
A Technique for Inter-Retailer Recommendations

Bill Chickering and Jamie Irvine

CS 399 with Anand Rajaraman

Stanford University

June 11, 2014

Abstract

The problem of making recommendation across retailers using only publicly available information
is explored. Several inter-retailer recommender algorithms are presented. Each is compared in an
experiment conducted with real data. A novel latent feature recommender that leverages public
intra-retailer recommendation information is described and shown to outperform a nontrivial
content-based approach.

Introduction

A key challenge in retail is choosing which items to incorporate into one’s collection of offered
goods and services. Several factors must be considered including the number of product lines, the
variety of products in each line, as well as the consistency and relationships between products. In
this study, we focus on the latter and explore techniques that leverage publicly available product
recommendation information for the purpose of improving product assortment decisions.

It has become standard practice for online retailers to recommend one or more products
to prospective customers who have viewed or purchased an item. These recommendations are
generally derived from either content-based approaches or via collaborative filtering, utilizing
data-mining techniques [1]. Importantly, these recommendations provide a source of publicly
available business intelligence by relating the items in their respective catalogue. Specifically,
these online recommendations logically form a directed graph in which the nodes are products
and an edge pointing from item A to item B indicates that customers who view or purchase
item A are recommended item B. Given the recommendation graphs of two or more distinct
retailers, our goal is to determine new, meaningful edges that connect these graphs in a way
that would allow one retailer to relate their products to those of another.

Content-based approaches and collaborative filtering have distinct challenges, and therefore,
offer unique advantages as solutions to the general recommender problem. An effective content-
based solution requires a detailed analysis of item and/or user profile information. A well-known,
successful example is the Music Genome Project, which powers the music service Pandora [2].
Such an approach can be difficult, however, since necessary user and/or item information might
be unavailable or the required domain expertise might be too costly. The alternative method
is that of collaborative filtering (CF), which leverages the correlations within user purchase or
rating data. The idea is that two items that tend to be purchased or highly rated by the same
users can be considered related such that if a new user likes one they will probably like the
other. A key advantage of this approach is that it effectively outsources the recommendation

1

problem to the retailer’s customers. Online retailers such as Amazon.com and Netflix are known
to employ recommender systems based on CF [3]. At the same time, CF notoriously suffers from
what is known as the cold start—without user-item data of sufficient quantity and diversity these
systems fail to yield accurate results.

The problem we examine here is, in many ways, more difficult than that of the standard rec-
ommendation problem. Essentially, we would like to recommend an item from retailer X based
solely on a known preference for an item from retailer Y . For the product assortment problem,
user purchase and rating information is presumably known for one of the two retailers. In this
study, however, we simplify the scenario by making it symmetric. No user purchase or rating
information will be leveraged for either retailer. Instead, the algorithms investigated here are
limited to publicly available information, which includes product descriptions and online prod-
uct recommendations. Given the lack of inter-retailer user data, a traditional CF technique is
ostensibly not applicable. Instead, we propose a new technique that leverages the recommender
graphs as well as the content from each product to create inter-retailer recommendations.

This report is organized as follows. In the next next section we describe our dataset and some
simple preprocessing that was performed. Next, we outline an experiment used to simulate the
inter-retailer recommendation problem. This is followed by a section that explains and justifies
our evaluation metrics. Several pages are then dedicated to the details of a novel latent feature
algorithm along with two nontrivial primarily content-based, baseline recommenders. We then
summarize the results of our experiments with these recommenders along with several additional
baseline algorithms.

Data

For this work, we utilize most of the product catalogue of Macy’s as presented at www.macys.com.
This catalogue consists of numerous categories, which are mostly apparel. Each category in-
cludes hundreds to thousands of items. We confine this study to the 49 categories under the
two main parent categories “Men” and “Women” that contain at least 200 items from multiple
brands. In total, this dataset consists of 66,071 items in 49 categories with some items listed
in multiple categories. For each item we record its description, all categories within which it
is listed, and its associated recommendations. By recommendations, we are referring to the
items—there are typically four in the case of Macy’s—that are displayed on a product’s details
page under the heading “Customers Also Shopped”. The presence of these recommendations im-
plicitly forms a directed graph over the product catalogue, in which the nodes are the products
or items and the edges are the recommendations. We call these types of graphs recommendation
graphs and they play a central role in this study.

To simplify the present study, we transform these directed recommendation graphs into
undirected graphs. This is consistently done using the following policy: For each pair of items
connected by a single directed edge, replace this edge with a single undirected edge. For each pair
of items connected by two oppositely directed edges, replace both edges with a single undirected
edge. Working with undirected graphs simplifies both the prediction algorithms as well as the
evaluation of their performance. At the same time, by ignoring the directionality of the original
edges, we are discarding important information. It would therefore be worthwhile to consider
the more difficult problem of connecting directed recommendation graphs in a future study.

2

Experiment

Our goal is to develop methods for connecting initially disconnected recommendation graphs.
Given two online retailers, each with a website displaying their items along with several other
recommended items from their catalogue, we are presented with two disconnected recommen-
dation graphs. We would like to associate “good” recommendations for items in one catalogue
with items in the other catalogue. In this way, we are effectively introducing edges that connect
the two recommendation graphs. Formulating the inter-retailer recommendation problem in
terms of graphs offers insight on how to evaluate our recommendation choices as well as how
to choose “good” recommendations. Leveraging the graph structure for evaluation is discussed
in this section while exploiting the graph for the purpose of making better recommendations is
addressed in a subsequent section, Recommender Algorithms.

To evaluate our inter-retailer recommendation algorithms, we simulate the problem by ran-
domly partitioning Macy’s products into two disjoint sets. Given the original recommendation
graph, each partition therefore corresponds to a graph cut. The edges in this graph cut form a
gold-standard since it is assumed that these are indeed “good” recommendations. Our premise is
that an ideal recommendation method could guess these gold-standard edges with high precision
and recall.

For each experiment, we choose a particular category from the Macy’s catalogue (e.g. Women
Activewear, Men Dress Shirts, etc.). Since most recommendations are between items in a
common category, very few edges are lost by confining ourselves to an individual category. Edges
that are lost in this way do not participate in the experiment and are not considered during
evaluation. Also, we randomly partition the items in the category such that all items associated
with a particular brand are entirely within a single partition. In this way, we preclude the easiest
method of associating two items: recognizing a common brand. This is done to increase the
difficulty and realism of the experiment.

Having partitioned the graph of items, we now predict recommendation relations between
items across the partitions. Each prediction algorithm has knowledge of all items in each parti-
tion, including their descriptions and all recommendations (i.e. edges) within a common parti-
tion. In addition, the algorithms may exploit the fact that most items listed at www.macys.com
are accompanied by four recommended items. The algorithms do not have knowledge of the
recommendations (i.e. edges) between items across partitions. Each prediction algorithm is then
free to choose an arbitrary number of edges as long as 1) the items connected by the predicted
edge are not in the same partition and 2) at most one edge is predicted for a particular pair of
items.

Evaluation

Precision, recall, and F1 score are well-known metrics for evaluating prediction algorithms [4].
Together, these metrics capture how effective one is at guessing items within a target set.
Consider a typical Macy’s category, for example, Dresses, which contains approximately 3, 500
items. Suppose that a random partition results in two sets with approximately 1, 750 items in
each. Such a partition would cut approximately half of all the edges in the unpartioned graph.
Since each node has on average eight edges before partitioning (four in and four out in the
original directed graph) and each edge is shared by two nodes, there are originally a total of
approximately (8⇥ 3, 500) /2 = 14, 000 edges. This implies that there are 7, 000 withheld edges
in the cut. For each predicted recommendation, we must choose two nodes, one from each of

3

the two sets. Therefore we have (1, 750⇥ 1, 750) /2 > 1 ⇥ 10

6 choices and only 7, 000 of them
are correct. Choosing the correct edges is a formidable challenge to say the least. It is therefore
worth asking: Are some prediction errors better or worse than others?

The graph nature of our problem reveals that the answer to this question is yes. For instance,
it is better to guess an edge that connects two items that are separated by two edges in the
original graph than to connect two items that are separated by five edges. We therefore introduce
the notion of 2-precision, 2-recall, and 2-F1 are defined as

2-precision = |{(u, v) 2 P |dL(u, v)  2}| (1)
2-recall = |{(u, v) 2 L|dP (u, v)  2}| (2)

2-F1 = 2 · 2-precision · 2-recall
2-precision + 2-recall

, (3)

where P is the set of predicted edges, L is the set of lost edges (i.e. those in the cut resulting
from the partition), dL(u, v) is the shortest distance between nodes u and v in the original
unpartitioned graph, and dP (u, v) is the shortest distance between nodes u and v in the new
graph formed using the predicted edges in P .

The following definitions will prove helpful. Let G be the original unpartitioned graph,
formed from the partitions together with the lost edges L, and let G0 be the new graph, formed
from the partitions together with the predicted edges P . In the context of 2-precision, an edge
in P that connects items A and B is considered correct if 1) A and B share an edge in G or 2)
A shares an edge with a direct neighbor of B in G or 3) a direct neighbor of A shares an edge
with B within G. Meanwhile, in the context of 2-recall, an edge in L that connects items C and
D is considered recalled if 1) C and D share an edge in G0 or 2) C shares an edge with a direct
neighbor of D in G0 or 3) a direct neighbor of C shares an edge with D in G0.

We use traditional precision, recall, and F1 score as well as 2-precision, 2-recall, and 2-
F1 score to evaluate our prediction algorithms. Including the latter set of metrics provides a
more complete picture of algorithmic performance. These additional metrics also accommodate
the fact that the edges of G do not necessarily correspond to the only or even the best item-
item recommendations. We therefore suggest that while traditional precision and recall are
relevant metrics, relative performance as measured by 2-precision and 2-recall better captures
the effectiveness of these prediction algorithms.

Recommender Algorithms

ContentBasedRecommender

The most straightforward approach to inter-retailer recommendations is a content-based ap-
proach. Retail products typically have a description that can be used to construct a textual
content-based similarity function. One can then consider all pairwise product combinations
across the two retailers, but within a common category, and choose recommendations between
items with sufficiently high similarity.

Toward this end, we borrow the concept of Term Frequency–Inverse Document Frequency
(tf-idf) from the information retrieval community. In using tf-idf, we are considering each item
description to be a “document”. Thus we define the tf-idf of a term t within an item description
d that’s part of a combined category catalogue C (i.e. the catalogue consisting of all items in

4

both retailers’ catalogues for a particular common category) as

tf-idf(t, d, C) = f(t, d)⇥ log

|C|
|{d 2 C : t 2 d}| , (4)

where f(t, d) is the number of occurances of term t in item description d, and |{d 2 C : t 2 d}|
is the number of items in C with descriptions containing at least one instance of term t. We
can now represent each item as a sparse vector of tf-idf values, which has a nonzero element for
each term in its description.

A key feature of tf-idf is that terms appearing in many item descriptions are discounted via
the idf factor. Conversely, rare terms will have larger tf-idf values. These features help capture
the most relevant words in each description.

We can further improve our content similarity function by considering the bigrams that
appear in item descriptions. To exploit this fact, we construct another tf-idf vector for each
item, this one corresponding to the observed bigrams. Combining these tf-idf vectors, we define
the ContentSimilarity between items A and B as

ContentSimilarity(A,B) = ~⌧1(A) · ~⌧1(B) + � · ~⌧2(A) · ~⌧2(B), (5)

where ~⌧1(A) is the unigram tf-idf vector and ~⌧2(A) is the bigram tf-idf vector representations of
item A, and � is a parameter. We find that that � = 0.3 works well for our data.

Using this content-based similarity function, we construct the following inter-catalogue rec-
ommendation algorithm, which we call the ContentBasedRecommender. For each product
in each catalogue, calculate its ContentSimilarity with every product in the other catalogue.
Predict recommendations between this product and the two most similar products in the other
catalogue. The reason for choosing the top two most similar products originates from our
knowledge that most items listed on www.macy.com are associated with four recommended
items. Thus, by choosing two edges per item per partition, we will predict approximately the
same number of edges that were lost during the partition. This relatively straightforward algo-
rithm serves as a baseline against which to compare the performance of other more sophisticated
algorithms.

The ContentBasedRecommender deserves a few more comments. For starters, the use of
an inner product, which is bounded only by the length of the tf-idf vectors, is not fundamental
to this algorithm. A bounded similarity function such as cosine similarity could have been used
instead, without qualitatively changing the results discussed later in this report. This is because
the lengths of the product descriptions have little variation, and therefore, the vector norms of
the tf-idf vectors have little variation. Finally, we mention that while this algorithm is quadratic
in the number of items, it can be executed relatively efficiently using matrix multiplication, which
trades time for space (i.e. memory). Furthermore, confining our experiments to individual
categories reduces the impact of the quadratic time complexity. In our case, Macy’s entire
catalogue consists of over 60, 000 products, making a quadratic time algorithm challenging.
However, the average category has about two thousand products, which is significantly more
manageable.

NeighborhoodRecommender

The ContentBasedRecommender is limited in that it attempts to capture similarity between
products by looking exclusively at the terms in their descriptions. One issue here is that brands
tend to use different vocabularies to describe their products. One may refer to a color as “off-
white” while another calls the same color “ivory.” To the ContentBasedRecommender these

5

terms are as different as “black” and “white.” Another issue is that the best recommendation for
a product may not even be the most similar product. For instance, a striped black-and-white
button-up shirt could be an excellent recommendation associated with a blue checkered button-
up, even though the two products are different and would presumably use signficantly different
terms in their descriptions.

We can begin to address these issues by leveraging the recommendations we already have
between products within a single partition. One approach is to consider the neighborhood of each
product, that is a product along with each of its immediate neighbors in the recommendation
graph. With this, we create a new similarity function called NeighborhoodSimilarity. This
function uses the ContentSimilarity function from before to compare every pair of products
between the two neighborhoods of a pair of products A and B:

NeighborhoodSimilarity(A,B) =

X

i2Neigh(A)

X

j2Neigh(B)

ContentSimilarity(i, j) (6)

where Neigh(A) is the set of items that share edges with item A. We use this similarity function
to construct the NeighborhoodRecommender, which is an extension of the ContentBasedRecommender.
The algorithm is the same as before except now we choose a recommendation associated with
items A and B by maximnizing

ContentSimilarity(A,B) + ⌘ ·NeighborhoodSimilarity(A,B), (7)

where ⌘ is a parameter. We find that ⌘ = 0.1 yields good results for this algorithm.
Assuming that the edges of the recommendation graphs are in fact good recommendations,

this approach can help both of the shortcomings of ContentBasedRecommender previously
mentioned. Since a neighborhood includes several items, each with descriptions that potentially
use different vocabularies, there is a higher likelihood that the neighborhood contains multiple
synonyms for the underlying concept that captures their similarity. This therefore decreases the
likelihood of false negatives due to different vocabularies between a pair of items. Presumably, a
retailer’s recommendation graph includes information from user behavior that is not expressed
in product descriptions. Re-examining the button-up shirts example, the neighborhood of a
striped shirt may include checkered shirts and vice versa. In this case, the two neighborhoods
might share the words “striped” and “checkered” and thus the two previously dissimilar shirts
would now be considered more similar.

LatentFeatureRecommender

Although the NeighborhoodRecommender leverages the information contained in the recom-
mendation graphs to some extent, it is still primarily based on product descriptions. Presumably,
the graphs are derivative of a collaborative filtering scheme, and hence, reveal associations be-
tween products that are not evident from the language of their descriptions. For example, a
dress’s description might not capture whether it is more conservative or more risque. Yet, this
could be the salient feature it has in common with an associated recommendation. These sort of
abstract, perhaps ineffable, features can be essential to item-item relations. We must therefore
ask whether we can more fully utilize the given graphical information to discover these latent
features in order to choose better inter-catalogue recommendations.

Simulating User Data

A common approach to learning latent features is to apply matrix factorization techniques
to user-item data, as in many CF methods [3]. But, user-item data, a prerequisite for such

6

techniques, in not available to us here. A key insight of the present work is that publicly available
recommendation graphs, such as those found on Macy’s website, can be used to simulate user-
item data through the use of special random walks known as Topic-Sensitive PageRank, a
technique typically associated with web search [5].

The idea is that a user with a preference for a particular product is more likely to also have
a preference for one of its associated recommendations than another arbitrary product. We can
simulate this with a random walker that, by construction has a preference for an item A, and
therefore, begins her walk at that item on the recommendation graph. At each step in the walk,
she is equally likely to visit any of the items that share an edge with the presently occupied
item or stay at the present item. There is also a small chance at each step that the walker
will teleport back to item A. In the language of Topic-Sensitive PageRank, item A is the sole
nonzero entry in the walker’s personalization vector. We create our synthetic user-item data by
performing such a random walk for each node in the graph. That is, each node has a random
walk in which it is the sole nonzero entry in the walker’s personalization vector. In this way, we
simulate a user for each item in each graph partition.

Constructing our random walk in this way provides an important benefit. In the context
of the random walk, the recommendation graph may be considered a discrete-time Markov
chain. By providing the walker a finite probability of staying at each item, our chain becomes
aperiodic. And since our walker begins at A and can only teleport to A, she is effectively confined
to a strongly connected subgraph of the recommendation graph. This subgraph is therefore,
by construction, irreducible. Importantly, according to the Fundamental Theorem of Markov
Chains, any finite, aperiodic, irreducible Markov chain has a unique stationary distribution [6].
For our data, we find that 30 steps with a 5% probability of teleporting back to the origin
item yields a good approximation of the true stationary distribution. We then interpret the
distribution associated with each item as the preference data assoicated with a particular user.

Extracting Latent Features

We may now construct a synthetic N ⇥ N item-user matrix M with rows representing items
and columns representing users, which are in fact the stationary distributions discovered from
our random walks. This matrix has at least one notable advantage over most real item-user
matrices—it is not sparse. Rather, each synthetic user has a finite value associated with every
item that is reachable from its origin item in the graph. Unlike the typical CF scenario, we
may therefore employ SVD as our matrix factorization technique since our item-user matrix
is virtually complete (i.e. nearly void of empty entries). Using SVD, we factor our item-user
matrix as

M = U⌃V T , (8)

where the rows of the N ⇥ N matrix U and the N ⇥ N matrix V are the items and users
represented in an N -dimensional concept space, respectively, and the N diagonal entries of ⌃
are the singular values associated with each concept.

Having transformed our items into concept space, we now discard all but the k leftmost
columns of the matrix U . The idea is that these leftmost columns are the most significant eigen-
vectors of concept space and capture most, if not all, of the relevant latent features. Meanwhile,
the discarded columns are presumed to contain mostly noise. This rank-reduction process yields
matrices that are typically written as

M ⇡ Uk⌃kV
T
k , (9)

7

(a) The top 5 items, representing the positive direction

(b) The bottom 5 items, representing the negative direction
Figure 1: The top and bottom items representing a concept in the Dresses category. This

concept could be characterized as modern and tiered in the positive direction, and gown-like
and elegant in the negative direction.

where the rows of Uk and Vk are the items and users represented in a k-dimensional concept
space, respectively. For our data, we find that k = 16 yields good results across all categories,
striking a balance between information loss and the tractability of mapping concept spaces (see
below). Rank-reducing following the application of SVD in this way is a common technique
used in information retrieval and is often referred to as Latent Semantec Indexing (LSI) [7].

Figures 1 and 2 show the top and bottom most relevant items for two of the sixteen concepts
learned in this way on the Women’s Dresses category. Note that concepts learned by SVD range
from positive to negative, representing the two extremes of the concept, therefore it is relevant
to look at both the top and bottom items.

Concept Space Mapping

Using random walks to simulate user data, followed by the application of LSI, is indeed an
effective way to encode information from a recommendation graph into a latent feature space.
But what is the relationship between latent feature vectors derived from disconnected graph
partitions? In principle, there is no guarantee of any relationship between such concept spaces
in the same way that there is no guarantee of any relationship between two arbitrary, discon-
nected recommendation graphs. Nonetheless, our hypothesis is that a relationship between
these concept spaces will often exist due to the effectiveness of the underlying CF techniques
that generate the graphs to capture meaningful item-item associations. Put another way, we
believe that the most fundamental latent dimensions along which products in a category such
as Women’s swimsuits vary will be common to many swimsuit catalogues. If this is indeed true,
then it might be possible to learn a mapping between these concept spaces.

If a mapping between the concept spaces associated with two catalogues were known, we

8

(a) The top 5 items, representing the positive direction

(b) The bottom 5 items, representing the negative direction
Figure 2: The top and bottom items representing another different Dresses concept. This

concept could be characterized as two-toned and playful in the positive direction, and belted
and light in the negative direction.

could translate all items into a common space and then choose inter-catalogue edges between
item pairs that are nearest to one another in concept space. To learn these mappings, we must
revisit the notion of content similarity. Once again, we utilize tf-idf vectors. This time, however,
we weight an item i’s tf-idf vector ~⌧(i) by the elements in its latent feature vector ~v(i). In this
way, we construct a dense super-tf-idf vector for each concept of each catalogue. Formally, we
say that a concept j of a catalogue C is represented by the super-tf-idf vector

~s(j, C) =

X

i2C
v(i)j · ~⌧(i), (10)

where v(i)j is the jth component of item i’s latent feature vector. Note that since the components
v(i)j may be positive or negative so too can the elements of a concept’s super-tf-idf vector, in
constrast to the elements of an individual item’s tf-idf vector which are necessarily greater than
or equal to zero. Also note that we compute both ~s1 and ~s2, which correpond to unigram and
bigram super-tf-idf vectors, respectively, for each concept. These super-tf-idf vectors then act
as proxies for the concept.

With these proxy representations of the concepts for the concept spaces of two catalogues
C1 and C2, we construct a matrix A of inner-products of super-tf-idf vectors. Specifically, the
matrix elements of A are given by

Aij(C1, C2) = ~s1(i, C1) · ~s1(j, C2) + � · ~s2(i, C1) · ~s2(j, C2), (11)

where i is a concept from C1 and j is a concept from C2 and � is the same parameter as before
(again, we find � = 0.3 works well). We may now use this matrix to transform the vector
representation of an item in one concept space into a vector representation in another concept
space.

9

It is important to note that the transformation matrix A is not orthogonal, and therefore,
does not preserve vector norms. We address this issue by normalizing all feature vectors, both
foreign and domestic, in the concept space followingj the transformation. This radially projects
all items onto the surface of a hypersphere in the 16-dimensional concept space. Now, when
ranking an item’s neighbors by distance, we are actually ranking neighbors by angular sepa-
ration. That is, we are ranking neighbors by their cosine similarity in concept space. After
experimenting with various normalization schemes we find that this approach works best.

Together, these steps comprise the LatentFeatureRecommender. First, we simulate user
sessions by randomly walking the recommendation graphs. Second, we learn concept spaces for
products in each catalogue via LSI. Third, we find a mapping between concept spaces using
weighted tf-idf vector representations of the products. And lastly, we find the nearest neighbors
of each product from one catalogue within the concept space of another catalogue. These nearest
neighbors are then the predicted recommendations between products across the two catalogues.

Popularity

The LatentFeatureRecommender can be significantly improved by incorporating the notion
of item popularity. The idea is that a more popular item is more likely to be recommended,
independent of how similar it is. We see signs of this in the undirected recommendation graphs
from www.macys.com. Although each product has at most four outgoing recommendations on
its details page, we see that some products have over one hundred incoming recommendations.
But how might we define popularity? A reasonable definition would introduce a quantity that is
correlated with the number of users that indicate a preference for an item. Like all user data, this
is not publicly available information. Once again, however, we can leverage the recommendation
graph to infer an approximate popularity metric for each item.

We define item popularity as

⇢(A) = log(1 + deg(A)), (12)

where deg(A) is the degree of the item A within its recommendation graph. We find this quanity
to be useful in improving the LatentFeatureRecommender in several ways.

We begin with an attempt to separate the notion of item similarity from that of item popu-
larity. The idea that more popular items are more likely to be recommended than less popular
items motivates an alternative mode for conducting our random walks over a recommendation
graph in order to better isolate item similarity. We do this by adjusting the probability of tran-
sitioning to an item on the graph by making it inversely proportional to that item’s popularity,
⇢. Stationary distributions learned from these alternative random walks better reflect item-item
similarity. We find that removing item popularity from our simulated user data results in bet-
ter success when mapping between the derived concept spaces (as evidenced by the improved
precision and recall discussed in the next section).

Next, we reincorporate popularity by modifying how we search for nearest neighbors in
concept space. Instead of simply ranking neighbors by distance, we now rank by distance
divided by ⇢, thus promoting popular items. In this context, having defined popularity as the
logarithm of node degree, instead of simply node degree, reduces the liklihood that one or two
very popular items will always appear as the best recommendations when using this weighted
ranking policy.

The third way in which popularity is used is determining the number of recommendations
alotted per product. We assume that a popular product in one catalogue is likely to be a

10

popular product in another catalogue. Specifically, the number of predicted inter-catalogue
recommendations predicted per item is made directly proportional to the item’s value of ⇢.

This assumption is corroborated by the data. The following histogram shows the number
of gold-standard recommendations associated with the top 25 most popular items, as deter-
minded by ⇢. The histogram also includes the distribution of predicted recommendations for
these items by the LatentFeatureRecommender both with and without popularity mechanisms.
With popularity, the predictions follow a similar distribution to that of the gold-standard rec-
ommendations. Without popularity, the recommendations are scattered more uniformly over
the thousands of items of each catalogue such that the number of times these 25 items are
recommended is significantly smaller (barely visible in the plot). This is because the recom-
mendations are based solely on similarity in concept space (after mapping) and popular items
are not inherently more similar to other items. Importantly, the LatentFeatureRecommender
without popularity still outperforms the ContentBasedRecommender, demonstrating that while
popularity is important, it is only one of several features that are useful in choosing good inter-
catalogue recommendations.

Figure 3: The top 25 most popular items and how many times they appear in recommendations. Here
we compare the distribution of gold-standard recommendations (red) to the recommendations predicted
by the LatentFeatureRecommender with (blue) and without (yellow) popularity. The yellow bars are
small and barely visible. This plot was generated on the Women’s Dresses category.

In all, these popularity additions significantly boost the performance of the
LatentFeatureRecommender. The results of this, along with comparisons to the other inter-
catalogue recommeder algorithms described in this section, are provided in the following section.

11

Performance

Baselines

In addition to the ContentBasedRecommender and the NeighborhoodRecommender, we con-
structed and tested several other baseline algorithms to compare the LatentFeatureRecommender
against. These baselines show that the performance of LatentFeatureRecommender is not due
to a single mechanism but rather is the result of the mult-stage algorithm. In this section, we
briefly outline these additional baselines.

RandomRecommender

The simplest and least challenging baseline. This recommender randomly chooses a fixed number
of recommendations for each item across catalogues.

PopularityRecommender

A baseline that exclusively exploits popularity ⇢, without any other knowledge of the recom-
mendation graphs or of item content. This recommender simply chooses, at random, one of the
top three most popular items from the other catalogue as recommendations for each item in a
catalogue. This baseline aims to demonstrate the efficacy of popularity alone.

RandomMapRecommender

This is the LatentFeatureRecommender without the mapping stage. Instead it generates a
random value between -1.0 and 1.0 for each element of the mapping matrix A. As such, it is still
leveraging popularity ⇢ in the same way as the LatentFeatureRecommender. This baseline
aims to reveal the importance of the mapping stage.

OneModelRecommender

This is not baseline but rather a cheat. This is the LatentFeatureRecommender except, for
this experiment, we defer the graph partitioning until after we have performed our random walks
and constructed a single concept space. Only then do we partition the items such that their
latent feature vectors represent all items in a single concept space. The goal of this experiment
is to determine how well our algorithm might do if a perfect concept mapping existed and we
could somehow compute it.

12

Recommender Precision Recall F1 Score 2-Precision 2-Recall 2-F1 Score
Random .002 .001 .001 .021 .008 .012
Popularity .016 .019 .017 .080 .096 .087
RandomMap .014 .019 .016 .070 .095 .081
OneModel .103 .132 .116 .404 .410 .407
ContentBased .014 .020 .016 .115 .186 .142

Neighborhood .040 .060 .048 .137 .240 .175

LatentFeature .036 .060 .045 .174 .228 .197

Table 1: The performance of each of the recommenders across all categories. The first five are the
baseline recommenders outlined in the previous section. The final three are the recommenders of interest,
described in the Recommender Algorithms section. The scores in bold are the most important results
and are further illustrated in the following figure.

Results

Table (1) shows the results of all inter-catalogue recommenders across all categories. For exam-
ple, the precision column lists the sum, across all categories, of correctly predicted edges divided
by the sum, across all categories, of predicted edges. We first point out that both Neighborhood
and LatentFeature outperform ContentBased by all metrics. This makes clear the utility of
leveraging information from the recommendation when making inter-catalogue recommenda-
tions. Next, we notice that Neighborhood actually outperforms LatentFeature in precision by
10% and in 2-recall by about 5%. Importantly, however, LatentFeature bests Neighborhood
in the key metric 2-F1 by about 12%.

Of course, Random does quite poorly, emphasizing the difficulty of the problem. Interest-
ingly, Popularity and RandomMap have comparable performance and score almost half as well
as LatentFeature. The fact that their results are similar is not suprising, however, since they
are both relying entirely on item popularity ⇢. Popularity utilizes ⇢ explicity by connecting each
item to one of the most popular items in the other catalogue. RandomMap, on the otherhand,
employs ⇢ in an identical manner to that by LatentFeature. This reveals that popularity alone
accounts for nearly half of LatentFeature’s success.

As expected, we find that OneModel outperforms LatentFeature. Indeed, one might ask
why OneModel does not score even higher. The performance of OneModel is limited by the rank
reduction stage of the algorithm, which discards a large amount of information. LatentFeature
benefits from this stage since by discarding dimensions, the subsequent mapping problem be-
comes more tractable. Nonetheless, it is interesting that OneModel outperforms LatentFeature
by about a factor of 2. Given that OneModel is a cheat that involves perfectly mapped con-
cept spaces, we can consider it a loose upperbound for LatentFeature (at least when working
with 16 dimensions). It might, therefore, be possible to signficantly improve the performance
of LatentFeature by improving its concept space mapping stage. At the same time, it is not
at all clear that such a mapping in general even exists. Rather, the common existence of an
approximate mapping is a hypothesis of the authors that is corroborated by our experimental
results for the present dataset.

13

Figure 4: The performance of the three main recommenders in terms of 2-metrics across all categories.
We emphasize the 2-F1 Score as our most important single metric of comparison. We see that the
LatentFeatureRecommender outperforms the other recommenders in this score.

Conclusion

In this study, we address the problem of determining inter-retailer, or inter-catalogue, item-item
associations. We frame this problem as a recommender problem, which motivates a relatively
straightforward experiment in which a candidate algorithm must connect two recommendation
graphs by guessing edges between them.

We introduced a novel technique for predicting item-item associations across retailers. This
technique employs Topic-Sensitive PageRank on a publicly available recommendation graph to
generate simulated user data. With this data, we perform Latent Semantec Indexing to learn
a latent feature space for items in a particular online catalogue. By generalizing the notion of
Term Frequency—Inverse Document Frequency, we construct proxy tf-idf vectors for the latent
dimensions, or concepts, associated with a particular catalogue. This, in turn, allows us to
construct a transformation matrix such that vectors in one catalogue’s concept space can be
transformed into another catalogue’s concept space. Inter-catalogue associations can then be
made by finding pairs of items that are a minimal distance apart in a common concept space.
This technique is improved upon by incorporating the notion of item popularity ⇢, which we
define in this context to be the logarithm of the item’s degree within its associated recommen-
dation graph. We show that ⇢ can be used in multiple ways to improve the performance of an
inter-retailer recommender system.

Finally, we compared our latent inter-catalogue recommender system to several nontrival
baseline algorithms. We showed that it outperforms all of them in standard precision and
recall of gold-standard inter-catalogue edges as well as in two more informative metrics we call
2-precision and 2-recall.

Making accurate item-item associations across retailers using only publicly available infor-
mation is a challenging problem. The problem is relevent, however, and the ability to accurately
identify these relationships could provide a retailer or other service provider with valuable busi-
ness intelligence.

14

References

[1] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to Recommender Systems
Handbook, Springer, 1-35, 2011.

[2] For information on the Music Genome Project, visit http://www.pandora.com/about/mgp

[3] Yehuda Koren, Robert Bell, and Chris Volinsky. “Matrix factorization techniques for recom-
mender systems.” Computer 42.8, 2009. 30-37.

[4] David M W Powers. “Evaluation: From Precision, Recall and F-Measure to ROC, Informed-
ness, Markedness & Correlation.” Journal of Machine Learning Technologies 2, 37-63, 2011.

[5] Taher Haveliwala. “Topic-Sensitive PageRank.” Proceedings of the Eleventh International
World Wide Web Conference (Honolulu, Hawaii) 2002.

[6] James R. Norris. Markov Chains. Cambridge University Press, 1998.

[7] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, Richard
Harshman. “Indexing by Latent Semantex Analysis.” American Society for Information Sci-
ence 41, 391-407, 1990.

15

