
Variability Models in Large-Scale Systems:
A Study and a Reverse-Engineering Technique

Thorsten Berger1 and Sarah Nadi2

1University of Waterloo, 2Technical University of Darmstadt

Abstract: Highly configurable systems can easily have thousands of configuration
options, together with intricate configuration constraints. Variability models—higher-
level representations of options and constraints—facilitate the development of large,
highly configurable systems. Since models are difficult to create and to maintain, we
strive to support both activities, automating them as much as possible. To this end, we
present an empirical study of real-world variability models, and static code-analysis
techniques that support reverse-engineering and consistency-checking of such models.

Introduction. Customizing software systems is becoming increasingly important. A com-
mon approach is to introduce configurations options, set at build or startup time, to tailor
a system to specific needs (e.g., hardware, functionality, performance). Large systems can
easily have thousands of such options, together with intricate configuration constraints
among them. Declaring options and constraints in higher-level representations, so-called
variability models, tackles complexity. Such models facilitate development, configuration,
and validation and verification of large, highly configurable systems [BNR+14].

However, creating and maintaining variability models is laborious and error-prone, given
the complexity of constraints. To improve the situation, we need to (i) increase the em-
pirical understanding of such models in large-scale systems, and (ii) conceive approaches
to adopt and maintain models, ideally using automated techniques. This talk presents
our work addressing these two goals. First, we study real-world models, their underly-
ing languages, and develop tools to make these models available to off-the-shelf reason-
ers [BSL+13]. Second, we develop static analysis techniques to extract constraints (the
main ingredients of variability models) from source code and evaluate the feasibility of
automatically reverse-engineering complete variability models [NBKC14, NBKC15].

Real-World Variability Models. Conceiving a model reverse-engineering approach re-
quires a corpus of realistic models. Unfortunately, commercial models are hardly avail-
able to researchers, due to confidentiality issues. Existing model repositories, such as
S.P.L.O.T., contain only small academic models. Thus, we study the (feature-model-like)
variability models of twelve industry-strength, open-source projects from the systems soft-
ware domain, including among others the Linux kernel and the eCos embedded operating
system. We analyze and reverse-engineer the formal semantics of their modeling lan-
guages and, given their expressiveness, develop propositional abstractions to make these
models available to off-the-shelf reasoners (SAT solvers). Our language analysis further
reveals that there are intricate semantics and modeling concepts found in practice that are
not covered in academic modeling languages and rarely considered in research. Our model



analysis identifies a set of large and complex models–ideal candidates to evaluate scalable
model reverse-engineering and analysis techniques.

Mining Configuration Constraints. We hypothesize that many of the configuration con-
straints declared in the models arise from low-level source-code restrictions. To investigate
this, we develop scalable static analysis techniques to extract constraints from the codebase
of highly configurable systems. We use our analysis to study the origin of configuration
constraints and to investigate to what extent we can reverse-engineer and consistency-
check models from code. Our static analysis relies on two rules to derive constraints.
The first rule expresses that every configuration should build correctly; that is, it should
pre-process, parse, type-check, and link. The second rule expresses that each valid con-
figuration should yield a lexically unique system; that is, no two configurations lead to
exactly the same configured system (i.e., source code). Since a naive approach—analyzing
all possible combinations of options—would not scale, we extend an existing variability-
aware infrastructure which allows us to analyze all variants of the system at once. Our
infrastructure FaRCE (FeatuRe Constraints Extraction) is publicly available [NBKC14].

We apply our analysis on four of our previously investigated highly configurable systems
with variability models (Linux kernel, eCos, uClibc, Busybox) to evaluate the accuracy
of our approach and to determine which constraints are recoverable from the code. We
find that our approach is highly accurate (93 % and 77 % respectively for our two rules)
and that we can recover 28 % of existing constraints [NBKC15]. The extracted constraints
can then be used to synthesize actual variability models using our previously developed
algorithms [SLB+11]. Finally, we qualitatively investigate samples of non-recovered con-
straints, determining that 15 % of the constraints require further analyses (e.g., data-flow,
control-flow, or dynamic analyses), 16 % could not be recovered due to limits of our tool-
ing, and that at least 20 % of the constraints are purely domain knowledge—indicating that
creating a complete model requires further substantial domain knowledge and testing.

References

[BNR+14] Thorsten Berger, Divya Nair, Ralf Rublack, Joanne M. Atlee, Krzysztof Czarnecki, and
Andrzej Wasowski. Three Cases of Feature-Based Variability Modeling in Industry. In
MODELS, 2014.

[BSL+13] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof Czar-
necki. A Study of Variability Models and Languages in the Systems Software Domain.
IEEE Transactions on Software Engineering, 39(12):1611–1640, 2013.

[NBKC14] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki. Mining Con-
figuration Constraints: Static Analyses and Empirical Results. In ICSE, 2014.

[NBKC15] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki. Where
do Configuration Constraints Stem From? An Extraction Approach and an Empiri-
cal Study. Technical report, GSDLAB-TR 2015-01-27, University of Waterloo, 2015.
http://gsd.uwaterloo.ca/sites/default/files/constraints-2015-nadi.pdf.

[SLB+11] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and Krzysztof Czar-
necki. Reverse Engineering Feature Models. In ICSE, 2011.


