subsequent 
mutation of the crossover child. 

• However, this phylogenetic child prey qualifies to be accepted only if it fulfils the 
following three criteria: 
1 the child is stronger than the worst local prey [based on f  calculated by 

equation (2)] 
2 the child is non-dominated (Deb, 2002) with respect to the other three local 

prey 
3 the child is not within the objective space hypercube (Deb, 2002) of the other 

three prey of this locality. 

Ten trials are allowed to produce a qualified child that satisfies the three criteria, 
failing which the weakest prey is kept alive and retains its position on the grid. This 
is affordable, since MPP, unlike other evolutionary algorithms does not require the 
function evaluation of the entire population at each generation, and prey 
reproduction take place only in the cells that contain a predator. Nevertheless, the 
expense for the above qualification process increases with increasing number of 
simultaneous objectives. 

• Upon completion of the above predator-prey interactions in each active locality, the 
predators are relocated randomly. A probability based relocation criterion has been 
introduced here, which favours a fairly even distribution of the ‘number of 
visitations’ to each cell/locality by a predator. The relocation criterion is defined as 
follows: 
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1 ( )if   , +1, > avgcellcount i j cellcount  (5.1) 

the predator is not placed at this cell centre 

2 ( )if   , +1, ≤ avgcellcount i j cellcount  (5.2) 

the predator is placed at this cell centre. 

Here, ( ),cellcount i j  is the cumulative number of times predators have visited the 

cell ( ),i j  in previous generations, avgcellcount  is the average of all ( ),cellcount i j  

and ( ),i j is the randomly generated location on the 2D lattice. Laumanns et al. 
(1998) showed that in the original PP algorithm the torus structure leads to an 
expected recurrence time (visitation per each four-prey locality) per predator of 1

n  

(where = ×n I J ) and the number of random steps required by a predator to have 
visited each prey is between 2logn n  and ( )22 1 .n −  Introduction of the controlled 
relocation in MPP improves the expected recurrence time per predator at no 
additional cost (except for some additional random number generation). This 
increases the coherence in improvement of the prey regardless of their fixed location 
in the toroidal grid. 

• The execution of predator-prey interaction in each active locality and subsequent 
prey reproduction constitute a generation in the MPP algorithm. After completion of 
each such local generation, the non-dominated solutions in the prey population are 
copied to a secondary set called the ‘elite set’ or an ‘archive’. Certain number of 
randomly selected elite solutions is incorporated into the main population (prey in 
the toroidal space) at the cost of some of the dominated solutions (dominated by at 
least one other prey). 

Figure 1 An active four-prey locality/neighbourhood in the toroidal grid (see online version for 
colours) 
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2.2 Evolution 

The generation of new solutions/prey in each active locality is initiated by the crossover 
of the strongest two local prey (with respect to the corresponding f  value). The blend 
crossover (BLX-α ), initially proposed by Eshelman and Schaffer (1993) for real-coded 
genetic algorithms (later improved by Deb, 2002), is used in the MPP. It is defined as 
follows. 

( )
( )

( )

(1, 1) (1, ) (2, )

(2, 1) (1, ) (2, )

1

1

1 2

+

+

= − +

= + −

= + −

t t t
v v v v v

t t t
v v v v v

v v

x x x

x x x

u

γ γ

γ γ

γ α α

  (6) 

Here, (1, )t
vx  and (2, )t

vx  are the values of the vth design variable defining parent 

solutions/prey, (1, 1)+t
vx  is value of the vth variable defining the resulting child 

solution/prey and ndu  is the random number between 0 and 1. A value of 0.5 is used for 
α  as suggested by Deb (2002). With BLX- ,α  the location of the offspring in the 
decision space depends upon the difference between the parent solutions (Deb, 2002). 
This facilitates genetic recombination that is adaptive to the existing diversity in the 
parent population; a desirable characteristic for Pareto convergence. However, in case of 
MPP algorithm this promotes localised (local to each cell) combing of the domain for 
better solutions depending on the total span of the local solutions. This has the potential 
to be more cost effective with respect to function evaluations compared to other genetic 
algorithms that allow crossover between randomly selected solutions from the entire 
population. 

This crossover child prey is then subjected to non-uniform mutation originally 
introduced by Michalewicz (1992), and mathematically formulated as 

( ) max
1(1, 1) (1, 1) ( ) ( ) 1
⎛ ⎞−⎜ ⎟+ + ⎝ ⎠

⎛ ⎞
⎜ ⎟= + − −
⎜ ⎟
⎝ ⎠

b
t
tt t U L

v v v v vy x x x rτ  (7) 

Here, (1, 1)+t
vy  is the value of the vth variable defining the child solution/prey produced 

by mutation of the value of the vth design variable (1, 1)+t
vx , ( )U

vx  and ( )L
vx  are upper 

and lower limits of the vth design variable, τ  takes a Boolean value –1 or 1, each with a 
probability of 0.5, vr  is a random number between 0 and 1, t  and maxt  are the number of 
generations already executed and the maximum allowed number of generations, 
respectively, while exponent b  is a user defined parameter. 

Non-uniform mutation favours creation of child solutions in the vicinity of the  
parent solution, and the probability of creating a child solution closer to the parent 
increases with increasing number of generations. This provides a uniformly distributed 
search in the earlier generations and a relatively focused search in the later  
ones. A modified version of this non-uniform mutation has been applied in MPP, as 
follows. 
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( )

max

max
1(1, 1) (1, 1) ( ) ( )

10

1

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞−⎜ ⎟+ + ⎝ ⎠

=

⎛ ⎞
⎜ ⎟= + − −
⎜ ⎟
⎝ ⎠

b

t
t

t
tt t U L

v v v v vy x x x r

β

βτ
 (8) 

Here, t  and maxt  are the number of function evaluations performed until then and 
maximum allowed number of function evaluations, respectively, b is a constant and β  is 
the scaling parameter. The latter two factors monitor the order of magnitude, or in other 
words, the extent of mutation and hence are chosen such that the order varies between 
0.01 and 0.00001. 

Both the crossover and mutation techniques employed here establish a localised and 
adaptive search, which make the MPP algorithm more economical with respect to 
function evaluations. The crossover probability should be maintained at unity (that is, 
100%) since localised recombination is absolutely necessary for evolution of a population 
which lacks global mixing of solutions. The mutation probability used is small  
(around 0.05) which is usual for application in evolutionary algorithms. However, 
specific real world problems might demand a higher or lower mutation probability, which 
may not be possible to predict a priori without definite knowledge of the function space 
topology. 

2.3 Dominance and constraint handling 

The concept of weak dominance (Deb, 2002) is applied here both as a qualification 
criterion for new prey as well as in case of creating and updating the elite set.  
Primary selection is chiefly driven by the weighted sum of objectives concept, which has 
inherent drawbacks such as difficulty in approximating non-convex problems and a  
need for normalisation of the objective functions. Such deficiencies are counteracted  
by controlled introduction of non-dominance based operations in the MPP algorithm.  
It has been shown by Knowles and Corn (2007) that converging ability of selection  
based on non-dominance fails to scale up with increasing number of objectives and  
starts performing comparably to random search for problems with seven or more 
objectives. 

However, it should be noted that complex real world problems generally demand 
substantial scalability in terms of number of design variables rather than number of 
objectives. In predator-prey algorithm, concept of non dominance is just a filtering 
technique and not the chief selection criterion, but it would be difficult to predict  
the scalability of MPP (with respect to number of objectives) without actually applying  
it on a problem with large number of objectives. In case of an unconstrained  
optimisation problem, solution A is said to weakly dominate solution B if solution A is 
better than solution B in at least one objective and equal in all other objectives. However, 
in case of a constrained optimisation, the theory of dominance is altered to give 
preference to feasible solutions or relatively less infeasible solutions. The modified 
definition of dominance is the same as used in NSGA-II (Deb et al., 2002), which is as 
follows, 

Solution A is said to constraint-dominate solution B if 
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• Solution A is feasible and solution B is not. 

• Solutions A and B are both infeasible, while solution A has a smaller net constraint 
violation than solution B, i.e., 1 1f f

A B
N Nf f+ +<  (considering function 

minimisation). 

• Solutions A and B are both feasible, while solution A weakly dominates solution B. 

Due to the absence of any penalty function method, the normal objectives 
( ,  1)n ff n N∀ < +  and the net constraint violation objective 1( ),

fNf +  get similar 

quantitative importance. This, together with the constraint-dominance criterion, favour 
feasible solutions, but also helps retain genetic traits of infeasible solutions with 
substantially better objective values as well. This speeds up convergence to the Pareto 
front especially when it is located at the boundary of the feasible region. Nevertheless, it 
should be noted that unless the whole prey population lies in the infeasible region (in the 
objective space) the progressing Pareto front will always constitute of feasible solutions, 
because the Pareto front is formed by the non-dominated elite solutions. 

2.4 Diversity preservation 

A multi-objective problem prefers a reasonably uniform distribution of solutions along 
the whole span of the Pareto front. This calls for preservation of diversity in the objective 
space. In other words, an efficient multi-objective optimisation algorithm is expected to 
promote generation of new solutions (evolution) that do not closely resemble their 
parents or other nearby solutions (in the objective space). Here, the concept of objective 
space hypercube is used as a qualifying criterion for new prey to assure diversity 
preservation. Each old local prey is considered to be at the centre of its hypercube, the 
size of which is dynamically updated with generations and could be determined by the 
following equation (Chowdhury et al., 2008; Chowdhury and Dulikravich, 2009). 

( )
max

2

  

10

min ,

⎛ ⎞− +⎜ ⎟
⎝ ⎠=

= ×

t
t

new prey old prey
n n nf f

ω

η ω
 (9) 

Here, ω  is the window size of the hypercube and nη  is the half side length of the 
hypercube corresponding to the nth objective. 

2.5 Sectional convergence (biased weighing of objectives) 

A prominent drawback of the original predator-prey algorithm is its tendency to converge 
to a small section of the Pareto front due to absence of local selection pressure chiefly 
based on non-dominance. A new and innovative concept of sectional convergence has 
been introduced by Chowdhury et al. (2008) to deal with this possible lack of effective 
variation in the prey population. Instead of running the algorithm throughout for the same 
initial specified distribution of weights (for predator-objective association), a different 
distribution of weights within a smaller biased range (< 1.0) is applied after certain 
number of function evaluations. This redistribution is governed by the following 
equations in case of two-objective optimisation problems. 
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( )
1,

max

2, 1,

1
1

1

− +
=

+

= −

P
m

P

m m

iterp M m
w

iterp M
w w

 (10) 

Here, m is the mth predator, maxiterp  is the maximum allowed number of primary 
iterations, that is, maximum number of times redistribution is allowed, and iterp  is the 
present primary iteration. In case of multi-objective optimisation with more than two 
objectives, a different formula could be used (Chowdhury et al., 2008) as shown below. 

max

max,
max

( 1) 1

0.75
1

⎛ ⎞
− − − +⎜ ⎟⎜ ⎟

⎝ ⎠= ×
+

p
f

k m

P
f

iterpiterp K M m
N

w
iterp M

N

 (11a) 

here, 

max

1 1
/
−

= +
f

iterpK
iterp N

 (11b) 

then 

, max,1= −n m k mw w  (11c) 

Here, ,n mw  is the weight associated with the nth objective function for the mth predator 
and max,k mw  is the maximum allowable weight associated with any kth objective 
function ( )k n≠  for the mth predator. The weights ,( )k mw  associated with the objective 
functions other than the nth objective are distributed using Sobol’s (1976) algorithm 
within the range 0 to max, .k mw  However, in this case (that is, problems where 2),fN >  

max / ∈f Siterp N N  is an essential condition. 

This added feature involving biased distribution of weights does away with the often 
observable drawback of PP which is its tendency to converge to a small section of the 
Pareto front due to absence of selection pressure chiefly based on non-dominance. 
Nevertheless, such sectional convergence comes at the cost of an increased number of 
function evaluations which might be necessary only in case of complex problems such as 
sharp discontinuities or mixed convex-concave Pareto fronts or orders of magnitude 
difference between the objective functions. 

2.6 Elitism 

In order to retain the genetic traits of the best solutions it is necessary to introduce some 
form of elite preservation mechanism into the algorithm. This, when judiciously applied, 
accelerates the rate of convergence to the Pareto front. In MPP, the secondary set  
(elite set or archive) consisting of the non dominated solutions from each generation is 
maintained at a fixed strength Ne  using the clustering technique designed by Deb et al. 
(2002). After each generation, certain randomly selected solutions/prey (from the main 
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population), if found to be dominated, are replaced from the 2D lattice by randomly 
selected elite solutions. This new additional attribute boosts the speed of convergence of 
this algorithm. However, the allowed number of such replacements should be carefully 
chosen to avoid introducing excessive elitism. Here, the total number of allowed 

replacements is always kept below ,2
SN  which was empirically found to be an 

approximate threshold beyond which diversity is likely to be compromised. 

2.7 Additional features 

During the course of development of MPP a few other alterations/additional features 
were also implemented, but not included in the final version of the algorithm. This was 
due to certain drawbacks associated with each one of them. A couple of them are being 
presented here, keeping in mind that a more judicious application of any of these features, 
in the future, might help to improve the dependability or performance of MPP or other 
similar evolutionary optimisation algorithms. They have been discussed below. 

Controlled killing in active localities: Instead of killing exactly one prey  
(the weakest) at each active locality during a generation, the predator was allowed to kill 
‘ l ’ number of the weakest local prey depending on the ‘non-domination’ quality of the 
locality. The value of l  for each locality was computed according to the following 
formula. 

0    if  3 
1    if  3> 0
2   if  0

≥⎧
⎪= >⎨
⎪ =⎩

l

ne
ne

ne
 (12) 

Here, ne is the number of prey from that locality that qualified for the elite set when 
last updated { }( 1,2,3,4 ).ne∈  This reduced the required number of function evaluations, 
but severely hindered further progress when solutions converged to a local Pareto front. 

Relocating prey: Like predators, prey were also relocated randomly within the same 

2D lattice after every ‘nm’ iterations, where .S
P

Nnm M=  A favourable genetic mixing 

was observed, leading to greater diversity, but at the cost of noticeably increased number 
of function evaluations. 

3 Numerical experiments 

3.1 Unconstrained two-objective test case 

MPP was tested to evaluate its performance by running it on some well-known 
unconstrained two-objective test problems, with known analytical solution. The first six 
test cases analysed are taken from the multi-objective optimisation comparison by Zitzler 
et al. (2000) namely the ZDT test cases. Two other popular test cases with known 
analytical solutions for the Pareto front which are the Fonseca and Fleming  
multi-objective problem no. 2 (Fonseca and Fleming, 1995) and the Coello  
multi-objective problem (Coello et al., 2002) have also been used. All the eight test cases 
involve two-objective optimisations where both objectives are to be minimised (Table 1). 
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Table 1 Details of unconstrained two-objective optimisation test cases 

Problem m Variable 
limits Objective functions Analytical solution 

1 1f x=  ZDT1 30 [ ]0,1ix ∈  

1

2

2

1 9 ,   1
1

.

m
i

i

x fg h
m g

f h g
=

= + = −
−

=

∑  

Set 1g =  

1 1f x=  ZDT2 30 [ ]0,1ix ∈  

2
1

2

2

1 9 ,   1
1

.

m
i

i

x fg h
m g

f h g
=

⎛ ⎞
= + = − ⎜ ⎟− ⎝ ⎠
=

∑  

Set 1g =  

1 1f x=  ZDT3 30 [ ]0,1ix ∈  

( )

2

1 1
1

2

1 9
1

1 sin 10

.

m
i

i

xg
m

f fh f
g g

f h g

π

=

= +
−

⎛ ⎞
= − − ⎜ ⎟

⎝ ⎠
=

∑

 

Set 1g =  

1 1f x=  ZDT4 10 [ ]
[ ]

1 0,1

5,5i

x

x

∈

∈ −
 

( )

( )( )2

2

1

2

1 10 1

     10cos 4

1

.

m

i i
i

g m

x x

fh
g

f h g

π
=

= + −

+ −

= −

=

∑
 

Set 1g =  

( )1 11f u x= +  

( )iu x = the number of ones in the bit 

vector form of ix  

ZDT5 11 [ ]0,1ix ∈ , 30 
bit resolution 

[ ]0,1ix ∈ , 5 
bit resolution 

( )( )

( )( ) ( ) ( )
( )

11 2

2

1,   

2    if 5

1                if 5

.

=

= =

⎧ + <⎪= ⎨
=⎪⎩

=

∑
m

i

i i
i

i

g v u x h
f

u x u x
v u x

u x

f h g

 

Set 10g =  

Note: =m number of variables 
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Table 1 Details of unconstrained two-objective optimisation test cases (continued) 

Problem m Variable 
limits Objective functions Analytical solution 

ZDT6 10 [ ]0,1ix ∈  
1

6
1 14 sin 6

1
x x

f e
π⎛ ⎞

⎜ ⎟
⎝ ⎠

−
= −  

0.25

2
2 1

2

1 9 ,   1
1

.

m

i
i

x
fg h

m g

f h g

=

⎛ ⎞
⎜ ⎟

⎛ ⎞⎜ ⎟
= + = − ⎜ ⎟⎜ ⎟− ⎝ ⎠⎜ ⎟

⎜ ⎟
⎝ ⎠

=

∑
 

Set 1g =  

2

1
1

1

1

m

i
i

x
m

f e

⎛ ⎞
⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠=⎝ ⎠

− −

= −
∑

 

Fonseca-
Fleming 

3 [ ]4,4ix ∈ −  

2

2
1

11 exp
m

i
i

f x
m=

⎛ ⎞⎛ ⎞⎜ ⎟= − − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑  

( )
2

1
2

2 ln 1
1

f
f e

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

− − − −
= −

 

1 1f x=  Coello 2 [ ]0,1ix ∈  

( )
( )

2
1

2
2 2

1
1

2

1
1 101 10

sin 8
1 10

x
xf x

x x
x

π

⎛ ⎞⎛ ⎞⎜ ⎟− ⎜ ⎟
⎜ + ⎟⎝ ⎠= + ⎜ ⎟
⎜ ⎟−⎜ ⎟+⎝ ⎠

 

( )

2
2 1

1 1

1
      sin 8
f f

f fπ
= −

−
 

Note: =m number of variables 

To compensate for performance fluctuations induced by random generators driving the 
initial population and other genetic operators, the algorithm was run five times for 25,000 
function evaluations each in case of the six ZDT test cases and 2,000 function evaluations 
each in case of the Fonseca-Fleming and Coello test problems. The concept of sectional 
convergence was not implemented during these runs. 

The non-dominated plots are generated by making a union of the elite set  
(non-dominated set) of the first five runs for each test case. The non-dominated set of the 
unions is then extracted and plotted as shown in Figures 2 to 9. The user defined MPP 
parameters used for these test cases are as follows. 
Table 2 User defined MPP parameters for unconstrained two-objective test cases 

Parameter Value 
Population size (# prey) 100 
# Predators 10 
Elite set size 40 
Crossover probability 1.0 
Mutation probability 0.05 
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Figure 2 Two-objective test case ZDT 1 
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Note: Results with MPP. 

Figure 3 Two-objective test case ZDT 2 
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Note: Results with MPP. 
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Figure 4 Two-objective test case ZDT 3 
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Note: Results with MPP. 

Figure 5 Two-objective test case ZDT 4 
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Note: Results with MPP. 
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Figure 6 Two-objective test case ZDT 5 
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Note: Results with MPP. 

Figure 7 MPP results for two-objective test case ZDT 6 
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Figure 8 MPP results for two-objective test case of Fonseca and Fleming problem 2 
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Figure 9 Two-objective test case of Coello 
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Note: Results with MPP. 
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It is observed from Figures 2 to 9, that MPP performs very well on the ZDT test cases 
when compared with the performances of some other well-known algorithms as shown 
by Moral and Dulikravich (2008) (given in Appendix A). The same is exhibited in case of 
the Fonseca-Fleming and Coello test problems as shown in Figures 8 and 9 respectively. 
In certain cases as in ZDT 1, 2 and 6 the solutions do not completely converge to the 
Pareto front. This is due to significant slowing down of the rate of convergence as the 
solutions approach the fully converged computed version of the Pareto front. 

Nevertheless, it is evident from the above figures that the algorithm consistently 
produces a desirable spread of non-dominated solutions irrespective of the nature of the 
Pareto front and without using the concept of sectional convergence. 

Two performance measures for evaluating the performance of multi-objective 
optimisation algorithms have been developed by Deb et al. (2002). The first performance 
metric, the gamma ( )γ  parameter, is a measure of the extent of convergence. 

The minimum of the Euclidean distances of each computed non-dominated solution 
from H uniformly distributed points on the ideal Pareto front (H = 500) is calculated, the 
average of which gives the value of the gamma parameter. The other performance metric, 
namely the delta ( )Δ  parameter, gives a measure of the spread of solutions along the 
computed Pareto front. It is calculated as follows. 

( )

1

1

1

−

=

+ + −

Δ =
+ + −

∑
SN

f l ns
ns

f l S

d d d d

d d N d
 (13) 

Here, fd  and ld are the respective Euclidean distances between the two extreme 

solutions and the corresponding extremities of the analytical Pareto front, nsd  is the 

Euclidean distance between consecutive solutions and d  is the mean of all nsd   
(ns = 1, 2, 3,.., SN ). A perfectly uniform distribution of solutions along the computed 
Pareto front with existence of exact extreme solutions will give a delta value of zero. 
However, in spite of accurate convergence, the gamma parameter need not be zero, due 
to possible lack of coincidence of computed solutions and uniformly distributed 
analytical Pareto points. 

Table 3 shows the values of these two parameters calculated for the eight cases 
studied here, and also the comparison of some of them with that calculated by Deb et al. 
(2002) for NSGA-II. The same conditions have been used, i.e., a population of 100 
solutions, subjected to 25000 function evaluations, for the six ZDT test cases. However, 
the Fonseca-Fleming and the Coello test cases involve 2,000 function evaluations and 
hence the former has not been compared with the corresponding data of Deb et al. (2002), 
all of which are with respect to 25,000 function evaluations. 

As seen from Table 3, the performance of MPP compares well with that of real coded 
NSGA-II, except in the case of ZDT 2. The latter may be attributed to the vertical 
congregation of points near the left boundary of the Pareto front where an abrupt change 
in the value of 2f  corresponding to very small values of 1f  poses difficulty in properly 
distributing ideal Pareto points in this region. However, in the case of ZDT 3, the MPP 
seems to outperform both the real coded and the binary coded NSGA, in accuracy. As 
seen from Figure 5, a fairly accurate and well distributed non-dominated solution set is 
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computed by MPP in the case of ZDT 4. Due to the high density of solutions along the 
computed Pareto front, the deviation in nsd  exceeds the average, ,d  which accounts for 
the relatively high value of Δ (>1), calculated in case of ZDT 4. 

Table 3 Performance indicators 

Algorithm  NSGA-II (real)  NSGA-II (binary)  MPP 

Problems  γ Δ  γ Δ  γ Δ 

ZDT 1  0.0335 0.39  0.0009 0.46  0.0447 0.59 

ZDT 2  0.0724 0.43  0.0009 0.44  0.1181 0.78 

ZDT 3  0.1145 0.73  0.0434 0.58  0.0198 0.73 

ZDT 4  0.5130 0.70  3.2276 0.48  0.6537 1.48 

ZDT 5  N/A N/A  N/A N/A  0.4282 1.49 

ZDT 6  0.2966 0.67  7.8068 0.64  0.2334 0.71 

Fonseca-Fleming  N/A N/A  N/A N/A  0.0082 0.42 

Coello  N/A N/A  N/A N/A  0.0498 1.17 

Difficulties encountered in converging to the ideal Pareto front in the case of ZDT 5, by 
other standard optimisation algorithms have been claimed to be not trivial, as also 
confirmed by Deb et al. (2002). However during the course of this study, it has been 
found that achieving acceptable accuracy in the case of ZDT 5 to be relatively 
manageable as evident from Figure 6 and Table 3. But the above is true only when the 
correct order of precision is used in representing the decision variables and computing the 
objective functions. Failure to do so might be the very reason behind the relatively low 
accuracy of solutions computed by other optimisation algorithms while dealing with  
ZDT 5. 

Test case results presented in this work are generated without considering the 
concept/module of sectional convergence. However, sectional convergence was 
experimented on during the study of MPP and a visual representation is exhibited in 
Figure 10. 

Figure 10 shows the location of solutions in the objective space at the end of each 
primary iteration ( ),iterp  where 0=iterp  represents the initial global progression of 
solutions, and 0>iterp  represents the sequential sectional convergence of solutions to 
parts of the Pareto front. Though the progress of solutions is biased towards sections of 
the objective space going from right to left, the solution set as a whole always keeps 
moving towards the ideal Pareto front. This is desirable and eventually leads to a well 
distributed set of non-dominated solutions along the final computed Pareto front. 

Figure 11 shows the progress of solutions towards the ideal Pareto front, in absence 
of the sectional convergence module. The solutions are plotted after intervals of 5,000 
(approx.) function evaluations. It is observed that the solutions converge noticeably faster 
during the initial stages of MPP to form an intermediate computed Pareto front. The 
subsequent progress of this intermediate front becomes more and more exhaustive in 
terms of function evaluations as it nears the global Pareto front. 
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Figure 10 Sectional convergence for ZDT 3 
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Note: max 5iterp =  

Figure 11 General convergence for ZDT 3 
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3.2 Unconstrained three-objective test cases 

Multi-objective optimisation algorithms often demonstrate different behaviour when 
working on problems with more than two objectives. The Pareto front is just a planar 
curve in two-objective problems which proliferates into a surface in three-objective 
problems, and then to a hyper surface of increasing dimensionality with every additional 
problem objective. This intensifies the necessity for careful preservation of diversity. 
Selection procedure based on either weighted sum of objectives or weak domination 
criterion work very differently. For example, say in the case of a problem with fN  
objectives ( 2),fN >  solution A has one objective better than solution B, while in all 

other objectives solution B ranks higher. Weighted sum would most likely recognise 
solution B as the better solution whereas according to the principles of weak dominance 
both solutions are non-dominated w.r.t. each other. Predator-Prey is unique in utilising 
the principles of both selection procedures. However, the performance gain of such a 
characteristic can be appreciated only when the algorithm is tested on optimisation 
problems with more than two objectives. Therefore, MPP is tested on two standard 
scalable three-objective minimisation problems developed by Deb et al. (2006). They are 
summarised in Table 4. 

Table 4 Details of the unconstrained three-objective optimisation test cases 

Problem m  Variable 
limits Objective functions Analytical 

solution 

DTLZ1 7 [ ]0,1ix ∈  ( )
( )( )

( )

( )( )

( )( )

27

3

1 1 2

2 1 2

3 1

0.5
100 5

cos 20 0.5

1 1
2
1 1 1
2
1 1 1
2

i

i i

x
g

x

f x x g

f x x g

f x g

π=

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟= +
⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

= +

= − +

= − +

∑

 

3

1

0

3,4,..,7

0.5

j

k
k

x

j

f
=

=

=

=∑
 

DTLZ2 12 [ ]0,1ix ∈  
( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

12
2

3

1 1 2

2 1 2

3 1

0.5

1 cos / 2 cos / 2

1 cos / 2 sin / 2

1 sin / 2

ig x

f g x x

f g x x

f g x

π π

π π

π

= −

= +

= +

= +

∑
 3

2

1

0.5

3,4,..,12

1

j

k
k

x

j

f
=

=

=

=∑
 

Due to similar reasons as in case of the ZDT test cases, both DTLZ test cases were run  
30 times, 30,000 function evaluations each, and the final version of the computed Pareto 
front is formed by extracting the non dominated set from the union of the final elite sets 
of the first five runs. The user defined parameters specified in the algorithm for these test 
cases are presented in Table 5. 
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Table 5 General MPP parameters for unconstrained three-objective test cases 

Parameter Value 
Population size (# prey) 100 
# Predators 10 
Elite set size 40 
Crossover probability 1.0 
Mutation probability 0.05 

Figure 12 Three-objective test case DTLZ1 with max 0 :=iterp  (a) view 1 (b) view 2 

 
(a) 

 
(b) 
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Different views of the final version of the computed Pareto front for the three-objective 
problems DTLZ1 and DTLZ2 have been illustrated in Figures 12 to 15. It is observed  
that MPP performs very well in computing Pareto solutions that are both reasonably 
accurate and well distributed along the Pareto front. Sectional convergence scheme as 
seen from Figures 13 and 15 helps in covering the whole global Pareto front more 
effectively. 

Hence, the boundaries of the global Pareto front computed by MPP are crisply 
defined when using sectional convergence. 

Figure 13 Three-objective test case DTLZ1 with max 0 :iterp =  (a) view 1 (b) view 2 

 

(a) 

 

(b) 
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It would be too optimistic to extrapolate the performance appreciation of MPP from three 
objectives to N objectives ( 3).fN >  Pareto fronts computed by MPP in case of the DTLZ 

test cases indicate that MPP has the potential to achieve reasonably accurate well 
distributed Pareto fronts in case of optimisation problems with more than two objectives; 
a quality not so common among the standard multi-objective optimisation algorithms 
available in literature and practice. However, scalability of the performance of MPP with 
significantly higher number of objectives needs further investigation. 

Figure 14 Three-objective test case DTLZ2 with max 0 :iterp =  (a) view 1 (b) view 2 

 
(a) 

 
(b) 
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Figure 15 Three-objective test case DTLZ2 with max 3 :iterp =  (a) view 1 (b) view 2 

 
(a) 

 
(b) 

It is seen from Figures 2 to 9 and Figures 12 to 15 that MPP performs very well  
(often better) both in case of two and three objective problems, when compared with one 
of the more popular previous versions of the predator-prey algorithm (see Appendix A) 
despite of working under relatively stricter conditions (fewer number of function 
evaluations). 
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3.3 Constrained multi-objective test cases 

To examine the constraint handling capability of MPP, it was tested on three well-known 
constrained two-objective test cases studied by Deb et al. (2002). Two standard test cases 
with known analytical solutions namely Binh multi-objective optimisation problem no. 2 
(Binh and Korn, 1997) and the Osyczka multi-objective optimisation problem no. 2 
(Osyczka and Kundu, 1995) have also been used to test MPP. All these test cases are 
two-objective minimisation problems and are summarised in Table 6. 
Table 6 Details of the constrained two-objective optimisation test cases 

Problem m Variable 
limits Objective functions Constraints 

[ ]1 0.1,1x ∈  CONSTR 2 

[ ]1 0,5x ∈  ( )
1 1

2 2 11
f x
f x x
=

= +
 2 1

2 1

9 6
9 1

x x
x x
+ ≥

− + ≥
 

SRN 2 [ ]1 20,20x ∈ −  ( ) ( )
( )

2 2
1 1 2

2
2 1 2

2 1 2

9 1

f x x

f x x

= − + − +

= − −
 

2 2
1 2

1 2

225
3 10

x x
x x

+ ≤
− ≤ −

 

TNK 2 [ ]0,ix π∈  1 1

2 2

f x
f x
=
=

 

( ) ( )

2 2
1 2

1 1

2

2 2
1 2

1

0.1cos 16tan 0

0.5 0.5 0.5

x x

x
x

x x

−

− − +

⎛ ⎞⎛ ⎞
+ ≤⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

− + − ≤

 

[ ]0,5ix ∈  Binh and 
Korn 
(1997) 

2 

[ ]0,3ix ∈  ( ) ( )

2 2
1 1 2

2 2
2 1 2

4 4

5 5

f x x

f x x

= +

= − + −
 ( )

( ) ( )

2 2
1 2

2 2
1 2

5 25 0

8 3
7.7 0

x x

x x

− + − ≥

− − − +

+ ≥

 

[ ]1 0,10x ∈  

[ ]1 0,10x ∈  

[ ]1 1,5x ∈  

[ ]1 0,6x ∈  

[ ]1 1,5x ∈  

Osyczka 
and Kundu 
(1995) 

6 

[ ]1 0,10x ∈  

( )
( )
( )
( )
( )

2
1

2
2

2
1 3

2
4

2
5

2 2 2
2 1 2 3

2 2 2
4 5 6

25 2
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Each constrained test case given in Table 6 was run 30 times and the final computed 
version of the Pareto front is formed in the same way as in the ZDT and the DTLZ test 
cases. However, the final computed versions of the Pareto fronts in case of all the five 
constrained test cases (Table 6) were created of only those elite set solutions that do not 
violate any of the problem constraints. For the final Pareto solutions, 

( ) ( )( )1
1 1

 max ,0 max ,0 0
+

+
= = +

= + − =∑ ∑f

p p q

N ic ic
ic ic p

f g h ε  (14) 
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It is worth mentioning that MPP achieved the elite set, constituted of such feasible global 
Pareto solutions, in each of these test cases. The user defined values in the MPP pertinent 
to the constrained test cases are presented in Table 7. 
Table 7 General MPP parameters for two-objective test cases 

First three constrained  
two-objective test cases 

Last two constrained 
two-objective test cases Parameter 

Value Value 
Population size (# prey) 100 100 
# Predators 10 10 
Elite set size 40 100 
Crossover probability 1.0 1.0 
Mutation probability 0.05 0.05 
# Primary iterations (sections) 0, 3 0, 6 

A higher number of primary iterations and greater elite set size were used in case of the 
Binh and Korn (1997) and the Osyczka and Kundu (1995) problems (Table 6). This is to 
counteract the relatively greater difficulty in covering the whole Pareto front in these two 
test problems. The converged versions of the Pareto fronts computed by MPP in each of 
these test cases are shown in Figures 16 to 20. 

The final computed versions of the Pareto fronts for SRN, TNK and Binh constrained 
multi-objective problems as shown in Figures 16, 17 and 18 respectively are fairly 
accurate and well distributed. However, in the Binh problem there is significant 
improvement in performance when using the sectional convergence scheme (Figures 18a 
and 18b). In case of CONSTR and Osyczka constrained multi-objective problems 
(Figures 16 and 20), though solutions converge to the global Pareto front, their 
distribution on the final computed versions of the Pareto front is not uniform, even with 
the sectional convergence scheme. 

Overall, MPP compares well in performance, with other popular algorithms such as 
NSGA II (Deb et al., 2002) and IOSO algorithms (IOSO, 2003) in solving similar 
constrained multi-objective problems at the expense of limited number of function 
evaluations. Nevertheless, appropriate implementation of the sectional convergence 
scheme is necessary for certain problems (Chowdhury et al., 2009) in order to attain a 
reasonable spread of solutions along the final computed version of the Pareto front. 

The remarkable feature of MPP is its ability to consistently produce feasible Pareto 
solutions, irrespective of the number or nature (i.e., linear or non-linear) of problem 
constraints involved. This is accomplished without normalisation of any objective 
functions or constraint functions, or application of computationally costly penalty 
function methods. 

Figure 21 demonstrates an immediate migration of solutions into the feasible region 
and concomitant advancement towards the global Pareto front during the initial stages of 
the algorithm in case of Osyczka and Kundu (1995) test case. Hence, the pace at which 
MPP drives the population into the feasible domain and subsequently converges to the 
global Pareto front is appreciable – a quality which may be attributed to the simultaneous 
application of the added constraint objective (to be minimised) and constraint dominance 
criterion introduced by Deb et al. (2002). 
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Figure 16 Constrained two-objective test case CONSTR with (a) max 0iterp =  (b) max 3iterp =  
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Figure 17 Constrained two-objective test case SRN with (a) max 0iterp =  (b) max 3iterp =  
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Figure 18 Constrained two-objective test case TNK with (a) max 0iterp =  (b) max 3iterp =  

f1

f2

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

MPP

 
(a) 

f1

f2

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

MPP

 
(b) 



   

 

   

   
 

   

   

 

   

    Modified predator-prey algorithm 31    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 19 Constrained two-objective test case of Binh and Korn (1997) with (a) max 0iterp =  
 (b) max 6iterp =  
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Figure 20 Constrained two-objective test case of Osyczka and Kundu (1995) with (a) max 0iterp =  
(b) max 6iterp =  

f1
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Figure 21 Progress of solutions towards the final computed Pareto front for Osyczka and Kundu 
(1995) problem 

XX
XXXXXXXX
X
XXXX X

X

X
XXXXXXXXXXXXXXX

X
XXXXX
X
XXXXX X
XXXXXXXXXXXXXXXX
X
XX
XX
XX

X
XXXX

X

XXX
X
XXXXXXXXXX

X

XXXXX
XXXXX

f1

f2

-1500 -1000 -500 0
0

50

100

150

200

250

iteration = 1 (initial populaion)
iteration = 20
iteration = 196 (final population)X

 

4 Conclusions 

Application of optimisation models to real life systems whether engineering/scientific 
systems or financial systems, demands efficient optimisation algorithms that are 
simplistic in execution, provide reliable solutions and are computationally inexpensive. 
The MPP algorithm provides one such means of searching for optimal solutions. This 
multi-objective algorithm, with added constraint handling capacity, has been tried and 
thoroughly validated against test problems of different types. The pertinent analysis 
results show that MPP is competent in producing reliable solutions, and for certain cases 
even does better than well known algorithms presently available in literature. 
Performance of the constraint handling technique in driving solutions into the feasible 
domain at the expense of a reasonable number of function evaluations is also appreciable. 
MPP needs to be tested on multiple and varied practical problems to assess its capability 
in dealing with complex real world problems. 

MPP employs the concept of weighted sum of objectives without any normalisation 
of the objectives, which leads to relatively poor distribution of Pareto solutions in certain 
complex multi-objective cases. Nevertheless, the inclusion of the concept of sectional 
convergence using biased weighing of objectives and careful hypercube sizing ensures a 
desirable distribution of the Pareto solutions even for these poorly behaved cases. 
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The MPP algorithm presents a concordant application of the basic traits of 
evolutionary algorithms, classical weighed sum approach and certain ingenious 
techniques such as sectional convergence, hypercube operator, epidemic operator, etc. to 
constrained and unconstrained multi-objective problems. A combination of such distinct 
features is rare in optimisation literature and provides a foundation to construct robust 
composite optimisation algorithms with features adaptive to both the problem and the 
progress of the algorithm through the function space towards the Pareto front. 
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Appendix A Performance of PP algorithm by Deb and Rao (2005) on 
standard test cases 

Figure 22 Test problem ZDT 1 using PP 
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Figure 23 Test problem ZDT 2 using PP 

 

Figure 24 Test problem ZDT 3 using PP 
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Figure 25 Test problem ZDT 4 using PP 

 

Figure 26 Test problem ZDT 6 using PP 
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Figure 27 Test problem DTLZ 2 using PP 

 


