Centre Number Candidate Number

EXAMINATIONS COUNCIL OF ZAMBIA

Joint Examination for the School Certificate and General Certificate of Education Ordinary Level

SCIENCE

5124/3

PAPER 3 (CHEMISTRY)

Friday

5 NOVEMBER 2010

1 hour 15 minutes
Additional materials:

Time: 1 hour 15 minutes

Candidate Name

INSTRUCTIONS TO CANDIDATES

Answer Booklet Mathematical tables (Do not allow calculators)

Write your **name**, **centre number** and **candidate number** at the top of this page and all separate answer paper used.

There are **11 questions** in this question paper.

Section A

Answer all the questions.

Write your answers in the spaces provided on the question paper.

Section B

Answer any **two** questions.

Write your answers on the separate Answer Booklet provided.

- 1. Fasten the separate answer booklet securely to the question paper.
- 2. Enter the numbers of the **Section B** questions you have answered in the grid.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

A copy of the **Periodic Table** is on page 11.

Cell phones are **not** allowed in the Examination room.

Examiner's Use

Section A

[45 MARKS]

Answer all the questions in this section.

Write your answers in the spaces provided.

	your knowledge of the kinetic theory of matter to suggest a reason for each policy and suggest and suggest a reason for each policy and suggest a reason for ea	
(a)	Wet clothes dry more quickly on warm days than cold days.	
(b)	Solid ice loses its shape when it melts.	
(a)	Salt dissolves faster in hot water than cold water.	
(c)		
(d)	When sugar is dissolved in a glass of water without stirring, all of the wat soon tastes sweet.	ter
	-	Tota

			100 4100		
		Ma	sses:		
		(ii)	Compare the masses ar particles.	nd the electrical charges of these	[2]
			10 x		
			Name of Particle	Number of Particles	
	(a)	(i)	Give the names of these particle present in each	particles and the number of each nucleus.	1
А3		pe h		cleon number of 7. Each neutral ato nucleus containing two different type	
					Total [5]
		, ,			[2]
		(ii)	Produce carbon dioxide	from carbon.	
		(i)	Manufacture plastic for n	naking buckets.	
	(a)	Stat	te the process from the lis	t of processes above that can be us	ed
		(iii)	Sand		
		(ii)			
		follo	owing from a sample of se Salt	ea water?	
	(a)	Wh	ich one of the processes I	isted above can be used to separate	e the
		tratio eutral	n lisation	-galvanizing -polymerisation	
	-di	stillat	tion	-esterification	
A2	ho	me:	lisation	used in a laboratory, industry and at -combustion	

	Elec	trical ch	narges: _				
			El .				
(b	•						otope and its isotope
*							7
Part of ollow.	the Per	iodic Ta	ble is sh	own belo	w. Use	it to an	swer the questions that
Н							Не
Li	Be	В	С	N	0	F	Ne
Na	Mg	Αł	Si	Р	S	CI	Ar
(ii	i) the	most re	active me	etal.			
(ii	ii) the	most re	active ha	logen.			
(iv	v) the	element		upports b	_		
							1 100
b) (i)	elem	ent who	ose atom	ic numbe	er is 13	reacted	ould be formed if the I with an element whose

A 5	W. C	pillage of 9.8 tonnes of sulphuric acid results from an accident by a road tanker. ked lime is used to neutralize the acid.							
	(a)	State the effect of the acid on the vegetation.							
			[1]						
	(b)	The chemical equation for the neutralization reaction is given below:							
		$H_2SO_4(aq) + Ca(OH)_2(s) \longrightarrow CaSO_4(s) + H_2O(\ell)$	[1]						
		(i) Balance the equation.	[1]						
		(ii) Calculate the mass of slaked lime needed to neutralize 9.8 tonnes of spilt sulphuric acid.	of						
			[2]						
		(iii) State one use of lime in agriculture.	[-1						
			[1]						
	(c)	Explain why sulphuric acid is said to be a strong acid.							
			[1]						
			Total [6]						

A6

(a)	(i)	Put a tick will not ta	(\checkmark) if a reaction will take place and a croske place.	ss (x) if a reaction
		Metal	Reaction of metal with cold water	Reaction of metal with steam
		Copper		
		Iron	,	
		Calcium		
	(ii)	Place the	se three metals in order of chemical activi reactive.	[3] ty, starting with
				[1]
(b)			enting with aluminium to place it in the abo luminium must first be scraped. Why is thi	

[2]

whe	ther th	ne substance underlined has been reduced or oxidized.	
(a)	(i)	Copper (ii) oxide + ammonia → copper + nitrogen + wate	r
	(ii)	<u>Carbon dioxide</u> + carbon → carbon monoxide	
	(iii)	Iron(ii) oxide + <u>aluminium</u>	
	(i)		
	(ii		
	(ii	ii)	[3]
(b)	Stea	m reacts with carbon as shown in the chemical equation below.	
	H ₂ O($(g) + C(s) \longrightarrow H_2(g) + CO(g)$	
	Ident	tify the oxidizing agent. Give a reason for your answer.	
	Oxidi	zing agent	
	Reas	on	
	V-100-100-100-100-100-100-100-100-100-10		[2]
			Total [5]

A7 Oxidation can be described as either the addition of oxygen to a substance or the

removal of hydrogen from a substance. Study the reactions given below and state

A8	Below is a structure of an ester made in a reversible reaction between a
	carboxylic acid and an alcohol.

(a) (i) Draw the structure of the carboxylic acid used in the reaction.

	(ii)		[1]
(b)		udent carried out an experiment to compare the relative strengths of e methanoic acid and dilute sulphuric acid.	
	(i)	Describe a test that can be used to distinguish between the two aci	ds.
			[2]
	(ii)	Name a metal that will react with both acids. Describe what you we see during the reaction.	uld
		Metal	
		Observation	[2]
			Total [6]

[1]

Section B [20 MARKS]

Answer any two questions in this section.

Write your answers on the separate Answer Booklet provided.

B9 A carbohydrate is formed from the reaction of many small molecules, one of which is represented by the diagram below:

(a) (i) What is the general name of the small molecules which combine to form very large molecules?

[1]

(ii) Show how two of the small molecules like the one drawn above would join together to form a bond.

[2]

- (b) Starch is hydrolysed to glucose by the enzymes in yeast and the glucose is then converted to an alcohol by a second process. Name:
 - (i) the second process.
 - (ii) the alcohol produced.

[2]

(c) State two uses of alcohol named in (b) (ii) above

[2]

- (d) Terylene is an ester.
 - (i) state one use of terylene

[1]

The structure of terylene is represented in the diagram below.

(ii) Draw a box around a repeating unit in this structure.

[1]

(iii) Why does terylene cause pollution?

[1]

Total [10]

B10 Air is a mixture of gases

	(a)	Wh	at does the word mixture mean?	[1]
	(b)	Rus	ting is one of the processes that uses oxygen.	
		(i)	Name two other processes in nature that use up oxygen.	[2]
		(ii)	State three ways of preventing rusting	[3]
	(c)	Oxi	des of lead are among the pollutants found in air. For these pollutants:	
		(i)	State the major source	
		(ii)	One effect they have on human beings.	
		(iii)	One way of minimizing or eliminating their presence in air.	[3]
	(d)		en house gases are gases that retain heat energy and this raises the rage air temperature over the earth. This is known as global warming.	
		Sta	e one disadvantage of global warming.	[1]
			То	tal [10]
11	(a)	Defi	ne a salt and give one example.	[2]
	(b)		(ii) sulphate (FeSO ₄) can be prepared by reacting iron metal and dilute huric acid.	
		(i)	Write a balanced equation for the reaction.	[2]
		(ii)	Which reactant should be in excess? Give a reason for your answer.	[2]
	(c)	How	would you obtain fairly pure dry crystals of iron(ii) sulphate from its	
		solut	ion?	[3]
	(b)	Nam	e a salt that can be prepared by precipitation.	[1]
			То	tal [10]

DATA SHEET

The Periodic Table of the Elements

Key	*58-71 L +90-103	Fr Francium 87	133 Cs Caesium	Rubidium	39 Potassium	7 Li Lithium 3 23 Na Sodium		-	
× a	*58-71 Lanthanoid series +90-103 Actinoid series		56	Strontium	20 0	Be Beryllium 4 24 Mg Magnesium 12			
a = relative atomic mass X = atomic symbol b = proton (atomic) numb	series	og.		ω ₂	 	e lium			
a = relative atomic mass X = atomic symbol b = proton (atomic) number		Actinium 9 +	* 5	-	Sc sandium				
er			178 Hf Hafnium 72	91 Zr Zirconium 40	48 Ti Titanium 22				
232 Th Thorium 90	140 Ce Cerium		181 Ta Tantalum 73	93 Nb Niobium	Vanadium 23				
Pa Protactinium 91	141 Pr Praseodymium 59		184 W Tungsten	96 Mo Molybdenum 42	Cr Cr Chromium				
238 U Uranium 92	Neodymium 60		186 Re Rhenium 75	Tc Technetium 43	Mn Mn Manganese 25				
Np Neptunium 93	Pm Promethium 61		190 Os Osmium 76	104 Ru Ruthenium 44	56 Fe Iron		Hydrogen		
Pu Plutonium 94	150 Sm Samarium 62		192 r r ridium	Rh Rhodium 45	59 Co Cobalt 27				Group
Am Americium 95	152 Eu Europium 63		195 Pt Platinum 78	Palladium					ģ
Cm Curium 96	157 Gd Gadolinium 64		197 Au Gold	108 Ag Silver	64 Cu Copper				
Bk Berkelium 97	159 Tb Terbium 65		201 Hg Mecury 80	112 Cd Cadmium 48	65 Zn Zinc				
Cf Californium 98	162 Dy Dysprosium 66		204 T/ Thallium 81	115 In Indium	70 Ga Gallium 31	11 B Boron 5 27 27 A Aluminium 13		=	
Es Einsteinium 99	Holmium 67		207 Pb lead	119 Sn Tin	73 Ge Germanium	C Carbon 6 28 Si Silicon		V	
Fm Fermium 100	167 Er Erbium 68		209 Bi Bismuth	Sb Antimony 51	As Arsenic	Nifrogen 7 31 Phosphorus 15		<	
Md Mendelevium 101	169 Tm Thulium		Po Polonium 84	128 Te Tellurium 52	3			≤	
No Nobelium 102	173 Yb Yitterbium		At Astatine 85				3.	VII	
Lr Lawrencium 103	175 Lu Lutetium		Rn Radon	131 Xe Xenon	84 Xr Krypton	20 Ne Ne 10 Ne 10 40 Ar Argon	Helium	0	

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).