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a b s t r a c t

This paper presents a new methodology to accurately characterize and predict the annual variation of
wind conditions. The estimate of the distribution of wind conditions is necessary to quantify the
available energy (power density) at a site, and to design optimal wind farm configurations. A smooth
multivariate wind distribution model is developed to capture the coupled variation of wind speed, wind
direction, and air density. The wind distribution model developed in this paper avoids the limiting
assumption of unimodality of the distribution. This method, which we call the Multivariate and Multi-
modal Wind Distribution (MMWD) model, is an evolution from existing wind distribution modeling
techniques. Multivariate kernel density estimation, a standard non-parametric approach to estimate the
probability density function of random variables, is adopted for this purpose. The MMWD technique is
successfully applied to model (i) the distribution of wind speed (univariate); (ii) the joint distribution of
wind speed and wind direction (bivariate); and (iii) the joint distribution of wind speed, wind direction,
and air density (multivariate). The latter is a novel contribution of this paper, while the former offers
opportunities for validation. Both onshore and offshore wind distributions are estimated using the
MMWD model. Recorded wind data, obtained from the North Dakota Agricultural Weather Network
(NDAWN) and the National Data Buoy Center (NDBC), is used in this paper. The coupled distribution was
found to be multimodal. A strong correlation among the wind condition parameters was also observed.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past five years, the worldwide installed wind
capacity has been growing at an average rate of 27.8% per year
[1]. The available energy from a wind resource varies appreciably
over one year. The uncertainty in wind resource potential is
a constraining factor in the growth of wind energy market share.
Accurate determination of energy variability at a site serves these
important objectives: (i) accurate assessment of the potential
effectiveness of a wind farm site, (ii) effective design of the wind
farm layout, and (iii) appropriate selection of turbine types for
the site.

Wind Power Density (WPD) is a useful way to evaluate the
wind resource available at a potential site. The WPD, measured in
watts per square meter, indicates how much energy is available at
the site. WPD (W/m2) is a nonlinear function of the probability
density function (pdf) of wind velocity and air density, which is
expressed as
All rights reserved.
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where U and q represent the wind speed and wind direction,
respectively; Umax is the maximum possible wind speed at that
location; r represents the air density; rmin and rmax are the
maximum and minimum air density in that location, respectively;
and f(U,q,r) is the pdf of the wind condition (speed, direction and air
density).

The most widely used distribution for the characterization of
wind speed is the 2-parameter Weibull distribution [2e7]. Other
distributions used to characterize wind speed include 1-parameter
Rayleigh distribution, 3-parameter generalized Gamma distribu-
tion, 2-parameter Lognormal distribution, 3-parameter Beta
distribution, 2-parameter inverse Gaussian distribution, singly
truncated normal Weibull mixture distribution, and the maximum
entropy probability density function [4,7].

1.1. Research objectives and motivation

Wind energy sources appear in the form of wind farms that
consist of multiple wind turbines located in an arrangement over

Delta:1_given name
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_given name
mailto:messac@syr.edu
www.sciencedirect.com/science/journal/09601481
http://www.elsevier.com/locate/renene
http://dx.doi.org/10.1016/j.renene.2012.09.026
http://dx.doi.org/10.1016/j.renene.2012.09.026
http://dx.doi.org/10.1016/j.renene.2012.09.026


Nomenclature

U wind speed (m/s)
q wind direction (�)
Umax maximum possible wind speed (m/s)
r air density (kg/m3)
rmax maximum air density (kg/m3)
rmin minimum air density (kg/m3)
K(,) Kernel function
h the bandwidth of kernel density estimation
H the bandwidthmatrix of multivariate kernel density

estimation
MISE Mean Integrated Squared Error
Um measured wind speed (m/s)
z0 the average roughness length in the farm region (m)
p the absolute pressure (Pa)
ha the altitude above sea level (m)
R2 coefficient of determination
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a substantial stretch of land (onshore), or water body (offshore).
Sorensen and Nielsen [8] showed that the total power extracted by
a wind farm is significantly less than the product of the power
extracted by a stand-alone turbine and the number of wind
turbines in the farm. This difference is attributed to the loss in the
availability of energy due to wake effects e the mutual shading
effect of wind turbines [9]. An optimal layout of turbines that
maximizes farm efficiency is of utmost importance in conceiving
a wind farm project, and increasing the wind energy market in
general.

For a given farm layout, the direction of the wind has a strong
influence on the wakes created, and subsequently on the overall
flow pattern in the wind farm. A bivariate distribution of the wind
speed andwind directionwould be helpful for thewind farm layout
optimization. Lackner and Elkinton [10] characterized the wind
speed data by direction sector and fitted a Weibull distribution for
each direction sector. Vega and Letchford [11] used Weibull
distribution to estimate the wind speed probability, and modeled
the shape parameter and the scale parameter as functions of wind
direction. Carta et al. [12] presented a joint probability density
function of wind speed and wind direction for wind energy anal-
ysis. Erdem and Shi [13] compared three differing bivariate joint
distributions (angular-linear, Farlie-Gumbel-Morgenstern, and
anisotropic lognormal approaches) to represent wind speed and
wind direction data.

These existing wind distribution modeling approaches can be
broadly classified into: (i) univariate and unimodal distributions of
wind speed (such as Weibull, Rayleigh, and Gamma distributions),
and (ii) bivariate and unimodal distributions of wind speed and
wind direction [11e13]. These wind distribution models make
limiting assumptions regarding the correlativity and the modality of
the distribution of the wind. These assumptions lead to approxi-
mations that deviate significantly from the actual scenario. In
addition, it is seen from Eq. (1) that the WPD is directly propor-
tional to the air density. For the real life case study (a site in North
Dakota [14]) in this paper, the annual variation in air density is
estimated to be 30%. Neglecting such an appreciable variation (in
air density), by assuming a constant air density value, can lead to
significant errors in the predicted power available at a wind site.
Therefore, we believe that a robust multivariate probability distribu-
tion of wind speed, wind direction and air density can address the
above limiting assumptions. To the best of the authors’ knowledge,
such a wind distribution model is yet to be found in the literature.
In addition, such a wind distribution model is crucial for wind
resource assessment and wind farm layout optimization [15e17].

In this paper, a new methodology to represent the multivariate
(and possibly multimodal) distribution of wind conditions is
developed and explored. Multivariate kernel density estimation [18]
has been adopted to develop the distribution. The remainder of the
paper is organized as follows. The Multivariate and Multimodal
Wind Distribution (MMWD) model is developed in Section 2. The
ten-year wind data used for testing the newMMWD distribution is
provided in Section 3. Section 4 presents the results and discussion
for the three scenarios studied. Concluding remarks and future
work are given in the last Section.

2. Multivariate and Multimodal Wind Distribution (MMWD)
model

The Kernel Density Estimation (KDE) method [18] is adopted to
represent the distribution of the wind conditions in this paper. The
following assumptions are made in the development of the KDE-
based MMWD model.

1. This model does not account for the frequency of calms. At
a particular wind site, the frequency of calms may vary 15e20%
over a year [19].

2. Wind direction is a periodic variable. The probability of the
wind coming from the 0� direction should be equal to that
coming from the 360� direction. This attribute is not captured
in the KDE-based model.

The MMWD model presented in this paper makes unique
contributions as follows.

1. This model is capable of representing multimodal wind data,
which is rare in the wind distribution literature.

2. This model can capture the joint variations of wind speed, wind
direction and air density.
2.1. Kernel density estimation (KDE)

KDE, also known as the Parzen-Rosenblatt window method
[20,21], is a non-parametric approach to estimate the pdf of
a random variable. For an independent and identically distributed
sample, x1,x2,/,xn, drawn from some distributionwith an unknown
density f, the KDE is defined to be [22]

bf ðx; hÞ ¼ 1
n

Xn
i¼1

Khðx� xiÞ ¼ 1
nh

Xn
i¼1

K
�
x� xi
h

�
(2)

In the equation, K(,)¼(1/h)K(,/h) for a kernel function K (often
taken to be a symmetric probability density) and a bandwidth h (the
smoothing parameter).

2.2. Multivariate kernel density estimation

For a d�variate random sample X1,X2,/,Xn drawn from a density
f, the multivariate KDE is defined to be

bf ðx;HÞ ¼ n�1
Xn
i¼1

KHðx� XiÞ (3)

where x¼(x1,x2,/,xd)T and Xi¼(Xi1,Xi2,/,Xid)T, i ¼ 1,2,/,n. Here, K(x)
is the kernel that is a symmetric probability density function, H is
the bandwidth matrix which is symmetric and positive-definite,
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and KHðxÞ ¼ jHj�1=2KðH�1=2xÞ. The choice of K is not crucial to the
accuracy of kernel density estimators [23]. In this paper,
KðxÞ ¼ ð2pÞ�d=2expð�1

2x
TxÞ is considered throughout. In contrast,

the choice of H is crucial in determining the performance of bf [24].

2.3. Optimal bandwidth matrix selection

The most commonly used optimality criterion for selecting
a bandwidth matrix is the Mean Integrated Squared Error (MISE)
[24], which is expressed as

MISEðHÞ ¼ E
Z hbf ðx;HÞ � f ðxÞ

i2
dx (4)

It is usual to employ an asymptotic approximation, known as the
AMISE (Asymptotic MISE) [24], which is expressed as

AMISEðHÞ ¼ n�1ð4pÞ�d=2jHj�1=2 þ 1
4

�
vecTH

�
j4ðvecHÞ (5)

where vec is the vector half operator, given by

vecH ¼ vec

"
h21 h12
h12 h22

#
¼

264 h21
h12
h22

375
The general expression of j4 can be found in the paper byWand

and Jones [25]. An ideal optimal bandwidth is estimated to be

HAMISE ¼ argmin
H

AMISEðHÞ (6)

In this paper, the multivariate plug-in selector (PI(H)) developed
by Wand and Jones [26] is used, which is given by

PIðHÞ ¼ n�1ð4pÞ�d=2jHj�1=2 þ 1
4

�
vecTH

�bj4ðvecHÞ (7)

The plug-in estimate of the AMISE can be numerically mini-
mized to give the plug-in bandwidth matrix, bHPI .

2.4. Illustrating the multimodality of the wind distribution

As briefly discussed in the previous section, the state of the art in
wind distribution estimation makes limiting assumptions
regarding the correlativity and the modality of the distribution of
the wind. Two sample sites are used to explore this issue and
illustrate the multimodality of the wind distribution. These sites
are: (1) an onshore site at the Baker wind station in North Dakota,
Fig. 1. Histogram of wind sp
and (2) an offshore site at the wind Station 44013-BOSTON, 16 NM
East of Boston, Massachusetts. The details of the wind data for the
two sites are presented in Section 3.

The histograms of the wind speed and wind direction at the two
sites are illustrated in Fig. 1(a) and (b). It is observed from Fig. 1(a)
that the distribution of wind speed and direction at the onshore site
is multimodal. Therefore, the MMWDmodel proposed in this paper
can prove to be uniquely helpful in capturing this multimodal
characteristic of the wind distribution and provide more credibility
to the available energy estimates. Fig. 1(b) illustrates that the
distribution of wind speed and direction at the offshore site is
practically unimodal.

2.5. Applicability of kernel density estimation to wind distribution

The literature shows that the choice of the bandwidth (or
bandwidth matrix) is much more important for the behavior ofbf ðx;hÞ (or bf ðx;HÞ) than the choice of K. Small values of h (or H) will
introduce spurious oscillation into the estimation; while too large
a value of h (or H) will lead to too smooth an estimate, which may
not reveal the actual features, such as multimodality [27].

As illustrated in the previous subsection, the distribution of
wind condition could bemultimodal or unimodal for different wind
farm sites. Therefore, the selection of the value of h (or H) would
affect the accuracy of estimated wind distribution. The histograms
of wind conditions (speed, direction, air density) could roughly
show the trend of distribution (Fig. 1), which is useful to assess the
accuracy of the developed MMWD model.

3. Wind condition data

Both onshore and offshore wind distributions are estimated
using the MMWD model later in Section 4. The onshore wind data
used in this paper is obtained from the North Dakota Agricultural
Weather Network (NDAWN) [14]. The daily averaged data for wind
speed, wind direction, and air temperature measured at the Baker
station (Fig. 2(a)) between the year 2000 and 2009 is used. The
offshore wind data is obtained from the National Data Buoy Center
(NDBC) [28]. The daily averaged data is measured at the Station
44013-BOSTON 16 NM East of Boston (Fig. 2(b)) between the year
2000 and 2009. Table 1 shows the geographical information of the
two stations. The measurement information is listed as follows.

1. Wind speed is measured at 3 m above the soil surface at the
onshore station (Baker), and at 5 m above the sea level at the
offshore station (44013).
eed and wind direction.
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2. Wind direction is the direction from which wind is blowing
(degrees clockwise from north, N ¼ 0+; NE ¼ 45+; E ¼ 90+;
SE ¼ 135+; S ¼ 180+; SW ¼ 225+; W ¼ 270+; NW ¼ 315+; etc.).

3. Air temperature is measured at 1.52 m above the soil surface at
the onshore station (Baker), and at 4 m above the sea level at
the offshore station (44013).

Generally, the Wind Power Density (WPD) is evaluated at 10 or
50 m height. In the case of the atmospheric boundary layer,
a similarity study can be performed to describe the vertical profiles
of turbulence statistics, when fully developed conditions are
reached [29]. Assuming neutral conditions (negligible thermal
effects), the mean speed in the surface layer (for heights less than
100 m) is commonly represented by the log profile [29]. For
a knownmeasuredwind speed Um at a height zm, the log profile can
be expressed as

U
Um

¼ ln z
z0

lnzm
z0

(8)

where z0 is the average roughness length (terrain dependent) in the
farm region. In this paper, the wind speed data at the measured
height is still used, which does not affect the distribution of wind
conditions. However, wind speed data can be presented at any
specific height for commercial wind turbines. In addition to the log
profile mentioned in this paper, a variety of other methods are
available or under development, such as the wind profile power
law, the estimated wind speed profile using adaptive neuro-fuzzy
inference system [30e32].

The density of dry air can be determined using the ideal gas law,
expressed as a function of temperature and pressure [33],

r ¼ p
R� T

(9)

where r is the air density, p represents the absolute pressure; R is
the specific gas constant for dry air, which is 287.058 J/(kg K), and T
represents the local temperature in K. The absolute pressure above
sea level is given by [33]

p ¼ 101325
�
1� 2:25577� 10�5 � ha

�5:25588
(10)

where ha is the altitude above sea level. The onshore site at the
Baker station is at an altitude of ha ¼ 512 m.
Fig. 2. Statio
The vertical temperature and pressure profiles can also affect
thewind power generation estimation. Temperature profiles can be
formulated in a way analogous to the wind profile formulations
[34]. In addition, a significant amount of research has been done to
address temperature and pressure measurement in the literature
[35,36]. The measurements and the vertical profiles development
of these parameters are not within the scope of this paper.
4. Case study: application of the MMWD model

Using the onshore and the offshore wind data, the MMWD
model is applied to three different cases:

1. Case I: Distribution of wind speed (univariate).
2. Case II: Distribution of wind speed and wind direction

(bivariate).
3. Case III: Distribution of wind speed, wind direction, and air

density (multivariate).

To validate the effectiveness of the MMWD model, the model is
also investigated and compared with standard wind speed distri-
butions [4,7]: (i) Weibull distribution, (ii) Gamma distribution, (iii)
Normal distribution, (iv) Lognormal distribution, and (v) Rayleigh
distribution.

In most of the studies presented in the specialized literature on
wind energy and other renewable energy sources, the parameters
of the distribution are estimated using classical methods: the
method of moments (MM), themaximum likelihood estimators (MLE)
and the least squares method (LSM) [37]. The MLE is adopted in this
paper because it usually yields lower mean squared errors (MSE)
associated withmodel parameter estimates than doMM estimators
for the large samples that will be considered here [7].
4.1. MMWD case I: univariate distribution

In case I, the distribution of the wind speed is estimated.
Successful modeling of univariate wind speed distribution has been
reported in the literature [4,7]. The objective of this case study is to
compare theMMWDmodelwith otherwidely usedfittingmethods.
In this paper, five existingwind distributions are selected,which are
Weibull, Gamma, Lognormal, Normal and Rayleigh distributions.
The bandwidth h values of the KDE are estimated to be 0.6649
(onshore Baker station [14]) and 0.3241 (offshore station 44013
[28]) using the optimal bandwidth selection method. Fig. 3 shows
n setup.



Table 1
Details of the two stations.

Parameter Onshore station [14] Offshore station [28]

Location Baker, ND Station 44013, MA
Latitude 48.167� N 42.346� N
Longitude 99.648� W 70.651� W
Elevation 512 m Sea level
Anemometer height 3 m above site elevation 5 m above site elevation
Air temp height 1.52 m above site elevation 4 m above site elevation
Water depth None 61 m
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the distributions estimated by the MMWD model and other distri-
butionmodels. In Fig. 3(a) and (b), the solid lines represent thewind
speed probability distributions estimated by theMMWDmodel. It is
seen from Fig. 3(a) that, the probability distribution curves of
MMWD, Lognormal and Gamma match the histogram the best.
From Fig. 3(b), it is observed that the probability distribution curves
ofMMWDand Lognormalmatch the histogram the best. The cdf’s of
the probability distributions are shown in Fig. 4.
R2 ¼

264 covðU; bUÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðUÞvarðbUÞ
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The goodness-of-fit of the various fitted distributions to the wind
speed data is evaluated using the coefficient of determination (R2)
associated with the resulting QuantileeQuantile (QeQ) plots.

4.1.1. QuantileeQuantile (QeQ) plot
In statistics, a QeQ plot is a probability plot, which is a graphical

method for comparing two probability distributions by plotting
their quantiles against each other [38]. The choice of quantiles from
a theoretical distribution has significant discussion in the literature
[39]. In this paper, the Weibull plotting position [40] is used in all
cases, which is given by

pi ¼ i=ðnþ 1Þ where i ¼ 1;2;/;n (11)

TheWeibull plotting position always gives an unbiased estimate
of the observed cumulative probability regardless of the underlying
distribution considered, and does not estimate the highest
0 2 4 6 8 10 120

0.05

0.1

0.15

0.2

0.25

Wind speed (m/s)

Pr
ob

ab
ilit

y 
de

ns
ity

Histogram
MMWD
Weibull
Gamma
Lognormal
Normal
Rayleigh

Onshore (Baker)

a b

Fig. 3. Wind speed probab
observed wind speed as the maximum possible wind speed [7].
Fig. 5(a) shows the QeQ plot of the distributions at the Baker
station. The red line is the QeQ plot of the MMWD model. It is
observed that the MMWD distribution follows the theoretical
distribution (45� line y ¼ x) more closely than other distributions.
This observation indicates that the MMWD distribution performs
better than other standard distributions in representing the
univariate wind speed distribution. Similarly, the MMWD distri-
bution also performs best at the offshore site (Station 44013), as
seen from Fig. 5(b).

4.1.2. Coefficient of determination
The coefficient of determination is a measure of the agreement

between an estimated distribution and the recorded data [41]. The
coefficient of determination between the paired sample quantiles is
evaluated. The coefficient of determination, R2, is the squared of
correlation coefficient between the observed and modeled (pre-
dicted) data values, which is expressed as
where U and bU are the observed and fitted quantiles, respectively;
cov and var mean covariance and variance, respectively. The closer
the value of R2 is to one, themore the fitted distribution agrees with
the observed data.

Table 2 shows the comparison of the coefficient of determination
at both onshore and offshore sites. It is observed that the MMWD
model has the largest R2 values at both stations. This observation
illustrates the strong potential of this technique to provide accurate
representations of wind distribution. This accurate MMWD wind
distribution model would be also useful for wind resource assess-
ment and wind farm layout optimization.

4.1.3. Wind Power Density (WPD) estimation
TheWPD expressed in Eq. (1) is estimated using theMonte Carlo

integrationmethod based on the pdf of the wind speed. The sample
points for integration are generated using the Sobol’s quasirandom
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sequence generator [42]. Sobol sequences use a base of two to form
successively finer uniform partitions of the unit interval, and then
reorder the coordinates in each dimension. The algorithm for
generating Sobol sequences can be found in Bratley and Fox,
Algorithm 659 [43]. The approximated WPD is then expressed as

WPD ¼
ZUmax

0

1
2
rU3f ðUÞdU

x
PNp

i¼1

1
2rU

3
i f ðUiÞDU

where DU ¼ Umax=Np

(13)

where Np is the sample size. In this case study, the density of the air
is set to a reference value of 1.2 kg/m3 at both stations. The WPD at
the measured height of the Baker station is estimated to be
87.83 W/m2 based on the ten-year wind data; and the WPD at the
measured height of the offshore site (Station 44013) is estimated to
be 211.52W/m2 based on the ten-year wind data.

4.1.4. Wind farm power generation estimation
This power generation model is adopted from Chowdhury et al.

[15]. The power generated by a wind farm is an intricate function of
the configuration and location of the individual wind turbines. The
flow pattern inside a wind farm is complex, primarily due to the
wake effects and the highly turbulent flow. The power generated by
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Fig. 5. Wind speed QuantileeQuantile plot of a s
a wind farm (Pfarm) comprised of N wind turbines is evaluated as
a sum of the powers generated by the individual turbines, which is
expressed as [15]

Pfarm ¼
XN
j¼1

Pj (14)

The detailed formulation of the power generation model can be
found in Ref. [15].

A rectangular wind farm of given dimensions, consisting of 9
turbines, is considered in this paper. The GE-1.5-MW-XLE [44]
turbine is used in the case studies. The features of this turbine
are provided in Table 3.

To further investigate the practical usefulness of the MMWD
model, we compare the Weibull distribution and the MMWD
model for estimating: (i) theWPD at the onshore Baker station; and
(ii) the annual averaged power generation of the 9-turbine wind
farm (based on the ten-year wind data). Table 4 shows the values of
the WPD and power generation. We observe that the farm power
generation estimated using theMMWDmodel is 5% lower than that
estimated using the Weibull distribution; however, the WPD given
by the MMWD model is higher than that given by the Weibull
distribution. To explain this unexpected finding, we illustrate the
WPD and power generation values contributed by different wind
speeds, i.e. 1

2rU
3f ðUÞDU (Fig. 6(a)) and Pfarm(U)f(U)DU (Fig. 6(b)),

respectively. A higher WPD estimate is generally expected to
translate into a higher estimate of wind farm power generation. The
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Table 2
The coefficient of determination, R2.

Distribution model Onshore (Baker) Offshore (Station 44013)

MMWD 0.99804 0.99978
Weibull 0.98011 0.97110
Gamma 0.99796 0.99121
normal 0.98937 0.98687
Lognormal 0.95383 0.92921
Rayleigh 0.99511 0.98681

Table 4
WPD and farm power generation comparisons between Weibull and MMWD.

Performance MMWD Weibull

WPD (W/m2) 87.83 86.15
Power generation (W) 7.41e6 7.78e6
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seemingly counterintuitive observation in the reported comparison
can be attributed to the effect of the cut-out wind speed of the
concerned turbine. The cut-out wind speed of the GE-1.5-MW-XLE
turbine is 20.0 m/s at the hub height (80.0 m), which is equivalent
to 10.2m/s at the recorded data height of 3.0m (height at which the
wind distribution is estimated), according to the log profile. Hence,
even if the MMWD estimates higher probabilities of wind speeds
above 10.0 m/s (approx.) than given byWeibull distribution, it does
not contribute to increased farm power generation, since no power
is generated by the turbines when the wind speed is above the cut-
out speed.

These observations also indicate that the Wind Power Density
(WPD) might not be the best way to evaluate the resource potential
of a wind farm site in practice. It is important to appreciate that the
actual/effective resource potential is subject to (and not indepen-
dent of) the power characteristics of currently available commercial
turbines. More comprehensivemeasures of wind resource potential
are therefore necessary to facilitate better planning of wind energy
projects.
4.2. MMWD case II: bivariate distribution

The effectiveness of the MMWD model was validated in Case I.
Case II investigates the joint distribution of the wind speed and
wind direction. Figs. 7(a) and 8(a) represent the estimated wind
velocity distribution for the onshore site (Baker station [14]).
Figs. 7(b) and 8(b) represent the distribution for the offshore site
(Station 44013 [28]). Interestingly, it is observed that the estimated
probability distribution of the onshore wind data is multimodal in
nature as expected; and the estimated offshore wind distribution
can be treated practically as unimodal, which is actually common
for offshore winds.

4.2.1. Wind rose
Awind rose is a graphical tool used bymeteorologists to provide

a succinct illustration of how the wind speed and the wind direc-
tion are distributed at a location. Sixteen cardinal directions are
used in this illustration. In this illustration, North corresponds to
0� or 360�, East to 90�, South to 180� andWest to 270�. The cardinal
directions are ranked (dc ¼ 1,2,/,16) in the clockwise order (dc ¼ 1
for North, dc ¼ 5 for East, dc ¼ 9 for South, and dc ¼ 13 for West).
Fig. 9 shows the estimated wind roses for the two site locations
based on the ten-year wind data. For the onshore site, it is observed
that winds from the northwest and the south dominate over the
whole year. Minimal wind is observed from the northeast direction.
Table 3
Features of the GE-1.5-MW-XLE turbine [44].

Turbine feature 1.5-MW-XLE

Rated power (Pr0) 1.5 MW
Rated wind speed (Ur0) 11.5 m/s
Cut-in wind speed (Uin0) 3.5 m/s
Cut-out wind speed (Uout0) 20.0 m/s
Rotor diameter (D0) 82.5 m
Hub height (H0) 80.0 m
For the offshore site, it is observed that winds from thewest and the
southwest dominate over the whole year. Minimal wind is
observed from the north direction. This information plays an
important role in the farm layout design and the selection of
turbine types.

4.2.2. Wind Power Density (WPD) estimation
In this case study, the density of the air is set to a reference value

of 1.2 kg/m3. The approximated WPD is expressed as

WPD ¼
Z 360�

0�

Z Umax

0

1
2rU

3f ðU; qÞdUdq

x
PNp

i¼1

1
2rU

3
i f ðUi; qiÞDUDq

where DUDq ¼ Umax � 360
�
=Np

(15)

From Eq. (15), the WPD is estimated to be 87.83 W/m2 at the
Baker station [14] and to be 211.53 W/m2 at the Station 44013 [28].
The WPD for each cardinal direction, estimated using the Monte
Carlo integration method, is shown in Fig. 10. It is observed that (i)
the wind from northwest has relatively high WPD at the onshore
site; and (ii) the wind from West has relatively high WPD at the
offshore site.
4.3. MMWD case III: multivariate distribution

In case III, the multivariate probability distribution of the wind
speed, the wind direction, and the air density is modeled. It is seen
from Eq. (1) that the WPD is directly dependant on these three
factors.

Fig. 11 shows the distributions of wind speed, wind direction
and air density in a series of nested three-dimensional contours.
The contours are at 25% (dark color), 50% (medium color) and 75%
(light color), which are upper percentages of highest density
regions. A strong correlation among the three wind condition
parameters is evident from Fig. 11. This observation is the founda-
tion of the hypothesis that - an accurate representation of wind data
for power prediction and farm design requires multivariate distribu-
tion models.

4.3.1. Wind Power Density (WPD) estimation
TheWPD is estimated using theMonte Carlo integrationmethod,

and is expressed as

WPD ¼
Z 360+

0+

Z Umax

0

Z rmax

rmin

1
2rU

3f ðU; q; rÞdrdUdq

x
PNp

i¼1

1
2riU

3
i f ðUi; qi; riÞDUDqDr

where DUDqDr ¼ Umax � 360� � ðrmax � rminÞ=Np

(16)

For the onshore site (Baker station [14]), theWPD is estimated to
be 84.60 W/m2 using the ten-year wind data (2000e2009), which
is represented by the horizontal line in Fig. 12(a). To show the
variation of wind conditions, the WPD for each single year is
evaluated, which is also shown in Fig. 12(a). It is observed that the
WPD varies significantly over years. The variation is evaluated to be
39.24% using Eq. (17) below, which indicates significant uncertainty
of wind conditions.
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Fig. 6. The comparison of the Weibull and MMWD (Baker).

Fig. 7. Distribution of wind speed and wind direction.
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For the offshore site (Station 44013 [28]), the WPD is estimated
to be 225.88 W/m2 using the ten-year wind data (2000e2009),
which is represented by the horizontal line in Fig. 12(b). The WPD
for each single year is also shown in Fig. 12(b). It is also observed
that the WPD varies significantly over years. The variation is eval-
uated to be 53.46% using Eq. (17), which indicates significant
uncertainty of offshore wind conditions.

KDE can often lead to overfitting of probability distributions. As
a result, the prediction of long term (20 years) wind conditions
using 10 years data might introduce greater uncertainties. Careful
Fig. 8. Distribution of wind speed an
modeling and characterization of these uncertainties, together with
their propagation into the overall system, will allow for a more
comprehensive quantification of the overall wind farm power
output. Uncertainty characterization is a direction for future
research.

h ¼ WPDmax �WPDmin
WPDavg

� 100% (17)
d wind direction (contour plot).
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whereWPDavg refers the averageWPD over ten years; WPDmax and
WPDmin represent the maximum and minimum WPD values,
respectively.

4.4. Discussing the flexibility of the MMWD model

The MMWD model was applied to 100 wind sites (onshore and
offshore) to evaluate the effectiveness, the flexibility and the wide
applicability of the model. Two sites (one onshore and one
offshore) were investigated in detail above. The other 98 sites
consist of 71 onshore sites and 27 offshore sites in the USA. The
onshore wind data is obtained from the North Dakota Agricultural
Weather Network (NDAWN) [14]; and all the 72 stations available
from the NDAWN website are selected. The offshore wind data is
obtained from the National Data Buoy Center (NDBC) [28]. The 27
offshore sites consist of: (i) 7 sites in Northeast USA; (ii) 5 sites in
Northwest USA; (iii) 5 sites in Southeast USA; (iv) 5 sites in
Southwest USA; and (v) 5 sites in the Great Lakes region. The daily
averaged wind speed and direction data from the year 2011 is used
for the 98 wind sites. These entire 100 sites are expected to offer
a wide variety of wind patterns.

For the sake of brevity, the results at 10 onshore and 10
offshore stations are provided to show the diversity of distribution
behavior. Figs. 13 and 14 show differing wind patterns for the 10
Fig. 14. Histograms and MMWD estimations of
onshore and 10 offshore stations, respectively. The two-
dimensional figures represent the histograms of the recorded
wind data; the three-dimensional figures represent the wind
distributions estimated by the MMWD model. Each MMWD esti-
mation plot corresponds to the histogram plot immediately above
it. It is observed that the MMWD model accurately captures the
joint distribution of wind speed and direction for the differing
wind patterns.

It is observed from Fig. 13(a)e(t) that the wind distributions at
some of the onshore stations are strongly multimodal d specifi-
cally, stations 1, 5, 12, 27, 32 and 39. On the contrary, the majority of
the studied offshore stations (Fig. 14(a)e(t)) present practically
unimodal distributions. Although such a small set of stations may
not adequately represent the generic scenario, it can be said that
offshore sites are more likely to have unimodal wind distributions.
Further investigation of onshore and offshore atmospheric
boundary layers and their variations can provide more insight into
such distinct characteristics. The prevailing wind speeds vary
approximately between 3m/s and 5m/s at the 10 onshore stations;
while the prevailing wind speeds vary approximately between 4m/
s and 11 m/s at the 10 offshore stations. Especially for the offshore
stations 9 and 10 (Fig. 14(n) and (o)), the prevailing wind speeds
vary in a broad range. Interestingly, for the onshore sites with
multimodal wind distributions, the modes are separated primarily
wind speed and wind direction (offshore).
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bywind direction. This observation indicates the presence of two or
more principal wind directions.

The north direction angle is defined as 0� for the data presented
in this paper; and the wind direction angle increases clockwise.
Ideally, the wind from the 360� should be identical with the wind
from the 0�. It is seen from Fig. 14(o) and (t) that the principal wind
direction at that site is near 0� (North direction); and the plot of the
MMWD model yields two modes near the 0 and the 360�. In this
case, the induced artificial separation of 0� and 360� directions has
not introduced significant discrepancies in the wind probability
values. However, further research is necessary to allow the MMWD
model to better represent the periodic nature ofwinddirection data.

5. Concluding remarks

This paper developed a Multivariate and Multimodal Wind
Distribution (MMWD) model to represent the distribution of wind
conditions (speed, direction and air density) using recorded data.
Univariate, bivariate and trivariate wind distributions were
explored using the MMWD model.

The performance of the MMWDmodel was measured using the
coefficient of determination (R2) associated with the resulting
QuantileeQuantile (QeQ) plots. The effectiveness and the reliability
of the MMWD model were successfully validated using the ten-
year wind data from the North Dakota Agricultural Weather
Network (NDAWN) and the National Data Buoy Center (NDBC). A
strong correlation was observed among wind speed, wind direc-
tion, and air density. In addition, the MMWD model was applied to
100 wind sites; and the results illustrated a multimodal wind
distribution. These observations corroborate the need to develop
wind distribution models that can capture both the multivariate
and multimodal nature of recorded data. The results also showed
differing wind distribution patterns between the onshore and
offshore sites. Such a nonparametric stochastic modeling approach
can be used to represent the variation in other intermittent natural
energy resources as well.

Specifically, the MMWD model could be helpful for evaluating
the wind resource potential for farm siting. The implementation of
the MMWD model in optimal planning of commercial scale wind
farms will further establish the true potential of this methodology.
Explicit consideration of the uncertainties in wind conditions, in
addition to the mean long term variations (developed in this paper)
will provide further insights into the exploration of wind resource
potential.
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