CS726, Fall 2007
Final Examination
Tuesday, December 21, 2007, 5:05pm—7:05pm.

Answer all FOUR questions below. One handwritten sheet of notes (written front
and back) is allowed. EXPLAIN ALL YOUR ANSWERS.

1. Define the function f to be the following strictly convex quadratic:

1
f(z) = EmTAm + 0Tz +c,

where z € R" and A is an n X n positive definite matrix.
(a) Find an explicit formula for the exact minimizing « of the function

def
t(e) = f(z+ ap),

where x and p are vectors such that p # 0 and = is not a minimizer of
I
Solution (5 points):

1 1

t(a) = §a2pTAp + ap’ (Az +b) + (ixTAx +bTz 4 ¢),
SO
t'(a) = ap” Ap+p" (Ax +b)

so the minimizing « satisfies

pl (Ax +b)
pTAp

(Clearly t”(a) = pT Ap > 0 by positive definiteness of A.)
(b) For what values of ¢ is the first Wolfe condition satisfied by the mini-
mizing « from part (a)? (The first Wolfe condition is that f(x + ap) <

f(@) + c1aV f(2)"p.)

Solution (5 points): Letting a* be the minimizing «, we have

* T(Az +b))?
fla+a'p) - fl) = 4 EED)
whereas
T 2
10"V f(2)Tp = —%

Hence, the Wolfe condition is satisfied if ¢; < 1/2.



2. Let {x} be a sequence of vectors in R" and let f be a twice continuously
differentiable function.
(a) If {Vf(zx)} has an accumulation point at 0, does it follow that the
sequence {x} must have a stationary accumulation point?

Solution (5 points): No. The sequence {z;} may not be bounded, so
may not have an accumulation point.

(b) Suppose that limg_,oc 2, = z* for some z*, that limy_, Vf(zx) = 0,
and that there is a constant 3 > 0 such that matrices V?f(z}) are
positive definite with

V2 f (@) [ (V2 f(2e) " < B, for all k> 0.

Are the second-order sufficient conditions for * to be a local minimizer
of f satisfied at z*?

Solution (5 points): No. Clearly by the smoothness conditions on f, we
have that Vf(z*) = limg_ Vf(zx) = 0, and

V2f(z*) = klim V2 f(xp).

Since all V2f(x},) are positive definite, it follows that V2f(z*) is at least
positive semidefinite. However, the limit does not have to be positive definite.
Consider the case of f(r) = 23 and 2 = k=1, for which the condition numbers
of the Hessians are all 1.



3. (a) The BFGS quasi-Newton updating formula for the approximate inverse
Hessian Hj can be written as follows:

Hy1 = (I — peseyl VHi(I — pryrst) + prsisi ,

where

1
Pk = 7 -
ykTSk

Show that if Hy, is positive definite and the curvature condition y{ s, > 0

holds, then Hyy; is also positive definite.

Solution (6 points): Note that the curvature condition implies that
pr. > 0. Defining Ey, = I — pryrst, we have for any z € R” that

2T Hyp12 = 2T EFHLEz + pr(st 2)2.

Both terms on the right-hand side are nonnegative, by positive definite-
ness of Hy, so that Hy is at least positive semidefinite.
If 27 Hy 112 = 0, we must have s z, which implies that Eyz = z. Hence,

0= zTHkHz = zTsz,

which by positive definiteness of Hj, implies that z = 0. Hence 27 Hy, 12 =}
0= 2=0, so Hg is positive definite.
(b) If yl's; <0, is it still possible for Hy1 to be positive definite?

Solution (4 points): No. Setting z = y;, in the discussion above, we
have E}z = 0 and therefore

2" Hyp12 = pr(siyr)® = skyr <0,

so Hy1 has at least one nonpositive eigenvalue.



4.

(a)

Consider the function r : R — R defined by r(z) = 29, where ¢ is an
integer greater than 2. (Note that z* = 0 is the sole root of this function
and that it is degenerate, that is, r/(z*) is singular.) Show that Newton’s
method converges Q-linearly, and find the value of the convergence ratio
(the limiting bound on ||xg+1 — 2*||/||lxx — *|]).

Solution (4 points):

x} 1
Tyl = Tk — () =z —rg=m (1= ).
() gz} q

Hence defining e = x, — ™ = xp, we have

lewtall 1 _g—1

llexl ¢  q

Show that Newton’s method applied to the function r(z) = —2°+2%+4x
starting from zg = 1 generates a sequence of iterates that alternates
between +1 and —1.

Solution (3 points): We have

—mi + xi + 4xy,

B o7 SR oy

Hence, when z; = 1, we have

1 —1+1+14 1
€T =1 — = _
i —5+3+4 ’
while when x, = —1, we have
o 1-1-4d 1+2=1
Ti— = — _——— = — = .
k=1 —5+3+4

Find the roots of the function in (b), and check that they are nondegen-
erate.
Solution (3 points): We have r(z) = z(—z* + 22 + 4) which besides
the degenerate root at « = 0 has roots when —z? + 22 + 4 = 0, that is,
when

22— —1£v1+16 _ 1:|:\/17'
-2 2

Hence the other roots are at

1++/17

r==
2

To verify nondegeneracy we need to check that /() # 0, that is,

2
1+ V17 1+ V17
0+ —ba* + 322 +4=-5 <+2> +3+T+4: —17 — V17.



