
CS726, Fall 2007
Final Examination

Tuesday, December 21, 2007, 5:05pm–7:05pm.

Answer all FOUR questions below. One handwritten sheet of notes (written front
and back) is allowed. EXPLAIN ALL YOUR ANSWERS.

1. Define the function f to be the following strictly convex quadratic:

f(x) =
1
2
xT Ax + bT x + c,

where x ∈ IRn and A is an n× n positive definite matrix.
(a) Find an explicit formula for the exact minimizing α of the function

t(α) def= f(x + αp),

where x and p are vectors such that p 6= 0 and x is not a minimizer of
f .

Solution (5 points):

t(α) =
1
2
α2pT Ap + αpT (Ax + b) + (

1
2
xT Ax + bT x + c),

so

t′(α) = αpT Ap + pT (Ax + b)

so the minimizing α satisfies

α = −pT (Ax + b)
pT Ap

.

(Clearly t′′(α) = pT Ap > 0 by positive definiteness of A.)
(b) For what values of c1 is the first Wolfe condition satisfied by the mini-

mizing α from part (a)? (The first Wolfe condition is that f(x + αp) ≤
f(x) + c1α∇f(x)T p.)

Solution (5 points): Letting α∗ be the minimizing α, we have

f(x + α∗p)− f(x) = − 1
2

(pT (Ax + b))2

pT Ap
,

whereas

c1α
∗∇f(x)T p = −c1

(pT (Ax + b))2

pT Ap
.

Hence, the Wolfe condition is satisfied if c1 ≤ 1/2.



2. Let {xk} be a sequence of vectors in IRn and let f be a twice continuously
differentiable function.
(a) If {∇f(xk)} has an accumulation point at 0, does it follow that the

sequence {xk} must have a stationary accumulation point?

Solution (5 points): No. The sequence {xk} may not be bounded, so
may not have an accumulation point.

(b) Suppose that limk→∞ xk = x∗ for some x∗, that limk→∞∇f(xk) = 0,
and that there is a constant β > 0 such that matrices ∇2f(xk) are
positive definite with

‖∇2f(xk)‖‖(∇2f(xk))−1‖ ≤ β, for all k > 0.

Are the second-order sufficient conditions for x∗ to be a local minimizer
of f satisfied at x∗?

Solution (5 points): No. Clearly by the smoothness conditions on f , we
have that ∇f(x∗) = limk→∞∇f(xk) = 0, and

∇2f(x∗) = lim
k→∞

∇2f(xk).

Since all ∇2f(xk) are positive definite, it follows that ∇2f(x∗) is at least
positive semidefinite. However, the limit does not have to be positive definite.
Consider the case of f(x) = x3 and xk = k−1, for which the condition numbers
of the Hessians are all 1.



3. (a) The BFGS quasi-Newton updating formula for the approximate inverse
Hessian Hk can be written as follows:

Hk+1 = (I − ρkskyT
k )Hk(I − ρkyksT

k ) + ρksksT
k ,

where

ρk =
1

yT
k sk

.

Show that if Hk is positive definite and the curvature condition yT
k sk > 0

holds, then Hk+1 is also positive definite.

Solution (6 points): Note that the curvature condition implies that
ρk > 0. Defining Ek = I − ρkyksT

k , we have for any z ∈ IRn that

zT Hk+1z = zT ET
k HkEkz + ρk(sT

k z)2.

Both terms on the right-hand side are nonnegative, by positive definite-
ness of Hk, so that Hk+1 is at least positive semidefinite.
If zT Hk+1z = 0, we must have sT

k z, which implies that Ekz = z. Hence,

0 = zT Hk+1z = zT Hkz,

which by positive definiteness of Hk implies that z = 0. Hence zT Hk+1z =
0 ⇒ z = 0, so Hk+1 is positive definite.

(b) If yT
k sk ≤ 0, is it still possible for Hk+1 to be positive definite?

Solution (4 points): No. Setting z = yk in the discussion above, we
have Ekz = 0 and therefore

zT Hk+1z = ρk(sT
k yk)2 = sT

k yk ≤ 0,

so Hk+1 has at least one nonpositive eigenvalue.



4. (a) Consider the function r : IR → IR defined by r(x) = xq, where q is an
integer greater than 2. (Note that x∗ = 0 is the sole root of this function
and that it is degenerate, that is, r′(x∗) is singular.) Show that Newton’s
method converges Q-linearly, and find the value of the convergence ratio
(the limiting bound on ‖xk+1 − x∗‖/‖xk − x∗‖).

Solution (4 points):

xk+1 = xk −
r(xk)
r′(xk)

= xk −
xq

k

qxq−1
k

= xk

(
1− 1

q

)
.

Hence defining ek = xk − x∗ = xk, we have

‖ek+1‖
‖ek‖

= 1− 1
q

=
q − 1

q
.

(b) Show that Newton’s method applied to the function r(x) = −x5+x3+4x
starting from x0 = 1 generates a sequence of iterates that alternates
between +1 and −1.

Solution (3 points): We have

xk+1 = xk −
−x5

k + x3
k + 4xk

−5x4
k + 3x2

k + 4
.

Hence, when xk = 1, we have

xk+1 = 1− −1 + 1 + 4
−5 + 3 + 4

= −1,

while when xk = −1, we have

xk=1 = −1− 1− 1− 4
−5 + 3 + 4

= −1 + 2 = 1.

(c) Find the roots of the function in (b), and check that they are nondegen-
erate.

Solution (3 points): We have r(x) = x(−x4 + x2 + 4) which besides
the degenerate root at x = 0 has roots when −x4 + x2 + 4 = 0, that is,
when

x2 =
−1±

√
1 + 16

−2
=

1±
√

17
2

.

Hence the other roots are at

x = ±

√
1 +

√
17

2
.

To verify nondegeneracy we need to check that r′(x) 6= 0, that is,

0 6= −5x4 + 3x2 + 4 = −5

(
1 +

√
17

2

)2

+ 3
1 +

√
17

2
+ 4 = −17−

√
17.


