
Provided by Rabia Shabbir Edited by Atiq Ahmad

CS704 – Advanced Computer Architecture

1. Pipelining:

A technique used in advanced microprocessors where the microprocessor begins executing a

second instruction before the first has been completed. That is, several instructions are in the

pipeline simultaneously, each at a different processing stage. The pipeline is divided into

segments and each segment can execute its operation concurrently with the other segments.

When a segment completes an operation, it passes the result to the next segment in the pipeline

and fetches the next operation from the preceding segment. The final results of each instruction

emerge at the end of the pipeline in rapid succession.

Instruction Cycle:

An instruction cycle (sometimes called fetch-and-execute cycle, fetch-decode-execute cycle, or

FDX) is the basic operation cycle of a computer. It is the process by which a computer retrieves

a program instruction from its memory, determines what actions the instruction requires, and

carries out those actions.

Finite State Machine:

A finite-state machine (FSM) or finite-state automaton (plural: automata), or simply a state

machine, is a mathematical model of computation used to design both computer programs and

sequential logic circuits. It is conceived as an abstract machine that can be in one of a finite

number of states

Branch predication:

In computer architecture, a branch predictor is a digital circuit that tries to guess which way a

branch (e.g. an if-then-else structure) will go before this is known for sure. The purpose of the

branch predictor is to improve the flow in the instruction pipeline.

Dynamic Scheduling:

Dynamic priority scheduling is a type of scheduling algorithm in which the priorities are

calculated during the execution of the system. The goal of dynamic priority scheduling is to

adapt to dynamically changing progress and form an optimal configuration in self-sustained

manner .A static schedule is some kind of list containing the order of the processes and the

durations in which they are scheduled. Presence or absences of control hazard change the

pipeline. This exercise asks, “How much faster would the machine be” which should make you

immediately think speedup. In this case, we are interested in how the presence or absence of

control hazards changes the pipeline speedup

How the operands and operations for media and signal processing differ Operands:

Vertex – A common 3D data type dealt in graphics applications – four components: (x, y, z) and

w=color or hidden surfaces – vertex values are usually 32-bit floating-point values – Three

vertices specify a graphics primitive such as a triangle • Pixel – Typically 32 bits, consisting of

four 8-bit channels • R (red), G (green), B (blue), and A (attribute: eg. transparency) • DSPs add

fixed point – fractions between -1 and +1 (divide by 2n-1) • Blocked floating point – a block of

Provided by Rabia Shabbir Edited by Atiq Ahmad

variables with common exponent – accumulators, registers that are wider to guard against round-

off error to aid accuracy in fixed-point arithmetic.Operation: Data for multimedia operations is

often narrower than the 64-bit data word – normally in single precision, not double precision •

Single-instruction multiple-data (SIMD) or vector instructions – A partitioned add operation on

16-bit data with a 64-bit ALU would perform four 16-bit adds in a single clock cycle • Hardware

cost: prevent carries between the four 16-bit partitions of the ALU – Two 32-bit floating-point

operations (paired single operations) • The two partitions must be insulated to prevent operations

on one half from affecting the other

What is the penalty in clock cycles?

Storing the target instruction of an unconditional branch effectively removes one instruction. If

there is a BTB hit in instruction fetch and the target instruction is available, then that instruction

is fed into decode in place of the branch instruction. The penalty is –1 cycle. In other words, it is

a performance gain of 1 cycle.

Determine the improvement from branch folding for unconditional branches:

If the BTB stores only the target address of an unconditional branch, fetch has to retrieve the new

instruction. This gives us a CPI term of 5%*(90%*0 +10%*2) or 0.01. The term represents the

CPI for unconditional branches (weighted by they frequency of 5%). If the BTB stores the target

instruction instead, the CPI term becomes 5%*(90%*(–1) + 10%*2) or –0.035. The negative

sign denotes that it reduces the overall CPI value. The hit percentage to just break even is simply

20%.

Computer A has a clock cycle time of 250 ps and a CPI of 2 for some program, and

computer B has a clock cycle time of 500 ps and a CPI of 1.2 for the same program. Which

computer is faster for this program and how much?

ET = IC*CPI*CT ETA = IC * 2*250 = 500IC ETB = IC * 1.2 * 500 = 600IC

Impact of increasing the size of branch-prediction:

A single predictor predicting a single branch is generally more accurate than is that same

predictor serving more than one instructions; and It is less likely that two branches in a program

share a single predictor. Therefore, increasing the size of predictor buffer does not have

significant effect on two branches in a program

Compute C = A+B and what is the total code size?

 Stack Accumulator Register-memory Register

Push A(72) Load A(72) Load R1, A(80) Load R1, A(80)

Push B(72) Add B(72) Add R2, R1, B(88) Load R2, B(80)

Add(8) Store c(72) Store c, R2(80) Add R3, R1, R2(80)

Pop c(72)

Assuming no stalls, what is the speedup of the pipelined machine over the single

stage machine? Speed up=5/1=5

Pipelined machine with 5 pipeline stages cycle time is 5 ns and the latter is 1 ns . what is speed

Provided by Rabia Shabbir Edited by Atiq Ahmad

up ??Is ka solution (pipeline depth) /(1 + stall cycles per instruction)

Given the pipeline stalls 1 cycle for 40% of the instructions, what is the speed up now?

Speed up = (1 CPI * 5ns) / (1.4 CPI * 1ns) = 3.58 Let us analyze the problem a bit:

i. The Opcode field of the instruction has five bits available i.e. from bit 9 to

 13. Hence this amounts to a total of 25

ii. As stated in the question that when operand 2 field is all zeros, each of original Opcodes takes

on new meaning. This means 32 additional Opcodes if the value of operand 2 is all zero.

iii. Mode field consists of two bytes hence 22 possible. Theoretically speaking for each

combination of mode field there is a whole class of Opcodes available.

iv. w/b field consists of one bit so only two possible values exist. Hence in this case also for each

possible value of w/b field, there is a whole classof Opcodes available.= 32 Opcodes. = 4

different modes are

Hence there comes a total of (32 + 32)*4*2 = 512 possible Opcodes. These Opcodes result from

different combinations of mode field, w/b field and operand 2 field.

Suggest an efficient way to provided more opcodes:

In order to provide room for additional Opcodes, we must sacrifice some functionality of the

system. We can’t reduce the field size of mode field as it will severely reduce the functionality of

the system and the total Opcodes will also remain the same i.e. (64 + 64) *2 * 2 = 512. Also the

w/b field can’t be reduced further as it is already 1 bit of size. We also can’t reduce the size of

operand fields because they have to access sixteen general purpose registers that is possible only

through 4 bit value. Hence some other strategy must be considered. As we have seen that

operand 2 can’t access general purpose register 0 this is because if it has to access register 0 it

will place its address as 0000 but this all zero code actually changes the meaning of original

Opcodes. We can apply the same technique to operand 1 also. By making it not to use general

purpose register 15 or R15 which i addressed as 1111 we can assign new meanings to all original

Opcodes. Hence by making the operand 1 field not use R15 and saying that if this field contains

all 1s then all original Opcodes will have different meanings we can increase the number of

Opcodes to (32 + 32 + 32)*4*2 = 768. So we have increased the number of Opcodes by 768 –

512 by 256 after sacrificing R15 from operand 1 f

What is the length of a clock cycle?

Time(lw) = Time(IF) + Time(ID+Reg.File) + Time(ALU) + Time(MemRead) Time(lw) =

150 + (70+60) + 200 + 60 Time(lw) = 690ps

What would be the frequency of a processor?

As we know Frequency = The value of clock cycle for single cycle is 1.

It means that frequency of processor corresponding to single cycle datapath is 1. Frequency can

be defined as: Frequency = 1/clock rate+ Time(Reg.FileWrite)1GHzc where c is the maximum

clock cycle. =1/690* 10^-12*10^9 =1/690*10^ -3=1000/690= 1.44 9GHz=1.45GHz What

Provided by Rabia Shabbir Edited by Atiq Ahmad

Would be the length of fastest clock cycle for a 5-stage pipeline

Fastest clock cycle is that whose latency is minimum i.e 60 ps. but when we calculate the

frequency, we have to consider the slowest cycle length in multi-cycle data path that is 200 ps.

Frequency = So Frequency = 1200 ps 1 -12 9 -3 *10 *10 =1/200*10 =1000/200=5 GHz

How much faster is the 5-stage pipelined:

Single cycle execution time= 690 ps Execution time for multi cycle = 200ps So 690/200ps=3.45

times faster It means that 5-stage pipelined datapath is 3.45 time faster than single cycle

datapath.If we analyze this according to frequency point of view then 5GHz/1.45GHz=3.45

times faster.

Normalize the loop:

i. By normalize the loop, it leads to a modified c code sa shown below;

ii. The GCD test shows the potential for dependences written an array indexed

For (i = 1; i < 50; i++) { A[2 * i] = a [(100 * i) + 1] ;multiple constant by 2 }

by the function, Ai + b and ci + d only, If the condition (d-b) mod GCD(c, a) =0 is

satisfied. Now, applying GCD test, in that case we will get, a=2, b=0, c=100 that allows us to

determine dependence in loop. Thus, GCD will be, GCD(2, 100) = 2 and d-b=1. Here, as 1 is

factor of 2. Thus, GCD test indicates that there is dependence in the code. In reality, there is no

dependence in the code. Since the loop lead it value from a[101], a[201]....a[5001] and again

these values to a[2], a[4].....a[100]. affine index:An array index is affine if it can be written in

the form of an expression. Here, a and b are constant, and i is the loop index variable. E.g. in the

loop

For (i = 1 ; i <100; i = i + 1){ X[2 * i + 3] = x[2 *i] * 5.0; }Here, the index value X[2 * i +

3]is affine with a = 2 and b = 3

How compiler finds dependences:

The compiler detects the dependence using dependence analysis algorithm and this algorithm

works on assumptions that:-Array indices are affine -There exist GCD of two affine indices .

For (i = 1000; i > 0; i = i – I) X[i] = X[i] + s ;

What is meant by anti dependence?

An anti-dependence occurs between an instruction that reads a register (or memory location) and

a subsequent instruction writes a new value to the same location. Equivalently, two instructions

have an anti-dependence if swapping their order would result in a true dependence. An anti-

dependence exists between the sw instruction, which reads $4, and the or instruction, which

overwrites $4 with a new value.

What is the penalty in clock cycles:

Storing the target instruction of an unconditional branch effectively removes one instruction. If

there is a BTB hit in instruction fetch and the target instruction is available, then that instruction

Provided by Rabia Shabbir Edited by Atiq Ahmad

is fed into decode in place of the branch instruction. The penalty is –1 cycle. In other words, it is

a performance gain of 1 cycle.

Enhancement to produce a performance gain:

If the BTB stores only the target address of an unconditional branch, fetch has to retrieve the new

instruction. This gives us a CPI term of 5%*(90%*0 +10%*2) or 0.01. The term represents the

CPI for unconditional branches (weighted by they frequency of 5%). If the BTB stores the target

instruction instead, the CPI term becomes 5%*(90%*(–1) + 10%*2) or –0.035. The negative

sign denotes that it reduces the overall CPI value. The hit percentage to just break even is simply

20%.

Find the die yield for a processor:

Chip with the following manufacturing cost factors: die size = 380 mm
2
, estimated defect rate =

0.75 per cm
2
, α = 4 (1+0.75*380/4)^-4 = 0.0000000366985.

Compare performance of two programs 1: 2sec , 1.5sec wala:

(2 pts) For P1, M2 is 4/3 (2 sec/1.5 sec) times as fast as M1. For P2, M1 is 2 times as fast (10

sec/5 sec) as M2.

Computer Execution rate Performance:

A 5* 109 2 sec =2*5*10^6=10x10^6 B 6* 109 1.5 sec =1.5x6x10^6=9x10^6

Execution rate on M1:

For program 1, M2 is 2.0/1.5 = 1.33 times as fast as M1. For program 2, M1 is 10.0/5.0 = 2

times as fast as M2.b) For program 1: Execution rate on M1 = 5 × 109 / 2.0 = 2.5 × 109 IPS

(Instructions Per Second). Execution rate on M2 = 6 × 109 / 1.5 = 4 × 109 IPS. c) CPI =

Execution time × Clock rate / Instruction Count For program 1: CPI on M1 = 2.0 × 3 × 109 / (5 ×

109) = 1.2 cycles per instruction CPI on M2 = 1.5 × 5 × 109 / (6 × 109) = 1.25 cycles per

instruction CPU execution time = Instruction Count × CPI / Clock rate .CPU execution time =

7.5 × 109 × 1.2 / (5 × 109) = 1.8 seconds % of CPU time = 1.8 / 3 = 0.6 or 60% of the total

wall time ==Static and dynamic schedule=A static schedule is some kind of list containing

the order of the processes and the durations in which they are scheduled. For example, a

simple communicating device could have the following static schedule in pseudo-code:

Code: repeat forever:

execute task 1 for 10 ms

execute task 2 for 20 ms

execute task 1 for 5 ms

execute task 3 for 15 ms..

This is a static schedule. It's just like the bus schedule: Task three is executed for 15 ms

every 50 ms. The schedule never changes, even if task 1 has nothing to do and task 2 is

missing its deadlines. On the other hand, when performing dynamic scheduling, whenever

the scheduler decides which task to execute next (and for how long), it looks at a list of

tasks requesting the processor at that point in time and then decides which to use next.

Provided by Rabia Shabbir Edited by Atiq Ahmad

Examples are the "earliest-deadline first" scheduler. Here, the schedule changes if some

task has nothing to do and does not request resources.

Branch and jump condition:

A branch instruction can be either an unconditional branch, which always results in

branching, or a conditional branch, which may or may not cause branching depending on

some condition. Jump instructions modify the program counter so that executation

continues at a specified memory address, no matter (almost) the value of the current

program counter. Branch instructions, by contrast, are always relative to the current

program counter.

Find any values that are not live and compiler can delete:

Only b and c are live after the code segment, so values a,d,e and f are not needed

subsequently. Values a and f are needed to compute b and a possible nal value of c, so

statements 1,2,3,5,6, and 7 are needed because they are part of the b and c chain of

calculation. Statement 4 produces a value that does not contribute to the live values and

is itself not live, thus this statement may be deleted.

Register-Register:

Advantages:*Simple, fixed-length instruction decoding*Simple code generation*Similar

number of clock cycles / instruction =Disadvantages*Higher Instruction count than

memory reference*Lower instruction density leads to larger programs

*Register- Memory =Advantages *Data can be accessed without separate Load

first*Instruction format is easy to encode=Disadvantages *Operands are not equivalent

since a source operand (in a register) is destroyed in operation*Encoding a register

number and memory address in each instruction may restrict the number of registers

CPI vary by operand location

Memory- Memory Advantages *Most compact* Doesn’t waste registers for temporary

storages *Disadvantages *Large variation in instruction size*Large variation in work per

instruction*Memory bottleneck by memory access

Static scheduling (optimized by compiler) – When there is a stall (hazard) no further issue of

instructions – Of course, the stall has to be enforced by the hardware

• Dynamic scheduling (enforced by hardware) – Instructions following the one that stalls can

issue if they do not produce structural hazards or dependencies.

Static branch predictor: The second level of branch prediction in the ARM11 MPCore

processor uses static branch prediction that is based solely on the characteristics of a

branch instruction. It does not make use of any history information. The scheme used in the

ARM11 MPCore processor predicts that all forward conditional branches are not taken and

all backward branches are taken. Around 65% of all branches are preceded by enough non-

branch cycles to be completely predicted. Branch prediction is performed only when the Z

bit in CP15 Register c1 is set to 1. See c1, Control Register for details of this register.

http://www.johnloomis.org/microchip/pic32/calc/branch.html

Provided by Rabia Shabbir Edited by Atiq Ahmad

Dynamic prediction works on the basis of caching the previously seen branches in the

BTAC, and like all caches suffers from the compulsory miss that exists on the first

encountering of the branch by the predictor. A second, static predictor is added to the

design to counter these misses, and to mop-up any capacity and conflict misses in the

BTAC. The static predictor amounts to an early evaluation of branches in the pipeline,

combined with a predictor based on the direction of the branches to handle the evaluation

of condition codes that are not known at the time of the handling of these branches. Only

items that have not been predicted in the dynamic predictor are handled by the static

predictor. The static branch predictor is hard-wired with backward branches being

predicted as taken, and forward branches as not taken. The SBP looks at the MSB of the

branch offset to determine the branch direction. Statically predicted taken branches incur a

one-cycle delay before the target instructions start refilling the pipeline. The SBP works in

both ARM and Thumb states. The SBP does not function in Jazelle state. It can be disabled

using CP15 Register c1.

MOV.S and MOV.D

MOV.S copies a single precision register to another of the same type MOV.D copies a Double

precision register to another of the same type..mov s and mov d both are float point instruction in

mips

