
Handouts

Page | 1
Virtual University of Pakistan

CS405 - Database Programming using Oracle 11g

Handouts

Page | 2
Virtual University of Pakistan

Contents
Module-01: Conceptual Data Modeling & Entity Relationship Diagram (ERD) Review 3

Module 02: Introduction to Oracle 11g on Cloud... 9

Module 03: SQL Recap.. 12

Module 04: PL/SQL Concepts ... 21

Module 05: General Programming Language Fundamentals of PL/SQL 24

Module 06: SQL in PL/SQL .. 27

Module 07: Conditional Control – I .. 36

Module 08: Conditional Control – II ... 44

Module 09: Iterative Control – I ... 50

Module 10: Iterative Control – II .. 63

Module 11: Cursor .. 68

Module 12: Error Handling & Built-in Exceptions... 79

Module 13: User Defined Exceptions ... 85

Module 14: Advance Exceptions... 88

Module 16: Collection... 92

Module 17: Records.. 98

Module 18: Procedures... 102

Module 19: Functions ... 111

Module 20: Triggers .. 117

Module 20: Package.. 122

Handouts

Page | 3
Virtual University of Pakistan

Module-01: Conceptual Data Modeling & Entity Relationship Diagram
(ERD) Review

1. Concept of ERD
Entity–relationship modeling was developed by Peter Chen and published in 1976; it serves as
building block of relational database design. Entity relationship diagram is a graphical
representation of the relationships between data in a database. It is the result of using
systematic process and it just only visualize the business data instead of defining the business
process. In very simple terms, ERD is a visual representation of data that describes how the
data is related to each other.

2. Components of ERD
There are three main components of ERD and these are:

∑ Entity
∑ Attributes
∑ Relationships

3. Entity & Attributes
The word entity is rooted from the Latin word “en” which means being. Entity is name of place,
person or thing about which something can be stored in a system. An entity can be a real-world
object that can be easily identifiable. For example, in a school database, students, teachers,
classes, and courses offered can be considered as entities. All these entities have some
attributes or properties that give them their identity. An entity set is a collection of similar types
of entities.

Entities are represented by means of their properties, called Attribute or Column. All attributes
have values which are the qualities or data about Entities that is to be stored. An Attribute
describes a property or characteristics of an entity. Continuing with the above example, a
student entity may have name, class, and age as attributes. Attribute is the smallest storage
unit of any database.

4. Relationships
Relationship represents how data is connected among entities in a given System. The
association among the entities can also be termed as relationships. In our school example, the
two entities e.g. student and course have an association or relation with each other as student
enroll in a course. Interaction among entities is captured using relationships. In a database,
relationships are created between different entities in order to remove the redundancy and
ultimately improve the database performance.

Relationship define how data is connected among the entities in a given system or in other
words how one entity is logically connected with another entity of the system. Relationships in

Handouts

Page | 4
Virtual University of Pakistan

a database are said to be a combination of cardinality and optionality where optional
relationship is one in which there may or may not be a matching record in parent / child table
and cardinality represents the concept of “how many” and normally it is 0 or more. Equation for
creating relationship is as follow:

R????????ℎ?? ???= ?????????? ???+ ??????????? (?)
The concepts of cardinality and optionality are explained below in details.

Relationships are bi-directional in nature; Relationship between two entities A and B is as
follow:

i. Relationship from A to B
ii. Relationship from B to A

5. Optionality
Participation in entity relationship is either optional or mandatory (…. Or ______). This means
that minimum number of record which are present in child table per parent record. It can either
be zero or one.

If we examine the Parent & Child relationship, it is quite possible for parent not to have any
child record. Therefore, child is optional to parents.

On the other side, a child must have a parent and therefore, parent is mandatory to child.
Hence minimum number of child record per parent in child table will show either 0 (…) or one
(______) . A dotted or solid line shows this kind of relationship. To translate …… or _____
following rules are to be followed:

Optional: -----: zero or one

Mandatory: ____: Exactly one

Handouts

Page | 5
Virtual University of Pakistan

6. Cardinality
Cardinality expresses the maximum number of record which is present in child table per parent
record in parent table. It can either be 1 or more than one represented by > or < symbol.
Cardinality is read with opposite entity.

7. One-To-Many Relationship
A one-to-Many relationship is a type of cardinality that refers to the relationship between two
entities A and B in which one record of entity A may be linked to zero, 1 or more records in
entity B. Primary key of parent table will be written as Foreign Key in child table as a rule.

Consider the following illustrations:

Illustration 01:

∑ Relationship from A to B: A is having ZERO (Dotted Line) or MORE (<) occurrences in B
∑ Relationship from B to A: B is having exactly ONE (Solid Line) occurrence in A

Illustration 02:

∑ Relationship from A to B: A is having ZERO (Dotted Line) or one (Cardinality) occurrence
in B

∑ Relationship from B to A: B is having ZERO (Dotted Line) or MORE (>) occurrences in A

Handouts

Page | 6
Virtual University of Pakistan

8. Many-To-Many Relationship
A many-to-many relationship is a type of cardinality that refers to the relationship between two
entities A and B in which A may contain a parent record for which there are many children in B
and vice versa. This means that a parent row in one table contains several child rows in the
second table, and vice versa. Many-to-Many relations are tricky to represent and are not
supported directly in the relational environment from implementation view point. To represent
this kind of relationships, a third entity or intersection table is created where primary key (PK)
of two tables act as foreign key (FK) and composite primary key (CPK) in third table. Many-to-
many relationships are resolved into two one-to-many relationships, as shown below.

∑ Relationship from A to A_B: A is having ZERO (dotted line) or More (<)occurrence in A_B
∑ Relationship from B to A_B: B is having exactly ONE (solid line) or more (>)occurrence in

A_B

9. One-To-One Relationship
A one-to-one relationship is a type of cardinality that refers to the relationship between two
entities A and B in which one record of A may only be linked to one or zero record of B.

It is important to note that a one-to-one relationship is not a property of the data, but rather of
the relationship itself as there is no parent-child relationship in on-to-one relation scenario. The
following are rules to implement One-to-One:

i. There will be foreign key in any one of the participating table.
ii. Foreign key will be made as Unique key.

Handouts

Page | 7
Virtual University of Pakistan

∑ Relationship from A to B: A is having exactly ONE occurrence in B (Solid Line)
∑ Relationship from B to A: B is having exactly ONE occurrence in A (Solid Line)

10. Implementing ERD using Scenario – 1
Scenario:

In a Building apartment renting scenario, there are apartments, buildings and customers. There
are multiple floors in the building and on each floor there are multiple apartments, floor can
have zero or no apartment. Each apartment can be rented at most one customer but customer
can rent out multiple apartments from same building and apartment can be available on
multiple floors or same. At the end of month a receipt is generated against which a rent is
deposited.

The following entities can be derived from the above stated scenario:

∑ BUILDING
∑ APARTMENT
∑ CUSTOMER
∑ FLOOR
∑ RECEIPT

The relationship between the entities is illustrated in the below diagram:

Handouts

Page | 8
Virtual University of Pakistan

11. Implementing ERD using Scenario – 2
Consider another scenario to increase the understanding of the concept:

Scenario:

There are musical bands which record songs and request musical companies to launch their
songs in the form of Album. Songs are written by song writers. Album can contain at least one
song to be album and max of 12 songs. Writer can write multiple songs but songs are usually
written irrespective of the number of person in the bands.

Handouts

Page | 9
Virtual University of Pakistan

Module 02: Introduction to Oracle 11g on Cloud

1. Introduction
It’s a cloud service hosted by Oracle with full access to the features and operations that are
available with Oracle Database, but Oracle hosts the VM and cloud storage. You can perform all
database management and development operations—without purchasing and maintaining
hardware, without knowing backup and recovery commands, and without having to perform
such complex tasks as database software upgrades and patching.

2. Login to Cloud
Login to the cloud will require the following steps:

Step 01:

Follow the following address to access Oracle 11g:

https://apex.oracle.com/en/

Step 02:

Click on the Sign In button on the upper right corner of the page and enter the following
credentials:

Workspace Name
Username
Password

https://apex.oracle.com/en/

Handouts

Page | 10
Virtual University of Pakistan

Step 03:

∑ Click on the SQL Workshop tab at the top-mid of the page

Step 04:

∑ Click on SQL Commands tab from the drop down list to access the code or enter SQL
Statements / Commands and click Run to see the results

Handouts

Page | 11
Virtual University of Pakistan

∑ Click on History Tab to access the saved code

Handouts

Page | 12
Virtual University of Pakistan

Module 03: SQL Recap

1. Select Statement
Data Retrieval Language (DRL) is a command to retrieve data from a database object in the
desired format. This is the most popular / flexible and the only way to retrieve data from a
database. Command used for this purpose is called SELECT which allow us to specify the type of
information which we want to retrieve. SELECT statements take the assumption that the tables
are created and data has been populated in them. The basic syntax of SELECT statement is as
follows:

SELECT distinct * | ColumnName FROM TableName;

Where:

∑ * mean all the column
∑ ColumnName is one or more column from table
∑ Distinct mean unique values from column

2. Implementing SELECT Statement
Few sample statements of SQL are as follows where the words in capital letters are SQL
commands or statements and words in capital letters are table names.

SELECT depno FROM emp;

Details: It will display only deptno (column) and all rows from EMP Table.

SELECT DISTINCT deptno FROM emp;

Details: It will display only unique deptno (column) and all rows from EMP Table.

SELECT * FROM emp;

Details: It will display complete (all columns and all rows) from EMP Table.

SELECT ename, job FROM emp;

Details: It will display two columns (ename and job) and all rows from EMP Table.

3. SQL and WHERE Clause
The WHERE clause includes a condition, which restricts the rows returned by the query. The
WHERE clause eliminates all rows from the result set where the condition does not evaluate to
True. From a large table, required rows can be fetch by using WHERE clause which applied to

Handouts

Page | 13
Virtual University of Pakistan

each row of the table. If the given condition is satisfied then only it returns specific value from
the table. You would use WHERE clause to filter the records and fetching only necessary
records. The syntax would be like:

SELECT distinct * | ColumnName FROM TableName WHERE condition 1 and / or condition 2 and
/ or condition 3

Where conditions can include: >, <, =, <>, AND, OR, NOT

Thing to be remember is that If there are multiple conditions in where clause then at a time
only one condition will be evaluated.

4. Implementing Where Clause
Consider the following examples assuming EMP as table name:

Example 01:

Write a query to find out list of all those employee name who are earning more than 2500 but
less than 5000.

Solution:

SELECT ename FROM emp WHERE sal>2500 and sal < 5000;

Example 02:

Write a query to find out all those employees who are working in Dept # 20 with designation of
Analyst but not earning more than 2000 and were hired at least 30 years ago.

Solution:

SELECT * FROM emp WHERE deptno=20 AND Job=‘Analyst’ AND sal <2000 and

hiredate<sysdate -10000;

Note: Only days can be subtracted from Dates, here 10000 days will be subtracted from current
(sysdate) date and then will be compared with hiredate.

5. Wildcard Characteristics in SQL
To broaden the selections of a SQL statement and to create regular expression where complete
value to be searched is not known but part of value to be searched is known. There are two
wildcard characters are used.

i. Percent sign (%) : Include Zero or more characters
ii. Underscore (_): Include only one

The percent sign is analogous to the asterisk (*) wildcard character used with MS-DOS. The
percent sign allows for the substitution of one or more characters in a field. The underscore is

Handouts

Page | 14
Virtual University of Pakistan

similar to the MS-DOS wildcard question mark character. The underscore allows for the
substitution of a single character in an expression.

6. Implementing Wildcards – 1
Consider the following scenario:

Write a query to display list of name of all those employees who are having either E in the
name or the name should end with G with at least two characters but should be working in
Dept#30 and salary at least 1500.

The query would be like:

SELECT * FROM emp WHERE ename like '%E%' OR ename like '%-G' AND deptno=30 AND sal
>=1500;

Details: This query will return all the columns (*) and only those rows which are either have E
due to % sign there can be zero or more character before and after E or the name should have
two character ending with G, underscore (_)G is taking care of atleast two characters ending
with G and department should belong to 30 and salary should be greater than 1500 (at least is
translated into greater than or equals to (>=)

7. Implementing Wildcards – 2
Another scenario is: Write a query to display all information about all those employees who are
having ER in the job with at least three characters in job and should be earning at least 2500 but
at most 5000 and should be with company for at most 15 years

SELECT * FROM emp WHERE job like ‘%ER-%’ AND sal > 2500 AND sal < 5000 AND hiredate
<=sysdate – 5600;

8. Single Row Functions
The Single Row Function operates on single rows only and returns one result per row. Single-
row functions are used to manipulate data items. They accept one or more arguments and
return one value for each row returned by the query. Single row functions can be character
functions, numeric functions, date functions, and conversion functions. These functions require
one or more input arguments and operate on each row, thereby returning one output value for
each row. Single row functions can be used in SELECT and WHERE statement. Following lines
give few examples:

Round and Trunc:

SELECT ROUND (194.683, 1), TRUNC (194.683, 1) FROM DUAL;

SELECT ename, LENGTH (ename), INSTR (ename, 'A'), CONCAT (ename,job) FROM emp WHERE
instr(ename,'A')=3;

SELECT SUBSTR ('ABCDEFG', 3, 4) "Substring" FROM DUAL;

Handouts

Page | 15
Virtual University of Pakistan

9. Group Functions
These functions manipulate groups of rows to give one result per group of rows. Group
functions compute an aggregate value based on a group of rows. Group functions cannot be
used with the WHERE clause. The example of the group or multiple row function is given below:

10. Implementing Group Functions - 1:
Scenario: Write a query to display sum, minimum, maximum and average salaries which
company is paying to its employees

Solution:

SELECT COUNT (*), sum (sal), min (sal), max (sal), Avg (sal) from emp;

Details: SQL Statement will return five columns and one rows

11. Implementing Group Functions - 2:
Scenario: Write a query to display sum, minimum, maximum and average salaries which
company is paying to its employees but employees from Dept# 20 should not be shown and
average salaries should be less than 1500

Solution:

SELECT COUNT (*), sum (sal), min (sal), max (sal), Avg(sal) from emp WHERE deptno !=20 and
avg (sal) <=1500;

Details: Group functions can’t be used in where clause. Only single row functions are allowed in
Where clause. The result of this query would be and Error because, as mentioned above, group
functions cannot be used with the WHERE clause.

12. GROUP BY Clause
GROUP BY clause group together similar row together to form group and the multiple row
function is used with GROUP BY Clause. The SQL GROUP BY clause is used in collaboration with
the SELECT statement to arrange identical data into groups.
The basic syntax of GROUP BY clause is given below.

SELECT column1, column2
FROM table_name
WHERE [conditions]
GROUP BY column1, column2

Handouts

Page | 16
Virtual University of Pakistan

13. Implementing GROUP BY Clause 01
Situation: What is the total salary paid to each department?

Steps to Solution:

∑ Need to group together all rows of each department separately i-e creating groups
∑ Need sum of salary each department – group

SELECT SUM (sal), deptno FROM emp
GROUP BY deptno;

The complete steps are shown below:

The final output of the query is shown in the figure below:

14. Implementing GROUP BY Clause 02
Consider the following:

Scenario: What is average and maximum salary paid to each Job who are reporting to MGR
7839?

Solution – 1

SELECT avg (sal), maximum (sal) FROM emp
WHERE mgr = 7839
GROUP BY job;

Handouts

Page | 17
Virtual University of Pakistan

Details: Where and Group by clause can be used together as far as Group functions are not used
where clause.

Solution – 2

SELECT avg (sal), max(sal), job, mgr, sal FROM emp
WHERE mgr=7839
GROUP BY job

Details: Only those columns can come after Select clause which are written after Group By
clause. Result – Error job, mrg are not written after group by clause

15. HAVING Clause
The having clause, is just like the where clause, that filters the results in aggregated / grouped
data. The Where clause cannot be used in the aggregated data, so SQL having clause is
introduced to filter the results. The HAVING clause enables you to specify conditions that filter
which group results appear in the final results.

The WHERE clause places conditions on the selected columns, whereas the HAVING clause
places conditions on groups created by the GROUP BY clause.

The basic syntax is as follows:

SELECT column1, column2
FROM table1, table2
GROUP BY column1, column2
HAVING [conditions]

16. Implementing HAVING Clause – 1
Scenario: Write a query to display average salary of each department if there are at least 2
employees working in the department and minimum salary is more than average salary by 100.

Solution:

SELECT avg (sal) FROM emp
GROUP BY deptno
HAVING count (*) > 3 and min (sal)>avg(sal)+100;

17. Implementing HAVING Clause – 2
Scenario: Write a query to display maximum and minimum salary by each department if
average salary is more than 1500 of the department and less than 3000. The employee should
not be included if there is any occurrence of ‘A’ in the ename or earning no commission and is
hired at least six month before

Handouts

Page | 18
Virtual University of Pakistan

Solution:

SELECT max (sal) , min(sal) FROM emp
WHERE ename not like ‘%A%’ or comm is null and months_between(sysdate, hiredate)>6
GROUP BY deptno
HAVING max(sal) > 4500 and avg(sal)<1500;

18. ORDER BY Clause
The Order by clause is used with the SQL SELECT statement to sort the results in ascending or
descending order. You have to specify one or more columns for what you want to sort the table
result set. The ORDER BY keyword sorts the records in ascending order by default. To sort the
records in a descending order, you can use the DESC keyword. The basic syntax is as follows:

SELECT column_name,
FROM table_name
ORDER BY column_name ASC|DESC,

Another example would be like:

SELECT deptno, sal FROM emp
ORDER BY sal;

19. What are Joins?
Joins are required when data from multiple tables is required. The standard join operation is
knows as inner join. It horizontally combines two or more tables into a single working table. A
primary key field in one table can be foreign key field in another table and a join operation is
used to combine tables using a common key in both tables.

20. Implementing Joins – 1
Basic Join Statement is as follows

SELECT empno, ename, d.deptno, dname
FROM emp e, dept d
WHERE d.deptno=e.deptno;

21. Implementing Joins – 2
Scenario: Write a query to display list of employee name and name of department of all those
employees who are hired at least 10 years before and are working as Analyst.

Solution:

SELECT empno,ename, d.deptno, dname,
ROUND (months_between(sysdate, hiredate),0), hiredate
FROM emp e, dept d
WHERE d.deptno=e.deptno and months_between(sysdate, hiredate) > 120 and job=‘Analyst’;

Handouts

Page | 19
Virtual University of Pakistan

22. What are Self Joins?
A self-join is a query in which a table is joined (compared) to itself. Self-joins are used to
compare values in a column with other values in the same column in the same table. In self-join
a table is joined with itself, especially when the table has a FOREIGN KEY which references its
own PRIMARY KEY. To join a table itself, means that each row of the table is combined with
itself and with every other row of the table. Self joins are used in a recursive relationship. To
explain that further, think of a COURSE table with columns including PREREQUISTE, COURS_NO
and others. There is a recursive relationship between PREREQUSITE and COURSE_NO as
PREREQUSITE is valid only if it is also a valid COURSE_NO.

23. Implementing Self Joins - 1
The basic syntax of self-join is:

SELECT a.column_name, b.column_name...
FROM table1 a, table1 b
WHERE a.common_field = b.common_field;

An example would be like:

SELECT e.ename,e.empno, b.ename, b.empno
FROM emp e , emp b, dept d
WHERE e.empno=b.mgr

Consider a Customer Table with the following attributes:

∑ Table: Customer (id, name, age, address, salary)

The code for the Self-Join would be:

SELECT a.ID, b.NAME, a.SALARY
FROM CUSTOMERS a, CUSTOMERS b
WHERE a.SALARY < b.SALARY;

24. Implementing Self Joins – 2
Scenario: Write a query to display the employee name, employee number along with name and
employee no. of to whom it is reporting of all the employees who belong to accounting
department.

Solution:

SELECT e.ename,e.empno, b.ename, b.empno
FROM emp e , emp b, dept d
WHERE e.empno=b.mgr and d.deptno = b.deptno
AND dname = 'ACCOUNTING';

Handouts

Page | 20
Virtual University of Pakistan

25. SubQueries
A subquery is a query within a query. Subqueries enable you to write queries that select data
rows for criteria that are actually developed while the query is executing at run time. SQL
subquery is usually added in the WHERE Clause of the SQL statement. Most of the time, a
subquery is used when you know how to search for a value using a SELECT statement, but do
not know the exact value in the database. Subqueries are an alternate way of returning data
from multiple tables, or simply, alternative of joins. The general syntax is as follows:

SELECT *
FROM t1
WHERE column1 = (SELECT column1 FROM t2);

26. Implementing SubQuery – 1
Scenario: Write a query to display all those deptno where minimum salary is less than average
salary of all the salary among all the employee and location of department have at least 5
characters in it end with K

Solution:

SELECT e.deptno, MIN (sal)
FROM emp e, dept d
WHERE d.deptno=e.deptno AND loc like ('---K')
GROUP BY e.deptno
HAVING MIN (sal) < (SELECT AVG (sal) FROM emp);

27. Implementing SubQuery – 2
Scenario: Write a query to display information of all those employees who are earning
minimum salary but employees are neither working as Manager nor Clerk earning commission

Solution:

SELECT ename, sal, deptno
FROM emp
WHERE sal = (SELECT MIN (sal) FROM emp)
AND job <> ‘Manager’ and job !=‘CLERK’ and comm is not null;

Handouts

Page | 21
Virtual University of Pakistan

Module 04: PL/SQL Concepts

1. Architecture of Oracle 11i
The architecture of Oracle 11i is shown in the image below followed by the explanation:

The architecture is distributed among the following three tiers:

1. Client / Desktop Tier:

The client interface is provided through HTML for the newer HTML-based applications, and via
a Java applet in a Web browser for the traditional Forms-based interface. In Oracle Applications
Release 11i, each user logs in to Oracle Applications Server using UI interface and then control
is passed to Application Tier for verification as per Business Logic. Responsibility of Client layer
is to make sure UI layer is presented to user successfully as per requirement.

2. Application Tier

The application tier has a dual role: hosting the various servers that process the business logic,
and managing communication between the desktop tier and the database tier. This tier is
sometimes referred to as the middle tier.

3. Database Tier

The database tier contains the Oracle database server, which stores all the data maintained by
Oracle Applications. The database also stores the Oracle Applications online help information.
More specifically, the database tier contains the Oracle data server files and Oracle Applications

Handouts

Page | 22
Virtual University of Pakistan

database executable that physically store the tables, indexes, and other database objects for
your system. In general, the database server does not communicate directly with the desktop
clients, but rather with the servers on the application tier, which mediate the communications
between the database server and the clients.

2. What is PL/SQL?
PL/SQL stands for Procedural Language Extension to SQL. PL/SQL extends SQL by adding
programming structures and subroutines available in any high-level language. PL/SQL is a
procedural language designed specifically to embrace SQL statements within its syntax. PL/SQL
program units are compiled by the Oracle Database server and are stored inside the database.
And at run-time, both PL/SQL and SQL run within the same server process, bringing optimal
efficiency. PL/SQL automatically inherits the robustness, security, and portability of the Oracle
Database. PL/SQL is used for both server-side and client-side development.

3. Why PL/SQL?
Any application which need to access database need interface to access DB and an application
that uses Oracle Database is worthless unless only correct and complete data is persisted. The
longstanding way to ensure this is to expose the database only via an interface that hides the
implementation details -- the tables and the SQL statements that operate on these. This
approach is generally called the thick database paradigm, because PL/SQL subprograms inside
the database issue the SQL statements from code that implements the surrounding business
logic; and because the data can be changed and viewed only through a PL/SQL interface.

Since SQL is a declarative language it lacks language constructs like loops, procedures,
functions; and these construct are required to write generic code, to provide programming
language functionalities to SQL, PL/SQL is used with SQL as an embedded part in it.

4. How PL/SQL Works?
The basic unit of a PL/SQL source program is the block, which groups related declarations and
statements. Block is minimum executable unit of PL/SQL which consists of Mandatory and
Optional Parts. A PL/SQL block is defined by the keywords DECLARE, BEGIN, EXCEPTION, and
END. These keywords partition the block into a declarative part, an executable part, and an
exception-handling part. Blocks can be nested: Because a block is an executable statement, it
can appear in another block wherever an executable statement is allowed. Following is the
basic structure of a PL/SQL block.

DECLARE -- Declarative part (optional)
-- Declarations of local types, variables, & subprograms

BEGIN -- Executable part (required)
-- Statements (which can use items declared in declarative part)

Handouts

Page | 23
Virtual University of Pakistan

[EXCEPTION -- Exception-handling part (optional)
-- Exception handlers for exceptions raised in executable part]

END;

5. PL/SQL Executable
This section is enclosed between the keywords BEGIN and END and it is a mandatory section. It
consists of the executable PL/SQL statements of the program. It should have at least one
executable line of code, which may be just a NULL command to indicate that nothing should be
executed. Example is as follows:

BEGIN
DBMS_OUTPUT.PUT_LINE (‘First Program in Oracle 11i’);
END;

Detail: The Program will display First Program in Oracle 11i on the screen.
DBMS_OUTPUT.PUT_LINE is equivalent to cout or printf in C++/C

Handouts

Page | 24
Virtual University of Pakistan

Module 05: General Programming Language Fundamentals of PL/SQL

1. Variable Declaration in PL/SQL

DECLARE
I number (10):=0;
Name varchar2(10);
DOB date:=sysdate;
Cost real:=390;
PI CONSTANT NUMBER := 3.141592654;

BEGIN
Dbms_output.put_line (I || name || dob || PI);

END;

In declaration section 5 variables are declared with respective data types. I, Name, DOB,
Cost and PI are variables with associated Data types number (10), varchar2 (10), date,
real and constant number respectively. In PL/SQL variables can only be declared in
declaration section.

To display output on screen Dbms_output.put_line (I || name || dob || PI); is used and
concetnation operator (||) is used to join output of multiple variables on the screen

Output of the Program: 006/10/20163903.141592654

2. Manipulating Variables in Blocks
DECLARE

a integer: = 10;
b integer: = 20;
c integer;
f real;

BEGIN
c: = a + b;
dbms_output.put_line ('Value of c: ' || c);
f: = 70.0/3.0;
dbms_output.put_line ('Value of f: ' || f);

END; /

In declaration section 4 variables are declared with respective data types. a,b,c,f are
variables with associated Data types. In begin section variable C is assigned with new
value which is sum of a and b. Value of c is displayed on screen using
dbms_output.put_line('Value of c: ' || c); . In variable f new value is assigned by dividing 70.0 /
3.0 and value of F is displayed using

Handouts

Page | 25
Virtual University of Pakistan

dbms_output.put_line('Value of f: ' || f);

Since F is real datatype and it can handle float value

Output of the Program:

Value of c: 30

Value of f: 23.33333333333333333333333333333333333333

3. Scope of Variables in Nested Blocks
DECLARE

-- Global variables
num1 number: = 95;
num2 number: = 85;

BEGIN
dbms_output.put_line ('Outer Variable num1: ' || num1);
dbms_output.put_line('Outer Variable num2: ' || num2);

DECLARE
-- Local variables
num2 number: = 195;
num3 number: = 185;

BEGIN
dbms_output.put_line('Inner Variable num1: ' || num1);
dbms_output.put_line('Inner Variable num2: ' || num2);

END;

END;

In PL/SQL there can be block within blocks, variables declared in outer block are
accessible in inner block but variables declared inside inner block are not accessible in
outer block. Like variable num1 and num2 are accessible in inner block but variable
num3 is not accessible in outer block. If variable with same is declared in inner and
outer block then value of variable declared in inner block will override the value in inner
block. Output of the program is as follow, value of num2 which is declared in both outer
and inner block, value of 195 (declared in inner block) is shown instead of 85 as
initialized in outer block; however value of num1 is same in inner and outer block as
num1 is declared only in outer block.

Handouts

Page | 26
Virtual University of Pakistan

Output of the Program:

Outer Variable num1: 95
Outer Variable num2: 85
Inner Variable num1: 95
Inner Variable num2: 195

Module 06: SQL in PL/SQL

Handouts

Page | 27
Virtual University of Pakistan

1. SELECT INTO Syntax
A variable that has been declared in the declaration section of the PL/SQL block can later be
given a value with a select statement. The SELECT INTO statement retrieves data from one or
more database tables, and assigns the selected values to variables or collections. The syntax is
as follows:

SELECT item_name
INTO variable_name
FROM table_name;

By default, a SELECT INTO statement must return only one row. Otherwise, PL/SQL raises the
predefined exception TOO_MANY_ROWS and the values of the variables in the INTO clause are
undefined. The WHERE should contain condition to return at max match one row. Number of
column before and after INTO clause needs to be same with respective data type in order to
run the query.

2. Implementing SELECT INTO Syntax – I
DECLARE

Id number (10):=0;
Current_date date;

BEGIN
SELECT 4982, sysdate INTO id, current_date
FROM dual;
dbms_output.put_line('Values are : ' || id || current_date);

END;

/

Explanation:

4982 and sysdate (06/10/2016) are loaded into local variables (id,current_date) and are

Displayed on the screen using dbms_output.put_line

Output of the Program

Values are: 498206/10/2016

3. Implementing SELECT INTO Syntax – II
DECLARE

Id number(10):=0;
Hire_date date;
Name emp.ename%type;

BEGIN
SELECT empno, ename, hiredate INTO id, name, hire_date FROM emp;
dbms_output.put_line('Values are : ' || id || current_date);

Handouts

Page | 28
Virtual University of Pakistan

END;
/

Explanation:

The program will throw the following exception:

Error: ORA-01422: exact fetch returns more than requested number of rows

Because there no where clause in SQL statement due to which there are multiple rows return
from the query and Select statement is not able to handle multiple rows.

4. Implementing SELECT INTO Syntax – III
DECLARE

Id number(10):=0;
date_hire date;
Name emp.ename%type;

BEGIN
SELECT empno, ename, hiredate INTO id, name, date_hire FROM emp WHERE empno=7369;
dbms_output.put_line('Values are : ' || id || date_hire||name);

END;

/

Explanation:

Empno, ename , hiredate are loaded into local variables i-e id,name,hire_date ; since now
there check in where clause on empno which is primary key so it will ensure that at max one
row exists against empno=7369

Output of the Program

Values are: 736912/17/1980KAMRAN

5. Implementing SELECT INTO Syntax – IV
Consider the following practice question

Practice Question 01:

Write a PL/SQL block to retrieve maximum salary of the employee who is not working in
department no 10 but have been associated with organization for past 5 years.

Handouts

Page | 29
Virtual University of Pakistan

Solution:

DECLARE
sal number(10):=0;

BEGIN
SELECT max(sal) INTO sal FROM emp
WHERE deptno!=10 and months_between (sysdate,hiredate)>=60;
dbms_output.put_line('Maximum Salary is : ' || sal);

END;
/

Explanation:

Maximum salary is retrieved into local PL/SQL variable i-e sal with employee should not be
working in deptno 10 and due to months_between (sysdate, hiredate) it will return number
of months between current date and hiredate and if number of months are greater than or
equal to 60 i-e 5 years; only then that particular employee will be considered

Output of the Program:

Maximum Salary is : 54072

Note:

Value (54072) may vary from student to student as this value is shown in my login on
www.apex.oracle.com

To do Questions by Students:

Write a PL/SQL block to retrieve maximum, minimum number of the employee who is not
working as Analyst but belong to department having at least employees.

6. DML in PL/SQL
Getting data into and out of a database are two of the most important features of a database. It
is possible to use DML statements INSERT, UPDATE and DELETE in PL/SQL while having no
limitation on number of rows to be affected. Just to recap, brief explanation o DML statements
is provided below:

∑ INSERT: The INSERT statement inserts rows into an existing table.
∑ UPDATE: The UPDATE statement updates (changes the values of one or more column)

from a set of existing table rows.
∑ DELETE: The DELETE statement deletes rows from a table.

Handouts

Page | 30
Virtual University of Pakistan

There is no change in syntax while using DML in PL/SQL, same syntax is true when
DML is used outside PL/SQL

7. Implementing DML into PL/SQL – I
DECLARE

No number (10):=2;

BEGIN
INSERT INTO emp (empno) values (no);
dbms_output.put_line('Row Successfully added');

END;

8. Implementing DML & SQL into PL/SQL – I
Imagine a situation where you have to write a query for the following scenario:

Scenario:

Write a PL/SQL block the set the salary of employee no 7369 increment by 25% of the
maximum salary earned by any employee

Solution:

DECLARE
No number(10):=2;
salary emp.sal%type;

BEGIN
SELECT max (sal) INTO salary FROM emp;
UPDATE emp set sal = sal +salary*0.25 WHERE empno=7369;
dbms_output.put_line('Row Updated');
SELECT sal INTO salary FROM emp WHERE empno=7369;
dbms_output.put_line('Updated Salary' || salary);

END;

Explanation:

In first SQL query, maximum salary is loaded into local variable salary

In update command salary of empno: 7369 is added with 25% of maximum salary (salary
variable)

In last SQL query: Updated Salary is loaded into salary (local variable) and then displayed it on
the screen

Output of the Program

Handouts

Page | 31
Virtual University of Pakistan

Old sal = 67589.6, New sal = 84487Difference: 16897.4

Row Updated

Updated Salary84487

Practice Questions Website for SQL:
https://www.hackerrank.com/domains/sql/select/difficulty/all/page/1

9. Implementing DML & SQL into PL/SQL – II
Write a query for the following scenario

Scenario:

Write a PL/SQL block to insert a new row in employee table (empno, ename) only and code
should not violate primary key constraint assuming empno is PK and for ename any ‘ALLEN’ can
be used.

Solution:

DECLARE
max_no emp.empno%type;

BEGIN
SELECT MAX (empno) INTO max_no FROM emp;
INSERT INTO emp (empno, ename) values (max_no+1, 'ALLEN');
dbms_output.put_line ('Row added');

END;

Explanation:

In first SQL Query maximum empno is loaded into local variable max_no

In limited column Insert statement empno is max_no+1 (this will always ensure PK is unique)
and ename is ALLEN.

Output of the Program:

Row Added

Note: There can be more than one solution to a same problem

10. Implementing DML & SQL into PL/SQL – III
Scenario:

Write a PL/SQL block to increase salary by 15% as retention bonus of all those employees who
have been associated with company for more than 10 years

https://www.hackerrank.com/domains/sql/select/difficulty/all/page/1

Handouts

Page | 32
Virtual University of Pakistan

Solution:

BEGIN
UPDATE emp set sal = sal*0.15 + sal
WHERE months_between (sysdate, hiredate)>120;
dbms_output.put_line('Salary updated');

END;

Output of the Program:

Salary updated

11. PL/SQL & Sequences - I
Sequence is a feature supported Oracle database systems to produce unique values on
demand. Through sequences sequential unique numbers can be generated automatically to be
used in tables. A sequence is a database object from which multiple users can generate unique
integers. Using a sequence generator to provide the value for a primary key in a table is an easy
way to guarantee that the key value is unique. Sequence numbers are generated independently
of tables, so the same sequence can be used for one or for multiple tables however it is
recommended not to used sequence in multiple table to avoid missing values .

12. PL/SQL & Sequences – II
Scenario:

Write a PL/SQL block which should insert primary key in the table using sequence in consistent
way without unique key violation. Assuming there is existing data in primary key column.

Solution

CREATE sequence emp_no
START with 1
INCREMENT by 1
NoCache
NoCycle
ORDER;

CREATE table product (id number (10) primary key, pname varchar2(30));
INSERT INTO product values(1, 'HD');
select emp_no.nextval, emp_no.currval from dual;

Handouts

Page | 33
Virtual University of Pakistan

DECLARE
pid number (10):=0;
new_id number(10):=0;

BEGIN
SELECT max (id) into pid from product;
dbms_output.put_line ('Maximum id : ' || pid);
dbms_output.put_line ('Next Value of PK ' || (pid + emp_no.nextval));
insert into product values (pid + emp_no.nextval, 'HD');
dbms_output.put_line(' Row Successfully added');

END;

Explanation:

First Sequence with emp_no is created to be used in PL/SQL Code

Product table is created which will be used to execute insert statement

In PL/SQL Code:

Maximum id from product table is loaded into local variable (pid)

In Insert statement value of pid is added to next value sequence using emp_no.nextval which
will ensure uniqueness in the primary key column (pid) because maximum pid will have a
numerical value added to it.

Row successfully Added will be displayed on the screen

Output of the Program:

Updated Maxid is: 1

Id: 1 successfully added

13. What is Commit?
The COMMIT command is the transactional command used to save changes invoked by a
transaction to the database. Every DML command (Insert, update, delete) is written to
permanent storage after commit. The COMMIT command saves all transactions to the database
since the last COMMIT or ROLLBACK command. The COMMIT statement makes permanent any
changes made to the database during the current transaction. A commit also makes the
changes visible to other users and execution of Block leads to auto-commit. The syntax for
COMMIT command is as follows:

COMMIT;

Handouts

Page | 34
Virtual University of Pakistan

14. Implementing PL/SQL and Commit
DECLARE

pid number(10):=0;
new_id number(10):=0;
total_rows number(10):=0;

BEGIN
SELECT MAX(id) INTO pid FROM product;
INSERT INTO product values (pid + emp_no.nextval, 'HD');
dbms_output.put_line(' Row Successfully added');

COMMIT;
SELECT COUNT (*) INTO total_rows FROM product;
dbms_output.put_line(' Total rows inserted : ' || total_rows);

END;

15. What is rollback?
The Rollback Statement is the transactional command used to undo transactions that have not
already been saved to the database. The Rollback Statement can only be used to undo
transactions since the last Commit Statement or Rollback Statement was issued. In very simple
words, Used to undo the work performed by the current transaction. Rollback before commit
will undo all the changes till last commit or start of block.

The syntax for ROLLBACK command is as follows:

ROLLBACK;

16. Implementing PL/SQL and Rollback
DECLARE

pid number(10):=0;
new_id number(10):=0;
total_rows number(10):=0;

BEGIN
SELECT MAX (id) INTO pid FROM product;
INSERT INTO product values (pid + emp_no.nextval, 'HD');
dbms_output.put_line(' Row Successfully added');

ROLLBACK;
SELECT COUNT (*) INTO total_rows FROM product;
dbms_output.put_line(' Total rows inserted' || total_rows);

END;

Handouts

Page | 35
Virtual University of Pakistan

17. What is SAVEPOINT?
A SAVEPOINT is a point in a transaction when you can roll the transaction back to a certain
point without rolling back the entire transaction. The SAVEPOINT statement names and marks
the current point in the processing of a transaction. With the ROLLBACK TO statement,
SAVEPOINT undo parts of a transaction instead of the whole transaction. Hence, Rollback is
possible up to SAVEPOINT.

The syntax for rolling back to a SAVEPOINT is as follows:

ROLLBACK TO SAVEPOINT_NAME;

18. Implementing PL/SQL and SavePoint
DECLARE

pid number(10):=0;
new_id number(10):=0;
total_rows number(10):=0;

BEGIN
SELECT MAX (id) INTO pid FROM from product;
INSERT INTO product values (pid + emp_no.nextval, 'HD');

SAVEPOINT A;
INSERT INTO product values (pid + emp_no.nextval, 'HD');

SAVEPOINT B;

ROLLBACK to A;
SELECT COUNT (*) into total_rows FROM product;
dbms_output.put_line(' Total rows inserted : ' || total_rows);

END;

Explanation:

Note: Should be inserting 2 but due to SAVEPOINT one row is rollback

Module 07: Conditional Control – I

Handouts

Page | 36
Virtual University of Pakistan

1. IF – THEN Statements
This statement is used to execute the statement if the condition provided is true. The IF
statement associates a condition with a sequence of statements enclosed by the keywords
THEN and END IF. If the condition is TRUE, the statements get executed, and if the condition is
FALSE or NULL, then the IF statement does nothing. END IF is to be used for each IF condition
as shown in the following syntax:

BEGIN
IF condition THEN
Statement -1;
Statement -2;

END IF;

END;

2. Implementing IF- Then Statement – I
Scenario:

Write a PL/SQL block to insert a row in emp table if total number of employees in department #
20 are more less than 50 because as policy maximum number of employees can be 50 in any
department

Solution is not possible with SQL only because now conditional insertion of data in table is
required. This create the need for control structure

Solution:

DECLARE
total number (10):=0;
max_id number(10):=0;

BEGIN
SELECT count (*) into total FROM emp WHERE deptno=20;
SELECT max (empno) into max_id from emp;

IF total <=50 THEN
dbms_output.put_line('Table is not empty');
INSERT into emp(empno, deptno, ename) values (max_id+1,20, ‘Asim’);
dbms_output.put_line('Row is inserted in Department - 20');

END IF;

END;

Output of the Program:

Table is not empty

Handouts

Page | 37
Virtual University of Pakistan

Row is inserted in Department - 20

3. Implementing IF- Then Statement-II
Scenario:

Write a PL/SQL block to update the salary of all the employees if there are at least 15
employees in the company and out of at least 5 have been attached with organization for more
than 5 years then raise the salary of all the employee by 10%.

Solution

DECLARE
total_emp number(10):=0;
total number(10):=0;
percentage real(10):=0.10;

BEGIN
SELECT COUNT (months_between (sysdate, hiredate)) into total_emp from emp WHERE
months_between (sysdate, hiredate)>=60;
SELECT COUNT (*) into total FROM emp;

IF total_emp > 5 and total > 15 THEN
update emp set sal = sal + sal*percentage;
dbms_output.put_line('Increment given’);

END IF;

END;

Explanation:

First SQL is counting total employees who are attached with organization for more than 5
years and Second SQL is counting total employees in the organization.

Conditional Increment is given using IF clause if total employees are greater than 15 and those
who are attached with organization is more than 5.

Output:

Increment given

4. IF – Then – Else Statement
A sequence of IF-THEN statements can be followed by an optional sequence of ELSE
statements, which execute when the condition is FALSE. Only once closing END IF is required
for this statement. The basic syntax is as follows:

Handouts

Page | 38
Virtual University of Pakistan

BEGIN
IF condition THEN
Statement -1;
Statement -2;

ELSE
Statement-1;

END IF;

END;

5. Implementing IF- Then-else Statement-I
Consider the following scenario to understand the IF-THEN-ELSE Statement:

Write a PL/SQL block to check whether you are logged in as ‘APEX_PUBLIC_USER’ and if this is
true then display success message and then check whether maximum salary has been achieved
against designation of ANALYST or not. As company policy maximum salary which can be paid
to Analyst is not more than 5000 otherwise display message not achieved.

Solution

DECLARE
max_sal number(10):=0;
designation varchar2(30):='ANALYST';

BEGIN
SELECT MAX (sal) INTO max_sal FROM emp WHERE job=designation;

IF user = 'APEX_PUBLIC_USER' and max_sal <=5000 THEN
dbms_output.put_line ('Current Maximum Salary for ' || designation || ' is : ' || max_sal);
dbms_output.put_line ('Maximum Salary not achieved');

ELSE
dbms_output.put_line ('Maximum achieved');

END IF;

END;

Explanation:

User is the environment variable which is holding value which is recognizable by system as
Schema user i-e APEX_PUBLIC_USER i-e This is default user value

Output of the Program:

Maximum Achieved

Handouts

Page | 39
Virtual University of Pakistan

6. Implementing IF- Then-else Statement-II
Write a PL/SQL block to proceed as follow of emp = 7369:

I. Salary > 3000 and less than 6000 and designation = ‘MANAGER’
Message: Senior Management

II. Not part of Management

Solution

DECLARE
designation emp.job%type;
salary emp.sal%type;

BEGIN
select job , sal into designation, salary from emp where empno=7369;

IF designation =‘ANALYST' and salary > 3000 and salary < 6000 THEN
dbms_output.put_line(‘Senior Management');

ELSE
dbms_output.put_line(‘Not Part of Management');

END IF;

END;

Output of the Program:

Not Part of Management

Note: The output of the program may vary depending on data available in emp table of
student account

7. ELSIF Statement
The IF THEN ELSIF statement runs the first statements for which condition is true. Remaining
conditions are not evaluated. If no condition is true, the else statements run, if they exist;
otherwise, the IF THEN ELSIF statement does nothing. There will be one END IF per IF keyword.
The basic syntax is as follows:

BEGIN
IF condition THEN
Statement -1;
Statement -2;

Handouts

Page | 40
Virtual University of Pakistan

ELSIF condition THEN
Statement-1;

END IF; -- Only one End if per if

END;

8. Implementing IF- THEN-ELSIF Statement I
Scenario

Write a PL/SQL block to proceed as follow of emp = 7369:

1. Salary > 3000 and less than 6000 and designation = ‘MANAGER’
Message: Senior Management

2. Salary > 6000 and less than 9000 designation = ‘PRESIDENT’
Message: Executive Management

3. Not eligible

Solution

DECLARE
designation emp.job%type;
salary emp.sal%type;

BEGIN
SELECT job , sal into designation, salary FROM emp WHERE empno=7369;
IF designation =‘PRESIDENT' and salary > 6000 and salary < 9000 THEN
dbms_output.put_line('Executive Management');

ELSIF designation='MANAGER' and salary > 3000 and salary < 6000 THEN
dbms_output.put_line('Senior Management');

ELSE
dbms_output.put_line('Not part of Management');

ENF IF;

END;

Output of the Program:

Not part of Management

Note: The output of the program may vary depending on data available in emp table of
student account

Handouts

Page | 41
Virtual University of Pakistan

9. Implementing IF-THEN-ELSIF Statement-II
Scenario

Write a PL/SQL block to precede display for any given date:

1. If day is Saturday or Sunday then display ‘ Weekend’
2. If day is Monday or Tuesday then display ‘ Start of week’
3. If Day is Wednesay or Friday then display ‘ Toward end of week’

Solution

DECLARE
v_date DATE := TO_DATE('18-Dec-2013', 'DD-MON-YYYY');
v_day VARCHAR2(15);

BEGIN
v_day := RTRIM(TO_CHAR(v_date, 'DAY'));
DBMS_OUTPUT.PUT_LINE ('Day of the Date: ' || ' 18-Dec-2012 is : ' || v_day);

IF v_day IN ('SATURDAY', 'SUNDAY') THEN
DBMS_OUTPUT.PUT_LINE (v_date||' falls on weekend');

ELSIF v_day in ('MONDAY', ' TUESDAY') THEN
DBMS_OUTPUT.PUT_LINE (v_date||' falls on start of week');

ELSIF v_day in ('WEDNESDAY', ' FRIDAY') THEN
DBMS_OUTPUT.PUT_LINE (v_date||' falls toward mid week');

END IF;
DBMS_OUTPUT.PUT_LINE('Done...');

END;

Explanation:

V_date is initialized with 18-Dec-2013, to_char (v_date, ‘DAY’) will return DAY on 18-Dec-2013.

There are multiple IF and ELSIF structure as per requirement, point to note is that there is only
one END because there is only ONE if keyword

Output of the Program:

Day of the Date: 18-Dec-2012 is : WEDNESDAY

12/18/2013 falls toward mid week

Done...

Handouts

Page | 42
Virtual University of Pakistan

10. NESTED IF Statement
NESTED IF statement revolves around IF conditions associated with Parent & Child. This
statement works in such a way that if Parent IF is true, Child IF will also be true. In other words,
in NESTED IF statement, IF statement associated with Child will only be executed if IF statement
associate with the parent is executed. Following example would elaborate further.

11. Implementing Nested-IF – I
DECLARE

a number(3) := 100;
b number(3) := 200;

BEGIN
IF(a between 0 and 100) THEN
IF(b between 101 and 200) THEN
dbms_output.put_line('Value of a is 100 and b is 200');

END IF;

END IF;
dbms_output.put_line('Exact value of a is : ' || a);
dbms_output.put_line('Exact value of b is : ' || b);

END;

Explanation:

First IF condition will be evaluated to TRUE if value of a is between 0 and 100 (0 and 100 are
included) only then next IF will be checked for TRUE or FALSE, in next IF condition will be
evaluated to TRUE is value of b is between 101 and 200, if both IF conditions will be true only
then dbms_output.put_line('Value of a is 100 and b is 200'); will get executed. In this case
both IF conditions are true (as shown in output below)

Output of the Program

Value of a is 100 and b is 200

Exact value of a is : 100

Exact value of b is : 200

DECLARE
a number(3) := 100;
b number(3) := 200;

BEGIN
IF(a between 0 and 100) THEN
IF(b between 101 and 200) THEN
dbms_output.put_line('Value of a is 100 and b is 200');

END IF;

Handouts

Page | 43
Virtual University of Pakistan

END IF;
dbms_output.put_line('Exact value of a is : ' || a);
dbms_output.put_line('Exact value of b is : ' || b);

END;

12. Questions to Practice:

i. Write at least 3 different versions of questions solution discussed.

ii. Write a PL/SQL block to check whether number of employess in Emp table are odd
or even, if number of employees are odd then display message ‘ Odd number of
employees else display ‘ Even number of employees’

Module 08: Conditional Control – II

1. Case Statement
Case statements are alternate to the IF-Then statements. The CASE statement chooses from a
sequence of conditions, and executes a corresponding statement. This statement selects ONLY
one sequence of statement to execute and when IF case is not matched then else part is
executed. Exception is raised when ELSE part is not written with no matching case in IF

Handouts

Page | 44
Virtual University of Pakistan

condition. But still this statement is considered to be more readable and efficient. The syntax is
given below:

CASE selector

WHEN expression1 THEN sequence_of_statements1;

WHEN expression2 THEN sequence_of_statements2;

ELSE sequence_of_statements; --Optional

END CASE

2. Implementing CASE Statement – I
Scenario: Write a PL/SQL block to implement the following business rules:

Grade Message
A Excellent
B Good
C Fair
D Fail

Any other No such grade
Solution:

DECLARE
grade char(1) := 'A';

BEGIN
CASE grade -- Selector
WHEN 'A' then dbms_output.put_line('Excellent');
WHEN 'B' then dbms_output.put_line('Very good');
WHEN 'C' then dbms_output.put_line('Well done');
WHEN 'D' then dbms_output.put_line('You Fail');
ELSE dbms_output.put_line('No such grade');

END CASE;

END;

Explanation:

Value of local variable grade is initialized with A, in the case statement first case is matched
and respective message (Excellent) is displayed. Whenever case is matched related
statements are executed and control is transferred after END CASE.

Output of the Program

Excellent

Handouts

Page | 45
Virtual University of Pakistan

3. Implementing CASE Statement – II
Scenario: Write a PL/SQL block to implement the following business rules:

User Message
APEX_PUBLIC_USER Sample User

SCOTT Owner of Schema
DBA Admin

Any other Invalid User

Solution:

BEGIN
CASE user
WHEN 'APEX_PUBLIC_USER' then dbms_output.put_line(user || ' is Test User');
WHEN 'SCOTT' then dbms_output.put_line(user|| 'Owner of Schema');
WHEN 'DBA' then dbms_output.put_line(user || 'Admin User');
ELSE dbms_output.put_line('Not a Valid user');

END CASE;

END;

Output of the Program:

APEX_PUBLIC_USER is Test User

4. Searched Case Statements
It does not have a selector and Conditions are mentioned in WHEN clause. Conditions are
evaluated to be true or false. The SQL searched CASE expression gives you more flexibility when
writing your comparison conditions. The reason you get more flexibility is because of the fact
that each comparison condition is written out as a complete condition, and the comparison
operator (like “>”, “<", etc.) is also written out in the condition.

The basic syntax is as follows:

CASE
WHEN Condition -1 THEN sequence_of_statements1;
WHEN Condition -2 THEN sequence_of_statements2;
ELSE sequence_of_statements; --Optional

END CASE

Handouts

Page | 46
Virtual University of Pakistan

If no case condition is evaluated to be true and there is no else then exception is raised

5. Implementing Searched CASE Statement – I
Scenario: Write a PL/SQL block to implement the following business rules from emp table:

Salary Message Action (salary_stats table)
Between 10000 and 15000 Status=‘Excellent’ Insert row with current date, max sal and status

Between 7000 and 9999 Status: Very Good Insert row with current date, max sal and status
Between 4000 and 6999 Status: Good Insert row with current date, max sal and status

Any other Status No such Salary Insert row with current date, max sal and status

Solution:

DROP table salary_stats;

CREATE table salary_stats (date_recorded date, salary number(15), Status varchar2(15));

SELECT * FROM salary_stats;

DECLARE
salary number (10):=0;
status varchar2(15);

BEGIN
SELECT max (sal) into salary FROM emp;
CASE
WHEN salary > 10000 and salary < 15000 THEN
status :='Excellent';
INSERT INTO salary_stats values (sysdate, salary, status);
dbms_output.put_line(status || ' and row inserted');
WHEN salary > 7000 and salary < 10000 THEN
status :='Very Good';
INSERT INTO salary_stats values (sysdate, salary, status);
dbms_output.put_line(status || ' and row inserted');
WHEN salary > 4000 and salary < 70000 THEN
status :='Good';
INSERT INTO Salary_stats values (sysdate, salary, status);
dbms_output.put_line(status || ' and row inserted');

ELSE
status :='Not in Range';
INSERT INTO salary_stats values (sysdate, salary, status);
dbms_output.put_line(status || ' and row inserted');

Handouts

Page | 47
Virtual University of Pakistan

END CASE;

END;

Explanation:

As per requirement, maximum sal is loaded into local variable salary and then conditions are
written after WHEN clause as per question. Point to note here is that variable name after CASE
key word rather there is WHEN keyword with condition. In every WHEN clause insert
statement is executed depending on the case. As per data in the tables, following output is
generated and row is inserted in salary_stats table. ELSE part is executed here because no
CASE was matched, if there would have been no ELSE part then program will throw exception

Output of the Program:

Not in Range and row inserted

Note: The output of the program may vary depending on data available in emp table of
student account

6. Implementing Searched CASE Statement – II
Scenario: Write a PL/SQL block to implement the following business rules from emp table of
empno=7369

Designation Action (salary_stats table)
CLERK Update Salary by 0.09 of current salary

MANAGER Update Salary by 0.08 of current salary
ANALYST Update Salary by 0.07 of current salary
Any other No Raise

Solution

DECLARE
jobid emp.job%TYPE;
empid emp.empno%TYPE := 7369;
sal_raise NUMBER(3,2);

BEGIN
SELECT job INTO jobid from emp WHERE empno = empid;

CASE
WHEN jobid = 'CLERK' THEN sal_raise := .09;
update emp set sal = sal + sal*sal_raise where empno=empid;
dbms_output.put_line ('Salary raised by ' || sal_raise);

Handouts

Page | 48
Virtual University of Pakistan

WHEN jobid = 'MANAGER' THEN sal_raise := .08;
update emp set sal = sal + sal*sal_raise where empno=empid;
dbms_output.put_line ('Salary raised by ' || sal_raise);
WHEN jobid = 'ANALYST' THEN sal_raise := .07;
update emp set sal = sal + sal*sal_raise where empno=empid;
dbms_output.put_line ('Salary raised by ' || sal_raise);
ELSE sal_raise := 0;

END CASE;

END;

Explanation:

As per data in emp table there is not matching JOBID i-e CLER OR MANAGER OR ANALYST,
control is transferred to ELSE part of the program, in the else part there is no
dbms_output.put_line statement so effectively there will no output on the screen. As shown
below: Statement Processed is showing that there is not syntax error and code is executed
successfully only.

Output of the Program:

Statement Processed

Note: The output of the program may vary depending on data available in emp table of
student account

Practice Question:

Write at least 3 different variations of questions discussed.

∑ Given the tables below:
∑ Order(oid, cid, order_date, order_amount);

Order Amount Action (Order Table)
>10000 and < 20000 Give discount to customer by 5%
>20000 and < 30000 Give discount to customer by 8%
>30000 and < 40000 Give discount to customer by 10%

Any other No Discount

Handouts

Page | 49
Virtual University of Pakistan

Handouts

Page | 50
Virtual University of Pakistan

Module 09: Iterative Control – I

1. Simple Loop
The simple loop is different from other loops available in other programming languages; simple
loop consists of a structure to repeat statements. The sequence of statements is executed in
each iteration and it needs a termination in terms of exit statement to stop the loop. Loop
without exit condition considers to be an infinite loop. Sequence of statement(s) may be a
single statement or a block of statements. Loop will keep on execution the statement as long as
exit condition is FALSE and will terminate as soon as exit condition is evaluated to true, this
behavior is totally opposite other type of loops (FOR, WHILE, DO-WHILE). The basic condition is
given in the followings:

LOOP
Statement -1;
Statement -2;

EXIT | EXIT WHEN condition is true;

End loop;

End;

2. Implementing Simple Loop – I
DECLARE

rep number (10):=0;

BEGIN

LOOP
dbms_output.put_line (rep);

END LOOP;

END;

Explanation:

There is no exit condition written in the program to terminate the loop, program will run
indefinitely and will result in abnormal termination. There is no syntax error in the code.

Output of the Program:

ORA-10260: limit size () of the PGA heap set by event 10261 exceeded ORA-10260: limit size
(1024000) of the PGA heap set by event 10261 exceeded

Handouts

Page | 51
Virtual University of Pakistan

3. Implementing Simple Loop - II
DECLARE

rep number(10):=0;

BEGIN

LOOP
if rep >=5 then
dbms_output.put_line ('Value of Rep: ' || rep);
EXIT;

END IF;
rep:=rep+1;

END LOOP;

END;

Explanation:

Local variable rep is initialized with 0, the loop will keep on executing when rep is <5, as soon
as value of rep is greater than 5 the loop and program will exit.

Output of the Program:

Value of Rep: 5

4. Implementing Simple Loop with SQL – I
Task to do:

Write a PL/SQL block to insert 10 row in emp table, add data in empno column only with
starting value of 0 and ending value of 10.

DECLARE
rep number (10):=0;

BEGIN

LOOP
INSERT INTO emp (empno) values (rep);
rep:=rep+1;
EXIT WHEN rep > 10 ;

END LOOP;

END;

Handouts

Page | 52
Virtual University of Pakistan

Explanation:

The loop will be in execution when value of rep is less than 11, the loop will run till the
condition of exit (rep>10) is false and will terminate on true condition i-e when value of rep is
greater than 11. In each iteration a row is added in Emp table.

Output of the Program:

Statement processed.

5. Implementing Simple Loop with SQL – II
Task to do:

Write a PL/SQL block to display the reverse of maximum salary from EMP table.

DECLARE
N NUMBER(5):=0;
REV NUMBER(5):=0;
R NUMBER(5):=0;
total_emp number(10):=0;

BEGIN
SELECT max(sal) into n FROM emp;
Dbms_output.put_line('maximum Salary is : ' || n);

LOOP
R:=MOD(N,10); --return reminder
REV:=REV*10+R;
N:=TRUNC(N/10);
EXIT WHEN n = 0;

END LOOP;
Dbms_output.put_line(‘Reverse Value : ‘ || rev);

END;

Explanation:

As per output below the maximum salary is 117564 and is loaded into local variable n. and is
displayed.

First iteration:

R = Mod (117564,10) – It will return remainder which is 4

Handouts

Page | 53
Virtual University of Pakistan

Rev:=Rev*10 + R = 0*0 + 4 =4

N:=N/10 – 117564 / 10 = 11756 – N is a number due to which float value will not be shown.

Exit Condition is false because N !=0

Second Iteration:

R = Mod (11756, 10) – It will return 6

Rev:=4*10+6 = 46

N:=N/10 = 11756/10=1175

Third Iteration:

R = Mod (1175, 10) – It will return 5

Rev:=46*10+5 = 465

N:=N/10 = 1175/10=117

Fourth Iteration:

R = Mod (117, 10) – It will return 7

Rev:=465*10+7 = 4657

N:=N/10 = 117/10=11

Firth Iteration:

R = Mod (11, 10) – It will return 1

Rev:=4657*10+1 = 46571

N:=N/10 = 11/10=1

Sixth Iteration:

R = Mod (1, 10) – It will return 1

Rev:=46571*10+1 = 465711

N:=N/10 = 1/10=0

Loop will terminate after 6th Iteration.

Output of the Program:

Maximum Salary is: 117564

Reverse Value : 465711

Note: The output of the program may vary depending on data available in emp table of
student account

Handouts

Page | 54
Virtual University of Pakistan

6. While Loop
Basic loop structure encloses sequence of statements in between the LOOP and END LOOP
statements. Sequence in statements is executed in each iteration and the loop exits when the
exit condition evaluates to be false. While loop syntax is given below:

WHILE condition LOOP
sequence_of_statements

END LOOP;

7. Implementing While Loop – I
DECLARE

done BOOLEAN: = TRUE;

BEGIN
WHILE done LOOP
DBMS_OUTPUT.PUT_LINE ('This line got printed once only');
done := FALSE;

END LOOP;

END;

Output of the Program:

This line got printed once only

8. Implementing While Loop – II
Consider the following lines of code:

DECLARE
counter number (4) := 1;

BEGIN
WHILE counter <= 8 loop
dbms_output.put_line (counter);
IF counter=4 then
Exit; -- Loop will be terminated

END IF;
counter := counter +1;

End loop;

END;

Explanation:

Loop will be terminated without reaching false condition

Handouts

Page | 55
Virtual University of Pakistan

Output of the Program:

1

2

3

4

9. Implementing While Loop – III
Task to Do:

Write a PL/SQL block to insert 10 row in emp table using while loop, populate only empno
column only with starting value of 0 and ending value of 10.

Declare
rep number (10):=0;

Begin
while (rep < 10) loop
insert into emp (empno) values (rep);
rep:=rep+1;
dbms_output.put_line (' Rows are inserted in the loop with row no ' || rep);

END LOOP;
dbms_output.put_line (' Transaction Completed ');

END;

Output of the Program

Rows are inserted in the loop with row no 1

Rows are inserted in the loop with row no 2

Rows are inserted in the loop with row no 3

Rows are inserted in the loop with row no 4

Rows are inserted in the loop with row no 5

Rows are inserted in the loop with row no 6

Rows are inserted in the loop with row no 7

Rows are inserted in the loop with row no 8

Rows are inserted in the loop with row no 9

Handouts

Page | 56
Virtual University of Pakistan

Rows are inserted in the loop with row no 10

Transaction Completed

10. Implementing While Loop – IV
Task to do:

Write a PL/SQL block to calculate the sum of first 100 even integers starting from 1

DECLARE
counter number(4):=2;
total number(5):=0;

BEGIN
while counter < 100 loop
total:=total+counter;
dbms_output.put_line (' Current Sum is : ' || total);
counter:=counter+2;

END LOOP;
dbms_output.put_line (' Sum of even integers between 1 and 100 is ' || total);

END;

11. Implementing While Loop using SQL – I
Task to do:

Write a PL/SQL block to calculate the total of first 100 even integers starting from 1, at any
point in time if total exceeds 400 and remain less than 800, add a new row in temp table with
columns of sum, current date and status.

DECLARE
counter number (4):=2;
total number(5):=0;
status varchar2(80):='';

BEGIN
while counter < 100 loop
total:=total+counter;
dbms_output.put_line (' Current Sum is : ' || total);
dbms_output.put_line (' Current Sum is : ' || total);
counter:=counter+2;

if (total > 400 and total < 800) then

Handouts

Page | 57
Virtual University of Pakistan

status:='Total is greater than 400 and less than 800';
insert into temp values (total, sysdate,status);
dbms_output.put_line ('Row Inserted');

END IF;

END LOOP;
dbms_output.put_line ('Total of even integers between 1 and 100 is ' || total);

END;

12. Do-While Loop
A DO-While loop is a statement that executes a statement at least once and then repeatedly
executes the block, or not, depending on a given condition at the end of the block. The code
within the block is executed, and then the condition is evaluated. If the condition is true the
code within the block is executed again. This repeats until the condition becomes false. This can
be implemented using simple loop and no direct implementation is provided in PL/SQL.

13. Implementing Do While Loop
DECLARE

current_val number (10):=0;

BEGIN

LOOP
dbms_output.put_line ('Value of count is : ' || current_val);
current_val:=current_val+1;
exit when current_val> 10 ;

END LOOP;

END;

Explanation:

Since there is no direct implementation of Do-While Loop, Simple loop is an implementation of
Do-While Loop also because exit condition is evaluated in the end to be TRUE or FALSE and
the code is executed once already.

Output of the Program

Value of count is : 0

Value of count is : 1

Value of count is : 2

Value of count is : 3

Value of count is : 4

Value of count is : 5

Handouts

Page | 58
Virtual University of Pakistan

Value of count is : 6

Value of count is : 7

Value of count is : 8

Value of count is : 9

Value of count is : 10

Statement processed.

14. Numeric FOR Loop
A FOR LOOP is a repetition control structure that allows you to efficiently write a loop that
needs to execute a specific number of times. It’s called Numeric because it requires an integer
as its terminating point. Iteration count is by default one and it can’t be changed in the body of
the For Loop. Starting value (lower_limit) in the loop should be less then end value
(upper_limit) for loop to continue. The basic syntax is given below:

FOR counter IN [Reverse]
lower_limit..upper_limit

LOOP
--Value of counter can’t be changed in the body
-- increment of one in counter is fixed statements;

END LOOP;

15. Implementing Numeric FOR Loop – I.
DECLARE

i NUMBER:= 100;

BEGIN

FOR i IN 1..10 LOOP

dbms_output.put_line (' Value of I : ' ||i);

i:=i+1; --Error

END LOOP;

end;

Explanation:

Code is trying to change the value of the For Loop counter (i) in the body of the code, in PL/SQL
For Loop Counter is not allowed to be changed during the body of the code.

Output of the Program:

Handouts

Page | 59
Virtual University of Pakistan

ORA-06550: line 6, column 1: PLS-00363: expression 'I' cannot be used as an assignment target
ORA-06550: line 6, column 1: PL/SQL: Statement ignored 4. FOR i IN 1..10 LOOP 5.
dbms_output.put_line (' Value of I : ' ||i); 6. i:=i+1; --Error 7. END LOOP; 8. end ;

16. Implementing Numeric FOR Loop – II
DECLARE

start_val NUMBER: = 10;
end_val NUMBER := 0;
i number:=0;

BEGIN
FOR i IN start_val..end_val LOOP
dbms_output.put_line ('Value of i : '|| i);

END LOOP;

END;

Explanation:

The control will not enter in the loop because to enter in first iteration start_val (10) should be
less than end_val (0) which is FALSE here.

Output of the Program:

Statement processed.

17. Implementing Numeric For Loop – III.
To do task:

Write a PL/SQL block to insert rows in temp table, if the row inserted is odd then store message
‘Value is odd’ and if the row added is even then display message ‘Value is even’

DECLARE
x NUMBER: = 100;
i number:=0;

BEGIN
FOR i IN 1..10 LOOP
IF MOD (i,2) = 0 THEN -- i is even
dbms_output.put_line('Value of i is even');
INSERT INTO temp VALUES (i, x, 'i is even');

Handouts

Page | 60
Virtual University of Pakistan

ELSE
INSERT INTO temp VALUES (i, x, 'i is odd');
dbms_output.put_line('Value of i is odd');

END IF;
x := x + 100;

END LOOP;

COMMIT;

END;

Output of the Program:

Value of i is odd

Value of i is even

Value of i is odd

Value of i is even

Value of i is odd

Value of i is even

Value of i is odd

Value of i is even

Value of i is odd

Value of i is even

18. FOR Loop with Reverse Option
By default, iteration proceeds from the initial value to the final value, generally upward from
the lower bound to the higher bound. You can reverse this order by using the REVERSE
keyword. In such case, iteration proceeds the other way. After each iteration, the loop counter
is decrease by one. Value of upper limit should be greater than lower limit to continue and
again iteration count can’t be changed in the body of the For Loop.

19. Implementing Numeric Reverse FOR Loop – I
DECLARE

loop_start Integer: = 1;

BEGIN
FOR i IN REVERSE loop_start..5

Handouts

Page | 61
Virtual University of Pakistan

LOOP
DBMS_OUTPUT.PUT_LINE ('Loop counter is ' || i);

END LOOP;

END;

Output of the Program

Loop counter is 5

Loop counter is 4

Loop counter is 3

Loop counter is 2

Loop counter is 1

20. Implementing Numeric Reverse FOR Loop – II
DECLARE 2

loop_start Integer := 5;

BEGIN
FOR i IN REVERSE loop_start..1

LOOP
DBMS_OUTPUT.PUT_LINE('Loop counter is ' || i);

END LOOP;

END;

Explanation:

Value of loop_start is greater than 1, control will not enter in the loop because loop_start
should be less than 1 to enter in the loop.

Output of the Program

Statement processed.

21. Implementing Reverse FOR Loop with SQL- I
To do task:

Write a PL/SQL block to insert rows in temp table, if the row inserted is odd then store message
‘Value is odd’ and if the row added is even then display message ‘Value is even’

DECLARE
x NUMBER := 100;
i number:=0;

Handouts

Page | 62
Virtual University of Pakistan

BEGIN
FOR i IN REVERSE 1..10 LOOP
IF MOD(i,2) = 0 THEN -- i is even
dbms_output.put_line('Value of i is even‘ || i);
INSERT INTO temp VALUES (i, x, 'i is even');

ELSE
INSERT INTO temp VALUES (i, x, 'i is odd‘);
dbms_output.put_line('Value of i is odd');

END IF;
x := x + 100;

END LOOP;

COMMIT;

END;

Output of the Program:

Note: Make sure temp table empty otherwise there is possibility there Unique
Constraint is violated and exception is thrown.

Value of i is even10

Value of i is odd9

Value of i is even8

Value of i is odd7

Value of i is even6

Value of i is odd5

Value of i is even4

Value of i is odd3

Value of i is even2

Value of i is odd1

Handouts

Page | 63
Virtual University of Pakistan

Module 10: Iterative Control – II

1. Continue Statement
Continue statement is used to Conditionally Exit from current iteration of loop, the statements
after continue statement are skipped and control is transferred to next iteration. In other
words, it forces the next iteration of the loop to take place, skipping any code in between.

2. Implementing Continue with Basic Loop
Following piece of coder serves as a simple example to illustrate the implementation of
Continue Statement with Basic Loop

DECLARE
X NUMBER := 0;

BEGIN

LOOP
DBMS_OUTPUT.PUT_LINE ('Inside loop: x = ' || TO_CHAR(x));
x := x + 1;
IF x < 3 THEN

CONTINUE;

END IF;
DBMS_OUTPUT.PUT_LINE ('Inside loop, after CONTINUE: x = ' || TO_CHAR(x));

EXIT WHEN x = 5;

END LOOP;
DBMS_OUTPUT.PUT_LINE (' after loop: x = ' || TO_CHAR(x));

END;

Output of the Program

Inside loop: x = 0

Inside loop: x = 1

Inside loop: x = 2

Inside loop, after CONTINUE: x = 3

Inside loop: x = 3

Inside loop, after CONTINUE: x = 4

Inside loop: x = 4

Inside loop, after CONTINUE: x = 5

Handouts

Page | 64
Virtual University of Pakistan

After loop: x = 5

3. Continue When Statement
Continue-When statement is also use to unconditionally exit from current iteration of the loop.
As in the case of continuous statement, statements after continues-when statement is also
skipped and the control is transferred to the next iteration. Following example would further
elaborate the concept.

4. Implementing Continue WHEN with Loop
Following piece of coder serves as a simple example to illustrate the implementation of
Continue-When Statement with Loop

DECLARE
x NUMBER := 0;

BEGIN

LOOP
DBMS_OUTPUT.PUT_LINE ('Inside loop: x = ' || TO_CHAR(x));
x := x + 1;
CONTINUE WHEN x < 3;
DBMS_OUTPUT.PUT_LINE
('Inside loop, after CONTINUE: x = ' || TO_CHAR(x));

EXIT WHEN x = 5;

END LOOP;
DBMS_OUTPUT.PUT_LINE (' After loop: x = ' || TO_CHAR(x));

END;

5. Implementing Continue WHEN with For Loop
Following piece of coder serves as a simple example to illustrate the implementation of
Continue-When Statement with FOR Loop

DECLARE
val number(3):=3;

BEGIN
FOR i IN 1 .. 10 LOOP
dbms_output.put_line('i=' || TO_CHAR(i));

CONTINUE WHEN (i+1) = val;
dbms_output.put_line('Did not jump to the top of the loop');

END LOOP;

END;

Handouts

Page | 65
Virtual University of Pakistan

6. Nested Loops
Loop can be nested with any other or same type of loops. A nested loop is a loop within a loop,
an inner loop within the body of an outer one. How this works is that the first pass of the outer
loop triggers the inner loop, which executes to completion. Then the second pass of the outer
loop triggers the inner loop again. This repeats until the outer loop finishes. Of course, a break
within either the inner or outer loop would interrupt this process.

7. Syntax of Nested Loops
LOOP – Main Loop

Sequence of statements1
LOOP – Nested or inner loop
Sequence of statements2

END LOOP;

END LOOP;

END

8. Implementing Nested Loops – I
BEGIN

FOR v_outerloopcounter IN 1..2
LOOP
FOR v_innerloopcounter IN 1..4
LOOP
DBMS_OUTPUT.PUT_LINE('Outer Loop counter is ' || v_outerloopcounter);

DBMS_OUTPUT.PUT_LINE(' Inner Loop counter is ' || v_innerloopcounter);

END LOOP;

END LOOP;

END;

Explanation:

For every iteration of outer loop all the iterations of inner loop will be executed.

Output of the Program

Outer Loop counter is 1

Inner Loop counter is 1

Outer Loop counter is 1

Handouts

Page | 66
Virtual University of Pakistan

Inner Loop counter is 2

Outer Loop counter is 1

Inner Loop counter is 3

Outer Loop counter is 1

Inner Loop counter is 4

Outer Loop counter is 2

Inner Loop counter is 1

Outer Loop counter is 2

Inner Loop counter is 2

Outer Loop counter is 2

Inner Loop counter is 3

Outer Loop counter is 2

Inner Loop counter is 4

Statement processed.

9. Implementing Nested Loops – II
DECLARE

v_counter1 INTEGER:=0;
v_counter2 INTEGER:=0;

BEGIN
WHILE v_counter1 < 3
LOOP
DBMS_OUTPUT.PUT_LINE('v_counter1 : ' || v_counter1);
LOOP
DBMS_OUTPUT.PUT_LINE('v_counter2: ' || v_counter2);
v_counter2 := v_counter2 + 1;
v_counter2 := v_counter2 + 1;
EXIT WHEN v_counter2 >= 2;

END LOOP;
v_counter1 := v_counter1+1;

END LOOP;

END;

Output of the Program

v_counter1 : 0

Handouts

Page | 67
Virtual University of Pakistan

v_counter2: 0

v_counter1 : 1

v_counter2: 2

v_counter1 : 2

v_counter2: 4

Handouts

Page | 68
Virtual University of Pakistan

Module 11: Cursor

1. Introduction to Cursors
For Oracle to process a SQL statement it needs to create an area of memory known as the
context area; this will have the information needed to process the statement. A cursor is a
shared memory area in RAM to handle multiple rows which are returned by execution of SQL
query. Through the cursor, a PL/SQL program can control the context area and what happens to
it as the statement is processed. Cursor contains information to process statements and it is
also use to handle multiple rows in SQL.

2. Cursor and SQL
Without cursor SQL SELSCT statement will run only one row and in order to run more than one
rows, cursors comes in as a solution because a cursor is construct to handle multiple rows
return from select statement. In SQL procedures, a cursor makes it possible to define a result
set (a set of data rows) and perform complex logic on a row by row basis.

3. Types of Cursor
There are following two types of cursor along with their details:

A. Implicit:
This cursor is created automatically by oracle server whenever SQL statements are executed
and the user is unaware of this and cannot control or process the information in an implicit
cursor.
B. Explicit
Explicit cursors are programmer defined cursors for gaining more control over the context area.
An explicit cursor should be defined in the declaration section of the PL/SQL Block. The
advantage of declaring an explicit cursor over an indirect implicit cursor is that the explicit
cursor gives the programmer more programmatic control.

4. Cursor Attributes
There are four attributes of cursors and these are explained in the following table:

No. Attribute Syntax Description

1 %NOTFOUND cursor_name%NOTFOUND
A Boolean attribute that returns TRUE if the
previous FETCH did not return a row and FALSE if it
did.

2 %FOUND cursor_name%FOUND
A Boolean attribute that returns TRUE if the
previous FETCH returned a row and FALSE if it did
not.

3 %ROWCOUNT cursor_name%ROWCOUNT The number of records fetched from a cursor at
that point in time.

4 %ISOPEN cursor_name%ISOPEN A Boolean attribute that returns TRUE if the cursor
is open and FALSE if it is not.

Handouts

Page | 69
Virtual University of Pakistan

5. Steps to process Cursor
Following steps are involved in processing the cursor:

∑ Step 01: Declaring the cursor for initializing in the memory [in DECLARE section]
∑ Step 02: Opening the cursor for allocating memory [in BEGIN section]
∑ Step 03: Fetching the cursor for retrieving data [in BEGIN section]
∑ Step 04: Closing the cursor to release allocated memory [in BEGIN section]

6. Processing Implicit Cursor – I
DECLARE

total_rows number(2):=0;

BEGIN
delete from temp;
IF sql%notfound THEN
total_rows := sql%rowcount;
dbms_output.put_line(sql%rowcount ||' Row is deleted');
ELSIF sql%found THEN
total_rows := sql%rowcount;
dbms_output.put_line(total_rows || ' Rows are deleted ');

END IF;
IF total_rows=0 then
INSERT INTO temp values (total_rows, 1, 'Row is inserted');
dbms_output.put_line(sql%rowcount || ' Row is inserted');

END IF;

END;

Explanation:

After execution of delete statement, %notfound will return the count of total number
of rows delete, if there are one or more rows got delete then %notfound will be
evaluated to false and control will be passed to ELSIF.

Output of the Program:

10 Rows are deleted

7. Processing Implicit Cursor – II
DECLARE

total_rows number (2):=0;

BEGIN
UPDATE emp set sal = sal + sal * 0.15 where sal <3000;
dbms_output.put_line (sql%rowcount || ' Row is Updated');

Handouts

Page | 70
Virtual University of Pakistan

DELETE From temp;
dbms_output.put_line (sql%rowcount || ' Row are deleted');

END;
dbms_output.put_line(total_rows || ' Rows are deleted ');

END IF;
IF total_rows=0 then
INSERT INTO temp values (total_rows, 1, 'Row is inserted');
dbms_output.put_line(sql%rowcount || ' Row is inserted');

END IF;

END;

Explanation:

Implicit cursor is attached with every DML statement which get executed and all the
attributes of implicit cursor are attached to lastly executed DML statement. After
execution update statement in the code %rowcount will show total number of rows
effected by update and same is true for delete. The code will insert row in temp table
always because value of total_rows is always 0 in the code.

Output of the Program:

1 Row is Updated

0 Row are deleted

0 Rows are deleted

1 Row is inserted

8. Processing Explicit Cursor – I
DECLARE

cursor c1 is select ename, job from emp where deptno = 10;
name emp.ename%type;
designation emp.job%type;

BEGIN
open c1;

LOOP
fetch c1 into name, designation;
dbms_output.put_line('Name : ' || name || ' Designation : ' || designation);
dbms_output.put_line(c1%rowcount || ' Row are processed ');
EXIT when c1%notfound;

Handouts

Page | 71
Virtual University of Pakistan

END LOOP;
dbms_output.put_line(c1%rowcount || ' Outside loop Row are processed ');

END;

Explanation:

Cursor is defined in Declaration section, Cursor is a name attached with SELECT statement.
When cursor will be open in Begin section it will get two column (ename, job) and all the rows
where deptno=10 and there can be multiple rows. Without Cursor it is not possible that
SELECT statement can return multiple rows but with cursor it is possible. When first row will
be fetched from HardDisk to RAM C1 will be pointing to first row in RAM using fetch keyword.
In the loop value of first row i-e two columns; are loaded into PL/SQL local variable name and
designation. Then name and designation values are displayed on screen. C1%rowcount is
counter which contain value of total number currently fetched. For first iteration
c1%rowcount is 1 as shown in the output below and for next iteration there will be addition of
1 into it. In the exit condition c1%notfound will be evaluated to FALSE because there is next
row in the cursor and control will be transferred back at the start of the loop and C1 will start
pointing to next row in RAM and same process will be repeated. When c1 will be at last row in
the RAM c1%notfound will be evaluated to TRUE because there will be no next row and loop
will terminate.

Output of the Program:

Name: KING Designation: PRESIDENT

1 Row are processed

Name : CLARK Designation : MANAGER

2 Row are processed

Name : MILLER Designation : MT

3 Row are processed

Name : Special Designation :

4 Row are processed

Name : Special Designation :

4 Row are processed

4 Outside loop Row are processed

Statement processed.

Note: The output of the program may vary depending on data available in emp table of
student account

Handouts

Page | 72
Virtual University of Pakistan

9. Processing Explicit Cursor – II
DECLARE

cursor c1 is select hiredate, deptno,job from emp where job like ('%MAN%');
doh emp.hiredate%type;
dno emp.deptno%type;
jd emp.job%type;

BEGIN
open c1;

LOOP
fetch c1 into doh,dno,jd;
dbms_output.put_line('Date of hiring: ' || doh);
dbms_output.put_line('Department no: ' || dno);
dbms_output.put_line('Job: ' || jd);
EXIT WHEN c1%notfound;

END LOOP;

END;

Output of the Program

Date of hiring: 05/01/1981

Department no: 30

Job: MANAGER

Date of hiring: 06/09/1981

Department no: 10

Job: MANAGER

Date of hiring: 04/02/1981

Department no: 20

Job: MANAGER

Date of hiring: 02/20/1981

Department no: 30

Job: SALESMAN

Date of hiring: 02/22/1981

Department no: 30

Job: SALESMAN

Date of hiring: 09/28/1981

Handouts

Page | 73
Virtual University of Pakistan

Department no: 30

Job: SALESMAN

Date of hiring: 09/08/1981

Department no: 30

Job: SALESMAN

Date of hiring: 09/08/1981

Department no: 30

Job: SALESMAN

Note: The output of the program may vary depending on data available in emp table of
student account

10. Processing Explicit Cursor – III
To do task:

Write a PL/SQL to display 4 records from emp table and if these 4 records have maximum salary
among them display maximum salary.

Solution:

DECLARE
cursor c1 is select sal from emp;
max_sal number(10):=0;
sal emp.sal%type;

BEGIN
SELECT MAX (sal) into max_sal from emp;
open c1;

LOOP
fetch c1 into sal;
IF sal = max_sal then
dbms_output.put_line ('Maximum salary is reached');

ELSE
dbms_output.put_line ('Maximum salary Not reached');

END IF;
EXIT WHEN c1%rowcount >4;

END LOOP;

Handouts

Page | 74
Virtual University of Pakistan

END;

Output of the Program

Maximum salary Not reached

Maximum salary Not reached

Maximum salary Not reached

Maximum salary Not reached

Maximum salary Not reached

Statement processed.

Note: The output of the program may vary depending on data available in emp table of
student account

11. Processing Explicit Cursor – IV
To do task:

Write a PL/SQL statement to name of employee having bottom 4-salary respectively.

Solution:

DECLARE
cursor c1 is select ename, sal from emp order by sal;
name emp.ename%type;
salary emp.sal%type;

BEGIN
open c1;

LOOP
fetch c1 into name, salary;
dbms_output.put_line('Name : ' || name);
dbms_output.put_line('Salary : ' || salary);
EXIT WHEN c1%rowcount > 4;

END LOOP;

END;

Explanation:

In the cursor Name and Sal are retrieved from emp table but in Ascending order and then in
the loop only first 4 rows are displayed using check on c1%rowcount>4.

Output of the Program

Handouts

Page | 75
Virtual University of Pakistan

Name : Special

Salary : 2783

Name : ADAMS

Salary : 8513.197

Name :

Salary : 9680

Name :

Salary : 9680

Name : MILLER

Salary : 9993.4021

Note: The output of the program may vary depending on data available in emp table of
student account

12. Processing Explicit Cursor – V
DECLARE

cursor c1 is
SELECT deptno, sal, ename
FROM emp
WHERE job = 'ANALYST';
total_val number(10):=0;

BEGIN
total_val := 0;
FOR employee_rec in c1

LOOP
total_val := total_val + employee_rec.sal;
dbms_output.put_line ('Total Salary : ' || total_val);

END LOOP;

END;

Output of the Program

Total Salary : 15064

Total Salary : 29143

Statement processed.

Handouts

Page | 76
Virtual University of Pakistan

13. Processing Explicit Cursor – VI
DECLARE

CURSOR c1 IS
SELECT ename, job FROM emp
WHERE job LIKE '%CLERK%' AND mgr > 120;

BEGIN
FOR item IN c1

LOOP
DBMS_OUTPUT.PUT_LINE
('Name = ' || item.ename || ', Job = ' || item.job);

END LOOP;

END;

Explanation:

Cursor is open, fetched and closed using FOR Loop. In the FOR loop to process Cursor only
declaration in declare section is required rest of the steps are done automatically by FOR
Loop.

Output of the Program

Statement processed.

14. Processing Explicit Cursor with SQL – I
To do task:

Write a PL/SQL block to update the salary of all those employees who are working in
organization for at least 10 years, increase their salary by 20% and display empno, update salary
and currentdate

Solution:

DECLARE
cursor c1 is select empno, sal from emp where months_between(sysdate, hiredate)>120;
eno emp.empno%type;
salary emp.sal%type;
update_sal number(10):=0;

BEGIN
open c1;

LOOP
fetch c1 into eno, salary;
update_sal:=salary+salary*0.20;

Handouts

Page | 77
Virtual University of Pakistan

update emp set sal = update_sal where
empno=eno;
dbms_output.put_line('Employee no: ' || eno);
dbms_output.put_line('Updated Salary: ' || update_sal);
EXIT WHEN c1%notfound;

END LOOP;

END;

15. Processing Explicit Cursor with SQL- II
To do task:

Write a PL/SQL block to insert a row a temp table if sum of salary exceeds 20000 , insert
current sum of salary, total employees having sum of 20000 salary and current date, otherwise
display salary of current employee and name of employee.

Solution:

DECLARE
cursor c1 is select ename, sal from emp;
name emp.ename%type;
salary emp.sal%type;
total number(10):=0;
rows number(10):=0;

BEGIN
open c1;

LOOP
fetch c1 into name, salary;
total:=total+salary;
rows:=c1%rowcount;
IF (total > 20000) then
INSERT INTO temp values (total, rows, sysdate);
dbms_output.put_line('Total salary : ' || total);
dbms_output.put_line('Total Employees : ' || rows);
dbms_output.put_line('Current Date : ' || sysdate);

END IF;
EXIT WHEN c1%notfound;

END LOOP;
close c1;

END;

Handouts

Page | 78
Virtual University of Pakistan

Handouts

Page | 79
Virtual University of Pakistan

Module 12: Error Handling & Built-in Exceptions

1. Error vs. Exception
Errors can be defined as compile time syntax issues while run-time error are defined as
exceptions. In other words, an exception is a PL/SQL error that is raised during program
execution. Exceptions can be internally defined (by the run-time system) or user defined.
PL/SQL provide solution to handle such conditions using EXCEPTION block in the program and
an appropriate action is taken against the error condition.

2. Need for Exception Handling
Exception cause the program to terminate the program abnormally and that is not practically
possible to foresee all such problematic events. Even the best programmer can have bugs in
code written by him. Whenever an exception is raised, flow of the program breaks and the
control is lost from the developer view point. So it’s important to take precautionary measures
in advance to avoid such happenings.

3. Handling Exceptions
As mentioned above, PL/SQL provides a solution to handle exceptions by using EXCEPTIONS
block in the program. Using this, run-time errors can be handled to avoid abnormal termination
of the program. The syntax if EXCEPTION block is coming in the following lines. Before that its
important to see how exception handling works.

4. How Exceptions Handlin Works
Whenever a run-time error is generated, an exception is raised. The flow or the normal
execution of the program stops. Control is transferred to the EXCEPTION block of the PL/SQL
where the necessary actions are defined to handle exception. Internal exceptions are raised
implicitly (automatically) by the run-time system. User-defined exceptions must be raised
explicitly by RAISE statements, which can also raise predefined exceptions.

5. Types of Exceptions
There are two types of Exceptions. Details are as follows:

∑ Internal Exceptions: These are pre-defined and they are executed in case of violations of
any database rule by the program. Internal exceptions are raised automatically.

∑ User-Defined: PL/SQL also allows user to define their own exceptions according to the
need of the program. This type of exceptions is not raised automatically and user should
raise it.

6. Formation of Built-In Exceptions
There are three (03) components of a Built-In Exception:

∑ Exception Name
∑ Exception Unique Number: These are system generated

Handouts

Page | 80
Virtual University of Pakistan

∑ Description

Consider the following examples:

7. Syntax of Exception
Below is the basic syntax of an exception:

Declare Section
All the declarations

Begin
Executable statements

Exception Section – One per block
Exception handling statements

End;

Things to be kept in mind:

∑ One Exception section per block
∑ Nested blocks can have separate exception section

8. Scope of Exception
Declare Section

All the declarations

Error Name Error Code Description

Handouts

Page | 81
Virtual University of Pakistan

Begin
Executable statements

Exception handling statements
declare – Inner block

begin
exception – local to innerblock

End;

Exception Section – Global exception

End;

9. Implementing Build-In Exception – I
Declare

name varchar2 (30):='';

Begin
SELECT ename into name
FROM emp
WHERE empno=9882;
dbms_output.put_line(Name);

Exception
WHEN no_data_found then
dbms_output.put_line('Record not matched');
WHEN others then
dbms_output.put_line(SQLCODE);
dbms_output.put_line(SQLERRM);

End;

Explanation:

When Query is executed in begin block and there is no matching record in emp table then
no_data_found exception is raised automatically by the server, in the exception section user
friendly message is displayed by handling the particular exception. If there is any other type of
exception is raised then WHEN others THEN will take care of it. SQLCODE will return code of
the exception raised and SQLERRM will raised the associated message with it.

Output of the Program

Record not matched

Handouts

Page | 82
Virtual University of Pakistan

10. Implementing Built-In Exception and SQL-II
Declare

name varchar2 (30):='';

Begin
INSERT INTO emp(empno) values (7369);
dbms_output.put_line(Name);

Exception
WHEN no_data_found then
dbms_output.put_line('Record not matched');
WHEN DUP_VAL_ON_INDEX then
dbms_output.put_line('Unique Key Violated');
WHEN others then
dbms_output.put_line(SQLCODE);
dbms_output.put_line(SQLERRM);

End;

Explanation:

Exception can be raised with Query and any DML statement like Insert in this code.

Output of the Program

Unique Key Violated

11. Implementing Built-In Exception and SQL- III
Declare

name varchar2(30):='';

Begin
SELECT ename into name from emp;

Exception
WHEN no_data_found then
dbms_output.put_line('Record not matched');
WHEN DUP_VAL_ON_INDEX then
dbms_output.put_line('Unique Key Violated');
WHEN others then
dbms_output.put_line(SQLCODE);
dbms_output.put_line(SQLERRM);

End;

Explanation:

Select is returning more than one row without using cursor, multiple rows return exception will
be raised and control will be transferred to WHEN others THEN.

Handouts

Page | 83
Virtual University of Pakistan

Output of the Program

-1422

ORA-01422: exact fetch returns more than requested number of rows

12. Implementing Nested Exceptions – I
Declare

name varchar2(30);

Begin
SELECT ename into name from emp where empno=7369;
dbms_output.put_line(name);

Begin
INSERT INTO emp (empno) values(7369);
dbms_output.put_line(name);

Exception
WHEN dup_val_on_index then
dbms_output.put_line('Duplicated values in inner block');
when others then
dbms_output.put_line('In inner block');
dbms_output.put_line(SQLCODE);

end;

Exception
WHEN NO_data_found then
dbms_output.put_line('No Data Found in outer Block');
WHEN others then
dbms_output.put_line('No Data found in outer block');

End;

Explanation:

Local exception (inner block) always overrides exception defined in the outer block. If there is
no matching exception handler in the inner block then program look of exception handler in
outer block.

Output of the Program

KAMRAN

Duplicated values in inner block

Handouts

Page | 84
Virtual University of Pakistan

13. Implementing Nested Exceptions – II
Declare

name varchar2(30);

Begin
SELECT ename into name from emp where empno=7369;
dbms_output.put_line(name);

Begin
select ename into name from emp where empno=7338;
dbms_output.put_line(name);

Exception
WHEN INVALID_NUMBER then
dbms_output.put_line(SQLCODE);

End;

Exception
when NO_DATA_FOUND then
dbms_output.put_line('No Data found in outer block');

End;

Output of the Program

KAMRAN

No Data found in outer block

Handouts

Page | 85
Virtual University of Pakistan

Module 13: User Defined Exceptions

1. What is User Defined Exception?
Any exception defined by the user in order to avoid any specific problematic situation or event
are known as User Defined Exceptions. User must have to define them explicitly as they are not
available by default in the system. User defined exceptions are also raised by the user (hence
they are not automatically raised) as per control of the program. Exceptions can be declared
only in the declarative part of a PL/SQL block. Below is the basic syntax of user defined
exceptions.

2. Syntax of user Defined Exceptions
The syntax of user defined exception is as follows:

DECLARE
user_define_exception_name EXCEPTION;

BEGIN
statement(s);
IF condition THEN
RAISE user_define_exception_name;

END IF;

EXCEPTION
WHEN user_define_exception_name THEN
User defined statement (action) will be taken;

END;

3. Implementing User Defined Exception – I
Declare

Invalid_salary exception;
name emp.ename%type;
salary emp.sal%type;

Begin
SELECT name, sal into name, salary from emp where empno=7369;
IF salary <5000 then
raise invalid_salary;
else
dbms_output.put_line('Valid Salary');
End if;

Exception
WHEN invalid_salary then
dbms_output.put_line('InValid Salary');

Handouts

Page | 86
Virtual University of Pakistan

End;

Output of the Program:

Valid Salary

4. Implementing User Defined Exception – II
Scenario:

Write a PL/SQL block to insert row in emp table, while inserting data in emp table if salary is
less than minimum salary then raise an exception other.

Solution:

DECLARE
low_sal EXCEPTION;
min_sal NUMBER:= 10000;
new_sal NUMBER:= 8000;

BEGIN
INSERT INTO EMP(EMPNO, DEPTNO, SAL)
VALUES (4000,20,new_sal);
IF new_sal < min_sal THEN
RAISE low_sal;

END IF;

EXCEPTION
WHEN low_sal THEN
DBMS_OUTPUT.PUT_LINE ('Salary is less than '||min_sal);
WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE (SQLERRM);

END;

Output of the Program

Salary is less than 10000

5. Implementing User Defined Exception – III
DECLARE

past_due EXCEPTION;

acct_num NUMBER;

BEGIN

Handouts

Page | 87
Virtual University of Pakistan

DECLARE

acct_num NUMBER;

due_date DATE := SYSDATE - 1;

todays_date DATE := SYSDATE;

BEGIN

IF due_date < todays_date THEN

RAISE past_due;

END IF;

END; -- sub-block ends

EXCEPTION

-- Does not handle raised exception

WHEN past_due THEN

DBMS_OUTPUT.PUT_LINE ('Handling PAST_DUE exception in Global declaration.');

WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE ('Could not recognize PAST_DUE_EXCEPTION in this scope.' ||
SQLCODE);

END;

Explanation:

Past_due exception is declared in the outer block but raised in the inner block. Inner block will
first search for past_due exception handler in the inner block first and if there is no exception
handler then exception handler is searched in the outer block

Output of the Program

Handling PAST_DUE exception in Global declaration.

Handouts

Page | 88
Virtual University of Pakistan

Module 14: Advance Exceptions

1. Raise_Application_Error
It’s a built-in procedure lets you issue user-defined ORA- error messages from stored
subprograms. That way, you can report errors to your application and avoid returning
unhandled exceptions. It allows system to terminate any PL/SQL block and behave like pre-
define or user define exception.

2. Raise vs Raise_Application_Error
Raise is used to call pre-defined or user-defined exception while on the other hand
Raise_application_erorr let the developer show the customized message with number. PL/SQL
Block terminates the processing when there is some error. If we want to raise an exception and
change the path of processing developer can place RAISE statements. By Raise statement,
developer can raise user defined exceptions.

3. Syntax of Raise_Application_Error
The syntax to Pre-define procedure to return user-friendly message back to user is as follows:

raise_application_error(
error_number, message[, {TRUE | FALSE}]);

Where,

∑ Error_number is a negative integer in the range -20000 to -20999
∑ Message is a character string up to 2048 bytes long

4. Implementing Raise_application_error – I
Declare

name emp.ename%type;
salary emp.sal%type;

Begin
select ename, sal into name, salary from emp where empno=7369;
if salary <5000 then
Raise_application_error(-20030, ‘Invalid salary’);
else
dbms_output.put_line('Valid Salary');

End if;

Exception
when others then
dbms_output.put_line(SQLERRM);

End;

Handouts

Page | 89
Virtual University of Pakistan

Output of the Program:

Valid Salary

5. Implementing User Defined Exception – II
Consider the following scenario:

Write a PL/SQL block to retrieve the ename, job, mrg and hiredate for a particular empno and
make sure data is retrieved without error i-e if any field have null value then raise the following
exceptions:

Exception No Message
-20010 No Name
-20020 No Job
-20030 No Manager
-20040 No Hire Date

Declare
v_ename emp.ename%TYPE;
v_job emp.job%TYPE;
v_mgr emp.mgr%TYPE;
v_hiredate emp.hiredate%TYPE;
p_empno emp.empno%type:=7654;

BEGIN
SELECT ename, job, mgr, hiredate
INTO v_ename, v_job, v_mgr, v_hiredate FROM emp
WHERE empno = p_empno;
IF v_ename IS NULL THEN
RAISE_APPLICATION_ERROR(-20010, 'No name for ' || p_empno);

END IF;
IF v_job IS NULL THEN
RAISE_APPLICATION_ERROR(-20020, 'No job for' || p_empno);

END IF;
IF v_mgr IS NULL THEN
RAISE_APPLICATION_ERROR(-20030, 'No manager for ' || p_empno);

END IF;
IF v_hiredate IS NULL THEN
RAISE_APPLICATION_ERROR(-20040, 'No hire date for ' || p_empno);

END IF;
DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno || ' validated without errors');

Handouts

Page | 90
Virtual University of Pakistan

EXCEPTION
WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);

END;

Output of the Program

Employee 7654 validated without errors

6. What is exception_init Pragma
The EXCEPTION_INIT pragma associates a user-defined exception name with an error code. Ora
– Error no can be intercepted and specific handler can be written. In other words, it allows you
to handle the Oracle predefined message by your own message which means you can instruct
compiler to associate the specific message to oracle predefined message at compile time.
Pragma signifies that it’s a compiler directive and it is processed at compile time not run-time.

7. Syntax of Exception_init Pragma
Here is the syntax to associate customize message to pre-defined exceptions:

DECLARE
user_define_exception_name EXCEPTION;

PRAGMA EXCEPTION_INIT(user_define_exception_name,-error_number);

BEGIN
statement(s);
IF condition THEN

RAISE user_define_exception_name;

END IF;

EXCEPTION
WHEN user_define_exception_name THEN User defined statement (action) will be taken;

END;

8. Implementing Exception_init Pragma – I
DECLARE

salary number;
FOUND_NOTHING exception;
Pragma exception_init(FOUND_NOTHING ,100);

Handouts

Page | 91
Virtual University of Pakistan

Begin
SELECT sal in to salary from emp where ename =‘Akbar';
dbms_output.put_line(salary);

Exception
WHEN FOUND_NOTHING THEN
dbms_output.put_line(SQLERRM);

End;

Explanation:

User defined Found nothing exception is associated with built-in exception # 100.

Output of the Program

ORA-01403: no data found

9. Implementing Exception_init Pragma – II
DECLARE

deadlock_detected EXCEPTION;
PRAGMA EXCEPTION_INIT(deadlock_detected, -60);

BEGIN
dbms_output.put_line('In the begin section');

EXCEPTION
WHEN deadlock_detected THEN
dbms_output.put_line('Deadlock is detected');

END;

Handouts

Page | 92
Virtual University of Pakistan

Module 16: Collection

1. What is Collection?
A collection is an ordered group of elements, all of the same type. It is a general concept that
encompasses lists, arrays, and other familiar data types. Each element has a unique subscript
that determines its position in the collection and data is accessed through index which can be
random. Although collection can hold multiple data but still size of collection is dynamic.

2. PL/SQL Tables or Associated Array
Associative arrays are sets of key-value pairs, where each key is unique and is used to locate a
corresponding value in the array. The key can be an integer or a string. Assigning a value using a
key for the first time adds that key to the associative array. Subsequent assignments using the
same key update the same entry. It is important to choose a key that is unique, either by using
the primary key from a SQL table, or by concatenating strings together to form a unique value.

Key thing to remember is that size of the PL/SQL Table is dynamic and index is not needed to be
numeric only i-e Index can be string also, index can be random also meaning user can assign
index number of its own choice.

The collection is indexed using BINARY_INTEGER values, which do not need to be consecutive.
Index can be sparse or dense.

3. Syntax of PL/SQL Tables
The syntax is given below:

Step-1:

TYPE table_type_name IS TABLE OF datatype [NOT NULL] INDEX BY BINARY_INTEGER;
Binary_integer: It store less than number

Range: -2147483647 to 2147483647

Step-2:

Variable of type Table_type_name

4. Implementing PL/SQL Tables -I
DECLARE

TYPE JobTabTyp IS TABLE OF emp.ename%type
INDEX BY BINARY_INTEGER;
job_tab JobTabTyp; -- declare local PL/SQL table
job_title emp.job%TYPE;
designation varchar2(16):='Prog';
counter number(10):=0;

Handouts

Page | 93
Virtual University of Pakistan

BEGIN
loop
job_tab(counter) :=designation; -- Assigning designation variable to first index of job_tab

dbms_output.put_line (job_tab(counter));
counter:=counter+1;
exit when counter >10;

End loop;

END;

Explanation:

Value of local variable Designation is assigned to every index of PL/SQL Table i-e job_tab

Output of the Program

Prog

Prog

Prog

Prog

Prog

Prog

Prog

Prog

Prog

Prog

Prog

PL/SQL Tables and Attributes

Attributes are available with PL/SQL tables which make them easy to use. There are total 7
attributes namely EXISTS, COUNT, FIRST, LAST, PRIOR, NEXT, and DELETE. They make PL/SQL
tables easier to use and the applications easier to maintain. Among these attributes some
needs parameters and some act like a procedure, for example DELETE.

5. Syntax of using PL/SQL Table with attributes
The syntax of using PL/SQl table with attributes is as follows: but this should be kept in mind
that any or no attribute can be used with PL/SQL tables

plsql_table_name{
FIRST |

Handouts

Page | 94
Virtual University of Pakistan

NEXT |
DELETE[(index[, index])]
EXISTS(index) |
COUNT |
NEXT(index) |
PRIOR(index)}

6. PL/SQL Table and First and Next Attribute

First & Last

These are PL/SQL table attributes, which can be appended to the name of a PL/SQL table. FIRST
and LAST return the first and last (smallest and largest) index numbers in a PL/SQL table. If the
PL/SQL table is empty, FIRST and LAST return nulls. If the PL/SQL table contains only one
element, FIRST and LAST return the same index number.

Next

NEXT(n) returns the index number that succeeds index n in a PL/SQL table. Parameter is
required in executing next attribute. If n has no successor, NEXT(n) returns a null.

7. PL/SQL Table and Count Attribute
Count is a numeric attribute which return total number of index created. In other words,
COUNT returns the number of elements that a PL/SQL table contains and it is useful because
index are not sequential by default.

8. PL/SQL Table and Exist Attribute
EXISTS (n) returns TRUE if the nth element in a PL/SQL table exists. Otherwise, EXISTS (n)
returns FALSE. You can use EXISTS to avoid the exception NO_DATA_FOUND, which is raised
when you reference a nonexistent element.

9. PL/SQL Table and Delete Attribute
It can be used with name of PL/SQL table to delete particular entry from the table. This
attribute has three forms. DELETE removes all elements from a PL/SQL table. DELETE (n)
removes the nth element. If n is null, DELETE (n) does nothing. DELETE (m, n) removes all
elements in the range m..n. If m is larger than n or if m or n is null, DELETE (m, n) does nothing.

10. Implementing PL/SQL Table -II
DECLARE

cursor c1 is select ename from emp where sal <3000;
type c2 is table of emp.ename%type index by binary_integer;

Handouts

Page | 95
Virtual University of Pakistan

c3 c2;
counter number(10):=0;

Begin
for i in c1 loop
counter: =counter+2;
c3(counter):=i.ename;
dbms_output.put_line (c3(counter));

End loop;

End;

Explanation:

A cursor is declared to fetch all those ename where salary < 3000. Then PL/SQL Table c2 is
declared to hold ename type data and in last step c3 is declared of c2 type. In the begin
section for loop is used to process cursor, now the counter of PL/SQL is having increment of 2
instead of 1 i-e index in c3 are created with gap of 2 not 1; this is possible in PL/SQL . Value
from cursor is coped into PL/SQL Table and is displayed in next step.

Output of the Program

Special

Statement processed.

11. Implementing PL/SQL Table -III
DECLARE

cursor c1 is select ename from emp;
type c2 is table of emp.ename%type index by binary_integer;

c3 c2;
counter number(10):=0;
b number(10):=0;

Begin
for i in c1 loop
counter :=counter+2;
c3(counter):=i.ename;
--dbms_output.put_line (c3(counter));

End loop;
dbms_output.put_line ('Value of counter : ' || counter);
dbms_output.put_line (c3.count());
while (b<counter) loop
if c3.exists(b) then
dbms_output.put_line ('Value exists at Index : '|| b);

Handouts

Page | 96
Virtual University of Pakistan

End if;
b:=b+1;

End loop;

End;

Explanation:

The code is extension to previous example, after copying data in the PL/SQL table c3, in the
while loop values from the PL/SQL are displayed but since index are not consecutives and
c3.exists (b) will return true if index exists at bth location otherwise it will return false and IF
will be evaluated to false. For every true value of c3.exists (b) respective value will be
displayed on screen.

12. Implementing PL/SQL Table -IV
Scenario

Write a PL/SQL block to load all the Employee names into PL/SQL Table and copy the values in
another PL/SQL Table before deleting those values from first PL/SQL Table

DECLARE
cursor c1 is select ename from emp;
type c2 is table of emp.ename%type index by binary_integer;

c3 c2;

c4 c2;
counter number(10):=0;
b number(10):=0;

Begin
for i in c1 loop
counter :=counter+2;
c3(counter):=i.ename;
--dbms_output.put_line (c3(counter));

End loop;
dbms_output.put_line ('Value of counter : ' || counter);
dbms_output.put_line (c3.count());
while (b<counter) loop
if c3.exists(b) then
dbms_output.put_line ('Value exists at Index : '|| b);
c4(b):=c3(b);
c3.delete(b);
dbms_output.put_line ('Value is deleted at Index '|| b);
dbms_output.put_line ('Value copied in new PL/SQL Table '|| c4(b));

Handouts

Page | 97
Virtual University of Pakistan

End if;
b:=b+1;

End loop;

End;

13. Implementing PL/SQL Table and SQL- I

Scenario

Write a PL/SQL block to load all the Employee names into PL/SQL Table and insert the values
into another table along with employee number and currentdate

DECLARE
cursor c1 is select ename from emp;
type c2 is table of emp.ename%type index by binary_integer;

c3 c2;

c4 c2;
counter number(10):=0;
b number(10):=0;

Begin
for i in c1 loop
counter :=counter+2;
c3(counter):=i.ename;
--dbms_output.put_line (c3(counter));

End loop;
dbms_output.put_line ('Value of counter : ' || counter);
dbms_output.put_line (c3.count());
while (b<counter) loop
if c3.exists (b) then
insert into history values (b,c3(b),sysdate());
dbms_output.put_line ('Row is inserted using PL/SQL Table');

End if;
b:=b+1;

End loop;

End;

Handouts

Page | 98
Virtual University of Pakistan

Module 17: Records

1. What is Record?
A record is a group of related data items stored in fields, each with its own name and data-type.
Suppose a database have various data about an employee such as name, salary, and hire date.
These items are logically related but dissimilar in type. A record containing a field for each item
lets you treat the data as a logical unit. Thus, records make it easier to organize and represent
information. Records consist of different fields, similar to a row of a database table. A record is
a composite data type, which means that it can hold more than one piece of information, as
compared to a scalar data type, such as a number or string.

2. Types of Record
There are following three types of Records. Their details are coming below.

∑ Table Base
∑ Cursor Base
∑ User Defined

3. Table Base
A table-based record, or table record, is a record whose structure (set of columns) is drawn
from the structure (list of columns) of a table. Each field in the record corresponds to and has
the same name as a column in the table. The fact that a table record always reflects the current
structure of a table makes it useful when managing information stored in that table.

4. Implementing Table-based Records – I
Declare

emp_rec emp%rowtype;

Begin
select * into emp_rec from emp where empno=7369;
dbms_output.put_line (emp_rec.ename || ' ' || emp_rec.job);

Exception
when no_data_found then
dbms_output.put_line('No matching record found');

End;

5. Implementing Table-based Records - II
DECLARE

emp_rec emp%ROWTYPE;

BEGIN
emp_rec.empno := 500;
emp_rec.ename := 'Special';

Handouts

Page | 99
Virtual University of Pakistan

emp_rec.ename := 'Consultant';
emp_rec.mgr := 7369;
emp_rec.hiredate := sysdate;
emp_rec.sal := 2000;
emp_rec.comm := NULL;
emp_rec.deptno := 10;

INSERT INTO emp
VALUES emp_rec;
dbms_output.put_line('Record base insertion is done');

END;

6. Cursor-based Records
A cursor-based record, or cursor record, is a record whose structure is drawn from the SELECT
list of a cursor. RowType in used in Oracle to create Cursor based records. You could declare a
cursor record with the same syntax as a table record, but you don't have to match a table's
structure. A SELECT statement creates a "virtual table" with columns and expressions as the list
of columns. A record based on that SELECT statement allows you to represent a row from this
virtual table in exactly the same fashion as a true table record.

7. Implementing Cursor -based Records – I
Scenario

Write a PL/SQL block which should look for first occurrence of employee either with
designation of CLERK or salary greater than 3000. Program should exit after this displaying
success message.

Solution

Declare
cursor c1 is select * from emp;
c2 c1%rowtype;

Begin
open c1;
loop
fetch c1 into c2;
if c2.sal > 2000 or c2.job='CLERK' then
dbms_output.put_line ('Value is matched');
exit

End if;
exit when c1%notfound;

End loop;

End;

Handouts

Page | 100
Virtual University of Pakistan

Output of the Program:

Value is matched

8. Implementing Cursor -based Records – II
Declare

cursor c1 is select empno,ename,dname from emp e, dept d where e.deptno=d.deptno;
c2 c1%rowtype;

Begin
open c1;
loop
fetch c1 into c2;
if c2.dname='SALES' then
update emp set sal = sal*0.20 + sal where empno=c2.empno;
dbms_output.put_line ('Salary is updated by 20% of Employee no: ' || c2.empno);

End if;
Exit when c1%notfound;

End loop;

End;

9. User Defined Record
UDR is composite data type and with UDR programmer have control over definition. User can
define structure of UDR and variable of UDR type. With the programmer-defined record, you
have complete control over the number, names, and datatypes of fields in the record. To
declare a programmer-defined record, you must perform two distinct steps:

∑ Declare or define a record TYPE containing the structure you want in your record.
∑ Use this record TYPE as the basis for declarations of your own actual records having that

structure.

10. Syntax of User Defined Record
The syntax for creating a User Defined Records is given below:

Step# 1:
TYPE <type_name> IS RECORD
(<field_name1> <datatype1>,
<field_name2> <datatype2>,
... <field_nameN> <datatypeN>);

Step # 2:
Declare variable of Type_name;

∑ With UDR programmer is able to define its own structure

Handouts

Page | 101
Virtual University of Pakistan

∑ Multiple variables of same UDR can be created

11. Implementing User Defined Record – I
Scenario

Write a PL/SQL block to display the information of first 5 employees who are working as MAN in
their ename

Solution

Declare
type emp_rec is RECORD (empno emp.empno%type, ename emp.ename%type, sal
emp.ename%type);
emp_rec_val emp_rec;
cursor c1 is select empno, ename, sal from emp where job like ('%MAN%');

Begin
open c1;
loop
fetch c1 into emp_rec_val;
dbms_output.put_line (emp_rec_val.ename || emp_rec_val.sal);

Exit when c1%rowcount > 5;

End loop;

End;

12. Implementing User Defined Record – II
Declare

type emp_rec is RECORD (empno emp.empno%type, ename emp.ename%type, sal
emp.ename%type);
emp_rec_val emp_rec;
cursor c1 is select empno, ename, sal from emp where job like ('%MAN%');

Begin
open c1;
loop
fetch c1 into emp_rec_val.empno, emp_rec_val.ename,emp_rec_val.sal;
if emp_rec_val.ename ='BLAKE' then
insert into history values (emp_rec_val.empno, emp_rec_val.ename,sysdate());
dbms_output.put_line ('Data Added in history table');

End if;
exit when c1%rowcount > 5;

End loop;

Handouts

Page | 102
Virtual University of Pakistan

End;

Module 18: Procedures

Handouts

Page | 103
Virtual University of Pakistan

1. What is Sub-Program?
A PL/SQL subprogram is a named PL/SQL block that can be invoked with a set of parameters. A
subprogram created to perform a particular task. These subprograms are combined to form
larger programs. This is basically called the 'Modular design'. Subprograms can either be
created at schema level, inside a package, or inside a PL/SQL block (which can be another
subprogram).

2. What is Procedure?
Procedure is a database object and a type of subprogram which is created to perform a certain
task. Such task can be called multiple times to avoid repetition and have efficiency. Procedure is
a subprogram that can take parameters and be called. Generally, you use a procedure to
perform an action. A procedure has two parts: the specification and the body.

3. Details of Procedure
Programmers can specify the name of the procedure, its parameters, its local variables, and the
BEGIN-END block that contains its code and handles any exceptions. You can specify whether
the procedure executes using the schema and permissions of the user who defined it, or the
user who calls it. It can receive zero or more parameters as an input and it can return value to
the calling environment but the returning value is optional. Summarizing:

∑ Procedure can performs one or more tasks
∑ Procedure may or may not return value
∑ Procedures are normally used for executing business logic.

4. Syntax of Creating PL/SQL Procedure
The Syntax of Creating PL/SQL Procedure is as follows:

CREATE [OR REPLACE] PROCEDURE procedure_name
[(parameter_name [IN | OUT | IN OUT] type [, ...])] {IS | AS

}

BEGIN
< procedure_body >

END procedure_name;

As mentioned above it can be called multiple times and different ways are available to compile,
debug and run the procedure.

5. Creating First Procedure
Step -1:

Handouts

Page | 104
Virtual University of Pakistan

CREATE OR REPLACE PROCEDURE first_proc
AS

BEGIN
dbms_output.put_line('Hello World!');

END;

/

Output of the Program:

Procedure Created

Step-2:

Calling Procedure from another Block:

Begin
first_proc;

End;

Output of the Program:

Hello World.

6. Debugging the Procedure
Procedure is compiled and executed separately. Data Dictionary can be used to identify errors

CREATE OR REPLACE PROCEDURE first_proc

AS

BEGIN
dbms_output.put_line('Hello World!);

END;

/

Output of the Program:

ORA-24344: success with compilation error

To view Errors user_errors data dictionary is to be browsed as below to find out error:

Select * from user_errors where name=‘FIRST_PROC’;

Handouts

Page | 105
Virtual University of Pakistan

7. Implementing Procedure – I
CREATE OR REPLACE PROCEDURE name_proc

AS
cursor c1 is select * from emp where ename like ('%AK%');
c2 c1%rowtype;

BEGIN
loop
fetch c1 into c2;
dbms_output.put_line (c2.ename);
exit when c1%notfound;
end loop;

END name_proc;

Output of the Program:

Procedure Created

/

Calling the Procedure:

Begin
Name_proc;

End;

8. Implementing Procedure – II
CREATE OR REPLACE PROCEDURE name_proc

AS
cursor c1 is select ename from emp where ename like ('%AK%');
c2 c1%rowtype;

BEGIN
loop
fetch c1 into c2;
dbms_output.put_line (c2.ename);
exit when c1%notfound;
end loop;

END name_proc;

/

Calling the Procedure:

Begin
Name_proc;

Handouts

Page | 106
Virtual University of Pakistan

End;

9. Procedure and Parameters
The two parameters along with their description are as follows:

Parameter Description
IN ∑ An IN parameter lets you pass a value to the Procedure.

∑ It is a read-only parameter.
∑ Inside the subprogram, an IN parameter acts like a constant. It cannot be

assigned a value.
∑ If there is no parameter type mention in header then IN is default
∑ If there is no parameter type mention in header then IN is default

OUT ∑ It returns value to the calling program.
∑ Inside the subprogram, an OUT parameter acts like a variable. You can change

its value and reference the value after assigning it.

10. Dropping a Procedure
A procedure is deleted with the DROP PROCEDURE statement. Procedure name will be deleted
from data dictionary automatically. The syntax to a drop a procedure is:

DROP PROCEDURE procedure_name;

Where,

procedure_name is the name of the procedure that you wish to drop.

11. Implementing IN / OUT parameter – I
Scenario

Write a PL/SQL procedure to find minimum among two values passed to the procedure.
Program should display the value of minimum value returned.

DECLARE
a number;
b number;
c number;
PROCEDURE findMin(x IN number, y IN number, z OUT number) IS

BEGIN
IF x < y THEN
z:= x; --

ELSE
z:= y;
END IF;

END;

Handouts

Page | 107
Virtual University of Pakistan

BEGIN
a:= 23;
b:= 45;
findMin(a, b, c); -- Parameter c will received value assigned to x inside procedure .
dbms_output.put_line(' Minimum of (23, 45) : ' || c);

END;

/

Explanation:

Since X is OUT type parameter, value to be return from procedure is copied into x

Output of the Program

Minimum of (23, 45): 23

12. Implementing IN / OUT parameter – II
Scenario:

Write a PL/SQL procedure to adjust the salary of the employee by percentage of the salary
provided at run-time. The procedure should return name of the employee which get updated
salary. Procedure will receive employeeid and % of salary to be updated.

CREATE OR REPLACE PROCEDURE adjust_salary(
in_employee_id IN emp.ename%TYPE,
in_percent IN NUMBER, employeename out varchar2

) IS

BEGIN
-- update employee's salary
UPDATE emp
SET sal = sal + sal * in_percent / 100
WHERE empno = in_employee_id;
select ename into employeename from
emp where empno=in_employee_id;
END;

Output of the Program:

Procedure created.

--Calling the Procedure

Declare
id emp.empno%type:=7369;

Handouts

Page | 108
Virtual University of Pakistan

percent number(10):=10;
name emp.ename%type;

Begin
adjust_salary (id,percent,name);
dbms_output.put_line ('Name of Employee with updated salary ' || name);

End;

Output of the Program:

Old sal = 141076, New sal = 155183.6Difference: 14107.6

Name of Employee with updated salary KAMRAN

13. Implementing Procedure with parameter – III
Scenario:

Write a PL/SQL procedure to display list of the employee names working in any particular
department. Procedure will receive deptno as input only.

create or replace PROCEDURE Get_emp_names (
Dept_num IN NUMBER) IS
Emp_name VARCHAR2(10);
CURSOR c1 IS
SELECT Ename FROM Emp
WHERE deptno = dept_num;

BEGIN
OPEN c1;
LOOP
FETCH c1 INTO Emp_name;
DBMS_OUTPUT.PUT_LINE(Emp_name);
EXIT WHEN C1%NOTFOUND;
END LOOP;
CLOSE c1;

END;

Output of the Program

Procedure created.

--Calling the Procedure

Begin

Handouts

Page | 109
Virtual University of Pakistan

Get_emp_names (10);

End;

Output of the Procedure:

KING

CLARK

MILLER

Special

Special

14. Implementing IN / OUT with Multiple OUT values
Scenario

Write a PL/SQL procedure to adjust the salary of the employee by percentage of the salary
provided at run-time. The procedure should return name and designation of the employee
which get updated salary. Procedure will receive employeeid and % of salary to be updated.

CREATE OR REPLACE PROCEDURE adjust_salary(

in_employee_id IN emp.ename%TYPE,

in_percent IN NUMBER, employeename out varchar2, employeedesignation out varchar2

)

IS

BEGIN

UPDATE emp

SET sal = sal + sal * in_percent / 100

WHERE empno = in_employee_id;

select ename, job into employeename , employeedesignation from emp

where empno=in_employee_id;

END;

Handouts

Page | 110
Virtual University of Pakistan

Explanation:

Multiple values to be send as output are copied from ename, job into employeename,
employeedesignation i-e both are OUT parameter type. In the calling environment OUT values
are received into name and desig variables which are locally defined PL/SQL variable.

Output of the Program

Procedure created

Declare
id emp.empno%type:=7369;
percent number(10):=10;
name emp.ename%type;
Desig emp.job%type;

Begin
adjust_salary (id,percent,name, desig);
dbms_output.put_line ('Name of Employee with updated salary ' || name);
dbms_output.put_line ('Employee Designation : ' || desig);

End ;

Handouts

Page | 111
Virtual University of Pakistan

Module 19: Functions

1. What is Function?
Function is a database object and a type of subprogram which is created to perform a certain
task. A function is a named PL/SQL Block which is similar to a procedure. The major difference
between a procedure and a function is, a function must always return a value, but a procedure
may or may not return a value. The tasks performed by the function can be called multiple
times to avoid repetition and have efficiency.

2. Details of Function
The further details about function are as follows:

∑ It can receive zero or more parameters as an input.
∑ It can return value to the calling environment.
∑ Returning value is Mandatory. In other words, Procedure may or may not return value

whereas function should return one value
∑ Function are normally used for computation.

3. Function vs. Procedure
In Function vs. Procedure comparison, there are following points:

∑ Both are Database Objects.
∑ Both can receive one or more parameters
∑ Procedure can performs one or more tasks whereas function performs a specific task.
∑ Procedure may or may not return value whereas function should return one value.
∑ Functions are normally used for computation whereas procedures are normally used for

executing business logic.

4. Syntax of Creating PL/SQL Function
The syntax to create PL/SQL function is given below:

CREATE [OR REPLACE] FUNCTION function_name [(parameter [,parameter])]
RETURN return_datatype

BEGIN
< function_body >
Return value

END function_name;

Again,

∑ It can be called multiple times
∑ It must return a value

Handouts

Page | 112
Virtual University of Pakistan

5. Creating First Function
CREATE OR REPLACE FUNCTION totalemployees

RETURN number IS
total number(2) := 0;

BEGIN
SELECT count(*) into total
FROM emp;
RETURN total;

END;

/

Output of the Program:

Function created.

Calling a Function:

DECLARE
c number(2);

BEGIN
c := totalemployees(); dbms_output.put_line('Total no. of Employees: ' || c);

END;

/

Output of the Program:

Total no. of Employees: 46

6. Debugging the Function
Function is compiled and executed separately. Data Dictionary can be used to identify errors.

CREATE OR REPLACE FUNCTION totalemployees
RETURN number IS
total number(2) := 0;

BEGIN
SELECT count(*) into total
FROM em;
RETURN total;

END;

Handouts

Page | 113
Virtual University of Pakistan

/

Output of the Program:

ORA-24344: success with compilation error

Debugging the Function:

select * from user_errors where name=‘TOTALEMPLOYEES’;

7. Dropping a Function
A function is deleted with the DROP FUNCTION statement. Function name will be deleted from
data dictionary automatically. The syntax to a drop a function is:

DROP FUNCTION function_name;

Where,

Function_name is the name of the function that you wish to drop.

8. Function and IN & OUT parameters
There are three type of parameter type in Functions and Procedures. IN and OUT types are
already discussed in the Procedure section. Third parameter type is INOUT. Parameter type
INOUT can behave as both IN and OUT simultaneously meaning it can used to passed value into
the function and same parameter can be used to write out (returning value) value by function

9. Implementing Function using IN Parameter – I
CREATE or replace FUNCTION Ask_salary(emp_no IN NUMBER)

RETURN NUMBER
IS emp_sal NUMBER(11,2);

BEGIN
SELECT sal
INTO emp_sal
FROM emp
WHERE empno=emp_no;
RETURN(emp_sal);

END;

Explanation:

This function will receive emo_no as input and will return salary of the employee to the calling
environment. The value of emp_no can’t be changed in the function body because parameter
type of emp_no is IN.

Output of the Program:

Handouts

Page | 114
Virtual University of Pakistan

Function created.

Calling a Function:

Declare
salary emp.sal%type;

Begin
salary:=ask_salary(7369);
dbms_output.put_line(salary);

End;

Output of the Program:

170701.96

10. Implementing Function using IN and OUT Parameter–II
CREATE or replace FUNCTION Ask_salary(emp_no IN NUMBER, emp_name out varchar2)

RETURN NUMBER
IS emp_sal NUMBER(11,2);

BEGIN
SELECT sal, ename
INTO emp_sal, emp_name
FROM emp
WHERE empno=emp_no;
RETURN(emp_sal);

END;

Explanation:

This function will receive emo_no as input and will return ename and return salary of the
employee to the calling environment. This function is returning multiple values using Function.
The value of emp_no can’t be changed in the function body because parameter type of
emp_no is IN.

Calling a Function:

Declare
salary emp.sal%type;
emp_name varchar2(30);

Begin
salary:=ask_salary(7369, emp_name);

Handouts

Page | 115
Virtual University of Pakistan

dbms_output.put_line(salary ||emp_name);
dbms_output.put_line(emp_name);

End;

11. Implementing Function using IN OUT – III
CREATE OR REPLACE FUNCTION inout_fn (outparm IN OUT VARCHAR2)

RETURN VARCHAR2 IS

BEGIN
outparm := 'Coming out';
RETURN 'return param';
END inout_fn;

/

DECLARE
retval VARCHAR2(20);
ioval VARCHAR2(20) := 'Going in';

BEGIN
DBMS_OUTPUT.put_line('In: ' || ioval);
retval := inout_fn(ioval);
DBMS_OUTPUT.put_line('Out: ' || ioval);
DBMS_OUTPUT.put_line('Return: ' || retval);

END;

/

Explanation:

In the function outparm is having INOUT parameter type i-e value can be updated during the
function body and the same parameter can be used to return value to the calling
environment. Ioval is passed from the calling environment, in the body of the function ioval is
updated to ‘Coming out’ and is same value is written back to outparam i-e this is only possible
when parameter type is INOUT both.

Output of the Program

In: Going in

Out: Coming out

Return: return param

Handouts

Page | 116
Virtual University of Pakistan

12. Using Function and Procedure Together
Scenario

Write a PL/SQL Procedure to add new employee in the Database, Name of Employee and Salary
will be passed as parameter to procedure and date of hiring will be inserted in addition to it. A
function should return 1 if there is at least one hiring in last 1 month otherwise it should return
0

Solution:

Create or replace PROCEDURE hire_employee (name VARCHAR2, salary number) AS
id number(10):=0;

BEGIN
select max(empno) into id from emp;
INSERT INTO emp(empno, ename, sal, hiredate) VALUES (id+1, name, salary, sysdate);

END hire_employee;

Create or replace function check_employee_status
return number as
total number(10):=0;

Begin
select count(*) into total from emp where hiredate = sysdate - 30;
if total>1 then
return 1;
else return 0;
End if;

End check_employee_status;

Declare
name varchar2(15):='KAMRAN';
salary_emp number(10):=15000;
Result number(2);

Begin
hire_employee (name, salary_emp);
result:= check_employee_status();
if (result=1) then
dbms_output.put_line ('There is hiring in last month');

Else
dbms_output.put_line ('There is No hiring in last month');

End if;

End;

Handouts

Page | 117
Virtual University of Pakistan

Module 20: Triggers

1. What is Trigger?
A trigger is a PL/SQL unit stored in a database which if fired when a DML is executed on a table.
It comes with enable and disable feature, which means it be can enabled and disabled. Triggers
can be invoked or fired repeatedly but one cannot invoke it explicitly as trigger is fired
automatically when a attached DML is executed. While a trigger is disabled, it does not fire. The
way to create triggers is coming in the following lines.

2. Triggers and Views
Trigger as mentioned above is a database object and it can be defined on the table, view,
schema, or database with which the event is associated. Trigger on base-table is fired if DML is
issued against View. If the trigger is created on a table or view, then the triggering event is
composed of DML statements, and the trigger is called a DML trigger.

3. Rationale for Trigger
Trigger supplement standard Oracle capabilities and trigger can allow time-base insertion in the
specific table. Triggers let you customize your database management system. For example, you
can use triggers to:

∑ Automatically generate virtual column values
∑ Log events
∑ Gather statistics on table access from audit and security viewpoint.

4. Triggers Type: Row and Statement Level
When you define a trigger, you can specify the number of times the trigger action is to be run.
Based on this, there are following two types of Triggers.

Row Level

A row trigger is fired for each row that is affected by the triggering statement. For example, if
an UPDATE statement updates multiple rows of a table, a row trigger is fired once for each row
affected by the UPDATE statement. If a triggering statement affects no rows, a row trigger is
not executed.

Statement Level

A statement trigger is fired once on behalf of the triggering statement, regardless of the
number of rows affected by the associated DML, even if no rows are affected. For example, if a
DELETE statement deletes several rows from a table, a statement-level DELETE trigger is fired
only once.

Handouts

Page | 118
Virtual University of Pakistan

5. Triggers Type: Before & After
When defining a trigger, you can specify the trigger timing—whether the trigger action is to be
run before or after the triggering statement. BEFORE and AFTER apply to both statement and
row triggers. BEFORE and AFTER triggers fired by DML statements can be defined only on
tables, not on views. However, triggers on the base tables of a view are fired if an INSERT,
UPDATE, or DELETE statement is issued against the view. BEFORE and AFTER triggers fired by
DDL statements can be defined only on the database or a schema, not on particular tables.

Before: BEFORE triggers run the trigger action before the triggering statement is run. It is
execute before the execution of DML statement.

After: AFTER triggers run the trigger action after the triggering statement is run. Trigger is
executed after execution of associated DML statement.

6. Syntax of Creating Trigger in PL/SQL
The syntax is as follows: When Clause is used when conditional execution of Trigger is required

CREATE [OR REPLACE] TRIGGER trigger_name
{BEFORE | AFTER | INSTEAD OF } {INSERT [OR] | UPDATE [OR] | DELETE}
[OF col_name] ON table_name
[REFERENCING OLD AS o NEW AS n]
[FOR EACH ROW]
WHEN (condition)

Declare

BEGIN
sql statements

END;

7. Creating First Trigger in PL/SQL
Please consider the following scenario in order to understand the concept of triggers:

Write a Trigger to store the previous values of the product if there change in any price of the
product. History table should be maintained to keep record of the previous values just like a
shadow table.

drop table product;
CREATE TABLE product
(product_id number(5),
product_name varchar2(32),
supplier_name varchar2(32),
unit_price number(7,2));

drop table product_price_history;

Handouts

Page | 119
Virtual University of Pakistan

CREATE TABLE product_price_history
(product_id number(5),
product_name varchar2(32),
supplier_name varchar2(32),
unit_price number(7,2));

CREATE or REPLACE TRIGGER price_history_trigger
BEFORE UPDATE OF unit_price
ON product
FOR EACH ROW

BEGIN
INSERT INTO product_price_history
VALUES (:old.product_id, :old.product_name, :old.supplier_name, :old.unit_price);

END; /

When UPDATE is issued as follow:

UPDATE PRODUCT SET unit_price = 800 WHERE product_id = 1;

Product_Price_history Table is automatically populated

select * from product_price_history;

Select * from User_triggers where trigger_name = ‘PRICE_HISTORY_TRIGGER’;

8. Implementing Trigger in PL/SQL - II
CREATE OR REPLACE TRIGGER print_salary_changes

BEFORE DELETE OR INSERT OR UPDATE ON emp
FOR EACH ROW
WHEN (NEW.job <> 'AD_PRES') -- do not print information about President

DECLARE
sal_diff NUMBER;

BEGIN
sal_diff := :NEW.sal - :OLD.sal;
DBMS_OUTPUT.PUT(:NEW.ename || ': ');
DBMS_OUTPUT.PUT('Old sal = ' || :OLD.sal || ', ');
DBMS_OUTPUT.PUT('New sal = ' || :NEW.sal);
DBMS_OUTPUT.PUT('New sal = ' || :NEW.sal || ', ');
DBMS_OUTPUT.PUT_LINE('Difference: ' || sal_diff);

END;

Handouts

Page | 120
Virtual University of Pakistan

9. Implementing Trigger in PL/SQL - III
Scenario

Write a Trigger which should enforce referential integrity constraint while inserting data in Emp
table. Insert or Updating in Emp table should ensure the corresponding deptno in dept table
should existence prior to DML statement, if there is no matching parent record in Dept table
then DML should not be executed.

CREATE OR REPLACE TRIGGER Emp_dept_check
BEFORE INSERT OR UPDATE OF Deptno ON Emp
FOR EACH ROW WHEN (new.Deptno IS NOT NULL)

DECLARE
Dummy INTEGER; -- to be used for cursor fetch
Invalid_department EXCEPTION;
Valid_department EXCEPTION;
CURSOR Dummy_cursor IS
SELECT Deptno FROM Dept
WHERE Deptno = :new.Deptno
FOR UPDATE OF Deptno;

BEGIN
OPEN Dummy_cursor;
FETCH Dummy_cursor INTO Dummy;
IF Dummy_cursor%NOTFOUND THEN
RAISE Invalid_department;

ELSE
RAISE valid_department;
END IF;
CLOSE Dummy_cursor;

EXCEPTION
WHEN Invalid_department THEN
CLOSE Dummy_cursor;
Raise_application_error(-20000, 'Invalid Department‘ Number' || :new.deptno);
WHEN Valid_department THEN
CLOSE Dummy_cursor;

END;

Output of the Program

Trigger created.

Handouts

Page | 121
Virtual University of Pakistan

When Row is inserted into Emp table with invalid deptno (90) as below:

insert into emp (empno, deptno) values(99,90);

Trigger get executed and data is not inserted in Emp table.

ORA-20000: Invalid Department‘ Number90 ORA-06512: at
"SAMPLEDATABASE.EMP_DEPT_CHECK", line 21 ORA-04088: error during execution of trigger
'SAMPLEDATABASE.EMP_DEPT_CHECK' 1. insert into emp (empno, deptno) values(99,90);

10. Implementing Table Level Trigger in PL/SQL - IV
Scenario

Write a Trigger which should be used to track every insert statement i-e not the data which is
inserted. Log table will provide the count along with data / time of every insertion on Emp
Table.

CREATE TABLE Emp_log (Log_date DATE, Action CHAR(30));
CREATE OR REPLACE TRIGGER Log_emp_update
AFTER UPDATE ON emp –- Table level

BEGIN
INSERT INTO Emp_log (Log_date, Action) VALUES (SYSDATE, 'Employee Table Updated');

END;

11. Enabling and Disabling the Triggers
As mentioned above, triggers can be disabled and enabled, depending upon the requirements.

∑ Trigger can be made temporarily ineffective by using disable statement
∑ Trigger can be made effective by using enable statement

The basic syntax for both is as follows:

alter trigger emp_dept_check disable;

alter trigger emp_dept_check enable;

Handouts

Page | 122
Virtual University of Pakistan

12. Dropping the Triggers
Trigger can be made dropped using Drop Trigger Command and in that case Entry from data
dictionary will be removed.

The syntax is as follows:

drop trigger emp_dept_check;

Through this all the entries from the Data Dictionaries will be removed.

Module 21: Package

Handouts

Page | 123
Virtual University of Pakistan

1. What is package?
It is Database Object which group together different Database Objects. groups logically related
PL/SQL types, variables, constants, subprograms, cursors, and exceptions. A package is
compiled and stored in the database. Packages offer several advantages: modularity, easier
application design, information hiding, added functionality, and better performance. Packages
let you encapsulate logically related types, items, and subprograms in a named PL/SQL module.
Each package is easy to understand, and the interfaces between packages are simple, clear, and
well defined. This aids application development.

2. Parts of package
There are following two parts of a Package:

Package Specification: The specification is the interface to your applications; it declares the
types, variables, constants, exceptions, cursors, and subprograms available for use. The spec
holds public declarations, which are visible to the application

Package Body: The body fully defines cursors and subprograms, and so implements the spec.
The body holds implementation details and private declarations, which are hidden from your
application.

3. Syntax of Package
Syntax for Creating Package is as follows:

Step-1:

CREATE PACKAGE Name of Package AS
Prototype of Database Object (Function, Procedure, Trigger)

End Package Name

Step-2:

CREATE PACKAGE Body Name AS
Implemtation of Prototype of Database Object (Function, Procedure, Trigger) defined in
Package Specification
End Database Object Name

End Package Name

Again,

∑ Package Specification contain definitions only like Global Variables
∑ Package Body contain implementation

