
 1

UFEEJ4-40-3 - Individual Project (CRTS)

Student: Edwin Langley 02503280

Project supervisor: Craig Duffy

Second reader: Nigel Gunton

Award title: BSc Computing for Real Time Systems

Project title: uClinux on the Pluto 6 embedded control board

Word count: 16500

 2

Synopsis
This project is based around a control board known as the Pluto 6, produced by a company called
Heber Ltd. The aim of the project was to port an operating system to the Pluto 6 board. Following a
successful port, drivers were to be written for some of the custom hardware on the board.
The design techniques used to develop the drivers for the project depended on the level of
interaction required with the rest of the kernel. The frame buffer driver written was a bottom-up
design. The operation of the hardware, and the behaviour expected by the rest of the kernel was
known, so algorithms were then designed to bridge the gap between these layers until the video
card was utilised correctly by the kernel. Conversely, the VFD and multiplexed lamp drivers were a
top-down design. These drivers had no major subsystem, allowing flexibility. The interface required
by user programs was first defined, and the code to drive the hardware designed accordingly.
The programming language used throughout was C, except for the kernel entry code, which was GNU
68K assembly. The equipment used in the project, aside from the board itself, was a P&E BDM
debugging module, CompactFlash card reader, and serial cable. These components were used with
an X86 development host running Linux.
The progress made on the project was good, the kernel was ported to the board and made to
execute in place, and drivers written for the Vacuum Fluorescent Display (VFD), multiplexed lamps
and graphics frame buffer. The Integrated Drive Electronics (IDE) interface was enabled by editing a
driver provided in uClinux. The result is that the Pluto 6 will boot into uClinux at power on, and can
then run programs from the root file system mounted on the CompactFlash card, including the Nano-
X server running through the frame buffer device.
Although time didn't allow writing drivers for all of the devices suggested, such as the I2C, the three
main areas desired were achieved – that is the kernel port , a frame buffer graphics driver with X and
the IDE interface. The project can therefore be considered successful.

 3

Table of Contents
1 Introduction..6

1.1 Project origin...6
1.1.1 The current software system..6

1.1.1.1 Advantages..6
1.1.1.2 Disadvantages..6

1.1.2 The problem...7
1.1.3 The solution...7

1.2 Choosing an OS...7
1.3 Requirements..7
1.4 Project life cycle..8

2 The Pluto 6 board and the current system...9
2.1 ColdFire CPU background...11
2.2 Further Pluto 6 information..13
2.3 Current software system...14

3 uClinux...15
3.1 Overview...15
3.2 History..15
3.3 Differences to the normal kernel..19

3.3.1 The role of the Memory management Unit..19
3.3.1.1 Virtual memory...20
3.3.1.2 Protection...20

3.3.2 Running an OS without a MMU...20
3.3.3 Other differences...24

3.4 Summary...25
4 Porting uClinux to the Pluto 6..27

4.1 Linux kernel boot sequence...27
4.1.1 After assembly...27

4.2 Design...28
4.2.1 Kernel version..28
4.2.2 Kernel location options...28

4.3 Implementation...29
4.3.1 Setting up a development environment..29

4.3.1.1 Testing the development environment..31
4.3.2 Creating the initial port..32

4.3.2.1 Entry assembly...32
4.3.2.2 Linker description file..33

4.3.3 Running the kernel...35
4.3.4 Getting more memory..48
4.3.5 Execute in place...50

4.4 Testing..51
5 The Frame buffer driver..53

5.1 Introduction...53
5.2 History..53
5.3 Graphics controller capabilities..54
5.4 About the Linux frame buffer subsystem...54

5.4.1 Origin...54
5.4.2 In user space...54
5.4.3 In kernel space...59

5.5 The Fujitsu Cremson graphics controller..66
5.6 Implementing a Linux frame buffer driver on the Cremson...68

5.6.1 Design...68

 4

5.6.2 Implementation..72
5.6.2.1 16 bit mode..72
5.6.2.2 8 bit mode..76

5.6.3 Running Nano X...81
5.6.3.1 16 bit mode..82
5.6.3.2 8 bit mode..83

6 Conclusion..85
6.1 Performance of the system..85
6.2 Further work..85
6.3 What has been learned..85

7 Bibliography...87
7.1 Books..87
7.2 Articles..87
7.3 Papers...88
7.4 Manuals..88
7.5 Websites...88
7.6 Mailing lists...89

8 Glossary...90
9 Appendix A - Further ColdFire information...92

9.1 Differences to the 68000...93
9.1.1 Simplified addressing modes:...93
9.1.2 Reduced instruction set..93
9.1.3 Restricted instructions...94
9.1.4 Supervisor mode differences..94

10 Appendix B - Further Pluto 6 information...95
10.1 Accompanying Hardware on the Pluto 6...95

10.1.1 FPGA..95
10.1.2 Microchip PIC..95
10.1.3 CPLD..95

10.2 Hardware Boot sequence...96
10.3 ColdFire configuration on the Pluto 6...96

10.3.1 Pin assignments...96
10.3.2 Interrupts on the Pluto 6 board...97
10.3.3 Chip selects and DRAM...98

11 Appendix C – The Heber software architecture..99
11.1 Software architecture..99
11.2 The boot sequence..101

12 Appendix D - uClinux and Linux boot sequence comparison..103
12.1 Power on...103
12.2 X86 PC Linux kernel boot sequence...103
12.3 ColdFire uClinux kernel boot sequence..104

13 Appendix E - Variations in Graphics controller capabilities...106
14 Appendix F - Features of the Cremson MB86290A...108

14.1 Resolutions..108
14.2 Layer/frame control...109
14.3 2d primitives and anti-aliasing...109
14.4 3d polygons and perspective texture mapping...110
14.5 Display lists...110

15 Appendix G - The multiplexed lamps and VFD drivers..112
15.1 The VFD driver...112

15.1.1 Design...112
15.1.2 Implementation..112

15.2 The multiplexed lamps driver...112
15.2.1 Design...113
15.2.2 Implementation..113

16 Appendix H - The CompactFlash IDE driver..115

 5

16.1 Design...115
16.2 Implementation...115

17 Appendix I - The working kernel output...117
18 Appendix J - the BDM-CHK test output...119
19 Appendix K - Source code listings..124

19.1 crt0_ram.S...124
19.2 ram.ld..127
19.3 crt0_rom.S...128
19.4 rom.ld..135
19.5 gdbinit...136
19.6 vfd.c..140
19.7 mpxlamps.c...145
19.8 pluto6_fpga.h..152
19.9 uclinux.c..152
19.10 cremsonfb.c...163
19.11 cremsonfb.h..177

Introduction 6

1 Introduction
Heber Ltd provide control systems for the gambling machine (also known as fruit machine) industry.

The Pluto 6 board is sold to fruit machine manufacturers who write the games to run on it. The board

is then placed into a fruit machine cabinet and controls all of the peripherals present. The Hardware

in a game cabinet can include up to two video screens, lamps, button switches, stepper motors

controlling the reels in the cabinet, coin and note acceptors, VFDs and audio speakers.

1.1 Project origin

1.1.1 The current software system

The board as supplied by Heber uses pre-compiled custom hardware libraries written from scratch in-

house, which are then linked with the game code to create a single binary. The current libraries can

drive the hardware provided such as the serial ports, and even offer FAT32 support for the

CompactFlash card.

1.1.1.1 Advantages

The no OS approach taken has been successful, games have been written by fruit machine

manufacturers and sold well. The libraries provide a high level of control over the system, due to the

code being developed in house and hence well known.

1.1.1.2 Disadvantages

There are however certain problems with the current software architecture.

• The project makefiles use relative paths to include the library files. Every time a new version

of a library is released, the version number in the paths of the makefile must be altered. The

hardware library path is also used in the linker script to refer to the vector table location and

this must also be altered. It soon becomes easy for a game developer to get out of sync with

the four separate libraries in both of these files, causing compilation or linking errors. It is up

to them to remember to maintain their project files.

• Since the libraries are all compiled separately before the project is compiled and linked with

them, development on the libraries can become tedious, e.g. if something is changed in the

hardware library, it must be recompiled, since the other libraries have dependencies on it

they must be recompiled, before a project can be compiled to actually test the changes.

• The Pluto range is responsible for the majority of Hebers technical support effort. Due to the

code being closed source and completely proprietary, maintaining it and removing bugs,

while other engineers are continually adding features is a big undertaking.

Introduction 7

1.1.2 The problem

So far the hardware in the Pluto range has not presented a significant problem as far as writing

drivers from scratch is concerned. However Hebers future boards will be more powerful, possibly

featuring sophisticated peripheral interfaces including USB and Ethernet. The software architecture

in place may restrict future development on these new products. It is not feasible to write a TCP/IP

stack from scratch for Ethernet, or a USB stack along with drivers for every plausible USB device

which could be used in a fruit machine.

1.1.3 The solution

The increasing complexity of hardware interfaces and peripheral buses may be handled by providing

support for an Operating System (OS) on future boards. Future Pluto platforms may therefore require

moving to an OS as the software base. The bulk of the driver development will have been done, and

a support community can aid in solving bugs.

It was therefore decided to port an OS to the current board, the Pluto 6.

1.2 Choosing an OS

The OS chosen was uClinux – a fork of Linux with alterations to allow it to run on low cost micro

controllers with no memory management unit. UClinux was used for the following reasons:

• The CPU on the board is a Motorola ColdFire, which has no MMU. UClinux is designed for exactly

this level of micro controller, hence the ColdFire range is one of the architectures most strongly

supported the operating system.

• UClinux is similar enough to Linux that the knowledge gained from writing drivers for the project

would be useful for many other systems running a Linux port. This was the main deterrent from

using one of the numerous real time executives available for the ColdFire, such as FreeRTOS or

VxWorks.

• UClinux is open source, so it can be fully debugged. Access to the source code is also important in

order to make sufficient alterations kernel for it to run on the board with the right memory map.

• UClinux is free.

• UClinux has a strong community support base, due to its wide use across multiple architectures.

1.3 Requirements

The Pluto 6 was not expected to perform well running an OS, but would serve as a case study for

Introduction 8

Heber, as well as an interesting project. The specification for the project was therefore left open,

however suggested drivers to write for the board included:

• An IDE driver to access a file system on the Compact Flash card.

• Communication with the PIC micro controller via the I2C bus, allowing access to a real time clock

and security logs.

• Communication with the EEPROM via I2C, possibly accessible as a character based device, e.g. /

dev/e2rom.

• Reading/writing of the general purpose I/O and lamps, possibly accessible as individual files in /

proc.

• Frame buffer driver for the Cremson Graphical Processing Unit (GPU), possibly leading to a driver

for the TinyX X server.

• Sound driver, possibly integrated with Advanced Linux Sound Architecture.

1.4 Project life cycle

The project life cycle for this project was different to that of regular software development. Because

of the amount of fixed variables in the system, i.e. the kernel software architecture and the

hardware of the board, the project was split into separate stages. The first stage was to port the

kernel to run from RAM, using rapid prototyping methods. Each stage following that was to develop a

device driver, the methods and design techniques used in these stages varied from bottom-up to

top-down depending on the level of provision in the kernel for that type of device (e.g. the VFD driver

was flexible, while the frame buffer and IDE has a very structured kernel subsystem). The only

dependency the porting stage had on the later driver stages was for the IDE driver. In order to

extend the Kernel to execute in place a disk based file system was required.

The Pluto 6 board and the current system 9

2 The Pluto 6 board and the current system
The Pluto 6 is an embedded control board intended for use in coin operated gambling machines. The

board has numerous features to target this area:

• The main CPU of the board - a Motorola ColdFire, executes the game. It also provides stereo audio

using DMA.

• 2Mb of DRAM is used to run the game, also present is 256Kb of battery backed SRAM for

frequently accessed or non volatile data.

• IO support - a FPGA controls up to 512 multiplexed lamps, each at 8 brightness levels. It also

provides registers to control 64 open drain outputs, and read 32 input switches. The outputs can

be used to drive stepper motors used in the reels of fruit machine cabinets.

• Security - the FPGA allows the ColdFire code to be locked to a certain board, preventing piracy.

• A secondary PIC micro controller runs from battery at power down to provide a real time clock, as

well as monitoring of security door switches, readings of which are stored in a log. The PIC also

reads inputs allowing the percentage payout of a game to be set. Code running on the ColdFire

can get data from the PIC over I2C.

• 6 serial ports - 2 in the ColdFire, 2 in the FPGA and 2 in a DUART IC. These can all be routed

independently by the FPGA to 1 of 4 RS232 ports, 1 RS485, 1 TTL and 2 ccTalk (commonly used by

coin acceptors)

• An IDE connection can interface to a hard disc/CompactFlash card (running in true IDE mode) or a

CD drive. The Heber boot loader loads the game from disc in S19 format.

• 2 expansion slots allow the board to be fitted with one or two Calypso 32 graphics cards. These

are fitted with 32Mb of SDRAM and a Fujitsu Cremson video controller. Standard VGA connectors

are provided on the Pluto 6 board. Graphics for video based games can be loaded from an IDE

device.

The Pluto 6 is shown here:

The Pluto 6 board and the current system 10

The above image shows two Calypso 32 graphics card inserted. The front side of the Calypso 32

graphics card is shown here:

Illustration 1 The Pluto 6 gambling machine control board

ColdFire CPU

CompactFlash/IDE
connectors

Microchip
PIC

Calypso 32
graphics card

VGA connectors

Xilinx FPGA

Serial port
connections

DRAM

IO connections

Boot ROM

DUART

Battery

The Pluto 6 board and the current system 11

2.1 ColdFire CPU background

The CPU used on the Heber Pluto 6 is the Motorola ColdFire 5206e. At the time of writing it is not the

most current ColdFire version, newer ones have other peripherals, and the more advanced V4 core.

Other ColdFire variants and their features at the time of writing are shown in this table:

Device

Dhrys. 2.1

 MIPS @

Max. MHz

Cache

SRAM

Embedded

Flash

Serial

Timers

CS

GPIO

DM

A

DRAM

Controller

Operating

Frequency

(MHz)

Applications

5206e 50

4 KB I

8 KB

-

2 UARTs,

1 I2C

2

8

8

2-

ch.
FPM, EDO 40, 54

Vacuum System

Controllers, Printer

and LAN Interfaces

5207/08 159

8K I/D

16 KB

-

3 UARTs,

1 opt FEC

1 I2C, 1

QSPI

8

8

Up to 50

16-

ch.

DDR/SDR

SDRAM
166

Imaging Systems,

POS Printers,

Networking,

Medical Equipment

5211/12/1

3
76

-

Up to 32

KB

Up to 256

KB

3 UARTs,

1 I2C, 1

QSPI

1 opt CAN

Up to 16

0

Up to 55

4-

ch.
- 66, 80 Low Power Entry-Level

Illustration 2 The Calypso 32 graphics card

Cremson video
controller

DRAM

The Pluto 6 board and the current system 12

Device

Dhrys. 2.1

 MIPS @

Max. MHz

Cache

SRAM

Embedded

Flash

Serial

Timers

CS

GPIO

DM

A

DRAM

Controller

Operating

Frequency

(MHz)

Applications

5214/16 63

2 KB I

64 KB

Up to 512

KB

3 UARTs,

1 I2C,

1 CAN

8 + 4 DMA

7

Up to 150

4-

ch.

SDR

SDRAM
66

POS, Vending,

Industrial Control,

Security

523x 150

8 KB I/D

64 KB

-

3 UARTs,

2 CANs,

1 FEC,

QSPI,

I2C Opt

Encryptio

n

Up to 32-

ch. eTPU, 4

DMA

8

Up to 113

4-

ch.

SDR

SDRAM

80, 100,

150

Motor Control,

Industrial Control

5249(L) 125

8 KB I

96 KB

-

2 UARTs,

2 I 2 C , 4

I2 S ,

1 QSPI

2

4

Up to 47

4-

ch.

SDR

SDRAM
140

Digital Audio,

Industrial Control,

Imaging

5270/71 96

8 KB

Config.

64 KB

-

3 UARTs,

1 I2C, 1

FEC,

1 QSPI

8

8

Up to 61

4-

ch.

SDR

SDRAM
100

POS, Security,

Networking, Gaming,

Medical

5272 63

1 KB I

4 KB

-

2 UARTs,

1 USB,

1 FEC, 1

QSPI

4

8

Up to 32

2-

ch.

SDR

SDRAM
66

Imaging Systems,

Security, Networking,

Telecommunications

5274(L)/

5275(L)
159

16 KB

Config.

64 KB

-

3 UARTs,

1 I2C,

Up to 2

FECs,

1 USB, 1

QSPI

8

8

Up to 61

4-

ch.

DDR

SDRAM
133, 166

POS, Security,

Networking, Gaming,

Medical

528x 76

2 KB I

64 KB

Up to 512

KB

3 UARTs,

1 I 2C ,

1 FEC, 1

CAN

8 + 4 DMA

7

Up to 150

4-

ch.

SDR

SDRAM
66, 80

Networking,

Industrial Control,

Security

5307 75

8 KB U

4 KB

-

2 UARTs,

1 I2 C

2

8

16

4-

ch.

SDR

SDRAM,

FPM, EDO

66, 90

Printer Servers,

Barcode Printers,

DVB Boxes

The Pluto 6 board and the current system 13

Device

Dhrys. 2.1

 MIPS @

Max. MHz

Cache

SRAM

Embedded

Flash

Serial

Timers

CS

GPIO

DM

A

DRAM

Controller

Operating

Frequency

(MHz)

Applications

532x 211

16 KB

32 KB

-

3 UARTs,

1 I2C, 1

FECs,

QSPI, USB

2.0,

opt. CAN,

SSI

Up to 94
16-

ch.

DDR/SDR

SDRAM
240

POS, Security/Access,

Control, Health Care,

Building and Factory

Automation

537x 211

16 KB

32 KB

-

3 UARTs,

1 I2C,

QSPI,

SSI

Up to 62
16-

ch.

DDR/SDR

SDRAM
240

VoIP, Security/Access,

Control, Health Care,

Building and Factory

Automation

5407 316

16 KB I, 8

KB D

4 KB

-

1 UART,

1 USART,

1 I 2C

2

8

16

4-

ch.

SDR

SDRAM,

FPM, EDO

162, 220

Mediaweb Boxes,

Digital Video Recorders,

Telecom Cards

547x 410

32 KB I, 32

KB D

32 KB

-

4 PSCs,

Up to 2

FECs,

1 I2C, 1

PCI,

1 DSPI,

opt. USB

2.0

6

6

Up to 99

16-

ch.

DDR/SDR

SDRAM
200, 266

POS, Network-

Attached Storage,

Security/Access Control

548x 308

32 KB I, 32

KB D

32 KB

-

4 PSCs,

Up to 2

FECs,

1 I2C, 1

PCI, 1

DSPI,

opt. USB

2.0, 2

CANs

6

6

Up to 99

16-

ch.

DDR/SDR

SDRAM
166, 200

Building and

Factory Automation,

Process Control

Equipment

Table 1 Feature comparison of the ColdFire range

See appendix A for further information on the ColdFire and its differences to the 68000.

2.2 Further Pluto 6 information

See appendix B for details of the other hardware present on the Pluto 6 board, and how the ColdFire

is configured for it.

The Pluto 6 board and the current system 14

2.3 Current software system

See appendix C for details of the current Heber software architecture.

uClinux 15

3 uClinux

3.1 Overview

The uClinux kernel was created to support mid range micro controller units which operate at a

sufficient speed can address enough memory to run an OS, but do not have a memory management

unit (MMU). UClinux is distributed as patches to the main Linux kernel sources, versions are available

for releases of the 2.0, 2.4 and 2.6 series kernels. Regular distribution releases are also available,

comprising the following:

• the latest pre-patched versions of the 2.0, 2.4 and 2.6 kernel sources

• a much smaller standard C library called uClibc which has almost all the functionality of Glibc,

• a large list of applications modified to use the much smaller library and less capable kernel,

including BusyBox, Tinylogin and MicroWindows/Nano-X.

The minimal changes required to port applications to uClinux are explained later in the chapter.

The kernel source patches add new architecture trees under the /arch directory, e.g. arm-nommu,

blackfin, cris, m68k-nommu, niosnommu. As well as the extra architectures, several drivers for

peripherals on more popular boards featuring the MMU-less architectures are added in the /drivers

directory. The most notable change in the kernel is in the area of memory management, where the

directory /mmnommu is added as a counterpart to the /mm directory in the top level of the source

tree.

3.2 History

The history of uClinux is shown in the following table:

Date Event

January

1998

The first system without a MMU to run a Linux kernel port was the Motorola Dragonball

MC68328 using a modified 2.0.33 kernel, implemented in a SCADA controller. Kenneth

Albanowski and Dr Jeff Dione undertook the work at a company called Rt-Control.

February

1998

The work on uClinux is released publicly under the GPL. The first target platform to be

shown publicly running the port was a Palm Pilot PDA with a custom boot loader written

especially for the project.

uClinux 16

Date Event

September

1998

Refinement of the port continued, and uClinux 2.0.38 was released which became the

most widely popular version for use in embedded devices. The popularity was

increased by Rt-Controls focus on using the kernel to implement actual working

embedded devices, rather than other commercial embedded Linux distributions who

focused on software only, e.g. porting the kernel and writing toolkits, then handing

further development over to device manufacturers.

December

1998

The hardware focus at Rt-Control was re-enforced by the decision to design and

manufacture a single board computer (SBC) known as the uCsimm. This board is an

inch high, with a standard 30 pin SIMM form factor. It featured a Motorola DragonBall

68EZ328 similar to that used on the original port, and was equipped with 2Mb ROM,

8Mb RAM, Ethernet controller, serial port and I2C. More importantly the uCsimm was

specifically designed to run the uClinux OS, and it became popular for numerous

applications. The porting of RTLinux kernel patches to uClinux for this board allowed it

to be used as a real time device, for example a robotic arm axis controller, which could

receive instructions via Ethernet.

While Rt-Control were designing their tiny SBC, a company specialising in embedded

VPN and Internet appliances called Moreton Bay Ventures were designing the hardware

to go into their NetTel line of network routers. For this application they chose Motorola

ColdFire CPUs which were to run uClinux, a major design win for the platform.

February

1999

As a result of the design choices at Moreton Bay new ports were added for the Motorola

ColdFire 5206 and 5307 architectures. Moreton Bay and Rt-Control worked closely

together during this period creating saleable and useful embedded Linux devices. As

interest in the ports grew from other device manufacturers and enthusiasts, Rt-Control

began distributing CDs containing the patched kernel, a copy of the uClibc library,

patched applications and cross compiling tool chains.

uClinux 17

Date Event

February

2000

Rt-Control was acquired by a larger embedded Linux company called Lineo. Lineo's

main product was an embedded Linux software development kit known as Embeddix,

which closely followed the trends of larger Linux systems. During the takeover process

the issue of whether to port uClinux to the 2.2 kernel had arisen. Pressure was applied

from Lineo, who faced expectations from outside market forces to be providing the

latest kernel versions in their products. There was little advantage in using the 2.2

kernel in MMU-less devices, whilst requiring large changes. It was found that merging

the 2.0.3x uClinux code and Lineos Embeddix Linux 2.2 SDK was overly complex

because the SDK required proprietary start up code in the kernels it built. Implementing

this code in the uClinux ports would add little value to the functionality of the working

systems, and involve significant changes to the code. A further unresolved issue was

how to include the MMU-less support in the Embeddix SDK. The decision was made to

leave uClinux out of Embeddix, as a result development slowed, and 2.0.3x uClinux

kernels remained in use for some time.

However Lineo did recognise the potential of uClinux, and resisted several outsider

attempts to take over the project. Soon after the acquisition the original Rt-Control

members were allowed to continue uClinux development.

The lack of progression to new kernel versions was fortunate for uClinux. The 2.2

kernel code was being developed for larger desktop systems with enhanced feature

sets, resulting in kernel sizes that were unreasonably large for uClinux based devices.

Kernels using 2.0 could be as small as 200Kb (with networking support), whilst 2.2

kernels with the same functionality were typically twice as big. Drivers added to the 2.2

kernel could be ported to the 2.0 kernel if required, and required reworking anyway to

allow for the lack of fork() command, and the mmap() differences in an MMU-less

system.

March

2000

Lineo acquired Moreton Bay Ventures. The acquisition enhanced Lineos expertise base,

gave them an office in Australia and allowed Rt-Control and Moreton bay to work more

closely as they were now owned by the same parent company.

September

2000

Jeff Dionne and John Drabik announce they have ported uClinux to an FPGA running the

Leon SPARC open source core.

uClinux 18

Date Event

December

2000

The developments in the 2.4 Linux kernel were deemed valuable enough to warrant its

use on MMU-less systems, so due to careful preparation - less than a week after the

official 2.4 Linux kernel was released, it was followed by the first uClinux version. The

port was done by former members of both Rt-Control and Moreton Bay at Lineo,

including David McCullough and Greg Ungerer. Since then most interest around uClinux

has been on 2.4, but there is still strong interest and support for 2.0 due to its small

footprint.

March

2001

The uCsimm SBC was superseded by the uCdimm, with a faster Dragonball CPU, SPI,

serial ports and Ethernet in a DIMM form factor. The uCdimm was sold pre-flashed with

its own uClinux port, and marketed by Lineo.

June 2001 Lineo announced a new uClinux development board based around an ARM7 CPU.

December

2001

Around this time Lineo decided to divest itself of several non core businesses. The

original Rt-Control group were spun-off. By February 2002 the Rt-Control group had

formed a new company called Arcturus Networks and had maintained the rights to

uClinux.

Also spun out of Lineo at the same time was Moreton Bay, who then became Snapgear.

These two new companies continued working closely together much as they had done

before, hosting and managing the uClinux project, and using it as the base for saleable

network devices for VPNs, gateways and control systems.

January

2002

A port of uClinux 2.0.38 was released for the Hitachi H8300.

February

2002

Bernhard Kuhns releases an RTAI port for uClinux on the Motorola ColdFire, providing a

hard real time solution for deeply embedded Linux devices.

March

2002

The uCdimm line grew with the addition of a new board, running on a ColdFire 5272

CPU. The product line is now marketed by Arcturus networks.

April 2002 Arcturus Networks officially took on the hosting of the uClinux project.

July 2002 Greg Ungerer of Snapgear releases the first uClinux distribution for download. This

contains patched 2.0 and 2.4 kernels, uC-Libc and uClibc libraries, and patched user

programs, including Busybox and Microwindows. Prior to this release, only patches

were supplied for download, which then had to be applied to the standard kernel which

was obtained separately.

Snapgear also announce a new website - uCdot, which they would host to announce

advances in uClinux.

May 2003 David McCullough of Snapgear released a uClinux port for the Hitachi H8 architecture.

October

2003

ADI released a port of uClinux based on kernel 2.4.6 for their own Blackfin DSP

processor.

uClinux 19

Date Event

November

2003

Dr John Williams of the University of Queensland in Brisbane, Australia released a

uClinux port for the Microblaze soft core CPU - a 32 bit RISC processor synthesized for

Xilinx FPGAs.

December

2003

The official release of the 2.6 kernel was closely followed by the uClinux version.

Uptake of 2.6 was slow due to the larger footprint and need to port the start-up code

for each board to the new kernel. 2.4 remained the main kernel series in use on

embedded MMU-less devices.

April 2004 Arcturus Networks released a new board in the uCdimm series based on the Freescale

ColdFire 5282.

Table 2 The history of uClinux

Since 2004 support has continued with releases of standard Linux kernels closely followed by uClinux

counterparts. Running a Linux kernel on devices of such low specification mentioned above

demonstrates the flexibility of the system. During its history uClinux has been ported to many other

MMU-less architectures not mentioned above including the ETRAX, ARM7TDMI and other ARM cores,

the NEC v850E and the Intel i960. uClinux has rapidly become a popular choice for embedded Linux

systems running on MMU-less CPUs, and also MMU enabled systems, with the MMU turned off for

extra speed.

The distribution releases now have built in support for a large range of evaluation boards and target

platforms. Non-MMU kernels can be readily run on commercial SBCs, evaluation boards, network

routers, soft core CPUs running in FPGAs, and are also popular with hobbyists for porting to a range

of unintended targets including the Apple iPod and Nintendo Gameboy Advance.

3.3 Differences to the normal kernel

Most differences to the mainline Linux kernel encountered in uClinux stem from the lack of memory

management in the hardware of the target architectures. This has effects both in the kernel and for

user processes.

3.3.1 The role of the Memory management Unit

A MMU has two main purposes:

• To present a virtual address space to user space applications.

• To prevent the Kernel and applications from corrupting each other

uClinux 20

3.3.1.1 Virtual memory

Each application is linked to run from the same virtual address (usually 0), which is done because it

isn't known at link time what memory address the kernel will load the program into at run time.

While running in user mode the CPU translates virtual addresses given to it by the running process to

physical ones, which point to the actual memory chips in which the code or data is residing. The

MMU in the CPU performs this operation transparently during the fetch execute cycle, and the normal

kernel relies on this management in order to hand control of the CPU over to a process which thinks

it is located in one contiguous block. In reality the process could be scattered in sections known as

page frames, each containing a "page" of memory. The page frame size (typically 4Kb) is determined

by the paging unit of the MMU.

For each running process on the system the kernel must set up and maintain a hierarchical page

index, allowing each virtual address to be translated into the offset within a specific page. For

example, a processes page index on an Intel® x86 comprises a page directory containing entries to

multiple page tables, which in turn point to multiple pages. During code execution the running

process will use logical addresses which are passed through an x86 specific layer known as the

segmentation unit and translated into linear addresses. The linear addresses then are passed to the

paging unit and split down into fields. The first field indexes the page directory to get the page table,

the second field indexes the page table to get the page, and finally the offset field points into the

page to the memory location required. The final result is the physical memory address. The page

index does not need to be fully populated, hence making it hierarchical will save memory from being

swallowed up by page directories and tables for small processes requiring only limited memory.

With the paging unit in place a page can be located anywhere in actual memory in relation to other

pages. The kernel can also move pages from memory into a swap area on a hard disk, providing a

full blown virtual memory system. When a process tries to access a swapped out page, an exception

occurs. The kernel handles the exception by reading the required page into memory, updating the

page table, and continuing the process.

3.3.1.2 Protection

The MMU also stops processes from overwriting each other or worse, the kernel. Should a process try

to write outside of the virtual address space it is currently allocated an exception would be flagged,

usually causing the kernel to interrupt and kill off the rogue process.

3.3.2 Running an OS without a MMU

Without a MMU, a CPU has no virtual addresses, only physical ones. Without virtual addresses, there

is no need for a paging unit, and so the hardware of the CPU has no notion of pages. Therefore in

order to allow processes to run without the assistance of an MMU, the uClinux kernel must take the

uClinux 21

following measures:

All user processes must be linked to absolute addresses. Every memory address given in any

assembly instruction must be a valid physical address. Without paging in hardware, processes can't

be split up, so each must be located in memory entirely contiguously.

A process may have others residing above and below it in memory and therefore cannot be allowed

to increase the amount of memory allocated to itself at run time. On MMU systems the malloc

implementation typically calls the brk system call or the sbrk library wrapper. These calls allocate

more space at the end of a processes data segment, thereby increasing the processes address

space. When the address space is virtual, this isn't a problem, however on uClinux this address

space is physical, increasing it would result in overwriting the start of the next process in physical

memory. In order to cope with this, uClinux doesn't implement brk or sbrk, but instead collects the

free memory of the system into a single pool of addresses. Any applications which call sbrk must be

patched. Allocations are made to processes from this pool using a special malloc implementation.

The disadvantage of this technique is that rogue processes can take all the available memory in the

system. The advantage of the global pool is that it is managed by the kernel. This means the

allocation is transparent to any code that calls malloc, unlike other embedded solutions which

require extra code in each application. Also, only the amount of memory required is allocated as

opposed to a pre-allocated heap scheme, and memory is easily returned to the global pool as soon

as it is freed.

Traditional executable formats for user processes (e.g. ELF) are reliant on virtual memory and

therefore cannot be linked to and run from absolute physical memory addresses. To overcome this

problem uClinux adds support for FLAT binary executables with the loader code in

uClinux/fs/binfmt_flat.c. A FLAT binary consists of the standard text, data and bss sections, but also

contains a relocation table created by the elf2flt tool when the flat format binary is created. The

relocation table is required because it isn't known at link time where the data and bss sections will

be loaded in memory, and all the addresses used must be actual physical addresses. There are two

types of relocation table – Global Offset Table and code RELOCs. The GOT is optional, and if included

is placed before the data section. The GOT contains a table of offset addresses pointing into the data

section at addresses which need to be altered at run time. When loaded these offsets are added to

the actual location of the loaded data section to create physical addresses. The table is then used to

step through the loaded data and alter all the addresses within it to point to valid addresses. Code

RELOCS use a similar principle to GOT, a table of addresses is created by elf2flt and when loaded

these addresses point into values in the data section containing pointers, which are then altered to

the correct address values.

uClinux 22

A useful side effect of the need to relocate the data and bss sections is that it is easy to implement

execute in place (XIP), where the code is left in ROM while the data and BSS are copied to RAM thus

freeing up memory. However, the relocation tables cannot be used to alter values in the text section

of the binary if XIP is to be used, for the following reasons:

1. the same copy of the code in the text section will be used by each instance of the running

program

2. the text section may be in ROM.

In order for user binaries to execute in place there must be support in the elf2flt tool, the kernel FLAT

binary loader code, the compiler tool chain which must create position independent code, and the

crt0.o generated by the library.

The kernel itself may be XIP enabled, but this isn't dependent on, or specific to uClinux. As long as

the text, data, init and bss sections of the kernel image are linked into the appropriate addresses

and the kernel entry assembly copies the data section from its Virtual Memory Address (VMA) to its

Load Memory Address (LMA), the kernel code can be executed from read only memory (e.g. flash). In

order for this to work there must be no variables in the text section of the kernel binary, which rules

out certain ports of the kernel, but not the ColdFire port used in this project.

Each process in a multitasking OS requires its own stack. In an MMU system, when a process writes

over the top of the stack, an exception is thrown, causing the kernel to step in and allocate more

memory, allowing the stack to “grow” as required. As mentioned, a running process on an MMU-less

system cannot increase in size dynamically at run time, so a fixed stack size must be set at compile

time, and allocated at load time. The FLAT format provides a fixed user process stack size, which is

set using the flag passed to the compiler:

$ FLTFLAGS = -s <stacksize>

$ export FLTFLAGS

$ make application

or changed by calling the flthdr command on the compiled FLAT binary:

flthdr -s <stacksize> executable

The default stack size is 4Kb, although for larger applications such as the busybox binary, a stack

size of 20Kb is more suitable. Whilst writing or porting an application for uClinux, developers must be

mindful about stack usage. If the limit is exceeded other processes or even the kernel will be

uClinux 23

corrupted.

Swapping running processes to disk is not feasible to implement, aside from no pages, most uClinux

systems don't have hard disks.

uClinux provides an alternative kernel memory allocator. The standard Linux kernel uses a power of

2 memory allocator by default. This groups all the free regions by size in powers of 2 (e.g. Groups for

1, 2, 4, 8, 16 pages etc.) Newly freed regions are split into the nearest power of 2, the remainder is

split in the same manner until all the free pages are put into groups. This is a fast method of finding

memory regions large enough to satisfy requests. However, every allocation must be a power of 2,

which may be wasteful, e.g. A request for 129Kb will allocate 256Kb, wasting 127Kb. This is fine for

larger systems, but unacceptable on the memory constrained platforms uClinux is run on. The

alternative allocator is still based around pages, even though MMU-less hardware has no notion of

them. A large portion of the kernel source including many drivers assumes memory is available in

pages, aligned on the appropriate page boundary. Removing all use of pages from the kernel would

represent a huge porting effort.

The uClinux kernel memory allocator is called page_alloc2 or kmalloc2. It uses power of 2 method on

a byte basis for allocations up to one page in size, then allocates blocks of memory rounded up to

the page size. Page_alloc2 attempts to avoid memory fragmentation - allocations of two or less

pages are made from the start of memory onwards, larger requests are taken from end of memory

back. As mentioned uClinux requires large blocks of contiguous memory to load processes, so

reducing memory fragmentation is important. RAM constrained systems may find that although there

is enough free RAM for a request, there isn't enough in a contiguous block to be able to use it. De-

fragmenting memory on the fly isn't possible because the contents of an address can't be moved if

an active process is using it, the best that can be achieved is to allocate memory wisely before

processes are loaded.

uClinux has no fork() system call. On an MMU system, calling fork() would create a new child

instance of the process with the same state. The data and bss sections, the heap and the stack of

the process are replicated in new areas of memory on the system. The process can continue to use

the same addresses to access and change data because the addresses are virtual and will be

decoded to unique memory locations by the MMU. If the unmodified fork() were called by a process

on uClinux there would be two possibilities:

1. The child process could share its data with the parent. This will cause problems because the

application may be written with the assumption that this is not how fork operates. The two

processes could instantly go on to change the data somehow as they run and when they are

scheduled in and out of the CPU they could find the data is different to how they left it. This would

lead to errors at best and probably corruption of the whole system at worst (especially since

uClinux 24

uClinux has no memory protection)

2. The data of the child process is replicated elsewhere, however all the pointers the process holds

to the data are to physical memory addresses and will suddenly become invalid. If the process

uses malloc to dynamically allocate more memory at runtime there is no way to account for this in

the FLAT relocation tables created at build time by elf2flt.

The simplest solution is to just not have the fork() system call at all. Similar functionality is provided

by the vfork() call, it is known by programmers that after this call the parent and child will share the

same set of process data. The parent will be suspended until the child either runs a new process by

calling exec() (At which point a new process and associated data is created, removing the need to

share the parents), or exits. When Linux applications are ported to uClinux, any calls to fork() must

be altered to vfork(), allowing programmers to check that no data is modified by the child before it

calls exec(). This technique allows multi-tasking in uClinux, after a few adjustments.

Making an application use vfork instead of fork usually falls into the absolutely simple or

incredibly difficult category. Generally, if the application does not fork and then exec()

almost immediately, it needs to be checked carefully before fork() can be replaced with vfork

().

(McCullough 2004)

As mentioned above there is no brk() system call in the uClinux kernel. In standard C libraries (e.g.

Glibc) there is a wrapper for brk() called sbrk() which was originally absent from uClibc, the library

that usually accompanies uClinux, until recent later versions which implement sbrk() using the global

kernel memory pool rather than expanding the process address space. It is often simpler and more

portable however to adjust applications not to use the calls at all.

Certain kernel features are heavily dependent on virtual memory and aren't implemented in uClinux

at all, such as tmpfs.

3.3.3 Other differences

Aside from the effects of the lack of memory management hardware, uClinux is typically ran on a

variety of unusual and deeply embedded micro controllers. This requires a certain amount of porting

work and consideration both in and outside the kernel:

A lot of devices which are used on larger architectures can be put on a SBC (e.g. network interfaces,

IDE drives etc.) The drivers for these devices are typically written to operate through certain buses

uClinux 25

such as ISA and PCI, resulting in the use low interrupt numbers below 16, and address ranges below

0x3ff which are the consequence of legacy hardware on platforms such as the x86. Most micro

controllers running uClinux have no built in support for particular buses and access devices through

the local bus interface. Access routines in device drivers to be ported from an ISA platform for

example must be altered to use 8/16/32 bit memory mapped IO addresses instead of 16 bit port

addresses. Interrupt vector numbers must be selected from the range available on the micro

controller rather than one below 16 (typically the vector number is set by the design of the board

and cannot be changed, as opposed to the dynamic numbers assigned on the PC).

The mmap() system call is used to map a file into memory. Its usage on uClinux can be controlled so

that no extra memory allocation is performed if the file is already in memory within a romfs file

system. This efficiency is preferred on the low memory platforms on which uClinux is used, otherwise

it must find and allocate a single block of memory large enough, then copy the data from the file into

it. In order to avoid memory allocation using mmap certain conditions must be met:

• The romfs file system must be used, because it is the only file system which guarantees that files

will be stored contiguously.

• Only read only mappings can be shared, so therefore all memory mapped files must be read only,

to avoid memory allocation.

• The file must be either in ROM or RAM, or otherwise contained within the CPUs address space. A

file cannot be directly memory mapped if it must first be read from a disc.

3.4 Summary

The result of running a Linux kernel on MMU-less hardware aside from the need to adjust

applications which use fork(), is a lack of memory protection provided inherently by the MMU for the

kernel and processes. The standard kernel uses the MMU as a generic method to protect the kernel

from being overwritten by running processes, and protects each process from others. Without a MMU

this protection is not provided, allowing programming errors to result in strange erratic behaviour

instead of segmentation faults.

The ColdFire on the Pluto 6 provides only very basic memory protection at the device level. Each chip

select mask register and DRAM control mask register contains bits in the lower word to allow data or

code access for the user or supervisor mode. This could conceivably be used to implement memory

protection, by running the kernel from one chip select device or DRAM bank, while allocating memory

for the processes and running them from another. However this would not be portable since every

board has a different memory configuration, so ensuring the access bits are set correctly for each

chip select would make the porting process much more complicate and difficult to maintain. Also

many boards only have one bank of RAM and one ROM device, in which case the kernel would have

uClinux 26

to store its data on the same memory device as the user processes, so the ColdFire couldn't stop

code executing in user mode from overwriting the kernel data. The kernel code could be stored in

ROM, but since this can't be written anyway, the protection would be obsolete.

It is perhaps simplest therefore to accept that MMU-less micro controllers such as the ColdFire

cannot do adequate memory protection and concentrate on creating portable workarounds for the

problem.

Porting uClinux to the Pluto 6 27

4 Porting uClinux to the Pluto 6
Before describing the process of porting a uClinux kernel, it is useful to understand the differences at

boot between uClinux and the normal kernel.

4.1 Linux kernel boot sequence

When a computer system (anything from a large server to a single board embedded system) is

turned on, the method in which the hardware is initialised, the kernel loaded into memory and then

executed is totally architecture dependent. Only when the start_kernel() function is reached (often

the earliest part of the kernel to be written in C, rather than assembly) do the many diverse ports of

the kernel begin to show common functionality.

The architecture-independent starting point is start_kernel in init/main.c. This function is

invoked from architecture-specific code, to which it never returns. It is in charge of spinning

the wheel and can thus be considered the "mother of all functions," the first breath in the

computer's life. Before start_kernel, there was chaos.

(Rubini and Corbet, 2001)

An analysis the boot sequence of uClinux compared to the more complex operation required on the

x86 PC architecture up until C code is run may be found in appendix D.

4.1.1 After assembly

Once start_kernel() has been reached, the various ports of uClinux and the standard kernel are all

running the same code in linux/init/main.c. However, many of the functions called are unique to each

system, residing in files under the arch/ branch in the sources. In particular setup_arch(), init_IRQ()

and mem_init(). If a boot loader is used, the method of passing command line options to the kernel

varies depending on the boot loader, architecture and even the board for non standardised

architectures. Usually, an ASCII string is left in a certain location, such as after the BSS section of the

kernel. To deal with this the setup_arch() function takes a char pointer and points it at the string.

setup_arch() is generally populated with #ifdefs for various machine types containing code which

either sets the pointer to the string where it resides, or copies it from a variable created in the boot

assembly.

It is during the later stages of the boot in start_kernel() that mistakes in the earlier assembly can

cause problems, making them difficult to track down. On uClinux this is particularly the case with the

assembly variables containing pointers to the start and end of RAM, which if wrong can cause

Porting uClinux to the Pluto 6 28

various errors, as was found when porting uClinux to the Pluto 6, described below.

4.2 Design

4.2.1 Kernel version

The 2.4 kernel in the uClinux distribution was chosen for the port, this was because the 2.4 kernel

series had support for the most uClinux systems, and was at the time the most used in the uClinux

community. This meant the most help would be available if required, many questions were already

answered on the uClinux mailing list, and there were example files for other boards to examine.

4.2.2 Kernel location options

There are two main choices of where to place the kernel at run time in an embedded system, RAM or

ROM. Which is used is generally determined by the facilities provided by the board. For the Pluto 6

there are several methods to execute code on the ColdFire MCU, and so get an initial uClinux kernel

running on the board:

• The ColdFire on the board has 16Kb of internal SRAM, and the Pluto 6 has a 256Kb external SRAM

chip. These can be written to by other code, or programmed over BDM, but are both too small to

contain a kernel.

• The first code executed by the ColdFire at reset is contained in a 512kb flash EEPROM. This is still

a rather limited size for a uClinux kernel, which has a similar footprint to the standard one. The

EEPROM is a socketed PLCC packaged device, so could in theory be removed and replaced with a

larger one. There are various tools which can program flash devices in-circuit over the BDM cable,

including the open source bdm-load program, so removing the chip and placing it in a programmer

wouldn't be required for each new kernel build. Unfortunately in practice the catalogues of

numerous IC companies didn't contain a pin compatible PLCC packaged EEPROM chip in any size

larger than 512Kb, and this is too small for a kernel and a ROM file system. Although a kernel in

ROM can be debugged, hardware breakpoints can't be set(the instruction at the appropriate

location is replaced by a HALT), so this solution isn't viable for development purposes.

• The Pluto 6 also has a 1.5Mb bank of DRAM, where code is usually run from when the board is

used in gambling machines. This is more than large enough for the games and Heber libraries

which are normally run on the board, but only just large enough for a uClinux kernel. Code can be

downloaded to this memory over BDM and debugged fully. Alternatively the standard Heber boot

loader in the EEPROM can copy an S19 file from a FAT32 partition on the CompactFlash card to

the DRAM and execute it.

Using the DRAM provides the most room for a kernel and the ROMFS file system which is attached to

Porting uClinux to the Pluto 6 29

it by the uClinux build system. Using the Heber boot loader wouldn't provide any of the feedback

which the debugger would provide because it is very simple and has no user output, and the

Compact flash would need to be removed and mounted on the development host every time a new

kernel is to be tested.

So the initial approach chosen to run the kernel on the Pluto 6 was the simplest one – download the

kernel to the DRAM over BDM, where it can be debugged.

4.3 Implementation

4.3.1 Setting up a development environment

A Linux development host was used because this provides the most support for the build tools and

their requirements (e.g. Symbolic links are created for the Busy box target binaries, so they must be

built on a file system supporting sym-links). A pre-built cross compiling GCC tool chain was obtained,

built to compile for the m68k-elf target. A binary tool chain was downloaded instead of compiling one

from scratch for a number of reasons:

• Building a GCC tool chain from scratch is a very complicated procedure requiring certain versions

of a number of packages which must be combined to build successfully.

• A pre-built tool chain for the M68K is available which is well tested with the uClinux distribution

and is known to compile successfully for all supported variations of the ColdFire micro controller.

At Heber the tool chain used was m68k-coff-gcc, which was the most widely used binary format for

Linux kernels before 2.4. However the 2.4 series introduced the init calls mechanism:

The idea of init calls was added in version 2.3.13 and is not available in older kernels; it is

designed to avoid hairy #ifdef conditionals all over the initialization code. Every optional

kernel feature (device driver or whatever) must be initialized only if configured in the

system, so the call to initialization functions used to be surrounded by #ifdef

CONFIG_FEATURE and #endif. With init calls, each optional feature declares its own

initialization function; the compilation process then places a reference to the function in a

special ELF section. At boot time, do_initcalls scans the ELF section to invoke all the relevant

initialization functions. (Corbet et al, 2001)

The init sections also allowed GCC specifiers to be used on functions and variables throughout the

source, marking them as used for initialisation only. Once the kernel is up and running the memory

they occupy can be freed. These sections are defined in linux/include/linux/init.h:

#ifndef MODULE

Porting uClinux to the Pluto 6 30

#define __init __attribute__ ((__section__ (".text.init")))

#define __initdata __attribute__ ((__section__ (".data.init")))

#else

#define __init

#define __initdata

#endif

The result of these changes to the kernel is that all ports including uClinux versions had to adopt

new tool chains based around a more flexible format than COFF. The most commonly adopted format

was ELF which could handle the new init sections. Another advantage of ELF is that it can create the

fixed position kernel binary and position independent code user binaries in a single set of tools. COFF

required separate tool chains for the kernel and user binaries.

The uClinux distribution version 20041215 (latest at the time) was downloaded and extracted to /

usr/src/uClinux-dist/. This distribution contains kernel versions 2.0.39, 2.4.27 and 2.6.9.

At Heber, source level debugging on the Pluto 6 is carried out using a BDM module created by a

micro controller development tools specialist called Lauterbach, together with MS windows software

called Trace32. The Lauterbach suite is expensive and not supplied with the Pluto 6 development kit.

The Pluto 6 DK provides a simpler BDM module made by P&E Micro Systems, with MS Windows

software called ICDCFZ. This software allows examination of all ColdFire registers and addressable

memory, but isn't as functional as Lauterbachs, since it can't initialise the ColdFire to a working state

in a scripted fashion (the boot ROM must be run and then halted before downloading code). ICDCFZ

only supports debugging at assembly level only, a proprietary P&E symbol file format is required to

debug C source, to create these symbol files requires extra software costs more than the BDM

module and ICDCFZ software together.

Since the rest of the tool chain was to run in Linux, debugging in Windows was not preferred.

Conveniently, there is a Linux BDM driver and patches to GDB to support debugging 68K/ColdFire

targets over the P&E BDM module. Because GDB is a mature, capable debugger, it provides

advanced features for the ColdFire target as a matter of course. These features include full C source

level debugging as well as assembly stepping, using the well known symbol format in ELF binaries.

The other important feature is support for scripting via gdbinit scripts. Once the Module Base

Address Register is set, every other register in the ColdFire can be initialised to the correct value –

allowing the DRAM to be accessed, and code downloaded. This can all be done in a single script and

run every time GDB is started.

The m68k BDM tools package was downloaded, from this a Linux BDM driver module could be built,

which operates through device nodes on the host with major number 34, the minor number depends

Porting uClinux to the Pluto 6 31

on the target CPU (68K or ColdFire) and which parallel port the P&E module is connected to. For the

ColdFire on LPT1 the device file is:

crw-rw-rw- 1 root root 34, 3 2006-04-09 20:15 /dev/bdmcf0

The device driver operates together with a library which must be installed on the development host.

Also provided in the BDM tools package is a small test program called bdm-chk, when run with the

device file as an argument this prints the ColdFire type detected and the values of all the CPU

registers. See appendix J for the BDM-CHK output.

In practice the BDM device driver wouldn't connect to the target, however the BDM package also

provides a BDM network server which when run as root can access the parallel port using the ioperm

() system call for compatibility with other Unix versions. The test program and the supplied GDB

patches use the library to access the BDM module, the library first tries the Driver, if that fails it will

try to access the server on localhost by default. Installing the server and configuring inetd to start it

allowed debugging as a normal user without the device driver.

The lack of success with the Linux driver could have been due to peculiarities of the Linux

distribution used, however time constraints meant this couldn't be investigated further when a

working alternative was available.

In order to use GDB, version 6.0 was downloaded from gnu.org, the patches applied, and GDB built

with BDM support. GDB could then be connected to the target with the command:

(gdb) target bdm localhost:/dev/bdmcf0

The register values in the initialisation scripts used at Heber with the Lauterbach suite were referred

to in order to create a gdbinit script to bring the Pluto 6 board in to a usable state when GDB is run.

See appendix K for the gdbinit script listing.

This allowed the boot ROM to be removed from the board so there would be no doubt what state the

hardware was in.

Having set up the tool chain, the uClinux kernels and the Heber source code was set up with the LXR

cross referencing tool.

4.3.1.1 Testing the development environment

The GDB build and the script were tested by power cycling the board, initialising it using m68k-elf-

gdb only, and downloading the Heber COFF format demonstration files. Although the native format

for the patched GDB is ELF, it is backward compatible with older COFF binaries. The program counter

was set to the beginning of the DRAM, and the code executed, confirming that the GDB script had

Porting uClinux to the Pluto 6 32

set up the ColdFire correctly

4.3.2 Creating the initial port

There are two levels at which porting may be required for the m68knommu architecture under

uClinux:

• A new platform, this level is only used for the m68knommu architecture branch because there are

so many ColdFire versions, differences between each are dealt with at this level, such as presence

of a floating point unit, user/supervisor programming model variations, ans on chip peripherals.

The Pluto 6 uses the 5206e, which is already ported at this level.

• A new board. This layer deals with the differing memory maps on each board supported, it must

ensure that the kernel is linked to the correct physical memory address on the target, and that

the entry assembly correctly sets the amount of RAM present. The Pluto 6 is added at this level.

The starting point for adding the Pluto 6 board configuration is to create a new directory under:

uClinux-dist/linux-2.4.x/arch/m68knommu/platform/5206e/

Commonly the directory is named after the manufacturer of the board, this doesn't matter as long as

it matches that used in other configuration files. Into this directory must be added the entry

assembly for the kernel, and a linker description file:

uClinux-dist/linux-2.4.x/arch/m68knommu/platform/5206e/Heber/crt0_ram.S

uClinux-dist/linux-2.4.x/arch/m68knommu/platform/5206e/Heber/ram.ld

4.3.2.1 Entry assembly

The code in crt0_ram.S is GNU assembly for the M68k, its main responsibility is to create and fill in

certain variables describing the available memory, which are then referred to during memory

initialisation. These variables are:

• _rambase - the start of addressable memory, which is not necessarily the same as the start

address of the kernel code.

• _ramvec - the address in which the ColdFire vector table will be written to by the kernel.

• _ramstart - the start address of memory allocatable to user programs by the kernel, usually set to

the address at the end of the kernel BSS section.

• _ramend - the end address of memory.

• _current_task - this should be set to the address of the init_task_union structure, an initialised

Porting uClinux to the Pluto 6 33

task_struct used to set up the first task table, and specified to reside in the init section of the ELF.

This diagram illustrates how the variables should be set:

As well as setting these variables, the ColdFire stack pointer should be set to the end of ram, ready

for the CPU to run C code. The file follows a general template across all ColdFire boards, and the

values placed in these variables are defined at the top of the file, the initial values used were:

#define MEM_BASE 0x60000000

#define MEM_SIZE 0x0016fefc

#define VBR_BASE MEM_BASE

4.3.2.2 Linker description file

Ram.ld is a GNU linker description file in the format described in the ld info pages. On the Pluto 6 the

DRAM is configured by the DRAM Controller Address Register 0 (DCAR0) to be accessed at address

0x60000000, so this is the initial address that was placed into ram.ld:

MEMORY {

ram : ORIGIN = 0x60000000, LENGTH = 0x0016fefc

}

In order to use these new files, the board must be added to the configuration menu. The following

was added to the file uClinux-dist/linux-2.4.x/arch/m68knommu/config.in:

Illustration 3 Assembly variable settings in
crt0_ram.S

RAM

.text

.data

.romfs

0x60000000 _stext

_sdata

_sbss
_ebss

Dynamic
memory

0x6016FEFC

_rambase

_ramstart

_ramend

.bss

.init _current_task

Porting uClinux to the Pluto 6 34

if ["$CONFIG_M5206e" = "y"]; then

...

bool 'Heber Pluto 6 board support' CONFIG_PLUTO6

fi

This file uses the same Config language format as the rest of the kernel to create config menus, as

described in linux/Documentation/kbuild/config-language.txt.

The other build related file to add to was uClinux-dist/linux-2.4.x/arch/m68knommu/Boards.mk, which

sets the build variables PLATFORM and BOARD to ensure the correct crt0_ram.S and ram.ld pair are

used, e.g.

uClinux-dist/linux-2.4.x/arch/m68knommu/platform/$(PLATFORM)/$(BOARD)/crt0_ram.S

The following was added to Boards.mk:

ifdef CONFIG_M5206e

PLATFORM := 5206e

...

ifdef CONFIG_PLUTO6

BOARD := Heber

endif

endif

Default configurations were then created for the kernels and ROMFS contents by copying equivalent

files from another 5206e board configuration to the following:

uClinux-dist/vendors/Heber/Pluto6/Makefile

uClinux-dist/vendors/Heber/Pluto6/config.arch

uClinux-dist/vendors/Heber/Pluto6/config.linux-2.4

uClinux-dist/vendors/Heber/Pluto6/config.uClibc

uClinux-dist/vendors/Heber/Pluto6/config.vendor

The makefile controls the type of images created (e.g. ELF and BIN) and the creation of the ROM file

system, config.arch specifies the CPU flags to pass to the compiler (e.g. -m5200, to ensure only valid

ColdFire instructions are used in the generated code). The others are normal .config files created

after running make menuconfig.

The configuration system was then run to configure the kernel for the Pluto 6 board:

Porting uClinux to the Pluto 6 35

4.3.3 Running the kernel

After successful compilation the following images are created:

ed@Eds-PC:/usr/src/uClinux-dist/images$ ls

image.bin image.elf* linux.bin* romfs.img

The file image.elf is the one which is downloaded to the board using m68k-elf-gdb. The ROM

filesystem is attached to the end of the ELF:

ed@Eds-PC:/usr/src/uClinux-dist/images$ m68k-elf-objdump -h image.elf

image.elf: file format elf32-m68k

Illustration 4 uClinux board, user program and kernel configuration

Porting uClinux to the Pluto 6 36

Sections:

Idx Name Size VMA LMA File off Algn

 0 .text 00056420 60000000 60000000 00002000 2**2

 CONTENTS, ALLOC, LOAD, READONLY, CODE

 1 .data 00015be0 60056420 60056420 00058420 2**4

 CONTENTS, ALLOC, LOAD, DATA

 2 .init 00004c24 6006c000 6006c000 0006e000 2**2

 CONTENTS, ALLOC, LOAD, CODE

 3 .bss 00011f24 60070c24 60070c24 00072c24 2**2

 ALLOC

 4 .stab 00175344 00000000 00000000 00072c24 2**2

 CONTENTS, READONLY, DEBUGGING

 5 .comment 00005b6e 00211904 00211904 001e7f68 2**0

 CONTENTS, READONLY

 6 .stabstr 0009c5c0 00175344 00175344 001edad6 2**0

 CONTENTS, READONLY, DEBUGGING

 7 .romfs 00035000 60070c24 60070c24 0028ac24 2**0

 CONTENTS, ALLOC, LOAD, DATA

The kernel was then downloaded to the board and run. There was no output on the serial port as

expected, however breaking into the debugger and performing a stack back trace revealed the

where code had reached, shown here in a simplified form:

start_kernel() : linux/init/main.c

{

setup_arch() : linux/arch/m68knommu/kernel/setup.c

{

reserve_bootmem() : linux/mmnommu/bootmem.c

{

reserve_bootmem_core() : linux/mmnommu/bootmem.c

{

if (!size) BUG();

This was good because the code had proceeded past the call to printk() at the top of start_kernel(),

so the C code is running with the initialised data and the stack correctly. However the serial port

hasn't been set up at this stage in the boot, so the output from printk is stored in a character array

to be sent later called log_buf, which could be printed by GDB. The BUG function is called because

Porting uClinux to the Pluto 6 37

value of size is zero. BUG() is an architecture specific macro which performs general crashing duties,

on the m68knommu it is defined in linux/include/asm-m68knommu/page.h as:

#define BUG() do { \

 BUG_PRINT(); \

 BUG_PANIC(); \

} while (0)

#define BUG_PRINT() printk("kernel BUG at %s:%d!\n", __FILE__, __LINE__)

#define BUG_PANIC() panic("BUG!")

The generic panic() function is defined in linux/kernel/panic.c, and outputs the oops message with

the CPU register and stack dump seen during kernel panics on all architectures.

The function names where the error was occurring were a clue, and after examining the code which

calculates the size variable and stepping through the code to examine the values of other variables,

it was decided to check the memory addresses defined at the top of crt0_ram.S. After analysing the

assembly code in crt0_ram.S, it was realised that MEM_SIZE should be set to the address of the end

of usable memory and not, as the name suggests, the amount of memory. The value was changed

to:

#define MEM_SIZE 0x6016fefc

The kernel then ran to the following warning before panicking:

start_kernel() : linux/init/main.c

{

setup_arch() : linux/arch/m68knommu/kernel/setup.c

{

paging_init(): linux/arch/m68knommu/mm/init.c

{

unsigned long zones_size[3] = {0, 0, 0};

zones_size[0] = 0;

zones_size[1] = (end_mem – PAGE_OFFSET) >> PAGE_SHIFT;

zones_size[2] = 0;

free_area_init(zones_size) : linux/mm/page_alloc.c

Porting uClinux to the Pluto 6 38

{

free_area_init_node() : linux/mm/page_alloc.c

{

free_area_init_core()

{

for(i = 0; i < 3; i++)

total_pages += zones_size[i];

size = (total_pages +1) + (sizeof struct page);

__alloc_bootmemsize) : linux/mm/bootmem.c

{

printk(KERN_ALERT "bootmem alloc of %lu

bytes failed!\n", size);

The value of size in the call to printk was 17317696, about 17Mb. A simple outline of how size is

calculated is included in the above back trace. The zones_size array contains the size of each

memory zone. A zone is a memory range, there are three zones which deal with "hardware

constraints that may limit the way page frames can be used" (Bovet and Cesati, 2002). The concept

of memory ranges that can only be used for certain purposes is aimed mainly at the x86, and the

three zone classifications used are:

ZONE_DMA

Contains pages of memory below 16MB

ZONE_NORMAL

Contains pages of memory at and above 16MB and below 896MB

ZONE_HIGHMEM

Contains pages of memory at and above 896Mb

(Bovet and Cesati, 2002)

These memory ranges are irrelevant to uClinux systems. However the use of zones is typical of

uClinux; the alterations to the normal kernel code is minimised by abstracting the rigid structures

imposed by other legacy architectures onto the flexible hardware of embedded systems. The zones

array is a good example of this, the DMA and HIGHMEM regions are kept for compatibility with other

code, but set to a size of 0 and so effectively ignored.

It can be seen that the middle zone, ZONE_NORMAL, is set to contain the end address of memory

minus PAGE_OFFSET. Therefore the initial cause of the resulting wrong value in size was discovered

to be PAGE_OFFSET. This macro should be set to the value of the start of addressable memory (i.e.

Porting uClinux to the Pluto 6 39

The same as the value in MEM_BASE in crt0_ram.S) in order for the ZONE_NORMAL element of

zones_size to contain the right memory size value. The porting process is made simpler in uClinux at

this point, due to the use of only physical addresses. Therefore there is no need to find out whether

addresses are virtual or physical in different areas of the kernel source.

PAGE_OFFSET is defined in linux/include/asm-m68knommu/page.h:

#define PAGE_OFFSET (PAGE_OFFSET_RAW)

PAGE_OFFSET_RAW is defined in linux/include/asm-m68knommu/page_offset.h, the file was altered

for the Pluto 6 DRAM address:

#ifdef CONFIG_COLDFIRE

#if defined(CONFIG_SMALL)

#define PAGE_OFFSET_RAW 0x30020000

#elif defined(CONFIG_CFV240)

#define PAGE_OFFSET_RAW 0x02000000

#elif defined(CONFIG_PLUTO6)

#define PAGE_OFFSET_RAW 0x60000000

#else

#define PAGE_OFFSET_RAW 0x00000000

#endif

#endif

The kernel then ran to:

start_kernel() : linux/init/main.c

{

parse_options(char *line) : linux/init/main.c

{

if (!*line)

<exception occurs>

ENTRY(trap) : linux/arch/m68knommu/platform/5307/entry.S

trap_c(struct frame *fp) : linux/arch/m68knommu/kernel/traps.c

{

bad_super_trap() : linux/arch/m68knommu/kernel/traps.c

{

printk("*** Exception %d *** FORMAT=%X\n",

 (fp->ptregs.vector) >> 2,

Porting uClinux to the Pluto 6 40

 fp->ptregs.format);

die_if_kernel("BAD KERNEL TRAP", &fp->ptregs, 0);

Here a pointer to the command line string is passed to the generic function parse_options(), since a

boot loader is not being used on the Pluto 6, there isn't a kernel command line, so a default string is

created in setup_arch(). When the pointer is dereferenced in parse_options, the ColdFire throws an

exception and starts executing the trap assembly routine. This code resides in entry.S in the 5307

directory, even though the ColdFire in use is a 5206e, this is because the exception stack format is

common across the 5xxx range. This assembly reads the stack to determine the vector number and

format field, populating a frame struct and placing a pointer to that on the stack, before calling back

into C code at trap_c. Normally the handler deals with the exception in the context of the current

process, however because the CPU was in supervisor mode before the exception, bad_super_trap() is

called.

Examining the frame structure revealed the exception was an address error, examining the line

pointer before and in parse_options revealed that the stack was corrupted when entering this

function. There was a concern that the DRAM wouldn't accommodate a kernel and ROMFS at one

end, a stack at the other, and leave room for dynamic allocation in the middle, which appeared to be

confirmed. The stack was moved to the 256Kb external SRAM accessed via chip select 1 on the Pluto

6, by altering the entry assembly in crt0_ram.S:

#define MEM_STACK 0x10040000

...

move.l #MEM_STACK, %a0 /* Set the stack ptr to the */

move.l %a0, %d0

move.l %d0, %sp /* end of external SRAM */

During the research and analysis required to find the solution to this problem, it was discovered that

in order for the kernel to set the integrated peripherals in the ColdFire up properly (e.g. the interrupt

controller, serial ports) the correct address contained in the the module base address register

(MBAR) must be defined in the kernel. All of the ColdFire system integration module (SIM) registers

are accessed as offsets from the MBAR address, which is set in crt0_ram.S:

move.l #MCF_MBAR+1, %a0 /* Set I/O base addr */

movec %a0, %MBAR /* Note: bit 0 is Validate */

The MBAR allows the ColdFire register set to be moved to the preferred address in memory, but in

Porting uClinux to the Pluto 6 41

order to set this address an initial register must be written to. This is accomplished using the movec

(Move Control Register) instruction, which using its own set of fixed addresses to access certain

registers. The %MBAR label above is always 0xC0F on the ColdFire 52xx, allowing the value in MBAR

to be set when it has no address. MCF_MBAR is defined in linux/include/asm-m68knommu/coldfire.h:

#define MCF_MBAR 0x10000000

On the Pluto 6 this address was also being used by chip select 1 to access the external 256Kb bank

of SRAM. The chip select address register 0 is set in the gdbinit script after the MBAR, and so

overriding it. Therefore whenever the kernel had been attempting to write to the built in peripherals

of the ColdFire, it was actually writing to the SRAM.

The MCF_MBAR definition was altered to:

#if defined(CONFIG_PLUTO6)

#define MCF_MBAR 0xF0000000

#else

#define MCF_MBAR 0x10000000

#endif

Prior to this point, the kernel had been crashing early in the C code before the serial ports are

configured in console_init(), so the the broken access to the ColdFire SIM had gone unnoticed.

However having moved the stack to SRAM to remove the address exception, and ensuring the

ColdFire registers were being written to properly, the serial port began transmitting console

messages. However the kernel messages stopped abruptly with no oops register dump, GDB

revealed the code had run to:

start_kernel() : linux/init/main.c

{

lock_kernel();

printk(linux_banner);

setup_arch(&command_line);

printk("Kernel command line: %s\n", saved_command_line);

parse_options(command_line);

trap_init();

init_IRQ();

sched_init();

softirq_init();

Porting uClinux to the Pluto 6 42

time_init();

console_init();

kmem_cache_init();

sti();

calibrate_delay();

mem_init() : linux/arch/m68knommu/mm/init.c

{

nr_free_pages() : linux/mmnommu/page_alloc.c

{

for_each_zone(zone) : linux/include/linux/mmzone.h

<infinite loop>

The macro for_each_zone is defined as a for loop which steps over the three types of zone used in

the system as explained above. Therefore for_each_zone should iterate three times, however when

stepping through it was found to be looping infinitely. The answer turned out to be the ROMFS.

The board specific makefile adds the ROMFS binary image as a new section to the end of the ELF file

which is downloaded to the board. Examination of the output from m68k-elf-objdump above reveals

that it is added at the start address of the BSS section. This is correct, because the BSS section

doesn't contain anything in the ELF, it just defines the memory range to be used at run time for

uninitialised variables. So the ROMFS section can be added at the location of BSS in the ELF file

without corrupting anything, which then saves space if a system were to place the ELF in ROM for

extraction to RAM at run time.

Once the kernel image is in RAM however, the ROMFS image is then residing where the BSS section

should be, as shown:

Porting uClinux to the Pluto 6 43

The entry assembly in crt0_ram.S handles this by moving the ROMFS image from the end forward to

its correct location:

/*

 * Move ROM filesystem above bss :-)

 */

lea.l _sbss, %a0 /* Get start of bss */

lea.l _ebss, %a1 /* Get end of bss */

move.l %a0, %a2 /* Copy of bss start */

...

move.l 8(%a0), %d1 /* Get size of ROMFS */

addq.l #8, %d1 /* Allow for rounding */

and.l #0xfffffffc, %d1 /* Whole words */

add.l %d1, %a0 /* calc new address of romfs start */

add.l %d1, %a1 /* calc new address of romfs end */

move.l %a1, _ramstart /* Set start of dynamic ram */

_copy_romfs:

move.l -(%a0), %d0 /* Copy dword */

Illustration 5ROMFS section added to kernel ELF at BSS
address

RAM

.text

.data

.romfs

0x60000000 _stext

_sdata

_sbss

_ebss

Dynamic
memory

0x6016FEFC

ROMFS in
the way
of BSS

_rambase

_ramstart

_ramend

Porting uClinux to the Pluto 6 44

move.l %d0, -(%a1)

cmp.l %a0, %a2 /* Check if at end */

bne _copy_romfs

In this code it is known that the ROMFS header resides at the start of the BSS section, so reading this

gives the size, then adding it to the start and end pointers in a0 and a1 gives the new area to copy

to. As the data is copied, the pointers are decremented, stepping back through the BSS and copying

the ROMFS from the back first.

The problem was that the ROMFS was configured to have too many programs in it for the DRAM size,

so the calculated value placed in the _ramstart variable (the end of the new ROMFS location) had an

address higher than that of _ramend set by the MEMSIZE definition. This was resulting in invalid

values in the pgdat_list structure which for_each_zone uses, causing it to loop endlessly. To fix this

the user/vendor configuration was set to contain the bare minimum of user programs - a shell and

init.

The kernel then ran to:

start_kernel() : linux/init/main.c

{

lock_kernel();

printk(linux_banner);

setup_arch(&command_line);

Illustration 6 Moving the ROMFS in assembly from the
end forwards

RAM

.text

.data

.romfs

0x60000000 _stext

_sdata

_sbss

_ebss

Dynamic
memory

0x6016FEFC

A0

A1

A0 + ROMFS size

A1 + ROMFS size

Copy data
from end
forwards

Porting uClinux to the Pluto 6 45

printk("Kernel command line: %s\n", saved_command_line);

parse_options(command_line);

trap_init();

init_IRQ();

sched_init();

softirq_init();

time_init();

console_init();

kmem_cache_init();

sti();

calibrate_delay();

mem_init()

kmem_cache_sizes_init();

pgtable_cache_init();

fork_init(num_mappedpages);

proc_caches_init();

vfs_caches_init(num_physpages) : linux/fs/dcache.c

{

mnt_init() : linux/fs/namespace.c

{

init_mnt_tree() : linux/fs/namespace.c

{

set_fs_pwd(current->fs) : linux/include/linux/fs_struct.h

{

struct dentry *old_pwd;

...

old_pwd = fs->pwd;

<exception occurs>

The exception was another address error, it was suspected that the current pointer wasn't set

properly to the current process context. After the previous errors, crt0_ram.S was compared with the

same file from other boards, and the following line was found missing from the Pluto 6 version:

movel %a0, _current_task

Porting uClinux to the Pluto 6 46

The kernel then output the message:

Spurious interrupt 1

while booting, followed by a kernel panic with oops output. At first a device on the board such as the

FPGA was suspected, however inspection of the ColdFire interrupt mask register revealed that only

the on-chip timer 0 and serial port 0 peripherals were unmasked. Both of these devices are managed

by the kernel, so the interrupt was likely due to an exception. This was supported by the crash after

the interrupt.

Stepping through the code narrowed the problem to:

start_kernel() : linux/init/main.c

{

...

vfs_caches_init(num_physpages)

buffer_init(num_physpages);

page_cache_init(num_physpages);

signals_init();

proc_root_init();

check_bugs();

{

<exception occurs>

In order to find the cause of the exception, the code was debugged at assembly level using the GDB

command:

(gdb) display /i $pc

to show the assembly instruction currently pointed to by the program counter. The assembly could

then be stepped using:

(gdb) stepi

The first instruction in the check_bugs() function was an orib (OR bytes together). The 5206e manual

doesn't list this version of the or in its instruction set, it was one of the 68000 instructions removed

Porting uClinux to the Pluto 6 47

from the ColdFire. The tool chain was suspected initially of generating incorrect instructions, however

the -m5200 compiler flag was present in all of the build output.

The image.elf file was examined using m68k-elf-objdump, and there were no orib instructions in

check_bugs at all. The memory around check_bugs on the board was examined after the crash, and

found to be full of the same repeated orib instruction. The answer was then obvious - the kernel was

generating a vector table at run time, which was overwriting the start of memory. To confirm this the

memory containing the check_bugs code was examined between stepping over each function in

start_kernel(), and the oribs appeared after init_IRQ(). The ColdFire vector table has 256 entries,

each 4 bytes, so the memory up to 0x60000400 was being overwritten. All of the functions called

after init_IRQ() up until check_bugs() were residing after the vector table.

To fix the kernel could be linked to start at 0x60000400, or the vector base address register could be

pointed elsewhere. Since the system was already short of RAM, it was decided to place the vector

table into the 8Kb of built-in SRAM on the ColdFire. In order to do this the following definition was

added to crt0_ram.S:

#define MEM_BUILTIN 0x50000000 /* Built in SRAM location */

Followed by code to set the address in _ramvec.

move.l #VBR_BASE, %a7 /* Note VBR can't be read */

movec %a7, %VBR

move.l %a7, _ramvec /* Set up vector addr */

move.l %a7, _rambase /* Set up base RAM addr */

The kernel then created its vector table out of the way in SRAM, and booted all the way through to

the init process, but failed to start a shell. At first it was thought the sytem had actually ran out of

memory, but the mistake above was then noticed - _rambase now pointed to the SRAM, not the

DRAM containing the kernel. The code was replaced with:

move.l #VBR_BASE, %a7 /* Note VBR can't be read */

movec %a7, %VBR

move.l %a7, _ramvec /* Set up vector addr */

move.l #MEM_BASE, %a7 /* set mem base */

move.l %a7, _rambase /* correctly */

Then, finally, the kernel booted through to SASH (the standalone shell). Sash has various commands

built in to it, such as cd, ls, cat and vi, so files in /proc could be examined, but after a small amount

Porting uClinux to the Pluto 6 48

of activity the memory would become too fragmented to run anything. So although the kernel was

now booting, it wasn't very useful, especially if it was to be extended to run a graphical system.

4.3.4 Getting more memory

A brief attempt was made to download and run the kernel from the video memory on the Calypso 32

graphics expansion card. The kernel was re-linked to the address 0x30000000, and the value of

MEM_BASE and PAGE_OFFSET altered accordingly. Before downloading the kernel, the Calypso card

required initialisation, this was achieved by running the board with the Heber boot loader to load the

graphical demonstration code from the CompactFlash. The ColdFire was halted with GDB, then the

image downloaded, which could be viewed on the monitor connected to the Pluto 6 filling up the

video memory:

The program counter was then set to 0x30000000, however when the first assembly instructions

were stepped through, the program counter was found to increment incorrectly for the known sizes

of the instructions, causing them to be misinterpreted by the ColdFire. Since the board hadn't been

reset (because the graphics card initialisation would have been lost) it was suspected that the CPU

Illustration 7 The Heber Video demo halted with
code downloaded; notice the black section in the
middle of the code, that is the empty bss section.
Also the Heber logo can be seen, this is displayed
on a different layer and so isn't overwritten in video
memory by the uClinux kernel

Porting uClinux to the Pluto 6 49

cache may be interfering.

Attempts to solve this halted when a better solution was found. During a visit to Heber a DRAM

expansion card was obtained. This was designed for a specific customer request and only a small

number were made, the customer uses an EEPROM card connected to the 3x32 P3 socket on the

board, and they wanted a device which functioned on CS0 as the EEPROM did, but was volatile and

could be programmed on target through the BDM. The result was this card:

The card has 16Mb of DRAM on it which is decoded and refreshed by an FPGA, and maintained while

power is off by a battery. The card then appears to the ColdFire as a non-volatile static memory

device on CS0 in place of the boot ROM (or the EEPROM card). Given this extra memory, it was

decided to upgrade to the latest 2.4 kernel version. Linux-2.4.31.tar.gz was downloaded from

kernel.org, and extracted to the uClinux-dist directory. The patch uClinux-2.4.31-uc0.diff was applied.

Following advice on the uclinux mailing list to keep the ColdFire MBAR set to 0x10000000, the Chip

select addresses were altered in the gdbinit script as follows:

• The ColdFire register set was moved to 0x10000000 by altering the MBAR value.

• The CPLD on CS1 which controls access to the external SRAM and IDE registers was moved to

0xF0000000.

• The CS0 control register was set to use a 16bit data port for the new RAM card (the boot ROM

used 8bit)

MEM_SIZE in crt0_ram.S was set to 0x01000000, MEM_BASE was now left at 0x0. Rom.ld was then

set to link the kernel to 0x0, and the other files in the kernel could be left unaltered.

The new kernel was configured, compiled and booted. Execution halted half way through with no

messages. By this stage an instinct for the solutions was growing, and the problem quickly identified

Illustration 8 The 16Mb non-volatile DRAM prototype
card acquired from Heber

FPGA for DRAM
to local bus
decoding

DRAM

Battery

Porting uClinux to the Pluto 6 50

using the set and examine commands in GDB - the RAM card memory couldn't be written to above

0x100000, and higher addresses only read as 0xFF. The chip select address mask register was

suspected, and sure enough, it was set in the gdbinit script to 0x000F0000. The upper word is the

mask for the upper word of addresses matching this chip select, the lower contains access control

bits. To access the full 16MB, the mask register was changed to 0x01FF0000.

The kernel then booted correctly, and had enough memory to run without memory allocation errors.

4.3.5 Execute in place

The RAM card is battery backed - making it feasible to execute a kernel in place. In order to do this,

two new counterparts to the linker script and boot assembly files are required - crt0_rom.S and

rom.ld.

The rom.ld linker script must split the RAM, and treat some as ROM:

MEMORY {

flash : ORIGIN = 0x00000000, LENGTH = 0x00200000

ram : ORIGIN = 0x00200000, LENGTH = 0x00E00000

}

The size of flash was chosen as 2Mb to contain even a large kernel. The flash region is where the

kernel text section is executed from, and the data, init and BSS are stored before run time, by linking

their LMA addresses to it using the AT directive:

.data : AT (ADDR(.text) + SIZEOF(.text)) {

The rest of the RAM is treated as RAM, and the VMA of the data, init and BSS sections are linked

here, so at run time C code will look in the RAM for them.

The entry assembly in crt0_rom.S therefore must copy the data section to the correct address in RAM

before jumping to C code. It does this using _etext as the address where the data is, _sdata as where

to copy it to, and _init_end as the the length to copy.

The other important difference in crt0_rom.S is that it must contain all of the hardware setup that

was performed in the gdbinit script up to this point, as well as a vector table at the start of the text

section:

.text

_vectors:

Porting uClinux to the Pluto 6 51

.long 0x00000000, _start

.long _fault, _fault,

At power on the ColdFire will then read the second entry (_start, the entry point to the code), place

that value in the program counter, and start running.

After a number of attempts the kernel booted at power on, however it would fail to mount the

ROMFS. It was relised this had been completely forgotten in the new boot code. The crt0_rom.S files

for other boards which provided them contained no references to moving the ROMFS section. Also

the makefile was adding it at the VMA of the BSS section, so it was not being stored in the ROM area

when downloaded to the board.

A simpler solution was to use the CompactFlash drive for the root file system. The XIP kernel was left

while the IDE driver developed.

Once the IDE was working, The contents of the ROMFS image were mounted and copied to an ext2

partition on a CompactFlash card. The file uClinux-dist/vendors/Heber/Pluto6Makefile was edited so

no ROMFS section was added to the ELF. The compiled in kernel command line string was then

altered to:

root=/dev/hda1 console=tty0 console=ttyS0,9600n8

The kernel then booted and mounted the compact flash partition at boot. The uClinux FLAT binary

loading code can detect when the user binaries must be entirely loaded into RAM, so they didn't

require modification with the flthdr tool to run from disc.

The result is a board that boots at power on, with a file system that can contain as many programs

as the disk size permits. There are no more long downloading times for the file system, but the

kernel can be replaced over the BDM at any time, because the RAM card is still writeable.

4.4 Testing

The kernel on the Pluto 6 has been tested not by formal means, but by repeated use running as

much of the software ported to uClinux as can be compiled successfully, with various CompactFlash

cards.

Porting uClinux to the Pluto 6 52

The Frame buffer driver 53

5 The Frame buffer driver
This chapter describes the process of implementing a Linux frame buffer driver on the Calypso 32

graphics card used on the Pluto 6.

5.1 Introduction

The concept of a frame buffer device is simple - it is an area of memory in a computer which the host

CPU can write values to, and which the graphics controller will then convert to electrical signals

suitable for outputting to a video monitor. A graphics card will typically hold a video controller chip

together with banks of memory known as the video memory, which can often be written to faster

than the standard RAM in a system. The video controller on the card then implements the frame

buffer system by constantly reading the video memory every time the screen is refreshed. The Linux

frame buffer subsystem is the software interface the OS uses to handle setting up the graphics

controller hardware for frame buffer operation, and providing accelerated features where possible.

5.2 History

The theory and advantages of a frame buffer device were discussed long before the memory became

available to actually build one. In 1969, Joan Miller of Bell Labs had created the first known working

frame buffer device, which drew an image with 3 bit colour depth[1].

Richard Shoup developed the SuperPaint system at Xerox PARC in 1972, this took advantage of the

rapidly progressing advances in memory technology, and so was the first device which could display

and hold on screen a standard video image. It had 640x480 resolution with 8 bit colour. The frame

buffer memory was implemented as a 307,200 byte shift register - using 16 separate memory boards

each loaded with a 2 Kilobit Shift register. The problem with this was each pixel value could only be

loaded when the appropriate memory position rolled around. Shoup also experimented using this

system with lookup tables, creating the first palette based frame buffer.

The first commercially available system was created in 1974 by the computer firm Evans &

Sutherland based at the University of Utah. The device could output 512x512 at 8 bit grey scale, and

was sold for $15,000. Three of the systems were later combined at the New York Institute of

Technology to create the first 24 bit colour frame buffer, each 8 bit frame buffer device supplied one

of red, green or blue, in an RGB colour output, using a micro controller to synchronise the signals.

As integrated circuit technology improved and memory costs reduced, frame buffer devices found

their way into many of the home computers of the late 1970s, although they were often very poor

quality with low resolutions and high latency. High end workstations built by companies such as IBM,

The Frame buffer driver 54

Sun Microsystems and DEC throughout the 1980s used frame buffers of a higher quality, and since

then nearly all computers with graphical capabilities use a frame buffer device to output video

signals.

5.3 Graphics controller capabilities

The Linux kernel provides a device abstraction of any frame buffers in the system. The reason it does

this rather than simply supplying a pointer to a block of graphics memory is due to the the wide

variation of capabilities provided by any one graphics controller, which could then be different to

others. Examples of features which may vary are given in appendix E.

The frame buffer subsystem in the Linux kernel is made complicated by the need to handle these

variations in graphics hardware capabilities. Many drivers will implement certain frame buffer

functions (e.g. panning) using the specific capabilities of the video controller.

5.4 About the Linux frame buffer subsystem

5.4.1 Origin

Initially Linux ran on PCs only, and relied on the built in text console and font sets found in the VGA

graphics cards used on the platform. When the OS began to spread to other platforms, a solution was

needed to display a console without a default text mode display where there was none, e.g. on the

Apple Macintosh.

Since then the frame buffer subsystem has become popular on many platforms with video output for

its ability to display Unicode fonts, rather than the 512 characters that VGA fonts provide. It also

provides smooth text at much higher resolutions allowing many more characters on screen at once.

There are various applications which use the frame buffer, most predominantly the KDrive Tiny-X

server, but also Microwindows/Nano-X, Mplayer, as well as the libraries SDL, GTK+, and DirectFB,

which provides a framework for hardware acceleration. There is also a kernel resident windowing

system called FBUI, allowing multiple applications to use the frame buffer simultaneously.

5.4.2 In user space

The frame buffer is abstracted and presented to user space applications using the device files /

dev/fb0../dev/fb255 which all have major number 29, the minor number is used to identify each

frame buffer registered in the kernel. Most computers only have one frame buffer, although systems

with multiple graphics cards or multi-head cards will have more.

The device file can be read or written to in order to get or set the pixel values on the screen. E.G. the

The Frame buffer driver 55

command:

~/# cp /dev/fb0 screenshot

will copy the contents of the frame buffer as raw pixel data into the file screenshot. This file can't be

opened in any image editor because it is raw data, but can be written back to the frame buffer:

~/# cat screenshot > /dev/fb0

Here is an example - first a 1024x768 32 bpp X desktop is dumped to a file:

The display is then switched to a virtual console running the vesafb driver at the same resolution,

but with 16 bpp colour depth, and the frame buffer dump file is copied back to the frame buffer

device:

Illustration 9 A 32 bit X desktop

The Frame buffer driver 56

The display is all warped, because the file created was 32bpp, but during the switch from X to a

virtual console, the video mode of the graphics card was changed to 16bpp.

In order to control the video mode variables - such as the resolution and accompanying timing

variables, the frame buffer subsystem in the kernel uses a set of structures. Some of these

structures are made visible to user space programs which use the frame buffer device directly, so

that they know how the pixel values are encoded, and how big the screen is. Examples of such

software are the fbset utility, the purpose of which is to change frame buffer video modes, and the

XFBdev X server. The structures available in user space are:

struct fb_fix_screeninfo {

char id[16]; /* identification string */

unsigned long smem_start; /* Start of frame buffer mem */

/* (physical address) */

__u32 smem_len; /* Length of frame buffer mem */

__u32 type; /* see FB_TYPE_* */

__u32 type_aux; /* Interleave for interleaved Planes */

__u32 visual; /* see FB_VISUAL_* */

__u16 xpanstep; /* zero if no hardware panning */

__u16 ypanstep; /* zero if no hardware panning */

__u16 ywrapstep; /* zero if no hardware ywrap */

__u32 line_length; /* length of a line in bytes */

unsigned long mmio_start; /* Start of Memory Mapped I/O */

/* (physical address) */

__u32 mmio_len; /* Length of Memory Mapped I/O */

Illustration 10 A screen shot of a 32 bit
desktop copied back to /dev/fb0 whilst in a 16
bit virtual console

The Frame buffer driver 57

__u32 accel; /* Type of acceleration available */

__u16 reserved[3]; /* Reserved for future compatibility */

};

This structure contains device independent information which does not change unless the video

mode of the graphics controller changes. This includes the pointer to the frame buffer video memory,

and its length. The structure can be obtained in user space by calling the FBIOGET_FSCREENINFO

ioctl command on the frame buffer device file.

struct fb_var_screeninfo {

__u32 xres; /* visible resolution */

__u32 yres;

__u32 xres_virtual; /* virtual resolution */

__u32 yres_virtual;

__u32 xoffset; /* offset from virtual to visible */

__u32 yoffset; /* resolution */

__u32 bits_per_pixel; /* guess what */

__u32 grayscale; /* != 0 Graylevels instead of colors */

struct fb_bitfield red; /* bitfield in fb mem if true color, */

struct fb_bitfield green; /* else only length is significant */

struct fb_bitfield blue;

struct fb_bitfield transp; /* transparency */

__u32 nonstd; /* != 0 Non standard pixel format */

__u32 activate; /* see FB_ACTIVATE_* */

__u32 height; /* height of picture in mm */

__u32 width; /* width of picture in mm */

__u32 accel_flags; /* acceleration flags (hints) */

/* Timing: All values in pixclocks, except pixclock (of course) */

__u32 pixclock; /* pixel clock in ps (pico seconds) */

__u32 left_margin; /* time from sync to picture */

__u32 right_margin; /* time from picture to sync */

The Frame buffer driver 58

__u32 upper_margin; /* time from sync to picture */

__u32 lower_margin;

__u32 hsync_len; /* length of horizontal sync */

__u32 vsync_len; /* length of vertical sync */

__u32 sync; /* see FB_SYNC_* */

__u32 vmode; /* see FB_VMODE_* */

__u32 reserved[6]; /* Reserved for future compatibility */

};

This structure is obtained from the kernel by the FBIOGET_VSCREENINFO ioctl command. It contains

information about the current video mode which can vary at any time. This includes the physical and

virtual resolutions, and the x and y offset if the virtual resolution is bigger than the physical one. The

offset values can be changed by the FBIOPAN_DISPLAY ioctl, thereby panning the display. The

structure also contains the variable bits_per_pixel and bit fields for red, green, blue and transparency

which tell user applications the size of each pixel value in the video memory and how the colours are

mapped into them. The other main group of variables are the timing values, which are discussed in

implementation of the Cremson driver below.

As well as get information about the current video mode via the fb_var_screeninfo structure, user

space programs can populate their own and pass it in to the kernel via the FBIOPUT_VSCREENINFO

ioctl command. The X server and fbset utility mentioned above operate in this fashion to change the

video mode of the frame buffer.

As well as reading and writing to the frame buffer device files, some software will simplify the

operation by calling the mmap system call on the frame buffer device. This maps the frame buffer to

an area of memory so that software can write to it directly from user space. Not all devices use a

large block of memory and hence are not suitable for memory mapping, a frame buffer device is one

example where implementing the system call is logical.

The third frame buffer structure accessible in kernel space is the fb_cmap structure:

struct fb_cmap {

__u32 start; /* First entry */

__u32 len; /* Number of entries */

__u16 *red; /* Red values */

__u16 *green;

__u16 *blue;

__u16 *transp; /* transparency, can be NULL */

The Frame buffer driver 59

};

This represents a colour lookup table - also known as a palette, which is used in frame buffers with

indirect colour as mentioned above. The palette table of a frame buffer can be obtained using the

FBIOGETCMAP ioctl, and an optimum palette can be set with the FBIOPUTCMAP ioctl. The structure

contains a pointer to an array for each colour, each element in each array is 16 bits, regardless of

the current video mode of the hardware. When the colour map is requested or set by an application,

the values in the colour map must be truncated or enlarged as necessary.

5.4.3 In kernel space

The structures available in user space above are used in the same form within the kernel, as part of

a larger framework. The kernel sources provide two distinct example frame buffer driver frameworks,

the first is the virtual frame buffer - a build-able example which requires no actual graphics

hardware:

The structure fb_info represents a single frame buffer device instance. As well as the structures

fb_var_screeninfo, fb_fix_info and fb_cmap which are the same as those accessible in user space, it

contains numerous other structures and variables:

struct fb_info {

 char modename[40]; /* default video mode */

 kdev_t node;

Illustration 11 Diagram of the virtual fame buffer
framework. The black elements are generic kernel
structures populated by the driver, blue elements are
specific to the driver

fb_info

fb_var_screeninfo

fb_fix_screeninfo

fb_monospecs

fb_ops * fb_ops

fb_release()

fb_open()

fb_get_fix()

fb_get_var()

fb_set_var()

fb_get_cmap()

fb_set_cmap()

fb_pan_display()

fb_ioctl()

fb_mmap()

fb_cmap

display *

display

par *

par

The Frame buffer driver 60

 int flags;

 int open; /* Has this been open already ? */

#define FBINFO_FLAG_MODULE 1 /* Low-level driver is a module */

 struct fb_var_screeninfo var; /* Current var */

 struct fb_fix_screeninfo fix; /* Current fix */

 struct fb_monspecs monspecs; /* Current Monitor specs */

 struct fb_cmap cmap; /* Current cmap */

 struct fb_ops *fbops;

 char *screen_base; /* Virtual address */

 u32 mapped_vram; /* ioremap()'ed VRAM */

 struct display *disp; /* initial display variable */

 struct vc_data *display_fg; /* Console visible on this display */

 char fontname[40]; /* default font name */

 devfs_handle_t devfs_handle; /* Devfs handle for new name */

 devfs_handle_t devfs_lhandle; /* Devfs handle for compat. symlink */

 int (*changevar)(int); /* tell console var has changed */

 int (*switch_con)(int, struct fb_info*);

/* tell fb to switch consoles */

 int (*updatevar)(int, struct fb_info*);

/* tell fb to update the vars */

 void (*blank)(int, struct fb_info*);

/* tell fb to (un)blank the screen */

/* arg = 0: unblank */

/* arg > 0: VESA level (arg-1) */

 void *pseudo_palette; /* Fake palette of 16 colors and

 the cursor's color for non

 palette mode */

 /* From here on everything is device dependent */

 void *par;

};

fb_monspecs contains maximum and minimum limits of the video timing values for a monitor. This

prevents damage being caused to a screen by setting the vsync or hsync signals too high. The only

problem with this safety net is that the values in the fb_monspecs struct contained in fb_info must be

set by the driver, then the function fbmon_valid_timings in the file fbmon.c must be called to check

that value about to be set in the graphics controller are acceptable. Very few of the drivers in the

kernel actually do this, and for a number of releases of the 2.4 kernel, the checking code within the

The Frame buffer driver 61

fbmon_valid_timings function has been left out of the build.

The fb_ops structure contains pointers to the functions which the driver uses to set data in the

various structures contained within fb_info:

struct fb_ops {

 /* open/release and usage marking */

 struct module *owner;

 int (*fb_open)(struct fb_info *info, int user);

 int (*fb_release)(struct fb_info *info, int user);

 /* get non settable parameters */

 int (*fb_get_fix)(struct fb_fix_screeninfo *fix, int con,

 struct fb_info *info);

 /* get settable parameters */

 int (*fb_get_var)(struct fb_var_screeninfo *var, int con,

 struct fb_info *info);

 /* set settable parameters */

 int (*fb_set_var)(struct fb_var_screeninfo *var, int con,

 struct fb_info *info);

 /* get colormap */

 int (*fb_get_cmap)(struct fb_cmap *cmap, int kspc, int con,

 struct fb_info *info);

 /* set colormap */

 int (*fb_set_cmap)(struct fb_cmap *cmap, int kspc, int con,

 struct fb_info *info);

 /* pan display (optional) */

 int (*fb_pan_display)(struct fb_var_screeninfo *var, int con,

 struct fb_info *info);

 /* perform fb specific ioctl (optional) */

 int (*fb_ioctl)(struct inode *inode, struct file *file,

 unsigned int cmd, unsigned long arg,

 int con, struct fb_info *info);

 /* perform fb specific mmap */

 int (*fb_mmap)(struct fb_info *info, struct file *file,

 struct vm_area_struct *vma);

 /* switch to/from raster image mode */

 int (*fb_rasterimg)(struct fb_info *info, int start);

 /* for kernels with no mmu */

 unsigned long (*get_fb_unmapped_area)(struct file *file,

The Frame buffer driver 62

 unsigned long addr,

 unsigned long len,

 unsigned long pgoff,

 unsigned long flags);

};

E.G. calling the FBIOGET_VSCREENINFO ioctl command from user space will result in the driver

function pointed to by fb_get_var being run. Drivers using this framework must implement their own

functions here, particularly fb_get_var and fb_set_var, which typically read and set values in the par

structure explained below. It is through this set of functions that the graphics controller is set up by

the driver and applications discover the pixel mapping and video mode.

The display structure is the interface between the frame buffer driver and the console driver. It could

be seen as the only "in kernel" system to use the frame buffer in a similar manner to user

applications. In order to function the console driver defines the display structure in fbcon.h to keep

track of the frame buffer settings:

struct display {

 /* Filled in by the frame buffer device */

 struct fb_var_screeninfo var; /* variable infos. yoffset and vmode */

 /* are updated by fbcon.c */

 struct fb_cmap cmap; /* colormap */

 char *screen_base; /* pointer to top of virtual screen */

 /* (virtual address) */

 int visual;

 int type; /* see FB_TYPE_* */

 int type_aux; /* Interleave for interleaved Planes */

 u_short ypanstep; /* zero if no hardware ypan */

 u_short ywrapstep; /* zero if no hardware ywrap */

 u_long line_length; /* length of a line in bytes */

 u_short can_soft_blank; /* zero if no hardware blanking */

 u_short inverse; /* != 0 text black on white as default */

 struct display_switch *dispsw; /* low level operations */

 void *dispsw_data; /* optional dispsw helper data */

 /* Filled in by the low-level console driver */

The Frame buffer driver 63

 struct vc_data *conp; /* pointer to console data */

 struct fb_info *fb_info; /* frame buffer for this console */

 int vrows; /* number of virtual rows */

 unsigned short cursor_x; /* current cursor position */

 unsigned short cursor_y;

 int fgcol; /* text colors */

 int bgcol;

 u_long next_line; /* offset to one line below */

 u_long next_plane; /* offset to next plane */

 u_char *fontdata; /* Font associated to this display */

 unsigned short _fontheightlog;

 unsigned short _fontwidthlog;

 unsigned short _fontheight;

 unsigned short _fontwidth;

 int userfont; /* != 0 if fontdata kmalloc()ed */

 u_short scrollmode; /* Scroll Method */

 short yscroll; /* Hardware scrolling */

 unsigned char fgshift, bgshift;

 unsigned short charmask; /* 0xff or 0x1ff */

};

The frame buffer driver must set the display_switch pointer to an appropriate set of console

operations in order for console text to appear on the screen, for example:

switch(var->bits_per_pixel)

{

case 8:

info->disp->dispsw = &fbcon_cfb8;

break;

case 16:

info->disp->dispsw = &fbcon_cfb16;

break;

}

fbcon_cfb8 and fbcon_cfb16 are sets of generic console operations for 8 bit and 16 bit colour modes,

others exist for most colour depths, to ensure the characters are drawn correctly. The set of console

operations are as follows:

The Frame buffer driver 64

struct display_switch {

 void (*setup)(struct display *p);

 void (*bmove)(struct display *p, int sy, int sx, int dy, int dx,

 int height, int width);

 /* for clear, conp may be NULL, which means use a

 blanking (black) color */

 void (*clear)(struct vc_data *conp, struct display *p, int sy, int sx,

 int height, int width);

 void (*putc)(struct vc_data *conp, struct display *p, int c, int yy,

 int xx);

 void (*putcs)(struct vc_data *conp, struct display *p,

 const unsigned short *s, int count, int yy, int xx);

 void (*revc)(struct display *p, int xx, int yy);

 void (*cursor)(struct display *p, int mode, int xx, int yy);

 int (*set_font)(struct display *p, int width, int height);

 void (*clear_margins)(struct vc_data *conp, struct display *p,

 int bottom_only);

 unsigned int fontwidthmask; /* 1 at (1 << (width - 1)) if width

 is supported */

};

The console driver must also be told how the colours in the pixel values are mapped by filling in

display.fb_cmap appropriately. The above assignment must be done by the frame buffer driver in the

fb_set_var function, so that whenever a console switch occurs, the frame buffer driver will set the

console operations properly. The console functions are then called by the generic console driver in

drivers/char/console.c.

The final significant item in fb_info is the par structure – referring to a particular graphics controller.

It is up to each frame buffer driver to define par and put whatever variables are required into it - it

should define a unique video mode for the graphics hardware. Therefore par is completely different

in each driver. Par can then be used to set information in the fb_var_info, or copy values into

hardware.

The second framework for a frame buffer device is the file skeletonfb.c, which is a template based on

the following layout:

The Frame buffer driver 65

This framework expands upon the previous one, however this time the top level structure is one

defined by each driver. This usually contains the fb_info_gen structure and any other important

variables that don't fit anywhere else. Inside fb_info_gen is another set of function pointers in

fbgen_hwswitch:

struct fbgen_hwswitch {

 void (*detect)(void);

 int (*encode_fix)(struct fb_fix_screeninfo *fix, const void *par,

 struct fb_info_gen *info);

Illustration 12 Diagram of the skeleton fame buffer
framework. As above the black elements are generic kernel
structures populated by the driver, blue elements are specific
to the driver

fb_info

fb_var_screeninfo

fb_fix_screeninfo

fb_monospecs

fb_ops * fb_ops

fbgen_get_fix()

fbgen_get_var()

fbgen_set_var()

fbgen_get_cmap()

fbgen_set_cmap()

fbgen_pan_display()
fb_cmap

display * display

Par *

drivernamefb_info

fb_info_gen

fbgen_hwswitch * drivernamefb_switch

drivername_detect()

drivername_encode_fix()

drivername_decode_var()

drivername_encode_var()

drivername_get_par()

drivername_set_par()

drivername_get_getcolreg()

drivername_set_getcolreg()

drivername_pan_display()

drivername_blank()

drivername_set_disp()

Other driver specific data

par

unsigned int parsize

The Frame buffer driver 66

 int (*decode_var)(const struct fb_var_screeninfo *var, void *par,

 struct fb_info_gen *info);

 int (*encode_var)(struct fb_var_screeninfo *var, const void *par,

 struct fb_info_gen *info);

 void (*get_par)(void *par, struct fb_info_gen *info);

 void (*set_par)(const void *par, struct fb_info_gen *info);

 int (*getcolreg)(unsigned regno, unsigned *red, unsigned *green,

 unsigned *blue, unsigned *transp,

 struct fb_info *info);

 int (*setcolreg)(unsigned regno, unsigned red, unsigned green,

 unsigned blue, unsigned transp, struct fb_info *info);

 int (*pan_display)(const struct fb_var_screeninfo *var,

 struct fb_info_gen *info);

 int (*blank)(int blank_mode, struct fb_info_gen *info);

 void (*set_disp)(const void *par, struct display *disp,

 struct fb_info_gen *info);

};

The fb_ops structure is filled with generic functions, these traverse back up the tree of structures

using the container_of macro and call the functions in fbgen_hwswitch. These functions deal directly

with the driver specific par structure, reading and writing the values in par to and from the hardware

and the other generic structures. Each function in fbgen_hwsitch therefore has a simpler, well

defined purpose, making the task of fitting the hardware requirements into the generic framework

easier.

The provision of two methods of implementing a frame buffer driver is a source of confusion,

particularly since each of the drivers present in the kernel appears to be based on one or the other at

random.

5.5 The Fujitsu Cremson graphics controller

The Calypso 32 graphics card which can be inserted into the Pluto 6 board has 32MB of on board

DRAM, and a Fujitsu MB86290A Cremson video controller. The Fujitsu Cremson is one of a line of

video controllers targeted at embedded systems, specifically automotive displays (GPS navigation, in

car entertainment), palmtop/HPC video output, and consumer devices such as digital set top boxes.

The Frame buffer driver 67

Device Name
Chip

freq
2D 3D

Texture

Mapping

No of

Layers

Alpha

blending

RGB

Digital

RGB

Analog

Video

Memory

CPU

Interface

Pack-

age

MB87J2120 Lavender 64MHz x 4 x x

external

(up to

8MByte)

FR
BGA25

6

MB87P2020 Jasmine 64MHz x 4 x x

embedde

d

(1MByte)

FR
QFP20

8

MB86290A Cremson
100MH

z
x x 256x256 4

4 bit /

layer
x

external

(up to

32MByte

)

FR,SH3/4,

V850

QFP24

0

MB86291A Scarlet
100MH

z
x x 256x256 4

4 bit /

layer
x x

embedde

d

(2MByte)

FR,SH3/4,

V850

QFP20

8

MB86292 Orchid
100MH

z
x x 256x256 4

4 bit /

layer
x

external

(up to

32MByte

)

FR,SH3/4,

V850

QFP25

6

MB86293 Coral Q
166MH

z
x x

4096x409

6
6

8 bit

alpha-

plane

x

external

(upto

64MByte

)

FR,SH3/4,

V850

QFP25

6

MB86294 Coral B
166MH

z
x x

4096x409

6
6

8 bit

alpha-

plane

x x

external

(up to

64MByte

)

FR,SH3/4,

V850

QFP or

BGA25

6

MB86295 Coral P
166MH

z
x x

4096x409

6
6

8 bit

alpha-

plane

x x

external

(up to

64MByte

)

PCI
BGA25

6

MB86296 Coral PA
166MH

z
x x

4096x409

6
6

8 bit

alpha-

plane

x x

external

(up to

64MByte

)

PCI

(improved

bw)

BGA25

6

MB862xx Lime
100MH

z
x

4096x409

6
6

8 bit

alpha-

plane

x

external

(up to

32MByte

)

FR,SH3/4,

V850

+ serial

I/F

BGA25

6

Table 3 Fujitsu graphics controller comparison

The Cremson was chosen to power the Calypso 16 and 32 cards which accompany the Pluto 5/6

boards respectively. The Cremson can be integrated with certain CPUs without glue logic (no the

ColdFire) and supports multiple memory configurations:

The Frame buffer driver 68

Type Data bus width # of devices Total capacity

SDRAM 64 Mbit (x32 bit) 32 bit 1 8 MB

SDRAM 64 Mbit (x32 bit) 64 bit 2 16 MB

SDRAM 64 Mbit (x32 bit) 64 bit 3 32 MB

Table 4 Cremson memory configurations

On the Calypso 32 graphics card the Cremson is coupled with 4 8bit DRAM chips accessed across its

64 bit data path using an address arbiter. This graphics ram is also addressable by the ColdFire host

using chip select 3 and accessed over its 32 bit data bus.

See appendix C for further details on the Cremson graphics controller and its capabilities.

5.6 Implementing a Linux frame buffer driver on the Cremson

5.6.1 Design

The provision of a comprehensive framework in the kernel for frame buffer drivers meant the design

of the Cremson driver was focused on interfacing what the hardware does onto what the kernel does.

After some thought it was decided that the starting point was to decide what should go into the par

structure. After looking at other frame buffer drivers in the kernel it was found that par commonly

contains a mirror set of the registers in the graphics controller which must be written in order to set

the desired video mode. This then influenced the decision to use the driver framework from

skeletonfb, since most of the functions it uses are concerned with getting and setting values in par to

and from hardware, and translating them to values in the other structures. The following initial

decisions were made:

• To begin with only 16 bit direct colour mode will be used (8 bit can be added after the driver is

running correctly)

• Only the base layer will be enabled and used for frame buffer memory.

• A known set of timing register values will be used and set in the Cremson to set the resolution, at

least until the on-the-fly calculations are validated, to avoid breaking monitors.

• The initial resolution will be 1024x768.

• The generic frame buffer driver frame work from skeletonfb.c will be used.

The basis for the Cremson frame buffer driver therefore appears as follows:

The Frame buffer driver 69

In order to determine the Cremson registers required in par, the Heber source code was consulted

and the Cremson driver followed through from power on to graphics on the screen. This was

supplemented with information from the Cremson data sheet and resulted in the following steps:

Always apply these settings:

1) Set Cremson memory timing register to suit the ISSI IS42S16400B-7T DRAM chips used on the

Calypso32 graphics card.

Resolution specific settings:

2) Set the following video mode registers:

Illustration 13 Cremson frame buffer driver framework

fb_info

fb_var_screeninfo

fb_fix_screeninfo

fb_monospecs

fb_ops * fb_ops

fbgen_get_fix()

fbgen_get_var()

fbgen_set_var()

fbgen_get_cmap()

fbgen_set_cmap()

fbgen_pan_display()fb_cmap

display * display

Par *

cremsonfb_info

fb_info_gen

fbgen_hwswitch * cremsonfb_switch

cremson_detect()

cremson_encode_fix()

cremson_decode_var()

cremson_encode_var()

cremson_get_par()

cremson_set_par()

cremson_get_getcolreg()

cremson_set_getcolreg()

cremson_pan_display()

cremson_blank()

cremson_set_disp()

uint32_t fbcon_cmap[256]

void *screen_base_phys

void *screen_base_virt

uint32_t vid_mem_len

par
Cremson register
copies

unsigned int parsize

The Frame buffer driver 70

• Display Control Mode Register - non interlaced, external sync off, SYNC signals active low, dot

clock scalar, dot clock source

• Horizontal Total Pixels Register - X resolution + borders + sync time

• Horizontal Display Period Register - actual X resolution

• Horizontal Display Boundary Register - same as HDP (no layer splitting)

• HSync Position Register - X resolution + right border

• HSync Width Register

• Vsync Width Register

• Vert Total Rasters Register - Y resolution + borders + sync time

• Vsync Position Register - Y resolution + bottom border

• Vertical Display Period Register - Y resolution

Layer specific settings:

3) Set the following layer registers:

• Base Left layer mode - 8bit indirect/16bit direct colour mode, double buffering on/off, width and

height of layer in pixels

• Base Left layer origin address 0 - address of start of layer in video memory for layer frame 0

• Base Left layer display address 0 - address in video memory to display in layer frame 0 (used

for panning)

• Base Left layer origin address 1 - address of start of layer in video memory for layer frame 1

• Base Left layer display address 1 - address in video memory to display in layer frame 1 (used

for panning)

• Base Left layer display position X - Position of layer on screen

• Base Left layer display position Y - Position of layer on screen

•

• Display control enable - turn on the display and required layer

The par structure created therefore includes all the registers set in the above steps:

struct cremsonfb_par {

 __u32 xres; /* Hor Resolution px */

 __u32 yres; /* Vert Resolution px */

 __u8 bpp; /* bits per pixel */

 /* vid mode register shadows */

 __u16 dcm; /* Display Control Mode Register */

 __u16 htp; /* Hor Total Pixels Register */

 __u16 hdp; /* Hor Display Period Register */

The Frame buffer driver 71

 __u16 hdb; /* Hor Display Boundary Register */

 __u16 hsp; /* HSync Position Register */

 __u8 hsw; /* HSync Width Register */

 __u8 vsw; /* Vsync Width Register */

 __u16 vtr; /* Vert Total Rasters Register */

 __u16 vsp; /* Vsync Position Register */

 __u16 vdp; /* Vert Display Period Register */

 /* layer information */

 __u8 layer_num; /* BL | BR | ML | MR | W | C */

 __u32 layer_width; /* px */

 __u32 layer_height; /* px */

 __u32 layer_mode; /* SINGLE | DOUBLEBUFFER, INDIRECT | DIRECT_COLOUR,

 layer frame width in 64 byte units, height in px */

 __u16 transparent_color;

 __u16 xoffset; /* offset in px of layer frame from top left */

 __u16 yoffset; /* offset in px of layer frame from top left */

 __u32 frame0_addr; /* start address double buffer frame 0 */

 __u32 frame1_addr; /* start address double buffer frame 1 */

 __u32 display0_addr; /* display address double buffer frame 0 */

 __u32 display1_addr; /* display address double buffer frame 1 */

 __u8 palette_size; /* 16 for fake 16 bit console palette,

 256 for real 8 bit one */

};

The flow diagram accompanied by the par structure could then be translated directly to the

cremson_set_par() function, which simply writes all the values from step 2 and 3 in the diagram

from par structure to the hardware. The final cremson_get_par() function would then be a reversal of

this procedure, however to begin with a pre-defined par struct for 1024x768x16 was used to ensure

known values are written to the controller.

The functions cremson_encode_var(), cremson_decode_var() and cremson_encode_fix() are for the

most part a simple matter of copying over variables to/from par. The exception to this is the timing

data in the fb_var_screeninfo structure, which introduces some uncertainty. The timing data

variables in the structure are:

/* Timing: All values in pixclocks, except pixclock (of course) */

__u32 pixclock; /* pixel clock in ps (pico seconds) */

The Frame buffer driver 72

__u32 left_margin; /* time from sync to picture */

__u32 right_margin; /* time from picture to sync */

__u32 upper_margin; /* time from sync to picture */

__u32 lower_margin;

__u32 hsync_len; /* length of horizontal sync */

__u32 vsync_len; /* length of vertical sync */

__u32 sync; /* see FB_SYNC_* */

__u32 vmode; /* see FB_VMODE_* */

The pixclock is the time in pico seconds that each pixel is displayed for:

Cremson clock rate

= (Cremson PLL CLK source) * (clock scalar in Cremson Display Control Mode

register)

= 200454520 * (1/3) //taken from Cremson data sheet,

//1/3 used in Heber code

= 66000000

So var->pixclock = 1/66000000

= 1.5x10^-8 Seconds

The rest of the timing data is in multiples of the pixclock, hsync_len and vsync_len are the number of

pixels worth of time required for the monitor beams to return to their start positions after a scan. The

margin values are required for the delay between the HSYNC signal turning on or off and the electron

beams starting or stopping a scan. In order to accommodate this extra pixel time, the graphics

controller is often told to display a larger resolution than that visible on the screen - as is the case in

the pre-defined par structure for 1024x768, where the Cremson is given total pixel values of

1388x805.

5.6.2 Implementation

There was initial uncertainty as to how the frame buffer would be used on the Pluto 6 board, which

has no keyboard input directly. The frame buffer and console subsystems are closely tied, and the

console driver expects keyboard input.

5.6.2.1 16 bit mode

The driver was added to the configuration by editing the following files:

The Frame buffer driver 73

/usr/src/uClinux-dist/linux-2.4.x/drivers/video/Config.in:

 if ["$CONFIG_PLUTO6" = "y"]; then

 bool ' Pluto6 Cremson framebuffer' CONFIG_FB_P6CREMSON

 fi

/usr/src/uClinux-dist/linux-2.4.x/drivers/video/Makefile:

obj-$(CONFIG_FB_P6CREMSON) += cremsonfb.o fbgen.o

Initially the fbgen.o was left out, causing linker errors because the generic frame buffer functions

weren't being included in the build. The kernel configuration was then altered as follows:

Kernel configuration

Char drivers

Virtual terminal = y //required to enable console drivers menu

Support for console on virtual terminal = y //required to make frame

buffer do something interesting

Console drivers

Frame-buffer support

Support for frame buffer devices = y

Pluto 6 Cremson Framebuffer = y

Advanced low level driver options = y

16 bpp packed pixels support = y //required to include console

operations (putc, putcs etc) for this colour mode

Select compiled in fonts = y

VGA 8x16 font = y //required for many cards which don't have

built in font sets

Kernel hacking

Kernel boot parameter = "console=tty0 console=ttyS0,9600n8" //show some

messages on the screen as well as the serial port

Initial builds of the driver didn't yield any results on screen, due to the following problems, in

chronological order:

• It was neglected to include <asm/io.h> in the driver, use of readb/w/h and writeb/w/h macros still

compiled correctly, but didn't actually do anything.

The Frame buffer driver 74

• The Cremson is little endian, the ColdFire is big endian, so had to use cpu_to_le16/32 in writes to

all the Cremson registers.

• In the header file cremsonfb.h, the #define VID_MEM_BASE was entered one 0 short, resulting in

all writes to the Cremson (control registers and video memory) going to entirely the wrong

address space.

• In the cremsonfb_init function, functions were called with the parameter disp.var, then other

functions would check variables inside fb_info.gen.info.var.

• The variable fb_info.gen.parsize wasn't set, causing stack corruption in generic functions which

create a local struct par variable.

• The bitmask CREMSON_BL_ENABLE was set the same as CREMSON_DISPLAY_ENABLE, so the

display was coming on but no layer was shown.

Once these problems were fixed, the display would come on and show a pink strip of noise down the

left of the screen. After close inspection of the code it was found that par->hsw and par->vsw were

being written to the Cremson using writew, the registers are actually 8 bits wide, so neighbouring

registers were being corrupted. Also par->hdp wasn't being written at all. With these last issues

fixed, finally the following was displayed:

Suddenly it became apparent that of course the video memory is treated as little endian by the

Cremson and written to as big endian by the kernel. This is the reason why the penguin and the

console text are discernible but the colours are all wrong. Swapping the bytes as they are written to

the video memory would remedy the problem, however there is more than one point at which the

Illustration 14 A 16 bit frame buffer console with an
incorrectly coloured penguin, background and text

The Frame buffer driver 75

frame buffer memory is read and written. The read and write functions for the device file are

implemented in the file fbmem.c, these could be replaced by changing the function pointers in the

fb_fops structure to point to customised versions in the driver. The console driver however is kernel

resident and hence doesn't use these functions through the device node. The fix for the console was

to add byte swapping in the macros fb_writew and fb_writel in the file fbcon.h:

#define fb_writew(b,addr) (*(volatile u16 *) (addr) = (cpu_to_le16(b)))

#define fb_writel(b,addr) (*(volatile u32 *) (addr) = (cpu_to_le32(b)))

This fixed the penguin logo, but not the rest of the console output:

Stepping through the code in GDB with breakpoints on functions using the fb_writeb/w/l macros

showed that code to display the penguin uses fb_writew, the rest of the console is displayed using

fb_writel. It was realised that there is not just an endian issue - a black pixel is made up of all zeroes

in video memory, swapping the bytes has no effect, as shown by the background of the penguin logo

before and after fixing it.

The frame buffer console uses a palette table even in direct colour mode (although the fake palette

only has 16 entries), colours in the palette are set and retrieved using the functions

cremson_setcolreg and cremson_getcolreg, these ensure the colour values passed in are rounded to

the correct number of bits each. The reason the console background was pink originally was because

the disp structure which the console driver uses to interact with the frame buffer contains a pointer

to the colour palette array. This must be set in the function cremson_set_disp along with the pointer

to the correct console functions for the colour depth. The pointer assignment to the palette was

Illustration 15 A correct 16 bit penguin with still
incorrectly coloured console text

The Frame buffer driver 76

missing, causing wrong values to be read from a random address. The following assignment was

added to cremson_set_disp:

disp->dispsw_data = &info->fbcon_cmap;

The frame buffer console then appeared as shown:

The console was still not correct because the text was orange, it should be grey, as is the frame

buffer console text on a normal PC. It was suspected that one of the colour components was not

being written to the video memory correctly, possibly due to an alignment issue. Examining the

memory with GDB confirmed that this was the case. Due to time constraints it was decided to leave

this and implement the 8 bit mode.

5.6.2.2 8 bit mode

In order to test the 8 bit frame buffer console mode for the driver, a new par instance called

indirect_1024_768 was created to hold the 8 bit mode settings, with the same resolution as 16 bit

mode. The bpp value in the new par instance was altered from 16 to 8. This initial attempt produced

the following video output:

Illustration 16 A 16 bit console with correct
penguin and background but orange text

The Frame buffer driver 77

The penguin can be made out in the corner, twice as wide as normal. The reason for this is that the

Cremson was set by the new par instance to display the contents of the video memory using 8 bits

per pixel, but the kernel was still using 16 BPP, so every pixel intended to be shown by the kernel

results in two pixels on the screen.

In order to set the correct BPP in the kernel, the length value of each colour bit field structure in

fb_var_screeninfo had to be set correctly in the function cremson_encode_var:

switch(par->bpp)

{

case 8:

var->bits_per_pixel = 8;

/* only length in these bitfields are important for indirect colour */

var->red.length = 8;

var->green.length = 8;

var->blue.length = 8;

break;

case 16:

var->bits_per_pixel = 16;

var->red.offset = 10;

var->green.offset = 5;

var->blue.offset = 0;

var->red.length = 5;

var->green.length = 5;

var->blue.length = 5;

break;

Illustration 17 A first attempt at an 8 bit frame
buffer console

The Frame buffer driver 78

default:

/* cremson doesn't do any other colour depths */

}

The kernel then produced the following frame buffer console:

The width of the penguin and text was the same as 16 bit mode at 1024x768. An incorrect setting in

the Cremson registers was suspected at this point. The main display registers control the resolution

and so don't need changing. The colour depth dependent settings are in the layer registers, so the

Base Left layer Mode (BLM) register setting was examined in the Heber code. Curiously, it is the

width field in this register which must be changed, not the height. The layout of the register is shown

here:

Illustration 18 An 8 bit frame buffer console
with full width, but only half height

The Frame buffer driver 79

The 16 bit setting for the BLM register was 0x80200300, so the value in the width field was 32,

32*64 is 2048 bytes. For 16 BPP this results in 1024 pixels. However for 8 BPP the same layer width

setting makes the layer 2048 pixels wide, so the whole layer was displayed in only the top half of the

screen.

The kernel execution was halted and the width field in the BLM register altered with GDB. The value

in the register was mistakenly reduced 8*64 bytes, creating the following output:

Illustration 19 The layout of the Cremson BLM register

Illustration 20 An 8 bit console, with a layer
width of half the value required, resulting in
tiling of the layer

The Frame buffer driver 80

With the layer width now only using half of the screen resolution, the layer is tiled across, a

technique that may be used to create scrolling tiled backgrounds in the games of Hebers customers.

The correct layer width was applied; 16*64 bytes creates a 1024 byte wide layer, which in 8 bit mode

results in 1024 pixels across. The console was then output as shown:

The size of the console was at least correct. The final step was to ensure the palette table in the

video memory was being written with the correct colour values, in order to turn the green and blue

console into grey and black. The kernel sets up the palette by calling the cremson_setcolreg and

cremson_getcolreg functions in the frame buffer driver. In the 16 bit mode, these functions merely

maintained the pretend 16 entry console palette used for direct colour modes. For 8 bit mode it must

actually set the real palette table. The following code was added to cremson_setcolreg:

/* set the palette in the card */

*((u8 *)(cremson_pal_ptr + 4*regno + 3)) = 0; /* no alpha blending*/

*((u8 *)(cremson_pal_ptr + 4*regno + 2)) = ((u8)(red >> 8));

*((u8 *)(cremson_pal_ptr + 4*regno + 1)) = ((u8)(green >> 8));

*((u8 *)(cremson_pal_ptr + 4*regno)) = ((u8)(blue >> 8));

This change produced the console output shown below:

Illustration 21 An 8 bit console with the correct
size, but the wrong palette

The Frame buffer driver 81

Finally the correct colours were shown for both the penguin and the console text and background.

5.6.3 Running Nano X

Nano-X is a very small X server which can be configured to operate using the Linux frame buffer

device interface. It is part of the Microwindows project as opposed to Xfree86 or Xorg, but shares

similar characteristics with the standard X window system, for example using the network layer to

communicate between the server and clients. It is API compatible with the standard X interface -

graphical applications should be able to run on it without substantial code modification.

After successfully compiling Nano X and adding it to the ROMFS, it gave the following output:

nano-X

Cannot bind to named socket

This required that networking support be added to the kernel configuration. Having done this the

kernel then crashed on start up, and it was found that a number of network drivers are enabled by

default, and their probing routines were causing exceptions. Having turned these off and rebuilt the

kernel the next error message said:

nano-X

Cannot mmap /dev/fb0

This was because the Cremson frame buffer driver didn't implement the mmap() system call. In order

to do this the get_fb_unmapped_area function pointer had to be added to the fb_ops structure of the

Illustration 22 A fully working 8 bit Linux frame
buffer console on the Cremson

The Frame buffer driver 82

Cremson frame buffer driver:

static struct fb_ops cremsonfb_ops = {

owner: THIS_MODULE,

fb_get_fix: fbgen_get_fix,

fb_get_var: fbgen_get_var,

fb_set_var: fbgen_set_var,

fb_get_cmap: fbgen_get_cmap,

fb_set_cmap: fbgen_set_cmap,

fb_pan_display: fbgen_pan_display,

get_fb_unmapped_area: cremson_get_unmapped_area,

};

The cremson_get_unmapped_area function is very simple, it just returns an address to which the

calling application can map the memory of the device. For devices which aren't directly addressable

by the CPU, memory would have to be allocated, and support code run to ensure values placed there

are put into the device. The video memory is directly addressable, so a pointer to it can be returned

allowing the X server to write directly into the video memory itself:

static unsigned long cremson_get_unmapped_area(struct file *file, unsigned long

addr, unsigned long len, unsigned long pgoff, unsigned long flags)

{

return (unsigned long)fb_info.screen_base_phys;

}

5.6.3.1 16 bit mode

Running nano-X on the board then produced the following:

The Frame buffer driver 83

and running nanowm showed this:

At this stage there wasn't enough detail to know whether this was displaying correctly or not. Having

memory mapped the device in order to write to it directly, it is up to Nano-X to ensure the correct

endianess of the video data.

5.6.3.2 8 bit mode

Running Nano-X while the Cremson frame buffer was in 8 bit mode resulted in the same black screen

with white cursor, however running nanowm presented the following screen:

Illustration 23 A bare Nano-X display; black with
a white cursor

Illustration 24 The Nano Window Manager; the
desktop is displayed

The Frame buffer driver 84

This green desktop is what is expected from Nano X. By this stage, several demonstration programs

had been added to the file system, some of which are shown running here:

The cursor was controlled by connecting a serial mouse to the second ColdFire serial port.

Illustration 25 The Nano Window Manager in 8
bit mode; the green desktop is the correct colour
as opposed to purple

Illustration 26 A full session in Nano X; shown
running are Npanel, Nclock, some
demsonatrations, and a game of Ntetris

Conclusion 85

6 Conclusion
The project was successful; a sufficient proportion of the Pluto 6 boards functionality has been

enabled under uClinux to make it a useful example system, which was the original aim. The

knowledge of implementing everything achieved will help Heber run an OS on their future boards.

6.1 Performance of the system

One purpose of the project was to establish how well the Pluto 6 performed with an OS. The resulting

performance of uClinux on the board is rather poor, however this is due more to the low specification

of the 5206e than the OS or the drivers. Noticeable pauses occur particularly when running

commands which make extensive use of the file system.

6.2 Further work

One area where performance is lacking is the absence of double buffering in the frame buffer driver.

When dragging windows or really doing anything in Nano-X, the screen refresh is very slow. In order

to implement the double buffering, an interrupt routine must be implemented for the vertical

synchronisation interrupt of the Cremson video controller. As described in the IDE implementation,

the FPGA outputs the same interrupt level for both the Cremson and the IDE. This could be dealt with

by using shared interrupts in the kernel, however the IDE call to request_irq() is made deep within

the IDE layer rather than in the particular device driver. Sharing the interrupts also has the side

effect that the devices would have the same priority, whilst completing a transaction in an IDE

interrupt, the double buffering would be frozen. A more elegant solution would be to alter the VHDL

of the FPGA to use separate interrupt levels for the devices, however the software required for this

simple change means this is a job for Heber.

Another area which uClinux provides support is for the MBus module on the ColdFire. This would then

open up access to the PIC MCU and the features programmed in it, as well as the EEPROM. This extra

functionality is provided by the kernel for minimal effort, and would be another good example of the

benefits of running an OS on the board.

6.3 What has been learned

The project has clarified the interaction between an operating system and the hardware that it runs

on. The process of porting an OS to fresh hardware is a valuable exercise, allowing an instinct for

solutions to grow. Towards the end of the project, the reliance on the debugger reduced, while

answers to problems were predicted with increasing accuracy.

Despite this, the debugging and downloading facilities provided by the BDM were vital. Without

Conclusion 86

them, porting the kernel would have taken much longer. The power to break into kernel code also

helped when developing the drivers. In the future, a strong recommendation for debug facilities will

be made to those in charge of picking hardware for a project.

A lot has been learnt about the inner workings of the Linux kernel. Despite using uClinux, the

process of writing device drivers for Linux is largely the same. The changes required for different

architectures often come down to those mentioned in chapter 3.

A good deal of experience has been gained of the issues encountered when working with embedded

systems. A log book full of problems and solutions is testament to this.

Bibliography 87

7 Bibliography

7.1 Books
Bovet D., Cesati M., 2002. Understanding the Linux kernel. 2nd ed. Sebastopol, CA: O'Reilly.

Corbet J., Rubini A., 2001. Linux Device Drivers. 2nd ed. Sebastopol, CA: O'Reilly.

Corbet J., et al, 2005. Linux Device Drivers. 3rd ed. Sebastopol, CA: O'Reilly.

Hollabaugh C., 2002. Embedded Linux: Hardware, Software and Interfacing. Reading, MA: Addison-
Wesley.

Kernighan B., Ritchie D., 1988. The C Programming Language. 2nd ed. Upper Saddle River, NJ:
Prentice Hall.

Mitchell M., et al, 2001. Advanced Linux Programming. Indianapolis, IN: New Riders.

Pate S., 2003. UNIX Filesystems - Evolution, Design and Implementation. Indianapolis, IN: Wiley.

Sutter E., 2002. Embedded Systems Firmware Demystified. Gilroy, CA: CMP books.

Williams R., 2001. Computer Systems Architecture A Networking Approach. Essex: Addison-Wesley.

Yaghmour K., 2003. Building Embedded Linux Systems. Sebastopol, CA: O'Reilly.

7.2 Articles
Anon, 2006. Framebuffer. Wikipedia [online] (28 April 2006). Available from:
http://en.wikipedia.org/wiki/Frame_buffer [Accessed 1 May 2006].

Anon, 2006. Planar. Wikipedia [online] (23 January 2006). Available from:
http://en.wikipedia.org/wiki/Planar [Accessed 2 February 2006].

Braendler D., 2005. Debugging uClinux on ColdFire [online]. Available from:
http://www.luv.asn.au/overheads/embedded/Debugging_uClinux_on_ColdFire.pdf [Accessed 26
October 2005].

Buell A., 2000. Framebuffer HOWTO. The Linux documentation project [online] (27 February 2000).
Available from: http://www.tldp.org/HOWTO/Framebuffer-HOWTO.html [Accessed 4 February 2006].

Burian M., et al, 2005. The Linux Kernel Module Programming Guide. The Linux Documentation
Project [online] (December 2005). Available from: http://www.tldp.org/LDP/lkmpg/2.6/lkmpg.pdf
[Accessed 20 January 2005].

Cybertec, 2005. Crossfire Debugging Guide. [online]. Available from:
http://www.cybertec.com.au/documents/CrossFire/examples/Debugging.html [Accessed 6 October
2005].

Erlich S., 2004. Custom Linux: A Porting Guide - Porting LinuxPPC to a custom SBC. The Linux
Documentation Project [online] (March 2004). Available from: http://www.tldp.org/LDP/cpg/Custom-
Porting-Guide.pdf [Accessed 20 October 2005].

McCullough D., 2004. uClinux for Linux Programmers. Linux Journal [online] (1 July 2004). Available

Bibliography 88

from: http://www.linuxjournal.com/article/7221 [Accessed 2 January 2005].

McCullough D., 2002. Why does uClinux still use pages?. uCdot [online]. Available from:
http://www.ucdot.org/article.pl?sid=02/09/16/0156259&mode=thread [Accessed 3 march 2005].

McCullough D., 2002. Why is malloc different under uClinux?. Cyberguard [online], Technical bulletin
#11. Available from: http://www.cyberguard.info/snapgear/tb20020530.html [Accessed 13 April
2005].

Peacock C., 2005. Gcc-2.95.3 m68k-elf for uClinux. Beyond Logic [online]. Available from:
http://www.beyondlogic.org/uClinux/gcc-2.95.3.pdf [Accessed 8 October 2005].

Peacock C., 2005. uClinux - BFLT Binary Flat Format. Beyond Logic [online] (15 June 2005). Available
from: http://www.beyondlogic.org/uClinux/bflt.htm [Accessed 15 January 2006].

Simmons J., 2001. Linux Framebuffer Driver Writing HOWTO. The Linux documentation project
[online] (November 2001). Available from:
http://linuxconsole.sourceforge.net/fbdev/HOWTO/index.html [Accessed 6 February 2006].

Wilshire P., 2002. eXecute In Place (XIP) Overview. System Design and Consulting Services [online]
(22 October 2002). Available from:
http://www.ucdot.org/article.pl?sid=02/08/28/0434210&mode=thread [Accessed 2 January 2005].

7.3 Papers
Ben-Yehuda M., 2003. Linux Kernel Oopsing. In: LKDSG 2003 [online]. Available from:
http://www.mulix.org/lectures/kernel_oopsing/kernel_oopsing.pdf [accessed 26 October 2005].

COMPACTFLASH ASSOCIATION. 2003. CF+ and CompactFlash Specification Revision 3.0. Palo Alto,
CA: CompactFlash Association.

Drabik J., 2002. World's First Embedded Linux Distribution Keeps on Growing [online]. Toronto:
Arcturus Networks. Available from: http://www.arcturusnetworks.com/Docs/AboutuClinux.pdf
[Accessed 29 January 2006].

Nikkanen K., 2003. UCLINUX AS AN EMBEDDED SOLUTION. Bachelor's Thesis, Turku Polytechnic.

Ungerer G., 2004. uClinux Micro Controller Linux. In: linux.conf.au, Adelaide 12-17 January 2004.
[online] Available from: http://www.linux.org.au/conf/2004/eventrecord/LCA2004-cd/papers/16-greg-
ungerer-uClinux.doc [Accessed 26 October 2005].

7.4 Manuals
FUJITSU. 2000. MB86290A Graphics Controller Hardware Specifications Revision 2.0b. Fujitsu Limited.

MOTOROLA. 1998. MCF5206e ColdFire® Integrated Microprocessor User's Manual. Motorola, Inc.

MOTOROLA. 1998. MCF5307 ColdFire® Integrated Microprocessor User's Manual. Motorola, Inc.

7.5 Websites
BDM TOOLS, 2006. Sourceforge.net BDM tools [online]. Available from:
http://sourceforge.net/projects/bdm/ [Accessed 15 September 2005].

Bibliography 89

FREESCALE SEMICONDUCTOR, 2006. 68k/ColdFire [online]. Available from:
http://www.freescale.com/coldfire [Accessed 3 April 2006].

FUJITSU, 2006. Graphics Display Controller Products [online]. Available from:
http://www.fujitsu.com/ca/en/services/edevices/microelectronics/otherassps/graphicdisplay/products/
[Accessed 4 February 2006].

LAUTERBACH, 2006. Lauterbach GmbH - TRACE32 Microprocessor Development Tools [online].
Available from: http://www.lauterbach.com/frames.html [Accessed 12 September 2005].

LINUX CROSS-REFERENCE, 2005. Cross-Referencing Linux kernel sources [online]. Available from:
http://lxr.linux.no/ [Accessed 20 September 2005].

LINUXBIOS, 2006. The linuxBIOS homepage [online]. Available from:
http://www.linuxbios.org/index.php/Main_Page [Accessed 15 December 2005].

P&E, 2005. P&E Microcomputer Systems [online]. Available from: http://www.pemicro.com/ [Accessed
12 September 2005].

THE UCLINUX DIRECTORY, 2006. The uClinux Directory [online]. Available from:
http://uclinux.home.at/ [Accessed 1 October 2005].

THE NANO-X WINDOW SYSTEM, 2005. The Nano-X Window System [online]. Available from:
http://www.microwindows.org/ [Accessed 27 February 2005].

UCDOT, 2006. Embedded Linux and uClinux Developer Forum [online]. Available from:
http://www.ucdot.org/ [Accessed 8 October 2005].

UCLIBC, 2006. uClibc Embedded C Library [online]. Available from: http://www.uclibc.org/ [Accessed
8 October 2005].

UCLINUX EMBEDDED LINUX MICRO CONTROLLER PROJECT, 2006. uClinux – Embedded Linux Micro
Controller Project [online]. Available from: http://www.uclinux.org/ [Accessed 6 October 2005].

7.6 Mailing lists
COLD FIRE MAILING LIST, 2006. ColdFire Mailing List [online]. Available from:
http://www.wildrice.com/ColdFire/Subscribe.html [Accessed 14 November 2005].

LKML, 2006. The Linux Mailing List Archive [online]. Available from: http://lkml.org/ [Accessed 14
November 2005].

UCLINUX MAILING LIST SITE SEARCH, 2006. uClinux-dev mailing list site search [online]. Available
from: http://mailman.uclinux.org/htdig/ [Accessed 14 November 2005].

Glossary 90

8 Glossary

ASCII American Standard Code for Information
Interchange

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

CTS Clear To Send

DMA Dynamic Memory Access

DRAM Dynamic Random Access Memory

DSP Digital Signal Processor

DUART Dual Asynchronous Receiver/Transmitter

EEPROM Electrically Erasable Programmable Read Only
Memory

FPGA Field Programmable Gate Array

GNU GNU's Not Unix

GPL GNU Public License

I2C Inter Integrated Circuit serial communications
bus

IC Integrated Circuit

IDE Integrated Drive Electronics

IO Input/Output

ISA Industry Standard Architecture

LMA Load Memory Address

MBUS Motorola Bus (I2C compatible)

MMU Memory Management Unit

NiMH Nickel Metal-Hydride

OS Operating System

PC Personal Computer

PIC Peripheral Interrupt Controller (Adopted by
Microchip as a micro controller name)

PCI Peripheral Component Interconnect

PDA Personal Digital Assistant

RAM Random Access Memory

RISC Reduced Instruction Set

RTS Ready To Send

Rx Receiver

SBC Single Board Computer

SCADA Supervisory Control And Data Acquisition

SRAM Static Random Access Memory

Glossary 91

ASCII American Standard Code for Information
Interchange

Tx Transmitter

VMA Virtual Memory Address

VPN Virtual Private Network

XIP eXecute In Place

Appendix A - Further ColdFire information 92

9 Appendix A - Further ColdFire information
The ColdFire 5206e is a 32 bit micro controller derived from the 68000 series, however the core is
simplified and provided with on chip peripherals for embedded markets. The rationale behind the
introduction of the ColdFire is that many of the more obscure instructions from the 68000 are not
used by high level language constructs. Motorola looked to the RISC market and saw that reduced
instruction set processors provide high performance for a lower degree of chip complexity (and are
therefore cheaper). However the fixed length instructions used in RISC don't create dense code.
Code size doesn't matter in desktop computers but in embedded control applications it can become
very important. This led to Motorola basing the ColdFire on the concept of variable length RISC - the
instructions are varied in length creating smaller code, but the rest of the architecture shares
characteristics with other RISC architectures. The smaller code allows system builders to reach the
same target performance with slower, cheaper memory.

The 5206e is based on a version 2 ColdFire core with the following features:
• 40/54Mhz clock speeds
• Multiply and accumulate (MAC) unit supporting 16x16 and 32x32 bit multiplication and 32 bit

accumulate
• Hardware divide module supporting 32/32 and 32/16 operations
• User/supervisor modes - access to supervisor registers e.g. upper word of condition control

register (CCR) is disabled in user mode.
• 32 bit internal and external data bus
• 32 bit internal address bus, 28 bit external address bus, with the top four pins A[27:24]

multiplexed with the top four chip select lines CS[7:4] and the four write enable lines WE[3:1]
• 8 data registers D[7:0]
• 7 address registers A[6:0]
• 1 stack pointer register A7
• 1 vector base register allowing the exception vector table to be located anywhere in addressable

memory.
• On chip instruction cache with one control register and two access registers allowing portions of

the memory space to be non-cache-able.
• 81 instruction set.

The ColdFire range is designed for embedded control applications, the 5206e provides the following
on chip peripherals:
• 8kb on chip SRAM providing one clock cycle access to data
• DRAM controller supporting up to to 2 banks
• Dual UARTs
• MBUS (I2C compatible)
• Dual 16 bit timers,
• 8 bit parallel port,
• DMA controller with two channels
• Chip select module supporting up to 8 chip select lines with individual control and address

registers allowing differing data port sizes and wait states for varying external peripherals
• System integration module (SIM) incorporating interrupt controller, watchdog timer and pin

assignment control for handling multiplexed pins on the chip, plus control registers for the other
the on chip peripherals

The 5206e is the enhanced version of the 5206, with the same peripheral set, as well as DMA, MAC,
Hardware Divide, a larger cache, and larger built in SRAM. It is pin compatible with the MCF5206,
with the DMA pins muxed with Timer 0 pins.

The ColdFire has 4 states of operation:
• Normal processing - in either user or supervisor mode
• Exception processing - a trap or interrupt has occurred, the processor resumes normal processing

Appendix A - Further ColdFire information 93

when the fetch of the first instruction of the handler is initiated
• Stopped - this is a low power mode state entered by executing the STOP instruction. The ColdFire

wakes up when a non-masked interrupt or reset occurs
• Halted - if an exception (e.g. An access error) occurs when in the exception processing state, the

processor cannot save the registers for a context switch, nor return to normal processing, the the
ColdFire will halt. Only a reset can return the processor from this state.

9.1 Differences to the 68000
The ColdFire is a derivative of the M68000 core, with the following differences to features introduced
in 68xxx cores after the 68020:

9.1.1 Simplified addressing modes:
Fully supported in ColdFire V2:

• Data Register Direct
• Address Register Direct
• Address Register Indirect
• Post-increment
• Pre-decrement
• Displacement (16-bit displacement)
• PC Displacement (16-bit displacement)
• Absolute Short
• Absolute Long
• Immediate

Partially supported in ColdFire V2 :
• Indexed
• PC Indexed

The restrictions on these two modes are:
• The displacement constant is 8-bit only;
• "Zero-suppressed" registers are not supported;
• The Index register can only be handled as a Long. Word-length index registers are not

supported.
• The scale factor must be 1, 2, or 4. Scale factors of 8 are not supported.

Not implemented at all in ColdFire V2:
• Memory-indirect post-indexed
• Memory-indirect pre-indexed
• PC-indirect post-indexed
• PC-indirect pre-indexed

Further restrictions may be imposed on the addressing modes supported by particular instructions,
even if a particular addressing mode is itself available on ColdFire.

9.1.2 Reduced instruction set
Not available in ColdFire V2:
DBcc, EXG, RTR, RTD, CMPM,
ROL, ROR, ROXL, ROXR, MOVE16
ABCD, SBCD, NBCD
BFCHG, BFCLR, BFEXTS, BFEXTU
BFFFO, BFINS, BFSET, BFTST
CALLM, RTM, PACK, UNPK

Appendix A - Further ColdFire information 94

CHK, CHK2, CMP2, CAS, CAS2, TAS (restored in V4 core),
BKPT, BGND, LPSTOP, TBLU, TBLS, TBLUN, TBLSN
TRAPV, TRAPcc, MOVEP, MOVES, RESET
ORI to CCR, EORI to CCR, ANDI to CCR

9.1.3 Restricted instructions
MULU (multiply unsigned) and MULS (multiply signed) producing a 64-bit result are not implemented,
but 16 x 16 producing 32-bit, and 32 x 32 producing (truncated) 32-bit, are available.

Most arithmetic and logical instructions can act on Long words only. This applies to:
ADD, ADDA, ADDI, ADDQ, ADDX, AND, ANDI, ASL, ASR
CMP, CMPI (word/byte forms re-introduced in version 4 core)
CMPA, EOR, EORI, LSL, LSR,
NEG, NEGX, NOT, OR, ORI,
SUB, SUBA, SUBI, SUBQ, SUBX
MOVEM.W has also been removed from the instruction set.
The only instructions which do act on the full set of byte, word and long operands are CLR, MOVE and
TST. EXT.W, EXTB.L and EXT.L survive, as do MULx.W and MULx.L

Some arithmetic instructions cannot act directly on memory - the destination must be a register. This
applies to:
ADDI, ADDX, ANDI, CMPI, ASL, ASR, LSL, LSR,
NEG, NEGX, NOT, EORI, ORI, SUBI, SUBX, Scc
Note that ADDQ and SUBQ can act directly on memory

In most cases the ColdFire instructions operate in the same exactly the same manner as the 68xxx
counterparts, however there are exceptions, for example MULU and MULS do not set the overflow bit.

Note: Some of these differences do not apply to later ColdFire versions using the V4 core -
instructions have been put back, as well as new variations of existing ones.

9.1.4 Supervisor mode differences
There is only one stack shared between user and supervisor modes (i.e. A single stack pointer) so
interrupt handlers must not write below their stack frame, otherwise the user stack beneath it will be
corrupted.

Appendix B - Further Pluto 6 information 95

10 Appendix B - Further Pluto 6 information

10.1 Accompanying Hardware on the Pluto 6
The ColdFire is in overall control of the Pluto 6 board, however it is assisted by a number of
peripheral hardware items.

10.1.1 FPGA
A Xilinx Spartan FPGA as configured by Heber controls the routing between each of the 6 serial port
devices and the physical connection. Each serial device has its Tx/Rx and CTS/RTS lines connected to
the FPGA. The ColdFire can set the FPGA to route the signals to any of the physical port connections.
As well as the serial ports, the FPGA also handles the strobing of the multiplexed lamp arrays.
The FPGA also has security functionality. Areas of binaries to be loaded onto the board can be
encrypted with a key specific to each customer. The FPGA configuration is specific to the customer
and will decrypt the code once it is loaded into RAM on the board. The address map of the registers
inside the FPGA is different for each customer configuration, requiring custom header files for the
software.
A secured game will only run on a single customers board, preventing others from stealing the code
from a fruit machine and running it on theirs, profiting from other peoples game development.

10.1.2 Microchip PIC
A PIC 18F452 micro controller made by Microchip is programmed by Heber to contain a real time
clock, security logs and the FPGA configuration to load into the Spartan FPGA at power on. While the
Pluto 6 board is powered off the PIC continues to run in low power mode, powered by a 3.6V Ni-MH
rechargeable battery. The PIC scales up its timers to create a clock which records the time of day,
this and the other data can be fetched and set by the ColdFire via I2C. While the board is powered
down the PIC will monitor four switches, these are intended as door switches or similar to detect
tampering with the fruit machine. Any switch activity is recorded in up to 10 time stamped logs. It is
up to the writer of the game to fetch these logs from the PIC and issue warnings if necessary. The
FPGA configuration is stored with the rest of the code for the PIC in its flash ROM. This is done by
converting the FPGA configuration file into C code containing the raw binary data in an array. The
configuration can then be programmed into the PIC as data which the PIC code can access and feed
out to the FPGA at power on. This allows the FPGA configuration to be altered by removing the
socketed PIC chip and reprogramming it.

10.1.3 CPLD
The programming of the FPGA by the PIC is managed at power on by a CPLD. This is also customised
to match the FPGA for each customer. It is non-volatile and programmed at Heber using a "bed of
nails" rig, which presses contacts against certain pins on the underside of the board. This is
necessary because the CPLD is contained in a BGA package to avoid hackers monitoring the signals
on the pins and cracking the security. As the main section of the PCB is 4 layered they would not be
able to trace the tracks from the underside of the BGA package to accessible pins. There is a code in
the CPLD which must match that in the FPGA once it is programmed before the board is allowed to
boot any further. This prevents pirates from removing PICs from Pluto 6 boards configured for other
companies and using them (or clones) in their own boards to run stolen game code. If the CPLD and
FPGA codes match, ColdFire will be allowed to come out of reset.
The CPLD also has the chip select lines routed to it and outputs them to the relevant devices if "glue"
logic is needed. For example chip select 0 can activate the boot flash ROM which requires its output
enable and write enable lines to be asserted appropriately or the flash can be removed and a SRAM

Appendix B - Further Pluto 6 information 96

expansion card fitted, which is addressed using a single chip select line. Also the on-board SRAM on
CS1 uses two chip select lines for the upper and lower bytes. These are split and asserted by the
CPLD which takes the single CS1 input from the ColdFire.
The CPLD also provides access to the IDE registers on the CompactFlash or hard disc.

10.2 Hardware Boot sequence
To summarise the sequence of operations at power on in the device descriptions above:
The PIC MCU is periodically woken from its low power "sleep" mode by the watchdog timer interrupt
and checks if the rest of the board is powered up. If not it runs a small amount of code to maintain
the real time clock, reads the security switches and logs any changes on them. It then goes back into
low power mode until the next watchdog timer interrupt. When the rest of the board is powered on
and the PIC wakes up it branches to other code which programs the FPGA. This is done via a state
machine so the PIC can maintain the real time clock at the same time. After sending the data to the
FPGA the PIC polls an input which the FPGA will assert when it is running. Once the FPGA is
programmed the PIC will poll the percentage, stake and DIL switch banks and flash an LED on the
board on and off every second to show it is running. The PIC will continue these operations in a loop
until it detects the board has powered down and will branch back to the low power loop. The
switches are polled ready for requests via I2C from the ColdFire, which are interrupt driven in the
PIC.
Once programmed the FPGA will continue independently of the PIC and resume the boot.
Handshaking will occur between the FPGA and the CPLD, to check they both have the same code.
Once the FPGA configuration is confirmed to match the CPLD, the FPGA will allow the ColdFire to
come out of reset.
Code to be run by the ColdFire must be secured before it is loaded onto the board in S19 format. This
is done using a small program created at the same time as the custom FPGA configuration. When
running the program two address ranges are specified together with the boot loader and game S19
files to secure. The address ranges in the game S19 are filled with specific data. These ranges must
be set in a boot loader header file. The custom boot loader is then loaded into the flash ROM on the
board to match the secured FPGA and CPLD.
When the boot loader executes, it reads the game S19 file from Compact flash into the DRAM. It then
steps through the two secured address ranges, using the values to index a pre-defined data array.
The values indexed in the array are sent to the FPGA, once both address ranges have been
processed the FPGA should have been sent a correct sequence of data and the security cleared. If
the FPGA security is not cleared 27 seconds after board power up, the FPGA will shut down key
features of the board and reset the ColdFire. After sending the security data to the FPGA the boot
loader will then start execution of the loaded game regardless of whether security has been cleared
or not.

10.3 ColdFire configuration on the Pluto 6

10.3.1 Pin assignments
The multiplexed pins on the MCF5206e chip are configured for their chosen function by setting bits in
the pin assignment register in the system integration module (SIM). The SIM is comprised of a set of
registers, accessed as offsets from the Module Base Address Register, the address of which must be
set in the MBAR CPU register during initialisation of the ColdFire, this allows the SIM to be re-located
anywhere on the memory map as necessary.
The Pin Assignment Register controls the function of the following multiplexed pins:

TOUT[0]/DREQ[1] Timer 0 output (TOUT[0]) or DMA channel 1 request input
TIN[0]/DREQ[0] Timer 0 input (TIN[0]) or DMA channel 0 request input

Appendix B - Further Pluto 6 information 97

The Pluto 6 uses these two pins as DMA request inputs. The DMA channels are used to send audio
data to the DAC and then out to the speakers.

RTS[2]/RSTO Reset out Output (RSTO]) or UART 2 request to send

The Pluto 6 uses this pin as the request to send line for the second ColdFire UART

IRQ7/IPL2, IRQ4/IPL1, IRQ1/IPL0 Individual interrupt inputs (IRQ1, 4, 7) or encoded interrupt
priority levels:

IPL2 IPL1 IPL0
0 0 0 interrupt vector level 1
...
1 1 1 interrupt vector level 7

The Pluto 6 uses these three interrupt lines as encoded interrupt levels. See below for details.

PP[7:4]/PST[3:0] general purpose I/O signals PP7 - PP4 or background debug mode signals PST3 -
PST0
PP[3:0]/DDATA[3:0] Parallel Port output signals PP3 - PP0 or background debug mode signals
DDATA3 - DDATA0
The Pluto 6 uses these pins as background debug mode signals.

CS[7:4]/A[27:24]/WE[3:0] Three bits can be set in the pin assignment register to choose from 12
combinations of write enable, upper four chip select or address lines for these four pins.
The upper four chip select lines are not required on the Pluto 6, but the external address lines A
[27:24] are required to access the 32MB of graphics RAM on the Calypso 32 graphics card, so these
pins are used as address bus lines.

10.3.2 Interrupts on the Pluto 6 board
The peripherals external to the ColdFire which require servicing via interrupts (e.g. The DUART chip,
the UARTS in the FPGA) are routed via the FPGA. When a peripheral raises an interrupt the FPGA sets
the three interrupt lines routed to the ColdFire to the correct value. Once this value has been held for
two ColdFire clock cycles the interrupt mask register in the SIM is checked. If the interrupt level is
unmasked then the interrupt is passed to the ColdFire core.
Each interrupt source - up to seven external devices, plus the eight internal ColdFire peripherals
(SWT, timer 1 and 2, MBUS, UART 1 and 2, DMA channel 1 and 2) has its own interrupt control
register is the SIM. Each register has three bits to set the interrupt to one of the seven levels (for
external interrupts these levels are fixed and so the bits in their registers are reserved) and two bits
to set interrupts at the same levels to one of four priorities.

Interrupt Control Register:
7 6 5 4 3 2 1 0
AVEC - - IL2 IL1 IL0 IP1 IP0

This is useful because the internal peripherals may need to share one of the same 7 levels with an
external interrupt (if they are all used), the priority level then allows one interrupt to override the
servicing of the other. If the auto-vector bit is set in an ICR for an interrupt source then the processor
can straight away call the handler in the vector table, the interrupt vectors start at vector 25, so the
pointer to the handler function is at the interrupt level + 24. If the AVEC bit is not set the ColdFire
core carries out an interrupt acknowledge cycle during which the vector number is returned by the
peripheral, this vector number is then used directly to index the vector table (for internal ColdFire
devices the vector number can be set in their control registers in the SIM)

Appendix B - Further Pluto 6 information 98

On the Pluto 6 the external interrupt sources are set to auto-vector, this removes the need for the
devices external to the ColdFire to provide a vector number during an interrupt acknowledge cycle,
simplifying their operation. These interrupts will vector to the auto vector range of the interrupt table
25-31. Interrupt acknowledge cycles are easier to implement with the peripherals integrated onto the
ColdFire, so they can use vectors in the user definable range of the vector table (64-255). The
interrupt control registers on the Pluto 6 are set up as follows:

ICR value Purpose
External Interrupt Priority Level 1 0x80 FPGA UART interrupt (IL1 IP0)
External Interrupt Priority Level 2 0x80 External DUART interrupt (IL2 IP0)
External Interrupt Priority Level 3 0x83 Graphics card sync (IL3 IP3)
External Interrupt Priority Level 4 0x00 Unused
External Interrupt Priority Level 5 0x00 Unused
External Interrupt Priority Level 6 0x00 Unused
External Interrupt Priority Level 7 0x00 Unused
Software Watchdog Timer 0x00 Unused
Timer 1 0x96 Timer 1 (1MS) - (IL5 IP2)
Timer 2 0x88 Timer 2 (10MS) - (IL2 IP0)
MBUS (I2C) 0x00 Unused
UART 1 0x12 UART 1 - (IL4 IP2)
UART 2 0x11 UART 2 - (IL4 IP1)
DMA 0 0x00 DMA0 (disabled)
DMA 1 0x1B DMA1 - (IL6 IP3)

As can be seen the timers are set to auto vector. Timer 2 is set up to tick at 10 ms, this shares the
same interrupt level with the external interrupt level 2 which is the DUART chip. The priorities are
also the same, even though using the same level and priority for two interrupt sources is warned
against in the ColdFire manual. The handler in the vector table checks the interrupt pending register
to see which source caused the interrupt and takes the appropriate action. Originally timer 2 had its
own vector, the decision was taken to move this to share with the DUART as this timer needed a
higher priority. Timer 2 drives the multiplexed lamps and they were flickering when the video (which
had a higher priority interrupt) was enabled.
Also notice that the interrupt for DMA channel 0 are disabled. Channel 0 is not used because a silicon
error on the 5206e means it does not work correctly.

10.3.3 Chip selects and DRAM
The Pluto 6 board is configured with the following memory map, the devices are addressed via either
the four chip select lines (addresses starting 0 to 3), the DRAM controller (the DRAM), or the ColdFire
internally (internal SRAM and peripheral registers). Note that the top four address lines are internal
only.

Device Size address range
Boot ROM 512Kb 0x00000000 - 0x0003FEFC
External SRAM 256Kb 0x10000000 - 0x10040000
ATA controller 16b 0x12000000 - 0x12000010
FPGA 64Mb 0x20000000 - 0x22FFFFFF
Graphics RAM 32Mb 0x30000000 - 0x31FC0000
Graphics controller 200Kb 0x31FC0000 - 0x31FF0400
CF Internal SRAM 8Kb 0x50000000 - 0x50002000
DRAM 1.5Mb 0x60000000 - 0x6016FEFC
CF peripheral regs 500Kb 0xF0000000 - 0xF00001F0

Appendix C – The Heber software architecture
99

11 Appendix C – The Heber software architecture
Heber develop code for the Pluto 6 board in C using an old version of GCC (1.95) built to compile for
the M68k architecture.

The Pluto 6 as sold to fruit machine developers currently follows a closed source model. Software
engineers at Heber developed their own custom libraries from scratch using only the data sheets for
components on the board and the schematics produced by the hardware engineers for reference.
The code which handles the hardware is split into four libraries:
• Hardware – entry code, ATA, MBus, DMA, serial ports within the ColdFire, FPGA and DUART chip.
• Interface – FAT32, Heber Image Format and Windows bitmap file handling.
• Peripherals – E2ROM, communication with PIC MCU, multiplexed I/O.
• Customer peripherals – code for an example reel (stepper motor) driver. Customers may use this

as a template to write their own drivers.

When new versions of these libraries have been tested and released by Heber, the modules from
each are compiled into object files and then one main .a library file. These are distributed with the
header files to the customer.
Heber also provides demonstration projects with source code. These come with linker scripts, the
customer is then able to compile the game code they write and link it with the library files from
Heber. The makefile used to build the game code by the customer has the paths to the libraries
embedded in them, the code can then refer to header files of the libraries and hence use the
functions provided by Heber to handle the hardware.

11.1 Software architecture
The hardware is handled by the code using instances of a Device struct for each device. When a
driver is written a global Device struct for it is declared. The device struct is defined in the hardware
library in the header file for the device manager module:

typedef struct device
{

BYTE type;
BYTE id;
BYTE lines;

BYTE (*install)(const struct device* dev,WORD cfg,WORD base);
void (*shutdown)(const struct device* dev);
void (*restore)(const struct device* dev);

void* vars;
void* zvars;
ERRVAR* errvar;

const void* config;
const void* services;
const void* errordata;

} DEVICE;

A device structure is then created for every driver which is to be used in the system. Here is an
example declaration for the E2ROM driver in the e2rom module of the peripherals library:

const DEVICE E2RomDevice=
{

Appendix C – The Heber software architecture
100

E2RDEVICE,
STDE2R,
-1,

InstallE2Rom,
ShutdownE2Rom,
RestoreE2Rom,

&E2RomVars,
0,
0,
E2RomCfg,
0,
0,

};

The device struct contains pointers to functions and other structures including config. The structure
config is defined in the library code, but can be populated by the game developer in the game code
using an extern declaration in the file config.c of the project:

/* EEPROM */
const E2RCFG E2RomCfg[]=
{

{
&MbusDevice, /* I2C MBUS Device Driver */
NM24C04, /* I2C Device address */
16 /* page size in bytes */
256 /* bank size in bytes */
2 /* number of banks */
5, /* Retry time after failed read/write*/
1, /* Retries */

 }
};

This allows the game author to configure certain parameters of the devices on the board (E.G. the
number and size of pages and banks of the E2ROM they are going to put on the board) The config
struct is then pointed to by the config pointer in the main Device struct.
The Device struct also contains a pointer to another struct called Services. The Services struct may
contain pointers to functions which a driver can allow higher level drivers to use. For example the
Mbus driver config struct contains a valid pointer to a services struct:

const DEVICE MbusDevice=
{

MBUSDEVICE,
STDMBUS,
-1,
InstallMbus,
ShutdownMbus,
RestoreMbus,
0,
0,
0,
0,
&MbusServices, /* services struct */
0,

};

Appendix C – The Heber software architecture
101

static const SERVICES MbusServices=
{

MbusRead,
MbusWrite,

};

MbusRead and MbusWrite are functions to read and write to the I2C bus connected to the ColdFire.
The E2ROM driver relies on the MBus driver for its I2C communication from the ColdFire, this is why
the config structure in the e2rom device contains a pointer to the MbusDEVICE structure, the e2rom
driver can then call the functions in the Mbus device services struct:

E2RomDevice.E2RomCfg.mbusdev->MbusRead(...);

This is also useful for the FAT32 and ISO drivers in the interface library, which can both use the ATA
driver in the hardware library to operate drives connected to the IDE bus on the board.

The driver modules contain the functions to call from game code. These are separate from the device
structure instances, these must be passed in as parameters. This allows functions to be re-used for
slightly varying devices, for example there is a version of Pluto 6 which can accommodate two
calypso 32 graphics cards and produce dual video output. The two graphics cards have separate
device structures, Calypso32Dual0Device and Calypso32Dual1Device. Both of these have separate
config structures. Instead of requiring a separate set of functions to drive each one, they can both
use the same functions, the device parameter tells the function which card to use e.g.:

/* enable double buffering on first card only */
void CalypsoEnableDoubleBuffer(Calypso32Dual0Device)

The device structures are directly associated with three functions however - each device struct
contains pointers its install(), suspend(), and shutdown() functions. These pointers are used during
the boot sequence.

11.2 The boot sequence
Execution of code on the ColdFire begins in an assembly file in the hardware library called entry.h.
This code does the following:

1. sets the module and vector base addresses in the appropriate ColdFire registers
2. resets and enables the cache
3. configures the chip selects and DRAM controller so that the addresses of RAM and peripherals are

at the addresses expected by the code in the libraries (this is configurable using the extern config
structs in the game code config.h as above for extra flexibility)

4. sets the system integration module and interrupt control registers to respond to interrupts
correctly.

5. Sets the pin assignment register, and the system watchdog vector register.
6. The code then tests where it is executing from by comparing the ENTRY: assembly label to literal

hex addresses. Possible execution locations are DRAM, EPROM, external SRAM or a DRAM
expansion card. If a DRAM expansion card is found, the relevant chip selects are altered and the
code jumps to the start address of that memory.

7. The code checks the program identity (set in the game code) against the ID stored in the battery
backed SRAM by the COFF section id_ram in the linker script. If the Ids are not equal the rest of
the SRAM is cleared. Otherwise this allows data to persist in the SRAM between power cycles.

8. The EPROM checksum is also compared with a copy stored in SRAM. If these differ then the SRAM

Appendix C – The Heber software architecture
102

is cleared.
9. Finally the assembly code branches to C code by calling main().

The main() function calls the function installdevices(DeviceList) from the devmgr module in the
hardware library. Pointers to each device driver to load are placed in a DEVICE array in the file
devices.h in the game code:

const INSTALLDEVICE DeviceList[]=
{

{&ATADevice ,0 ,0,0},
{&DUART0Device ,0 ,0,0},
{&SerialDevice ,0 ,0,0},
{&LampDevice ,0 ,0,0},
{&OutputDevice ,0 ,0,0},
{&StepperDevice ,0 ,0,0},
{&MXIDevice ,0 ,0,0},
{&FPUART0Device ,0 ,0,0},
{&FPUART1Device ,0 ,0,0},
{&TimerDevice ,0 ,0,0},
{&MbusDevice ,0 ,0,0},
{&PICDevice ,0 ,0,0},
{&E2RomDevice ,0 ,0,0},

// {&Calypso32Device ,0 ,0,0},
{0,0,0}

};

This array contains pointers to the device structures described above. The devmgr module can use
this array from an extern declaration in it header file. It then steps through this array and calls the
install() function for each device. This mechanism allows the game developers to leave out support
for devices not required in their game, reducing the number of interrupt routines, and so CPU load.
(E.G. If the game developer does not require graphics, she may remove the pointer to the
Calypso32Device struct) The install function for a driver may install interrupt service routines into an
interrupt list. These are handled by the except module in the hardware library. The following
interrupt lists are defined:

void (*Int1msLst[])()={0,0,0,0,0,0,0,0,0,EOF_FUNCTIONS};
void (*Int10msLst[])()={0,0,0,0,0,0,0,0,0,EOF_FUNCTIONS};
void (*Int250msLst[])()={0,0,0,0,0,0,0,0,0,EOF_FUNCTIONS};
void (*IntDuartLst[])()={0,0,0,0,EOF_FUNCTIONS};

void (*IntVideoLst[])()={0,0,0,0,0,0,0,0,0,EOF_FUNCTIONS};
void (*IntFpuartLst[])()={0,0,0,0,0,0,EOF_FUNCTIONS};
void (*IntDMALst[])()={0,0,0,0,EOF_FUNCTIONS};

void (*IntDMALst[])()={0,0,0,0,EOF_FUNCTIONS};

When an interrupt occurs the relevant ISR is called (the vector table is set up using a list of function
pointers in vectors.c) this ISR will then call the function InterruptSheduler() from the except module
with the appropriate interrupt list. Any functions which are installed in that list by driver install()
functions are then called in the order they were installed.

Once main() has installed all the device drivers, it then calls Game() in the game code, from which
point it is up to the game developers to decide what happens.

Appendix D - uClinux and Linux boot sequence
comparison 103

12 Appendix D - uClinux and Linux boot sequence
comparison

12.1 Power on
When a board is powered on, all of the circuitry, especially that within the CPU and volatile memory,
is in a random state. In order to initialise the hardware, software has to be run to set it up, in order
for that to happen, the reset signal which every CPU has must be asserted and then negated. This
could be performed by a small circuit involving a few resistors and capacitors, or it may follow a
complex pre-boot operation involving configuring an FPGA, such as on the Pluto 6.
Once the CPU comes out of reset, the most common approach to begin booting is to assert a global
chip select signal, then jump to a physical address set in the hardware and execute the code found
there. It is up to the designers of a board to ensure that the chip select line asserted at boot is
connected to a memory device which can contain boot code, and that the starting address will
access the correct memory. Often the initial boot address is 0x0, as is the case for the ColdFire which
asserts CS0 after reset, on the Pluto 6 this is connected to a 512kb EEPROM. On the x86 however,
the initial address jumped to is 0xFFFFFFF0. This maps to the ROM containing what is known as the
BIOS. The concept of a BIOS is the first point at which the boot sequences of a small micro controller
and the PC diverge.

12.2 X86 PC Linux kernel boot sequence
The initial code in the PC BIOS carries out a Power-On Self Test and displays a banner with
information about the RAM and PCI devices found (or more recently a graphical splash screen), then
identifies a bootable drive in the priority set by the user, this setting along with others and the time
is stored in battery backed CMOS. The first sector (512 bytes) is copied from the drive to RAM and
executed. 512 bytes isn't enough code to drive all the possible IDE hard disks and floppy drives that
could contain an operating system, so the running software can call back into routines in the BIOS
via interrupts. These routines can get data from a disk, or information about the hardware present.
Older operating systems (e.g. MSDOS) rely on BIOS calls all the time to use the hardware. Modern
OS's can't rely on the BIOS during normal operation because the calls are only available in the legacy
Real Mode entered after reset, during which the CPU can only address 640Kb of memory. In order to
use all of the physical memory present the CPU must switch to Protected Mode, while the code in the
BIOS only runs in Real Mode.
The lack of BIOS availability in Protected Mode doesn't matter for Linux, because the decision was
made not to use the BIOS calls. This was partly for portability, but also because the kernel code can
often identify the hardware present more accurately itself. During boot and before entering
protected mode however, the Linux Loader (LILO) and the kernel are forced to use the BIOS, in order
to get the image from disk and discover available memory. Here is an excerpt from the boot code in
linux/arch/i386/boot/setup.S:

movb $0x88, %ah
int $0x15
movw %ax, (2)

This BIOS call is the simplest and last tried of three methods of discovering the RAM in the system.
The BIOS procedure identifier (0x88) is placed in the ah register, the interrupt triggered, and after
the code executed in the BIOS ROM returns, the result is moved to the ax register.

Because of the infliction of the 640Kb memory restriction in Real Mode, a multi-stage boot loader
must be used to load enough code into the available RAM to manage the rest of the boot once

Appendix D - uClinux and Linux boot sequence
comparison 104

protected mode is entered and the BIOS calls are lost. The following diagram illustrates the
procedure the X86 port of Linux uses to boot itself.

The first sector loaded from disk is LILO or GRUB. This then uses the BIOS to load the rest of itself
and presents a menu of OSs. Assuming Linux is chosen, the compressed image is loaded at
0x00001000, and the initial boot code at 0x00090200. The initial boot code enters protected mode,
then executes the code preceding the compressed image. Now that enough memory is addressable,
this code decompresses the image to 0x00100000. The entry assembly at the start of the
decompressed image is executed until start_kernel() is reached.

12.3 ColdFire uClinux kernel boot sequence
Most embedded systems differ in that they don't have a true BIOS. The term BIOS is usually used in
this area to refer to a boot loader in ROM, but while the PC has a set of routines to call back to in its
BIOS from other code executing in RAM, smaller embedded systems such as the Pluto 6 have no
standardised set of routines in ROM. When the ColdFire starts booting uClinux, there is nothing
below this level but wires and solder, so all the routines required to finish booting must be in this
code. This is often made simpler by placing the kernel image in addressable memory rather than a
disk, an approach now spreading back to the PC with the LinuxBIOS project (the ROM containing the
BIOS is overwritten with an XIP kernel). Also micro controllers such as the ColdFire have no legacy
modes or memory restrictions, removing the need for multi-stage boot loaders.
The ColdFire treats the beginning contents of its boot ROM as an initial vector table, the first entry
contains the initial value to place in the stack pointer register, the second is the initial program
counter value. This will point to the start of the code after the vector table.

On an embedded system booting uClinux, the initial code executed in the ROM will do one of two
things:

• The kernel runs directly from ROM without a boot loader, known as execute in place (XIP, as
described in the chapter on differences between the normal Linux kernel and uClinux). Although
this is the simplest boot sequence, the assembly preceding the call to start_kernel() must do the
work of initialising all of the required hardware, including if present the DRAM controller and CPU
cache. The data section of the kernel must then be copied into RAM, and space after that cleared
for the BSS section. The amount of RAM must be either detected or pre-defined, and pointers to
the start and end of available RAM must be placed into assembly variables for later use in C code.
At entry to start_kernel() the CPU must be left in the highest privilege level (supervisor mode),
with interrupts disabled. Without a boot loader, there is no way to pass command lines to the
kernel, so they must be compiled in using the configuration option.

• The hardware is initialised by separate boot code, then the kernel copied from an area of ROM
into RAM at the address it was linked to and executed. In this case the entry assembly of the
kernel can assume the CPU has been initialised to access the required memory correctly and omit
the hardware set up. The boot code could range from a small piece of assembly located in ROM
preceding the kernel, to a larger standard boot loader set to automatically decompress the kernel
from ROM into RAM and execute it. Examples of standard boot loaders include Uboot, Colilo and
Dbug, which run on multiple systems, and some even multiple architectures. Often the more
architectures a boot loader has been ported to, the more functionality it has, ranging from drivers
for Ethernet drivers and a TCP/IP stack to loadable modules. Usually a prompt is presented to the
user via a serial port, allowing commands to be typed. Development boards often use this as a
method for developers to download programs over the serial port or Ethernet to the board and run
them, including Linux kernels.

Regardless of how the uClinux kernel is executed, the main difference early in the boot sequence
between it and the standard kernel is the lack of a decompresser. When the uClinux kernel code is
entered, either from ROM or RAM, it assumes that it is residing in the location it will run from. This

Appendix D - uClinux and Linux boot sequence
comparison 105

contrasts with the standard Linux kernel, which even on embedded systems such as ARM boards,
can contain code to decompress itself and execute from another area of memory. UCLinux stays
where it is in memory, and needs only execute the assembly in a single file (crt0_rom.S or
crt0_ram.S) before jumping to start_kernel().

Appendix E - Variations in Graphics controller
capabilities 106

13 Appendix E - Variations in Graphics controller
capabilities
Some of the capabilities which can vary between different garaphics controllers are:
• Supported display resolution - Some controllers support a certain set of resolutions (e.g. the VESA

modes in modern VGA chips) while others support any resolution by allowing the output timings to
be explicitly specified.

• Current display resolution - the size of the current display resolution output by the graphics
hardware could vary, this will affect the size of the frame buffer memory. In the simplest case this
is (width in pixels) * (height in pixels) * (bytes per pixel). Display resolution has become less
standardised in embedded systems, where LCD panels are commonly used which may have a
native resolution of only 320x240 or less.

• Virtual resolutions - Some graphics controllers can set up memory for a large virtual resolution,
then display a portion of it through a window at a lower actual resolution. E.G. viewing a portion of
a 1024*768 desktop at 800*600. The controller may then also support hardware panning using
values placed into offset registers.

• Colour modes - a pixel value in the frame buffer memory may correspond to a particular colour
directly, this is known as "Direct colour" and is commonly used for 16bit colour and above. For 8
bit colour "Indirect colour" is usually used - the pixel value in frame buffer memory is used as an
index into a 256 (2^8) colour palette. The palette data is usually held in off screen video memory,
because the video controller must be told where it is and perform the lookup for each pixel each
time it redraws the display. Graphics controllers which use indirect colour can often display more
colours than the palette can hold, the software running on the host CPU must choose an optimum
set of colour values and write them into the palette location in video memory. This was the
technique used by the old 256 colour VGA graphics cards on the PC, - badly written graphical MS-
DOS software would write its own colour palette to the video card and not replace it afterwards,
resulting in warped colours.

• Colour mapping - each pixel may be represented by a different number of bits or bytes in the
frame buffer memory. Monochrome displays only required 1 bit per pixel - black or white/green.
Standards then progressed as shown in the following table:

Bits Per Pixel Number of Colours Available Common Name(s)

1 2 Monochrome

2 4 CGA

4 16 EGA

8 256 VGA

16 65536 XGA

24 16777216 SVGA

32 4294967296 SXGA

Table 5 Colour depths at certain graphics modes

It should be noted that the names in the above table refer to specific resolutions as well as colour
depth, although the amount of video RAM on current graphics cards allow a choice of resolution
without compromising on colour depth. The bits for each pixel are split into 3 groups - red, green and
blue. E.G. one common grouping for 16 bit colour is 555, - 5 bits for blue, 5 for green etc. The leftover
bit may be ignored or perhaps used for transparency/alpha blend enable. This colour mapping style
is known as "Chunky", and is the common technique used in modern hardware. Older hardware in
the 80s often used "Planar"[2] graphics, a technique whereby the video memory was separated into
bit planes (separate regions of video memory), and each bit in a bit plane represented a separate

Appendix E - Variations in Graphics controller
capabilities 107

pixel. The bit in each bit plane was combined with the bits at the same address in the other bit
planes to create a pixel value. This technique saved memory where the bit depth was not a multiple
of 8, because the chunky technique always aligned the pixel values on byte boundaries (E.G. If using
4 bits per pixel, in a chunky display the other 4 bits would be wasted, in a planar display, 4 bit planes
could be used in half the space). Planar displays became less popular when the bit depth went over 8
bits because of the growing number of bit planes required and the inherent complexity in the
software required to drive them.
• Single or double buffering - if large amounts of the screen need to be updated at once, E.G. text

scrolling on a console, or a window being dragged around on a desktop, then the data in the
frame buffer memory can change whilst the monitor is refreshing. The result of this is jagged
scrolling of text, and windows appearing to be "sliced" horizontally. Many graphics controllers
handle this by allocating to regions of memory, one is displayed on screen whilst the other is
drawn to, when a vertical synchronisation occurs the regions are swapped. This is known as
double buffering, and requires the graphics controller to generate an interrupt on every vertical
sync period, so that the software/OS running on the system can switch the graphics memory
pointers accordingly.

• Layers - graphics controllers designed for specific purposes or markets support hardware
layering. The graphics memory is partitioned into separate "layers", the contents of each are then
drawn on top of each other. A certain colour code (usually the one representing black) can then be
set as the transparent colour, so the contents of the layer behind can be seen, and this allows for
other features in hardware, such as alpha blending layers together for a transparency effect.

• Acceleration - The concept of a frame buffer is based on bit mapped operation. Certain graphics
controllers offer acceleration using vector techniques. E.G. 2D operations such as drawing a line
between two specified screen co-ordinates, or a circle with a specified centre and radius. The
most common 3D operation is to draw a triangular polygon with 3 dimensional co-ordinates, x, y
and z. This allows the construction of 3d meshes, the z value becoming especially necessary if the
graphics controller supports texture mapping, where a bitmap is read from off-screen video
memory and applied to the 3D model. This area is less relevant to frame buffers, however some
graphics hardware has built in text handling, or embedded fonts (E.G. VGA chips).

Appendix F - Features of the Cremson MB86290A
108

14 Appendix F - Features of the Cremson MB86290A
The Cremson supports 8 bit indirect and 16 bit direct colour. The 8 bit mode follows a standard
approach using a 256 entry palette table – each entry contains an 18 bit colour value, 6 bits each for
red, green and blue. This mode therefore allows 256 colours on screen from a selection of 262,144.
The 16 bit direct mode uses the standard RGB 555 colour mapping – bit 15 toggles alpha blending
on/off for the pixel, then 5 bits each are used for red, green and blue from MSB down to LSB.

14.1 Resolutions
The Cremson has a set of display parameter registers which allow direct control over the timing of
the video signal. These are all set independently allowing any conceivable resolution to be set from
320x234 up to 1024x768. The registers which must be set are shown in this diagram:

Each of the parameters in the above diagram are in pixels, but can also be thought of as multiples of
the pixclock/dotclock value. The pixclock is the time 1 pixel is displayed for – this is more logical for

Illustration 27 Cremson display controller
parameter usage (Fujitsu, 2000)

Illustration 28 Cremson display parameters
(Fujitsu, 2000)

Appendix F - Features of the Cremson MB86290A
109

values such as the Hsync width, where no pixels are actually on the screen. The pixclock value is set
by placing values in the Display control mode register to select a clock source and a scalar value.
The Pluto 6 uses Cremsons built in 200MHz clock, either as is or divided from 2-32 as the pixclock.
Once the pixel clock is establiahed the rest of the values for a resolution are calculated.

14.2 Layer/frame control
The cremson supports splitting the video memory into four seperate layers, and displaying them on
top of each other:

Each layer can have a different colour depth, actual size and visible window size and transparent
colour (therefore showing the layer beneath). The layers can then be panned and enabled/disabled
independently, and the console layer can be alpha blended with those below. Each layer has its own
set of registers to set its start and end address in video memory, width and height, colour mode and
whether the layer is single or double buffered.
To aid the handling of double buffering by the ColdFire (switching the video memory address to write
to and flipping the frame displayed) the Cremson can assert interrupts for multiple events:

• External synchronization error
• Vertical synchronization timing detect
• Field synchronization timing detect
• Command error
• Command complete

These are enabled separately in the interrupt mask register.

14.3 2d primitives and anti-aliasing
The Cremson can draw primitive 2D shapes using vector operations, the following types are
supported:

• Point
• Line
• Triangle
• Fast2DLine
• Fast2Dtriangle
• Polygon

Illustration 29 Cremson display controller layer configuration
(Fujitsu, 2000)

Appendix F - Features of the Cremson MB86290A
110

These shapes can be rendered with width (1-32 pixels) and anti-aliasing attributes.

14.4 3d polygons and perspective texture mapping
The Cremson supports texture mapping onto the primitives it can render, perspective correction is
provided using z co-ordinates on the polygon points, giving primitive 3D functionality. The textures
can either be stored in an on chip 8kb texture buffer which can hold a 64x64 pixel texture, or in
general purpose video memory, which is slower.

14.5 Display lists
The Cremson has a FIFO buffer in which to place specially formatted commands. A collection of these
commands are referred to as a display list, which the Cremson can process independently of the host
CPU. The commands are executed concurrently once placed into the FIFO, which can be written to
directly by the CPU, or via DMA transfer by the Cremson controller from the video memory. There are
nine different formats of display list commands depending on their type:

Which format is used varies between each command, making programming display lists for the
Cremson a complicated procedure. A display command isn't necessarily a draw command - the
commands are:

Illustration 30 Cremson display list formats (Fujitsu, 2000)

Appendix F - Features of the Cremson MB86290A
111

This functionality can be used to create a set of commands to draw different frames of a sprite to a
layer, setting the display list to be repeatedly loaded into the command FIFO would result in an
animation without intervention by the host CPU. This technique is used in later versions of the Heber
Pluto 6 API.

Illustration 31 Cremson display list comands
(Fujitsu 2001)

Appendix G - The multiplexed lamps and VFD
drivers 112

15 Appendix G - The multiplexed lamps and VFD drivers

15.1 The VFD driver
The VFD is controlled by three auxillary outputs from the FPGA, which are directly accessible by
writing the least significant bits of three registers in the FPGA. The driver was a practice in order to
get used to writing Linux drivers.

15.1.1 Design
The VFD is such a simple device that the design barely needed consideration. It is a simple character
device, supporting the write function only, on the basis that if a program writes to the device, it
should know what it has written and not need to read it back. When a character is written to the
device file, it appears on the display. When the display is full, it wraps around.
The display is initialised in the open function. When writing characters, lower case letters are found
and converted to upper case by checking the ASCII values and subtracting 32. This avoids the need
for to_lower() which is not present in the kernel.
There is a connector to support another display on the board, this is supported by the driver by
providing two device files with major number 120, which is in the private/development range, and
the minor number 0 or 1 to choose the VFD.

15.1.2 Implementation
With the driver written and compiled into the kernel, it was used by writing to the device file:

/ # echo hello\ world! > /dev/vfd0

And the text is displayed:

15.2 The multiplexed lamps driver
The FPGA supports strobing through 16 rows of lamps, each row containing 32 outputs. The lamps
are strobed every 1ms. The 1ms period of each row is broken down by the FPGA into 8 further
periods, each lamp can be on or off for each of these sub-periods to control its brightness level.
In order for software to control this, the FPGA presents a bank of 32 long (32 bit) registers. Each

Illustration 32 The VFD in action

Appendix G - The multiplexed lamps and VFD
drivers 113

register represents an eighth of a millisecond for the strobe, each bit in each register represents a
lamp.
When the 1ms strobe period is up, the software must replace the values in the 32 registers with the
values for the next row of lamps, then signal to the FPGA the start of the next strobe period by
writing to a control register.

15.2.1 Design
The challenge with this device was to decide how user space would send the 32 4 byte registers into
the kernel for the 16 rows of lamps. Three possibilities were found:
• Use 1 device file, write a character for each of the 256 lamps containing a brightness level.
• Use 16 device files, write 32 characters into each to control the brightness values of each row

separately.
• Use 256 device files, write a single character to each representing the brightness.

The first option would present a huge over head just to change the brightness of one lamp, requiring
a 256 byte transfer into kernel space. The third option would involve opening too many files
individually at run time, every time a file is opened, written and closed requires 3 system calls, each
involving 2 context switches, meaning setting the whole block of lamps would require 256*3*2 which
is 1536 context switches. This would be far to great a performance penalty on this level of system.
The second option was chosen as a compromise between the performance of a single device file and
the conveniance of individual lamp control. This approach also allows an array of lamp values to be
held and altered in the kernel more easily. A kernel timer was used to step through the array every
millisecond and write to the FPGA registers.

15.2.2 Implementation
With the driver written, a row of lamps could be set by echoing a string of ASCII '0'-'7's ('0'=off to
'7'=brightest) into the device file for the row desired.
At the first attempt the lamps only flashed slowly, this was found to be because the kernel timer
function was written based on the jiffies value, which is updated in every timer interrupt. The
frequency of timer interrupts is determined by the setting of HZ defined in linux/include/asm-
m68knommu/param.h. This is set to 100 by default, unfortunately 100 timer interrupts per second is
10 times too slow for the FPGA.
HZ was set to 1000, and the lamps then came on steadily. However on a 40MHz system, a HZ setting
of 1000 can slow the system as a whole.
The lamps driver can be tested on the command line as follows:

/ # echo 0123456776543210 > /dev/lamps10
/ # echo 0707070707070707 > /dev/lamps15

Which results in the following:

Appendix G - The multiplexed lamps and VFD
drivers 114

Illustration 33 The Multiplexed lamps,
partially obscured by the BDM module

Appendix H - The CompactFlash IDE driver
115

16 Appendix H - The CompactFlash IDE driver

16.1 Design
The uClinux distribution provides an easily adaptable IDE driver in linux/drivers/ide/legacy/uclinux.c,
so a design for this driver was not required. In order to use the driver the interrupt vector number
and the address of the IDE registers must be set in an array of ide_defaults structures. The IDE
registers on the Pluto 6 board are accessed through the CPLD at 0x12000000. It could be seen by
examining the board schematics that the interrupt line for the CompactFlash card was connected to
the FPGA, but the IDE socket was not. The VHDL used to configure the standard FPGA was examined
and the interrupt level value output on the 3 ColdFire interrupt lines was found to be the same as the
Cremson video controller, so the vector number was 27.

16.2 Implementation
The interrupt vector and IDE register address was added to the driver, but the first run didn't work,
although it printed a banner for the "Default IDE driver". Eventually it was discovered that Although
IDE support had been configured in the kernel configuration, the normal IDE driver had not been
chosen, so a large portion of the IDE subsystem was missing from the kernel.
The correct IDE driver would then fail to recognise the CompactFlash card present. Eventually it was
realised that the chip select 0 address had been changed to make way for the MBAR, so the correct
address of the IDE registers was 0xF2000000.
At the next run through, the driver recognised the card, but hang when attempting to access the /
dev/hda device. A "lost interrupt" message was printed. This was found to be due to the ColdFire
masking out the IDE interrupt. In order to unmask the interrupt, the driver calls the function
mcf_autovector() which also sets the external interrupt to automatically run the function allocated in
the vector table, rather than executing an interrupt cycle to fetch the vector number. However the
driver passes the vector parameter before it is set, so the interrupt remains masked.
Having amended the driver, the kernel then printed "spurious interrupt x" when the driver was being
initialised at boot (the value of x steadily incremented). It was realised this was the Cremson vertical
synchronisation interrupt which was now unmasked. In order to stop the VSYNC interrupt it must be
masked in the Cremson interrupt mask register. The IDE driver presents a function to do this called
uclinux_irq_fixup() which is called within the IDE layer when the interrupt is installed.
Once the Cremson interrupt was blocked and the IDE signal could get through, the message
"Unknown partition table" was printed every time the kernel attempted to access the CompactFlash
device file. This included at boot when the partition table is read, and then when running Fdisk
during numerous attempts to create a valid partition table.
It was suspected that perhaps the data bus width was incorrect, other boards using the driver had
macros in #ifdef blocks to vary the data bus width between 16 and 8 bit. The macros ENABLE8/16/32
and DISABLE16/32 were created for the Pluto 6 board, these switch between an 8/16 bit data bus by
toggling the setting in the Chip Select Control Register 0 (CSCR0). These macros are then called
INB/W/L and OUTB/W/L macros called by the IDE subsystem.

Having created these macros, the partition table error remained. The answer was eventually found
on the uClinux mailing list, the following kernel configuration setting had to be enabled:

Kernel config
Filesystems

Partition types
PC BIOS (MSDOS partition tables) support

The name of the option is a misnomer, it actually allows the kernel to recognise discs that have been
low level formatted on a PC using the MBR/primary/extended scheme in place before any partitions

Appendix H - The CompactFlash IDE driver
116

are added.
Once this option was enabled, the card worked flawlessly. As mentioned in the XIP section of the
porting chapter, the root file system was then mounted on the card without a problem.

Appendix I - The working kernel output 117

17 Appendix I - The working kernel output
This is the output over the serial console from the working kernel:

Linux version 2.4.31-uc0 (ed@.Linux version 2.4.31-uc0 (ed@) (gcc version 2.95.3 26
uClinux/COLDFIRE(m5206e)
COLDFIRE port done by Greg Ungerer, gerg@snapgear.com
Flat model support (C) 1998,1999 Kenneth Albanowski, D. Jeff Dionne
On node 0 totalpages: 4096
zone(0): 0 pages.
zone(1): 4096 pages.
zone(2): 0 pages.
Kernel command line: root=/dev/hda1 console=tty0 console=ttyS0,9600n8
Bad boy: ColdFire Timer (at 0x000033ac) called request_irq without a dev_id!
Console: colour dummy device 80x25
Calibrating delay loop... 16.57 BogoMIPS
Memory available: 13880k/16384k RAM, 0k/0k ROM (745k kernel code, 259k data)
kmem_create: Forcing size word alignment - mm_struct
kmem_create: Forcing size word alignment - filp
Dentry cache hash table entries: 2048 (order: 2, 16384 bytes)
Inode cache hash table entries: 1024 (order: 1, 8192 bytes)
kmem_create: Forcing size word alignment - inode_cache
Mount cache hash table entries: 512 (order: 0, 4096 bytes)
kmem_create: Forcing size word alignment - bdev_cache
kmem_create: Forcing size word alignment - cdev_cache
kmem_create: Forcing size word alignment - kiobuf
Buffer cache hash table entries: 1024 (order: 0, 4096 bytes)
Page-cache hash table entries: 4096 (order: 2, 16384 bytes)
POSIX conformance testing by UNIFIX
Linux NET4.0 for Linux 2.4
Based upon Swansea University Computer Society NET3.039
Initializing RT netlink socket
Starting kswapd
kmem_create: Forcing size word alignment - file_lock_cache
ColdFire internal UART serial driver version 1.00
ttyS0 at 0x10000140 (irq = 73) is a builtin ColdFire UART
ttyS1 at 0x10000180 (irq = 74) is a builtin ColdFire UART
VFD: Copyright (C) 2005-2006, Ed Langley (edwin_langley@hotmail.com
mpx_lamps: Copyright (C) 2005-2006, Ed Langley (edwin_langley@hotmail.com
kmem_create: Forcing size word alignment - blkdev_requests
Blkmem copyright 1998,1999 D. Jeff Dionne
Blkmem copyright 1998 Kenneth Albanowski
Blkmem 1 disk images:
0: 240EDC-240EDB [VIRTUAL 240EDC-240EDB] (RO)
RAMDISK driver initialized: 16 RAM disks of 4096K size 1024 blocksize
Uniform Multi-Platform E-IDE driver Revision: 7.00beta4-2.4
ide: Assuming 50MHz system bus speed for PIO modes; override with idebus=xx
hda: probing with STATUS(0x50) instead of ALTSTATUS(0x00)
hda: SAMSUNG CF/ATA, CFA DISK drive
IDE: waiting for drives to settle...
IDE: waiting for drives to settle...
ide0 at 0xf2000000 on irq 27
hda: attached ide-disk driver.
hda: 508928 sectors (261 MB) w/0KiB Cache, CHS=994/16/32
Partition check:
 hda: hda1
Console: switching to colour frame buffer device 128x48

Appendix I - The working kernel output 118

fb0: Fujitsu Cremson frame buffer device
NET4: Linux TCP/IP 1.0 for NET4.0
IP Protocols: ICMP, UDP, TCP
kmem_create: Forcing size word alignment - ip_dst_cache
IP: routing cache hash table of 512 buckets, 4Kbytes
TCP: Hash tables configured (established 1024 bind 1024)
NET4: Unix domain sockets 1.0/SMP for Linux NET4.0.
 hda: hda1
 hda: hda1
VFS: Mounted root (ext2 filesystem) readonly.
Welcome to
 ____ _ _
 / __| ||_|
 _ _| | | | _ ____ _ _ _ _
 | | | | | | || | _ \| | | |\ \/ /
 | |_| | |__| || | | | | |_| |/ \
 | _______|_||_|_| |_|____|_/_/
 | |
 |_|

For further information check:
http://www.uclinux.org/

/ #

Appendix J - the BDM-CHK test output 119

18 Appendix J - the BDM-CHK test output
Here is the first communication with the board using the BDM tools package in Linux:

ed@Eds-PC:/tmp/m68k-bdm-build/test$ bdm-chk /dev/bdmcf0
BDM Check for Coldfire processors.
Device: /dev/bdmcf0
trying kernel driver: /dev/bdmcf0
trying bdm server: localhost:/dev/bdmcf0
Driver Ver : 2.11
Processor : Coldfire
Interface : P&E Coldfire
CSR break set, target stopped.
Debug module version is 0, (5206(e))
Target status: 0x0 -- NOT RESET, NOT HALTED, NOT STOPPED, POWER ON, CONNECTED.
Register test, 1 of 1 :
 D00 : ..
 D01 : ..
 D02 : ..
 D03 : ..
 D04 : ..
 D05 : ..
 D06 : ..
 D07 : ..
 A00 : ..
 A01 : ..
 A02 : ..
 A03 : ..
 A04 : ..
 A05 : ..
 A06 : ..
 A07 : ..
Read/Write SRAM Test, 1 loops
 1 : ..
Alignment SRAM Test, 1 loops
Byte Write alignment write, 1 of 1 :
................................
................................
................................
................................
................................
................................
................................
................................
 reading bytes :
................................
................................
................................
................................
................................
................................
................................
................................
 reading words :
................
................
................

Appendix J - the BDM-CHK test output 120

................

................

................

................

................
 reading long words :
........
........
........
........
........
........
........
........
Word (16bits) Write alignment verify, 1 of 1 :
................
................
................
................
................
................
................
................
 reading bytes :
................................
................................
................................
................................
................................
................................
................................
................................
 reading words :
................
................
................
................
................
................
................
................
 reading long words :
........
........
........
........
........
........
........
........
Long Word (32bits) Write alignment verify, 1 of 1 :
........
........
........
........
........
........

Appendix J - the BDM-CHK test output 121

........

........
 reading bytes :
................................
................................
................................
................................
................................
................................
................................
................................
 reading words :
................
................
................
................
................
................
................
................
 reading long words :
........
........
........
........
........
........
........
........
Block Write alignment verify, 1 of 1 :
 reading bytes :
................................
................................
................................
................................
................................
................................
................................
................................
 reading words :
................
................
................
................
................
................
................
................
 reading long words :
........
........
........
........
........
........
........
........

Appendix J - the BDM-CHK test output 122

Coldfire execution test, loading code to SRAM.
Stepping code.
Stepping, pc is 0x20000000, csr = 0x01000000
Stepping, pc is 0x20000004, csr = 0x01000030
Stepping, pc is 0x2000000a, csr = 0x01000030
Stepping, pc is 0x20000010, csr = 0x01000030
Stepping, pc is 0x20000016, csr = 0x01000030
Stepping, pc is 0x2000001c, csr = 0x01000030
Stepping, pc is 0x20000022, csr = 0x01000030
Stepping, pc is 0x20000028, csr = 0x01000030
Stepping, pc is 0x2000002e, csr = 0x01000030
Stepping, pc is 0x20000034, csr = 0x01000030
Stepping, pc is 0x2000003a, csr = 0x01000030
Stepping, pc is 0x20000040, csr = 0x01000030
Stepping, pc is 0x20000046, csr = 0x01000030
Stepping, pc is 0x2000004c, csr = 0x01000030
Stepping, pc is 0x20000052, csr = 0x01000030
Stepping, pc is 0x20000058, csr = 0x01000030
Stepping, pc is 0x2000005e, csr = 0x01000030
Stepping, pc is 0x20000064, csr = 0x01000030
A0: A0A0A0A0 D0: D0D0D0D0
A1: A1A1A1A1 D1: D1D1D1D1
A2: A2A2A2A2 D2: D2D2D2D2
A3: A3A3A3A3 D3: D3D3D3D3
A4: A4A4A4A4 D4: D4D4D4D4
A5: A5A5A5A5 D5: D5D5D5D5
A6: A6A6A6A6 D6: D6D6D6D6
A7: A7A7A7A7 D7: D7D7D7D7
 RPC:2000006A
 SR:00002708
 VBR:00000074
 CACR:00000000
 ACR0:FFFB60E4
 ACR1:FFFE4064
 RAMBAR:20000001
 MBAR:10000000
 CSR:01000030
 AATR:00000005
 TDR:00000000
 PBR:00000000
 PBMR:00000000
 ABHR:00000000
 ABLR:00000000
 DBR:00000000
 DBMR:00000000
CSR halt set, target halted.
Target status: 0x0 -- NOT RESET, NOT HALTED, NOT STOPPED, POWER ON, CONNECTED.
A0: A0A0A0A0 D0: D0D0D0D0
A1: A1A1A1A1 D1: D1D1D1D1
A2: A2A2A2A2 D2: D2D2D2D2
A3: A3A3A3A3 D3: D3D3D3D3
A4: A4A4A4A4 D4: D4D4D4D4
A5: A5A5A5A5 D5: D5D5D5D5
A6: A6A6A6A6 D6: D6D6D6D6
A7: A7A7A7A7 D7: D7D7D7D7
 RPC:20000088
 SR:00002708

Appendix J - the BDM-CHK test output 123

 VBR:00000074
 CACR:00000000
 ACR0:FFFB60E4
 ACR1:FFFE4064
 RAMBAR:20000001
 MBAR:10000000
 CSR:02000000
 AATR:00000005
 TDR:00000000
 PBR:00000000
 PBMR:00000000
 ABHR:00000000
 ABLR:00000000
 DBR:00000000
 DBMR:00000000
0FC00000: 15151515
01000000: 00000000
01001000: 0022D5F0
01001050: 0022D5F0
01001054: 63202079

Appendix K - Source code listings 124

19 Appendix K - Source code listings

19.1 crt0_ram.S
This is the kernel entry assembly to run from RAM on the Pluto 6:

/***/

/*
 * crt0_ram.S -- startup code for MCF5206e based Heber Pluto 6 board.
 *
 * (C) Copyright 1999-2002, Greg Ungerer (gerg@snapgear.com)
 *
 * 1999/02/24 Modified for the 5307 processor David W. Miller
 */

/***/

#include "linux/autoconf.h"
#include "asm/coldfire.h"
#include "asm/mcfsim.h"

/***/

/*
 * Heber Pluto 6 Board (MCF5206e), chip select and memory setup.
 */

/* Boot flash replaced with battery backed DRAM */
#define MEM_BASE 0x00000000
#define MEM_SIZE 0x01000000 /* 16 MB of DRAM on expansion card */
#define MEM_END MEM_BASE+MEM_SIZE

#define MEM_BUILTIN 0x50000000 /* Built in SRAM location */
/* move external SRAM (CS1) all the way up to 0xF0000000 to make way for MBAR */
#define MEM_STACK 0xF0040000 /* Use external SRAM for stack */

#define VBR_BASE MEM_BUILTIN /* Use built in SRAM for vectors */

/***/

.global _start

.global _rambase

.global _ramvec

.global _ramstart

.global _ramend

/***/

.data

/*
 * Set up the usable of RAM stuff. Size of RAM is determined then
 * an initial stack set up at the end.
 */
_rambase:

Appendix K - Source code listings 125

.long 0
_ramvec:
.long 0
_ramstart:
.long 0
_ramend:
.long 0

#if CONFIG_BLK_DEV_INITRD
/*
 * Setup initial RAM disk limits of using INITRD.
 */
.extern initrd_start
.extern initrd_end
#endif

/***/

.text

/*
 * This is the codes first entry point. This is where it all
 * begins...
 */

_start:
nop /* Filler */
move.w #0x2700, %sr /* No interrupts */

/* set the vector table location */

move.l #VBR_BASE, %a7 /* Note VBR can't be read */
movec %a7, %VBR
move.l %a7, _ramvec /* Set up vector addr */

move.l #MEM_BASE, %a7 /* Ed did this - set mem base */
move.l %a7, _rambase /* correctly */

 move.l #MEM_END, %a0

move.l %a0, %d0 /* Mem end addr is in a0 */
move.l %d0, %sp /* Set up initial stack ptr */
move.l %d0, _ramend /* Set end ram addr */

/* Set the stack ptr to the end of builtin SRAM */
/* move.l #MEM_STACK, %a0

move.l %a0, %d0
move.l %d0, %sp

*/

/*
 * Enable CPU internal cache.
 */
move.l #0x01000000, %d0 /* Invalidate cache cmd */
movec %d0, %CACR /* Invalidate cache */

Appendix K - Source code listings 126

move.l #0x80000100, %d0 /* Setup cache mask */
movec %d0, %CACR /* Enable cache */

#ifdef CONFIG_ROMFS_FS
/*
 * Move ROM filesystem above bss :-)
 */
lea.l _sbss, %a0 /* Get start of bss */
lea.l _ebss, %a1 /* Set up destination */
move.l %a0, %a2 /* Copy of bss start */

#if CONFIG_BLK_DEV_INITRD
move.l %a1, %d2
add.l #0xfff, %d2 /* Round ROMfs start to page */
and.l #0xfffff000, %d2
move.l %d2, %a1 /* Save result for later */

#endif

move.l 8(%a0), %d1 /* Get size of ROMFS */
addq.l #8, %d1 /* Allow for rounding */
and.l #0xfffffffc, %d1 /* Whole words */

add.l %d1, %a0 /* Copy from end */
add.l %d1, %a1 /* Copy from end */
move.l %a1, _ramstart /* Set start of ram */

_copy_romfs:
move.l -(%a0), %d0 /* Copy dword */
move.l %d0, -(%a1)
cmp.l %a0, %a2 /* Check if at end */
bne _copy_romfs

#else /* !CONFIG_ROMFS_FS */

lea.l _ebss, %a1 /* Get end of bss segment */
move.l %a1, _ramstart /* Set start of ram */

#endif /* !CONFIG_ROMFS_FS */

/*
 * Zero out the bss region.
 */
lea.l _sbss, %a0 /* Get start of bss */
lea.l _ebss, %a1 /* Get end of bss */
clr.l %d0 /* Set value */

_clear_bss:
move.l %d0, (%a0)+ /* Clear each word */
cmp.l %a0, %a1 /* Check if at end */
bne _clear_bss

#if CONFIG_BLK_DEV_INITRD
if CONFIG_ROMFS_FS

/*
 * Setup up RAMdisk info if using it.
 * (Must do this after clearing the bss :-)
 */

Appendix K - Source code listings 127

move.l %d2, initrd_start /* Set up start of initrd */
add.l %d1, %d2 /* Calculate end of initrd */
move.l %d2, initrd_end

else /* !CONFIG_ROMFS_FS */

/*
 * initrd support for Coldfire currently requires romfs.
 * Generic initrd support requires a bootloader protocol to
 * tell the kernel where the image is located.
 */
moveq.l #0, %d2
move.l %d2, initrd_start
move.l %d2, initrd_end

endif /* !CONFIG_ROMFS_FS */
#endif /* CONFIG_BLK_DEV_INITRD */

/*
 * Load the current task pointer and stack.
 */
lea init_task_union, %a0
movel %a0, _current_task
lea 0x2000(%a0), %sp

/*
 * Assember start up done, start code proper.
 */
jsr start_kernel /* Start Linux kernel */

_exit:
jmp _exit /* Should never get here */

/***/

19.2 ram.ld
This is the linker script to link the kernel to RAM on the Pluto 6:

MEMORY {
ram : ORIGIN = 0x00000000, LENGTH = 0x01000000

}

SECTIONS {

.text : {
_stext = . ;

 *(.text)
*(.text.exit)
*(.text.lock)
*(.exitcall.exit)
*(.rodata)
*(.rodata.str1.1)

. = ALIGN(0x4) ;
*(.kstrtab)

Appendix K - Source code listings 128

. = ALIGN(16); /* Exception table */
__start___ex_table = .;

*(__ex_table)
__stop___ex_table = .;

__start___ksymtab = .; /* Kernel symbol table */
*(__ksymtab)

__stop___ksymtab = .;
. = ALIGN(4) ;
_etext = . ;

} > ram

.data BLOCK(0x4) : {
_sdata = . ;
__data_start = . ;

 *(.data)
*(.data.exit)

. = ALIGN(0x2000) ;
 *(.data.init_task)

. = ALIGN(0x2000) ;
_edata = . ;

} > ram

.init BLOCK(4096) : {
__init_begin = .;

*(.text.init)
*(.data.init)

. = ALIGN(16);
__setup_start = .;

*(.setup.init)
__setup_end = .;
__initcall_start = .;

*(.initcall.init)
. = ALIGN(4) ;
__initcall_end = .;
__init_end = .;

} > ram

.bss BLOCK(0x4) : {
_sbss = . ;

*(.bss)
*(COMMON)

. = ALIGN(4) ;
_ebss = . ;
_end = . ;

} > ram
}

19.3 crt0_rom.S
This is the kernel entry assembly to run from ROM on the Pluto 6:

/***/

/*

Appendix K - Source code listings 129

 * crt0_rom.S -- startup code for MCF5206e based Heber Pluto 6 board.
 * This version is to boot and execute the kernel in place from the
 * 16 Mb RAM expansion card.
 *
 * (C) Copyright 1999-2002, Greg Ungerer (gerg@snapgear.com)
 *
 * 1999/02/24 Modified for the 5307 processor David W. Miller
 */

/***/

#include "linux/autoconf.h"
#include "asm/coldfire.h"
#include "asm/mcfsim.h"

/***/

/*
 * Heber Pluto 6 Board (MCF5206e), chip select and memory setup.
 */

/* Boot flash replaced with battery backed DRAM */
#define MEM_BASE 0x00000000
#define MEM_SIZE 0x01000000 /* 16 MB of DRAM on expansion card */
#define MEM_END MEM_BASE+MEM_SIZE

#define MEM_BUILTIN 0x50000000 /* Built in SRAM location */
/* move external SRAM (CS1) all the way up to 0xF0000000 to make way for MBAR */
#define MEM_STACK 0xF0040000 /* Use external SRAM for stack */

#define VBR_BASE MEM_BUILTIN /* Use built in SRAM for vectors */

/* Chip select and DRAM settings */

#define CS0_ADDR 0x00000000 /* CS0 is the RAM expansion card */
#define CS0_MASK 0x01ff0000 /* 0x0 to 0x01000000 */
#define CS0_CTRL 0x0000299f /* Auto acknowledge 10 wait states,

 16 bit data port */
#define CS1_ADDR 0x0000f000 /* CS1 is the external SRAM */
#define CS1_MASK 0x0fff0000 /* 0xF0000000 to 0xFFFFFFFF */
#define CS1_CTRL 0x000000df /* 16 bit data port */
#define CS2_ADDR 0x00002000 /* CS2 is the FPGA */
#define CS2_MASK 0x0fff0000 /* 0x20000000 to 0x2FFFFFFF */
#define CS2_CTRL 0x0000005f /* 8 bit data port */
#define CS3_ADDR 0x00003000 /* CS3 is the video RAM and Cremson */
#define CS3_MASK 0x0fff0000 /* 0x30000000 to 0x3FFFFFFF */
#define CS3_CTRL 0x0000001f /* 32 bit data port */
#define CS4_ADDR 0x00000000 /* CS4 not connected */
#define CS4_MASK 0x00000000
#define CS4_CTRL 0x00000000
#define CS5_ADDR 0x00000000 /* CS5 not connected */
#define CS5_MASK 0x00000000
#define CS5_CTRL 0x00000000
#define CS6_ADDR 0x00000000 /* CS6 not connected */
#define CS6_MASK 0x00000000
#define CS6_CTRL 0x00000000
#define CS7_ADDR 0x00000000 /* CS7 not connected */

Appendix K - Source code listings 130

#define CS7_MASK 0x00000000
#define CS7_CTRL 0x00000000
#define DMC_CTRL 0x00002d4c /* default memory control */

#define DCRR 0x000000ff /* Refresh period */
/* DCTR definition:
 <15>: DAEM, 1 = Drive Multiplexed Address During External Master DRAM xfer
 <14>: EDO, 1 = EDO, 0 = Normal
 <12>: RCD, 1 = 2 clk RAS-to-CAS, 0 = 1.0 clk RAS-to-CAS
 <10:09>: RSH, 10 = 3.5 clk RAS low, 01 = 2.5 clk, 00 = 1.5 clk
 <06:05>: RP, 10 = 3.5 clk RAS Precharge, 01 = 2.5 clk, 00 = 1.5 clk
 <03>: CAS, 1 = 2.5 clk CAS assertion, 0 = 1.5 clk
 <01>: CP, 1 = 1.5 CAS clk precharge, 0 = .5 clk
 <00>: CSR, 1 = 2.0 clk CAS before RAS setup, 0 = 1.0 clk
*/
#define DCTR 0x0000566B /* DRAM timing, use EDO CAS timing,

 2 CLKs before CAS assert,
 RAS negate 3.5 CLK after CAS assert,
 RAS precharge 3.5 CLKs,
 CAS asserted for 2 CLKs,
 CAS negated for 2 CLKs,
 CAS asserts 2 CLKs before assertion of RAS */

#define DCAR0 0x00006000 /* DRAM0 address */
#define DCMR0 0x001E0000 /* 0x60000000 tp 0x601EFFFF */
#define DCCR0 0x00000093 /* 16 bit data port, 1Kb page size,

 normal page mode, RD and WR enable */
#define DCAR1 0x00007000 /* DRAM1 address (not present) */
#define DCMR1 0x001E0000 /* 0x70000000 to 0x701EFFFF */
#define DCCR1 0x00000013 /* 32 bit data port, 1Kb page size,

 normal page mode, RD and WR enable */

#define PAR 0x0000FFFC /* Pin assignment register
 A[27:24] as address lines
 BDM signals on,
 use the 3 IRQ lines as encoded level,
 UART2 RTS and DMA signals enabled */

/***/

.global _start

.global _rambase

.global _ramvec

.global _ramstart

.global _ramend

/***/

.data

/*
 * Set up the usable of RAM stuff. Size of RAM is determined then
 * an initial stack set up at the end.
 */
_rambase:
.long 0
_ramvec:
.long 0
_ramstart:

Appendix K - Source code listings 131

.long 0
_ramend:
.long 0

/***/

.text

_vectors:

.long 0x00000000, _start

.long _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

.long _fault, _fault, _fault, _fault, _fault, _fault, _fault, _fault

/***/

/*
 * This is the codes first entry point. This is where it all
 * begins...
 */

_start:
nop /* Filler */

Appendix K - Source code listings 132

move.w #0x2700, %sr /* No interrupts */

move.l #MCF_MBAR+1, %a0 /* Set I/O base addr */
movec %a0, %MBAR /* Note: bit 0 is Validate */
move.l #MEM_BUILTIN+1,%a0 /* Set SRAM base addr */
movec %a0, %RAMBAR0 /* Note: bit 0 is Validate */

move.l #MCF_MBAR, %a0 /* Get I/O base addr */

/* ----------------------- CS1 ----------------------- */
move.w #CS1_ADDR, %d0 /* CS1 address */
move.w %d0, MCFSIM_CSAR1(%a0) /* CS1 address */
move.l #CS1_MASK, %d0 /* CS1 mask */
move.l %d0, MCFSIM_CSMR1(%a0) /* CS1 mask */
move.w #CS1_CTRL, %d0 /* CS1 control */
move.w %d0, MCFSIM_CSCR1(%a0) /* CS1 control */

/* ----------------------- CS2 ----------------------- */
move.w #CS2_ADDR, %d0 /* CS2 address */
move.w %d0, MCFSIM_CSAR2(%a0) /* CS2 address */
move.l #CS2_MASK, %d0 /* CS2 mask */
move.l %d0, MCFSIM_CSMR2(%a0) /* CS2 mask */
move.w #CS2_CTRL, %d0 /* CS2 control */
move.w %d0, MCFSIM_CSCR2(%a0) /* CS2 control */

/* ----------------------- CS3 ----------------------- */
move.w #CS3_ADDR, %d0 /* CS3 address */
move.w %d0, MCFSIM_CSAR3(%a0) /* CS3 address */
move.l #CS3_MASK, %d0 /* CS3 mask */
move.l %d0, MCFSIM_CSMR3(%a0) /* CS3 mask */
move.w #CS3_CTRL, %d0 /* CS3 control */
move.w %d0, MCFSIM_CSCR3(%a0) /* CS3 control */

/* ----------------------- CS4 ----------------------- */
move.w #CS4_ADDR, %d0 /* CS4 address */
move.w %d0, MCFSIM_CSAR4(%a0) /* CS4 address */
move.l #CS4_MASK, %d0 /* CS4 mask */
move.l %d0, MCFSIM_CSMR4(%a0) /* CS4 mask */
move.w #CS4_CTRL, %d0 /* CS4 control */
move.w %d0, MCFSIM_CSCR4(%a0) /* CS4 control */

/* ----------------------- CS5 ----------------------- */
move.w #CS5_ADDR, %d0 /* CS5 address */
move.w %d0, MCFSIM_CSAR5(%a0) /* CS5 address */
move.l #CS5_MASK, %d0 /* CS5 mask */
move.l %d0, MCFSIM_CSMR5(%a0) /* CS5 mask */
move.w #CS5_CTRL, %d0 /* CS5 control */
move.w %d0, MCFSIM_CSCR5(%a0) /* CS5 control */

/* ----------------------- CS6 ----------------------- */
move.w #CS6_ADDR, %d0 /* CS6 address */
move.w %d0, MCFSIM_CSAR6(%a0) /* CS6 address */
move.l #CS6_MASK, %d0 /* CS6 mask */
move.l %d0, MCFSIM_CSMR6(%a0) /* CS6 mask */
move.w #CS6_CTRL, %d0 /* CS6 control */
move.w %d0, MCFSIM_CSCR6(%a0) /* CS6 control */

Appendix K - Source code listings 133

/* ----------------------- CS7 ----------------------- */
move.w #CS7_ADDR, %d0 /* CS7 address */
move.w %d0, MCFSIM_CSAR7(%a0) /* CS7 address */
move.l #CS7_MASK, %d0 /* CS7 mask */
move.l %d0, MCFSIM_CSMR7(%a0) /* CS7 mask */
move.w #CS7_CTRL, %d0 /* CS7 control */
move.w %d0, MCFSIM_CSCR7(%a0) /* CS7 control */

/* --------------------- Default --------------------- */
move.w #DMC_CTRL, %d0 /* Default control */
move.w %d0, MCFSIM_DMCR(%a0) /* Default control */

/* ----------------------- DRAM ------------------------ */
move.w #DCRR, %d0 /* Refresh period */
move.w %d0, MCFSIM_DCRR(%a0) /* Refresh period */
move.w #DCTR, %d0 /* Timing address */
move.w %d0, MCFSIM_DCTR(%a0) /* Timing address */
move.w #DCAR0, %d0 /* DRAM0 base address */
move.w %d0, MCFSIM_DCAR0(%a0) /* DRAM0 base address */
move.l #DCMR0, %d0 /* DRAM0 mask */
move.l %d0, MCFSIM_DCMR0(%a0) /* DRAM0 mask */
move.b #DCCR0, %d0 /* DRAM0 control */
move.b %d0, MCFSIM_DCCR0(%a0) /* DRAM0 control */
move.w #DCAR1, %d0 /* DRAM1 base address */
move.w %d0, MCFSIM_DCAR1(%a0) /* DRAM1 base address */
move.l #DCMR1, %d0 /* DRAM1 mask */
move.l %d0, MCFSIM_DCMR1(%a0) /* DRAM1 mask */
move.b #DCCR1, %d0 /* DRAM1 control */
move.b %d0, MCFSIM_DCCR1(%a0) /* DRAM1 control */

/* -------------- Pin Assignment Register -------------- */
move.w #PAR, %d0 /* Pin assignment */
move.w %d0, MCFSIM_PAR(%a0) /* Pin assignment */

/*
 * ChipSelect 0 - ROM cs
 *
 * ChipSelect 0 is the global chip select coming out of system reset.
 * CS0 is asserted for every access until CSMR0 is written. Therefore,
 * the entire ChipSelect must be properly set prior to asserting
 * CSCR0_V.
 */
move.w #CS0_ADDR, %d0 /* CS0 address */
move.w %d0, MCFSIM_CSAR0(%a0) /* CS0 address */
move.l #CS0_MASK, %d0 /* CS0 mask */
move.l %d0, MCFSIM_CSMR0(%a0) /* CS0 mask */
move.w #CS0_CTRL, %d0 /* CS0 control */
move.w %d0, MCFSIM_CSCR0(%a0) /* CS0 control */

/* set the vector table location */

move.l #VBR_BASE, %a7 /* Note VBR can't be read */
movec %a7, %VBR

/*

Appendix K - Source code listings 134

 * Enable CPU internal cache.
 */
move.l #0x01000000, %d0 /* Invalidate cache cmd */
movec %d0, %CACR /* Invalidate cache */
move.l #0x80000100, %d0 /* Setup cache mask */
movec %d0, %CACR /* Enable cache */

/*
 * Copy initialized data region to RAM.
 */
lea.l _sdata, %a0 /* Get start of data */
lea.l __init_end, %a1 /* Get end of data+init */
lea.l _etext, %a2 /* Get end of text */

_data_copy:
move.l (%a2)+, %d0 /* Get next word */
move.l %d0, (%a0)+ /* Copy to RAM */
cmp.l %a0, %a1 /* Check if at end */
bne _data_copy

/*
 * Zero out the bss region.
 */
lea.l _sbss, %a0 /* Get start of bss */
lea.l _ebss, %a1 /* Get end of bss */
clr.l %d0 /* Set value */

_clear_bss:
move.l %d0, (%a0)+ /* Clear each word */
cmp.l %a0, %a1 /* Check if at end */
bne _clear_bss

move.l #VBR_BASE, %a7
move.l %a7, _ramvec /* Set up vector addr */

move.l #MEM_BASE, %a7 /* Ed did this - set mem base */
move.l %a7, _rambase /* correctly */

lea.l _ebss, %a1 /* Get end of bss segment */
move.l %a1, _ramstart /* Set start of ram */

 move.l #MEM_END, %a0
move.l %a0, %d0 /* Mem end addr is in a0 */
move.l %d0, %sp /* Set up initial stack ptr */
move.l %d0, _ramend /* Set end ram addr */

/*
 * Load the current task pointer and stack.
 */
lea init_task_union, %a0
movel %a0, _current_task
lea 0x2000(%a0), %sp

/*
 * Assember start up done, start code proper.
 */

Appendix K - Source code listings 135

// halt
jsr start_kernel /* Start Linux kernel */

_fault:
_exit:

jmp _exit /* Should never get here */

/***/

19.4 rom.ld
This is the linker script to link the kernel to ROM on the Pluto 6:

MEMORY {
flash : ORIGIN = 0x00000000, LENGTH = 0x00200000
ram : ORIGIN = 0x00200000, LENGTH = 0x00E00000

}

SECTIONS {

.text : {
_stext = . ;

 *(.text)
*(.text.exit)
*(.text.lock)
*(.exitcall.exit)
*(.rodata)
*(.rodata.str1.1)
. = ALIGN(0x4) ;
*(.kstrtab)
. = ALIGN(16); /* Exception table */
__start___ex_table = .;
*(__ex_table)
__stop___ex_table = .;

__start___ksymtab = .; /* Kernel symbol table */
*(__ksymtab)
__stop___ksymtab = .;
. = ALIGN(4) ;
_etext = . ;

} > flash

.data : AT (ADDR(.text) + SIZEOF(.text)) {
_sdata = . ;
__data_start = . ;

 *(.data)
*(.data.exit)
. = ALIGN(0x2000) ;

 *(.data.init_task)
. = ALIGN(0x2000) ;
_edata = . ;

} > ram

.init BLOCK(4096) : AT (ADDR(.text) + SIZEOF(.text) + SIZEOF(.data)) {
__init_begin = .;

Appendix K - Source code listings 136

*(.text.init)
*(.data.init)
. = ALIGN(16);
__setup_start = .;
*(.setup.init)
__setup_end = .;
__initcall_start = .;
*(.initcall.init)
. = ALIGN(4) ;
__initcall_end = .;
__init_end = .;

} > ram

.bss : AT (ADDR(.text) + SIZEOF(.text) + SIZEOF(.data) + SIZEOF(.init)) {
_sbss = . ;
*(.bss)
*(COMMON)
. = ALIGN(4) ;
_ebss = . ;
_end = . ;

} > ram
}

19.5 gdbinit
This is the script to initialise the Pluto 6 in GDB:

#
GDB Init script for the Coldfire 5206e processor on the Pluto 6.
The MBAR has been moved to 0x10000000 and the external SRAM (CS1)
moved to 0xF0000000, to fit the uCLinux defaults more easily.
#
Except above this version has memory map set as per Heber code.
However the CS0 control register is set to 16 bit port size
to handle the 16Mb RAM expansion card.

#
Commands to increase readability of this script.
These command write 8, 16 and 32 values.
#
define set8
 set *((unsigned char*) $arg0) = $arg1
end

document set8
Set 8bit memory: set8 ADDRESS VALUE
end

define set16
 set *((unsigned short*) $arg0) = $arg1
end

document set16
Set 16bit memory: set16 ADDRESS VALUE
end

Appendix K - Source code listings 137

define set32
 set *((unsigned long*) $arg0) = $arg1
end

document set32
Set 32bit memory: set32 ADDRESS VALUE
end

#
Create pointers to the addresses of registers to initialise,
this is to ease understanding of the rest of this script.
#
define addresses
 printf "Setting Register Addresses ... "

Memory Base Adress
bit 0 must be set for valid flag

 set $mbar = 0x10000001
set $mbar = 0xF0000001

SIM and Interrupt control registers

 set $simr = $mbar - 1 + 0x003
 set $icr1 = $mbar - 1 + 0x014
 set $icr2 = $mbar - 1 + 0x015
 set $icr3 = $mbar - 1 + 0x016
 set $icr4 = $mbar - 1 + 0x017
 set $icr5 = $mbar - 1 + 0x018
 set $icr6 = $mbar - 1 + 0x019
 set $icr7 = $mbar - 1 + 0x01A
 set $icr8 = $mbar - 1 + 0x01B
 set $icr9 = $mbar - 1 + 0x01C
 set $icr10 = $mbar - 1 + 0x01D
 set $icr11 = $mbar - 1 + 0x01E
 set $icr12 = $mbar - 1 + 0x01F
 set $icr13 = $mbar - 1 + 0x020
 set $imr = $mbar - 1 + 0x036
 set $ipr = $mbar - 1 + 0x03A
 set $rsr = $mbar - 1 + 0x040
 set $sypcr = $mbar - 1 + 0x041
 set $swivr = $mbar - 1 + 0x042
 set $swsr = $mbar - 1 + 0x043
 set $par = $mbar - 1 + 0x0CA

 # bus master arbitration control (MARB)
 set $marb = $mbar - 1 + 0x007

Chip Select registers

 set $csar0 = $mbar - 1 + 0x064
 set $csmr0 = $mbar - 1 + 0x068
 set $cscr0 = $mbar - 1 + 0x06E
 set $csar1 = $mbar - 1 + 0x070
 set $csmr1 = $mbar - 1 + 0x074

Appendix K - Source code listings 138

 set $cscr1 = $mbar - 1 + 0x07A
 set $csar2 = $mbar - 1 + 0x07C
 set $csmr2 = $mbar - 1 + 0x080
 set $cscr2 = $mbar - 1 + 0x086
 set $csar3 = $mbar - 1 + 0x088
 set $csmr3 = $mbar - 1 + 0x08C
 set $cscr3 = $mbar - 1 + 0x092

 # Default Memory Control register
 set $dmcr = $mbar - 1 + 0x0C6

SDRAM Control registers

 set $dcrr = $mbar - 1 + 0x046
 set $dctr = $mbar - 1 + 0x04A
 set $dcar0 = $mbar - 1 + 0x04C
 set $dcmr0 = $mbar - 1 + 0x050
 set $dccr0 = $mbar - 1 + 0x057
 set $dcar1 = $mbar - 1 + 0x058
 set $dcmr1 = $mbar - 1 + 0x05C
 set $dccr1 = $mbar - 1 + 0x063

Timer Control resgisters?

 set $tmr1 = $mbar - 1 + 0x100
 set $trr1 = $mbar - 1 + 0x104
 set $tcr1 = $mbar - 1 + 0x108
 set $tcn1 = $mbar - 1 + 0x10C
 set $ter1 = $mbar - 1 + 0x111
 set $tmr2 = $mbar - 1 + 0x120
 set $trr2 = $mbar - 1 + 0x124
 set $tcr2 = $mbar - 1 + 0x128
 set $tcn2 = $mbar - 1 + 0x12C
 set $ter2 = $mbar - 1 + 0x131

5206e Internal RAM

 set $rambar = 0x50000000

 printf "done\n"
end

#
Setup the Chip selects on the board
#
define setup-cs
 printf "Chip Select setup ... "
 set16 $csar3 0x3000
 set32 $csmr3 0x0FFF0000
 set16 $cscr3 0x001F
 set16 $csar2 0x2000
 set32 $csmr2 0x0FFF0000
 set16 $cscr2 0x005F
 set16 $csar1 0xF000
 set32 $csmr1 0x0FFF0000
 set16 $cscr1 0x00DF
 set16 $csar0 0x0000

Appendix K - Source code listings 139

set32 $csmr0 0x000F0000
 set32 $csmr0 0x01FF0000
16 bit port on CS0
set16 $cscr0 0x295F
 set16 $cscr0 0x299F
 printf "done\n"
end

#
Setup the SDRAM
#
define setup-sdram
 printf "SDRAM setup ... "

 set16 $dmcr 0x2D4C
 set16 $par 0xFFFC

 set16 $dcrr 0x00FF
 set16 $dctr 0x566B
 set16 $dcar0 0x6000
 set32 $dcmr0 0x001E0000
 set8 $dccr0 0x93
 set16 $dcar1 0x7000
 set32 $dcmr1 0x001E0000
 set8 $dccr1 0x13

 printf "done\n"
end

#
Setup the System Integration Module
#
define setup-sim
 printf "SIM setup ... "

 printf "done\n"
end

#
Load the kernel into target RAM and symbol table into GDB
#
define load-image
 printf "Loading Image ... "

 load image.elf
 symbol-file image.elf
 set $pc = _start

 printf "done\n"
end

#
Run the above commands
#
#target bdm /dev/bdmcf0
altered for GDB 5 compatibility

Appendix K - Source code listings 140

target bdm localhost:/dev/bdmcf0
addresses
setup-cs
setup-sdram
load-image

19.6 vfd.c
This is the VFD character driver:

/***/

/*
 * vfd.c -- simple driver for vacuum flourescent displays
 *
 * (C) Copyright 2005-2006, Ed Langley (edwin_langley@hotmail.com)
 */

/***/

#include <linux/config.h>
#include <linux/version.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <asm/param.h>
#include <asm/uaccess.h>

/***/

/*
 * Define driver major number.
 */
#define VFD_MAJOR 120

#if LINUX_VERSION_CODE < 0x020100
#define GET_USER(a,b) a = get_user(b)
#else
#define GET_USER(a,b) get_user(a,b)
#endif

/***/

/*
 * Define VFD addresses
 */

/***/
#if defined(CONFIG_PLUTO6)

Appendix K - Source code listings 141

/***/

#include "pluto6_fpga.h"

#define VFD_BYTE_DELAY 50 /* microseconds */
#define VFD_RESET_DELAY 500

#define VFD_OP_LOW 1
#define VFD_OP_HIGH 0

#define VFD_NUM_CHARS 16

/*
 * VFD access functions
 */

int vfd_putchar(unsigned char vfd_num, unsigned char c)
{
 volatile unsigned char *clock, *data;
 int count;

 switch(vfd_num)
 {
 case 0:
 clock = (char*)VFD0_CLOCK;
 data = (char*)VFD0_DATA;
 break;
 case 1:
 clock = (char*)VFD1_CLOCK;
 data = (char*)VFD1_DATA;
 break;
 default:
 return -1;
 }
 /*
 *clock = 1;
 *data = 1;
 */
 /* clock in the data MSB down to LSB */
 for(count = 0; count < 8; count++)
 {
 if(c & 0x80)

{
 *data = VFD_OP_HIGH;
}

 else
{
 *data = VFD_OP_LOW;
}

 *clock = VFD_OP_HIGH;
 *clock = VFD_OP_LOW;
 c <<= 1;
 }
 udelay(VFD_BYTE_DELAY);
 return(0);
}

Appendix K - Source code listings 142

int vfd_reset(unsigned char vfd_num)
{
 volatile unsigned char *clock, *data, *reset;
 int i;

 switch(vfd_num)
 {
 case 0:
 clock = (char*)VFD0_CLOCK;
 data = (char*)VFD0_DATA;
 reset = (char*)VFD0_RESET;
 break;
 case 1:
 clock = (char*)VFD1_CLOCK;
 data = (char*)VFD1_DATA;
 reset = (char*)VFD1_RESET;
 break;
 default:
 return -1;
 }
 *reset = VFD_OP_LOW;
 *clock = VFD_OP_LOW;
 udelay(VFD_RESET_DELAY);

 *reset = VFD_OP_HIGH;
 udelay(VFD_RESET_DELAY);

 /* need to write the following before the
 display will print anything */
 vfd_putchar(vfd_num, 0xC0);
 udelay(VFD_BYTE_DELAY);
 udelay(VFD_BYTE_DELAY);
 vfd_putchar(vfd_num, 0xAF);
 udelay(VFD_BYTE_DELAY);
 udelay(VFD_BYTE_DELAY);
 vfd_putchar(vfd_num, 0xFF);
 udelay(VFD_BYTE_DELAY);
 udelay(VFD_BYTE_DELAY);

 /* clear the display */
 for(i = 0; i < VFD_NUM_CHARS; i++)
 {
 vfd_putchar(vfd_num, ' ');
 }
 return 0;
}

/***/
#else /* UNKNOWN HARDWARE */
/***/

#error "VFD: I don't know what hardware addresses to use?"

#endif
/***/

int vfd_open(struct inode *inode, struct file *filp)

Appendix K - Source code listings 143

{
#if VFD_DEBUG
 printk("vfd_open()\n");
#endif
 if(vfd_reset(MINOR(inode->i_rdev)))
 {
#if VFD_DEBUG
 printk("Invalid VFD number\n");
#endif
 return(-EFAULT);
 }
 return(0);
}

/***/

int vfd_release(struct inode *inode, struct file *filp)
{
#if VFD_DEBUG
 printk("vfd_close()\n");
#endif
 return 0;
}

/***/

ssize_t vfd_write(struct file *filp, const char *buf, size_t count, loff_t *ppos)
{
 int num_written;
 char *kern_buf;
 ssize_t retval;

#if VFD_DEBUG
 printk("vfd_write(buf=%x,count=%d)\n", (int) buf, count);
#endif

 kern_buf = (char*)kmalloc(count, GFP_KERNEL);
 if(copy_from_user(kern_buf, buf, count))
 {
 retval = -EFAULT;
 goto out;
 }

 for(num_written = 0; num_written <= count; num_written++)
 {

 /* VFD controller displays printable ASCII characters including
 upper case letters only, others come up as garbage */

 if((*kern_buf >= 32) && (*kern_buf <= 126))
{
 /* change lower case to upper case */
 if((*kern_buf >= 97) && (*kern_buf <= 122)) (*kern_buf) -= 32;

 if(vfd_putchar(MINOR(filp->f_dentry->d_inode->i_rdev), *kern_buf))
 {

#if VFD_DEBUG

Appendix K - Source code listings 144

 printk("Invalid VFD number\n");
#endif

 retval = -EFAULT;
 goto out;
 }
 kern_buf++;
}

 }
 /* no feedback from vfd so either fault or fully written */
 retval = count;
 out:
 kfree(kern_buf);
 return(retval);
}

/***/

ssize_t vfd_read(struct file *filp, const char *buf, size_t count, loff_t *ppos)
{
 return 0;
}

int vfd_ioctl(struct inode *inode, struct file *filp, unsigned int cmd, unsigned
long arg)
{
 int retval = 0;

 switch (cmd)
 {
 case 1:
#if VFD_DEBUG
 printk(KERN_INFO "vfd: resetting display\n");
#endif
 vfd_reset(MINOR(inode->i_rdev));
 break;
 default:
 retval = -EINVAL;
 break;
 }

 return(retval);
}

/***/

/*
 * Exported file operations structure for driver...
 */

struct file_operations vfd_fops = {
 read: vfd_read, /* dummy read */
 write: vfd_write, /* write */
 ioctl: vfd_ioctl, /* ioctl */
 open: vfd_open, /* open */
 release: vfd_release, /* release */
};

Appendix K - Source code listings 145

/***/

static int __init vfd_init(void)
{
 /* Register vfd as character device */
 if ((register_chrdev(VFD_MAJOR, "vfd", &vfd_fops)) < 0)
 {
 printk(KERN_WARNING "VFD: can't get major %d\n",

 VFD_MAJOR);
 return (-EBUSY);
 }

 printk("VFD: Copyright (C) 2005-2006, Ed Langley "
 "(edwin_langley@hotmail.com\n");

 return 0;
}

module_init(vfd_init);

/***/

19.7 mpxlamps.c
This is the multiplexed lamps driver:

/***/

/*
 * mpxlamps.c -- Driver for multiplexed lamps on the Pluto 6 Board
 * No locking required because only writing data.
 * (C) Copyright 2005-2006, Ed Langley (edwin_langley@hotmail.com)
 */

/***/

#include <linux/config.h>
#include <linux/version.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/kernel.h>
#include <linux/init.h>
//#include <linux/fs.h>
//#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <asm/param.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <linux/ioport.h>
#include <linux/module.h>
/***/

/*
 * Define driver major number.

Appendix K - Source code listings 146

 */
#define LAMP_MAJOR 121

/***/

/*
 * Define MPX addresses
 */

/***/
#if defined(CONFIG_PLUTO6)
/***/

#include "pluto6_fpga.h"

#define NUM_LAMP_STROBES 16
#define NUM_LAMP_PERIODS 8
#define NUM_LAMPS_PER_STROBE 32
//#define MPX_DATA_NBYTES 60

/***/
#else /* UNKNOWN HARDWARE */
/***/

#error "mpx_lamps: I don't know what hardware addresses to use?"

#endif
/***/

#define ASCII_MODE 0
#define RAW_MODE 1

struct mpx_lamp_dev
{
 /* pointers to I/O set up with ioremap for portability */
 unsigned long *control_ptr;
 int *data_ptr;

 char shutting_down;

 /* write ascii chars or values 0-8? */
 // char mode;

 /* 2D array to hold data ready to dump to FPGA */
 int data[NUM_LAMP_STROBES][NUM_LAMP_PERIODS];

 struct timer_list strobe_timer;
};

struct mpx_lamp_dev *lamp_dev_ptr;

/* write data for 1 lamp strobe to FPGA every 1ms */

void output_strobe(unsigned long fpga_strobe_idx)
{

Appendix K - Source code listings 147

 //int brightness;
 //int *data_ptr = lamp_dev_ptr->data_ptr;

 /* for(brightness = 0; brightness < NUM_LAMP_PERIODS; brightness++)
 {
 writel(lamp_dev_ptr->data[fpga_strobe_idx][brightness], data_ptr++);
 }
 */

 memcpy_toio(lamp_dev_ptr->data_ptr, lamp_dev_ptr->data[fpga_strobe_idx],
 NUM_LAMP_PERIODS * 4);

 writeb(fpga_strobe_idx, lamp_dev_ptr->control_ptr);

 if(++fpga_strobe_idx >= NUM_LAMP_STROBES)
 {
 fpga_strobe_idx = 0;
 }

 if(!lamp_dev_ptr->shutting_down)
 {
 lamp_dev_ptr->strobe_timer.data = fpga_strobe_idx;
 // lamp_dev_ptr->strobe_timer.function = output_strobe;
 lamp_dev_ptr->strobe_timer.expires = jiffies + HZ/1000;
 add_timer(&lamp_dev_ptr->strobe_timer);
 }

}

/***/

ssize_t lamp_write(struct file *filp, const char *buf, size_t count, loff_t *ppos)
{
 char *kern_buf;
 ssize_t retval;
 int lamp_bitmask;
 int lamp_idx, strobe_idx;
 char brightness, offset;

#if LAMP_DEBUG
 printk("lamp_write(buf=%x,count=%d)\n", (int) buf, count);
#endif

 if((kern_buf = (char*)kmalloc(count, GFP_KERNEL)) == NULL)
 {
 printk(KERN_WARNING "mpx_lamps : lamp_write : can't alloc kern_buf\n");
 retval = -ENOMEM;
 goto out;
 }
 if(copy_from_user(kern_buf, buf, count))
 {
 retval = -EFAULT;
 goto out;
 }

 strobe_idx = MINOR(filp->f_dentry->d_inode->i_rdev);

Appendix K - Source code listings 148

 if((strobe_idx < 0) || (strobe_idx >= NUM_LAMP_STROBES))
 {
 retval = -EFAULT;
 goto out;
 }

 /* clear the strobe of previous values */
 for(brightness = 0; brightness < NUM_LAMP_PERIODS; brightness++)
 {
 lamp_dev_ptr->data[strobe_idx][brightness] = 0;
 }

 /* set offset depending on whether accepting ascii chars or real
 values */
 offset = (filp->private_data == ASCII_MODE) ? '0' : 0;

 /* fill the mpx data array based on brightness values passed */
 for(brightness = 0; brightness < NUM_LAMP_PERIODS; brightness++)
 {
 lamp_bitmask = 1;
 for(lamp_idx = 0; (lamp_idx < count) && (lamp_idx < NUM_LAMPS_PER_STROBE);

 lamp_idx++)
{
 /* check value supplied is in correct range and larger
 than current brightness */
 if((kern_buf[lamp_idx] >= offset) &&
 (kern_buf[lamp_idx] < offset+NUM_LAMP_PERIODS) &&
 (kern_buf[lamp_idx] > brightness+offset))
 {
 lamp_dev_ptr->data[strobe_idx][brightness] |= lamp_bitmask;
 }
 else
 {
 lamp_dev_ptr->data[strobe_idx][brightness] &= ~lamp_bitmask;
 }
 lamp_bitmask <<= 1;
}

 }

 /* no feedback from lamps so either fault or fully written */
 retval = count;
 out:
 kfree(kern_buf);
 return(retval);
}

/***/

int lamp_ioctl(struct inode *inode, struct file *filp, unsigned int cmd,
 unsigned long arg)

{
 int retval = 0;
 switch(cmd)
 {

 default:

Appendix K - Source code listings 149

 retval = -ENOTTY;
 break;
 }
 return retval;
}

/***/

int lamp_open(struct inode *inode, struct file *filp)
{
 filp->private_data = ASCII_MODE;
 return 0;
}

/***/

int lamp_release(struct inode *inode, struct file *filp)
{
 /* do nothing I suppose */
 return 0;
}

/***/
/*
 * Exported file operations structure for driver...
 */

struct file_operations lamp_fops = {
 owner: THIS_MODULE,
 write: lamp_write, /* write */
 ioctl: lamp_ioctl, /* ioctl */
 open: lamp_open, /* open */
 release: lamp_release, /* release */
};

/***/

void __exit lamp_cleanup(void)
{
 unregister_chrdev(LAMP_MAJOR, "mpx_lamps");

 lamp_dev_ptr->shutting_down++;
 del_timer_sync(&lamp_dev_ptr->strobe_timer);

 if(lamp_dev_ptr)
 {
 if(lamp_dev_ptr->control_ptr)

{
 iounmap(lamp_dev_ptr->control_ptr);
}

 if(lamp_dev_ptr->data_ptr)
{
 iounmap(lamp_dev_ptr->data_ptr);
}

Appendix K - Source code listings 150

 }

 release_mem_region(MPX_CTRL, 1);
 release_mem_region(MPX_LAMP_DATA, NUM_LAMP_PERIODS * 4);

 /*
 if(mpx_lamp_data)
 {
 for(i = 0; i < NUM_LAMP_STROBES; i++)

{
 if(mpx_lamp_data[i])
 {
 kfree(mpx_lamp_data[i]);
 }
}

 kfree(mpx_lamp_data);
 }
 */

 if(lamp_dev_ptr)
 {
 kfree(lamp_dev_ptr);
 }
}

/***/

static int __init lamp_init(void)
{
 int i, j;
 int err = 0;

 printk("mpx_lamps: Copyright (C) 2005-2006, Ed Langley "

 "(edwin_langley@hotmail.com\n");

 /* allocate the 2d array to hold lamp output data */
 /* if((mpx_lamp_data = kmalloc(sizeof(int*) * NUM_LAMP_STROBES, GFP_KERNEL)) ==
NULL)
 {
 printk(KERN_WARNING "mpx_lamps: can't alloc first dimension array\n");
 err = -ENOMEM;
 goto fail;
 }
 for(i = 0; i < NUM_LAMP_STROBES; i++)
 {
 if((mpx_lamp_data[i] = kmalloc(sizeof(int*) * NUM_LAMP_PERIODS)) == NULL)

{
 printk(KERN_WARNING

 "mpx_lamps: can't alloc second dimension array:%d\n", i);
 err = -ENOMEM;
}

 }
 if(err)
 goto fail;
 */

 if((lamp_dev_ptr = kmalloc(sizeof(struct mpx_lamp_dev), GFP_KERNEL)) == NULL)

Appendix K - Source code listings 151

 {
 printk(KERN_WARNING

 "mpx_lamps: can't alloc mem for lamp dev struct\n");
 err = -ENOMEM;
 goto out;
 }

 /* clear lamp data */
 for(i = 0; i < NUM_LAMP_STROBES; i++)
 {
 for(j = 0; j < NUM_LAMP_PERIODS; j++)

{
 lamp_dev_ptr->data[i][j] = 0;
}

 }

 /* register mem mapped I/O region */
 if(request_mem_region(MPX_CTRL, 1, "mpx lamps control register") == NULL)
 {
 printk(KERN_WARNING "mpx_lamps: can't alloc mem I/O region for control
reg\n");
 err = -EBUSY;
 goto out;
 }
 if(request_mem_region(MPX_LAMP_DATA, NUM_LAMP_PERIODS * 4, "mpx lamps data
registers") == NULL)
 {
 printk(KERN_WARNING "mpx_lamps: can't alloc mem I/O region for data reg\n");
 err = -EBUSY;
 goto out;
 }

 /* unnecessary on intended architecture, but included for portability */
 lamp_dev_ptr->control_ptr = ioremap(MPX_CTRL, 1);
 lamp_dev_ptr->data_ptr = ioremap(MPX_LAMP_DATA, NUM_LAMP_PERIODS * 4);

 // lamp_dev_ptr->mode = ASCII_MODE;

 lamp_dev_ptr->shutting_down = 0;
 init_timer(&lamp_dev_ptr->strobe_timer);
 lamp_dev_ptr->strobe_timer.data = 0;
 lamp_dev_ptr->strobe_timer.function = output_strobe;
 lamp_dev_ptr->strobe_timer.expires = jiffies + HZ/1000;
 add_timer(&lamp_dev_ptr->strobe_timer);

 /* Register lamps as character device */
 if ((register_chrdev(LAMP_MAJOR, "mpx_lamps", &lamp_fops)) < 0)
 {
 printk(KERN_WARNING "mpx_lamps: can't get major %d\n",

 LAMP_MAJOR);
 err = -EBUSY;
 goto out;
 }

 return 0;

 out:

Appendix K - Source code listings 152

 lamp_cleanup();
 return err;
}

module_init(lamp_init);
module_exit(lamp_cleanup);

MODULE_AUTHOR("Ed Langley");
MODULE_DESCRIPTION("Driver for multiplexed lamps on the Pluto 6 Board");

19.8 pluto6_fpga.h
This is a header file for the VFD and multiplexed lamp drivers describing the register addresses in
the FPGA:

/***/

/*
 * pluto6_fpga.h -- Header file for Pluto 6 drivers which use
 * the standard FPGA
 *
 * (C) Copyright 2005-2006, Ed Langley (edwin_langley@hotmail.com)
 */

/***/

#define FPGA_BASE 0x20000000

#define MPX_CTRL (FPGA_BASE+0x0001)
#define MPX_LAMP_DATA (FPGA_BASE+0x0800)

#define FPGA_AUX_BASE (FPGA_BASE+0x1900)

#define VFD0_CLOCK (FPGA_AUX_BASE)
#define VFD0_DATA (FPGA_AUX_BASE+0x01)
#define VFD0_RESET (FPGA_AUX_BASE+0x02)

#define VFD1_CLOCK (FPGA_AUX_BASE+0x03)
#define VFD1_DATA (FPGA_AUX_BASE+0x04)
#define VFD1_RESET (FPGA_AUX_BASE+0x05)

19.9 uclinux.c
This is the uClinux IDE driver with modifications for the Pluto 6 board:

/**/
/*
 * linux/drivers/ide/legacy/uclinux.c
 *
 * A simple driver that is easy to adjust for a large number of
 * embedded targets, not just coldfire.
 *

Appendix K - Source code listings 153

 * Copyright (C) 2001-2004 by David McCullough <davidm@snapgear.com>
 * Copyright (C) 2002 by Greg Ungerer <gerg@snapgear.com>
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License. See the file COPYING in the main directory of this archive for
 * more details.
 *
 * ex: set ts=4 sw=4
 */
/**/

#include <linux/config.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/blkdev.h>
#include <linux/hdreg.h>
#include <linux/delay.h>
#include <linux/ide.h>

/**/

#ifdef CONFIG_COLDFIRE
#include <asm/coldfire.h>
#include <asm/mcfsim.h>
#endif

/**/
/*
 * Our list of ports/irq's for different boards.
 */

static struct ide_defaults {
ide_ioreg_t base;
int irq;

} ide_defaults[] = {
#if defined(CONFIG_SECUREEDGEMP3)

{ ((ide_ioreg_t) 0x30800000), 29 },
#elif defined(CONFIG_eLIA) || defined(CONFIG_DISKtel)

{ ((ide_ioreg_t) 0x30c00000), 29 },
#elif defined(CONFIG_M5249C3)

{ ((ide_ioreg_t) 0x50000020), 165 },
#elif defined(CONFIG_SIGNAL_MCP751)

{ ((ide_ioreg_t) 0x42000000), 65 }, // INT1
#elif defined(CONFIG_PLUTO6)

{ ((ide_ioreg_t) 0xF2000000), 27 },
#else

#error "No IDE setup defined"
#endif

{ ((ide_ioreg_t) -1), -1 }
};

/**/
/*
 * the register offsets from the base address
 */

Appendix K - Source code listings 154

#if defined(CONFIG_PLUTO6)
 #define IDE_DATA 0x00
 #define IDE_ERROR 0x02
 #define IDE_NSECTOR 0x04
 #define IDE_SECTOR 0x06
 #define IDE_LCYL 0x08
 #define IDE_HCYL 0x0A
 #define IDE_SELECT 0x0C
 #define IDE_STATUS 0x0E

 #define IDE_CONTROL 0x10

 #define IDE_IRQ -1 /* not used */

#else

#define IDE_DATA 0x00
#define IDE_ERROR 0x01
#define IDE_NSECTOR 0x02
#define IDE_SECTOR 0x03
#define IDE_LCYL 0x04
#define IDE_HCYL 0x05
#define IDE_SELECT 0x06
#define IDE_STATUS 0x07

/* The control register often changes */
#define IDE_CONTROL 0x0e

#define IDE_IRQ -1 /* not used */

#endif

static int ide_offsets[IDE_NR_PORTS] = {
 IDE_DATA, IDE_ERROR, IDE_NSECTOR, IDE_SECTOR, IDE_LCYL,
 IDE_HCYL, IDE_SELECT, IDE_STATUS, IDE_CONTROL, IDE_IRQ
};

#define DBGIDE(fmt,a...)
//#define DBGIDE(fmt,a...) printk(fmt, a)

/**/

static void OUTB(u8 addr, unsigned long port);
static void OUTBSYNC(ide_drive_t *drive, u8 addr, unsigned long port);
static void OUTW(u16 addr, unsigned long port);
static void OUTL(u32 addr, unsigned long port);
static void OUTSW(unsigned long port, void *addr, u32 count);
static void OUTSL(unsigned long port, void *addr, u32 count);
static u8 INB(unsigned long port);
static u16 INW(unsigned long port);
static u32 INL(unsigned long port);
static void INSW(unsigned long port, void *addr, u32 count);
static void INSL(unsigned long port, void *addr, u32 count);

static void uclinux_irq_remove();
/**/
/*

Appendix K - Source code listings 155

 * if needed, this function returns 1 if an interrupt was acked
 */

#if defined(CONFIG_M5249C3)
static int ack_intr(ide_hwif_t* hwif)
{

/* Clear interrupts for GPIO5 */
*((volatile unsigned long *) 0x800000c0) = 0x00002020;
return 1;

}
#elif defined(CONFIG_SIGNAL_MCP751)

static void mcf_autovector(unsigned int vec)
{

/* Everything is auto-vectored on the 5272 */
}

static int ack_intr(ide_hwif_t* hwif)
{

volatile unsigned long *icrp;
/* Acknowledge interrupt */
icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
*icrp = (*icrp & 0x77777777) | 0x80000000; // INT1

}

#elif defined(CONFIG_PLUTO6)

static int ack_intr(ide_hwif_t* hwif)
{
 /* read the ATA status register in order to clear the pending interrupt */
 u8 status;
 status = (*(volatile u8 *)(0xF2000000 + IDE_STATUS));
 return 1;
}

#else
#define ack_intr NULL
#endif

/**/

void uclinux_ide_init(void)
{

hw_regs_t hw;
ide_ioreg_t base;
int index, i;
ide_hwif_t* hwif;

for (i = 0; ide_defaults[i].base != (ide_ioreg_t) -1; i++) {
base = ide_defaults[i].base;
memset(&hw, 0, sizeof(hw));

#ifdef CONFIG_COLDFIRE
mcf_autovector(hw.irq);

#endif
hw.irq = ide_defaults[i].irq;
ide_setup_ports(&hw, base, ide_offsets, 0, 0, ack_intr,

Appendix K - Source code listings 156

/* ide_iops, */
ide_defaults[i].irq);

index = ide_register_hw(&hw, &hwif);
if (index != -1) {

hwif->mmio = 1; /* not io(0) or mmio(1) */
#ifdef CONFIG_COLDFIRE

hwif->OUTB = OUTB;
hwif->OUTBSYNC = OUTBSYNC;
hwif->OUTW = OUTW;
hwif->OUTL = OUTL;
hwif->OUTSW = OUTSW;
hwif->OUTSL = OUTSL;
hwif->INB = INB;
hwif->INW = INW;
hwif->INL = INL;
hwif->INSW = INSW;
hwif->INSL = INSL;

DRIVER(&hwif->drives[0])->cleanup = uclinux_irq_remove;

#endif
}
disable_irq(ide_defaults[i].irq);

}
}

/**/
/*
 * this is called after the irq handler has been installed, so if you need
 * to fix something do it here
 */

void
uclinux_irq_fixup()
{
#ifdef CONFIG_M5249C3

/* Enable interrupts for GPIO5 */
*((volatile unsigned long *) 0x800000c4) |= 0x00000020;

/* Enable interrupt level for GPIO5 - VEC37 */
*((volatile unsigned long *) 0x80000150) |= 0x00200000;

#elif defined(CONFIG_SIGNAL_MCP751)
// ICR1 enable INT1
{
volatile unsigned long *icrp;

icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
*icrp = (*icrp & 0x07777777) | 0xd0000000; // INT1
}
DBGIDE("IDE enable irq %s %s\n", __DATE__, __TIME__);

// PITR trig L->H
*((volatile unsigned long *) (MCF_MBAR+MCFSIM_PITR)) |= 0x80000000; // INT1

#elif defined(CONFIG_PLUTO6)
/* turn off/mask interrupts in the cremson graphics controller
 * as it shares the interrupt level with the IDE

Appendix K - Source code listings 157

 */
*(volatile unsigned long *) 0x31fc0024 |= 0x1F000000;

/* then clear EINT3 bit in the IMR of the Coldfire
 to unmask the IDE interrupt */

 //*((volatile unsigned long *)(MCF_MBAR+MCFSIM_IMR)) &= 0xFFF7FFFF;
// unmasking done by mcf_autovector()

mcf_autovector(27);
#endif
}

static void
uclinux_irq_remove()
{
#ifdef CONFIG_M5249C3
#elif defined(CONFIG_SIGNAL_MCP751)

DBGIDE("IDE free irq %s %s\n", __DATE__, __TIME__);
// ICR1 disable INT1
{
volatile unsigned long *icrp;

icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
*icrp = (*icrp & 0x07777777) | 0x80000000;
}

#elif defined(CONFIG_PLUTO6)

/* set the EINT3 bit in the IMR of the Coldfire to mask out the
 IDE interrupt */

 *((volatile unsigned long *)(MCF_MBAR+MCFSIM_IMR)) |= 0x00080000;

#endif
}

/**/
/*
 * the custom IDE IO access for platforms that need it
 */

#ifdef CONFIG_COLDFIRE

#if defined(CONFIG_eLIA) || defined(CONFIG_DISKtel)
 /* 8/16 bit acesses are controlled by flicking bits in the CS register */
 #define MODE_16BIT() \

*((volatile unsigned short *) (MCF_MBAR + MCFSIM_CSCR6)) = 0x0080
 #define MODE_8BIT() \

*((volatile unsigned short *) (MCF_MBAR + MCFSIM_CSCR6)) = 0x0040

 #define ENABLE16() MODE_16BIT()
 #define ENABLE32() MODE_16BIT()
 #define DISABLE16() MODE_8BIT()
 #define DISABLE32() MODE_8BIT()
#endif /* defined(CONFIG_eLIA) || defined(CONFIG_DISKtel) */

#ifdef CONFIG_SECUREEDGEMP3
 #define ADDR8(addr) (((addr) & 0x1) ? (0x8000+(addr)-1) : (addr))
 #define ADDR16(addr) (addr)

Appendix K - Source code listings 158

 #define ADDR32(addr) (addr)
 #define SWAP8(w) ((((w) & 0xffff) << 8) | (((w) & 0xffff) >> 8))
 #define SWAP16(w) (w)
 #define SWAP32(w) (w)

 #define io8_t unsigned short
#endif CONFIG_SECUREEDGEMP3

#if defined(CONFIG_M5249C3)
 #define ADDR(a) (((a) & 0xfffffff0) + (((a) & 0xf) << 1))
 #define ADDR8(addr) ADDR(addr)
 #define ADDR16(addr) ADDR(addr)
 #define ADDR32(addr) ADDR(addr)

 #define SWAP8(w) (w)
 #define SWAP16(w) ((((w)&0xffff) << 8) | (((w)&0xffff) >> 8))
 #define SWAP32(w) ((((w)&0xff) << 24) | (((w)&0xff00) << 8) | \

 (((w)&0xff0000) >> 8) | (((w)
&0xff000000) >> 24))

 #define io8_t unsigned short
#endif

#if defined(CONFIG_SIGNAL_MCP751)
 #define ADDR(a) (((a) & 0xfffffff0) + (((a) & 0xf) << 1))
 #define ADDR8(addr) ADDR(addr)
 #define ADDR16(addr) ADDR(addr)
 #define ADDR32(addr) ADDR(addr)

 #define SWAP8(w) (w&0xff)
 #define SWAP16(w) ((((w)&0xffff) << 8) | (((w)&0xffff) >> 8))
 #define SWAP32(w) ((((w)&0xff) << 24) | (((w)&0xff00) << 8) | \

 (((w)&0xff0000) >> 8) | (((w)
&0xff000000) >> 24))

 #define io8_t unsigned short
#endif

#if defined(CONFIG_PLUTO6)
 #define ADDR(a) (a)

// #define SWAP16(w) ((((w) & 0x0ff) << 8) | (((w) & 0x0ff00) >>
8))
/* try changing between 8/16 bit data path by changing PS bits in CS1 reg: */
 #define MODE_16BIT()\
 ({\
 *((volatile unsigned short *) (MCF_MBAR + MCFSIM_CSCR1)) |= 0x0080;\
 *((volatile unsigned short *) (MCF_MBAR + MCFSIM_CSCR1)) &= ~0x0040;\
 })

 #define MODE_8BIT()\
 ({\
 *((volatile unsigned short *) (MCF_MBAR + MCFSIM_CSCR1)) &= ~0x0080;\
 *((volatile unsigned short *) (MCF_MBAR + MCFSIM_CSCR1)) |= 0x0040;\
 })

 #define ENABLE8() MODE_8BIT()

Appendix K - Source code listings 159

 #define ENABLE16() MODE_16BIT()
 #define ENABLE32() MODE_16BIT()
 #define DISABLE16() MODE_8BIT()
 #define DISABLE32() MODE_8BIT()

#endif

/**/
/*
 * default anything that wasn't set
 */

#ifndef io8_t
#define io8_t unsigned char
#endif

#ifndef io16_t
#define io16_t unsigned short
#endif

#ifndef io32_t
#define io32_t unsigned long
#endif

#ifndef ENABLE8
#define ENABLE8()
#endif

#ifndef ENABLE16
#define ENABLE16()
#endif

#ifndef ENABLE32
#define ENABLE32()
#endif

#ifndef DISABLE8
#define DISABLE8()
#endif

#ifndef DISABLE16
#define DISABLE16()
#endif

#ifndef DISABLE32
#define DISABLE32()
#endif

#ifndef SWAP8
#define SWAP8(x) (x)
#endif

#ifndef SWAP16
#define SWAP16(x) (x)
#endif

Appendix K - Source code listings 160

#ifndef SWAP16
#define SWAP16(x) (x)
#endif

#ifndef ADDR8
#define ADDR8(x) (x)
#endif

#ifndef ADDR16
#define ADDR16(x) (x)
#endif

#ifndef ADDR32
#define ADDR32(x) (x)
#endif

#ifndef SWAP8
#define SWAP8(x) (x)
#endif

#ifndef SWAP16
#define SWAP16(x) (x)
#endif

#ifndef SWAP32
#define SWAP32(x) (x)
#endif

/**/

static void
OUTB(u8 val, unsigned long addr)
{

volatile io8_t *rp;

DBGIDE("%s(val=%x,addr=%lx)\n", __FUNCTION__, val, addr);
rp = (volatile unsigned short *) ADDR(addr);
ENABLE8();
*rp = SWAP8(val);
DISABLE8();

}

static void
OUTBSYNC(ide_drive_t *drive, u8 val, unsigned long addr)
{

volatile io8_t *rp;

DBGIDE("%s(val=%x,addr=%lx)\n", __FUNCTION__, val, addr);
rp = (volatile unsigned short *) ADDR(addr);
ENABLE8();
*rp = SWAP8(val);
DISABLE8();

}

static u8
INB(unsigned long addr)
{

Appendix K - Source code listings 161

volatile io8_t *rp, val;

rp = (volatile unsigned short *) ADDR(addr);
ENABLE8();
val = *rp;
DISABLE8();
DBGIDE("%s(addr=%lx) = 0x%x\n", __FUNCTION__, addr, SWAP8(val));
return(SWAP8(val));

}

static void
OUTW(u16 val, unsigned long addr)
{

volatile io16_t *rp;

DBGIDE("%s(val=%x,addr=%lx)\n", __FUNCTION__, val, addr);
rp = (volatile io16_t *) ADDR(addr);
ENABLE16();
*rp = SWAP16(val);
DISABLE16();

}

static void
OUTSW(unsigned long addr, void *vbuf, u32 len)
{

volatile io16_t *rp, val;
unsigned short *buf;

DBGIDE("%s(addr=%lx,vbuf=%p,len=%lx)\n", __FUNCTION__, addr, vbuf, len);
buf = (unsigned short *) vbuf;
rp = (volatile io16_t *) ADDR(addr);
ENABLE16();
for (; (len > 0); len--) {

val = *buf++;
*rp = SWAP16(val);

}
DISABLE16();

}

static u16
INW(unsigned long addr)
{

volatile io16_t *rp, val;

rp = (volatile io16_t *) ADDR(addr);
ENABLE16();
val = *rp;
DISABLE16();
DBGIDE("%s(addr=%lx) = 0x%x\n", __FUNCTION__, addr, SWAP16(val));
return(SWAP16(val));

}

static void
INSW(unsigned long addr, void *vbuf, u32 len)
{

volatile io16_t *rp;
unsigned short w, *buf;

Appendix K - Source code listings 162

DBGIDE("%s(addr=%lx,vbuf=%p,len=%lx)\n", __FUNCTION__, addr, vbuf, len);
buf = (unsigned short *) vbuf;
rp = (volatile io16_t *) ADDR(addr);
ENABLE16();
for (; (len > 0); len--) {

w = *rp;
*buf++ = SWAP16(w);

}
DISABLE16();

}

static u32
INL(unsigned long addr)
{

volatile io32_t *rp, val;

rp = (volatile io32_t *) ADDR(addr);
ENABLE32();
val = *rp;
DISABLE32();
DBGIDE("%s(addr=%lx) = 0x%lx\n", __FUNCTION__, addr, SWAP32(val));
return(SWAP32(val));

}

static void
INSL(unsigned long addr, void *vbuf, u32 len)
{

volatile io32_t *rp;
unsigned long w, *buf;

DBGIDE("%s(addr=%lx,vbuf=%p,len=%lx)\n", __FUNCTION__, addr, vbuf, len);
buf = (unsigned long *) vbuf;
rp = (volatile io32_t *) ADDR(addr);
ENABLE32();
for (; (len > 0); len--) {

w = *rp;
*buf++ = SWAP32(w);

}
DISABLE32();

}

static void
OUTL(u32 val, unsigned long addr)
{

volatile io32_t *rp;

DBGIDE("%s(val=%lx,addr=%lx)\n", __FUNCTION__, val, addr);
rp = (volatile io32_t *) ADDR(addr);
ENABLE32();
*rp = SWAP32(val);
DISABLE32();

}

static void
OUTSL(unsigned long addr, void *vbuf, u32 len)
{

Appendix K - Source code listings 163

volatile io32_t *rp, val;
unsigned long *buf;

DBGIDE("%s(addr=%lx,vbuf=%p,len=%lx)\n", __FUNCTION__, addr, vbuf, len);
buf = (unsigned long *) vbuf;
rp = (volatile io32_t *) ADDR(addr);
ENABLE32();
for (; (len > 0); len--) {

val = *buf++;
*rp = SWAP32(val);

}
DISABLE32();

}

#endif /* CONFIG_COLDFIRE */

/**/

19.10 cremsonfb.c
This is the Cremson frame buffer driver:

/*
 * cremsonfb.c -- Framebuffer driver for Fujitsu MB86290A Cremson graphics
 * chip on the Heber Pluto 6 board
 *
 * - Derived from skeletonfb.c, Created 28 Dec 1997 by Geert Uytterhoeven
 *
 * (c) 2006 Ed Langley edwin_langley@hotmail.com
 *
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/tty.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fb.h>
#include <linux/init.h>

#include <video/fbcon.h>
#include <video/fbcon-cfb8.h>
#include <video/fbcon-cfb16.h>

#include <asm/io.h>
#include <asm/byteorder.h>

#include "cremsonfb.h"

struct cremsonfb_info {
 /*
 * Choose _one_ of the two alternatives:

Appendix K - Source code listings 164

 *
 * 1. Use the generic frame buffer operations (fbgen_*).
 */
 struct fb_info_gen gen;
 /*
 * 2. Provide your own frame buffer operations.
 */
 // struct fb_info info;

 /* Here starts the frame buffer device dependent part */
 /* You can use this to store e.g. the board number if you support */
 /* multiple boards */

 uint32_t fbcon_cmap[CREMSON_PALETTE_SIZE]; /* basic palette */

 void *screen_base_phys; /* physical address of video memory */
 void *screen_base_virt; /* virtual address of video memory */
 unsigned long vid_mem_len; /* length of whole video memory */
};

struct cremsonfb_par {
 /*
 * The hardware specific data in this structure uniquely defines a video
 * mode.
 *
 * If your hardware supports only one video mode, you can leave it empty.
 */

 __u32 xres; /* Hor Resolution px */
 __u32 yres; /* Vert Resolution px */
 __u8 bpp; /* bits per pixel */
 /* vid mode register shadows */
 __u16 dcm; /* Display Control Mode Register */
 __u16 htp; /* Hor Total Pixels Register */
 __u16 hdp; /* Hor Display Period Register */
 __u16 hdb; /* Hor Display Boundary Register */
 __u16 hsp; /* HSync Position Register */
 __u8 hsw; /* HSync Width Register */
 __u8 vsw; /* Vsync Width Register */
 __u16 vtr; /* Vert Total Rasters Register */
 __u16 vsp; /* Vsync Position Register */
 __u16 vdp; /* Vert Display Period Register */

 /* layer information */
 __u8 layer_num; /* BL | BR | ML | MR | W | C */
 __u32 layer_width; /* px */
 __u32 layer_height; /* px */
 __u32 layer_mode; /* SINGLE | DOUBLEBUFFER, INDIRECT | DIRECT_COLOUR,

 layer frame width in 64 byte units, height in px */
 __u16 transparent_color;
 __u16 xoffset; /* offset in px of layer frame from top left */
 __u16 yoffset; /* offset in px of layer frame from top left */
 __u32 frame0_addr; /* start address double buffer frame 0 */
 __u32 frame1_addr; /* start address double buffer frame 1 */
 __u32 display0_addr; /* display address double buffer frame 0 */
 __u32 display1_addr; /* display address double buffer frame 1 */

Appendix K - Source code listings 165

 __u8 palette_size; /* 16 for fake 16 bit console palette,
 256 for real 8 bit one */

};

/* declare some vid modes */
static struct cremsonfb_par direct_1024_768 = {
 1024, /* Hor Resolution */
 768, /* Vert Resolution */
 16, /* bits per pixel */
 0x0200, /* Display Control Mode Register */
 0x056c, /* Hor Total Pixels Register */
 0x03ff, /* Hor Display Period Register */
 0x03ff, /* Hor Display Boundary Register */
 0x0419, /* HSync Position Register */
 0x95, /* HSync Width Register */
 0x02, /* Vsync Width Register */
 0x0325, /* Vert Total Rasters Register */
 0x030f, /* Vsync Position Register */
 0x02ff, /* Vert Display Period Register */

 BL,
 1024,
 768,
 0x80200300,
 BLACK,
 0,
 0,
 0,
 0,
 0,
 0,
 16 /* palette size */
};

static struct cremsonfb_par indirect_1024_768 = {
 1024, /* Hor Resolution */
 768, /* Vert Resolution */
 8, /* bits per pixel */
 0x0200, /* Display Control Mode Register */
 0x056c, /* Hor Total Pixels Register */
 0x03ff, /* Hor Display Period Register */
 0x03ff, /* Hor Display Boundary Register */
 0x0419, /* HSync Position Register */
 0x95, /* HSync Width Register */
 0x02, /* Vsync Width Register */
 0x0325, /* Vert Total Rasters Register */
 0x030f, /* Vsync Position Register */
 0x02ff, /* Vert Display Period Register */

 BL,
 1024,
 768,
 0x00100300,
 BLACK,
 0,
 0,

Appendix K - Source code listings 166

 0,
 0,
 0,
 0,
 255 /* palette size */
};

 /*
 * If your driver supports multiple boards, you should make these arrays,
 * or allocate them dynamically (using kmalloc()).
 */

static struct cremsonfb_info fb_info;
static struct cremsonfb_par current_par;
static int current_par_valid = 0;
static struct display disp;

static struct fb_var_screeninfo default_var;

//static int currcon = 0;
//static int inverse = 0;

/* ------------------- chipset specific functions -------------------------- */

static void cremson_detect(void);
static int cremson_encode_fix(struct fb_fix_screeninfo *fix,

 struct cremsonfb_par *par,
 const struct fb_info_gen *_info);

static int cremson_decode_var(struct fb_var_screeninfo *var,
 struct cremsonfb_par *_par,
 const struct fb_info *info);

static int cremson_encode_var(struct fb_var_screeninfo *var,
 struct cremsonfb_par *par,
 const struct fb_info *info);

static void cremson_get_par(struct cremsonfb_par *_par,
 const struct fb_info *info);

static void cremson_set_par(struct cremsonfb_par *par,
 const struct fb_info *info);

static int cremson_getcolreg(unsigned regno, unsigned *red,
 unsigned *green, unsigned *blue,
 unsigned *transp, const struct fb_info *info);

static int cremson_setcolreg(unsigned regno, unsigned red,
 unsigned green, unsigned blue,
 unsigned transp, const struct fb_info *info);

static int cremson_pan_display(struct fb_var_screeninfo *var,
 struct cremsonfb_par *par,
 const struct fb_info *info);

static int cremson_blank(int blank_mode, const struct fb_info *info);
static void cremson_set_disp(const void *par, struct display *disp,

 struct fb_info_gen *info);

static void cremson_detect(void)
{
 /*

Appendix K - Source code listings 167

 * This function should detect the current video mode settings and store
 * it as the default video mode
 */

 struct cremsonfb_par par;

 /* ... */
 cremson_get_par(&par, &fb_info.gen.info);
 cremson_encode_var(&default_var, &par, &fb_info.gen.info);
}

static int cremson_encode_fix(struct fb_fix_screeninfo *fix,
 struct cremsonfb_par *par,
 const struct fb_info_gen *_info)

{
 /*
 * This function should fill in the 'fix' structure based on the values
 * in the `par' structure.
 */

 /* ... */
 // __u8 colmode;

 struct cremsonfb_info *info = container_of(_info, struct cremsonfb_info, gen);

 memset(fix, 0, sizeof(struct fb_fix_screeninfo));
 strcpy(fix->id, "Fujitsu Cremson");

 fix->smem_start = (unsigned long) info->screen_base_phys;
 fix->mmio_start = (unsigned long) info->screen_base_virt;

 // colmode = (par->layer_mode >> CREMSON_COLMODE_REG_OFFSET);

 switch(par->bpp)
 {
 case 8:
 fix->mmio_len = par->xres * par->yres;
 fix->smem_len = par->xres * par->yres;
 fix->line_length = par->xres;
 fix->visual = FB_VISUAL_PSEUDOCOLOR;
 break;
 case 16:
 /* 2 bytes per pixel */
 fix->mmio_len = 2 * par->xres * par->yres;
 fix->smem_len = 2 * par->xres * par->yres;
 fix->line_length = 2 * par->xres;
 fix->visual = FB_VISUAL_TRUECOLOR;
 break;
 default:
 /* cremson doesn't do any other colur depths */
 }

 fix->type = FB_TYPE_PACKED_PIXELS;
 fix->type_aux = 0;
 fix->xpanstep = 0;
 fix->ypanstep = 0;
 fix->ywrapstep = 0;

Appendix K - Source code listings 168

 fix->accel = 0;

 return 0;
}

static int cremson_decode_var(struct fb_var_screeninfo *var, struct cremsonfb_par
*_par,

 const struct fb_info *info)
{
 /*
 * Fill the `par' structure based on the values in `var'.
 * If a value doesn't fit, round it up, if it's too big, return -EINVAL.
 *
 * Suggestion: Round up in the following order: bits_per_pixel, xres,
 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
 * bitfields, horizontal timing, vertical timing.
 */

 /* ... */
 // struct cremsonfb_par *chosen_par;
 struct cremsonfb_par *par = _par;

 /* choose one of the preset pars for simplicity */

 // *par = direct_1024_768;
 *par = indirect_1024_768;

 /* alter this at some point to read var properly,
 remember to set display_addr0/1 according to
 offset fields correctly
 */

 /* pixclock in picos, htotal in pixels, vtotal in scanlines */
 // if (!fbmon_valid_timings(pixclock, htotal, vtotal, info))
 // return -EINVAL;

 return 0;
}

static int cremson_encode_var(struct fb_var_screeninfo *var, struct cremsonfb_par
*par,

 const struct fb_info *info)
{
 /*
 * Fill the 'var' structure based on the values in 'par' and maybe other
 * values read out of the hardware.
 */

 /* ... */
 /* do this bit properly as practice for previous function */

 __u16 pixclk_scalar;

 memset(var, 0, sizeof(*var));

 var->xres = par->xres;

Appendix K - Source code listings 169

 var->yres = par->yres;
 var->xres_virtual = par->layer_width;
 var->yres_virtual = par->layer_height;
 var->xoffset = par->xoffset;
 var->yoffset = par->yoffset;

 // if((par->layer_mode >> CREMSON_COLMODE_REG_OFFSET)
 // == CREMSON_INDIRECT_COLOUR)

 switch(par->bpp)
 {
 case 8:
 var->bits_per_pixel = 8;
 /* only length in these bitfields are important for indirect colour */
 var->red.length = 8;
 var->green.length = 8;
 var->blue.length = 8;
 // var->red.length = 16;
 // var->green.length = 16;
 // var->blue.length = 16;
 break;
 case 16:
 var->bits_per_pixel = 16;
 var->red.offset = CREMSON_DIRECT_OFFSET_R;
 var->green.offset = CREMSON_DIRECT_OFFSET_G;
 var->blue.offset = CREMSON_DIRECT_OFFSET_B;
 var->red.length = CREMSON_DIRECT_COLOUR_LENGTH;
 var->green.length = CREMSON_DIRECT_COLOUR_LENGTH;
 var->blue.length = CREMSON_DIRECT_COLOUR_LENGTH;
 break;
 default:
 /* cremson doesn't do any other colour depths */
 }

 var->activate = FB_ACTIVATE_NOW;

 var->height = -1;
 var->width = -1;
 var->accel_flags = 0;

 /* timing data - see fb docs in kernel sources and
 cremson data sheet */
 pixclk_scalar = ((par->dcm & CREMSON_DCM_SCALAR_MASK)

 >> CREMSON_DCM_SCALAR_OFFSET);
 pixclk_scalar += 1;

 var->pixclock = (CREMSON_PLL_CLK_FREQ / pixclk_scalar);

 /* 1/6 blank period for left margin,
 1/3 for right, and other 1/2 for
 hsync - just a guess at the mo
 */

 /*
 var->left_margin = (par->htp - par->hsp) / 6;
 var->right_margin = 2 * var->left_margin;

Appendix K - Source code listings 170

 var->hsync_len = par->hsw / 2;

 var->upper_margin = (par->vtr - par->vsp) / 3;
 var->lower_margin = 2 * var->upper_margin;
 var->vsync_len = par->vsw;
 */

 var->left_margin = (par->hsp - par->hdp) + 1;
 var->right_margin = (par->htp - par->hsp - par->hsw) + 1;
 var->hsync_len = par->hsw +1;

 var->upper_margin = (par->vsp - par->vdp);
 var->lower_margin = (par->vtr - par->vsp - par->vsw) + 1;
 var->vsync_len = par->vsw + 1;

 var->sync = 0;
 var->vmode = FB_VMODE_NONINTERLACED;

 return 0;
}

static void cremson_get_par(struct cremsonfb_par *_par, const struct fb_info *info)
{
 /*
 * Fill the hardware's 'par' structure.
 */

 struct cremsonfb_par *par= _par;

 if (current_par_valid)
*par = current_par;

 else {
/* ... */

 /* lazy way to do it for the moment ... */
 // *par = direct_1024_768;
 *par = indirect_1024_768;
 }
}

static void cremson_set_par(struct cremsonfb_par *par, const struct fb_info *_info)
{
 /*
 * Set the hardware according to 'par'.
 */

 current_par = *par;
 current_par_valid = 1;
 /* ... */

 /* cremson MMR set in init */

 /* set the video mode - cremson is little endian */
 writew(cpu_to_le16(par->dcm), CREMSONDCM);
 writew(cpu_to_le16(par->htp), CREMSONHTP);
 writew(cpu_to_le16(par->hdp), CREMSONHDP);
 writew(cpu_to_le16(par->hdb), CREMSONHDB);
 writew(cpu_to_le16(par->hsp), CREMSONHSP);

Appendix K - Source code listings 171

 writeb(par->hsw, CREMSONHSW);
 writeb(par->vsw, CREMSONVSW);
 writew(cpu_to_le16(par->vtr), CREMSONVTR);
 writew(cpu_to_le16(par->vsp), CREMSONVSP);
 writew(cpu_to_le16(par->vdp), CREMSONVDP);

 /* the the video mem */
 //memset_io(CREMSON_VIDMEM_BASE, 0, CREMSONHOSTBASE);

 /* initialise the layer */
 writel(cpu_to_le32(par->layer_mode), CREMSONBLM);
 writew(cpu_to_le16(par->xoffset), CREMSONBLDX);
 writew(cpu_to_le16(par->yoffset), CREMSONBLDY);
 writel(cpu_to_le32(par->frame0_addr), CREMSONBLOA0);
 writel(cpu_to_le32(par->frame1_addr), CREMSONBLOA1);
 writel(cpu_to_le32(par->display0_addr), CREMSONBLDA0);
 writel(cpu_to_le32(par->display1_addr), CREMSONBLDA1);

 /* turn on display and the base left layer */
 writew(cpu_to_le16(CREMSON_DISPLAY_ENABLE |

 CREMSON_BL_ENABLE), CREMSONDCE);

}

static int cremson_getcolreg(unsigned regno, unsigned *red, unsigned *green,
 unsigned *blue, unsigned *transp,
 const struct fb_info *_info)

{
 /*
 * Read a single color register and split it into colors/transparent.
 * The return values must have a 16 bit magnitude.
 * Return != 0 for invalid regno.
 */

 /* ... */
 struct cremsonfb_info *info = (struct cremsonfb_info *) _info;
 uint32_t colour;
 //u16 colour;
 u8 *cremson_pal_ptr = CREMSONMBPAL;

 if (regno > current_par.palette_size)
 return 1;

 /* convert colour data read back from colour map entry to little endian */
 // colour = cpu_to_le16(info->fbcon_cmap[regno]);
 colour = info->fbcon_cmap[regno];

 switch(current_par.bpp)
 {
#ifdef FBCON_HAS_CFB8
 case 8:
 *red = *((u8 *)(cremson_pal_ptr + 4*regno + 2));
 *green = *((u8 *)(cremson_pal_ptr + 4*regno + 1));
 *blue = *((u8 *)(cremson_pal_ptr + 4*regno));
 *transp = 0;
 break;
#endif

Appendix K - Source code listings 172

#if defined(FBCON_HAS_CFB15) || defined(FBCON_HAS_CFB16)
 case 16:
 *red = ((colour << 1) & 0xf800);
 *green = ((colour << 6) & 0xf800);
 *blue = ((colour << 11) & 0xf800);
 *transp = 0;
 break;
#endif
 default:
 return 1;
 }

 return 0;
}

static int cremson_setcolreg(unsigned regno, unsigned red, unsigned green,
 unsigned blue, unsigned transp,
 const struct fb_info *_info)

{
 /*
 * Set a single color register. The values supplied have a 16 bit
 * magnitude.
 * Return != 0 for invalid regno.
 */

 struct cremsonfb_info *info = (struct cremsonfb_info *) _info;
 // uint32_t colour;
 u8 *cremson_pal_ptr = CREMSONMBPAL;

 if (regno > current_par.palette_size)
 return 1;

 //colour = info->fbcon_cmap[regno];

 switch(current_par.bpp)
 {

#ifdef FBCON_HAS_CFB8
 case 8:

// info->fbcon_cmap[regno] = (((red & 0xf800) >> 1) |
// ((green & 0xf800) >> 6) |
// ((blue & 0xf800) >> 11));
/* set the palette in the card */

 *((u8 *)(cremson_pal_ptr + 4*regno + 3)) = 0; /* ignore alpha for now */
 *((u8 *)(cremson_pal_ptr + 4*regno + 2)) = ((u8)(red >> 8));

*((u8 *)(cremson_pal_ptr + 4*regno + 1)) = ((u8)(green >> 8));
*((u8 *)(cremson_pal_ptr + 4*regno)) = ((u8)(blue >> 8));

break;
#endif

/*
 * Make the first 16 colors of the palette available to fbcon
 */

#if defined(FBCON_HAS_CFB15) || defined(FBCON_HAS_CFB16)
 case 16:
 /* RGB 555 */
 info->fbcon_cmap[regno] = (((red & 0xf800) >> 1) |

Appendix K - Source code listings 173

 ((green & 0xf800) >> 6) |
 ((blue & 0xf800) >> 11));

 break;
#endif
 default:
 return 1;
 }
 /* ... */
 return 0;
}

static int cremson_pan_display(struct fb_var_screeninfo *var,
 struct cremsonfb_par *par, const struct fb_info *info)

{
 /*
 * Pan (or wrap, depending on the `vmode' field) the display using the
 * `xoffset' and `yoffset' fields of the `var' structure.
 * If the values don't fit, return -EINVAL.
 */

 /* ... */

 return 0;
}

static int cremson_blank(int blank_mode, const struct fb_info *info)
{
 /*
 * Blank the screen if blank_mode != 0, else unblank. If blank == NULL
 * then the caller blanks by setting the CLUT (Color Look Up Table) to all
 * black. Return 0 if blanking succeeded, != 0 if un-/blanking failed due
 * to e.g. a video mode which doesn't support it. Implements VESA suspend
 * and powerdown modes on hardware that supports disabling hsync/vsync:
 * blank_mode == 2: suspend vsync
 * blank_mode == 3: suspend hsync
 * blank_mode == 4: powerdown
 */

 /* ... */
 return 0;
}

static void cremson_set_disp(const void *par, struct display *disp,
 struct fb_info_gen *_info)

{
 /*
 * Fill in a pointer with the virtual address of the mapped frame buffer.
 * Fill in a pointer to appropriate low level text console operations (and
 * optionally a pointer to help data) for the video mode `par' of your
 * video hardware. These can be generic software routines, or hardware
 * accelerated routines specifically tailored for your hardware.
 * If you don't have any appropriate operations, you must fill in a
 * pointer to dummy operations, and there will be no text output.
 */

 struct cremsonfb_info *info = (struct cremsonfb_info *) _info;

Appendix K - Source code listings 174

 disp->screen_base = info->gen.info.screen_base;

 switch(current_par.bpp)
 {
#ifdef FBCON_HAS_CFB8
 case 8:
 disp->dispsw = &fbcon_cfb8;
 printk(KERN_DEBUG "FBCON_HAS_CFB8\n");
 break;
#endif
#ifdef FBCON_HAS_CFB16
 case 16:
 disp->dispsw = &fbcon_cfb16;
 disp->dispsw_data = &info->fbcon_cmap; /* console palette */
 printk(KERN_DEBUG "FBCON_HAS_CFB16\n");
 break;
#endif
 default:
 disp->dispsw = &fbcon_dummy;
 printk(KERN_DEBUG "Assigning dummy console ops\n");
 break;
 }

}

/* ------------ Interfaces to hardware functions ------------ */

struct fbgen_hwswitch cremsonfb_switch = {
 cremson_detect, cremson_encode_fix, cremson_decode_var, cremson_encode_var,
 cremson_get_par, cremson_set_par, cremson_getcolreg, cremson_setcolreg,
 cremson_pan_display, cremson_blank, cremson_set_disp
};

/* --- */

 /*
 * Frame buffer operations
 */

/* If all you need is that - just don't define ->fb_open */
static int xxxfb_open(const struct fb_info *info, int user)
{
 return 0;
}

/* If all you need is that - just don't define ->fb_release */
static int xxxfb_release(const struct fb_info *info, int user)
{
 return 0;
}

Appendix K - Source code listings 175

static unsigned long cremson_get_unmapped_area(struct file *file, unsigned long
addr,

 unsigned long len, unsigned long pgoff,
 unsigned long flags)

{
 return (unsigned long)fb_info.screen_base_phys;

}

 /*
 * In most cases the `generic' routines (fbgen_*) should be satisfactory.
 * However, you're free to fill in your own replacements.
 */

static struct fb_ops cremsonfb_ops = {
owner: THIS_MODULE,
// fb_open: xxxfb_open, /* only if you need it to do something */
// fb_release: xxxfb_release, /* only if you need it to do something */
fb_get_fix: fbgen_get_fix,
fb_get_var: fbgen_get_var,
fb_set_var: fbgen_set_var,
fb_get_cmap: fbgen_get_cmap,
fb_set_cmap: fbgen_set_cmap,
fb_pan_display: fbgen_pan_display,
// fb_ioctl: xxxfb_ioctl, /* optional */
get_fb_unmapped_area: cremson_get_unmapped_area,

};

/* -------------------- Hardware Independent Functions --------------------- */

 /*
 * Initialization
 */

int __init cremsonfb_init(void)
{

 fb_info.screen_base_phys = (void*)CREMSON_VIDMEM_BASE;
 fb_info.vid_mem_len = CREMSON_VIDMEM_LENGTH;
 fb_info.screen_base_virt = ioremap(CREMSON_VIDMEM_BASE,

 CREMSON_VIDMEM_LENGTH);

 writel(cpu_to_le32(CREMSON_MMR_VALUE), CREMSONMMR);

 fb_info.gen.fbhw = &cremsonfb_switch;
 fb_info.gen.fbhw->detect();
 fb_info.gen.parsize = sizeof(struct cremsonfb_par);
 strcpy(fb_info.gen.info.modename, "Fujitsu Cremson");
 fb_info.gen.info.changevar = NULL;
 fb_info.gen.info.node = -1;
 fb_info.gen.info.fbops = &cremsonfb_ops;
 fb_info.gen.info.disp = &disp;
 fb_info.gen.info.switch_con = &fbgen_switch;
 fb_info.gen.info.updatevar = &fbgen_update_var;
 fb_info.gen.info.blank = &fbgen_blank;

Appendix K - Source code listings 176

 fb_info.gen.info.flags = FBINFO_FLAG_DEFAULT;
 fb_info.gen.info.screen_base = fb_info.screen_base_virt;
 // fb_info.gen.info.screen_size = fb_info.vid_mem_len;

 /* This should give a reasonable default video mode */
 fbgen_get_var(&disp.var, -1, &fb_info.gen.info);
 fbgen_do_set_var(&disp.var, 1, &fb_info.gen);

 /* so far have only set up var in disp struct */
 fb_info.gen.info.var = disp.var;

 fbgen_set_disp(-1, &fb_info.gen);
 fbgen_install_cmap(0, &fb_info.gen);
 if (register_framebuffer(&fb_info.gen.info) < 0)

return -EINVAL;
 printk(KERN_INFO "fb%d: %s frame buffer device\n",

 GET_FB_IDX(fb_info.gen.info.node),
 fb_info.gen.info.modename);

 /* uncomment this if your driver cannot be unloaded */
 /* MOD_INC_USE_COUNT; */
 return 0;
}

 /*
 * Cleanup
 */

static void __exit cremsonfb_cleanup(struct fb_info *info)
{
 /*
 * If your driver supports multiple boards, you should unregister and
 * clean up all instances.
 */

 unregister_framebuffer(info);

 current_par_valid = 0;
 /* ... */
}

static void __exit cremsonfb_exit(void)
{
 printk(KERN_DEBUG "Entering %s\n", __FUNCTION__);

 cremsonfb_cleanup(&fb_info.gen.info);

 printk(KERN_DEBUG "Leaving %s\n", __FUNCTION__);
}
 /*
 * Setup
 */

int __init cremsonfb_setup(char *options)
{
 /* Parse user speficied options (`video=xxxfb:') */

Appendix K - Source code listings 177

 return 0;
}

/* --- */

 /*
 * Modularization
 */

module_init(cremsonfb_init);
module_exit(cremsonfb_exit);

19.11 cremsonfb.h
This is the header for the Cremson frame buffer driver:

/***/
/*
 * cremsonfb.h -- Register address definitions for the Fujitsu Cremson
 * framebuffer
 * driver on the Heber Pluto 6 board
 *
 *
 * (c) 2006 Ed Langley edwin_langley@hotmail.com
 *
 */
/***/

/***/
#if defined(CONFIG_PLUTO6)
/***/

#define CREMSON_VIDMEM_BASE 0x30000000
#define CREMSON_VIDMEM_LENGTH 0x01fbffff

/* this is blatantly stolen from Heber Pluto 6 code */
/* MMR memory mode register:
 Memory timing optimised for ISSI IS42S16400B-7T

 Minimum timing requirements for above device in brackets
 from ISSI data sheet for IS42S16400 Rev B March 2003 page 13

 CAS latency= 3 clk
 SDRAM bus width = 32 bits
 Row address width =14 bits
 Refresh time setting = 1024
 LOWD= 2 clk -> 20ns
 TRCD= 2 clk -> 20ns (15ns)
 TRAS= 5 clk -> 50ns (37ns)
 TRP= 2 clk -> 20ns (15ns)
 TRC = 7 clk -> 70ns (63ns)
 TRRD=2 clk -> 20ns (14ns)
*/

Appendix K - Source code listings 178

#define CREMSON_MMR_VALUE 0x013d6a8b

/***/
#else /* UNKNOWN HARDWARE */
/***/

#error "cremsonfb: I don't know what hardware addresses to use?"

#endif
/***/

/* Cremson address */
#define CREMSONHOSTBASE CREMSON_VIDMEM_BASE + 0x1fc0000
#define CREMSONDISPLAYBASE CREMSON_VIDMEM_BASE + 0x1fd0000
#define CREMSONDRAWBASE CREMSON_VIDMEM_BASE + 0x1ff0000

/* Cremson Registers */

/* Host Interface Registers */
#define CREMSONDTC CREMSONHOSTBASE + 0x00 /* DMA Transfer Count
Register */
#define CREMSONDSU CREMSONHOSTBASE + 0x04 /* DMA Setup Register
*/
#define CREMSONDRM CREMSONHOSTBASE + 0x05 /* DMA Request Mask
Register */
#define CREMSONDST CREMSONHOSTBASE + 0x06 /* DMA Status Register
*/
#define CREMSONDTS CREMSONHOSTBASE + 0x08 /* DMA Transfer Stop
Register */
#define CREMSONLSTA CREMSONHOSTBASE + 0x10 /* Display List Transfer
Status Register */
#define CREMSONDRQ CREMSONHOSTBASE + 0x18 /* DMA Request Register
*/
#define CREMSONIST CREMSONHOSTBASE + 0x20 /* Interrupt Status
Register */
#define CREMSONIMASK CREMSONHOSTBASE + 0x24 /* Interrupt Mask
Register */
#define CREMSONSRST CREMSONHOSTBASE + 0x2c /* Software Reset
Register */
#define CREMSONLSA CREMSONHOSTBASE + 0x40 /* Display List Source
Address Register */
#define CREMSONLCO CREMSONHOSTBASE + 0x44 /* Display List Count
Register */
#define CREMSONLREQ CREMSONHOSTBASE + 0x48 /* Display List Transfer
Request Register */

/* Graphics Memory Interface Registers */
#define CREMSONMMR CREMSONHOSTBASE + 0xfffc /* Memory IF Mode
Register */

/* Display Control Registers */
#define CREMSONDCM CREMSONDISPLAYBASE + 0x00 /* Display Control
Mode Register */
#define CREMSONDCE CREMSONDISPLAYBASE + 0x02 /* Display
Controller Enable Register */

Appendix K - Source code listings 179

#define CREMSONHTP CREMSONDISPLAYBASE + 0x06 /* Hor Total
Pixels Register */
#define CREMSONHDP CREMSONDISPLAYBASE + 0x08 /* Hor Display
Period Register */
#define CREMSONHDB CREMSONDISPLAYBASE + 0x0a /* Hor Display
Boundary Register */
#define CREMSONHSP CREMSONDISPLAYBASE + 0x0c /* HSync Position
Register */
#define CREMSONHSW CREMSONDISPLAYBASE + 0x0e /* HSync Width
Register */
#define CREMSONVSW CREMSONDISPLAYBASE + 0x0f /* Vsync Width
Register */
#define CREMSONVTR CREMSONDISPLAYBASE + 0x12 /* Vert Total
Rasters Register */
#define CREMSONVSP CREMSONDISPLAYBASE + 0x14 /* Vsync Position
Register */
#define CREMSONVDP CREMSONDISPLAYBASE + 0x16 /* Vert Display
Period Register */
#define CREMSONWX CREMSONDISPLAYBASE + 0x18 /* Window Position X
Register */
#define CREMSONWY CREMSONDISPLAYBASE + 0x1a /* Window Position Y
Register */
#define CREMSONWW CREMSONDISPLAYBASE + 0x1c /* Window Width Register
*/
#define CREMSONWH CREMSONDISPLAYBASE + 0x1e /* Window Height
Register */
#define CREMSONCM CREMSONDISPLAYBASE + 0x20 /* C Layer Mode */
#define CREMSONCOA CREMSONDISPLAYBASE + 0x24 /* C Layer Origin
Address */
#define CREMSONCDA CREMSONDISPLAYBASE + 0x28 /* C Layer Display
Address */
#define CREMSONCDX CREMSONDISPLAYBASE + 0x2c /* C Layer Display
Position X */
#define CREMSONCDY CREMSONDISPLAYBASE + 0x2e /* C Layer Display
Position Y */
#define CREMSONWM CREMSONDISPLAYBASE + 0x30 /* W Layer Mode */
#define CREMSONWOA CREMSONDISPLAYBASE + 0x34 /* W Layer Origin
Address */
#define CREMSONWDA CREMSONDISPLAYBASE + 0x38 /* W Layer Display
Address */
#define CREMSONMLM CREMSONDISPLAYBASE + 0x40 /* ML Layer Mode

*/
#define CREMSONMLOA0 CREMSONDISPLAYBASE + 0x44 /* ML Layer Origin
Address 0 */
#define CREMSONMLDA0 CREMSONDISPLAYBASE + 0x48 /* ML Layer
Display Address 0 */
#define CREMSONMLOA1 CREMSONDISPLAYBASE + 0x4c /* ML Layer Origin
Address 1 */
#define CREMSONMLDA1 CREMSONDISPLAYBASE + 0x50 /* ML Layer
Display Address 1 */
#define CREMSONMLDX CREMSONDISPLAYBASE + 0x54 /* ML Layer
Display Position X */
#define CREMSONMLDY CREMSONDISPLAYBASE + 0x56 /* ML Layer
Display Position Y */
#define CREMSONMRM CREMSONDISPLAYBASE + 0x58 /* MR Layer Mode

*/
#define CREMSONMROA0 CREMSONDISPLAYBASE + 0x5c /* MR Layer Origin

Appendix K - Source code listings 180

Address 0 */
#define CREMSONMRDA0 CREMSONDISPLAYBASE + 0x60 /* MR Layer
Display Address 0 */
#define CREMSONMROA1 CREMSONDISPLAYBASE + 0x64 /* MR Layer Origin
Address 1 */
#define CREMSONMRDA1 CREMSONDISPLAYBASE + 0x68 /* MR Layer
Display Address 1 */
#define CREMSONMRDX CREMSONDISPLAYBASE + 0x6c /* MR Layer
Display Position X */
#define CREMSONMRDY CREMSONDISPLAYBASE + 0x6e /* MR Layer
Display Position Y */
#define CREMSONBLM CREMSONDISPLAYBASE + 0x70 /* BL Layer Mode

*/
#define CREMSONBLOA0 CREMSONDISPLAYBASE + 0x74 /* BL Layer Origin
Address 0 */
#define CREMSONBLDA0 CREMSONDISPLAYBASE + 0x78 /* BL Layer
Display Address 0 */
#define CREMSONBLOA1 CREMSONDISPLAYBASE + 0x7c /* BL Layer Origin
Address 1 */
#define CREMSONBLDA1 CREMSONDISPLAYBASE + 0x80 /* BL Layer
Display Address 1 */
#define CREMSONBLDX CREMSONDISPLAYBASE + 0x84 /* BL Layer
Display Position X */
#define CREMSONBLDY CREMSONDISPLAYBASE + 0x86 /* BL Layer
Display Position Y */
#define CREMSONBRM CREMSONDISPLAYBASE + 0x88 /* BR Layer Mode

*/
#define CREMSONBROA0 CREMSONDISPLAYBASE + 0x8c /* BR Layer Origin
Address 0 */
#define CREMSONBRDA0 CREMSONDISPLAYBASE + 0x90 /* BR Layer
Display Address 0 */
#define CREMSONBROA1 CREMSONDISPLAYBASE + 0x94 /* BR Layer Origin
Address 1 */
#define CREMSONBRDA1 CREMSONDISPLAYBASE + 0x98 /* BR Layer
Display Address 1 */
#define CREMSONBRDX CREMSONDISPLAYBASE + 0x9c /* BR Layer
Display Position X */
#define CREMSONBRDY CREMSONDISPLAYBASE + 0x9e /* BR Layer
Display Position Y */
#define CREMSONBRATIO CREMSONDISPLAYBASE + 0xb4 /* C Layer Blend
Ratio Control */
#define CREMSONBMODE CREMSONDISPLAYBASE + 0xb6 /* C Layer Blend
Mode Control */
#define CREMSONCTC CREMSONDISPLAYBASE + 0xbc /* C Layer
Transparent Control */
#define CREMSONMRTC CREMSONDISPLAYBASE + 0xc0 /* MR Layer
Transparent Control */
#define CREMSONMLTC CREMSONDISPLAYBASE + 0xc2 /* ML Layer
Transparent Control */

#define CREMSONCPAL CREMSONDISPLAYBASE + 0x400 /* C Layer Palette
Base */
#define CREMSONMBPAL CREMSONDISPLAYBASE + 0x800 /* M/B Layer
Palette Base */

/* Draw Control Registers */

Appendix K - Source code listings 181

#define CREMSONCTR CREMSONDRAWBASE + 0x400 /* Control */

/* other definitions */
#define BL 0
#define BR 1
#define ML 2
#define MR 3
#define W 4
#define C 5

#define CREMSON_PALETTE_SIZE 256

#define BLACK 0

#define CREMSON_INDIRECT_COLOUR 0
#define CREMSON_DIRECT_COLOUR 1

#define CREMSON_COLMODE_REG_OFFSET 31

#define CREMSON_DIRECT_OFFSET_R 10
#define CREMSON_DIRECT_OFFSET_G 5
#define CREMSON_DIRECT_OFFSET_B 0

#define CREMSON_DIRECT_COLOUR_LENGTH 5

#define CREMSON_PLL_CLK_FREQ 200454520 /* Hz */
#define CREMSON_DCM_SCALAR_MASK 0x1F00
#define CREMSON_DCM_SCALAR_OFFSET 8

#define CREMSON_DISPLAY_ENABLE 0x8000
#define CREMSON_BL_ENABLE 0x0008

