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Lecture 1 

Introduction 

• Welcome to the course of Advanced Computer Architecture.  

• This course of Advanced Computer Architecture has been developed with the 

assumption that the students have basic knowledge of: digital logic design, computer 

organization and design, programming model of microprocessor; memory and 

input/output interfacing with the microprocessor and fundamentals of Computer 

Architecture      

• My name is Muhammad Ashraf Chughtai, After completing my Bachelor‘s and Masters 

degrees from the University of Engineering and Technology, Lahore in 1974 and 1978, 

respectively I completed my Ph.D. from the University of Manchester (UMIST) UK in 

1986. After spending 32 years at UET Lahore, as lecturer through professor, presently I 

am associated with COMSATS. 

 

Computer System 

 
• Computer system is a collection of Central Processing Unit, memory system and 

peripheral devices, all interconnected by groups of conductors called buses 

 

Computer Architecture Verses Organization 

• Architecture refers to those attributes of a computer visible to a programmer or compiler 

writer such as: instruction set, addressing techniques, I/O mechanisms etc. The 

members of each family (say Intel x86 family and IBM family) share the same basic 

architecture and have code compatibility, 

• Organization refers to how the features of a computer are implemented; i.e., control 

signal generation as FSM or microprogramming, memory technology-SRAM, DRAM etc, 

hardware or software based realization of operation-multiplication by hardware or 

algorithmically. Moreover, the organization of same architecture may differ between 

different versions; i.e., different versions of Intel x86 family may have different 

organizations 

 

Academic History: 

• In 1944, John von Neumann introduced the concept of stored-program computer, 

referred to as Electronic Discrete Variable Automatic Computer – EDVAC.  
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• In 1945/46, the world‘s first operational electronic general-purpose computer, Electronic 

Numerical Integrator And Calculator- ENIAC, built at the Moore School of University of 

Pennsylvania and became operational in the World War-II. ENIAC used 18,000 vacuum 

tubes and was 80 feet long, several orders of magnitude bigger than today‘s machines 

and could perform 1900 additions per second.  

• In 1946, Institute for Advanced Study-ISA at Princeton, introduced IAS machine which 

was roughly 10 times faster than ENIAC.  

• In 1948, a small prototype stored-program machine, Mark-I (the name adopted from first 

electromechanical computer built at Harvard), was built at the University of Manchester. 

At Harvard, the Mark-I was followed by the relay machine Mark-II; and a pair of vacuum 

tube computers - Mark-III and Mark-IV, terms as Harvard Architecture. These computers 

had separate memories for instructions and data. 

• In 1949, Maurice Wilkes of Cambridge University, built the world‘s first full-scale, 

operational stored program computer, Electronic Delay Storage Automatic Calculator – 

EDSAC. 

• In 1949, Eckert-Mauchly Computer Corporation built first machine BINAC. The company 

was acquired by Remington-Rand, where first general-purpose Universal Automatic 

Computer UNIVAC-I was produced in 1951, which was sold for $1 million.  

• In 1952, IBM® produced its first stored-program computer IBM-701.  

• In 1963, Seymour Cray announced first supercomputer CDC 6600 from Control Data 

Corporation – CDC; in 1964 announced a series of System/360; and introduced models 

40, 50, 65 and 75. These models varied in clock rate (1.6-5.1 MHz), memory size (32KB-

1 MB), cost $(0.225M – 1.900M) and performance.  

• In 1965, Digital Equipment Corporation – DEC introduced first low-cost computer, 

minicomputer PDP-8, for under $0.02M.  

• In 1976, Cray Research Inc. (formed by Seymour Cray left in 1970 when he left CDC) 

announced the world‘s fastest, most expensive and with best cost verses performance 

supercomputer Cray-I. 

 

Microprocessors 1971 – 2006:  

 
• In 1971, while Cray was creating the World‘s most expensive machines, Intel introduced 

first cheep microprocessor 4004  

• In 1977, personal computer Apple-II was introduced by Steve Jobs and Steve Wozniak. 

• In 1981, IBM announced personal computers employing the Intel‘s microprocessor 

80x86 and running Microsoft operating system.  
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• 1995 and onwards: With the introduction of personal computers, the era of 

supercomputer could not last for more than two decades, as:  

• In 1996, Cray Research was handed over to Silicon Graphics 

• In 1998, more than 350 million microprocessors with different instruction set 

architectures were in use.  

• In 2006, his number has risen to more than a billion 

 

Course Focus: Quantitative principle of computer design 

• The primary aim of this course is to have an in-depth study of the concepts of computer 

architecture, which have already been introduced to you; and the concepts which are 

relevant for professional computer scientist, engineers and architects.  

• The emphasis will be given to expose the advances in the field through cost-

performance-power trade-offs and good engineering design.  

• The course gives: 

 - quantitative principles of computer design 

 - instruction set architecture 

 - datapath and control: implementation and performance 

 - advanced pipelining concepts 

 - memory hierarchy design, Main memory, Cache, Hard drives 

 - multiprocessor architecture 

 - storage and input/output systems 

 - computer clusters 

 

Textbook:  

Hennessy J. L and Petterson D. A, Computer Architecture: A quantitative approach, 3rd Edition, 

Morgan Kaufmann publishers, 2003 

• Fundamentals of Computer Design (Review) 03 Lectures Ch. 1  

• Instruction Set Principles    02 Lectures Ch. 2 

• Pipelining Basics     05 Lectures (App. A) 

• Instruction Level Parallelism    15 Lectures Ch. 3 & 4 

• Memory Hierarchy Design    06 Lectures Ch. 5 

• Multiprocessors     04 Lectures Ch. 6 

• I/O and Storage System    04 Lectures Ch. 7 

• Interconnection Networks    6 Lectures Ch. 8   

 

References:  

• Hennessy J. L and Petterson D. A, Computer Organization and Design: The 

hardware/software interface, 2nd Edition, Morgan Kaufmann publishers, 1998 

• Stalling W, Computer Organization and Architecture, 6th Edition, Prentice Hall, 2003 

• Relevant research papers on Computer Architecture from conferences, transactions and 

journals of IEEE and ACM etc. 
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Course Style: Research in the small 

• We wants you to succeed, but you need to show initiative  

• We will provide you opportunity to do ―research in the small‖ to help make 

transition from good student to research colleague 

 

Research Project: 

• pick topic for 3 weeks work full time 

• meet 3 times with faculty/TA 

• give online presentation 

• Submit written report like conference paper 

 

Four Perspective of Computer Architecture 

 
Computer Architecture can be considered from four perspectives 

• Processor Design 

• Memory Hierarchy 

• Input/output and storages 

• Multiprocessor and Network interconnection 

 

Processor Design: 
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• Instruction set architecture: Addressing modes and protections 

• Datapath designs: Multiple cycles and pipelines, ILP, Hazards etc. 

• L1 Caches: design, blocks and associativity 

 

Memory Hierarchy: 

 

 
 

• L2 Caches: Coherence, bandwidth and latency 

• Main memory: DRAM, interfacing and protocols 

• Virtual memory: Interfacing and protocols 

 

I/O and Storage: 

 
• Disks and taps 

• Redundant Array of Inexpensive Disks-RAID  
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Multiprocessor and Networks: 

 

 
 

• Shared memory 

• Interconnecting networks 

• Network switches 

• Routing, bandwidth and latency 

 

Computer Design cycle 

The computer design and developments have been under the influence of: 

• Technology 

• Performance 

• Cost 

 

The new trends in technology have been 

used to reduce the cost and enhance the 

performance 

 
• The computer design evaluated for bottlenecks using certain benchmarks to achieve the 

optimum performance. 

• Time is the key measurement of performance: a desktop user may define the 

performance of his/her machine in terms of time taken by the machine to execute a 

program; whereas a computer center manager running a large server system may define 

the performance in terms of the number of jobs completed in a specified time. 

• The desktop user is interested in reducing the response time or execution time – time 

between the start and completion of an event; while a data processing center in 

increasing the throughput. 
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• Benchmarks are the programs which try to average frequency of operation and 

operands of a large set of programs.  

• Standardized benchmarks tools are available from Standard Performance Evaluation 

Corporation – SPEC at www.spec.org 

• Hardware: Cost, delay, area, power estimation 

• Simulation at different levels of design abstraction, such as: ISA, RT, Gate, Circuit 

• Queuing Theory: to calculate the response time and throughput of entire I/O system 

• Rules of Thumb 

• Fundamental ―Laws‖/Principles 

• The new designs are simulated to evaluate the performance for different levels of 

workloads. 

• Simulation helps in keeping the result verification cost minimum. 

• The cost-performance is optimized for workloads 

 

1: Technology Trends: Computer Generations 

• Vacuum tube     1946-1957 1st Gen. 

• Transistor -    1958-1964 2nd  Gen. 

• Small scale integration   1965-1968 

 Up to 100 devices/chip 

• Medium scale integration   1969-1971 3rd Gen. 

 100-3,000 devices/chip 

• Large scale integration   1972-1977 

 3,000 - 100,000 devices/chip 

• Very large scale integration     1978 on..  4th Gen. 

 100,000 - 100,000,000 devices/chip 

• Ultra large scale integration 

 Over 100,000,000 devices/chip 

 

The technology trends at different times in the history of the computer development have played 

major role in the journey of computers form uniprocessor to multiprocessor mainframe systems; 

and from super structure to desktop computing. 

Usually identified by dominant implementation technologies, the length of first three generations 

spreads over a period of 8 to 10 years.  

• The first generation, 1950-59, is the era of commercial electronic computers employing 

vacuum tube technology.  

• The second generation, 1960-68, is the period of cheaper computers made using 

transistor or discrete component technology.  

• The third generation, 1969-77, is the age of minicomputers developed employing 

integrated circuit technology.  

• The fourth generation, 1978 to date, the eon of personal computers and workstations, is 

the result of VLSI and ULSI technology.  

• The gateway to the fifth and higher generations is not clear as no revolutionary 

technology has been proclaimed. 
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• The present transistor technology has developed to an extent where up to 15 millions 

transistors are integrated on one VLSI chip to make PowerPC and Pentium Processors 

 
• In 1980, the performance of supercomputers was 50 times that of microprocessor, 20 

times of minicomputers and 10 time that of mainframe computers.  

• The performance of microprocessors was equivalent to that of supercomputer in 1992 

and it was much higher in 1995 and onwards 

 

3: Cost 

• The systems are implemented using the latest technology to obtain cost effective high 

performance solution 

• Implementation complexities are given due consideration 
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Price Verses Cost 

• The relationship between cost and price is complex one 

• The cost is the total amount spends to produce a product 

• The price is the amount for which a finished good is sold.  

• The cost passes through different stages before it becomes price.  

• A small change in cost may have a big impact on price  

 

Component Costs 

• Direct Costs (add 25% to 40%) recurring costs: labor, purchasing, scrap, warranty 

• Gross Margin (add 82% to 186%) nonrecurring costs: R&D, marketing, sales, equipment 

maintenance, rental, financing cost, pretax profits, taxes 

• Average Discount to get List Price (add 33% to 66%): volume discounts and/or retailer 

markup 

 

Summary: 

1: A Computer systems development is viewed with reference to computer architecture and 

computer system organization. 

Architecture refers to those attributes of a computer visible to a programmer or compiler writer; 

e.g. instruction set, addressing techniques, I/O mechanisms etc. Organization refers to how the 

features of a computer are implemented? i.e., control signals are generated using the principles 

of finite state machine (FSM) or microprogramming 

The architecture of the members of a processor family are same whereas  organization of same 

architecture may differ between different members of the family 

 

2: Computer development has been discussed with academic and commercial perspectives.   

Academically, modern computer developments have their infancy in 1944-49, when John von 

Neumann introduced the concept of stored-program computer, referred to as Electronic Discrete 

Variable Automatic Computer – EDVAC and Maurice Wilkes of Cambridge University, built the 

world‘s first full-scale, operational stored program computer, Electronic Delay Storage Automatic 

Calculator – EDSAC.  

 

Commercially, the first machine BINAC was built by Eckert-Mauchly Computer Corporation in 

1949; and Universal Automatic Computer UNIVAC-I by Remington-Rand, in 1951, which was 

sold for $1 million. In 1976, Cray Research Inc. (formed by Seymour Cray announced the 

world‘s fastest, most expensive and with best cost verses performance supercomputer Cray-I.  

 

Microprocessor and PCs: In 1971, while Cray was creating the World‘s most expensive 

machines, Intel introduced first cheep microprocessor 4004 and then 80 x 86 series, which was 

used by IBM in personal computers. 

 

In 1998, more than 350 million microprocessors with different instruction set architectures were 

in use; this number has risen to more than a billion in 2006 
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3: Decisive Factors for rapid changes in the computer development are performance 

enhancements price reduction and functional improvements.  

 

4: Technological developments, from vacuum tubes to VLSI circuits, dynamic memory and 

network technology gave birth to four different generations of computers. However, at present 

no revolutionary technology has been proclaimed, hence the gateway to the fifth and higher 

generations is not clear. 

 

5: Computer Architecture have been viewed from four perspectives 

Processor Design 

Memory Hierarchy 

Input/output and storages 

Multiprocessor and Network interconnection 

 

6: Course Focus and Topics Coverage: The course is focused to have in-depth study of the 

concepts of computer architecture. The topics covered give emphasis to expose the advances 

in the field through cost-performance-power trade-offs and good engineering design. 

 

7: Computer Design Cycle: Computer design and development has been under the influence of 

technology, performance and cost; and the new trends in technology are used to enhance the 

performance and reduce the cost  
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Lecture 2 

Quantitative Principles 

Detailed discussion on the computer Performance 

The key to quantitative design and analysis 

 

Today’s Topics 

• After a quick review of the previous lecture we will continue with the discussion on the 

growth in processor performance.  

• An introduction to the computer hardware performance will be given because it is the 

key to the quantitative analysis in determining the effectiveness of an entire computing 

system – the hardware and software. Today we will talk about: 

• Price-performance design 

• CPU performance metrics 

• CPU benchmark suites 

 

1: Architecture refers to those attributes of a computer visible to a programmer or compiler 

writer; e.g. instruction set, addressing techniques, I/O mechanisms etc.  

 

Organization refers to how the features of a computer are implemented? i.e., control signals are 

generated using the principles of finite state machine (FSM) or microprogramming 

 

2: Computer development was discussed with academic and commercial perspectives.   

Academically, modern computer developments have their infancy in 1944-49, when John von 

Neumann introduced the concept of stored-program computer, referred to as Electronic Discrete 

Variable Automatic Computer – EDVAC and Maurice Wilkes of Cambridge University, built the 

world‘s first full-scale, operational stored program computer, Electronic Delay Storage Automatic 

Calculator – EDSAC.  

 

Commercially, the first machine BINAC was built by Eckert-Mauchly Computer Corporation in 

1949; and Universal Automatic Computer UNIVAC-I by Remington-Rand, in 1951, which was 

sold for $1 million. In 1976, Cray Research Inc. (formed by Seymour Cray announced the 

world‘s fastest, most expensive and with best cost verses performance supercomputer Cray-I.  

Technological developments, from vacuum tubes to VLSI circuits, dynamic memory and 

network technology gave birth to four different generations of computers. However, at present 

no revolutionary technology has been proclaimed, hence the gateway to the fifth and higher 

generations is not clear. 

 

Microprocessor and PCs: In 1971, while Cray was creating the World‘s most expensive 

machines, Intel introduced first cheep microprocessor 4004 and then 80 x 86 series, which was 

used by IBM in personal computers. 

 

In 1998, more than 350 million microprocessors with different instruction set architectures were 

in use; this number has risen to more than a billion in 2006   
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3: Computer Architecture was viewed from four perspectives 

• Processor Design 

• Memory Hierarchy 

• Input/output and storages 

• Multiprocessor and Network interconnection 

 

4: Computer Design Cycle: We concluded our discussion last time with the computer design 

cycle. We found that the computer design and development has been under the influence of 

technology, performance and cost; the decisive factors for rapid changes in the computer 

development have been the performance enhancements, price reduction and functional 

improvements. The new trends in technology are used to enhance the performance and reduce 

the cost.  

 

Growth in Processor Performance: 

 

 
• The supercomputers and mainframes, costing millions of dollars and occupying 

excessively large space, prevailing form of computing in 1960s were replaced with 

relatively low-cost and smaller-sized minicomputers in 1970s  

• In 1980s, very low-cost microprocessor-based desktop computing machines in the form 

of personal computer (PC) and workstation were introduced.  

• The growth in processor performance since mid-1980s has been substantially high than 

in earlier years  

• Prior to the mid-1980s microprocessor performance growth was averaged about 35% 

per year  

• By 2001 the growth raised to about 1.58 per year 
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Price-Performance Design: 

• Technology improvements are used to lower the cost and increase performance.  

• The relationship between cost and  price is complex one 

• The cost is the total amount spends to produce a product 

• The price is the amount for which a finished good is sold.  

• The cost passes through different stages before it becomes price.  

• A small change in cost may have a big impact on price 

 

Price vs. Cost: 

 

 
 

• Manufacturing Costs: Total amount spent to produce a component 

 Component Cost: Cost at which the components are available to the designer. It 

ranges from 40% to 50% of the list price of the product.  

 Recurring costs: Labor, purchasing scrap, warranty – 4% - 16 %  of list price 

 Gross margin – Non-recurring cost: R&D, marketing, sales, equipment, rental, 

maintenance, financing cost, pre-tax profits, taxes 

• List Price:  

 Amount for which the finished good is sold;  

 it includes Average Discount of 15% to 35% of the as volume discounts and/or 

retailer markup 

 

Cost-effective IC Design: Price-Performance Design 

• Yield: Percentage of manufactured components surviving testing 

• Volume: increases manufacturing hence decreases the list price and improves the  

purchasing efficiency  

• Feature Size:  the minimum size of a transistor or wire in either x or y direction  

• Reduction in feature size from 10 microns in 1971 and 0.18 in 2001has resulted in: 

 -   Quadratic rise in transistor count 

 - Linear increase in performance 

 -   4-bit to 64-bit microprocessor 

 -   Desktops have replaced time-sharing machines 
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Cost of Integrated Circuits 

• Manufacturing Stages: The Integrated circuit manufacturing passes through many stage:  

 Wafer growth and testing  

 Wafer chopping it into dies 

 Packaging the dies to chips  

 Testing a chip. 

 

 
 

• Die: is the square area of the wafer containing the integrated circuit 

 See that while fitting dies on the wafer the small wafer area around the periphery 

goes waist 

• Cost of a die: The cost of a die is determined from cost of a wafer; the number of dies fit 

on a wafer and the percentage of dies that work, i.e., the yield of the die.  

 

• The cost of integrated circuit can be determined as ratio of the total cost; i.e., the sum of 

the costs of die, cost of testing die, cost of packaging and the cost of final testing a chip; 

to the final test yield.  

 

• Cost of IC =  

 die cost + die testing cost + packaging cost + final testing cost / final test yield 

 

• The cost of die is the ratio of the cost of the wafer to the product of the dies per wafer 

and die yield 

 Cost of die = Cost of wafer / dies per wafer x die yield 

 

• The number of dies per wafer is determined by the dividing the wafer area (minus the 

waist wafer area near the round periphery) by the die area 

 Dies per wafer =  

[ π (wafer diameter/2)2 / die area ] – [ π (wafer diameter) / √(2 x die area) ] 

 

Example Calculating Number of Dies 

For die of 0.7 Cm on a side, find the number of dies per wafer of 30 cm diameter 

 

Answer: 

 [Wafer area / Die Area]  - Wafer Waist area 

 = π (30/2)2 / 0.49 - π (30) / √ (2 x 0.49) 

  = 1347 dies 
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Calculating Die Yield 

• Die yield is the fraction or percentage of good dies on a wafer number 

• Wafer yield accounts for completely bad wafers so need not be tested 

• Wafer yield corresponds to on  defect density by α which depends on number of 

masking levels  

• Good estimate for CMOS is 4.0 and 

• Die yield = Wafer yield x (1 + defects per unit area x die area) –α / α 

• Example: The yield of a die, 0.7cm on a side, with defect density of 0.6/cm2  

= (1+[0.6x0.47]/4.0) -4 = 0.75 

 

Price-Performance Design 

• Time to run the task: 

• Execution time, response time, latency 

• Throughput or bandwidth:  

• Tasks per day, hour, week, sec, ns … 

• Time is the key measurement of performance. However, the throughput - number of 

tasks completed in specified time cannot be ignored. 

• For example, where the task in hand is to move 2400 employees of a company from 

Lahore to Islamabad in minimum overall time at minimum cost, the cost-performance of 

the train verses plane has to be evaluated.  

• Train takes 4:00 Hrs per trip and carries 2400 passengers/trip, i.e., 6:00 sec/person, 

while the airplane with a capacity of 300 passengers, flying 10 times faster than the train, 

takes 45 min/trip, will require 6:00 Hrs, i.e., 9.00 sec. per person to complete the task. 

Thus the throughput of the train and hence its performance is 50% more than the 

airplane. Moreover the traveling cost per person by train is 10 times less than the 

airplane, thus the cost-performance per person by train verses airplane is 1:15.  

Example: 

• To carry 2400 passengers from Lahore to Islamabad –  

• Train completes the task in 4:00 hrs while airplane completes the same task in 6.00 hrs.;  

• .e., 66.67% of the task in same time – throughput and hence performance of train is 50% 

more than airplane  

Vehicle Time 
Lah to Isb 

Passengers/ 
trip 

Time to 
complete 
job 

Execution 
time /person 

Cost / 
person 

Cost-performance 

Train 4.0 hours 
 

2400 
 

4.0 hours 
 

6.0 sec 
 

300 Rs 300x6=1,800 
Rs-sec/person 

Plane 45 min. 
 

300 
 

45x8 min. = 
6.0 Hr 

9.0 sec 3000 Rs 3000x9=27,000 
Rs-sec/person 

 

Plane 10 time faster but takes 50% more time to complete the job; i.e., lesser throughput – thus 

performance of train is 50%better than plane 

The time per person and cost person of train is less than that of plane Thus the cost-

performance of plane is 1:15  
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Metrics of Performance 

 

 
 

• The execution time or latency to complete a task includes everything - the processing 

activities, disk access, memory access, input/output activities, operating system 

overheads and etc. In other words, it is the total execution time which is also regarded 

as the wall-clock time, elapsed time or response time.  

• With the multiprogramming CPU may be working for another program while waiting for 

I/O activities of one program to complete; thus the CPU time is different from the 

response time.  

• The CPU time can further be divided in to the user CPU time – the time spent is the 

program and system CPU time – the time spent in operating system.  

• UNIX command time reports four measurements of time as: 99.4u 28.1s 2:50 75%; i.e., 

the user time, system time, elapsed time and percent of the elapsed time that is CPU 

time 

 

Aspects of CPU Performance 

CPU time = Seconds / Program  

    = (Instructions / Program) x (Cycles / Instruction) x (Seconds / Cycle) 

 

 Inst Count CPI Clock Rate 

Program √   

Compiler √   

Inst. Set. √ √  

Organization  √ √ 

Technology   √ 

 

• All computers run at a constant rate which is determined by the discrete time events 

called ticks, clock ticks, clock periods, clocks, cycles or clock cycles, define as time 

(sec.) or rate (Hz).  

• The CPU clocks of a program and the number of instructions executed or instruction 

count – IC is a useful measure to find the number of clock cycles per instruction –  
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 CPI = CPU clock cycles for program / Instruction count 

• The CPU time of a program is equal to the product of CPU clock cycles for program and 

clock cycle-time; where the cycle-time = 1/clock rate. Hence the 

• CPU Time = CPU clock cycles for program / clock rate or 

• CPU time = instruction count x clock cycle time x cycles per instruction sec. / program 

                 = (instructions/program) x (clock cycles/instructions) x (seconds/clock cycles) 

 

Cycles Per Instruction 

• Cycles per Instruction – CPI 

   = CPU Clock Cycles for program / Instruction Count 

  = (CPU Time * Clock Rate) / Instruction Count 

•  Instruction Frequency – For instruction mix, the relative frequency of occurrence of 

different types of instructions is given as: 

  FICi = IC of ith instruction / Total Instruction count 

•  Average Cycles per Instruction –  

  CPI = [1/ Instruction count] ∑i=1 to n ICi x CPIi  = ∑i=1 to n FICi  x CPIi 

 

Example: Calculating average CPI 

Base Machine (Reg / Reg) 

Op Freq Cycles CPI (i) (% Time) 

ALU 50% 1 0.5 (33%) 

Load 20% 2 0.4 (27%) 

Store 10% 2 0.2 (13%) 

Branch 20% 2 0.4 (27%) 

   1.5  

 

Cycles Per Instruction 

The total execution time of n programs running on a machine may be computed as: 

• Arithmetic mean time: Timei is the execution time of i th program, and it is assumed that 

each program in the workload runs once (or for equal number of times).  

 1/n  ∑i=1 to n Timei.  

 

• Weighted arithmetic mean time: For unequal mix of programs in the workload, i.e., 

individual programs running for different number of times, a weighting factor wi is 

assigned to each program that indicates the relative frequency of a program in the 

workload. The weighted arithmetic mean is determined by summing the product of 

weighting factor and program execution time as:  

 ∑i= 1 to n wi x Timei 

 

• Geometric mean time: is the second approach to unequal mix of programs in the 

workload. Here, the execution time is normalized to a reference machine and then 

average of the normalized execution time is taken, which is expressed by geometric 

mean as: 

 n√(  πi=1 to n Execution time ratioi ) 



 

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com 
 

20 CS-704 Advanced Computer Architecture 

Where execution time ratioi is the execution time, normalized to the reference machine, 

for the i th program of total of n in the workload. 

 

Summary: Price-Performance Design 

Cost of a Computer: The total cost of manufacturing a computer is distributed among different 

parts of the system such as the cost of cabinet, processor board and I/O devices. The cabinet 

cost lies close to 6% of the total cost whereas the cost of other two parts is around 37% each. 

However, the major cost at the component level is of the processor, which is approximately 22% 

of the total cost. 

 

Performance: Time is the key measurement of performance: a desktop user may define the 

performance of his/her machine in terms of time taken by the machine to execute a program; 

whereas a computer center manager running a large server system may define the performance 

in terms of the number of jobs completed in a specified time. The desktop user is interested in 

reducing the response time or execution time – time between the start and completion of an 

event; while a data processing center in increasing the throughput. The performance of two 

designs, say X and Y; is often compared by the factor n, which determines how much lower 

execution time machine Y takes as compared to X or how much faster is machine Y than X, i.e.,  

 n = Execution time Y / Execution time X  

 

as performance is inverse of execution time, therefore  

 n = Performance X / Performance Y 

 

Cost-Performance: The issue of cost-performance is complex one. At one extreme, high-

performance computers designer may not give importance to the cost in achieving the 

performance goal. At the other end, low-cost designer may sacrifice performance to some 

extent. The price-performance design lies between these extremes where the designer 

balances cost and hence price verses performance. The PCs, workstations and servers market 

operates in this region. 

 

Instruction Execution Rate – MIPS 

• MIPS specify performance inversely to execution time; For a given program:  

 MIPS = (instruction count) / (execution time x 106) 

• MIPS could not be calculated from the instruction mix  

• Relative MIPS for a machine ‗M‘ is defined based on some reference machine as:  

 RMIPS = [Performance M / Performance reference] x MIPS reference   

or  

        = [Time reference / Time M] x MIPS reference  

• MFLOPS defined for Floating-point-intensive programs as millions of floating-point 

operations per second   

 

CPU Benchmark Suites 

• Performance Comparison: the execution time of the same workload running on two 

machines without running the actual programs 
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• Benchmarks: the programs specifically chosen to measure the performance.  

• Five levels of programs: in the decreasing order of accuracy 

– Real Applications  

– Modified Applications  

– Kernels  

– Toy benchmarks  

– Synthetic benchmarks  

 

• In order to compare the performance of two machines, a user can simply compares the 

execution time of the same workload running on both the machines.  

• In practice users want to know, without running their own programs, that how well the 

machine will perform on their workload.  

• This is accomplished by evaluating the machine using a set of benchmarks – the 

programs specifically chosen to measure the performance.  

• The following five levels of programs, given in the decreasing order of accuracy of 

prediction, are used as benchmarks: 

1. Real Applications – scientific programs such as Mat Lab used by engineers, C 

language compiler used by program developer or Photoshop used by a graphic 

designer are the most suitable benchmarks to evaluate the performance of a 

machine as the users can select input, output and options according to their own 

needs. 

 

2. Modified Applications – the real applications are used as the building blocks with 

certain blocks modified to focus desired aspects of application, e.g., I/O may be 

restructured or removed to minimize its impact on execution time and to simulate real 

application 

 

3. Kernels – the small key pieces extracted from the real program, run exclusively to 

evaluate the performance by isolating the performance of individual features of a 

machine. 

 

4. Toy benchmarks – small codes, say 10 to 100 lines, which produce a result already 

known to the user, normally used as beginning programming assignments. 

 

5. Synthetic benchmarks – the small section of program created artificially to match 

the average frequency of operations and operands of a large set of programs. 

Synthetic benchmarks are rarely used because they are not even the pieces of a real 

program as the Kernels and they don‘t produce anything that may be needed the 

user. 

 

SPEC: System Performance Evaluation Cooperative 

• First Round 1989: 10 programs yielding a single number – SPECmarks 

• Second Round 1992: SPECInt92 (6 integer programs) and SPECfp92 (14 floating point 

programs) 
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• Third Round 1995 

– new set of programs: SPECint95 (8 integer programs) and SPECfp95 (10 floating 

point)  

– ―benchmarks useful for 3 years‖ 

– Single flag setting for all programs: SPECint_base95, SPECfp_base95  

 

• In late 1980s, System Performance and Evaluation Cooperation – SPEC was founded to 

improve the state of benchmarking and to provide more valid basis of comparison.  

 

First Round: In 1989, SPEC made its first release, SPEC89 to measure CPU performance. In 

1990, concept of throughput, which provided benchmark for timeshared usage of uniprocessor 

or a multiprocessor, was included to define performance.  

 

Second Round: In 1992, the SPEC92 provided separate means for integer (SPEC Int 92 – 6 

Integer) and floating-point (SPECfp92 – 14 floating point) programs.  

 

Third Round: The SPEC95 added new integer and floating point benchmarks and also changed 

the base machine for normalization to a Sun SPARC-station 10/40 as the operating versions of 

the original base machines were difficult to find. SPEC offers verity of benchmark versions; a 

few typical benchmarks are as follows: 

• Desktop benchmarks can be divided into two classes: CPU-intensive and Graphic-

intensive benchmarks. The SPEC89, SPEC92, SPEC95 and SPEC2000 are CPU 

intensive benchmarks.  The SPEC2000 has portability with minimum role of I/O in overall 

benchmark performance. SPECviewperf is used for benchmarking systems supporting 

OpenGL graphic library and SPECapc contains application for graphic use.  

• Server benchmarks are of multiple classes: SPEC CPU2000 is a throughput 

benchmarks capable of measuring throughput and converting it into processing rate of 

multiprocessor, considering the I/O activities which is the significant feature of servers. 

The SPECsfs is a fileserver benchmark capable of measuring network file system (NFS) 

performance; it test the performance of I/O systems (disk and network). The SPECweb 

is a server benchmark that simulates multiple clients requesting both the static and 

dynamic pages from the server, as well as client posting data to the server.  

 

Summary: Designing and performance comparison 

• Designing to Last through Trends 

        Capacity      Speed 

  Logic  2x  in  3 years  2x  in 3 years 

  DRAM  4x  in  3 years  2x  in 10 years 

  Disk  4x  in  3 years  2x  in 10 years 

 

• 6yrs to graduate => 16X CPU speed, DRAM/Disk size 

• Time to run the task 

– Execution time, response time, latency 

• Tasks per day, hour, week, sec, ns, … 
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– Throughput, bandwidth 

• ―X is n times faster than Y‖ means 

    ExTime(Y) / ExTime(X) =  Performance(X)  / Performance(Y) 

 

• CPI Law: 

 CPUTIME =  Seconds / Program  

              = (Instructions / Program) x (Cycles / Instruction) x (Seconds / Cycle) 

 

• Execution time is the REAL measure of computer performance! 

• Good products created when have: 

 Good benchmarks, good ways to summarize performance 

• Die Cost goes roughly with die area4 

• ―For better or worse, benchmarks shape a field‖ 

• Good products created when have: 

– Good benchmarks 

– Good ways to summarize performance 

• Given sales is a function in part of performance relative to competition, investment in 

improving product as reported by performance summary 

• If benchmarks/summary inadequate, then choose between improving product for real 

programs vs. improving product to get more sales; Sales almost always wins! 

• Execution time is the measure of computer performance! 
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Lecture 3 

Quantitative Principles 

Design for Performance 

Today’s Topics 

• Recap  

• I/O performance  

• Laws and Principles 

• Performance enhancement 

• Concluding: quantitative principles 

• Home work 

• Summary 

 

Computer I/O System 

• Producer-Server model 

– Producer: the device that generates  request to be serviced 

– Queue: the area where the tasks accumulate waiting to be serviced  

– Server: the device performing the requested service 

– Response Time: the time a task takes from the moment it is placed in the buffer 

to the time server finishes the task 

 

 
 

I/O Performance Parameters 

• Diversity:  Which I/O device can connect to the CPU  

• Capacity:  How many I/O devices can connect to the CPU  

• Latency:  Overall response time to complete a task 

• Bandwidth: Number of task completed in specified time - throughput 

 

I/O Transaction Time 

• The interaction time or transaction time of a computer is sum of three times: 

–  Entry Time:  the time for user to enter a command – average 0. 25 sec; from 

keyboard 4.0 sec. 

–  System Response Time:  time between when user enters the command and 

system responds 

–  Think Time: the time from reception of the command until the user enters the 

next command 
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Throughput verses Response time: Performance Measures .. Cont‘d 

 

 
 

Response time and throughput calculation 

 

 
 

• If the system is in steady state, then the number of tasks entering the system must be 

equal to the number of tasks leaving the system  

• Little‘s Law:  

 Mean number of tasks in system = Mean response time x Arrival rate 

 

Little’s Law – A Little queuing theory 

 

• Mean number of tasks in the system  

 = (Time accumulated) / (Time observe) 

 

• Mean response time  

 = (Time accumulated) / (Number tasks) 

 

• Arrival rate λ  

 = (Number tasks) / (Time observe) 

 

• The expression for mean number of task may be written as: 

(Time accumulated / Time observe) = (Timeaccumulated / Number tasks) x (Number tasks / Time observe)  

 

• Mean number of tasks = mean response time x Arrival rate 



 

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com 
 

26 CS-704 Advanced Computer Architecture 

Amdahl's Law 

• Suppose that enhancement E accelerates a fraction F of the task by a factor S, and the 

remainder of the task is unaffected 

 

 
• Speedup due to enhancement E: 

 Speedup (E) = Ex Time without E / Ex Time with E    

                 = Performance with E / Performance without E 

 

• Ex Time new  = Ex Time old x   [(1 – Fraction enhanced) +  Fraction enhanced  / Speedup enhanced ] 

 

• Speedupoverall   = ExTimeold / ExTimenew  

= 1 / [(1 – Fraction enhanced) + Fraction enhanced / Speedup enhanced ] 

 

• Floating point instructions improved to run 2X; but only 10% of actual instructions are FP 

 ExTimenew = ExTimeold x  (0.9 +  .1/2) = 0.95 x ExTimeold 

 Speedupoverall = 1 / 0.95 = 1.053  
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Lecture 4 

Instruction Set Principles 

Today’s Topics 

• Recap  

• ISA Taxonomy 

• Memory Addressing modes 

• Types of operands  

• Types of operations 

• Summary 

 

Recap: Lec. 1-3 Chapter 1 

• In the computer design cycle, the decisive factors for rapid changes in the computer 

development have been the performance enhancements, price reduction and functional 

improvements 

 

• The processor performance of two designs is often compared by the factor n, which 

determines how much lower execution time one machine takes as compared to the other 

or how much faster  the other machine is than first.  

 

• Price-Performance Design: The relationship between cost and price is complex one; 

and computer designers must understand this relationship as it effects the selling of their 

design.  

 The cost is the total amount spends to produce a product and the price is the 

amount for which a finished good is sold and it is controlled by the die yield and 

volume.  

 

• Growth in Processor Performance: The supercomputers and mainframes, costing 

millions of dollars and occupying excessively large space, prevailing have been replaced 

with very low-cost microprocessor-based desktop computing machines in the form of 

personal computer (PC) and workstation. 

 

• Benchmark is a program developed to evaluate the performance of a computer. Good 

products created when have: proficient benchmarks and expert ways to summarize 

performance 

 

• An I/O system works on the principle of producer-server model, which comprises an 

area, called queue, where the tasks accumulate waiting to be serviced and the device 

performing the requested service, called server.  

 

• Producer creates tasks to be processed and place them in a FIFO buffer – queue. The 

server takes the task form buffer and perform them 

 

• The response time is the time task takes from the moment it arrives in the buffer to the 

time the server finishes the task 
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Changing Definitions of Computer Architecture 

 

Three Pillars of Computer Architecture 

 
The three pillars of computer architecture are: hardware, instruction set and software. Hardware 

facilitates to run the software and instruction set is the interface between the hardware and 

software. 

 

• 1950s to 1960s: The focus of the Computer Architecture Courses has been Computer 

Arithmetic 

• 1970s to mid 1980s: The focus of Computer Architecture Course has been Instruction 

Set Design, the portion of the computer visible to programmer and  compiler writer 

• 1990s to date: The focus of the Computer Architecture Course is the Design of CPU, 

memory system, I/O system, Multiprocessors based on the quantitative principles to 

have price - performance design; i.e., maximum performance at minimum price 

 

From the academic point of view, during the period 1950s - 1960s, the focus of computer 

architecture studies has been on the Computer arithmetic; i.e., the methodologies for the 

optimal solutions to arithmetic and logical problems.  

 

Soon the researchers realized that the principles of instruction set, the portion visible to 

programmer and compiler writer, must be given importance to enhance the performance of the 

computer and reduce the complexity of hardware and hence optimize the price-performance. 

Thus, ISA design has been the focus of researchers during 1970s – 1980s.  

 

The focus of the computer architecture studies, in 1990s is multi-dimensional and emphasis is 

given to CPU design, memory system, I/O system  and multi-processor systems based on the 

quantitative principles to optimize the price-performance. 

 

Instruction Set Architecture – ISA 

• Our focus in couple of lectures will be the   Instruction Set Architecture – ISA which is 

the interface between the hardware-software 

• It plays a vital role in understanding the computer architecture from any of the above 

mentioned perspectives 
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• The design of hardware and software can‘t be initiated without defining ISA 

• It describes the instruction word format and identifies the memory addressing for data 

manipulation and control operations 

 

Our focus in couple of lectures will be the   Instruction Set Architecture – ISA which is the 

interface between the hardware-software as it plays a vital role in understanding the computer 

architecture from any of the above mentioned perspectives 

 

The design of hardware and software can‘t be initiated without defining ISA. It describes the 

instruction word format and identifies the memory addressing for data manipulation and control 

operations 

 

What is an interface? 

A good interface: 

• Lasts through many implementations 

(portability, compatibility) 

• Is used in many different ways 

(generality) 

• Provides convenient  functionality to 

higher levels 

• Permits an efficient implementation 

at lower levels 

 

 

Taxonomy of Instruction Set 

• Major advances in computer architecture are typically associated with landmark 

instruction set designs – stack, accumulator, general purpose register etc. 

 

• Design decisions must take into account: 

 technology 

 machine organization 

 programming languages 

 compiler technology 

 operating systems 

 

• Basic Differentiator: The type of internal storage of the operand 

 

• Major Choices of ISA: 

 Stack Architecture:  

 Accumulator Architecture 

 General Purpose Register Architecture 

– Register – memory 

– Register – Register (load/store) 

– Memory – Memory Architecture (Obsolete) 
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Stack Architecture 

• Both the operands are implicitly on 

the TOS 

• Thus, it is also referred to as Zero-

Address machine 

• The operand may be either an input 

(orange shade) or result from the 

ALU (yellow shade) 

• All operands are implicit (implied or 

inherited)  

• The first operand is removed from 

the stack and the second operand is 

replaced by the result 
 

Example:  

To execute: C=A+B 

ADD instruction has implicit operands for 

the stack – operands are written in the stack 

using PUSH instruction 

 PUSH A 

 PUSH B 

 ADD 

 POP C 
 

Accumulator Architecture 

• An accumulator is a special register 

within the CPU that serves both as 

both the as the implicit source of one 

operand and as the result 

destination for arithmetic and logic 

operations.  

• Thus, it accumulates or collect data 

and doesn‘t serve as an address 

register at any time  

• Limited number of accumulators - 

usually only one – are used 

• The second operand is in the 

memory, thus accumulator based 

machines are also called 1-address 

machines  

• They are useful when memory is 

expensive or when a limited number 

of addressing modes is to be used 

 

 

 

 

 



 

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com 
 

31 CS-704 Advanced Computer Architecture 

To execute: C=A+B 

 

ADD instruction has implicit operand A for 

the accumulator, written using LOAD 

instruction; and the second operand B is in 

memory at address B 

 

 Load A 

 ADD B 

 Store C 

  

General Purpose Register Architecture 

• Many general purpose registers are available within CPU 

• Generally, CPU registers do not have dedicated functions and can be used for a variety 

of purposes – address, data and control  

• A relatively small number of bits in the instruction is needed to identify the register 

• In addition to the GPRs, there are many dedicated or special-purpose registers as well, 

but many of them are not ―visible‖ to the programmer 

• GPR architecture has explicit operands either in register or memory thus there may 

exist:  

 Register – memory architecture  

 Register – Register (Load/Store) Architecture 

 Memory – Memory Architecture 

 

One explicit operand is in a register and one 

in memory and the result goes into the 

register 

 

The operand in memory is accessed directly 

To execute: C=A+B 

 

ADD instruction has explicit operand A 

loaded in a register and the operand B is in 

memory and the result is in register 

 

 Load  R1, A 

 ADD   R3, R1, B 

 Store R3, C 
 

 

• The explicit operands in memory are first loaded into registers temporarily and 

• Are transferred to memory by Store instruction 
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To execute: C=A+B 

ADD instruction has implicit operands A and 

B loaded in registers 

 

 Load R1, A 

 Load R2, B 

 ADD R3, R1, R2 

 Store R3, C 

 

Both the explicit operands are not accessed 

from memory directly, i.e., Memory – 

Memory Architecture is obsolete 

 

 
Comparison of three GPR Architectures 

Register-Register 

• Advantages   

 Simple, fixed-length instruction decoding 

 Simple code generation 

 Similar number of clock cycles / instruction 

• Disadvantages 

 Higher Instruction count than memory reference 

 Lower instruction density leads to larger programs 

 

Register- Memory 

• Advantages 

 Data can be accessed without separate Load first 

 Instruction format is easy to encode 

• Disadvantages 

 Operands are not equivalent since a source operand (in a register) is destroyed 

in operation 

 Encoding a register number and memory address in each instruction may restrict 

the number of registers 

 CPI vary by operand location 

 

Memory- Memory 

• Advantages  

 Most compact 

 Doesn‘t waste registers for temporary storages 

• Disadvantages   

 Large variation in instruction size 

 Large variation in work per instruction 

 Memory bottleneck by memory access 
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Evolution of Instruction Sets 

 

 
 

Types and Size of Operands 

• Types of an Operand 

 Integer 

 Single-precision floating point 

 Character 

• Size of Operand 

 Character     8-bit 

 Half word    16-bit 

 Single precision FP or Word  32-bit 

 Double precision FP or   64-bit 

 double word  

 

Categories of Instruction Set Operations 

All computer provide a full set of following operational instructions for: 

• Arithmetic and Logic 

 Integer add, sub, and, or, multiply, divide 

• Data Transfer 

 Load, store and  

 Move instructions with memory addressing 

• Control 

 Branch, Jump, procedure call and return  
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The following support instructions may be provided in computer with different levels 

• System 

 operating system call, Virtual Memory Management 

• Floating point 

 Add, multiply, divide and compare 

• Decimal 

 BCD add, multiply and Decimal to Character Conversion 

• String 

 String move, compare and search 

• Graphics 

 Pixel and vertex operations, compression / de-compression operations 

 

Operand Addressing Modes 

• An ―effective address‖ is the binary bit pattern issued by the CPU to specify the location 

of operands in CPU (register) or the memory 

• Addressing modes are the ways of providing access paths to CPU registers and memory 

locations 

• Commonly used addressing modes are: 

 Immediate   

 Register 

 Direct or Absolute 

 Indirect 

 

• Data for the instruction is part of the instruction itself 

 Immediate ADD R4, # 24H  Reg[R4]   ←  Reg[R4] + 24 H  

 

• Used to hold source operands only; cannot be used for storing results 

 Register ADD R4, R3      Reg[R4]  ←   Reg[R4] + Reg[R3]  

 

• Operand is contained in a CPU register 

• No memory access needed , therefore it is fast 

 Direct (or absolute)  ADD R1,(1000)    Reg[R1]  ←   Reg[R1] + Mem[1000] 

 

• The address of the operand is specified as a constant, coded as part of the instruction  

• Limited address space (2operand field size) locations 

 

Indirect Addressing modes  

• The address of the memory location where the data is to be found is stored in the 

instruction as the operand, i.e., the operand is the address of an address 

• Large address space ( 2 memory word size) available  

• Two or more memory accesses are required 
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Types of Indirect addressing modes: 

• Register Indirect 

• Register Indirect Indexed 

 Effective memory address is calculated by adding another register (index 

register) to the value in a CPU register (usually referred to as the base register) 

 Useful for accessing 2-D arrays 

• Register Indirect plus displacement 

 Similarly, ―based‖ refers to the situation when the constant refers to the offset 

(displacement) of an array element with respect to the first element. The address 

of the first element is stored in a register 

• Memory Indirect 

 

Meanings of Indirect Addressing Modes 

• Register Indirect  

 ADD R4, (R1)   Reg[R4]  ←  Reg[R4] + Mem[Reg[R1]]  

 

• Register Indirect Indexed 

 ADD R4, (R1+R2)    Reg[R4]  ←  Reg[R4] + Mem[Reg[R1]+Reg[R2]]  

 

• Register Indirect plus displacement   

 ADD R4,100(R1)     Reg[R4]  ←  Reg[R4] + Mem[100+Reg[R1]]  

 

• Memory Indirect  

 ADD R4,@(R1)     Reg[R4]  ←  Reg[R4] + Mem[Mem[Reg[R1]]  

 

Special Addressing Modes 

Used for stepping within loops; R2 points to the start of the array; each reference increments / 

decrements R2 by ‗d‘; the size of the elements in the array 

 

- Auto-increment  ADD R1, (R2)+ 

      (i) Reg[R1]   ←    Reg[R1] + Mem[Reg [R2]] 

      (ii) Reg[R2]  ←    Reg[R2] + d 

 

- Auto-decrement    ADD R1, (R2)- 

      (i) Reg[R2]    ←   Reg[R2] - d 

      (ii) Reg[R1]   ←   Reg[R1] + Mem[Reg [R2]] 

 

- Scaled  ADD R1, 100(R2)[R3] 

          Reg[R1]   ←   Reg[R1] + Mem[100+Reg [R2] + R3]*d] 
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Addressing Modes of Control Flow Instructions 

• Branch (conditional): a sort of displacement, in number of instructions, relative to PC  

• Jump (Unconditional): jump to an absolute address, independent of the position of PC 

• Procedure call / return: control transfer with some state and return address saving, some 

times in a special link register or in some GPRs 

 

Summary 

• ISA Taxonomy 

 Stack Architecture:  

 Accumulator Architecture 

– General Purpose Register Architecture 

– Register – memory 

– Register – Register (load/store) 

– Memory – Memory Architecture (Obsolete) 

 

• Memory Addressing modes 

 Immediate   

 Register 

 Direct or Absolute 

 Indirect  

 Special  

 Control Flow Instruction 
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Lecture 5 

Instruction Set Principles 

(Encoding instructions and MIPS Instruction format) 

Today’s Topics 

• Recap Lecture 4  

• Instruction Set Encoding 

• MIPS Instruction Set 

• Summary 

 

After a quick review of the previous discussion on quantitative principles of Computer 

Architecture we will have a detailed discussion on the instruction set principles and their 

examples. The Instruction set is an interface between the hardware and software design of 

computer 

 

Recap: Lecture 4 

• Three pillars of Computer Architecture    

 Hardware, Software and Instruction Set 

• Instruction Set  

 Interface between hardware and software 

• Taxonomy of Instruction Set:  

 Stack, Accumulator and General Purpose Register 

• Types and Size of Operands:  

 Types: Integer, FP and Character 

 Size: Half word, word, double word 

• Classification of operations 

 Arithmetic, data transfer, control and support 

• Operand Addressing Modes    

 Immediate, register, direct (absolute) and  Indirect 

• Classification of Indirect Addressing  

 Register, indexed, relative (i.e. with displacement) and  memory 

• Special Addressing Modes  

 Auto-increment, auto-decrement and scaled 

• Control Instruction Addressing modes  

 Branch, jump and procedure call/return 

 

Instruction set Encoding 

Essential elements of computer instructions 

1. Type of the operation to be performed  

– This information is encoded in the ―operation code‖, or the op-code,  field of the 

machine language instruction 

– Examples:  add, mov  etc. 

2. Place to find the source operand (s) 

– Possible locations are: CPU registers, memory cells, I/O locations, part of the 

instruction itself 
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3. Place to store the results 

– Possible locations are:  

– CPU registers, memory cells and I/O locations 

4. Place to find the next instruction from 

– Address of the next instruction in sequence (this is the default case) 

– Address of the instruction at the branch target location 

 

Instruction Word Types 

• Variable Length 

 Operation is specified in one field, Op-code 

 Can support any number of operands 

 Each address specifier determines  the addressing  mode  and length of the 

specifier for the operand 

 Generally, it generates the smallest code  representation as unused fields 

need not be included 

• Typical Examples: VAX, Intel 80x86 

 

 
 

• The decision regarding the length depends upon the range of addressing modes and 

degree of independence between op-code and mode 

• For example: immediate addressing requires one or two address field whereas indexed 

addressing requires 3 or 4 fields 

• The length of Intel 80x86 varies between 1 byte and 17 byte and is generally smaller 

than RICS architecture which uses fixed length format  

 

Based on the previous discussion, we can classify instructions according to the format shown in 

this slide. 

 

Strictly speaking, this classification is based on arithmetic and logic instructions in the instruction 

set. In this case, there are generally two operands and one result. 

 

The distinction is based on the fact that some operands are accessed from memory, and 

therefore require a memory address, while others may be in the registers within the CPU or they 

are specified implicitly.  The discussion given in the book assumes that all operands are 

memory operands. 

 

If  a large number of CPU registers is available, a few bits in the instruction are used to encode 

one out of those registers  
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Fixed Length Format 

• Always has same number of operands 

• Addressing modes (if option exist) is specified in Op-code 

• It generally generates the largest code size 

• Fields may be used for different purposes, if necessary 

• Typical Examples: Alpha, MIPS, PowerPC, SPARC 

 

 
 

Third Alternative: Hybrid Length 

• Multiple formats are specified by the op-code 

• One or two fields are added to specify addressing  mode 

• Similarly, one or two fields specify operand address 

• It generally generates the optimum code size 

• Typical Examples: IBM 360/370, MIPS16, TI-TMS320c54x 

 

 
 

Hybrid Length Taxonomy 

• Based on number of Address Fields 

 

 4-address instructions: Specifies the two source operands, the destination 

operand and the address of the next instruction 

 

 
 

 3-address instructions: Specifies addresses for both operands as well as the 

result 
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 2-address instructions 

– Overwrites one operand  with the result 

– One field serves two purposes 

 

 
 

 1-address instructions: 

– Dedicated CPU register, accumulator, to hold one operand and the result 

– The address of other operand is specified 

 

 
 

 0-address instructions: 

– Uses a stack to hold both operands and the result  

– Operations are performed between the value on the top of the stack 

(TOS) and the second value on the stack (SOS) and the result is stored 

on the TOS 

 

 
 

Example  

Evaluate the expression: F = (B + C)*D – E, using 0- address through 3-address format 

 

0-Address 1-Address 2-Address 3-Address 

 PUSH B LDA B  LOAD F, B ADD F, B, C 

 PUSH C ADD C  ADD F, C MUL F, F, D 

 ADD  MUL D  MUL F, D SUB F, F, E 

 PUSH D SUB E  SUB F, E  

 MUL  STA F 

 PUSH E 

 SUB 

 POP F 

Number of 

Instructions:      8       5             4   3 
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Example: Using different instruction formats, write pseudo-code to evaluate the following 

expression:  Z = 4(A+B) – 16(C+58) : Your code should not change the source operands 

 

3-Address 2-Address 1-Address 0-Address 

ADD  x, A, B 
MUL  y, x, 4 
ADD  r, C, 58 
MUL  s, r, 16 
SUB  Z, y, s 

LOAD   y, B 
MUL   y, 4 
LOAD   s, C 
ADD   s, 58 
MUL   s, 16 
SUB   y, s 
STORE Z, y 

; order changed to  
reduce code size 
LDA  C 
ADDA  58 
MULA 16 
STA  S 
LDA  A 
ADDA  B 
MULA 4 
SUBA  s 
STA  Z 

PUSH  C 
PUSH  58 
ADD 
PUSH  16 
MUL 
PUSH  A 
PUSH  B 
ADD 
PUSH  4 
MUL 
SUB 
POP  Z 

 

Comparison of instruction formats 

Assume that 

• A single byte is used for the op code 

• The size of the memory address space is 16 Mbytes 

• A single addressable memory unit is a byte  

• Size of operands is 24 bits 

• Data bus size is 8 bits 

Use the following two parameters and compare the five instruction formats (O-4 

address) mentioned earlier 

 Code size: Its effect on the storage requirements 

 Number of memory accesses: It‘s effect on execution time 

 

A single byte, or an 8-bit, op code can be used to encode up to 256 instructions. 

A 16-Mbyte memory address space will require 24-bit memory addresses. We will assume a 

byte wide memory organization to make this example different from the example in the book.  

The size of the address bus will be 24 bits and the size of the data bus will be 8-bits. 

 

4-address instruction 

 
 

• Code size = 1+3+3+3+3 = 13 bytes 

• # of bytes accessed from memory  

13 bytes for instruction fetch + 6 bytes for source operand fetch + 3 bytes for storing 

destination operand = 22 bytes 
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3-address instruction 

 
 

• Code size = 1+3+3+3 = 10 bytes 

• # of bytes accessed from memory   

10 bytes for instruction fetch + 6 bytes for source operand fetch + 3 bytes for storing 

destination operand = 19 bytes 

 

2-address instruction 

 
• Code size = 1+3+3 = 7 bytes 

• # of bytes accessed from memory   

7 bytes for instruction fetch + 6 bytes for source operand fetch + 3 bytes for storing 

destination operand = 16 bytes 

 

1-address instruction 

 
• Code size = 1+3= 4 bytes 

• # of bytes accessed from memory  

4 bytes for instruction fetch + 3 bytes for source operand fetch + 0 bytes for storing 

destination operand = 7 bytes 

 

0-address instruction 

 
• Code size = 1 bytes 

• # of bytes accessed from memory   

1 bytes for instruction fetch + 6 bytes for source operand fetch + 3 bytes for storing 

destination operand = 10 bytes 
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Result Summary 

A single byte is used for the op code, 16 MB memory address space, single addressable 

memory unit: byte, 24 bits operands is 24 bits and 8-bit data bus 

 

Instruction Format Code size Number of memory bytes 

4-address instruction 13 22 

3-address instruction 10 19 

2-address instruction 7 16 

1-address instruction 4 7 

0-address instruction 1 10 

 

RISC and MIPS ISA 

• RISC and MIPS is a fixed length, 64-bit LOAD/STORE Architecture  

• Contains 32 GPR each of 32-bit  

• Supports: 

 3-address, reg-reg arithmetic instruction 

 displacement instructions with address offset 12-16 bits  

 immediate data 8-bit and 16-bit and  

 register indirect 

 data size 8-, 16-, 32- and 64-bit integer 

 64-bit IEEE 754 floating point  

• Instructions:  

 Data Transfer:   load, store, 

      register-register move  

 Simple Arithmetic:   add, subtract, and shift 

 Compare:    equal, not-equal, less 

 Branch:    PC-relative, jump and     

    call/return 

• Designed for pipelining efficiency 

 

MIPS Instruction Word format 
Recap: MIPS types and size of operands 

 

• Types of an Operand 

 Integer 

 Single-precision floating point 

 Character 

• Size of Operand 

 Character     8-bit 

 Half word    16-bit 

 Single precision FP or Word  32-bit 

 Double precision FP or   64-bit 

 double word  
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Register-Register (R-Type) 

 
 

Op-code = 000000 

Rs and Rt : source operand registers 

Rd : Result carrying register 

Sht: Number of bit-shift –(left/right) 

 

Func: ALU function to encode the data path operation 

Execution:   Rd <- Rs func Rt 

 

Example Encoding MIPS64 
R-Type Arithmetic / Logical Instructions 

 

Arithmetic Instructions 

 

Instruction  Name    Meaning 

DADD R1, R2, R3  Add word (signed)  Reg[R1] ← Reg[R2] + Reg[R3] 

DADDU R1, R2, R3  Add unsigned   Reg[R1] ← Reg[R2] + Reg[R3] 

 

 
 

Shift Instruction  

DSLL    R1, R2, # 30 Shift Left Logical Reg[R1] ← Reg[R2] << 30 

 

 
 

 

Register-Immediate (I- Type) 

 
 

Rt is the destination field for immediate data instructions 

Rt   Rs op immediate; all immediate 

Same format is used for Load/Store instructions 

Rt  Mem [ immediate + [Rs]]; Load 

Mem [ immediate + [Rs]]Rt; Store 
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MIPS Operations 

• Immediate Arithmetic / Logical Instructions 

 

Instruction   Name    Meaning 

DADDIU R1, R2, # 30  Add unsigned Imm Reg[R1] ← Reg[R2] + Reg[R3] 

 

 
 

• Load/Store Instructions 

 

Instruction   Name    Meaning 

LW  R1, 30 (R2)  Load word  Reg[R1] ← Mem [30+Reg[ R2] 

SW  R1, 30(R2)  Store  word               Mem [30+Reg[R2] ← Reg[R1] 

 

 
 

Branch /Jump Register 

 
 

i. Conditional Branch Instructions:  

used after the compare or test BEQZ: 

  Rs is the register and Rt is unused;  

 Condition  test the register for Zero or non-zero  

ii. Condition with the Branch; BNE 

 Rs and Rt are compared 

iii. Jump Register; Jump and Link Register 

 Rt=0, Rs = Destination and immediate = 0 

 

MIPS Operations 

• Branch/Jump Register 

 

Instruction  Name    Meaning 

BEQZ R4, name  Branch equal zero If Reg[R4] = 0  then PC ← name 
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Instruction  Name     Meaning 

BNE R4, R3, name  Branch not equal zero    If Reg[R4]!=Reg[R3]  then PC <- name 

 

 
 

 

Instruction  Name     Meaning 

JR R4   jump register      PC ← Reg[R4] 

JALR  R4  Jump and Link Register Reg [R31] ← PC+4; PC ← Reg[R4] 

 

 
 

 

Jump / Call 

 
 

Jump: uses 26-bit offset; shifted 2-bit then replace the lower 28 bits of PC [ of the instruction 

following the jump  

 

Jump and Link (Procedure Call) place the return address; the address of the next instruction in 

R31 used for Return from procedure 

 

MIPS Operations 

• Jump/Call 

 

Instruction Name     Meaning 

J  name  Jump    PC36..63 ← name 

JAL  R4 Jump and Link       Reg [R31] ← PC+4; PC36..63 ← name;  

 

Summary 

• Instruction encoding 

 Essential elements of computer instructions: type of operands, places of source 

and destinations and place of next instruction 

 Instruction word length 

– Variable, fixed length and hybrid   

 Hybrid length taxonomy 

– 4, 3, 2, 1 and 0 address format 
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 Comparison of hybrid instruction word format 

– Minimum number of memory bytes are required in case of 1 address 

(accumulator) format and maximum for 4-address format 

 

• MIPS Instruction word format 

 RISC and MIPS is a fixed length, 64-bit LOAD/STORE Architecture  

 It supports: Size of Operand 

– Character (8-bit) 

– Half word (16-bit) 

– Single precision FP or Word (32-bit) 

– Double precision FP or double word (64-bit) 

 Instruction word formats 

o R-type, I-type and J-type 
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Lecture 6 

Instruction Set Principles 

(ISA Performance Analysis, Fallacies and Pitfalls) 

 

• Welcome to the sixth lecture of the series on Advanced Computer Architecture.  

• Today we will conclude our discussion on the Instruction Set Architecture  

• We will be talking about the ISA performance, role of compiler writer, media and signal 

processing operations and fallacies and pitfalls  

 

Today’s Topics 

• Recap Lecture 5  

• DSP Media Operations 

• ISA Performance 

• Putting it all Together 

• Summary 

 

Recap: Lecture 5 

• Instruction encoding 

 Essential elements of computer instruction  word:  

o Type of operands 

o Places of source and destinations 

o Place of next instruction 

 Instruction word length 

o Variable Length 

o Fixed length  

o Hybrid – variable fixed                 

 Categories of Hybrid length 

o 4, 3, 2, 1 and 0 address format 

 Comparison of hybrid instruction word format 

o Minimum number of memory bytes are required in case of 1 address 

(accumulator) format  

o Maximum for 4-address format 

 MIPS Instruction word format 

o RISC and MIPS a fixed length, 64-bit LOAD/STORE   

o Architecture  

 It supports: 

o 8-, 16-, 32- and 64-bit operand    

o R-type, I-type and J-type 

o Arithmetic and logic operation 

o data transfer operations 

o Control flow operations 
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Media and Signal Processing Operands 

• Graphic applications deal with 2D and 3D images 

• 3D data type is called vertex 

• Vertex structure has 4-components 

 x- coordinate 

 y- coordinate  

 z- coordinate  

 w-coordinate 

• The three vertices specify a graphic primitive, such as a triangle; and the fourth to help 

with color and hidden surfaces 

• Vertex values are usually 32-bit Floating point values 

• DSP adds fixed point to the data types – binary point just to the right of the sign-bit 

 

3D Data Type 

• A triangle is visible when it is depicted as filled with pixels 

• Pixels are typically 32-bits, usually consisting of four 8-bit channels 

 R -red 

 G-green 

 B-blue 

 A: Transparency of pixel 

when it is depicted 

 
Media and Signal Processing Operations 

• Data for multimedia operations is usually much narrower than the 64-bit data word of 

modern processors 

• Thus, 64-bit may be partitioned in to four 16-bit data values so that the 64-bit ALU to 

perform four 16-bit operations (say add operation) in a single clock cycle 

• Here, extra hardware is added to prevent the ‗CARRY‘  between the four 16-bit partitions 

of 64-bit ALU 

• These operations are called Single-Instruction Multiple-Data (SIMD) or vector operations 

 

Multimedia Operations 

• Most graphic multimedia applications use 32-bit floating point operations allowing a 

single instruction to launch two 32-bit operations on operands found side-by-side in 

double precision register 

• The table shown here summarizes SIMD instructions found in recent computers 

• You may note that there is very little common across the five architectures  

• All are fixed-width operation , performing multiple narrow operations on either 64-bit or 

128-bit ALU 

• The narrow operation are shown as  

 B-byte,  

 H-half word 

 W-word and  

 8B double word 

 

Summary of SIMD instructions in recent computers 

• Insert Table given in Fig. 2.17 from page 110 
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Digital Signals Processing Issues 

• Saturating Add/Subtract  

 Too Large Result and Overflow 

• Result Rounding  

 Choose from IEEE 754 mode algorithms 

• Multiply Accumulate 

 Vector and Matrix dot product operations 

 

DSP Operations 

• Saturating Add/Sub 

 DSP cannot ignore results of  overflow otherwise it may miss an event, therefore, 

it uses saturating arithmetic. 

 Here, if the result is too large to be presented it is set to the largest representable 

number, based  on the sign of the number 

• Result Rounding 

 IEEE 754 has several algorithms to round the wider accumulator into narrower 

one, DSPs select the appropriate mode to round the result 

• Multiply-Accumulate (MAC) 

 MAC operations are the key to dot product operations of vector and matrix 

multiply which need to accumulate a  series of product 

 

ISA Performance 

Role of Compiler 

• The interaction of compiler and high-level languages significantly effects how program 

uses an ISA 

• Optimizations performed by the compilers can be classified as follows:  

 High-level optimization: is often done on the source with the output fed to the 

later optimization passes. 

 Local Optimization: is done within a straight- line code fragment (basic block) 

 Global Optimization: extends the optimization across branches 

 Register Allocation: associate registers with  operands 

 Processor-dependent optimization: using the specific architecture 

 

Impact of Compiler Technology 

• Interaction of compiler and high-level language affects how a program uses an ISA 

• Here, two important questions are: 

1. How are variables allocated? 

2. How many registers are needed to allocate variables appropriately? 

 

• These questions are addressed by using three areas in which high-level language 

allocates data 

 

 

 



 

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com 
 

51 CS-704 Advanced Computer Architecture 

Three areas of data allocation 

1. Local Variable area – Stack 

 It is used to allocate local variable 

 it grows or shrinks on procedure call or return 

 Objects on stack are primarily scalar – single variable rather than arrays and are 

addressed by stack-pointer 

 Register allocation is much more effective for stack-allocated objects 

2. Global Data Area 

 It is used to allocate statically declared objects such as global variables and 

constants 

 These objects are mostly arrays and other aggregate data structures 

 Register allocation is relatively less effective for global variables 

 Global variables are aliased – there are multiple way to address so make it illegal 

to put on registers 

3. Dynamic Object Allocation: Heap 

 It is used to allocate the objects that do not  adhere to stack 

 The objects in heap are accessed with pointer but are not scalars 

 Most heap variable are aliased so register allocation is almost impossible for 

heap 

 

ISA Performance … Cont’d 

• MIPS Floating-point Operations 

 The instructions manipulate the floating-point registers  

 They indicate whether the operation is to be performed on single precision or 

double precision 

o MOV.S copies a single precision register to another of the same type 

o MOV.D copies a Double precision register to another of the same type 

• To get greater performance for graphic routines, MIPS64 offers Paired-Single 

Instructions 

• These instructions perform two 32-bit floating point operations on each half of the 64-bit 

floating point register 

• Examples: 

 ADD.PS 

 SUB.PS 

 MUL.PS 

 DIV.PS 

 

Putting it All Together 

• The earliest architectures were limited to instruction sets by the hardware  technology of 

that time 

• In the 1960s, stack architecture became popular, viewed as being good match of high-

level language 

• In the 1970s, the main concern of the architectures was to reduce the software cost, 

thus produced high-level architectures such as VAX machine 

• In the 1980s, return to simpler architecture took place due to sophisticated compiler 

technology 
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• In the 1990s, new architectures were introduced; these include: 

• 1990s Architectures 

1. Address size doubles – 32-bit to 64-bit 

2. Optimization of conditional branches via conditional execution e.g.; conditional 

move 

3. Optimization of Cache performance via pre-fetch that increased the role of 

memory hierarchy in performance of computers 

4. Multimedia support 

5. Faster Floating point instructions 

6. Long Instruction Word  

   

Concluding the Instruction set Principles 

• Three pillars of Computer Architecture    

 Hardware, Software and Instruction Set 

 

• Instruction Set  

 Interface between hardware and software 

 

• Taxonomy of Instruction Set:  

 Stack, Accumulator and General Purpose Register 

 

• Types and Size of Operands:  

 Types: Integer, FP and Character 

 Size: Half word, word, double word 

 

• Classification of operations  

 Arithmetic, data transfer, control and support 

 

• Operand Addressing Modes    

 Immediate, register, direct (absolute) and Indirect 

 

• Classification of Indirect Addressing  

 Register, indexed, relative (i.e. with displacement) and memory 

 

• Special Addressing Modes  

 Auto-increment, auto-decrement and scaled 

 

• Control Instruction Addressing modes  

 Branch, jump and procedure call/return 

   

Explanation: 

• Hardware, software and Instruction set are the three pillars of Computer architecture 

• During the period 1950s - 1960s, the focus of computer architecture studies has been on 

the Computer arithmetic; i.e., the methodologies for the optimal solutions to arithmetic 
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and logical problems.  

• 1970s to mid 1980s: The focus of Computer Architecture has been Instruction Set 

Design 

• Soon the researchers realized that the principles of instruction set, the portion visible to 

programmer and compiler writer, must be given importance to enhance the performance 

of the computer and reduce the complexity of hardware and hence optimize the price-

performance. Thus, ISA design has been the focus of researchers during 1970s – 

1980s.  

• The focus of the computer architecture studies, in 1990s is multi-dimensional and 

emphasis is given to CPU design, memory system, I/O system  and multi-processor 

systems based on the quantitative principles to optimize the price-performance. 

 

Concluding the Instruction set Principles… Cont’d 

• Instruction encoding 

 Essential elements of computer instructions:  

o type of operands, places of source and destinations and place of next 

instruction 

 Instruction word length 

o Variable, fixed length and hybrid   

 Hybrid length taxonomy 

o 4, 3, 2, 1 and 0 address format 

 Comparison of hybrid instruction word format 

o Minimum number of memory bytes are required in case of 1 address 

(accumulator) format and maximum for 4-address format 

• MIPS Instruction word format 

 RISC and MIPS a fixed length, 64-bit LOAD/STORE Architecture  

 It supports: 

o 8-, 16-, 32- and 64-bit operand    

o R-type, I-type and J-type 

o Arithmetic and logic operation 

o data transfer operations 

o Control flow operations 

• Multimedia and Digital Signal Processing Operands 

 Graphic applications deal with 2D and 3D images 

 DSP adds fixed point to the data types – binary point just to the right of the sign-

bit 

• Multimedia and Digital Signal Processing operations 

 All are fixed-width operation, performing multiple narrow operations on either 64-

bit or 128-bit ALU 

 The narrow operation B-byte, H-half word, W-word and 8B double word 

• Multimedia and Digital Signal Processing issues 

 Saturating Add/Subtract  

 Result Rounding  

 Multiply Accumulate 
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• ISA Performance 

 Role of Compiler: The interaction of compiler and high-level languages 

significantly effects how program uses an ISA 

 

Practice Problems: Quantitative Principles [Lecture 2-3] 

1. Computer hardware is designed using ISA having three types (Type A, B and C) of 

instructions. The clock cycles per instruction (CPI) for each type of instruction is as 

follows: 

  Type – A 2 CPI 

  Type – B 3 CPI 

  Type – C 4 CPI 

 

A compiler writer has written two different code sequences with different instruction count to 

execute an expression as given below. 

 Code Sequence  Instruction count for instruction type 

      A B C 

  1    2 1 4 

  2    3 2 1 

 

 a) What is the instruction count of each sequence? 

 b) Which of the sequence is faster? 

 c) What is the CPI (average) for each instruction? 

 

Solution to Practice Problem 1 

a): The instruction count of  

Sequence 1 = 2+4+1 = 7 

 Sequence 2 = 1+1+4= 6 

 Result: Sequence 2 executes fewer instructions 

 

b): To find which sequence is faster, we have to find the CPU clock cycles for each sequence 

 CPU Clock Cycles for sequence 1 = 2x2 + 3x4 + 4x1 = 20 cycles 

 CPU Clock Cycles for sequence 1 = 2x3 + 3x2 + 4x4 = 28 cycles 

Result: Sequence 1 is faster 

 

c): To find the CPI [ CPU Cycles/Instruction Count) of each sequence 

 CPI for sequence 1 = 20/7 = 2.85 

 CPI for sequence 2 = 28/6 = 4.67 

 Result: Sequence 2 which has fewer instructions has higher CPI,  thus is slower 
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Lecture 7 

Computer Hardware Design 

(Single Cycle Data path and Control Design) 

 

• Welcome to the seventh lecture of the series on Advanced Computer Architecture.  

• Today we will start with the review discussion on the hardware design of computer  

 

Today’s Topics 

• Recap: Instruction Set Principles  

• Basics of Computer Hardware  Design (Review) 

• Single Cycle Design 

 Data Path design 

 Control Design 

• Summary 

 

Recap: Instruction Set Principles 

• Three pillars of Computer Architecture 

• Instruction encoding 

 Instruction word length: Fixed, variable and  Hybrid length 

 MIPS Instruction word format 

• Multimedia and Digital Signal Processor Operands and Operations  

 Digital Signal Processing Issues 

 Saturating Add/Subtract  

 Result Rounding 

 Multiply Accumulate 

• Instruction Set Performance  

 Role of Compiler 

 Impact of Compiler Technology 

 Two ways the interaction of compiler and high-level language affects the use of 

ISA by a program 

1. How are variables allocated? 

2. How many registers are needed to allocate variables appropriately? 

• Three areas of data allocation 

 Local Variable area – Stack 

 Global Data Area 

 Dynamic Object Allocation: Heap 

 

Basics of Hardware Design 

We will be talking about! 

• Basic building blocks of a computer 

• Sub-systems of CPU 

• Processor design steps 

• Processor design parameters 
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Basic building blocks of a computer 

 

• Central Processing Unit 

• Subsystems:  

• Memory 

• Input / Output  (Peripherals)  

• Buses  

 
 

Sub-systems of Central Processing Unit 

• At a ―higher level‖ a CPU can be viewed as consisting of two sub-systems 

 Datapath: the path that facilitates the transfer of information from one part 

(register/memory/ IO) to the other part of the system 

 Control: the hardware that generates signals to control the sequence of steps and 

direct the flow of information through the datapath 

 
Design Process 

Design is a "creative process," not a simple 

method. Design Finishes as Assembly 

• Design understood in terms of 

components and how they have 

been assembled 

• Top Down of complex functions 

(behaviors) into more primitive 

functions 

• Bottom-up composition of primitive 

building blocks into more complex 

assemblies 
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Processor Design Steps 

• Design the Instruction Set Architecture 

• Use RTL to describe the behavior of the processor 

 Static as well as dynamic 

 Includes the functional description of each instruction in the ISA 

• Select a suitable implementation (internal organization) of the data path 

• Map the behavioral RTL description of each instruction on to a set of structural RTL, 

based on the chosen implementation 

 Implies the existence of suitable timing intervals provided by synchronous 

clocking signals 

• Prepare a list of ―control signals‖ to be activated corresponding to each structural RTL 

statement 

• Develop logic circuits to generate the necessary control signals 

• Tie every thing together – datapath and control signals 

• Other things which should be minimized 

 Amount of control hardware 

 Development time 

 

Performing an Operation 

• Each instruction of a program is performed in two phases: 

 Instruction Fetch 

 Instruction Execute 

• Each phase is divided into number of steps, called Micro-operation 

• A micro-operation is completed in a fixed time interval  

• The number of micro-operations is determined by the datapath implementation 

 

Datapath Implementations 

• The datapath is the arithmetic organ of the Von- Neumann‘s stored-program 

organization 

• Typically, the datapath may be implemented as: 

 Unibus structure 

 2-bus structure 

 3-bus structure 

• It consists of registers, internal buses, arithmetic units and shifters 

• Each register in the register file has: 

 A load control line that enables data load to  register 

 A set of tri-state buffers between its output and the bus   

 A read control line that enables its buffer and place the register on the bus 
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A Typical Unibus Datapath Implementation 

 

 
 

Typical Unibus Datapath Structure 

• It consists of a register file having 32 registers each of 32-bit and internal bus connecting 

the arithmetic and shifter unit to the register file 

• Other registers (PC, IR, MAR, MBR, A, C)  have a load control line too 

• Registers PC and MBR also have a set of tri-state buffers between their output and the 

internal CPU bus 

• Additionally, registers MAR and MBR have other circuitry connecting them to the 

external CPU bus 

 

RTL micro-operations of Unibus structure 

• Instruction Fetch:  

Completed in the following three steps (time intervals): 

  T0  MAR  PC,  C  PC + 4; 

  T1  MBR  M[MAR],  PC  C; 

  T2  IR  MBR 

 

• Instruction Execute:  

Instructions of different classes are Completed in the different number of steps (time 

intervals): 
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Execution Phase micro-operations of Unibus 

• R-type Arithmetic/Logical Instructions (Add/Sub/And/OR  ra, rb, rc) or immediate 

 T3 A   R[rb]; 

 T4 C   A op R[rc]; or T4 C   A op Const(sign extended) 

 T5  R[ra]  C; 

 

• R-type 2-address instructions (e.g. NOT ra, rb) 

 T3 C  NOT(R[rb]); 

 T4  R[ra]  C; 

 

RTL micro-operations of Unibus structure 

• Load/store Instructions (ld/st ra, c2(rb) 

 T3  A  ((rb = 0) : 0, (rb ≠ 0): R[rb]);       

 T4 C A + (sign extended and shifted c2); 

 T5  MAR  C; 

 T6  MBR  M[MAR]; (load)  MBR  R [ra]; (store) 

 T7  R[ra]  MBR; (load)   M[MAR]  MBR; (store) 

 

• Branch instructions (e.g. :  brzr rb,  rc) 

 T3 CON  cond(R[rc]); 

 T4 CON: PC  R[rb]; 

 

A 2-bus implementation 
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Typical 2-bus Datapath Structure 

• Registers and arithmetic and logic unit are identical to uni-bus structure 

• The structure contains two internal buses called the in-bus and out-bus 

• The in-bus carries data to be written into registers and out-bus carries data read out from 

the registers 

• The output of ALU is directly connected to the in-bus instead of through register C as in 

Uni-bus structure 

 

Fetch/Execution Phase micro-operations of 2-bus 

• Three micro-operations (steps) of the Fetch Phase are identical to Uni-bus structure 

except C PC+4 in step T0  

• R-type Arithmetic/Logical Instructions are completed in two steps instead of three 

(Add/Sub/And/OR  ra, rb, rc) or immediate 

  T3  A  R[rb]; 

  T4 R[ra]  A op R[rc]; 

 

• R-type 2-address instructions (e.g. NOT ra, rb) 

  T3  R[ra]  NOT(R[rb]); 
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Typical 3-bus Datapath Structure 

• Registers and arithmetic and logic unit are identical to uni-bus and 2-bus structure 

• The structure contains three internal buses called the A-bus, B-bus and C-bus 

• The register file contains two read ports connected to A-bus and B- bus and one write 

port connected to C-bus  

• The registers A and C are not provided as the A input and C output of ALU are 

connected the bus A and C respectively 

• Fetch Phase is completed in two steps and Execute phase of R-type instructions in one 

step 

 

Fetch and Execute of sub instruction 

using the 3-bus data path implementation 

Format:  sub ra, rb, rc 

 

 
 

Processor Design Parameters 

• Recall:    

 Execution time (ET) = IC x CPI X T 

 Instruction Count = IC 

 Clock Cycles per Instruction = CPI 

 Clock cycle or time period = T  

• Note that Implementation affects CPI and T 

 

Single and Multi cycle Datapaths 

• The datapath where an instruction is fetched and executed in one clock cycle, e.g.,  

CPI =1, is referred to as SINGLE CYCLE datapath 

• The datapath where different classes of instruction are fetched and executed in variable 

number of cycles is referred to as MULTI-CYCLE datapath 
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Single cycle Datapath 

• The instruction fetch and execute phases are completed in one clock cycle 

• A clock cycle is divided in to number of steps to complete the operations 

• The cycle length is constant  whereas number of steps (or micro operation) may be 

variable 

• The timing step generator returns to T0 on the completion of a cycle 

 

Worst Case Timing (Load) 

 

 
 

Single cycle Timing 

• This timing diagram shows the worst case timing of single cycle datapath (which occurs 

at the load instruction). 

• Clock-to-Q time after the clock tick, PC will present its new value to the Instruction 

memory. 

• After a delay of instruction access time, the instruction bus (Rs, Rt, ...) becomes valid. 

• Then three things happens in parallel: 

a) First the Control generates the control signals (Delay through Control Logic). 

b) Secondly, the regiser file is access to put Rs onto busA. 

c) Thirdly, in case of memory reference or immediate data instructions, we have to 

sign extended the immediate field to get the second operand (busB)  

 



 

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com 
 

63 CS-704 Advanced Computer Architecture 

• Here we assume register file access takes longer time than doing the sign extension so 

we have to wait until busA valid before the ALU can start the address calculation (ALU 

delay). 

• With the address ready, we access the data memory and after a delay of the Data 

Memory Access time, busW will be valid. 

• And by this time, the control unit would have set the RegWr signal to one so at the next 

clock tick, we will write the new data coming from memory (busW) into the register file. 

Single cycle Memory Structure 

• As clear from the timing diagram, the memory address (from PC) for instruction fetch; 

and from ALU for the data read/write; are available on the bus simultaneously – thus 

gives rise to structural hazard 

• To overcome this problem memory unit is partitioned in to parts  

 Instruction memory 

 Data memory 

 

Single Cycle Instruction Fetch Unit 

• Fetch the instruction from Instruction memory:  

   Instruction   Mem[PC] 

 This is the same for all instructions 
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A Single Cycle Datapath 

 
 

The Single Cycle Datapath during Add 
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The Single Cycle Datapath during Add 

• This picture shows the activities at the main datapath during the execution of  the Add or 

Subtract instructions.   

• The active parts of the datapath are shown in different color as well as thicker lines. 

• First of all, the Rs and Rt of the instructions are fed to the Ra and Rb address ports of 

the register file and cause the contents of registers specified by the Rs and Rt fields to 

be placed on busA and busB, respectively. 

• With the ALUctr signals set to either Add or Subtract, the ALU will  perform the proper 

operation and with MemtoReg set to 0, the ALU output will be placed onto busW. 

• The control we are going to design will also set RegWr to 1 so that the result will be 

written to the register  file at the end of the cycle. 

• Notice that ExtOp is don‘t care because the Extender in this case can either do a 

SignExt or ZeroExt. We DON‘T care because ALUSrc will be equal to 0--we are using 

busB. 

• The other control signals we need to worry about are: 

 MemWr has to be set to zero because we do not want to write the memory.  

 And Branch and Jump, we have to set to zero.  Let me show you why. 

 

Instruction Fetch Unit at the End of Add 

• PC  <-  PC + 4; This is the same for all instructions except: Branch and Jump 

 

 
 

• This picture shows the control signals setting for the Instruction Fetch Unit at the end of 

the Add or Subtract instruction. 

• Both the Branch and Jump signals are set to 0. 

• Consequently, the output of the first adder, which implements PC plus 1, is selected 

through the two 2-to-1 mux and got placed into the input of the Program Counter 

register. 
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• The Program Counter is updated to this new value at the next clock tick. 

• Notice that the Program Counter is updated at every cycle.  Therefore it does not have a 

Write Enable signal to control the write. 

• Also, this picture is the same for or all instructions other than Branch andJjump. 

• Therefore I will only show this picture again for the Branch and Jump instructions and 

will not  repeat this for all other instructions. 

• +2 = 17 min. (X:57) 

 

Summary of Today's Lecture 

• Basic building blocks of a computer 

• Sub-systems of CPU 

• Processor design steps 

• Processor design parameters 

• Hardware design process 

• Timing signals 

• Uni-bus, 2-bus and 3-bus structures 

• 3-bus based single cycles data path 
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Lecture 8 

Computer Hardware Design 

(Multi Cycle Datapath and Control Design) 

 

• Welcome to the seventh lecture of the series on Advanced Computer Architecture.  

• Today we will start with the review discussion on the hardware design of computer  

 

Today’s Topics 

• Recap: Single cycle datapath and control 

• Example of Single Cycle Design 

• Multi Cycle Design - Datapath 

• Summary 

 

Recap: Lecture 7 

• Basic building blocks of a computer:  

• CPU, Memory and I/O sub-systems and Buses 

• CPU sub-system: Datapath and control 

• Phases of instruction performing: Fetch and Execute 

• Datapath Designs: Uni-, 2- and 3-bus structures 

• Micro-operations of Fetch and execute phases: 

• Fetch: MBR  M[PC]; PC PC+4; IR MBR 

 Exe: ID, operand read; exe; mem; WB 

 3-bus based single cycles data path – MIPS datapath 

• Control signals for single cycles data path – Add Instruction 

 

A critical review of single cycle datapath and control signals 

• Fetch Circuit 
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Control Signals for Add rd,rs,rt 

• R[rd]  R[rs]  +  R[rt] 

 
• This picture shows the activities at the main datapath during the execution of the Add or 

Subtract instructions.   

• The active parts of the datapath are shown in different color as well as thicker lines. 

• First of all, the Rs and Rt of the instructions are fed to the Ra and Rb address ports of 

the register file and cause the contents of registers specified by the Rs and Rt fields to 

be placed on busA and busB, respectively. 

• With the ALUctr signals set to either Add or Subtract, the ALU will perform the proper 



 

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com 
 

69 CS-704 Advanced Computer Architecture 

operation and with MemtoReg set to 0, the ALU output will be placed onto busW. 

• The control we are going to design will also set RegWr to 1 so that the result will be 

written to the register file at the end of the cycle. 

• Notice that ExtOp is don‘t care because the Extender in this case can either do a 

SignExt or ZeroExt.  We DON‘T care because ALUSrc will be equal to 0--we are using 

busB. 

• The other control signals we need to worry about are: 

o MemWr has to be set to zero because we do not want to  write the memory.  

o And Branch and Jump, we have to set to zero.  Let me show you why. 

• +3 = 15 min. (X:55) 

 

Instruction Fetch Unit at the End of Add 

• PC  <-  PC + 4; This is the same for all instructions except: Branch and Jump 

 

 
 

• This picture shows the control signals setting for the Instruction Fetch Unit at the end of 

the Add or Subtract instruction. 

• Both the Branch and Jump signals are set to 0. 

• Consequently, the output of the first adder, which implements PC plus 1, is selected 

through the two 2-to-1 mux and got placed into the input of the Program Counter 

register. 

• The Program Counter is updated to this new value at the next clock tick. 

• Notice that the Program Counter is updated at every cycle.  Therefore it does not have a 

Write Enable signal to control the write. 

• Also, this picture is the same for or all instructions other than Branch andJjump. 

• Therefore I will only show this picture again for the Branch and Jump instructions and 

will not  repeat this for all other instructions. 

• +2 = 17 min. (X:57) 
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The Single Cycle Datapath during Or Immediate 

 

 
 

• Now let‘s look at the control signals setting for the Or immediate instruction. 

• The OR immediate instruction OR the content of the register specified by the Rs field to 

the Zero Extended Immediate field and write the result to the register specified in Rt. 

• This is how it works in the datapath.  The Rs field is fed to the Ra address port to cause 

the contents of register Rs to be placed on busA. 

• The other operand for the ALU will come from the immediate field.  In order to do this, 

the controller need to set ExtOp to 0 to instruct the extender to perform a Zero Extend 

operation. 

• Furthermore, ALUSrc must set to 1 such that the MUX will block off bus B from the 

register file and send the zero extended version of the immediate field to the ALU. 

• Of course, the ALUctr has to be set to OR so the ALU can perform an OR operation. 

• The rest of the control signals (MemWr, MemtoReg, Branch, and Jump) are the same as 

theAdd and Subtract instructions. 

• One big difference is the RegDst signal.  In this case, the destination register is specified 

by the instruction‘s Rt field, NOT the Rd field because we do not have a Rd field here. 

• Consequently, RegDst must be set to 0 to place Rt onto the Register File‘s Rw address 

port. 

• Finally, in order to accomplish the register write, RegWr must be set to 1. 

• +3 = 20 min. (X:60) 
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The Single Cycle Datapath during OR Immediate 

• Now let‘s look at the control signals  setting for the OR immediate instruction. 

• The OR immediate instruction OR the content of the register specified by the Rs field to 

the Zero Extended Immediate field and write the result to the register specified in Rt. 

• This is how it works in the datapath. The Rs field is fed to the Ra address port to cause 

the contents of register Rs to be placed on busA. 

• T he other operand for the ALU will come  from the immediate field.   

• In order to do this, the controller need to set  ExtOp to 0 to instruct the extender to 

perform a Zero Extend operation. 

• ALUSrc must set to 1 such that the MUX will block off bus B from the register file and 

send the zero extended version of the immediate field to the ALU. 

• The ALUctr has to be set to OR so the ALU can perform an OR operation. 

• The rest of the control signals (MemWr, MemtoReg, Branch, and Jump) are the same as 

the Add and Subtract instructions. 

• One big difference is the RegDst signal.  In this case, the destination register is specified 

by the instruction‘s Rt field, NOT the Rd field because we do not have a Rd field in the 

instruction word 

• Consequently, RegDst must be set to 0 to place Rt onto the Register File‘s Rw address 

port. 

• Finally, in order to accomplish the register write, RegWr must be set to 1. 

 

The Single Cycle Datapath during Load 

• R[rt]  <-  Data Memory {R[rs] + SignExt[imm16]} 

 
• +3 = 28 min. (Y:08) 
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The Single Cycle Datapath during Store 

 

 
 

• The store instruction performs the inverse function of the load.  Instead of loading data 

from memory, the store instruction sends the contents of register specified by Rt to data 

memory. 

• Similar to the load instruction, the store instruction needs to read the contents of register 

Rs (points to Ra port) and add it to the sign extended verion of the immediate filed 

(Imm16, ExtOp = 1, ALUSrc = 1) to form the data memory address (ALUctr = add). 

• However unlike the Load instructoion where busB is not used, the store instruction will 

use busB to send the data to the Data memory. 

• Consequently, the Rt field of the instruction has to be fed to the Rb port of the register 

file. 

• In order to write the Data Memory properly, the MemWr signal has to be set to 1. 

• Notice that the store instruction does not update the register file.  Therefore, RegWr 

must be set to zero and consequently control signals RegDst and MemtoReg are don‘t 

cares. 

• And once again we need to set the control signals Branch and Jump to zero to ensure 

proper Program Counter updataing. 

• Well, by now, you are probably tied of these boring stuff where Branch and Jump are 

zero so let‘s look at something different--the bracnh instruction. 

• +3 = 31 min. (Y:11) 
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The Single Cycle Datapath during Branch 

 

 
 

• So how does the branch instruction work? 

• As far as the main datapath is concerned, it needs to calculate the branch condition. 

That is, it subtracts the register specified in the Rt field from the register specified in the 

Rs field and set the condition Zero accordingly. 

• In order to place the register values on busA and busB, we need to feed the Rs and Rt 

fields of the instruction to the Ra and Rb ports of the register file and set ALUSrc to 0. 

• Then we have to instruction the ALU to perform the subtract (ALUctr = sub) operation 

and set the Zero bit accordingly. 

• The Zero bit is sent to the Instruction Fetch Unit.  I will show you the internal of the 

Instruction Fetch Unit in a second. 

• But before we leave this slide, I want you to notice that ExtOp, MemtoReg, and RegDst 

are don‘t cares but RegWr and MemWr have to be ZERO to prevent any write to occur. 

• And finally, the controller needs to set the Branch signal to 1 so the Instruction Fetch 

Unit knows what to do.  So now  let‘s take a look at the Instruction Fetch Unit. 

• +2 = 33 min. (Y:13) 
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Instruction Fetch Unit at the End of  Branch 

• if  (Zero == 1)   then  PC = PC + 4 + SignExt[imm16]*4 ;   

• else  PC = PC + 4 

 

 
 

• Let‘s look at the interesting case where the branch condition Zero is true (Zero = 1). 

• Well, if Zero is not asserted, we will have our boring case where PC + 1 is selected. 

• Anyway, with Branch = 1 and Zero = 1, the output of the second adder will be selected. 

• That is, we will add the seqential address, that is output of the first adder, to the sign 

extended version of the immediate field, to form the branch target address (output of 2nd 

adder). 

• With the control signal Jump set to zero, this branch target address will be written into 

the Program Counter register (PC) at the end of the clock cycle. 

• +2 = 35 min. (Y:15) 
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Step 4: Given Datapath: RTL -> Control 

 

 
 

A Summary of the Control Signals 
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• Here is a table summarizing the control signal setting for the seven (add, sub, ...) 

instructions we have looked at. 

• Instead of showing you the exact bit values for the ALU control (ALUctr), I have used the 

symbolic values here. 

• The first two columns (add and sub) are unique in the sense that they are R-type 

instructions; and in order to uniquely identify them, we need to look at BOTH the op field 

as well as the func field. 

• Ori, lw, sw, and branch on equal are I-type   instructions and Jump is J-type. They all 

can be uniquely identified by looking at the op- code field alone. 

• Now let‘s take a more careful look at the first two columns.  Notice that they are identical 

except the last row. 

• So we can combine these two columns here if we can ―delay‖ the generation of ALUctr 

signals. 

• This lead us to something called ―local decoding.‖ 

 

The Concept of Local Decoding 

 

 
• +3 = 45 min. (Y:25) 

• The local decoding concept is where instead of asking the Main Control to generates the 

ALUctr signals directly ; the main control will generate a set of signals called ALUop. 
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• For all I and J type instructions, ALUop will tell the ALU Control exactly what the ALU 

needs to do (Add, Subtract, ...) . 

• But whenever the Main Control sees a R-type instructions, it simply throws its hands up 

and says: ―Wow, I don‘t know what the ALU has to do but I know it is a R-type 

instruction‖ and let the Local Control Block, ALU Control to  take care of the rest. 

• Notice that this save us one column from the table we had on the last slide.  But let‘s be 

honest, if one column is the ONLY thing we  save, we probably will not do it. 

• But when you have to design for the entire  MIPS instruction set, this column will used 

for ALL R-type instructions, which is more than just Add and Subtract I showed you here. 

•  Another advantage of this table over the last one, besides being smaller, is that we can 

uniquely identify each column by looking at  the Op field only. 

 

Putting it All Together: A Single Cycle Processor 

 

 
 

A Single Cycle Processor 

• OK, now that we have the Main Control implemented, we have everything we needed for 

the single cycle processor and here it is. 

• The Instruction Fetch Unit gives us the instruction.  The OP field is fed to the Main 

Control for decode and the Func field is fed to the ALU Control for local decoding. 

• The Rt, Rs, Rd, and Imm16 fields of the instruction are fed to the data path. 

• Based on the OP field of the instruction, the Main Control will set the control signals 

RegDst, ALUSrc, .... etc properly 
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• Furthermore, the ALUctr uses the ALUop from the Main conrol and the func field of the 

instruction to generate the ALUctr signals to ask the ALU to do the right thing 

 

How Effectively are we utilizing our hardware? 

 
 

• Example: memory is used twice, at different times 

 Average mem access per inst = 1 + Flw + Fsw ~ 1.3 

 If CPI is 4.8, imem utilization = 1/4.8, dmem =0.3/4.8 

• We could reduce HW without hurting performanc extra control 

 

Alternative datapath: Multiple Cycle Datapath 

• Immunizes Hardware: 1 memory, 1 adder 

 
 

• Putting it all together, here it is: the multiple cycle datapath we set out to built. 

• +1 = 47 min. (Y:47) 
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Controller FSM Spec 

 
 

Sequencer-based control unit 
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Two Types of Exceptions 

• Interrupts 

 caused by external events 

 asynchronous to program execution 

 may be handled between instructions 

 simply suspend and resume user program 

• Traps 

 caused by internal events 

o exceptional conditions (overflow) 

o errors (parity) 

o faults (non-resident page) 

 synchronous to program execution 

 condition must be remedied by the handler 

 instruction may be retried or simulated and program continued or program may 

be aborted 

 

Precise Interrupts 

• Precise => state of the machine is preserved as if program executed upto the offending 

instruction 

 Same system code will work on different implementations of the architecture 

 Position clearly established by IBM 

 Difficult in the presence of pipelining, out-ot-order execution, ... 

 MIPS takes this position 

• Imprecise => system software has to figure out what is where and put it all back together 

• Performance goals often lead designers to forsake precise interrupts 

 system software developers, user, markets etc. usually wish they had not done 

this 

 

Summary of Today's Lecture 

• 3-bus based single cycles data path 

• Control signals generation for single  cycles data path 
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Lecture 9 

Computer Hardware Design 

(Multi Cycle and Pipeline - Datapath and Control Design) 

Today’s Topics 

• Recap: multi cycle datapath and control 

• Features of Multi cycle design 

• Multi Cycle Control Design 

• Introduction to Pipeline datapath 

• Summary 

 

Recap: Lecture 8 

• Information flow and Control signals for single cycles data path to execute: 

 Add/Subtract Instruction 

 Immediate Instruction 

 Load/Store Instructions  

 Control Instructions  

• Analysis of single cycle data path 

• How effectively are different sections used? 

 Memory is used twice, at different times 

(i.e., Instruction Fetch and Load or Store) 

 Adders in IF section are used once for fraction of time (Fetch Phase) 

 ALU is used for the execution of R-type instructions and memory address 

calculation 

• Conclusion: We can reduce H/W without hurting performance by using extra control 

 

Multiple Cycle Approach 

 

 
 

• The single cycle operations are performed in five steps: 

 Instruction Fetch 

 Instruction Decode and Register Read 

 Execute (R- I-type or address for Load/store/Branch) 

 Memory (Read/write) 

 Write (to register file) 
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Multiple Cycle Approach 

• In the Single Cycle implementation, the cycle time is set to accommodate the longest 

instruction, the Load instruction. 

• In the Multiple Cycles implementation, the cycle time is set to accomplish longest step, 

the memory read/write 

• Consequently, the cycle time for the Single Cycle implementation can be five times 

longer than the multiple cycle implementation. 

• As an example, if T = 5 µ Sec. for single cycle then T= 1 µ Sec. for multi cycle 

implementation 

 

Single Cycle vs. Multiple Cycle 

 
 

• For different classes of instructions, Multi Cycle implementation may take 3, 4 or 5 

cycles to fetch and execute an instruction 

• Now in order to compare the performance of single cycle and multi cycle 

implementations, let us consider a program segment comprising three instructions, given 

in the sequence: Load, Store, R-type (say Add) 

• The execution time for these three instructions using single cycle implementation with 

cycle length equals 5 µ Sec is: T exe = 3 x 5 µ Sec = 15 µsec. 

• Note that here the cycle time is long enough for the load instruction, but it is too long for 

the Store and R-type instruction 

• So the last part of the cycle, in case of the store and 4th (memory) part in case of R-type 

instruction is wasted. 

• In Multi cycle implementation, Load is completed in 5 Cycles, and store and R-type each 

takes 4 cycles to complete. 

• Thus, these three instructions take 5+4+4 = 13 cycles, if the cycle length is 1 µ Sec then 

the execution time for the three instructions is: T exe = 13 x 1 µ Sec = 13 µsec. 

• Conclusion: The multi cycle is 15/13 = 1.24 times faster 
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High Level View of Multiple Cycle Datapath 

 
• Here, a shared memory is used, as the instruction fetch and  data read/write are 

performed in different cycles 

• The single ALU is shared among the instruction fetch,  execute arithmetic and logic 

instructions and address calculation in different cycles 

• The use of shared function unit (ALU) requires additional multiplexers or widening of 

multiplexers 

• New temporary registers, Instruction  register, Data memory, operand A and B and 

ALUout, are included to hold the information for use in later cycle 

• E.g.; Memory read in cycle 4 is written in cycle 5 (Load), operand registers A and B read 

in cycle 2 may be used in cycle 3 or 4, and so on 

 

Multiple Cycle Datapath Design 
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Multiple Cycle Datapath Architecture 

• Immunized Hardware: 1 memory, 1 adder 

• Cycle 1 - [Instruction Fetch]: 

• firstly, MUX-1 select input IorD =0 and the PC is connected to the Memory Read address 

input RAdr; instruction is fetched from the memory at Dout and  is placed in the 

Instruction Register by inserting IRWr [Yellow Path] 

• Secondly, the select input ALUSelA to MUX-3, is made equal to 0,, ALUSelB to MUX-5 

is made equal to 00 to add 4 to PC; then PCSrc of MUX-2 is made 0 and PCWr is 

asserted to load PC+4 to the PC as address of the next instruction 

 

• Cycle 2 – [ID and Reg. Rd.] 

• Firstly the Instruction is decoded; the Rs, Rt, Rd and Imm16 fields are made available on 

respective lines (Shown in orange) 

• Secondly the registers at Rs and Rt are read at buses A and B, respectively 

 

• Cycle 3 - [Exe] 

• The select inputs ALUSelA and ALUSelB to the MUX-3 and MUX-5, respectively for the 

instruction in hand; available at ALUop input to the ALU Control Unit 

 For R-type instructions:   

ALUSelA = 1 and ALUSelB = 01 to connect bus A and bus B to ALU to perform 

the operation [Green Path] 

 For I-type and Memory Instructions: 

ALUSelA = 1 and ALUSelB = 11 to connect bus A and Sign Extended Imm16 to 

ALU to perform the operation on immediate data [Red Path]. The ALU output is 

kept in ALU OUT Register as result of ALU OP execution in case of I-type 

operation and as Memory address in case of memory instructions Load/store  

 For J- type Instructions: 

1: Condition Test: ALUSelA = 1 and ALUSelB = 01; ALUop=SUB If ALU output 

Zero =1 then assert  PCWrCond and 

2: PC  PC+4+ [Sign Extend Imm16 and Shift left 2 bits] ALUSelA = 0;  

ALUSelB = 10 Assert BrWr ; and PCSrc of MUX-2 = 1 to pass the target address 

to PC [Blue Path] 

 

• Cycle 4 - [Memory Instruction Load/Store] 

 Load instruction: IorD=1 to pass the ALUout Register as RAdr  (Read 

Address) input to the memory to read data at the Dout [Dark Green Path] 

 Store instruction: MemWr is asserted; as the ALUout Register output is wired to 

WrAdr (Write address input)  [Dark Green Path] and bus B of the register file is 

wired to Din (Data In) [Dark blue] of the memory 

 

• Cycle 5 - [Write Back] 

 R-type instruction: RegDest of MUX-4 = 1 to select Rd as the destination 

address; MemToReg = 0 to connect  ALUout to Bus-W and RegWr is asserted 

memory 
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 I-type instruction: RegDest of MUX-4 = 0 to select Rt as the destination address; 

MemToReg = 0 to connect ALUout to Bus-W and RegWr is asserted memory  

 Load instruction: RegDest of MUX-4 = 0 to select Rt as the destination address; 

MemToReg = 1 to connect Dout of the memory to Bus-W or the register file and 

RegWr is asserted 

 

Multi Cycle Control design 

• Control may be designed  in the following steps using the initial representation as: 

• Finite State Machine: Here, the sequence control is defined by explicit next state 

functions, logic is represented by logic equations and usually PLAs are used to 

implement the machine 

• Micro-program: Here, micro-program counter and a dispatch ROM defines the sequence 

control,  logic is represented by truth table and control is implemented using ROM 

 

Multi Cycle Controller FSM Specifications 
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Micro program Controller 

 
 

“Macroinstruction” Interpretation 

 

 
 

Designing a Microinstruction Set 

1. Start with list of control signals 

2. Group signals together that make sense (vs. random): called ―fields‖ 

3. Places fields in some logical order (e.g., ALU operation & ALU operands first and 

 microinstruction sequencing last) 

4. Create a symbolic legend for the microinstruction format, showing name of field values 

and how they set the control signals 

a. Use computers to design computers 

5. To minimize the width, encode operations that will never be used at the same time 
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Microprogramming 

• Specialize state-diagrams easily captured by micro sequencer 

 simple increment & ―branch‖ fields 

 datapath control fields 

• Control design reduces to Microprogramming  

• Microprogramming is a fundamental concept 

 implement an instruction set by building a very simple processor and interpreting 

the instructions 

 essential for very complex instructions and when few register transfers are 

possible 

 overkill when ISA matches datapath 1-1 

 

Microprogramming: inspiration for RISC 

• If simple instruction could execute at very high clock rate… 

• If you could even write compilers to produce microinstructions… 

• If most programs use simple instructions and addressing modes… 

• If microcode is kept in RAM instead of ROM so as to fix bugs … 

• If same memory used for control memory could be used instead as cache for 

―macroinstructions‖… 

• Then why not skip instruction interpretation by a micro-program and simply compile 

directly into lowest language of machine? (microprogramming is overkill when ISA 

matches datapath 1-1) 

 

Summary 

• Single cycle verses multi cycle datapath 

• Key components of multi cycle data path 

• Design and information flow in multi cycle data path 

• Multi cycle control unit design 

• Finite State Machine –based control Unit 

• Micro program- based controller 
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Lecture 10 

Computer Hardware Design 

(Pipeline Datapath and Control Design) 

Recap: Lecture 9 

• Single cycle verses multi cycle datapath 

• Key components of multi cycle data path 

• Design and information flow in multi cycle data path 

• Multi cycle control unit design 

• Finite State Machine–based control Unit 

• Microprogram-based controller 

 

What is pipelining? 

• Pipelining is a fundamental concept 

• It utilizes capabilities of the Datapath by 

 

Pipelining is Natural! 

• Laundry Example!    

• Four loads: A, B, C, D  

• Four laundry operations:  

Wash, Dry, fold and place into drawers 

• Washer takes 30 minutes  →  

• Dryer takes 30 minutes  →  

• ―Folder‖ takes 30 minutes  →  

• ―Stasher‖ takes 30 minutes →   

to put clothes into drawers  

 

Sequential Laundry 
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Pipelined Laundry: Start work ASAP 

 

 
 

• Pipelined laundry takes 3.5 hours for 4 loads!  

 

Features of Pipelined Processor 

• All the functional units operate  independently  

• Multiple tasks operating simultaneously using different resources  

• Pipelining doesn‘t help latency of single task, it helps throughput of entire  workload 

• Potential speedup = Number pipe stages 

 

Pipelining Lessons 

• Pipeline rate limited by: 

 Slowest pipeline stage 

 Time to ―fill‖ pipeline and time to ―drain‖ it reduces speedup 

 Unbalanced lengths of pipe stages reduces speedup 

 If washer takes longer time than the dryer then dryer has to wait! 

• Stall for Dependences 

 

Five Steps of Datapath 

1. Ins. Fetch,  

2. 1Dec/Reg,  

3. Exec,  

4. Mem,  

5. Wr 
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Pipelined Processor Design 

 

 
 

Pipeline Control 
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Pipelined Registers Included 

 

 
 

Five Steps as Stages of Pipeline 
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Multiple Cycle verses Pipeline – Pipeline enhances performance 

 

 
 

3 Instructions program reconsidered 

1. Load  

2. Store 

3. R-type (ADD) 

 

Example 1: The cycle time of a single cycle machine is 45 ns, and of multi cycle and pipelined 

machines is 10 ns; and average CPI due to instruction mix on multi cycle machine is 4.6.  

What is the execution time on each type of machine? 

Solution: 

• Single Cycle Machine 

 45 ns/cycle  x 1 CPI x 100 inst = 4500 ns 

• Multi Cycle Machine 

 10 ns/cycle x 4.6 CPI x 100 inst = 4600 ns 

• Pipelined machine 

 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns 

 

Example 2: Consider a multicycle, unpiplined processor requires 4 cycles for the ALU and 

Branch operations and 5 cycles for the memory operation. Assume the relative frequency of 

these operations is 40%, 25% and 35% respectively; and the clock cycle is of 1 n sec.  

In pipelined implementation, due to clock skew and setup processor adds 0.2 n sec. to the clock 
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Solution: 

• Unpiplined Processor: 

• Average Execution Time / Instruction = Clock Cycle x Average CPI 

= 1 n sec. x [{(0.4 +.25)} x 4 + 0.35 x 5] 

= 1 n sec x (0.65 x 4 + 0.35 x 5) 

=   1 n sec. x (2.60 + 1.75) = 4.35 n sec 

• Pipelined Processor: 

• Average Execution Time/ Instruction = Clock cycle + overhead 

=  1 n sec. + 0.2 n. sec  

= 1.2 n sec 

• Speed up = 4.35 / 1.2 = 3.62 times 

 

Pipelined Execution Representation 

• Conventional Representation 

 Helps showing the program flow viz-a-viz time 

 
Graphical Representation 
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Why Pipeline? Because the resources are there! 

 
 

Can pipelining get us into trouble? 

• Structural hazards  

 Data hazards 

 Control hazards  

 

How Stall degrades the performance? 

• The pipelined CPI with stalls = 

 Ideal CPI + Stall clock cycles per  instruction 

 

How Stall degrades the performance? 

1. Speedup w.r.t unpiplined  

= CPI Unpiplined  / 1 + stall cycles per instruction 

 

2. Speedup w.r.t. pipeline depth 

= pipeline depth / 1 + stall cycles per instruction 

 

Summary 

• Multi cycle datapath verses pipeline datapath 

• Key components of pipeline data path 

• Performance enhancement due to pipeline 

• Hazards in pipelined datapath 
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Lecture 11 

Computer Hardware Design 

(Pipeline and Instruction Level Parallelism) 

Today’s Topics 

• Recap Lecture 10 

• Structural Hazards 

• Data Hazards 

• Control Hazards 

 

Recap: Lecture 10 

• Multi cycle datapath verses pipeline datapath 

• Key components of pipeline data path 

• Performance enhancement due to pipeline 

• Introduction to hazards in pipelined datapath 

 

Structural Hazards 

• Attempt to use the same resource two different ways at the same time, e.g., 

• Single memory port is accessed for instruction fetch and data read in the same clock 

cycle would be a structural hazard  

 

Single Memory is a Structural Hazard 

 
 

• Two memory read operations in the 4th cycle: 

• The LOAD instruction accesses memory to read data and the 4th instruction fetched from 

the same memory  
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• Insert stall (bubble) to avoid memory structural hazard  

 

Structural hazard exists when 

• Single write port of register accessed for two WB operations in same clock cycle –  

• This situation does not exist in 5-stage pipeline 

• But it may exist in 4 and 5 stage multi-cycle pipeline 

 

Pipelining the Load Instruction 

 

 
 

• The five independent functional units in the pipeline datapath are: Inst. Fetch, Dec/Reg. 

Rd,  ALU for Exec, Data Mem and Register File‘s Write port for the Wr stage 

• Here, we have separate register‘s read and write ports so registers read and write is 

allowed at the same time 

• Each functional unit is used once 

 

Explanation: 

For the load instructions, the five independent functional units in the pipeline datapath are: 

a) Instruction Memory for the Ifetch stage. 

b) Register File‘s Read ports for the Reg/Decode stage. 
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c) ALU for the Exec stage.   

d) Data memory for the Mem stage. 

e) And finally Register File‘s write port for the Write Back stage. 

 

• Notice that I have treat Register File‘s read and write ports as separate functional units 

because the register file we have allows us to read and write at the same time. 

• Notice that as soon as the 1st load finishes its Ifetch stage, it no longer needs the 

Instruction Memory. Consequently, the 2nd load can start using the Instruction Memory 

(2nd Ifetch). 

• Furthermore, since each functional unit is only used ONCE per instruction, we will not 

have any conflict down the pipeline (Exec-Ifet, Mem-Exec, Wr-Mem) either. 

• I will show you the interaction between instructions in the pipelined datapath later.  But 

for now, I want to point out the performance advantages of pipelining. 

• If these 3 load instructions are to be executed by the  multiple cycle processor, it will 

take 15 cycles. But with pipelining, it only takes 7 cycles. This (7 cycles), however, is not 

the best way to look at the performance advantages of pipelining. 

• A better way to look at this is that  we have one instruction enters the pipeline every 

cycle so we will have one instruction coming out of the pipeline (Wr stages) every cycle. 

• Consequently, the ―effective‖ (or average) number of cycles per instruction is now ONE 

even though it takes a total of 5 cycles to complete each instruction. 

• +3 = 14 min. (X:54) 

 

The Four Stages of R-type 

 

 
 

• R-type instruction does not access data memory, so it only takes 4 clocks, or say 4 

stages to complete  

• Here, the ALU is used to operate on the register operands 

• The result is written in to the register during WB stage 

 

Explanation: 

• Well, so far so good. Let‘s take a look at the R-type instructions. 

• The R-type instruction does NOT access data memory so it only takes four clock cycles, 

or in our new pipeline terminology, four stages to complete. 

• The Ifetch and Reg/Dec stages are identical to the Load instructions.  Well they have to 

be because at this point, we do not know we have a R-type instruction yet. 

• Instead of calculating the effective address during the Exec stage, the R-type instruction 

will use the ALU to operate on the register operands. 



 

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com 
 

98 CS-704 Advanced Computer Architecture 

• The result of this ALU operation is written back to the register file during the Wr back 

stage. 

• +1 = 15 min. (55) 

 

Pipelining the R-type and Load Instruction 

 

 
 

• We have pipeline conflict or structural hazard: 

 Two instructions try to write to the register file at the same time! 

 Only one write port 

• What happened if we try to pipeline the R-type instructions with the Load instructions? 

• Well, we have a problem here!!! 

• We end up having two instructions trying to write to the register file at the same time! 

• Why do we have this problem (the write ―bubble‖)? 

• Well, the reason for this problem is that there is something I have not yet told you. 

• +1 = 16 min. (X:56) 

 

Important Observation 

• Each functional unit can only be used once per instruction 

• Each functional unit must be used at the same stage for all instructions: 

 Load uses Register File‘s Write Port during  its 5th stage 

 R-type uses Register File‘s Write Port during its 4th stage 

• I already told you that  in order for pipeline to work perfectly, each functional unit can 

ONLY be used once per instruction. 

• What I have not told you is that this (1st bullet) is a necessary but NOT sufficient 

condition for pipeline to work. 

• The other condition to prevent pipeline hiccup is that each functional unit must be used 

at the same stage for all instructions. 

• For example here, the load instruction uses the Register File‘s Wr port during its 5th 

stage but the R-type instruction right now will use the Register File‘s port during its 4th 

stage. 

• This (5 versus 4) is what caused our problem.  How do we solve it?  We have 2 

solutions. 
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Solution 1: Insert “Bubble” into the Pipeline 

 

 
• Insert a ―bubble‖ into the pipeline to prevent 2 writes at the same cycle 

 The control logic can be complex. 

 Lose instruction fetch and issue opportunity. 

• No instruction is started in Cycle 6! 

• The first solution is to insert a ―bubble‖ into the pipeline AFTER the load instruction to 

push back every instruction after the load that are already in the pipeline by one cycle. 

• At the same time, the bubble will delay the Instruction Fetch of the instruction that is 

about to enter the pipeline by one cycle. 

• Needless to say, the control logic to accomplish this can be complex. 

• Furthermore, this solution also has a negative impact on performance. 

• Notice that due to the ―extra‖ stage (Mem) Load instruction has, we will not have one 

instruction finishes every cycle (points to Cycle 5). 

• Consequently, a mix of load and R-type instruction will NOT have an average CPI of 1 

because in effect, the Load instruction has an effective CPI of 2. 

• So this is not that hot an idea  Let‘s try something else. 

• +2 = 19 min. (X:59) 

 

Solution 2: Delay R-type’s Write by One Cycle 

• Delay R-type‘s register write by one cycle: 

 Now R-type instructions also use Reg File‘s write port at Stage 5 

 Mem stage is a NO-OP stage: nothing is being done. 
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• Well one thing we can do is to add a ―Nop‖ stage to the R-type instruction pipeline to 

delay its register file write by one cycle. 

• Now the R-type instruction ALSO uses the register file‘s witer port at its 5th stage so we 

eliminate the write conflict with the load instruction. 

• This is a much simpler solution as far as the control logic is concerned. As far as 

performance is concerned, we also gets back to having one instruction completes per 

cycle. 

• This is kind of like promoting socialism: by making each individual R-type instruction 

takes 5 cycles instead of 4 cycles to finish, our overall performance is actually better off. 

• The reason for this higher performance is that we end up having  a more efficient 

pipeline. 

 

Eliminating Structural Hazards 

• Structural hazards can be eliminated or minimized by either using the stall operation or 

adding multiple functional units 
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Example: Dual-port vs. Single-port 

• Machine A: Dual ported memory 

• Machine B: Single ported memory, but its pipelined implementation has a 1.05 times 

faster clock rate 

• Ideal CPI = 1 for both 

• Loads are 40% of instructions executed 

SpeedUpA = Pipeline Depth / (1 + 0) x (clockunpipe / clockpipe) = Pipeline Depth 

 

SpeedUpB = Pipeline Depth / (1 + 0.4 x 1)  x (clockunpipe/(clockunpipe / 1.05) 

         = (Pipeline Depth / 1.4) x 1.05 

         = 0.75 x Pipeline Depth 

             

            SpeedUpA / SpeedUpB = Pipeline Depth / (0.75 x Pipeline Depth) = 1.33 

 

• Machine A is 1.33 times faster  

 

Stall degrades the performance 

• Here, is an example: Suppose data reference instructions constitute 40% of mix, and 

processor with structural hazard has clock rate 1.05 times higher than the processor 

without hazard 

• The Average Instruction time = CPI x Clock Cycle Time 

   = (1 + 0.4 x 1) x clock cycle time Ideal / 1.05 

   = 1.4 / 1.05 x clock cycle time Ideal  

   = 1.3 x clock cycle time Ideal  

The processor without structural hazard is 1.3 times faster than with Structural hazard 

 

Additional Functional Units increase cost 

• Memory structural hazard is removed by using two Cache memory units:  

 Instruction memory 

 Data Memory 

• Two write ports in register file allow 4-stage and 5-stage pipe mix 

 

Data Hazards 

Attempt to use item before it is ready; e.g., 

• One sock of pair in dryer and one in washer; can‘t fold until get sock from washer 

through dryer 

• Instruction depends on result of prior instruction still in the pipeline 

• Pipelining changes the relative timing of instruction by overlapping their execution 

• This overlap introduces the Data and Control Hazard 

• Data Hazard occurs when order of operand read/write is changed viz-z-viz sequential 

access to the operands, which gives rise to data dependency 

. 
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Example Data Hazard on R1 

• Add  R1 ,R2,R3 

• Sub  R4, R1 ,R3 

• And  R6, R1 ,R7 

• Or    R8, R1 ,R9 

• Xor  R10, R1 ,R11 

 

Data Hazard due to Dependencies backwards in time are hazards 

 
 

 

Data Hazard Solution #1 – Stall 
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XOR: No Data Hazard here, as register is read after being written 

 

 
 

 

Data Hazard Solution – Forwarding 
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Forwarding (or Bypassing): What about Loads? 

• Dependencies backwards in time are hazards 

• In this case, we Can‘t solve with forwarding:  

• Must delay/stall instruction dependent on loads 

 

 
 

Control Hazards 

Control hazard occurs when one attempt to take action before condition is evaluated 

• When Branch instructions is executed it may or may not change the PC to something 

other than PC+4 

• Branch Taken: Branch changes the PC+4 to new target 

• Branch Not Taken: Branch does not change the PC+4 

 

The simple way to deal with the branch is: 

• Freeze the pipeline holding any instruction after the branch instruction and 

• Flush the pipeline to delete the instructions after the branch if condition is evaluated, and  

branch is to take 

 

Example BEQ Taken 
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Explanation Branch Hazard 

Here, If the BEQ is taken then  

• The next instruction address is determined after evaluating the branch condition in the 

EX stage; 

• But the next instruction (LOAD) is fetched in the ID stage, i.e., before the PC+4 is 

changed to new target address 

• This gives rise to Branch or Control Hazard 

 

Dealing with Branches 

• Stall 

• Redo Fetch after branch 

• Delayed branching 

• Branch prediction 

• Multiple Streams 

 

Solution#1 Stall 

• Result of the condition evaluation is available after the EXE stage and the target address 

is available in the next stage 

• Thus 3 stall cycles 

 

 
 

 

 

 

 

 

 

 

 



 

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com 
 

106 CS-704 Advanced Computer Architecture 

Reducing number of Stall 

 

 
 

Reducing number of Stall 

• Here, you can see that if we move up decision to the end of ID stage (2nd stage) by 

adding hardware to compare the registers being read. The number of stalls reduces to 2 

clock cycles per branch instruction 

• It can further be reduced to 1 in case of BEQZ or BNEZ if zero register is tested after 

Instruction Fetch 

 

Solution# 2 Redo Fetch after Branch 

 

 
• We know that once a branch has been detected during the Instruction decode /Register 

read stage, the next instruction fetch cycle should essentially be a stall, if we assume 

that branch is taken 

• However,  the instruction fetched in this cycle never performs useful work, and is ignored  

• Therefore, re-fetch the Branch successor instruction will is provide the correct 

instruction. 

• Indeed,  the second fetch is not essential branch is not taken 

• Impact: 1 clock cycles per branch instruction if branch is un-taken 



 

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com 
 

107 CS-704 Advanced Computer Architecture 

Solution# 3 Delayed Branch – S/W method 

 
• Redefine branch behavior to take place after the next instruction by introducing other 

instruction (may be No-OP) which is always executed 

• Impact: 0 clock cycles per branch instruction if can find instruction to put in ―slot‖ ( 50% 

of time) 

 

Solution#4 Prediction 

• This techniques suggest that for a branch instruction we guess one direction of the 

branch, to begin, then back up if wrong  

• The two possible predictions are: 

 Predict Branch not-taken 

 Predict branch taken 

 

Branch Prediction Flowchart 
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1. Predict – Branch not taken 

• This scheme is implemented assuming every branch as branch Not-taken 

• So the processor continues to fetch branch as normal instructions 

 

Sequence when branch is not-taken  

Branch Inst ‗i‘ IF ID EX MEM WB 

Inst. ‗i+1‘  IF ID EX MEM WB 

Inst. ‗i+2‘   IF ID EX MEM WB 

Inst. ‗i+2‘     IF ID EX MEM WB 

 

• We the decision has been made, and  the branch is taken, then fetch operations are 

turned into NO-OP and fetch is restarted at the target address 

 

Sequence when branch is taken  

Taken Branch Inst ‗i‘ IF ID EX MEM WB 

Inst. ‗i+1‘   IF Idle Idle  Idle  Idle 

Branch target     IF ID EX MEM    WB 

Branch target +1‘     IF  ID EX  MEM  WB 

 

2. Predict - Branch taken 

•  An alternative way is to treat every branch as Branch taken 

• As soon as the target address is computed, we assume that the branch is to be taken 

and start fetching and executing at the target 

• In a five stage pipeline the target address and condition evaluation are available at the 

same time, so this technique is of no use. 

• Let us consider this example of a LOOP to explain the concept: 

 

i = 0 ←------------------------------------------------- 

 Loop:                                                |     

  …….                                     | 

   i = i+1                                  | 

  IF i ≠ 1001 THEN Loop____| 

 

• Here, the branch is taken for 1000 time, so the prediction ―Branch Taken‖ fails 1 in 1000, 

hence no stall for 1000 times 

• Further, the compiler can improve performance by organizing the code so that the most 

frequent path matches the hardware choice  

 

Solution #5 Multiple Streams 

• Have two pipelines 

• Pre-fetch each branch into a separate pipeline 

• Use appropriate pipeline 
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Results 

• Leads to bus & register contention 

• Multiple branches lead to further pipelines being needed 

• Target of branch is pre-fetched in addition to instructions following branch 

• Keep target until branch is executed 

• Used by IBM 360/91 

 

Summary 

• Type of hazards in pipelined datapath 

• Structural hazards occur when same resource is accessed by more than one 

instructions 

• One memory port or one register write port 

• It can be removed by using either multiple resources or inserting stall  

• Stall degrades the pipeline performance  

• Data Hazards occur when attempt is made to read invalid data 

• Data hazard can be removed by using stall and forwarding techniques 

• Control hazards occur when an attempt is made to branch prior to the evaluation of 

the condition 

 

• Four ways to handle control hazards 

1. Stall until branch direction is clear 

2. Predict Branch Not Taken 

o Execute successor instructions in sequence 

o ―Squash‖ instructions in pipeline if branch actually taken 

o PC+4 already calculated, so use it to get next instruction 

3. Predict Branch Taken 

4. Delayed Branch 

o Define branch to take place AFTER a following instruction 

o 1 slot delay allows proper decision and branch target address in 5 stage 

pipeline 
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Lecture 12 

Instruction Level Parallelism 

(Introduction to multi cycle pipelined datapath) 

Today’s Topics 

• Recap: Pipelining Basics 

• Longer Pipelines – FP Instructions  

• Loop Level Parallelism 

• FP Loop Hazards 

• Summary 

 

Recap: Pipelined datapath and control 

• In the previous lecture we reviewed the pipelined datapath to understand the basics of 

ILP – overlap among the instruction execution to enhance performance 

• Key components of pipeline data path 

• Performance enhancement due to pipeline:  

 Pipelining helps instruction bandwidth but not latency 

• Pipeline Hazards 

 Structural hazards  

 Data Hazards 

 

Three Generic Data Hazards 

• Read After Write (RAW): (dependence) 

 instrJ tries to read operand before instri writes it; 

  i: add r1,r2,r3 

  j: sub r4,r1,r3 

• Write After Read (WAR): anti-dependence  

 Also called Name dependence(renaming) 

i: sub r4,r1,r3 

j: add r1,r2,r3 

• Write After Write (WAW) 

  i: sub r1,r4,r3 

  j: add r1,r2,r3 

 

Pipeline Hazards 

• Control hazards  

• How to overcome Hazards? 

• Stall 

 

How to remove Hazards? 

• Structural Hazard: 

• Multiple functional units 

• Data Hazard 

• Forwarding or bypassing 

 

• Control Hazards:  

• Predict, delay branch 
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Instruction Level Parallelism 

• clock speed 

• number of instructions that can execute in parallel, i.e., increasing ILP 

 

How to achieve Instruction Level Parallelism? 

• A superscalar processor: 

 Pre-fetch and decode  

 Start several branch instruction streams 

 Finally, discard all but the correct stream 

 

MIPS Longer Pipelines – FP Instructions 

• For example to ADD two FP minimum four steps are performed in the following 

sequence: 

 

Flow diagram of MIPS FP Adder 

• Draw flow diagram of pp284 

 

Steps for FP Addition 

• Step 1: Exponents of two numbers are compared, the smaller number is shifted to the 

right to till its exponent matches to the larger exponent 

• Step 2: Add the significands 

• Step 3: Normalize the sum – shift right and increment or shift left and decrement 

• Step 4: If no overflow or underflow then round the significand to number of bits 

• Stop if further normalization is not required, otherwise go to step 3 

 

Latency of Functional Unit: 

• The latency of functional unit is defined as: the number of cycles between the 

instructions that produces a result and the one that uses the result of the operation   

• The initiation or repeat interval is defined as: the number of cycles that must elapse 

between issuing two operations (repeat of an operation) of the same type 

 

             Latency      Initiation (repeat) Interval 

 Integer ALU     = 0   1 

 Data Memory (Int / FP Load)  = 1   1 

 FP ADD     = 3   1 

 FP/ Integer Multiply   = 6   1 

 FP/Integer Divide    = 24   25 
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Typical MIPS FP Pipeline 

• Let us consider a typical MIPS FP pipeline with three un-pipelined FP functional units 

 

 
 

MIPS FP Pipeline with Pipelined FUs 

• The previous FP pipeline can be extended by adding additional pipeline stages in the 

functional units 
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Working of extended FP Pipeline 

• Note that additional pipeline register have been inserted between intervening stage, e.g., 

A1/A2, A2/A3, …..  

• Furthermore, ID/EX register must be expanded to connect ID to A1, M1, EX and DIV 

Function Units 

• Here, the FP divide FP is not pipelined but it requires 24 clock cycles to complete  

 

Hazards in Longer Latency Pipeline 

• All the functional units are not fully pipelined. So structural hazard may occur. 

• Instructions have varying running time, so more than one register write may occur. 

• Instructions are no longer reaching WB stage in order so WAW data hazard may occur. 

• WAR hazards are not possible since registers are read in ID stage. 

• Stall for RAW data hazard may be more frequent because of longer latency of 

operations.  

 

FP Pipeline Hazards – RAW 

Clock Cycle Number 

INST 1 2 3 4 5 6 7 8 9 

L.D F4, 0(R2) IF ID EX Me WB     

MUL.D F0,F4,F6  IF ID st M1 M2 M3 M4 M5 

ADD.D F2,F0,F8   IF st ID st st st st 

S.DF2, 0(R2)     IF st st st st 

 

INST 10 11 12 13 14 15 16 17  

L.D F4, 0(R2)          

MUL.D F0,F4,F6 M6 M7 Me WB      

ADD.D F2,F0,F8 st st A1 A2 A3 A4 Me WB  

S.DF2, 0(R2) st st ID st st st EX Me  

 

FP Pipeline Structural Hazard 

Clock Cycle Number 

INST 1 2 3 4 5 6 7 8 9 10 11 

MUL.D F0,F4,F6 IF ID M1 M2 M3 M4 M5 M6 M7 Me WB 

……..  IF ID Ex Me WB      

………   IF ID Ex Me WB      

ADD.D F2,F0,F8    IF ID A1 A2 A3 A4 Me WB 

………     IF ID Ex Me WB   

………      IF ID Ex Me WB  

L.D F4, 0(R2)       IF ID EX Me WB 
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Conclusion about FP Pipeline 

1. Structural Hazard – wait until required functional unit is available 

2. Check for RAW data hazard : wait until the source registers are not listed as pending 

destinations register that will not be available 

3. Check for WAW: determine if any instruction in A1, A2, …D, M1, M2 , …. has same 

destination as this instruction 

 

Precise Exceptions: Out-of-order Completion! 

• In the program: 

 DIV.D    F0,F2,F4 

 ADD.D   F10,F10,F8 

 SUB.D   F12,F12,F14 

Overcoming the Data Hazard by Scheduling 

• Static Scheduling – Compiler based 

• Dynamic Scheduling – Hardware based 

 

Dynamic Scheduling (Overcoming the Data Hazard) 

Advantages: 

• Allows to handle cases where dependence is unknown at the compile time 

• Allows code compiled for one pipeline to run on other pipe line 

• In the program: 

DIV.D    F0,F2,F4 

ADD.D   F10,F0,F8 

SUB.D   F12,F8,F14 

 

Problems of Out-of-order execution WAR and WAW 

• In the program: 

 DIV.D     F0,F2,F4 

 ADD.D    F6,F0,F8 

 SUB.D    F8,F10,F14 

 MUL.D    F6,F10,F8 

 

Exception due to out of order execution 

• Already completed instructions 

• Not Yet completed instructions 

 

Overcoming Exceptions 

Split the ID pipe stage into two: 

• Issue: 

 Decode instructions and check for structural hazard 

• Read Operand: 

 Wait until no data hazards, then read 

 

Summary: We have talked about  longer FP pipelines  
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Lecture 13 

Instruction Level Parallelism 

(Dynamic Scheduling - Scoreboard Approach) 

Today's Topics 

• Recap - Lecture 11-12 

• Out-of-Order Execution 

• Problems of Out-of-order execution 

• Dynamic Scheduling 

• Scoreboard Technique 

• Summary 

 

Recap: Lecture 12 

• FP and Integer Multiplier 

• FP and Integer Divider 

• Here, we observed that : 

 Only one instruction is issued on every clock cycle 

 The integer ADD instructions go through the FP pipeline as they go through in 

standard pipeline – as the integer ALU operations have ZERO latency 

 The FP add and FP/integer multiply and divide instructions enter into loop when 

they reach EX-stage due to longer latencies of these operations – thus increases 

the number of stalls before the instruction is issued to EX stage 

• RAW and WAR hazards may occur because the instruction are of varying length and 

may reach WB out-of-order 

• There are different ways to RAW hazard: 

• WAW hazard 

 (The jth  instruction writes prior to the ith instruction; the ith instruction overwrites 

the result of jth instruction) 

• Two ways to resolve WAW hazard 

 Delay the issue of jth  instruction until the ith instruction enters the MEM stage 

 Stamp out the ith instruction by detecting the hazard and changing the control 

(WB) so that the ith instruction does not write. 

 Hence, the jth instruction can be issued right-away. 

 

In-Order Execution 

• Simple Pipelined datapath facilitates only the In-order instruction execution, i.e., 

Instructions are fetched, decoded and issued in the sequence of the program and no 

later instruction can proceed if an instruction is stalled due to hazard – structural or data 

dependence 

• For example: in the code 

DIV.D   F0,   F2, F4 

ADD.D   F10, F0, F8 

SUB.D   F12, F8, F14 
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In-order Execution: MIPS 5-stage Pipeline 

• The MIPS 5-stage pipeline, both the structural and data hazards are checked during the 

Instruction Decode (ID) stage; and 

• The instruction is issued from ID stage, if it could execute properly 

• Here, the issue process, at ID stage, is separated into two parts: 

• Checking the structural hazard 

• Waiting for the absence of data hazard 

 

Out-of-order Execution: MIPS 5-stage pipeline 

 

DIV.D   F0,   F2, F4 

ADD.D   F10, F0, F8 

SUB.D   F12, F8, F14 

 

Basic Problems of Out-of-order Execution 

Consider the example FP code 

DIV.D    F0, F2, F4 

ADD.D    F6, F0, F8 

SUB.D    F8, F10, F14 

MUL.D    F6, F10, F8  
 

Scheduling for out-of-order execution 

• Static Scheduling: 

 Rearrangement of the instruction execution by the compiler 

• Dynamic Scheduling: 

 Rearrangement of the instruction execution by the hardware 

 

Dynamic Scheduling 

• Issue: 

• Read Operand: 

 

Dynamic Scheduling: Score boarding Technique 

• CDC 6600 contains: 

 4 FP units 

 5 Memory Reference Units 

 7 integer operation units 
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MIPS Processor with Scoreboard 

 
• Features of Scoreboard 

 The Scoreboard: 

• Components of Scoreboard 

 Instruction Status 

 Functional Unit Status 

 Register Result Status 

 

Instruction Status 

These four stages are: 

• Issue: If a functional unit for instruction is free and no other active instruction has the 

same destination register, the score board issues the instruction to the functional unit 

and updates the internal data structure – Thus guarantees that WAW cannot be present 

• Read Operand: The score board monitors availability of the source operand, i.e., 

checks if no earlier issued active instruction is going to write – Thus, it resolves RAW 

hazard 

• Execute: The FU begins the execution and notify the scoreboard when it has completed 

the execution. The scoreboard then updates the data structure 

• Write Result: Once the score board is aware that the FU has completed execution then 

checks for the WAR hazard , it stalls if necessary  and writes the result 

 

Instruction Status Data structure 

Instruction Issue Read  Execution  Write  Operands  complete  result 

MUL.D   √  √ 

ADD.D   √  √  √  √ 
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Functional Unit Status 

• Busy:  A single bit field which indicates if the FU is busy or not 

• OP: 2 or 3 bit field specifying the operation being berformed by FU (ADD or SUB etc.) 

• Registers: Fi – Destination register Number 

     Fj, Fk – Source registers number 

• Qj and Qk: The FU (ADD, MUL, ….) producing source register Fj and Fk 

• Rj, Rk: Flags indicating source registers Rj, Rk are ready and not yet read – Set to NO 

when operand are read 

 

Typical Functional Unit Status table 

FU name Busy OP Fi   Fj   Fk  Qj   Qk  Rj Rk 

MUL1  Y Mul F0 F2 F4 -- -- No No 

…. 

DIVIDE Y Div F10  F0 F6 MUL1   -- No Yes 

 

Register Result Status 

Format of the Table: 

F0 F2 F4 F6  F8  F10  F12 …… F30 

FU Mul1  Add      Divide 

 

 

Detailed Scoreboard Pipeline Control 
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Scoreboard Example 

FP Add Latency = 2 clock, Multiply = 10, Divide = 40 

 

 
 

 

Scoreboard Example 1 
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Scoreboard Example Cycle 3 

 
• Issue MULT? 

 

Note: Scoreboard Example Cycle 3 

 

 
 

• Issue MULT? No, stall on structural hazard 
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Scoreboard Example Cycle 4 

 

 
 

Scoreboard Example Cycle 5 
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Scoreboard Example Cycle 6 

 

 
 

Scoreboard Example Cycle 7 

 

 
 

• Read multiply operands? 

 

 

 



 

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com 
 

123 CS-704 Advanced Computer Architecture 

Scoreboard Example Cycle 8a 

(First half clock cycle) 

 

 
 

Scoreboard Example Cycle 8b 

(Second half clock cycle) 
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Scoreboard Example Cycle 9 

 

 
 

• Read Operands for MULT & SUBD? Issue ADDD? 

 

Scoreboard Example Cycle 11 
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Scoreboard Example Cycle 12 

 

 
 

• Read operands for DIVD? 

 

Scoreboard Example Cycle 13 
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Scoreboard Example Cycle 14 

 

 
 

Scoreboard Example Cycle 15 
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Scoreboard Example Cycle 16 

 

 
 

Scoreboard Example Cycle 17 

 

 
 

• Write result of ADDD? 
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Scoreboard Example Cycle 18 

 

 
 

Scoreboard Example Cycle 19 
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Scoreboard Example Cycle 20 

 

 
 

Scoreboard Example Cycle 21 

 

 
 

 

 

 

 



 

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com 
 

130 CS-704 Advanced Computer Architecture 

Scoreboard Example Cycle 22 

 

 
 

 

Scoreboard Example Cycle 61 
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Scoreboard Example Cycle 62 

 

 
 

Review: Scoreboard Example Cycle 62 

 

 
• In-order issue; out-of-order execute & commit 

 

Summary 

• Problems of Out-of-order execution 

• Dynamic Scheduling 

• Scoreboard Technique 

• Summary 
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Lecture 14 

Instruction Level Parallelism 

(Dynamic Scheduling – Tomasulo’s Approach) 

Today's Topics 

• Recap - Lecture 13 

• Dynamic Scheduling 

• Tomasulo‘s Approach 

• Summary 

 

Recap: Summary 

• Instruction Level Parallelism in Hardware or Software 

• SW parallelism dependencies defined by program result in hazards if HW cannot resolve 

• HW exploiting ILP works when dependence cannot be determined at run time 

• Key idea of Scoreboard – 

• Allow instructions behind stall to proceed 

• It is accomplished by dividing the ID stage into two parts  

• Issue the instruction in-order 

• Read operand out-of-order 

• Structural and data dependencies are checked at ID stage 

• It facilitates out-of-order execution  which results in out-of-order completion 

 

 

Review: Three Parts of the Scoreboard 

1. Instruction status – which of 4 steps the instruction is in 

2. Functional unit status – indicates the state of the functional unit(FU). 9 fields for each 

functional unit 

 

a. Busy – Indicates whether the unit is busy or not 

b. Op – Operation to perform in the unit (e.g., + or -) 

c. Fi – Destination register 

d. Fj, Fk – Source-register numbers 

e. Qj, Qk – Functional units producing source registers Fj, Fk 

f. Rj, Rk – Flags indicating when Fj, Fk are ready 

 

3. Register result status – Indicates which functional unit will write each register, if one 

exists. Blank when no pending instructions will write that register. 
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Review: Scoreboard Example Cycle 3 

 

 
 

• Issue MULT? No, stall in structural hazard 

 

Review: Scoreboard Example Cycle 9 

 

 
 

• Read operands for MULT & SUBD? Issue ADDD? 
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Review: Scoreboard Example Cycle 17 

 

 
 

• Write resulf of ADDD? No, WAR hazard 

 

Review: Scoreboard Example Cycle 62 

 

 
 

• In-order issue; out-of-order execute & commit 
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Review: Scoreboard Summary 

• Speedup 1.7 from compiler; 2.5 by hand 

 But slow memory (no cache) 

• Limitations of 6600 scoreboard 

 No forwarding(First write register then read it) 

 Limited to instructions in basic block(small window) 

 Number of functional units(structural hazards) 

 Wait for WAR hazards 

 Prevent WAW hazards 

 

Another Dynamic Scheduling Approach: Tomasulo's Algorithm 

• Introduced by Tomasulo for IBM 360/91 about 3 years after CDC 6600 (1966) 

• Goal: High Performance without special compilers 

 

Tomasulo's Algorithm Vs. Scoreboard 

• Differences between IBM 360 & CDC 6600 ISA is: 

 IBM has only 2 register specifiers / instr  vs. 3 in CDC 6600 

 IBM has 4 FP registers vs. 8 in CDC  6600 

 

Tomasulo's Organization For Dynamic Scheduling 

 

 
 

Components of Tomasulo's Structure 

• FP Operation Queue: Instruction are sent from instruction unit into the instruction Queue  

in FIFO order 

• FP Adder Reservation Station 

• FP Multiplier Reservation Station 

• The reservation stations include  

 Operations, actual operands and information to resolve hazards 
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• Load Buffers have three functions: 

 Hold components of effective address until it is computed 

 Track outstanding Loads waiting on memory 

 Hold the result of completed load waiting for CDB 

• Store Buffers also have three functions: 

 Hold components of effective address until it is computed 

 Hold the destination memory address of outstanding store instructions 

 Hold the address and value of store until the memory unit is available 

• Common Data Bus: The difference between CDB and Normal bus is 

Normal data bus: The data and destination (―go to‖ bus) 

Common data bus: The data + source (―come from‖ bus) 

 Does the broadcast 

 64 bits of data + 4 bits of Functional Unit source address 

 

Sequence of operations 

• All the results from the FP units or the Load unit are placed on the Common Data Bus, 

which goes to the FP register file as well as to the RS and store buffers 

 

Tomasulo's Algorithm Vs. Scoreboard 

• Control & buffers distributed with Function Units (FU) in Tomasulo vs. centralized in 

scoreboard 

• FU buffers called ―reservation stations‖; have pending operands 

• Registers in instructions are replaced by values or pointers to reservation stations(RS) 

• This is called register renaming  

 avoids WAR, WAW hazards 

• More reservation stations than registers, so can do optimizations  which compilers can‘t 

• Tomasulo: Results to FU from RS, over Common Data Bus that broadcasts results to all 

FUs 

• Scoreboard: Result  to FU through registers 

 

Components of Reservation Station 

• Op— Operation to perform in the unit (e.g., add, sub, …) 

• Busy— Indicates reservation station or FU is busy 

• Vj, Vk— Value of Source operands 

 Store buffers has V field to store the result 

• Qj, Qk— Reservation stations producing source registers value to be written 

 Note:  No ready flags as in Scoreboard; Qj,Qk=0 => ready 

• Qi – Store  buffers only have Qi for RS producing result 

• Register result status — indicates which functional unit will write each register, if one 

exists.  

 Blank when no pending instructions that will write that register. 
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Three Stages of Tomasulo’s Algorithm  

1. Issue —  get instruction from FP Op Queue 

 If reservation station is free, i.e., no structural hazard then control issues 

instruction and send  operands to the RS (renames registers). 

2. Execution — operate on operands (EX) 

 When both operands ready then execute; if not ready, watch Common Data Bus 

for result 

3. Write result — finish execution (WB) 

 Write on Common Data Bus to all awaiting units; 

 mark reservation station available 

 

Tomasulo Example Cycle 0 

 
 

Tomasulo Example Cycle 1 
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Tomasulo Example Cycle 2 

 

 
 

• Note: Unlike 6600, can have multiple loads outstanding 

 

Tomasulo Example Cycle 3 

 

 
 

• Note: Registers names are removed(―renamed‖) in Reservation Stations; MULT issued 

vs. scoreboards 

• Load1 completing: What is waiting for Load1? 
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Tomasulo Example Cycle 4 

 

 
 

• Load2 completing: what is waiting for it? 

 

Tomasulo Example Cycle 5 
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Tomasulo Example Cycle 6 

 

 
 

• Issue ADDD here vs. scoreboard? 

 

Tomasulo Example Cycle 7 

 

 
 

• Add1 completing; what is waiting for it? 
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Tomasulo Example Cycle 9 

 

 
 

 

Tomasulo Example Cycle 10 

 

 
 

• Add2 completing; what is waiting for it? 
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Tomasulo Example Cycle 11 

 

 
 

• Write result of ADDD here vs. scoreboard? 

 

 

Tomasulo Example Cycle 12 

 

 
 

Note: all quick instructions complete already 
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Tomasulo Example Cycle 13 

 

 
 

Tomasulo Example Cycle 14 
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Tomasulo Example Cycle 14 

 

 
 

• Mult1 completing; what is waiting for it? 

 

 

Tomasulo Example Cycle 16 

 

 
 

• Note: Just waiting for divide 
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Tomasulo Example Cycle 55 

 

 
 

Tomasulo Example Cycle 56 

 

 
 

• Mult 2 completing; what is waiting for it? 
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Tomasulo Example Cycle 57 

 

 
 

• Again, in-order issue, out-0f-order execution, completion 

 

Compare to Scoreboard Cycle 62 

 

 
 

• Why takes longer on scoreboard/6600? 
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Another Example: Loop Unrolling 

• Let us consider another example to understand WAW and WAR are eliminated by 

register renaming  

• Here, is an example of multiplying an array (F0) by a scalar F2 

 
Another Example: Loop Unrolling 

• Here, we predict the branches are taken, thus the RSs allow multiple executions of the 

loop by dynamic unrolling 

• The unrolling can be shown by two active iterations, based on prediction branch taken 
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Loop Example Cycle 0 

 

 
 

Loop Example Cycle 1 
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Loop Example Cycle 2 

 

 
 

Loop Example Cycle 3 

 

 
 

• Note: MULT1 has no registers names in RS 
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Loop Example Cycle 4 

 

 
 

 

Loop Example Cycle 5 
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Loop Example Cycle 6 

 

 
 

• Note: F0 never sees Load1 result 

 

Loop Example Cycle 7 

 

 
 

• Note: MULT2 has no registers names in RS 
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Loop Example Cycle 8 

 

 
 

Loop Example Cycle 9 

 

 
 

• Load1 completing; what is waiting for it? 
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Loop Example Cycle 10 

 

 
 

• Load2 completing; what is waiting fo it? 

 

Loop Example Cycle 11 
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Loop Example Cycle 12 

 

 
 

 

Loop Example Cycle 13 

 

 
 

 



 

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com 
 

155 CS-704 Advanced Computer Architecture 

Loop Example Cycle 14 

 

 
 

• MULT1completing; what is waiting for it? 

 

Loop Example Cycle 15 

 

 
 

• MULT2 completing; what is waiting  for it? 
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Loop Example Cycle 16 

 

 
 

Loop Example Cycle 17 
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Loop Example Cycle 18 

 

 
 

Loop Example Cycle 19 
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Loop Example Cycle 20 

 

 
 

Loop Example Cycle 21 
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Lecture 15 

Instruction Level Parallelism 

(Dynamic Branch Prediction) 

Today's Topics 

• Recap - Lecture 14 

• Dynamic Branch Prediction 

• Branch Prediction Buffer 

• Examples of Branch Predictor 

• Summary 

 

Recap: Lecture 14 

• Tomasulo 's Approach for IBM 360/91 to achieve high Performance without special 

compilers 

• Here, the control and buffers are distributed with Function Units (FU) 

• Registers in instructions are replaced by values or pointers to reservation stations(RS) ; 

i.e., the registers are renamed 

• Unlike Scoreboard, Tomasulo can have multiple loads outstanding 

• These two properties allow to issue an instruction having name dependence ; e.g., 

MULT is issued which has name dependence of register F2 

 

 
 

• Tomasulo eliminates the WAR hazard as in this example ADD.D writes the result in 

Cycle 11 even if the DIV.D will start execution in Cycle 16 
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• Tomasulo issues in-order and may execute out-of-order 
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• Here, the integer instructions SUBI and BNEZ are executed out-of-order to evaluate the 

condition 

• The perdition Branch-Taken is implemented by repeating the loop instruction as shown 
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Introduction to Dynamic Branch Prediction 

• In the last lecture, we considered a loop-based example, to discuss the Tomasulo‘s 

approach to overcome the WAW and WAR hazards 

• Here, we observed that dynamically scheduled pipeline can yield high performance 

provided branches are predicted accurately 

 

Branch History Table 

• If the prediction is wrong, then invert prediction-bit 
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1-bit Dynamic Branch Prediction 

• Problem:  

 In a loop, 1-bit BHT will cause two mispredictions in a row 

 1-bit predictor mispredict at twice the rate that the branch is not-taken 

 Let us consider an example of loop-branch (For i=1 to 10); i.e., the branch is taken 9 

times and not-taken once 

• As the Performance = ƒ (accuracy, cost of mispredictions) 

• The accuracy of the predictor is expected to match the taken-branch frequency, which in 

the previous example is 9 out of 10 (90%) 

• But the 1-bit prediction has 8 out of 10 (80%) 

 

2-bit Dynamic Branch Prediction 

• 2 bits are used to encode 4-states in the system (counter) Say: 

 States 00 and 01 for Predict Not-Taken 

 States 10 and 11 for Predict Taken 
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• In a saturating counter implementation: 2-bit counter saturates at: 

 00 (Predict Taken) or  

 11 (Predict Not taken) 

• The counter is incremented when a branch is taken and decremented when it is not 

taken; e.g.,  

 00 to 01 for Taken when predicted not taken 

 10 to 11 for Taken when predicted taken 

• Here, when the counter is greater than or equal to ½ of its maximum value (>=10; i.e., 

state 01 and 11) branch is predicted as taken;  

• Otherwise (i.e., <10: state 10 and 00) the branch is predicted as untaken  

• Let us try the example of loop For i=1,10 

• Let us try the example of loop For i=1,10 

 

Iteration  P.S. Branch  NS  Prediction 

0  -- not Taken 11  Taken 

1  11 Taken  11  Taken 

2  11 Taken  11  Taken 

: 

9   11 Taken  11  Taken 

10  11 Not taken 10  Taken 

Prediction fails once only 

 

Branch Prediction Buffer (BPB) or BHT Implementation 

 

If Prediction is wrong  

Then prediction bits are changed –  

In case     

  Predicted Taken:  

   State changes 11 10) 

  Predicted not taken:  

   State changes 0001  

 

Branch History Table Accuracy 

• For example  Place Fig. 3.8 pp 200 here 

• Here, for SPEC89 benchmark  

A branch prediction buffer with 4096 entries results in:  

 Prediction accuracy ranging from: 99% to 82 % or  

 Mispredictions rate of 1% - 18% 

   

Branch History Table Accuracy wrt size 

• Insert Fig. 3.9 pp 201 

 

 

 



 

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com 
 

167 CS-704 Advanced Computer Architecture 

Impact of size on accuracy of BHT 

• As we try to exploit more ILP, the accuracy of the Branch Predictor becomes critical 

• Here, the accuracy of the predictor is shown by increasing the size of the buffer as 

 4096 Entries 2-bit BHT 

 Unlimited Entries 2-bit BHT 

• Simply increasing the number of bits per predictor without changing the predictor 

structure has little impact – so we have to look at other methods to increase the 

accuracy of the predictors 

 

Correlating Branches 

• The 2-bit predictor scheme uses only the recent behavior of the single branch to predict 

the future behavior of branch 

• In practice, the behavior of other branches, rather than only a single branch, we are 

trying to predict, may also influence the prediction accuracy 

• Let us consider the worst case of SPEC92 benchmark for 2-bit predictor 

• SPEC92 benchmark for 2-bit predictor example: 

Assume aa is assigned R1 and bb the register R2 

IF (aa==2)   DSUBUI R3, R1, #2 

 aa=0;   BNEZ     R3, L1  ; branch b1 (aa!=2) 

    DADD     R1, R0, R0   ; aa=0 Not Branch 

IF (bb==2)  L1 DSUBUI R3, R2, #2 

 bb=0;   BNEZ     R3, L2  ; branch b2 (bb!=2) 

    DADD     R2, R0, R0   ; bb=0 Not Branch 

IF (aa!=bb)  L2 DSUBU  R3, R1,R2 

 {   BEQZ     R3, L3  ; branch b3 (aa=bb) 

 

• Here, the behavior of b3 (L2) is correlated with the behavior of b1 and b2 

• Here, if b1 and b2 are both not-taken (aa=0; bb=0) then b3 is taken  

• A predictor that uses the behavior of a single branch to predict the behavior of that 

branch cannot capture this behavior 

• So we need a correlating branch predictor 

 

Correlating Branch Predictors 

• Hypothesis: Recent branches are correlated; that is, behavior of recently executed 

branches affects prediction of current branch 

• In general, (m,n) predictor means record last m branches to select between 2m history 

tables each with n-bit counters 

 Old 2-bit BHT is then a (0,2) predictor 
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Example 

Let us consider an illustrative code:  

(d  is assigned to R1) 

IF (d==0)  BNEZ     R1, L1 ; branch b1 (d!=0) 

     d=1;  DADDIU R1,R0,#1 ; branch not taken, d=1 

IF (d==1) L1: DADDIU  R3, R1, #-1 

   BNEZ      R3, L2 ; branch b2 – (d!=1) 

 

The working of correlating predictor is as follows 

Initial d  d==0?  b1 d before b2 d==1?  b2 

0  yes  NT 1  yes  NT 

1   No  T 1  yes  NT 

2   No  T 2  no  T 

 

Here, if b1 is not taken b2 will not be taken – 

We write the pair of prediction bits as: Prediction if last branch in the program is not-taken/ 

Prediction if the last branch is taken 

 

Therefore, the 4 possible combinations are: 

Prediction bits  New Prediction if last  New Prediction if last 

   branch Not Taken  Branch Taken 

NT / NT   NT    NT 

NT/T    NT    T 

T/NT    T    NT 

T/T    T    T 

 

• The action of the 1-bit predictor with 1-bit of correlation, written as (1,1) for the above 

example is shown here (Fig. 3.13 …. pp 203) 

• In this case the only misprediction is on the first iteration, when d=2 as this is not 

correlated with the previous perdition 

 

Correlating Branches 

• (2,2) branch prediction buffer uses 

2-bit global history to choose from 

among 4 predictors for each branch 

address 

• Then behavior of recent branches 

selects between, say, four 

predictions of next branch, updating 

just that prediction  
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Accuracy of Different Schemes 

 
 

Branch History Table or Branch Target Buffer 

 

 
 

Dynamic Branch Prediction Summary 

• Branch History Table: 2 bits for loop accuracy 

• Correlation: Recently executed branches correlated with next branch 

• Branch Target Buffer: include branch address & prediction 

• Predicated Execution can reduce number of branches, number of mispredicted branches 
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Lecture 16 

Instruction Level Parallelism 

(Dynamic Branch Prediction …. Cont’d) 

Today's Topics 

• Recap 

• Correlating Branch Predictors 

• Tournament Predictor 

• High Performance Instruction Delivery – Branch Target Buffer 

• Summary 

 

Recap: Dynamic Scheduling and Branch Prediction 

• Static: rely on the software (compiler)  

• Dynamic: hardware intensive approaches 

 

Important questions: Branch-Prediction Buffer 

Q1: What is the impact of increasing the size of branch-prediction buffer on two branches in a 

program? 

• A single predictor predicting a single branch is generally more accurate than is that 

same predictor serving more than one instructions; and 

• It is less likely that two branches in a program share a single predictor 

• Therefore, increasing the size of predictor buffer does not have significant effect on two 

branches in a program 

 

Q2: How sharing a predictor effects the misprediction rate? 

• This is explained with the help of following example: Consider two sequences of branch-

taken and not-taken , sharing 1-bit predictor; and identify the sequence that 

 Reduces the misprediction rate 

 Increases the misprediction rate  

 

Example: Sequence 1 

 

 
 

• Here, the columns B1 and B2 show the branches B1 and B2  

• B1 is always TAKEN 

• B2 is always Not-TAKEN 

 



 

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com 
 

171 CS-704 Advanced Computer Architecture 

 
======================================================================== 

 
Example: Sequence 2 

 

 
======================================================================== 

 
======================================================================== 

 
 

Example: Conclusion 

• Why sharing of predictor increases misprediction rate? 

• It is clear from the above example that:  

if  a predictor is shared by a set of branch instructions  

then   the members of the set of branch instruction may change, over the course of 

execution of long program 

• Hence, the branch action history changes and predictor is likely to mispredict more often 
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Correlating Branch Predictors Re-visited 

• We have observed that in program segment  

IF (d==0)  Branch b1 for d!=0 

      d=1;   

IF (d==1)  Branch b2 for b!=1 

      d=2; 

• This problem may be resolved in Correlating-Branch Predictor by recording m most 

recently executed branches as taken or not taken (in 2m branch-history tables for 1-, 2-, 

… or n-bit predictor), and using branch-pattern to select the proper branch history table 

for the current branch 

• In general, (m, n) predictor means record last m branches to select between 2m history 

tables each with n-bit counters (2m  n-bit predictor)  

• A 2-bit BHT is regarded as (0,2) correlating predictor;  

Example 

• 1-bit predictor with 1-bit correlation is written  as (1,1) predictor 

• Here, we have two (21) separate prediction bits (i.e., two 1-bit BHTs ) 

 One prediction bit is used if the last branch executed was not-taken 

 Other prediction bit is used if the last branch executed was taken 

And is denoted as: (New prediction when last NT / New prediction when last T) 

 E.g., T/NT stands for: New prediction is TAKEN if previous was NOT-TAKEN and  

is NOT-TAKEN if previous was TAKEN  

• In an (m,n) predictor, the global history of most recent m branches is recorder in an m-bit 

shift register 

• Here, each bit records whether the branch was taken or not taken 

• The branch-prediction buffers is indexed using concatenation of low-order bits from 

branch-address with m-bit global history 

• (2, 2) Correlating Branches Predictor 
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• Here, the buffer is drawn as 2-dimensional object, each buffer is 2 bit wide, in reality they 

are arranged linearly 

• (2, 2) branch prediction buffer uses 2-bit global history to choose from among 4 

predictors, for each branch address of 4-bit (among the 16 entries in each of the 4 

predictors 

• Behavior of recent branches selects between, say, four predictions of next branch, 

updating just that prediction 

• Indexing is done by concatenation of 4 lower-order address bits of the branch (word 

address) and 2 global bits to form 6-bit address to select 2-bit prediction from 64 entries 

in 4 buffers each of 16 entries  

 

Comparison of (0,2) and (2,2) predictors 

 
 

Multilevel Branch Predictors (Tournament Predictors) 

• Multilevel branch prediction (Nested Branches) involve information at local and global 

levels to predict correctly 

• Several levels of Branch-Prediction Tables and 

• An algorithm to choose among different predictors 
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State Transition Diagram of Tournament Predictor 

• Modify as Fig. 3.16 pp 204 

 
Multilevel Branch Predictors (Tournament Predictors) 

• The transition for predicted predictor is specified by: 

 Correct = 1 

 Incorrect =0 

• The state transition diagram shows that from the saturating state  

 The counter is incremented whenever predicted predictor is correct and other is 

incorrect (i.e., for 1/0) and  

 The counter is decremented in the reverse direction (i.e., for 0/1) 

• The counter does not change for all other predictions for non-saturating present state 

• For the saturating state 00 (Use predictor 1)  

 It increments to the state 01 (use predictor 1) for 1/0 

 and decrements to state 11 (use predictor 2) for 0/1 

• For the saturating state 11 (Use predictor 2)  

 It increments to the state 00 (use predictor 1) for 1/0 

 and decrements to state 10 (use predictor 2) for 0/1 

 

High Performance Instruction Delivery 

• In MIPS 5-stage pipeline, we need to know the address of the next-instruction-fetch at 

the end of current IF cycle 

• That is, for ZERO branch penalty, we need to know whether the as-yet un-decoded 

instruction is branch; and  

 if yes then what is the next-PC? 

 

Branch Target Buffer 

• This is accomplished by introducing a Cache that contains the address of the next 

instruction if branch is taken as well as not-taken 

• This cache is known as the Branch-Target Cache or Branch-Target Buffer (BTB) 
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Branch-Prediction Buffer vs. Branch-Target Buffer 

• Recall from our discussion last time that branch-prediction buffer is accessed during the 

ID stage, after the instruction decode, i.e.,  

• We know the branch-target address at the end of ID stage to fetch the next predicted 

instruction 

 

Branch Target Buffer 

 
 

• Branch Target Buffer has three fields: 

 Lookup: addresses of the known branch instructions (predicted as taken) 

 Predicted PC: PC of the fetched instruction predicted taken-branch 

 Prediction State: Optional- extra prediction state bits 

• Complications? 

 Complication arise in using 2-bit predictor because it uses information for both 

the branches taken and not-taken 

 This complication is resolved in PowerPC processors by using both the Target-

buffer and Prediction-buffer 

• Steps involved in using Branch Target Buffer at IF, ID and EXE pipeline stages  

i. IF 

ii. ID 

iii. EXE 

iv. (insert flow chart of Fig. 3.20) 
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Branch-Target Buffer – Flow Chart Explanation 

 

 
 

• IF Stage: The PC of an instruction is compared with the contents of the buffer  

if   it is found  

then   the instruction must be a branch instruction predicted taken 

Else  It may be a branch predicted not-taken or normal instruction 

 

• ID Stage 

i. Decode the instruction and  

If    in the IF Stage, entry was found in the Target-buffer as predicted-  

  branch 

 then   begin fetching immediately from the predicted PC 

 

ii. Check the decoded instruction 

  If it is Taken-branch  
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• EX Stage performs one of the four possible functions 

i. Where in the IF stage entry was not found in the target buffer  and in the ID stage 

If  it is found to be Taken-branch 

               (i-a) then      Enter branch-instruction address and next PC into branch-target buffer 

               (i-b) Else  Proceed as normal instruction execution 

 

ii. Where in the IF stage the entry was found in the target-buffer and in the ID stage  

  If   it is found to be Taken-branch  

              (ii-a) then  correctly predicted , so execute normally without stall 

              (ii-b) Else it is mispredicted, so kill the fetched instruction, restart fetching at an  

                                   other address and delete entry from the target-buffer 

 

• If – the correctly predicted branch entry is found in the buffer 

• Then – there will be no  branch penalty 

• Else – It suffers at least 2 clock cycle delay as misprediction penalty  

 One clock delay for fetching the wrong instruction and  

 One clock cycle to restart the fetch 

 

 

Branch-Target Buffer – Examples 

 

Inst. in Buffer     Prediction  Actual Branch             Penalty Cycles 

 Yes             Taken   Taken                          0 

 Yes  Taken  Not-Taken   2 

 No  -  Taken    2 

 No  -  Not Taken   0 

 

 

Branch-Target Buffer – Solution 

We can compute the penalty by looking at the probability of two events: 

 i) Branch predicted taken but end up not take 

  = % buffer hit rate x % incorrect prediction 

  = 0.95 x 0.1 = 0.095 

 ii) Branch is taken but is not found in the buffer 

  = % incorrect prediction 

  = 0.1 

The penalty in both the cases is 2 cycles, therefore 

Branch Penalty = (0.095 + 0.1)x2 = 0.195 x 2 = 0.39 

 

Example: Branch-Target Buffer 

Problem:   

Consider a branch-target buffer implemented for conditional branches only for pipelined 

processor 
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• Assuming that: 

 Misprediction penalty    = 4 cycles 

 Buffer miss-penalty    = 3cycles 

 Hit rate and accuracy each   = 90% 

 Branch Frequency    = 15% 

 

Solution 

• The speedup  with Branch Target Buffer verses no BTB is expressed as: 

 Speedup = CPI no BTB  / CPI BTB  

     = (CPI base +Stalls no BTB ) / ( CPI base + Stalls BTB )  

 

• The stalls are determined as:  

  Stalls = ΣFrequency  x  Penalty 

  s ε stall s  s 

 

• The sum over all the stall cases as the product of frequency of the stall cases and the 

stall-penalty 

i. Stalls no BTB = 0.15 x 2 = 0.30 

ii. To find Stalls BTB we have to consider each output from BTB 

 

• There exist three possibilities: 

a) Branch misses the BTB:  

frequency = 15 % x 0.1 = 1.5% = 0.015 

  Penalty = 3   

   Stalls = 0.045 

b) Branch can hit and correctly predicted: 

frequency = 15 % x 0.9 (hit) x 0.9 (prediction) = 12.1% = 0.121 

  Penalty = 0   

   Stalls = 0 

 

c) Branch can hit but incorrectly predicted:  

  frequency = 15 % x 0.9 (hit) x 0.1 (misprediction) = 1.3% = 0.013 

   Penalty = 4   

   Stalls = 0.052 

 

Stalls BTB = 0.045 + 0 + 0.052  = 0.097 

Speedup = (CPI base + Stalls no BTB ) / ( CPI base + Stalls BTB )  

      = (1.0 + 0.3) / (1.0 + 0.097) 

      = 1.2 
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Improvement in BTB 

• In order to achieve more instruction delivery, one possible variation in the Branch Target 

Buffer is: 

• To store one or more target instructions, in stead of or in addition to, the predicted 

Target Address   

• Advantages: 

 It possibly allows larger BTB as it permits access to take longer than the time 

between successive instruction fetches 

 Buffering the actual Target-Instructions allow Branch Folding, i.e.,  

o ZERO cycle Unconditional Branching or some times ZERO Cycle 

conditional Branching 
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Lecture 17 

Instruction Level Parallelism 

(High-performance Instructions delivery - Multiple Issue) 

 

Reducing branch penalties for High-Performance Processors 

• Branch Target Buffer 

• Integrated Instruction Fetch Units 

• Return Address Predictors 

 

Integrated Instruction Fetch Units 

• Integrated Branch Prediction 

 The Branch-predictor is included in the Instruction Fetch Unit 

 So, it predicts and drive the fetch-pipe 

• Instruction Prefetch 

 An instruction pre-fetch queue is part of IIFU  

 The queue holds multiple instructions and deliver more than one instructions in 

one cycle 

• Instruction memory access and buffering 

 Fetching multiple instructions per clock cycle may require accessing multiple 

cache lines, which is a complex operation 

 IIFU facilitates to overcome these complexities and hides the cost of crossing 

cache-blocks 

 IIFU also provides instruction buffering and on-demand issue 

  

Return Address Predictors 

• The Return-Address predictor predicts the indirect jumps, i.e., the jumps whose address 

varies at rum time 

• High-level language programs generate such jumps for indirect procedure calls and 

select or case statements 

 

Summary: Minimizing Control Hazard Penalties   
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Multiple Instruction-Issue Processors 

• All of the schemes described so far can at best achieve 1 instruction/cycle 

• There exist two variations to these schemes: 

 Superscalar processors 

 Very Long Instruction Word (VLIW) processors 

 

Superscalar 

• The statically scheduled processors use in-order execution  

• The dynamically scheduled use out-of-order execution 

• Superscalar concept has been used in: 

 IBM Power2 

 Sun Ultra SPARC 

 Pentium III/4 

 DEC Alpha  

 HP 8000 

 

Very Long Instruction Words – VLIW processor 

 

r1 = L r4 r2 = Add r1,M f1 = Mul f1,f2 r5 = Add r5,4 

 

VLIW Processors 

• VLIW includes new features for:  

 predication,  

 rotating registers and 

 speculations, etc. 

• Typical implementations are: 

 i860, Trimedia, Itanium 

• We will talk about statically scheduled superscalar today and about compiling for 

VLIW/EPIC later  

 

Statically Scheduled Superscalar Processor 

• Instruction Issue Process: 

 The multiple instruction issue is a complex process 

 During instruction fetch, the pipeline receives all the instruction that could 

potentially issue, called Issue-packet (it may have say from 1 to 4 instructions) 
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Example: Statically Scheduled Superscalar MIPS Processor 

• As an example let us consider a MIPS superscalar that has: 

 Number of Instructions issue/clock: 

2 instructions - 1 FP operation, 1 Integer operations   

(The integer operations include Load/store to integer or FP register, branch and 

Integer ALU operation) 

• Issuing two instructions per cycle would require Fetch and Decode 64-bits/clock cycle 

• Fetching two instructions need careful handling of the cache, as either the first 

instruction may be at end of the cache block or the second instruction my be at the 

beginning of the cache block  

• Hazard detection: The restriction of one FP and one Integer makes the hazard checking 

simple.  

• We simply have to determine the likelihood of hazards between two instructions in an 

issue-packet 

• If this situation exist then the Simple solution is to treat this as a structural hazard (issue 

only 1 of them) 

• However, the only difficulties arise when Integer Instruction is a FP load/store/move 

instruction  

 it may create contention of the FP port and create RAW hazard when second 

instruction of the pair depends on the first 

Example 

Issuing: If placement is not a problem, then fetch and issue is completed in three steps‖ 

• Fetch Two instructions from the cache 

• Determine whether 0, 1 or 2 instructions can issue 

• Issue them to the correct functional unit 

 

Example superscalar pipeline in operation 

• Let us see how the instructions look like when the go in pair in a pipe 
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Dynamic Scheduling in Superscalar Processors 

1. Extending Tomasulo‘s concept to support two instruction-issue superscalar pipeline 

 Here, we do not want to issue instruction to reservation station out of order, as 

this may lead to the violation of program semantics.  

 Further, to gain full advantage of Dynamic scheduling remove the constraints of 

issuing one FP and integer instruction in a clock. 

2. Alternatively, Separate the data structure of FP and integer registers and simultaneously 

issue both instructions to their respective reservation stations, as long as two issued 

instructions do not access same registers. 

 One approach is: to run this step (assigning a reservation station and update 

control) in half a clock cycle, so that two instructions can be processed in one 

clock cycle. 

 Second approach is: to build logic necessary to handle two instructions at once, 

including any dependence between the instructions.     

 Modern superscalar processors issue four or more instructions per clock cycle 

 Often included both approaches. In addition it is speculated that the Branch 

prediction is integrated into a dynamically scheduled pipeline. This referred to as 

Hardware-based speculation 

Example 

Let us consider a most general 2-issue dynamically scheduled processor and see how a simple 

loop, which we considered for single-issue Tomasulo, executes on this processor 

 

Recall that our example loop adds a scalar in F2 to each element of a vector in memory 

 

Loop:  L.D         F0,0(R1)  ; F0=array element 

 ADD.D  F4,F0,F2  ; add scalar in F2 

 S.D  F4,0(R1)  ; store result 

 DADDUI R1,R1,#-8  ; decrement pointer 

                                ; 8 bytes (per DW) 

 BNE      R1,R2,LOOP  ; branch R1!= R2  

 

• Let us create a table showing when each instruction issues, begins execution, and write 

its result to CDB for first three iterations using 2-issue version of Tomasulo‘s pipeline 

using single issue processor 

• Assume that Both FP and integer operation can be issued on every clock cycle, even if 

they are dependent 

• One integer functional unit is used for both ALU operations and effective address 

calculations and a separate pipeline FP functional until for each operation type 

• Issue and write result take one cycle each. 

• There is dynamic branch prediction  hardware and a separate functional unit to evaluate 

branch  conditions  

• There is one clock for integer ALU, two cycles for load, and three cycles for FP add. 

• Les us have a look on he clock cycle of issue, execution, and writing result for a dual 

version of Tomasulo‘s pipeline 
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• Thus, sustaining one iteration every three cycles would lead to an IPC of 5/3=1.67 (5 

instructions in 3 clocks) 

• completion rate is: 15/16=0.94  

 15 instructions execute in 16 cycles 

 

Resource usage table  
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Another example: Overcoming the single integer pipe bottleneck   

• Now let us consider another example with 2-issue version of the Tomasulo's pipeline to 

overcome single-integer unit pipe bottleneck 

 

Example 2 

• In this example, we consider the execution of the same loop, as used in the previous 

example, but using 2-issue version of Tomasulo‘s pipeline with 2-issue processor that 

has wider CDBs (2 CDBs) 

• Similar to the previous example, the activities table, similar to the previous table, shows 

the clock cycles of issue, execution and writing result for the dual-issue version of the 

Tomasulo‘s pipeline 

• Notice that dual-issue Tomasulo pipe has: 

 separate functional units for Integer ALU and effective address calculation; and 

 wider CDB 

• Activity Table for Example 2   
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Lecture 18 

Instruction Level Parallelism 

(Hardware-based speculations and exceptions) 

Today's Topics 

• Hardware-based Speculations 

• Speculating on the outcome of branches 

• Extension in the Tomasulo‘s hardware 

• Handling Exceptions 

• Summary 

 

Recap: Lecture 17 

Last time we discussed three basic concepts to accomplish multiple instructions issue: 

• Branch Target Buffer 

 Branch Target-buffer provides the target branch address at the IF stage 

 Its variation, branch folding, buffers the actual target-instruction instead of or 

along with target address 

 Both facilitate to minimize branch-hazard stalls allowing multiple instruction issue 

in one clock cycle  

• Integrated Instruction Fetch Units 

 Integrated Instruction Fetch Unit (IIFU) integrates the following three functions 

into a single step   

o Branch Prediction 

o Instruction Prefetch 

o Instruction memory access and buffering 

• Return Address Predictors 

 Is one that predicts the indirect jumps, i.e., the jumps for indirect procedure calls 

and select or case statements 

 

Then we discussed the features of: 

• Superscalar processors 

• VLIW processors 

• In the superscalar pipeline processors the multiple instructions issued in one clock cycle 

can be scheduled using both the static as well as dynamic scheduling techniques  

• Whereas, the VLIW-based processors schedule multiple instruction issues in one clock 

cycle using only the static scheduling approaches 

• Then we discussed the performance enhancement and factors limiting the performance 

in superscalar pipes 

 statically scheduled and dynamically scheduled  

 

Today’s Focus 

• Last time, in the loop-based example, we observed that the control hazards, which 

prevent us from starting the next iteration before we know whether the branch was 

correctly predicted or not, causes one-cycle penalty, on every loop iteration 

• Today we will focus on the hardware-based speculation to address this limitation 
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Hardware-based Speculation: Introduction 

• Hardware-based speculation offers many advantages 

 Can incorporate hardware-based branch prediction 

 Does not require additional bookkeeping code 

 Does not depend on a compiler 

• This approach has been implemented in the : 

 PowerPC 620 

 MIPS R10000 

 Intel P6, and  

 AMD K5

 

Hardware Based Speculation: Basics 

• We have observed that exploiting more instruction level parallelism, increases the 

burden of maintaining control dependence 

• Where, the branch prediction reduces the direct stall attributable to branches, a multiple-

issue processor may need to execute a branch every clock cycle to maintain maximum 

performance 

• Hence, exploiting more parallelism requires that we must overcome the limitations of 

control dependence 

• These limitations are overcome by the speculation on the outcome of branches and 

executing the program for speculations 

• Here, we: 

 Fetch, Issue and  

 Execute instructions 

 as if our branch predictions were always correct.  

• We know that dynamic scheduling without speculation fetches and issues but does not 

execute such instructions until prediction is checked and found correct  

 

Hardware Support: Speculative Execution 

• Main idea: allow execution of an instruction dependent on a predicted-taken branch such 

that there are no consequences (including exceptions such as memory violation) if 

branch is not actually taken 

• Further, we don‘t want a speculative instruction to cause exceptions that stop programs 

(i.e. memory violation) 

• This can be achieved: If hardware support for speculation buffers the results and 

exceptions from instructions,  until it is known that the instruction would execute 

 

Hardware Based Speculation: Basics 

• This shows that: Hardware based speculation combines three key ideas: 

 Dynamic Branch Prediction 

o Dynamic branch prediction facilitates to choose which instruction to 

execute; i.e., next in sequence or branch 

 Speculation 

o Speculate to allow the execution of the instructions before the control 

dependence is resolved. Here, the hardware has the ability to undo the 

instructions hard to do if there are exceptions 
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 Dynamic scheduling 

o Dynamic scheduling to deal with the scheduling of different combinations 

of basic blocks 

• Thus, the hardware based speculation follows the predicted flow of data values to 

choose when to execute  

• To do so, we must separate the bypassing of results among instructions, which (i.e., 

bypassing) is needed to execute an instruction speculatively, from the actual completion 

of an instruction 

• By making this separation we can allow an instruction: 

 to execute and  

 to bypass its result to other instructions without allowing the instruction to perform 

any update that cannot be undone,  until we know that the instruction is no longer 

speculative 

• When the instruction is no longer speculative, we allow it to update the register file or 

memory 

• This additional step in the instruction execution sequence is called instruction commit 

• This shows that the basic idea behind implementing the speculation is to allow 

instructions to  execute out-of- order but force them to commit in-order 

 

Hardware Based Speculation: Implementation 

• In a single issue five stage pipeline: we can ensure that instructions are committed in-

order, simply by moving writes to the end of the pipeline. Because when we add 

speculation, we need to separate  the process of completing execution and instruction-

commit, as the instructions may finish execution considerably before they are ready to 

commit 

• Adding this commit phase to the instruction execution sequence requires some changes 

to the sequence as well as an additional set of hardware buffers that holds the result of 

instructions that have finished execution but have not committed 

 

Modified hardware including ROB 
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• Here, the reorder buffer can be operand source, if value not yet committed 

• Once operand commits, result is found in register file 

Mechanism  

• At issue time, allocate an entry in the ROB to hold result 

• As each value has a location in the ROB, therefore, use ROB entry number instead of 

reservation station to rename  

• However, we can use additional registers for renaming, and ROB only for tracking 

commits 

• Instruction results commit to register set in- order 

• If ROB is implemented as a queue then it is simple to Undo speculated instructions on 

mispredicted branches or on 

• exceptions just requires throwing away uncommitted entries 

 

Extended Tomasulo’s Pipe 

• Exceptions are not recognized until an instruction becomes ready to commit 

• The figure shows the Tomasulo‘s hardware structure including the ROB 

 
 

• Here, the basic structure of a MIPS  FP unit, using Tomasulo‘s algorithm is extended to 

handle speculation.  

• The mechanism may be further extended to multiple issue by making CDB wider to allow 

for multiple completions per clock. 

• Here, the reorder buffer(ROB) provides additional buffer, same way as in reservation 

station in Tomasulo‘s,  that extend the register set. 
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• The ROB holds the result of an instruction between the time operation associated with 

the instruction completes and the time instruction commit. 

• Hence, ROB is a source of operands for instructions just an in reservation station 

provided operands in Tomasulo‘s algorithm.  

• In Tomasulo‘s approach, once an instruction writes its result, any subsequently issued 

instructions will find the result in the register file.  

• Whereas, in speculation the register file is not updated until the instruction commits – 

Thus the ROB supplies operands in the interval between completion of instruction 

execution and instruction commit. 

• The ROB is similar to the store buffer in the Tomasulo‘s algorithm. 

• ROB consists of four fields, 

 instruction type field 

 destination field 

 the value field 

 the ready field 

 

Reorder Buffer Fields 

1. Instruction Type field: It indicates whether:  

 The instruction is a branch and has no destination,  

 The instruction is a store, which has a memory address destination) , or  

 The instruction is a register operation, ALU operation or load, which has register 

destinations. 

2. Destination field: It supplies 

 the register number ( for load and ALU  operation) or  

 the memory address (for stores) where the instruction result should be written. 

3. Value field  

 It is used to hold the value of the instruction result until  the instruction 

commits. 

4. Ready field 

 It indicates that the instruction has completed execution and the value is ready. 

 

Speculative Tomasulo’s Algorithm 

There are Four Steps of Speculative Tomasulo‘s Algorithm 

1. Issue 

 Get instruction from the head of the instruction queue 

 If reservation station and ROB slot free, Then allocate and issue instruction 

 If not free then stall issue  

 If operands are available then send them to the reservation station 

 Else keep track of ROB entry that will produce the operands 

2. Execute 

 Operate on operands (EX) 

 If both operands ready then execute 

 If not ready, the watch CDB for result 

 This checks for RAW hazards 

 Instructions may take multiple clock cycles here 
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3. Write result 

 Finish execution (WB) 

 Write on CDB, mark reservation station available 

 Result picked up by ROB entry 

 If the value to be stored is available, then it is written to the value field of the ROB 

entry for the store. 

 If the value to be stored is not available yet, then the CDB must be monitored 

until that value is broadcast,  

 At which time the value field of the ROB entry of the store is updated. 

4. Commit 

 Commit can occur when an instruction reaches the head of the ROB and its 

result is present in the  buffer.  

 Commit update register or store to memory with ROB result  and free up ROB 

slot 

 If ROB head is an incorrectly predicted branch, then flush ROB 

 If the branch was correctly predicted, then the branch is finished 

Example 1 

• Using the same code segment, as we considered explaining in the Tomasulo's 

approach, earlier show that what the status table look like when the MUL.D is ready to 

go to commit.  

 

• Assume the same latencies as earlier 

 add is 2 clock cycles,  

 multiply is 10 clock cycles, and  

 divide is 40 clock cycles. 

 

• Code 

 L.D F6,34(R2) 

 L.D F2,45(R3) 

 MUL.D F0,F2,F4 

 SUB.D F8,F6,F2 

 DIV.D F10,F0,F6 

 ADD.D F6,F8,F2  

 

• Table… 
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• The table shows that  

 Although the SUB.D instruction has completed execution, it does not commit until 

the MUL.D commits 

 The reservation station and the register status field contains the same basic 

information as they contain for the Tomasulo‘s algorithm. 

• Also note that at the time  

 MUL.D is ready to execute and only two L.D instructions have committed, 
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although several other have completed execution. 

 The SUB.D and ADD.D will not commit until the MUL.D instruction commits, 

although the results of the instructions are available and can be used as source 

for other instructions  

• Further, here 

 The DIV.D is in execution, but has not completed solely due to its longer latency 

than MUL.D.  

• The value column indicates the value being held. 

• The format #X is used to refer to a value field of ROB entry X. 

• Reorder buffers 1 and 2 are actually completed but are shown for informational purposes 
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• The table below shows the same example for Tomasulo's approach without speculation, 

discussed earlier. 

• Let us discuss the key important difference between a processor with speculation and a 

processor with dynamic scheduling. 

• Comparing the two tables we can see that 

• In the non-speculation case, the ADD.D and SUB.D instructions completed out-of-order, 

i.e., before the MUL.D completed  

• The in case of speculative hardware: 

 The reservation stations numbers are replaced with the ROB entry numbers in 

Qj, Qk  and in register status fields 

 And, the DEST. Destination Field is added to reservation station 

 The destination field designates the ROB number that is destination for result 

 

Multiple issue with speculation 

• A speculative processor can be extended to multiple issue using the same techniques 

we employed when extending Tomasulo-based processor 

• There are two challenges for multiple issue with Tomasulo‘s algorithm 

1. Instruction issue and monitoring the CDBs for instruction completion 

2. Maintaining throughput of greater than one instruction per cycle 

• To show how speculation can improve performance  in a multiple issue processor. Let 

us consider  an example. 

 

Example 

Consider the execution of the following loop, which searches an array, on two- issue processor, 

once without speculation and once with speculation. 

 

Loop: 

LD  R2,0(R1)  ; R2= array element 

DADDUI R2,R2,#1  ; increment R2 

SD  R2,0(R1)  ; store result 

DADDUI R1,R1,#4  ; increment pointer 

BNE  R2,R3,LOOP  ; branch if not last element 

 

• Assume that  

 There are separate integer functional units for the effective address calculations, 

for ALU operations, and for branch condition evaluation. 

 Up to two instructions of any type can commit per clock 

• Let us consider two tables, for the first three iterations of this loop, for machines with and 

without speculations 

• The first table shows time of issue, execution, and writing result for two - issue 

dynamically scheduled processor, without speculation. 

• Note that the L.D following the BNE cannot start execution earlier, because it must wait 

until the branch outcome is determined. 
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• This type of program with data dependent branches that cannot be resolved earlier, 

shows evaluation allow multiple instructions to execute in the same clock cycle.  

 
• The second table shows the time of issue, execution and writing result for a dual-issue 

version of our pipeline with speculation. 

• Note that the L.D following the BNE can start execution early because it is speculative. 
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• Comparing the two tables, note that the third branch in the speculative processor 

executes in 13 clock cycle, while in non-speculative processor it executes in 19 clock 

cycle. That is, the non-speculative pipelines are falling behind the issue rate rapidly 

 

Exceptions to Hardware-based speculation: Extended discussion 

• So far, we have been discussing the performance-enhancement using the structure of 

Tomasulo‘s Algorithm extended to handle speculations for ILP in single-issue and 

multiple-issue processors 

• Here, we observed that the store-buffer of the Tomasulo‘s structure is eliminated and a 

Re-Order Buffer is included that incorporates the function of store-buffer 

• The structure is then further extended to handle multiple-issue by making the CDB wider 

• Now, we will talk about the exceptional situations which may arise when executing a 

program using dynamic scheduling and how the structure with hardware-based 

speculation considers these exceptions 

• We know that the dynamic scheduling without speculation, allows to complete execution 

out-of-order, where as the structure with speculating-hardware commits in-order 

• Therefore, if an exceptional situation occurs while exacting an instruction, the ROB in 

structure with speculation doesn‘t commit and handle exceptions 

• Let us reconsider the execution of our first example program using Tomasulo‘s structure 

with speculation and without speculation 

• Here, the instructions SUB.D and ADD.D, occurring after the incomplete instruction 

MUL.D, but executed earlier, don‘t commit until the instruction MUL.D completes and 

commit 

 in an exceptional case, if MUL.D causes an interrupt, then it is handled as follows 

we can wait until this interrupt reaches the head of ROB and any pending 

instruction is flushed out, the speculation is un-done 

 Whereas, in case of dynamic scheduling without speculation, the results in 

registers F8 (for SUB.D) and in register F6 (for ADD.D) could be overwritten out-

of-order, thus the interrupt could not be handled 

• Furthermore, the exceptions are handled not recognizing then until it is ready to commit. 

This may be explained by considering our earlier example of the execution of a loop 

 

Loop: 

L.D  F0,0(R1) 

MUL.D  F4,F0,F2 

S.D  F4,0(R1) 

DADDUI R1,R1,# -8 

BNE  R1,R2, LOOP  ;branch if R1=R2 

 

Here, if the an exception arises, say due to interrupt from MUL.D, the exception is recorded in 

the ROB. At the same time, if misprediction arises from the speculated instruction (i.e., BNE) 

then the exception is flushed out along with the speculated instruction that should not have been 

executed when the ROB is cleared 
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Summary 

• The focus of our today‘s discussion has been the Tomasulo‘s hardware modification to 

handle execution using speculation, i.e.,  

• Speculating on the outcome of branches to avoid  control hazards, which prevent us 

from starting the next operation before we know whether the branch was correctly 

predicted or not 

• The Main idea is to allow execution of a branch instruction, predicted taken, such that 

there are no consequences if branch is not actually taken 

• Further, we don‘t want a speculative instruction to cause exceptions which stop 

programs  

• Software generated interrupt or memory violation are typical examples of exceptions 

• We found that this can be achieved:  

 by including a buffer that holds the results and exceptions from instructions, until 

it is known that the instruction would execute 

 Such a buffer is called Re-Order Buffer – ROB 

 ROB is used only to track commits 

 The ROB is flushed out if the speculation does not hold or exception is found 
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Lecture 19 

Instruction Level Parallelism 

(Limitations of ILP and Conclusion) 

Today's Topics 

• Recap 

• Limitations of ILP 

 Hardware model 

 Effects of branch/jumps 

 finite registers 

• Performance of Intel P6 Micro-Architecture-based processors 

 Pentium Pro, Pentium II, III and IV 

• Thread-level Parallelism 

• Summary 

 

Recap: ILP- Dynamic Scheduling 

• In the last few lectures we have been discussing the concepts and methodologies, which 

have been introduced during the last decade, to design high-performance processors  

• Our focus has been the hardware methods for instruction level parallelism to execute 

multiple instructions in pipelined datapath 

• These hardware techniques are referred to as Dynamic Scheduling techniques 

• These techniques are used to ovoid structural, data and control hazards and minimize 

the number of stalls to achieve better performance 

• We have discussed dynamic scheduling in integer pipeline datapath and in floating-point 

pipelined datapath 

• We discussed the score-boarding and Tomasulo‘s algorithm as the basic concepts for 

dynamic scheduling in integer and floating-point datapath  

• The structures implementing these concepts facilitate out-of-order execution to minimize 

data dependencies thus avoid data hazards without stalls 

• We also discussed branch-prediction techniques and different types of branch-

predictors, used to reduce the number of stalls due to control hazards 

• The concept of multiple instructions issue was discussed in details 

• This concept is used to reduce the CPI to less that one, thus, the performance of the 

processor is enhanced 

• Last time we talked about the extensions to the Tomasulo‘s structure by including 

hardware-based speculation 

• It allows to speculate that branch is correctly predicted, thus may execute out-of-order 

but commit in-order having confirmed that the speculation is correct and no exceptions 

exist 

 

Today’s topics ILP- Dynamic Scheduling 

• Today we will conclude our discussion on the dynamic scheduling techniques for 

Instruction level parallelism by introducing an ideal processor model to study the:  

 Limitations of ILP; and 

 Implementation of these concepts in Intel P6 Micro-architecture 
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Limitations of the ILP – Ideal Processor 

• To understand the limitations of ILP, let us first define an ideal processor. 

a) An ideal processor is one which doesn‘t have artificial constraints on ILP; and  

b) The only limits in such a processor are those imposed by the actual data flows 

through either registers or memory 

 

Assumptions for an Ideal processor 

• An ideal processor is, therefore, one wherein: 

a) all control dependencies and  

b) all but true data dependencies  

are eliminated 

• The control dependencies are eliminated by assuming that the: branch and Jump 

predictions are perfect, i.e., all conditional branches and jumps (including indirect jumps 

used for return etc.,) are predicted exactly; and the processor has perfect speculation 

and an unbounded buffer of instructions for execution 

• All but true data dependencies are eliminated by assuming that: 

a) There are infinite number of virtual registers available facilitating: 

– register renaming thus avoiding WAW and WAR hazards); and  

– Simultaneous execution of an unlimited number of instructions 

b) All memory addresses are known exactly facilitating: to move a load before a 

store, provided that the addresses are not identical 

 

Ideal hardware model 

• Hence, by combining these assumptions, we can say that in an ideal processor: 

 Can issue unlimited number of instructions, including the load and store 

instructions, in one cycle 

 All functional units have latencies of one cycle, so the sequence of dependent 

instruction can issue on successive cycles 

 any instruction, in the execution of a program, can be scheduled on the cycle 

immediately following the execution of the predecessors on which it depend; and 

 the last dynamically executed instruction in the program, can be scheduled on 

the very first cycle 

 

Performance of a Nearly Ideal Processor 

• Now let us examine the ILP in one of the most advanced superscalar processor Alpha 

21264 

• Alpha 21264 has the following features: 

 Issues up to 4 instructions/cycle 

 Initiates execution on up to 6 instructions 

 Supports large set of renaming registers  

(41-integer and 41 floating-point) 

 Uses large tournament type predictor 

• In order to examine the ILP in this processor a set of six (6) SPEC92 benchmarks 

(programs), compiled on MIPS optimizing compiler are run. 
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•  The features of theses benchmarks are: 

• The three of these benchmarks are floating point benchmarks: 

 Fpppp, Doduc, Tomcatv 

• The integer programs are given as follows, 

 gcc, espresso, li 

• Now let us have a look on the performance Alpha 21264 for average amount of 

parallelism defined as number of instruction-issues per cycle for these benchmarks 

• Fig 3.35 

• Here, you can see that fpppp and tomcatv have extensive parallelism so have high 

instruction-issues 

• Where as the doduc parallelism doesn't occur in simple loop as it does in fpppp and 

tomcatv 

• The integer program li is a LISP interpreter that has many short dependences so offers 

lowest parallelism  

• Now let us discuss how the parameters which define the performance of a realizable 

processor are limited in ILP 

• The important parameters to be studied are: 

 Window Size and Issue Count 

 Branch and Jump predictors 

 Finite number of registers 

 

Window size and Issue count 

• In dynamic scheduling, every pending instruction must look at every completing 

instruction for either of its operand.  

• A window in ILP processor is defined as: 

• ‗‗a set of instructions which is examined for simultaneous execution‘‘ 

• Start of the window is the earliest uncompleted instruction and the last instruction in the 

window determines its size 

• As each instruction in the window must be kept in the processor till the completion of 

execution, therefore the total window size is limited by the storage, number of 

comparisons and issue rate 

• The number of comparisons required every clock cycle is equal to the product: 

  maximum completion rate x    

  window size x 

  number of operands per instruction 

• For example, if 

  maximum completion rate   = 6 IPC   

  window size     = 80 instructions 

  number of operands per instruction = 2 operands 

then  

  maximum comparisons required  = 6 x 80 x 2 = 960 

 

• In real processors, maximum number of instructions that may issue, execute and commit 

in the same clock cycle, is smaller than the window size 
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• Now let us see the effect of restricting window size on the instruction-issues per cycle 

• Fig 3.36… 

• Here, we assume that the instructions in the window are obtained by perfectly predicting 

branches and selecting instructions until the window is full. 

• Here, you can see that the amount of the parallelism uncovered falls sharply with 

decreasing window size – e.g.; 

• for the benchmark gcc, when window size decreases from 2K to 512 parallelism falls 

from 35 to 10 IPC and parallelism reduces to almost zero when window size is 4 

• Also note that the parallelism in the integer and FP program is almost similar for a 

specific window size 

 

Branch and jump prediction 

• Now let us discuss effect of realistic branch and jump prediction  

• Our ideal processor assumes that the branches can be perfectly predicted but no real 

processor can achieve this 

• Let us have a look on to this graph which shows the effect of realistic prediction 

schemes, which we have already discussed 

 

Realistic branch and jump prediction 
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• This graph shows the parallelism for five different levels of predictions 

1) Perfect  

o At the start of execution all the branches and jumps are perfectly 

predicted and its gives highest parallelism 

2) Tournament based branch predictor 

o The second step tournament based branch predictor is considered 

• This scheme uses 2-bit correlating and 2-bit non-correlating predictor with a selector 

• Predictor buffer consists of 8K entries, each consists of three 2-bit fields, that is,  48K 

bits, both the correlating and non correlating 

• It achieves the average accuracy of 97% of the six SPEC92 benchmark 

• The graph shows the extensive difference among the programs:  

 with loop-level parallelism (tomcatv and fpppp) and  

 those without, i.e., integer programs and doduc 

• The 3rd level using Standard 2 bit predicator with 512 2-bit entries and  

• 4th level using profile history of the program give almost identical results 

• The 5th level – None - where no branch prediction is used, though jumps are still 

predicted, the parallelism is largely limited to within a basic look 

 

The effect of finite registers 

• Another important limiting factor on the Instruction-issues per cycle is the finite registers. 

• Ideal processor eliminates all name dependences among the register references 

assuming an infinite set of physical registers 

• To date, the Alpha 21264 has provided the largest number of extended registers i.e. 41 

integer and 41 FP registers 

• In addition 32 integer and 32 FP registers are provided  

• The graph shows the effect of finite number of registers available for renaming using the 

same six SPEC 92 benchmarks. Fig 3.41… 

• Both the number of FP registers and the number of GP registers are increased 

• Although, having only 32 extra FP and 32 extra GP registers has a significant impact on 

all the programs.  

• But, the effect is most dramatic on the FP programs – (fpppp and tomcatv) – the 

instruction-issues increases from 10 to 45 IPC when registers increases from 32 to 128 

• Note that the reduction in available parallelism is significant when fewer than an 

unbounded number of renaming registers ( here, less than 32) are available 

• For the integer programs the impact of having more than 64 registers is not seen here 

• This is because of limitation in the window size. 

 

Performance of realizable processors with realistic hardware 

• Let us consider a processor with the following attributes 

1) up to 64 instructions per clock with no issue restriction,  

2) A tournament predictor with 1K entries return predictors  

3) Perfect memory references done dynamically  or through a memory dependence 

predictors 

4) register renaming with 64 additional integer and 64 additional FP registers 
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Limitations on ILP for realizable processors 

• Fig 3.45… 

• This configuration is more complex and expensive then any existing implementations, 

especially in terms of number of instructions issue. 

• The fig shows the results of the configuration as we vary the window size up to 64 issue 

per clock 

• Here, we assume that although there are fewer rename registers than the window size, 

the number of rename registers equals the issue width. 

• All the operations have zero latency 

• The fig shows the effect of the window size for the integer programs is not as severe as 

for the FP programs. 

Putting it all together 

• The Intel p6 micro-architecture forms the basis for the Pentium pro, Pentium II and 

Pentium III 

• These three processors differ in clock rate, cache architecture, and memory interface 

• The Pentium pro, the processor and specialized cache SRAM‘s were integrated into 

multichip module 

• In the Pentium II standard SRAM‘s are used as caches 

• In the Pentium III, there is either an on chip 256 KB L2 cache or an off chip 512 KB 

cache. 

• The P6 micro architecture is dynamically scheduled processor that: 

•  translates each IA-32 instruction to a series of micro-operations (uops) that are 

executed by the pipeline;  

• The maximum number of uops that may be generated per clock cycle is six, with four 

allocated to the first IA-32 instructions 

• The uops are executed by an out of order speculative pipeline using register 

remaining and a ROB 

 

Performance of the Pentium pro implementation 

• The Pentium pro has the smallest set of primary caches among the p6 based 

microprocessors. 

• It has high bandwidth interface to the secondary caches.  

 

Branch performance and speculation costs 

• Branch target addresses are predicted with a 512 entry branch target buffer (BTB). 

• If the BTB does not hit, a static prediction is used. 

• Backward branches are predicted taken (and have a one cycle penalty if correctly 

predicted ). 

• Forward branches are predicted not taken and have no penalty if correctly 

predicted). 

• Branch mispredicts have both a direct performance penalty, which is between 10 and 

15 cycles. 

• Also indirect penalty due to the overhead of incorrectly speculated instructions. 
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• Which is essentially impossible to measure. 

• Fig 3.54… 

• It shows the fraction of the branches mispredicted either because of BTB misses or 

because of incorrect predictions. 

• On average about 20% of the branches either miss or are mispredicted and use the 

simple static predictors rule. 

 

Overall Performance of P6 Pipeline 

• Overall performance depends on the rate at which instructions actually complete and 

commit. 

• Fig 3.56… 

• The fig shows the fraction of the time in which zero, one, two or three uops commit. 

• On the average, one uop commits per cycle. 

• Here, 23% of the time, three uops commit in a cycle. 

• This distribution demonstrates the ability of a dynamically scheduled pipeline to fall 

behind on 55% of the cycles, no uops commit) and later catch up (31% of the cycles 

have two or three uops committing) 

 

The Pentium III versus Pentium 4 

• The micro architecture of the Pentium 4, which is called Net Burst, is similar to that of 

the Pentium III, called the P6 micro architecture. 

• Both fetch up to three IA-32 instructions per cycle, decode them into micro-ops. 

• Then sends the uops to an out-of-order execution engine that executes up to three 

uops per cycle. 

• There are, however, many differences which allow Net Burst micro architecture to 

operate at a significantly higher clock rate than the P6 micro architecture  

• These differences also help to maintain, or close to maintain, the peak to sustained 

execution throughput. 

 

Differences in Pentium III versus Pentium 4 

1) NetBurst has a much deeper pipeline than  P6, P6 requires about 10 clock cycles time 

for a simple add instruction, from fetch to the availability of its results 

 In comparison, Net Burst takes about 20 clock cycles, including 2 cycles 

reserved simply to drive results across the chip, 

2) Net Burst uses register renaming (as in the MIPS R10K and the Alpha 21264) rather 

than the reorder buffer, which is used in P6. 

 Use of register renaming allows many more outstanding results i.e., potentially 

up to 128 results versus the 40 permitted in P6.  

3) There are seven integer execution units in the Net Burst versus five in P6. 

 In addition an additional integer ALU and an additional address computation unit. 

 An aggressive ALU (operating at twice the clock rate) and an aggressive data 

cache lead to lower latencies.  

o The latency for the basic ALU operations is effectively one half of a clock 

cycle in Net Burst versus one in P6) 
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o The latency for data loads is effectively two cycles in Net Burst versus 

three cycles in P6) 

 These high-speed functional units are critical to lowering the potential increase in 

stalls from the very deep pipeline. 

4) Net Burst uses a sophisticated trace cache to improve instruction fetch performance, 

while P6 uses a conventional Prefetch buffer and instruction cache. 

5) Net Burst has a branch target buffer that is eight times larger and has an improved 

prediction algorithm 

6) Net Burst has 8 KB Level-I data cache as compared to P6 that has16KB Level-I data 

cache. 

 However, the Net Burst has larger Level-2 cache (256KB) with higher bandwidth 

7) Net Burst implements the new SSE2 FP instructions that allow two FP operations per 

instruction 

 These operations are structured as 12-bit SIMD or short-vector structure. 

 This gives Pentium 4 a considerable advantage over Pentium-III on FP code. 
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Lecture 20 

Instruction Level Parallelism 

(Static Scheduling) 

Today’s Topics 

• Recap: Dynamic Scheduling in ILP 

• Software Approaches to exploit ILP 

 Basic Compiler Techniques 

 Loop unrolling and scheduling 

 Static Branch Prediction 

• Summary 

 

Recap: Dynamic Scheduling 

• Our discussions in the last eight (8) lectures have been focused on to the hardware-

based approaches to exploit parallelism among instructions 

• The instructions in a basic block , i.e., straight-line code sequence without branches, are 

executed in parallel by using a pipelined datapath  

• Here, we noticed that: 

 The performance of pipelined datapath is limited by its structure and data and 

control dependences, as they lead to structural, data and control hazards 

• These hazards are removed by introducing stalls 

• The stalls degrade the performance of a pipelined datapath by increasing the CPI to 

more than 1  

• The number of stalls to overcome hazards in pipelined datapath are reduced or 

eliminated by introducing additional hardware and using dynamic scheduling techniques 

• The major hardware-based techniques studied so far are summarized here: 

 

Technique Hazards type stalls Reduced 

Forwarding and bypass Potential Data Hazard Stalls 

Delayed Branching and Branch Scheduling Control Hazard Stalls 

Basic Dynamic Scheduling Data Hazard Stalls from (score 
boarding)true dependences 

Dynamic Scheduling with renaming Stalls from: data hazards from anti-
dependences and (Tomasulo‘s Approach) 
fromoutput dependences 

Dynamic Branch Prediction Control Hazard stalls 

Speculation Data and Control Hazard stalls 

Multiple Instructions issues per cycle Ideal CPI > 1 

 

Introduction to Static Scheduling in ILP 

• The multiple-instruction-issues per cycle processors are rated as the high- performance 

processors 

• These processors exist in a variety of flavors, such as: 

 Superscalar Processors 

 VLIW processors 

 Vector Processors 
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• The superscalar processors exploit ILP using static as well as dynamic scheduling 

approaches  

• The VLIW processors, on the other hand, exploits ILP using static scheduling only 

• The dynamic scheduling in superscalar processors has already been discussed in detail;  

• And, the basics of static scheduling for superscalar have been introduced 

• In the today‘s lectures and in a few following lectures our focus will be the detailed study 

of ILP exploitation through static scheduling 

• The major software scheduling techniques, under discussion, to reduce the data and 

control stalls, will be as follows: 

Technique Hazards type stalls Reduced 

Basic Compiler scheduling Data hazard stalls 

Loop Unrolling Control hazard stalls 

Compiler dependence Ideal CPI, Data hazard stalls 

Trace Scheduling Ideal CPI, Data hazard stalls 

Compiler Speculation Ideal CPI, Data and control hazard stalls 

 

Basic Pipeline scheduling 

• In order to exploit the ILP, we have to keep a pipeline full by a sequence of unrelated 

instructions which can be overlapped in the pipeline 

• Thus, a dependent instruction in a sequence, must be separated from the source 

instruction by a distance equal to the latency of that instruction, for example, … 

• A FP ALU operation that is using the result of earlier FP ALU operation  

 must be kept 3 cycles away from the earlier instruction; and  

• A FP ALU operation that is using the result of earlier Load double word operation  

 must be kept 1 cycles away from it  

• For our further discussions we will assume the following average latencies of the 

functional units 

 Integer ALU operation latency   = 0 

 FP Load latency to FP store    = 0;  

 (here, the result of load can be  

bypassed without stalling to store) 

 Integer Load latency     =1; whereas 

 FP ALU operation latency to FP store  =2 

• A compiler performing scheduling to exploit ILP in a program, must take into 

consideration the latencies of functional units in the pipeline 

• Let us see, with the help of our earlier  example to add a scalar to a vector, how a 

compiler can increase parallelism by scheduling 

 

Execution a Simple Loop with basic scheduling 

Let us consider a simple loop: 

  for (i=1000; i>0; i=i-1) 

      x[i] = x[i] + scalar 

Where, a scalar is added to a vector in 1000 iterations; and the body of each iteration is 

independent at the compile time 
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MIPS code without scheduling 

• The MIPS code without any scheduling look like, 

 

L.D  F0, 0(R1)                       ;F0 array element 

ADD.D  F4, F0, F2                      ;add scalar in F2 

S.D  F4, 0(R1)                       ;store result 

DADDU R1, R1, #-8                    ;decrement pointer 8 bytes 

BNE  R1, R2, LOOP               ;branch R1! =R2 

 

• Notice the data dependencies in ADD and STORE operation which lead to data-

hazards; and control hazard due to BNE instruction 

 

Loop execution without Basic Scheduling 

• Let us assume that the loop is implemented using standard five stage pipeline with 

branch delay of one clock cycle 

• Functional units are fully pipelined  

• The functional units have latencies as shown in the table 

 

Stalls of FP ALU and Load Instruction 

• Here, the First column shows originating instruction type  

• Second column is the type of consuming instruction  

• Last column is the number of intervening clock cycles needed to avoid a stall  

 

Instruction producing 
result 

Instruction using 
result 

Latency in clock 
cycle 

FP ALU op  Another FP ALU op  3 

FP ALU op Store double  2 

Load double FP ALU op  1 

Load double  Store double  0 

 

Single Loop execution (without scheduling for the latencies and stalls for originating viz-a-viz 

consuming instructions) 

Instructions     clock cycles 

      L.D       F0, 0(R1)     1 

      Stall                                 2 ; L.D followed by FP ALU op has latency=1 

      ADD.D   F4, F0, F2       3 

      Stall                        4 ; FP ALU op followed by STORE double 

      Stall                                   5 ; has latency =2 

      S.D           F4, 0(R1)        6 

      DADDUI R1, R1, #-8    7 

      Stall                               8 ; Double ALU has latency = 1 

      BNE      R1, R2, LOOP  9 

      Stall                                10 ; Branch has latency = 1 
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• This code requires 10 clock cycles per iteration.  

• We can schedule the loop to reduce the stall to 1 

 

Single loop execution With Compiler scheduling 

  

   Loop    clock cycles 

   L.D            F0, 0(R1)             1      

   DADDUI    R1, R1, #-8           2 

   ADD.D       F4, F0, F2            3 

   Stall                                              4 

   BNE          R1, R2, LOOP             5 (delayed branch) 

   S.D            F4, 8(R1)              6 (altered & interchanged with DADDUI)  

 

Explanation  

• To schedule the delay branch, complier had to determine that it could swap the DADDUI 

and S.D by changing the destination address of S.D instruction 

• You can see that the address 0(R1) and is replaced by 8(R1); as R1 has been 

decremented by DADDUI  

• Note that the chain of dependent instructions from L.D to the ADD.D and then ADD.D to 

S.D determines the clock cycles count; which is for this loop = 6, and for unscheduled 

execution = 10 

• In this example, one loop iteration and store back is completed in one array element 

every 6 clock cycles  

• but the actual work of operating on the array element takes 3 clock cycles ( load, add, 

and store) 

• The remaining 3 clock cycles per iteration are the loop-overhead (to evaluate the 

condition, stall and branch); i.e., the loop over-head is 100% in this example 

 

Loop Unrolling 

• To eliminate or reduce the impact the loop-overhead, here 3 clock cycles per loop, we 

have to get more operations within the loop,  relative to the number of overhead 

instructions 

• A simple way to increase the number of instructions per loop can be to replicate the loop 

body for number of iterations and  adjusting the loop termination code 

• This approach is known as loop unrolling 

 

Loop Unrolling without scheduling 

• Let us reconsider our earlier example of loop; and unroll the loop so that there are four 

(4) copies of the loop body 

• Assume that R1 is initially a multiple of 32  

• i.e., the number of loop iterations is a multiple of 4 and R1 contains 8-byte double word  

• Also, assume that redundant computations are eliminate and registers are not reused 
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Example: Loop Unrolling without scheduling 

LOOP 

L.D      F0, 0(R1)                 

ADD.D        F4, F0, F2             

S.D             F4, 0(R1)          ; drop ADDUI &BNE             

L.D                  F6,-8(R1)     

ADD.D            F8, F6, F2 L            

S.D                 F8, -8(R1)          ; drop ADDUI &BNE                          

L.D             F10,-16(R1)     

ADD.D       F12, F10, F2                 

S.D       F12, -16(R1)        ; drop ADDUI &BNE             

L.D            F14,-24(R1)     

ADD.D         F16, F14, 

S.D            F16 , -24(R1)        

DADDUI       R1, R1, #-32 

BNE               R1, R2, LOOP  

 

Loop Unrolling and scheduling 

• Note that simply replicating the instructions, when the loop is unrolled, results in the use 

of the same register that could prevent us from effectively scheduling the loop 

• Here, the DADDUI instruction is merged into the LOAD instruction of the 2nd and 3rd 

iteration codes; and  

• BNE is dropped in the first three (3) iterations, i.e., 3 branches and 3 decrement R1 

operations are dropped here 

• The R2 in the instruction BNE R1, R2, Loop must now be set so that 32(R2) is the 

starting address 

• Let us have a look on to execution without scheduling 

 

Loop                                                                            clock cycles                       

L.D                    F0, 0(R1)    1 

stall                          2 

ADD.D               F4, F0, F2    3 

Stall       4 

stall       5   

S.D                    F4, 0(R1)    ; drop ADDUI &BNE      6          

L.D                    F6,-8(R1)     7   

Stall       8 

ADD.D              F8, F6, F2     9 

Stall       10 

stall                 11 

S.D                   F8, -8(R1)    ; drop ADDUI &BNE             12  

L.D                   F10,-16(R1)     13 

Stall       14 

ADD.D             F12, F10, F2       15 
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Stall       16 

stall                  17 

S.D                  F12, -16(R1)   ; drop ADDUI &BNE   18 

L.D                  F14,-24(R1)     19 

Stall       20 

ADD.D             F16, F14,     21 

Stall       22 

stall       23 

S.D                  F16 -24(R1)           24 

DADDUI          R1, R1, #-32    25 

Stall       26 

BNE                 R1, R2, LOOP     27 

Stall                                     28 

 

• Note that, here without scheduling, every operation in the unrolled loop is followed by 

dependent operations e.g., L.D followed by ADD.D has data dependence; therefore L.D 

has 1 stall similarly, 2 stalls are for ADD.D, 1 stall for DADDUI and 1 stall for branch 

• This loop is, therefore, executed in 28 clock cycles (14 for instruction issue and 7 stalls) 

• This unrolled version is currently slower than the scheduled version, discussed earlier, 

where one iteration completes in 6 cycles so 24 cycles for the 4 iterations 

 

Unrolling with scheduling 

• Now let us see the performance of unrolled loop with scheduling 

• As the instructions within a loop from different iterations, can be re-ordered, therefore, 

Loop Unrolling can also be used to improve scheduling  

 

Example 3: Unrolling with scheduling 

Loop                                                       clock cycles 

L.D  F0, 0(R1)       1 

L.D                  F6,-8(R1)    2 

L.D  F10,-16(R1)   3 

L.D  F14,-24(R1)      4  

ADD.D  F4, F0, F2    5 

ADD.D  F8, F6, F2 L    6 

ADD.D  F12, F10, F2  7 

ADD.D  F16, F14,  8 

S.D                 F4, 0(R1)          9 

S.D                 F8, -8(R1)   10 

DADDUI         R1, R1, #-32  11 

S.D                F12, -16(R1)  12 

BNE                R1, R2, LOOP    13 

S.D                 F16, -24(R1)   14 
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• Here, the unrolled loop of the previous example is scheduled, assuming the same 

latencies as earlier 

• After unrolling, the LOAD and ADD operation don‘t have any data dependence, so they 

are scheduled in sequence 

• Here, the 4 LOAD instructions of four iterations are executed in sequence with in 4 cc. 

• The STORE instruction of first iteration is issued in the 5th clock cycle, without any stall, 

as it does not have dependence on the prior 3 LOAD instructions 

• The branch condition evaluation instruction DADDUI is issued in the 11th clock cycle to 

avoid stall prior to the BNE, which is issued in the 13th clock cycle 

• The STORE instruction of the 4th iteration is issued in 14th clock cycle eliminating stall 

after a branch  

• Note that the execution time of the unrolled loop has dropped to a total of 14 cycles, i.e.,  

• 14/4=3.5 clocks per element, compared with 7 cycles per iteration before scheduling the 

loop in this way 

 

Loop unrolling and scheduling: Conclusion 

• Our discussion so far reveals that the key to the key to perform loop unrolling and 

scheduling is to know when and how the ordering among instructions be changed 

• Furthermore, to make the final decision we must: 

 Determine that it was legal to move S.D after the DADDUI and BNE and find the 

amount to adjust the S.D offset. 

 Determine that unrolling the loop would be useful by finding that the loop 

iterations were independent except for the loop maintenance code 

 Use different registers to avoid unnecessary constraints that would be focused by 

using the same registers for different computations 

 Eliminate the extra test and branch instruction and adjust the loop termination 

and iteration code 

 Determine that the loads and stores in the unrolled loop can be interchanged by 

observing that the loads and stores from different iterations are independent 

 Schedule the code, preserving any dependencies needed to yield the same 

result as the original code. 

Limits to the gains of Loop unrolling and scheduling 

• From our discussion on loop unrolling so far, we have observed the following limits to the 

gains which could be achieved 

1. Loop overhead – When we unrolled the loop, it generated sufficient parallelism 

among instructions that motivated the loop to be scheduled with no stalls. The 

scheduling resulted in 14 clock cycles to issue all instruction with the overhead 

was only 2 cycles  

– One for DADDUI or DSUBI which maintains the index value; and  

– The other one for BNE which terminates the loop i.e., the overhead per 

iteration was 2/4 or ½ cycles. This overhead could be reduced to 2/8 or ¼ 

cycles per iteration if the loop is unrolled 8 times and to 2/16 or 1/8 if 

unrolling is for 16 times and so on  
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2. Growth in code size – For larger loops the code size growth may be of concern 

if larger size causes decrease in the cache miss rate 

3. Register Pressure – (Shortfall in Registers)–The aggressive unrolling and 

scheduling of large code size may result in shortfall of registers, which is referred 

to as the Register Pressure. This is due to the facts that after aggressive 

scheduling of instructions it may not be possible to allocate registers to live 

values. Therefore, while unrolling and scheduling the compiler takes care of 

these limitations 

 

Loop unrolling and scheduling with MULTIPLE ISSUES in Superscalar 

• Let us see how the loop unrolling and scheduling enhances the performance in case of 

multiple instructions issue per cycle – case already discussed with dynamic scheduling  

• Here, let us consider the same loop example with two-issues per cycle 

• One of the instruction may be load/store/branch or integer ALU and the other is FP  

• The unrolled and scheduled code is as given here 

• Here, to schedule the loop without delay it is unrolled 5 times – (for 5 stage Superscalar 

pipeline) 

• After unrolling the loop contains 5 L.D, ADD.D and S.D and one each DADDUI and BNE  

• Two issues take place in 3rd through 7th cycles as the first L.D with next FP ALU has 

latency of 2 

Loop Unrolling in Superscalar 

Integer instruction  FP instruction  Clock cycle 

Loop: LD    F0,0(R1)          1 

 LD    F6,-8(R1)         2 

 LD    F10,-16(R1) ADDD F4,F0,F2      3 

 LD    F14,-24(R1) ADDD F8,F6,F2      4 

 LD    F18,-32(R1) ADDD F12,F10,F2      5 

 SD    0(R1),F4 ADDD F16,F14,F2       6 

 SD    -8(R1),F8 ADDD F20,F18,F2      7 

 SD    -16(R1),F12         8 

 SD    -24(R1),F16         9 

 SUBI   R1,R1,#40        10 

 BNEZ  R1,LOOP        11 

 SD    -32(R1),F20        12 

 

• The unrolled superscalar (SS) loop runs in 12 clocks, or  

• 12/5 = 2.4 clocks per iteration  

• against 14/4 = 3.5 for scheduled and unrolled on simple 5-stage MIPS pipeline. Thus, it 

exhibits an improvement factor of 1.5 
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 In the earlier lectures, while introducing the concept of Dynamic scheduling we discussed 

Dynamic Branch Predictors 

• The dynamic branch predictors predict the branch to be taken or not taken by 

considering the run time behavior of the code 

• We also introduced the concept of Delayed Branch as the static branch prediction 

technique 

• Delayed branches expose a pipeline hazard so that compiler can reduce the penalty 

associated with the hazard  

• However, static branch predictors are used in processors where the expectation is that 

branch behavior is highly predictable at compile time 

• Being able to accurately predict a branch at compile time, it is also helpful for scheduling 

data hazards e.g. loop unrolling 

• Example: Static branch prediction 

Let us consider an example that arises from conditional selection branches 

LD  R1, 0(R2) 

DSUBU R1, R1, R3 

BEQZ  R1, L 

OR  R4, R5, R6 

DADDU R10, R4, R3 

L: DADDU R7, R8, R9 

 

• Explanation: 

 Here, note the dependence of the DSBU and BEQZ on the L.D instruction  

 This shows that a stall will be needed after the L.D.  

 If it is predicted that the branch (BEQZ) was almost always taken; and that the 

value of R7 was not needed on the fall-through path 

 Then the speed of the program could be improved by moving the instruction 

L: DADDU  R7, R8, R9  

to the position after the L.D. 

 On the other hand, if it is predicted that branch (BEQZ) was rarely taken and that 

the value of R4 was not needed on the taken path, then we could also consider 

moving the OR instruction after the L.D 

 Furthermore, we can also use the information to better schedule any branch 

delay as 

 Scheduling depends on knowing the branch behavior 

• To perform optimization we need to predict the branch statically when the program is 

complied. 

• There are several methods to statically predict the branch behavior 

A. The simplest scheme is to predict a branch as taken 

– This scheme has an average misprediction rate that is equal to the 

untaken branch frequency, which for the SPEC is 34% 

– However, the misprediction rate ranges from not very accurate (59%) to 

highly accurate (9%) 

B. To predict on the basis of the branch direction 
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– Choosing backward going branches to be taken and forward going 

branches to be not taken branches  

– For SPEC programs, more than half of the forward going branches are 

taken.  

– Hence, predicting all the branches as taken is a better approach. 

C. To predict branches on the basis of the profile information  

– This is more accurate technique where the branches are predicted on the 

basis of the profile information collected from earlier runs 

– The behavior of these branches is often bi-modal distributed i.e. an 

individual branch is often highly biased toward taken or untaken. 

• We can derive the prediction accuracy of a predicted taken strategy and measures the 

accuracy of the profile scheme 

• The fig below shows the misprediction rate on SPEC 92 for a profile based predictor 

• Here, you can see that the misprediction rate varies widely  

• Fig..4.3 

• It is generally better for the FP programs than the integer programs 

• For FP benchmarks the misprediction rate varies from 4% to 9% and  

• For the integer programs it varies from 5% to 15% 

 

Summary 

• Today we started with the discussion on the static scheduling techniques to exploit the 

ILP in pipeline datapath 

• Here we discussed the basic compiler approach to used to avoid hazards, specially the 

data and control hazards by inserting stalls 

• The number of stall are reducing by scheduling the instructions by the compiler 

• In case of loops, the loops are unrolled to enhance the performance and reduce stalls 

• The number of stalls are further reduced when stalls unrolled loop is scheduled by 

repeating each instruction for the number of iteration, but using additional registers 

• Finally we discussed the impact of static branch prediction on the performance on the 

scheduled and unrolled loops 

• We observed that static branch prediction result in decrease in the misprediction rate 

ranging between 4% to 15%, thus greatly enhances the performance of superscalar 

processor 
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Lecture 21 

Instruction Level Parallelism 

(Static Scheduling – Multiple Issue Processor) 

Today’s Topics 

• Recap: Static Scheduling and Branch Prediction 

• Static Multiple Issue: VLIW Approach 

• Detecting and enhancing loop level parallelism 

• Software pipelining 

• Summary 

 

Recap: Static Scheduling 

• Last time we started discussion on to the static scheduling techniques to exploit the ILP 

in pipeline datapath 

• We noticed that inserting stalls is the basic compiler approach used to avoid the data 

and control hazards 

• However, as the number of stalls degrade the performance so compiler schedule the 

instructions to avoid hazards and to reduce or eliminate stalls 

• Furthermore, we observed that in case of loops, the loops are unrolled to enhance the 

performance and reduce stalls 

• The number of stalls are further reduced when unrolled loop is scheduled by repeating 

each instruction for the number of iteration, but using additional registers 

• Finally, we discussed the impact of static branch prediction on the performance on the 

scheduled and unrolled loops 

• We also observed that in superscalar processor, with multiple issues, the static branch 

prediction results in decrease in the misprediction rate better than the dynamic branch 

prediction 

• Here, the misprediction rate ranges between 4% to 15% 

 

Today’s Discussion - Scheduling in VLIW processor 

• We know that the Very Long Instruction Word or VLIW-based processors schedule 

multiple instruction issues using only the static scheduling 

• Today we will extend our discussion on the Static Scheduling as used in VLIW 

processors 

 

Review of VLIW format 

• A VLIW contains a fixed set of instructions, say  4-16 instructions 

• A VLIW is formatted: Either as one large instruction Or a fixed instruction packet with 

explicit parallelism among instructions in a set  

 

r1 = L r4  r2 = Add r1, M f1 = Mul f1, f2 r5 = Add r5, 4 
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VLIW / EPIC Processor 

• Since there exist explicit parallelism among instructions; VLIW is also referred to as: 

Explicitly Parallel Instruction Computing – EPIC 

• It can initiate multiple instructions in a cycle by putting operations into wide template or 

packet by the compiler 

• A packet may contain 64 – 128 bytes  

• Multiple-Issue overheads - VLIW vs. Superscalar 

 In superscalar processor Overhead grows with issue-width 

o For two-issue processor the overhead for is minimal 

o For four-issue processor the overhead for is manageable 

 For VLIW the over-head does not grow with the issue-width  

• The early VLIW machines were rigid in their instruction formats and required 

recompilation of programs for different versions of the hardware 

• Certain innovations are made in recent architectures to eliminate the need for 

recompilation; hence results in performance enhancement 

• Here, the wider processors are used which employ multiple number of independent 

functional units; and  

• The compiler does most of the work in finding and scheduling instructions for parallel 

execution 

• Compiler schedules and packs multiple operations into one very long instruction word; 

and 

• Hardware simply issues the complete packet given to it by the compiler 

• Thus, maximum issue-rate is increased 

• Compiler schedules and packs multiple operations into one very long instruction word;  

• Hardware simply issues the complete packet given to it by the compiler 

• Thus, maximum issue-rate is increased 

 

Example: VLIW Processor 

• Let us consider an example of VLIW processor which can perform maximum five 

operations in one cycle  

• These operations include: 

 One integer operation 

 Two floating point operations; and  

 Two memory reference operations 

• Here, we assume that: the instructions have set of 16-bit to 24-bit fields for each unit 

with an instruction length ranging from 112 and 168 bits; and 

• To keep functional unit busy, there must be enough parallelism in the code sequence to 

fill the available operation slots. 

 

Example: VLIW Loop unrolling  

• Now let us see how a loop is to be unrolled to execute using multiple-issue with VLIW 

processor  

• Here, If unrolling the loop generates straight line code then local scheduling techniques, 

which operates on single basic block, can be used 
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• Where as If parallelism is required across the branches then complex global scheduling 

is used to uncover the parallelism 

• In order to explain these concepts let us reconsider our earlier example MIPS code to 

add scalar to a vector; i.e., x[i] = x[i] + s 

 

Loop L.D  F0, 0(R1)           ;F0 array element 

ADD.D  F4, F0, F2          ;add scalar in    F2 

S.D  F4, 0(R1)           ;store result 

DADDU R1, R1, #-8        ;decrement pointer 8 bytes 

BNE  R1, R2, LOOP  ;branch R1! =R2 

 

• In order to execute this code using multi-issue VLIW, we may unroll the loop as many 

times as necessary to eliminate any stalls, ignoring the branch delay, if any 

Assumptions 

Let us assume that: 

• The compiler can generate long straight line code using local scheduling to build up 

VLIW instructions 

• VLIW processor has sufficient registers and function units to issue up to 5 instructions in 

one cycle; i.e., 15 registers verses 6 in Superscalar 

• The loop is unrolled in order to make seven copies of the body, which eliminates all 

stalls and avoid delays 

 

Loop Unrolling for VLIW Processor 

                  Clock 

LD F0,0(R1)  LD F6,-8(R1)        1 

LD F10,-16(R1) LD F14,-24(R1)       2 

LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2 3 

LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2    4 

ADDD F20,F18,F2 ADDD F24,F22,F2    5 

SD 0(R1),F4  SD -8(R1),F8  ADDD F28,F26,F2    6 

SD -16(R1),F12 SD -24(R1),F16       7 

SD -32(R1),F20 SD -40(R1),F24 SUBI  R1,R1,#48    8 

SD -0(R1),F28  BNEZ R1,LOOP       9 

 

 

Assumptions 

• The table shows the VLIW instructions that occupy the copies of the loop instructions in 

unrolled sequence 

• Here, we assume that R1 has been initialized to #48 for 7 iterations  

[each memory location is 8 byte apart, starting with first value at #48, the 7th value is at 

#0] 
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Explanation 

• Here, the loop has been unrolled for seven (7) iterations to completely empty issue 

cycles, thus eliminate the stalls 

• Each instruction comprises two (2) memory reference operations [L.D or S.D], two (2) 

FP operations [ADD.D] and one (1) integer operation [SUBI] 

• The multiple-issues per cycle are depicted here showing type of operation in each 

instruction 

 

Operation types in VLIW 

Memory   Memory  FP  FP  Int. op/  Clock 

reference 1  reference 2  operation 1 operation 2  branch    

 

LD F0,0(R1)  LD F6,-8(R1)        1 

LD F10,-16(R1)  LD F14,-24(R1)        2 

LD F18,-32(R1)  LD F22,-40(R1)  ADDD F4,F0,F2  ADDD F8,F6,F2  3 

LD F26,-48(R1)     ADDD F12,F10,F2 ADDD F16,F14,F2 4 

      ADDD F20,F18,F2 ADDD F24,F22,F2 5 

SD 0(R1),F4  SD -8(R1),F8  ADDD F28,F26,F2    6 

SD -16(R1),F12  SD -24(R1),F16        7 

SD -32(R1),F20  SD -40(R1),F24     SUBI  R1,R1,#48 8 

SD -0(R1),F28        BNEZ R1,LOOP 9 

 

Explanation 

• As our example VLIW processor can handle two memory operation, therefore two (2) 

L.D operations, which don‘t have dependence, corresponding to 1st and 2nd iteration; are 

issued in the 1st  clock cycle; and the 

• two (2) L.D operations for 3rd and 4th iterations, having no dependence, are issued in 2nd  

clock cycles 

• Furthermore, our VLIW processor can handle two (2) FP operations; and  

• two (2) ADD.D operation of the 1st and 2nd iterations have dependence on the L.D 

instructions of the respective two iterations; and 

• the L.D instruction has latency of 2 cycles, therefore, the two ADD.D instructions of 1st 

and 2nd iteration are scheduled in 3rd cycle to eliminate stalls (identified by yellow arrows) 

• Similarly as the FP ADD and following STORE of the same iteration have latency of 3, 

therefore, the STORE operation of 1st and 2nd iterations are scheduled in 6th cycle 

• Moreover, the branch evaluation operation SUBI  R1,R1,#48 and the branch instruction 

BNEZ R1,LOOP have latency of one cycle when branch delay slot is ignored, 

therefore these two operations are performed in 8th and 9th cycles, respective 

 

Performance Analysis based on Issue Rate 

• Note that all the 23 instructions of 7 iterations  

• i.e., 7x3 =21 loop instructions and 1 condition evaluation and 1 branch instruction) are 

issued in 9 cycles 

• Thus, average issue rate is 23/9 = 2.5 operations per cycle as compared to 3.5 in case 

of superscalar discussed earlier  
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VLIW Processor Efficiency Based on available slots 

• However, note that here each Instruction World (VLIW) may have up to 5 operations, 

thus in 9 instructions 45 slots are available 

• Therefore, the efficiency of the VLIW processor, which is defined as, the percentage of 

available slots containing an operation, is  23/45 = 0.51 or 51% 
 

Performance Analysis Speed of operation 

• Moreover, the VLIW code runs in 9 cycles resulting in 9/7 = 1.29 cycles per iteration 

• This result shows that VLIW is twice as fast as superscalar schedules code 

 

Advanced Compiler Support 

• Our discussion so far has been focused on the study of basic compiler techniques to 

exploit ILP 

• Here, we studied how dependence prevent a loop from being executed in parallel i.e., 

how Loop Level Parallelism is limited? 

 

LLP vs IVP Loop Level Parallelism (LLP) Verses Instruction Level Parallelism (ILP) 

• LLP emphasizes more on determining the type of dependence among the operands in a 

loop across the iterations of loop  

• ILP emphasis more on dependence among the instructions in a loop 

 

Detecting dependence and enhancing LLP 

• In general, LLP is analyzed at the source level (i.e., at the higher level)  

• Whereas the ILP analysis is performed after the complier has generated the instructions 

• At the loop level there may exist  data and name dependences 

• Data dependency basically occurs when operand is written at some point and read at a 

later point 

• Name dependency can also occur and it can be eliminated by simply renaming 

technique 

• Therefore, we will discuss only data dependency  

 

Loop Carried Dependence - Data Dependence in LLP 

• While dealing LLP we have to consider the data dependency that occurs when:  

 The data accessed in later iteration depends upon the data value produced in the 

previous iteration 

• This is referred to as loop carried dependence - LCD 

 

Distinction between LLP and LCD 

• The examples we have discussed so far had LLP but not LCD 

• Now let us consider two examples to distinguish between LLP and LCD 
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Example 1 – LLP: Adding a constant to a vector 

  For (i=1000; i>0; i=i-1) 

             x[i] = x[i] + s; 

 

• Here, you can see that here two dependences occurs 

• First, there exist dependence between the two uses of x[i] within the same iteration, so 

this is loop-level dependency but not loop carried 

• Second, dependency occurs between the successive uses of i in different iterations, 

which is loop-carried 

 

LLP and LCD 

• Here, there exist induction variable x[i] 

• Therefore, dependence can be identified through compiler analysis near source level; 

and  

• Can be eliminated easily by loop unrolling, as discussed last time 

 

Example 2: LCD Preventing ILP 

• Now consider another example of loop 

For ( i=1; i<=100; i=i+1)  { 

   A[i+1] = A[i] + C[i];     //s1 

   B[i+1] = B[i] + A[i+1]  //s2 

   } 

 

• Here, let us assume that A, B, and C are distinct, non-overlapping arrays 

• There exist two dependences between the statements of the loop 

For ( i=1; i<=100; i=i+1)  

{ 

    A[i+1] = A[i] + C[i];     //s1 

    B[i+1] = B[i] + A[i+1]  //s2     

} 

• The statements  S1 and S2, use the value computed by each statement in earlier 

iteration i.e., A[i+1] computed in ith iteration and read in iteration (i+1) but is to be used in 

the same ith iteration  

 The second statement S2 uses the value A[i+1] computed by first statement S1 

in the same ith iteration  

• Here, the first dependence is loop-carried because:  

• dependence of each statement S1 or S2 is on the earlier iteration of the same 

statement. 

• Thus, if this were the only dependence, the successive iterations are in a sequence 

• Second dependence is not loop carried as S2 depends on S1 which is within the same 

iteration. 

• Thus, if this were the only dependence, the multiple iterations of the loop could be 

executed in parallel by unrolling, as long as each pair of the statements in an iteration is 

kept in order 
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LCD not preventing ILP 

• Now let us consider another example of loop in which loop carried dependence does not 

prevent parallelism. 

For (i=1; 1<=100; i=i+1)     

{ 

  A[i]     =  A[i] + B[i]; / S1 

  B[i+1]  =  C[i] + D[i]; /S2 

 } 

 

• In order to analyze this example we have to find: 

 The dependence between S1 and S2? 

 Is this loop parallel? 

• If not, show how to make it parallel 

 

Step 1: Identifying dependence 

For (i=1; 1<=100; i=i+1)     

{ 

  A[i]     =  A[i] + B[i]; / S1 

  B[i+1]  =  C[i] + D[i]; /S2 

 } 

 

• Note that firstly there exist loop carried dependence between S1 and S2. 

• As S1 uses the value B[i] assigned in the previous iteration by S2. 

• Thus, S1 depends on S2 but S2 doesn‘t depend on S1. 

 

Step 2: Determining parallelism 

• Note that a loop is said to be in parallel, if it can be written without cycle in dependence  

 i.e., one statement depends of the previous iteration of a an earlier statement of 

the loop 

 

Detecting loop level parallelism: Step 2 

• Our example loop does not have circular dependence  

For (i=1; 1<=100; i=i+1)     

{ 

  A[i]     =  A[i] + B[i]; / S1 

  B[i+1]  =  C[i] + D[i]; /S2 

 } 

 

• This is due to the reason that S2 (next statement) doesn‘t have dependence on the 

previous iteration of S1 

• Thus, this loop can be re-organized by partial ordering to expose the Loop Level 

parallelism 

• However, in order to obtain this reorganization, the following two observations must be 

taken in to consideration 
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Observations to expose parallelism 

1) Here, in the first iteration the statement S1 depends on the value B[1], which is to be 

computed prior to initiating the loop  

2) There is no dependence from S1 to S2, therefore, there would be no cycle in the 

dependences and loop would be parallel 

 

• In order to remove this dependence, identified in the first observation, interchange the 

two statements such that execution of S2 is not effected 

• Considering these two observations we can replace the loop with the code given below. 

 

Code enhancing parallelism 

A[1] = A[1] + B[1]; 

      for (i=1; i<99; i=i+1)  

{ 

       B[i+1] = C[i] + D[i]; 

      A[i+1] = A[i+1] + B[i+1]; 

   } 

 B[101] = C[100] + D[100]; 

 

• Note here that S1 does not have dependence on S2, so the two statements are not loop-

carried, hence the iterations of the loop can be overlapped 

 

Finding Dependences: Greatest Common Divisor Test 

• So far we have been taking about the impact of data dependence on the loop level 

parallelism 

• We also noticed that Loop Carried dependence is crucial in this case; and is removed to 

enhance parallelism 

• Now we will discuss how compiler determines the dependence to enhance parallelism 

• We know that finding of dependence in a program is important to: 

1. Have good scheduling of code. 

2. Determine which loop might contain parallelism 

3. Eliminate name dependence 

 

How compiler finds dependences 

• The complier detects the dependence using dependence analysis algorithm 

• The dependence analysis algorithm works on assumptions that: 

 Array indices are affine; and  

 There exist Greatest Common Divisor (GCD) of the two affine indices 

 

Finding Dependences 

• An affine index is defined as follows 

 An array index is affine if it can be written in the form of an expression:  

 a x i + b 

Here, a and b are constant; and i is the loop index variable 
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• E.g. in the loop 

for (i=1; i<=100; i=i+1) 

{ 

  X[2*i+3] = X[2*i] * 5.0; 

} 

Here, the index value [2*i+3] is affine with a=2 and b=3 

 

• Multi dimensional array  

1. A multi-dimensional array index is affine if index of each dimension is affine 

For example x[y[i]] the index [i] of y is non-affine  

• Algorithm: to find dependences 

There exists dependence between two references to the same array in the loop. If two 

affine functions can have the same value for different indices between the bounds of the 

loop 

• For example, consider an array element stored with index value a x i +b and loaded from 

the same array with index value c x i + d, where i is the for loop index variable that runs 

m to n, then 

• A dependence occurs if the following two conditions hold where: 

1. Two iterations indices, j and k, are both within the limits of the for loop 

  i.e., m <= j <= n, m <= k <= n 

 

2. the loop stores into an array element indexed by a x j + b and later fetches from 

that same array element when it is indexed by c x k + d, then Dependence exist 

if:  a x j +b = c x k +d 

• As the dependence, in reality is very complex, therefore, Greatest Common Divisor 

(GCD) is a simple test for the absence of a dependence 

• That is, if a loop-carried dependence exists, then GCD (c,a)  must divide (d-b) 

 

Example:  

Find whether dependences exist in the following loop 

for (i=1; i<=100; i=i+1) 

{ 

  X[2*i+3] = X[2*i] * 5.0; 

} 

Solution 

• Here in X[2*i+3]  

   a=2 and b=3 

  and in X[2*i] 

   c=2 and d=0 

• Thus GCD ( a,c) =2 and d-b = -3 

• Here, as 2 does not divide -3 so, No dependence is possible 
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Conclusion GCD Test 

• The GCD test is sufficient to guarantee that no dependence exist  

• However there are cases when GCD test succeeds but no dependence exists 

• This arises, in case the GCD test does not take the loop bounds into account 

• Please see the class notes for examples 

 

Classifying Dependences 

• In addition to detecting the presence of a dependence, a compiler wants to classify the 

type of dependence 

• That is, the compiler recognize name dependence and eliminate them at compile time by 

renaming and copying 

 

Enhancing ILP 

• To achieve more ILP, compliers can reduce the impact of dependent computations  

• The key technique for this is to eliminate or reduce dependent computations by back 

substitution  

 

Summary 

• Today we have introduced the concept of loop-carried dependence  

• We notice that in most of the cases Loop carried dependence prevent parallelism 

• Then we discussed techniques to find dependence 

• Here, we define affine indices and introduced greatest common divisor test to determine 

the loop-carried dependence 

• Following this we discussed techniques to eliminate dependent computation  

• These techniques are employed in compiler based scheduling 

 

Assignment 

 

Detecting and enhancing loop level parallelism 

• In this example, dependence information is inexact, as it tells that such a dependence 

occur.  

• Now consider one more example, 

 for ( i=1; i<=100; i=i+1) 

 { 

    A[i] = B[i] + C[i]; 

    D[i] = A[i] * E[i]; 

} 

• Here the second reference to A  need not to be translated to a load instruction. 

• As the value is computed and stored by the previous statement. 

• The second reference to A is a reference to register in which A was computed. 

• In general, data dependence analysis tells that one reference may depend on another. 

 

• But a complex analysis requires to determine that two reference must be to the exact 
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same address. 

• In this example a simple version of this analysis suffices. 

• As the two references are on the same basic block. 

• Loop carried dependence occurs most of the time in the form of recurrence. 

for (i=2; i<=100; i=i+1) 

{ 

    Y[i] = Y[i-1] +Y[i]; 

} 

• Recurrence exists, when the variable is defined based on the value of that variable in the 

earlier iteration. 

• Recurrence detection is important for two reasons. 

1. Some architectures have special support for executing recurrences. 

2. Some recurrence can be the source of a reasonable amount of parallelism. 

• Now consider one more loop, 

for(i=6; i<=100; i=i+1) 

{ 

    Y[i] = Y[i-5] + Y[i]; 

} 

• Here in ith iteration, the loop reference element is i-5. 

• This loop have a dependence distance of 5. 

• Loop carried dependences have a data dependence of 1. 

• With large dependence distance, more potential of parallelism is obtained by loop 

unrolling. 

• Longer distances may provide the enough parallelism to keep the processor busy. 

Back Substitution 

• Back Substitution increases the amount of parallelism, but sometimes it also increases 

the amount of computation required 

• These techniques can be applied both: 

 Within a basic block; and  

 Within a loop 

 

Eliminating dependent computations 

• Within a basic block: Here, algebraic simplifications of expressions and an optimization 

is used.  

• This called copy propagation, it eliminates operations that copy values 

• For example; copy propagation of 

DADDUI R1,R2,#4 

DADDUI R1,R1,#4 

  Results into 

DADDUI R1,R2,#8 

• Here, computations are eliminated to remove dependence 
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Eliminating dependent computations:  

Tree-Height Reduction Technique 

1. Optimization: 

• It is also possible to increase the parallelism of the code by possibly increasing 

the number of operations. 

• Such optimization is called tree height reduction 

• For example, the code sequence 

ADD  R1,R2,R3 

ADD  R4,R1,R6 

ADD  R8,R1,R7 

• Requires three cycles for execution 

• Because, here all the instructions depend on immediate predecessor and cannot 

be issued in parallel 

2. Associatively: 

• Now taking the advantage of the associatively, the code can be transformed and 

written in the from shown as below, 

ADD  R1,R2,R3 

ADD  R4,R6,R7 

ADD  R8,R1,R4 

• This sequence can be computed in two execution cycles by issuing first 2 

instruction in parallel 

3. Recurrences:  

• Recurrences are expressions whose value in one iteration is given by a function 

that depends on the previous iteration. 

• Common type of recurrence occurs in: sum = sum + x; 

• Assuming an unroll loop with the recurrence of five times. 

• If the value of x of these five iterations be given by x1, x2, x3, x4 and x5. 

• Then we can write the value of sum at the end of each unroll as,  

• Sum = sum + x1 + x2 + x3 + x4 + x5; 

• Unoptimizing the expressions requires five dependent operations. 

• And it can be rewritten as, 

• Sum = (( sum + x1) + ( x2 + x3)) + ( x4 + x5); 

• This can be evaluated in only three dependent operations. 

• Recurrence also occurs from implicit calculations. 

• With unrolling the dependent computations can be minimised. 
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Lecture 22 

Instruction Level Parallelism 

(Software pipelining and Trace Scheduling) 

Today’s Topics 

• Recap: 

• Eliminating Dependent Computations 

• Software pipelining  

• Trace Scheduling 

• Superblocks 

• Summary 

 

Recap: Lecture 21 

• Last time we extended our discussion on the Static Scheduling to VLIW processors 

• A VLIW is formatted as one large instruction or  

• A fixed instruction packet with explicit parallelism among instructions in a set 

• The multiple operations are initiated in a cycle by the compiler which place them in a a 

packet 

• Wider processors having multiple independent functional units are used to eliminate 

recompilation 

 

Recap: Scheduling in VLIW processor 

• Compiler finds dependence and schedule instructions for parallel execution 

• It resulted in the improvement, compared to the superscalar processor in respect of: 

 Average issue rate, i.e., operations issued per cycle; and 

 Execution speed, i.e., the time to complete execution of code  

• However, the efficiency of VLIW, measured as the percentage of available slots 

containing an operation, ranges from 40% to 60% 

• Following this we also distinguished between Instruction Level Parallelism – ILP and 

Loop Level Parallelism – LLP 

• While talking about LLP we found that loop carried dependence prevents LLP but not 

ILP 

• At the end we studied the affine-based Greatest Common Divisor (GCD) algorithm to 

detect dependence in a loop 

• Continuing our discussion we will exploit how a compiler reduces the dependent 

computations  

 

Reducing Dependent Computations 

• In order to achieve more ILP, compiler reduces the dependent computation by using 

Back Substitution technique 

• This results in algebraic simplification and optimization which eliminates operations that 

copy values to simplify the sequence 
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Copy Propagation 

• The approach of simplification and optimization is also referred to as the Copy 

Propagation 

• For example, in the sequence: 

  DADDUI R1,R2,#4 

  DADDUI R1,R1,#4 

• Here, the net use of R1 is to hold the result of second DADDUI operation, therefore,  

• Substituting the result of first DADDUI operation in to the second results into 

DADDUI R1,R2,#8 

• Here, we have eliminated the multiple use of the register R1 during loop un-rolling 

 

Conclusion: 

• Particularly, in case of memory access, this technique of reducing computations 

eliminates: 

• The multiple increments of array indices  

 During the loop un-rolling; and  

 To move increments across the memory addresses  

 

Tree-Height Reduction – Optimization 

• The copy-propagation technique reduces the number of operations or code length 

• The Optimization to increase parallelism of the code, however, is possible by 

restructuring the code that may …… 

 

Tree-Height Reduction (Restructuring) 

• Increase the number of operations while the execution cycles are reduced 

• Such optimization is called tree- height reduction since  

• It reduces the height of tree structure representing a computation, making it wider but 

shorter  

 

Optimization - Tree height reduction 

• For example, the code sequence 

ADD  R1,R2,R3 

ADD  R4,R1,R6 

ADD  R8,R1,R7 

• Requires three cycles for execution 

• Because, here all the instructions depend on immediate predecessor and cannot be 

issued in parallel 

• Now taking the advantage of the associatively, the code can be transformed and written 

in the from shown as below, 

ADD  R1,R2,R3 

ADD  R4,R6,R7 

ADD  R8,R1,R4 

• This sequence can be computed in two(2) execution cycles by issuing first two 

instruction in parallel 
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Conclusion: Detecting and Enhancing LLP 

• The analysis of LLP focuses on determining data dependence of:  

 Some later iteration on to an earlier iteration  

• Such dependence is referred to as the Loop-Carried Dependence 

• Greatest Common Divisor test is defined to find the existence of dependence 

• Compiler techniques, such as: 

 Copy propagation and  

 Tree-Height Reduction  

are discussed to eliminate dependent computations 

 

Uncovering Instruction Level Parallelism ………. Cont‘d 

• We have already discussed Loop Unrolling as the basic compiler technique to uncover 

ILP  

• We have observed that Loop unrolling with compiler scheduling enhances the overall 

performance of Superscalar and VLIW processors 

 

Loop Unrolling: Review 

• Loop unrolling generates a sequence of straight line code uncovering parallelism among 

instructions 

• Here, to avoid a pipeline stall, the dependent instructions are separated from source 

instructions, by a distance in clock cycles equal to the pipeline latency of that source 

instruction 

• To perform this scheduling, complier determines both: 

 The amount of ILP available in the   program; and  

 The latencies of the functional units in the pipeline. 

 

Advanced Compiler Techniques 

• Today will discuss two new compiler techniques to uncover the ILP 

• Software pipelining  

• Global Code Scheduling 

 Trace scheduling 

 Superblock 

 

Software pipelining 

• Software pipelining is a technique where the loop is reorganized such that the code for 

each iteration is made by choosing instructions from different iterations of the original 

loop 

• A software pipelined loop interleaves instructions from different iterations without 

unrolling the loop 
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Software-pipelined Loop Formation 

 
 

• The instructions are chosen from different loop iterations, separating the dependent 

instructions within one iteration of the original loop 

 

Example Code: 

• Let us reconsider our earlier loop unrolling and scheduling example of adding a constant 

F2 to an array R1  

Loop L.D  F0,0(R1) 

   ADD.D  F4,F0,F2 

  S.D  0(R1),F4 

  DADDUI R1,R1,#-8 

  BNE  R1,R2, LOOP 

 

• For software pipelining, the compiler symbolically unroll the loop and schedule them 

• It selects the instructions from each iteration that do not have dependence among each 

other 

• The overhead instructions (DADDUI and BNE) are not replicated 

 

Symbolic Loop Unrolling 

• The body of the symbolically unrolled loop for three iterations is as follows: 

• The instructions selected from each iteration are shown in yellow color 

• Iteration i:  L.D  F0,0(R1) 

                    ADD.D  F4,F0,F2 

   S.D  F4,0(R1) 

• Iteration i+1: L.D  F0,0(R1) 

   ADD.D  F4,F0,F2 

                                 S.D  F4,0(R1) 

• Iteration i+2: L.D  F0,0(R1) 

   ADD.D  F4,F0,F2 

                                  S.D  F4,0(R1) 
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Software pipeline 

• The selected instructions from different iterations are put together in a loop with the loop 

control instructions as shown below 

Loop: 

 S.D  F4,16(R1)  stores in M[i] 

 ADD.D  F4,F0,F2    adds to M[i-1] 

 L.D  F0.0(R1)     loads M[i-2] 

 DADDUI R1, R1, # -8 

 BNE  R1, R2, Loop 

 

• Here, note that for start-up and finish-up we need some code that will not be executed 

• For start-up we need to run L.D and ADD.D instructions for iteration 1 and L.D for 

iteration 2 

• Similarly, for finish-up we need to execute the S.D instruction for iteration 2 and ADD.D 

and S.D for iteration 3  

• This loop takes 5 clock cycles to execute per result. 

• L.D and ADD.D are separated by offset of 16 to run the loop for three iterations (i.e., two 

iterations less then simple loop unrolling and scheduling case) 

• Here registers F4,F0 and R1 are reused as there is no data dependence in this case, 

thus WAR hazard is avoided. 

 

Software pipelining vs. Loop unrolling 

• Software pipelining can be thought of as symbolic loop unrolling because here, some 

algorithms use loop unrolling techniques to software-pipeline loops 

 Software pipelining consumes less space code as compared to loop unrolled 

• Software unrolling reduces the time, when the loop is not running at peak speed, to once 

per loop at the beginning and end. E.g.; if a loop is to do 100 iterations with 4 iteration 

symbolically unrolled; then we pay overhead for 100/4 = 25 times instead of 100 times 

• This is shown in the fig. below 

 
• Symbolic Loop Unrolling Fill & drain pipe only once per loop vs. once per each unrolled 

iteration in loop unrolling 
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Global Code Scheduling 

• We have observed that: 

 Loop unrolling and code scheduling works well when the loop-body is straight 

line code 

 Software pipelining works well when the body is a single basic block, as it is 

easier to find repeatable schedules 

• Global Code is one where loop body has with internal control flow; i.e., a loop comprises 

conditional blocks such as if-then-else 

• The effective scheduling of such a code is complex, since it  involves moving instructions 

across branches into the shortest possible sequence to compact a code fragment  

• A global code involves both the data dependence and control dependence 

• In order to enhance the ILP in global code, the loop unrolling and scheduling or software 

pipeline approaches do not work efficiently 

• These approaches are suitable to enhance ILP in straight-line or single basic block 

codes  

• where internal code of the loop have data dependence and the control dependence of 

the loop is overcome by loop unrolling 

• The most commonly used compiler –based approaches, to schedule global code, are: 

 Trace scheduling or critical path approach 

 Superblock approach 

 

Complexities of Global code scheduling 

• Before discussing the Global Code Scheduling techniques, let us first familiarize: the 

complexities of scheduling assignment instructions internal to a loop in condition 

branches of a global code  

• Let us consider a typical global - code fragment that represents an iteration of an 

unrolled inner loop 

• Here, moving (scheduling prior to condition evaluation) B or C requires more complex 

analysis 
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• Effective scheduling of this code may require moving assignments to B and C prior to 

condition evaluation 

• Particularly, before movement of B, we must ensure that both the data flow and 

exception behavior is changed 

 
• To see, how compiler ensures data flow, let us have a look on the code sequence for 

this flow-chart fragment 

 

LD   R4, 0(R1) ;Load A 

LD   R4, 0(R1) ;Load B 

DADDU  R4, R4, R5 ; A+B 

SD  R4, 0(R1) ;A=A+B 

BNEA  R4, Else_part ;Is A=0? 

: : ;   T part 

SD ….,  0(R2)  ;store to B 

J  Join  ; jump to F  

Else_part ….. 

x …..   ; x code 

: :  

Join: ….   ;after_if 

SD   …. , 0(R3) ; store c[i] 
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Complexities of Global code scheduling 

LD   R4, 0(R1) ;Load A 

LD   R4, 0(R1) ;Load B 

DADDU  R4, R4, R5 ; A+B 

SD  R4, 0(R1) ;A=A+B 

BNEA  R4, Else_part ;IF A=0? 

: : ;   T part 

SD  …., 0(R2) ;store to B 

J  Join  ; jump to F  

Else_part ….. 

   x  …..  ; x code 

: :  

Join:  ….  ;after_if 

SD   …. , 0(R3) ; store c[i] 

 

• Let us see the effect of moving assignment to B before BNEA 

• Here, if B is referenced in X or after the IF statement, then moving B before IF will 

change the data flow 

• This can be overcome, however, by making a shadow copy of B before IF statement and 

use the shadow copy in x 

• However, such a copy is avoided as it slow down the program 

LD   R4, 0(R1) ;Load A 

LD   R4, 0(R1) ;Load B 

DADDU  R4, R4, R5 ; A+B 

SD  R4, 0(R1) ;A=A+B 

BNEA  R4, Else_part ;IF A=0? 

: : ;   THEN part 

SD  …., 0(R2) ;store to B 

J  Join  ; jump to F  

Else_part ….. 

x  …..  ; x code 

: :  

Join: ….   ;after_if 

SD  …. , 0(R3)  ; store c[i] 

• Similarly, moving assignment to C before the first branch is more complex 

• It required two steps: 

1. Assignment is moved over the join point of the ELSE part; i.e, in the portion of 

the THEN part. This movement makes instructions for C control dependent and 

is not executed of the ELSE path is chosen. Hence, to ensure correct execution, 

a copy of instruction is made in ELSE part 

2. If C assignment is moved to before the IF Test provided it does not affect any 

data flow In this case the copy of instruction in ELSE part is be avoided 

• Our above discussion reveals that global code scheduling is an extremely complex 

problem 
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Global code scheduling 

• To simplify the complexities of Global-Code scheduling, we will discuss two methods 

• These methods rely on the simple principle: Focus the attention of the compiler on a 

straight line code segment that is estimated to be representing the most frequently 

executed code path. 

 

Trace scheduling 

• Trace is a sequence of basic blocks whose operation could be put together into smaller 

number of instructions  

• Trace scheduling is a way to organize global code motion process such that the cost of 

code motion is incurred by the less frequent paths 

• It is useful for processors with a large number of issues per clock, where:  

 Conditional or predicted execution is inappropriate or unsupported; and  

 Simple loop unrolling is not sufficient to uncover ILP to keep processor busy 

• Trace scheduling is carried in two steps: 

1. Trace selection - to find likely sequence of basic blocks whose operation could 

be put together into smaller number of instructions 

2. Trace compaction: to squeeze the trace into a small number of wide instructions 

• Trace Generation:  

 Since the probability of loop branches-taken is usually high, so trace is generated 

by loop unrolling 

 Additionally static branch prediction is employed as taken or not-taken to obtain 

straight-line code by concatenating many basic blocks   

• In our earlier global code fragment, if we take the true path as most frequent, then 

primary trace could be generated by unrolling the true path n- (say 4-) times Here, trace 

exit is jump-off the frequent path and Trance Enter is return to trace 
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• Code Compaction is the  code scheduling, hence, compiler attempts to:  

 Move operations as early as it can in a sequence (trace); and 

 Pack the operations into as few wide instructions (or issue packets) as possible. 

• Advantages of Trace scheduling 

 Trace scheduling simplifies the decision concerning global code motion 

 Branches are viewed as jumps into [Trace Entrance] or jump out of [Trace Exit] 

selected trace which the most probable path 

• Overhead of Trace scheduling 

 Note that when code is moved across trace additional book keeping code is 

needed on entry or exit point  

 Furthermore, when an entry or exit point is in the middle of a trace, significant 

overheads of compensation code may make trace scheduling an unattractive 

approach. 

 

Superblocks 

• The draw back of Trace is that he entries into and exit out of a trace, in the middle of the 

trace cause significant complications; and  

• Complier requires to generate and track the compensation code 

• This draw back is overcome by using Superblocks  

• Superblocks are a form of extended basic blocks, which have a single entry point but 

allow multiple exits 

• Therefore it is easier to compact superblocks as compared to a trace 

• In our earlier example Global Code, superblocks with one entrance can be easily 

constructed by moving C as shown 
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• Here, Tail Duplication is used to create a separate block that corresponds to portion of 

the trace after the entry 

• Here, each unrolling of the loop creates an exit from the superblock to the residual loop 

that handles the remaining iterations 

• The residual loop handles the iterations that occur when the unpredicted path is selected 

• Advantages of Superblocks 

• This approach reduces the cost of book keeping and scheduling verse the more general 

trace generation 

• However, its code size may enlarge more than a trace based approach. 

• Like trace scheduling, superblocks scheduling may be most appropriate when other 

techniques fail. 

 

Conclusion – Enhancing ILP 

• All the four approaches 

Loop unrolling, 

Software pipelining,  

Trace scheduling and  

Superblocks 

• aim at trying to increase the amount of ILP, which can be exploited by a processor 

issuing more than one instruction on every clock cycle. 

 

Numerical problems 

• In the following code: 

1. List all dependences (output,anti,and true) in the 

2. Indicate whether the true dependences are loop carried or not? 

3. Why the loop is not parallel? 

 

Example 1: 

For (i=2; i<100; i= i+1) 

  { 

   a[i]      =       b[i] + a[i]; /*s1*/ 

   c[i-1]   =       a[i] + d[i]; /*s2*/ 

   a[i-1]   =        2* b[i];  /*s3*/ 

   b[i+1] =        2*b[i];  /*s4*/ 

} 

Solution: 

• There are six dependences in the loop. 

1. There is antidependence from s1 to s1 on a.  

a[i]      =       b[i] + a[i]; /*s1*/ 

2. There is true dependence from s2 to s1. 

a[i]      =       b[i] + a[i]; /*s1*/ 

c[i-1]   =       a[i] + d[i]; /*s2*/ 

 

• Here, the value of a in s2 is dependent on the result of a in s1.  
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3 There is loop carried true dependence from s4 to s1 on b. 

4 There is loop carried true dependence from s4 to s3 on b. 

5 There is loop carried true dependence from s3 to s3 on b. 

6 There is loop carried output dependence from s3 to s3 on a 

 

• Part b) Indicate whether the true dependences are loop carried or not? 

• We know that for loops to be parallel, each iteration must be independent of all others. 

• Here in this case, as dependences 3, 4, 5 are true dependences  

• They cannot removed by renaming or any such technique 

• These dependence are loop carried as the iterations of the loop are not independent. 

• These factors imply the loop is not parallel as the loop is written. 

• Loop can be made parallel by rewriting the loop to find a loop that is functionality 

equivalent to the original loop that can be made parallel 

Example 2: 

• The loop given below is a dot product (assuming the running sum in F2 initially 0) and 

contains a recurrence. 

• Assume the pipeline latencies from the table shown below, and a 1 cycle delayed 

branch. 

• Considering single issue pipeline. 

 

Instruction producing result Instruction using result  Latency in clock cycle 

FP ALU op Another FP ALU op 3 

FP ALU op Store double 2 

Load double FP ALU op 1 

Load double Store double 0 

 

Part a) 

• Unroll the loop sufficient number of time to schedule it without delay. 

• Show the schedule after eliminating any redundant overhead instruction. 

 

Foo:  

L.D  F0,0(R1); /load X[i] 

L.D  F4,0(R2); /load Y[i] 

MUL.D  F0,F0,F4; /multiply X[i]*Y[i] 

ADD.D  F2,F0,F2; /add sum=sum + x[i] * y[i] 

DADDUI R1,R1,#-8; /decrement X index i 

DADDUI R2,R2,#-8; /decrement Y index i 

BNEZ  R1,foo ; /loop if not done 

 

Solution: 

• This code has loop carried dependence from iteration i to i+1. 

• It also has high latency dependence within and between loop bodies. 
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• Now if we unroll the loop twice in order to avoid any delay, we will get the following 

result. 

foo 

L.D  F0,0(R1)  

L.D  F4,0(R2)  

L.D  F6,#-8(R1) 

MUL.D F0,F0,F4   ;1 from L.D F4,0(R2) 

L.D  F8,#-8(R2) 

DADDUI R1,R1,#-16 

MUL.D F6,F6,F8 ;1 from L.D F8,-8(R2) 

ADD.D F2,F0,F2  ;3 from MUL.D F0,F0,F4 

DADDUI R2,R2,#-16  

Stall 

BNEZ R1,foo  

ADD.D F2,F6,F2 ; in slot, and 

    3 from ADD.D  F2,F0,F2 

• Here the dependences chain from one ADD.D to the next ADD.D forces the stall. 

• Next part: In order to unroll further to schedule eliminating the stall (overhead) we 

take advantage of commutativity and associativity  of dot product of two running 

sums in the loop 

• One for even elements and one for odd elements, and combine the two partial sums 

outside the loop body:  

foo 

L.D  F0,0(R1) 

L.D  F6,-8(R1) 

L.D  F4,0(R2)  

L.D  F8,-8(R2) 

MUL.D F0,F0,F4  ;1 from L.D F4,0(R2)  

MUL.D F6,F6,F8  ;1 from L.D F8,-8(R2) 

DADDUI R1,R1,#-16 

DADDUI R2,R2,#-16 

ADD.D F2,F0,F2  ;3 from MUL.D F0,F0,F4 

BNEZ R1,foo  

ADD.D F2,F0,F2  ;3 from MUL.D F6,F6,F8 

    ;and fill the branch delay slot 

ADD.D F2,F0,F2 ;combine even and odd elements 

 

• Result discussion: 

• Here, the code assumes that the loop executes a non zero, even number of times. 

• The loop itself is stall free, but there are three stalls when the loop exists. 

• The loop body takes 11 clock cycles. 

Part b)  

• The unrolled and scheduled code for the transferred code  - Loop body takes 10 cycles 
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 integer  Inst  FP Inst  Clock Cycles 

Foo 

 L.D  F0,0(R1)     1 

 L.D  F6,-8(R1)     2 

 L.D  F4,0(R2)     3   

 L.D  F8,-8(R2)     4 

 DADDUI  R1,R1,#-16 MUL.D F0,F0,F4   5 

 DADDUI   R2,R2,#-16 MUL.D F6,F6,F8   6 

 stall        7 

 stall         8 

 BNEZ  R1,foo   ADD.D F2,F0,F2  9 

     ADD.D F2,F0,F2  10 

  .. ..  … 

Bar:     ADD.D F2,F0,F2  14 

 

Example 3: 

• Consider a code 

For (i=2; i<=100; i+=2) 

a[i] = a[50*i+1] 

• Using GCD test, normalize the loop. 

• Start index at 1 and increment it by 1 on every iteration. 

• Write the normalized version of the loop then use GCD test to see if there is 

dependence. 

Solution: 

• By normalizing the loop it leads to a modified C code as shown below, 

• For (i=1; i<=50; i++) {  ;divide i by 2 

a[2*i] = a[(100*i)+1]   ; multiple constant by 2 

} 

• The GCD test shows the potential for dependences within an array indexed by the 

function, ai +b and cj + d 

• If the condition (d-b) mod gcd (c,a) = 0 is satisfied  

• Applying GCD test, in that case we will get, 

•  a = 2,  b = 0;   c = 100, d =1 

• allows us to determine dependence in loop. 

• Thus gcd will be, gcd(2,100) = 2  

• And: d – b = 1 

• Here, as 1 is factor of  2.  

• Thus, GCD test indicates that there is a dependence in the code. 

• In reality, there is no dependence in the code. 

• Since the loop load its value from  

•  a[101], a[201]……a[5001] and  

• again these values to  

•  a[2], a[4], ….. a[100] 
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Lecture 23 

Instruction Level Parallelism 

(Hardware Support at Compile Time) 

Today’s Topics 

• Recap 

• H/W Support at Compile Time 

– Conditional/Predicated Instructions 

– H/W based Compiler Speculation  

– Summary 

 

Recap: H/W and S/W Exploitation 

• We have studied both the Dynamic and Static scheduling techniques to exploit ILP for 

single or multiple instructions issue per clock cycle and to enhance the processor 

performance 

• The dynamic approaches use hardware modification which results in superscalar and 

VLIW processors 

• Furthermore, the pipeline structure enhancement such as 

1. Tomasulo‘s pipeline facilitates to overcome the structural and data hazards and  

2. Branch predictors minimize the stalls due the control hazards  

 

• The static scheduling approaches include 

1. Loop unrolling 

2. Software Pipelining 

3. Trace Scheduling 

4. Superblock Scheduling 

 

• These techniques are focused to increase ILP by exploiting processor issuing more than 

one instruction every cycle 

• These techniques give better performance when the behavior of the branches is 

correctly predictable at the compile time 

• Otherwise, the parallelism could not be completely exposed at the compile time 

• This is due to the following two reasons  

1. Control dependences limits the amount of the parallelism that can be exploited; 

and 

2. Dependence between memory reference instructions could prevent code 

movement necessary to increase parallelism 

 

Hardware Support for VLIW 

• These limitations, particularly for VILW processor, could be overcome by providing 

hardware support at the compile time 

• Today, we will introduce some hardware support-based techniques to help: 

– overcoming these limitations; and 

– to expose more parallelism at the compile time 
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• The most commonly used such techniques are: 

• Extension of the Instruction Set by including Conditional or Predicated (base something 

on something) Instructions  

• Hardware speculation to enhance the ability of compiler to move code over branches, 

while preserving exceptional behavior  

• To allow the compiler to reorder load/store instruction when no conflict is suspected but 

not certain 

 

1: Instruction Set Extension 

• The extended instruction set including Conditional or Predicated Instructions 

 allow the compiler to group instructions across branches 

 eliminate branches 

 convert control dependence into data dependence 

 

• These approaches are equally useful for hardware-intensive as well as software-

intensive  scheme, i.e., the dynamic as well as static scheduling 

• As discussed earlier, Predicate registers are included, in the structure of IA64 processor, 

to implement predicated instructions  to improve performance 

 

Conditional Instructions 

• Now let us discuss the concept behind introducing the conditional instructions in the 

instruction set 

 The conditional instructions have an extra operand – a one-bit predicate register 

 A condition is evaluated as part of instruction execution to set the value of 

predicate-register 

 

Conditional or predicted Instructions 

• In HPL-PD from HP Lab, the value of the predicate register is typically set to ―Compare-

to-predicate operation;  

   p1 = CMPP <= r1, r2 

 Here the predicate register  p1 is set if r2 is <= r1  

 

• If condition is true (p1=1), the  instruction is executed normally 

• If the condition is false  (p1=0), the instruction execution continues as if the instructions 

were a no-operation  

• Typical conditional instructions for pipeline processors are: 

 

• Conditional Move – CMOVZ  R1, R2, R3;  

 it moves the value from one register to another if the condition is true; i.e., third 

operand – the predicate register R3 is Zero 

 Such instructions are used to eliminate branch code sequence 
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• Conditional ADD – (R8) ADD R1, R2, R3  

 assumes that the R1= R2 + R3 occurs if the predicate register – R8 is 1 

 

• Conditional Load – LWC R1, 0(R2),  

 R3 assumes that the load occurs unless the third operand – R3 is Zero 

 

• The LW instruction, or a short block of code, following the branch can be converted to 

LWC and moved up to second issue slot to improve the execution time for several cycles 

 

Example 1: Conditional or predicated Instructions 

 

Let us consider the conditional statement:  If (A==0) { S=T;} 

i.e., the value S is to be replaced by T if the value A is zero 

 

• Assuming the register R1, R2, R3 holds the value of A, S and T respectively. 

• The code to implement this conditional statements can be written as: 

BNEZ  R1, L  ; No-op if A (R1)!= 0 

ADDU R2, R3, R0 ; Else replace S (R2) by T (R3)L 

 

• The IF statement can be implemented by the conditional move as: 

  CMOVZ   R2, R3, R1 

Move      R3 to R2  

if the third operand R1=0 

 

• Here, notice that using the Conditional instruction CMOVZ, the next operation is 

determined by the contents of the third register instead of condition evaluation i.e., the 

control dependence has been converted to data dependence.  

• This transformation has moved the place to resolve dependence in a pipelined 

processor 

• We know that, in a pipelined processor the dependence for branches is resolved near 

the front of the pipe 

• Whereas, the conditional instruction resolve the dependence where the register-write 

occurs 

• This transformation is also used for vector computers, where it is called if-conversion 

• The if-conversion replaces conditional branches with predicated  operations 

• For example: Let see the code generated for the following two if-then-else statements 

 

If (a<b) then c=a; else c=b;  

  If (d<e) then f=d; else f=e; 

 

• might be written as two VLIW instructions as 
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• Alternatively two CMPP instruction of the form:  

   

   p1,p2 = CMPP.W. < UN. UC r1,r2 

 

 

 
 

Example 2: Absolute Value Function 

• Conditional move is also used to implement the absolute value function: A= abs (B)  

• Which is implemented as: 

if  B<0 {A=-B;} else {A=B;} 

• Where this statement can be implemented as 

– pair of conditional moves  

   CMOVZ R2, -R3, R1 

   CMOVZ R2, R3, R4 

– or  one unconditional move A=B  

– and  one conditional move A= -B  

 

Conditional MOVE Instruction 

• The Conditional moves enables us to eliminate the branch and improves the pipeline 

behavior 

• It is useful for short sequences. 

• It has certain limitations  

• When predication is used to eliminate branches that guard the execution of large blocks 

of code, many conditional moves are needed 

• To remedy this inefficiency, some architectures supports full predication, i.e.; the 

execution of all the instructions is controlled by a predicated move 

• Full predictions allows to convert the large blocks of code that are branch dependent. 

• For example, if-then-else statement within a loop converted to predicated execution. 

• Where code executes only if the value of the condition is true. 

• The code in the else case executes only if the value of the condition is false. 

 

Predicated LOAD Instructions 

• Now let us consider another example code sequence for a two-issue superscalar  

• The superscalar can issue a combination of one memory reference and one ALU 

operation or a branch by itself, every cycle. 
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2-Issue Instruction Code 

 

First instruction slot Second instruction 
slot 

LW    R1, 40(R2) ADD   R3,R4,R5 

 ADD   R6,R3,R7 

BEQZ  R10,L  

LW      R8, 0(R10)  

LW      R9, 0(R8)  

 

 How the code can be improved using a predicated form LW? And  

 We can say that the transformation is speculative  

• Here, the second LW after the branch LW R9, 0(R8), depends on the prior load LW 

R8, 0(R10) 

• Therefore, this sequence wastes a memory operation slot in second cycle; and will 

incur a data dependence stall if the branch (BEQZ R10, L) is not taken. 

 

• Let us consider the  predicated version load word LWC:  

LWC R8, 0(R10), R10 

and assume the load occurs unless the third operand R10 is 0 

 

• The LW instruction, LW  R8, 0(R10), immediately following the branch, can be 

converted to an predicated load: 

  LWC R8, 0(R10), R10 and  

 

• moved up to the second issue slot; i.e.; prior to the BEQZ R10, L 

First instruction slot Second instruction 
slot 

LW      R1,40 R2) ADD   R3,R4,R5 

LWC   R8,0(R10),R10 ADD   R6,R3,R7 

BEQZ  R10,L  

LW      R9,0 (R8)  

 

• Note that it improves the execution time by: 

 eliminating the one instruction issue slot; and 

 reducing the pipeline stall for last instruction in the sequence 

• Furthermore, note that if compiler mispredicated the branch, the mispredicated 

instruction will have no effect and will not improve the running time 

• Therefore we can say that the transformation of conditional load is speculative. 

 

Advantages of predicated Code 

• Predicated or conditional instructions are extremely useful: 

 for implementing short alternative control flows 

 for eliminating some unpredictable branches; and 

 for reducing the overhead of global code scheduling 
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Limitations on the conditional Instructions 

• To move an instruction across a branch and making it conditional will: slow the program 

whenever the move instruction would not have been  normally executed 

• Predicating a control dependent and eliminating a branch may slow down the processor 

if that code would not have been executed 

• Predicated instructions are useful when predicate could be evaluated early 

• Conditional instruction results in a stall for data hazard, if the condition evaluation and 

predicated instructions are not separated  

• Conditional instruction may have some speed penalty compared to unconditional 

instructions  

• The use of Conditional instruction is limited when the control flow involves more than a 

simple alternative sequence 

• For example, moving an instruction across multiple branches requires making it 

conditional on both the branches 

• Thus, it requires to specify additional instructions to compute the controlling predicate 

 

Architectures with Conditional Instructions 

• For these limitations most of the architectures include only a few, mostly CMOV, 

conditional instructions 

• The MIPS, Alpha, PowerPC, SPARC and Intel (Pentium) all support Conditional Move 

• IA-64 Micro Architecture supports full predication of all the instructions 

 

Introduction to Compiler Speculation 

• In our earlier discussion, we have noticed that: where the programs have branches, 

which may be predicted at the compile time, either from the program structure or from 

program profile 

• Here, the compiler speculates to: either improve the scheduling and/or to increase the 

issue rate. However, the predicated instructions may help to speculate 

• These instructions are more useful when they can eliminate control dependence by if-

conversion 

 

Hardware support Speculation 

• Furthermore, in most of the cases we would have to move the speculated instructions 

before the condition evaluation  

• But, this cannot be done by predication 

• Rather, it motivates to have the following capabilities to speculate ambitiously  

 

Compiler speculation with hardware support 

1) The ability to find instruction can be speculatively moved and not affect the program data 

flow 

2) The ability to ignore exceptions in speculated instructions, until we know such exception 

would really occur 

3) The ability to speculatively interchange loads and stores, or stores and stores, which 

may have address conflicts. 
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• Note the first one is the compiles capability where as the other two can be achieved by 

Hardware support 

• Hardware speculation approach supports reordering loads and stores. 

• Hardware based speculative movement of instructions is done by checking for potential 

address conflicts at runtime; and 

• It allows the compiler to reorder loads and stores when it suspects they do not conflict. 

 

Methods to preserve exceptions 

• The following are four hardware methods to support more ambitious speculation without 

introducing erroneous exception behavior 

• The key to these methods is to observe that the results of speculated sequence that is 

mispredicted will not be used in the final computation, for this purpose the exceptions 

are preserved 

 

Methods to provide Hardware support 

1) The hardware and operating system cooperatively ignores the exception for speculative 

instructions for the incorrect program 

 

• Here, the exception behavior for the correct program is preserved and for incorrect one 

is ignored 

• This approach is used as a ―fast mode‖ under the program control 

 

Methods to Preserve exceptions 

• The examples of exceptions that indicate a program error  and normally cause 

termination are memory protection violation 

• The examples of exceptions that handle the program error  and normally resumed are 

page fault 

 

2) Speculative instructions that never raise exception are used; and checks are introduced 

to determine when exception should occur 

 

3) A set of bits called ―poison bits‖ are attached to the result register. These bits are written 

by speculated instructions when the instruction causes exceptions.  

 

• The poison bits cause a fault when a normal instruction attempts to use the register 

• This approach suggest to track the exceptions as they occur but postpone any 

terminating exception until a value is actually used 

• The scheme adds a poison pit to every register and another bit to every instruction to 

indicate if whether the instruction is speculative 

• The poison bit of the destination register is set whenever a speculative instruction results 

in terminating exception 

• And all other exceptions are handled immediately 

• If the speculative instruction uses a register with poison bit on; the destination register 

has its poison bit on 
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• Now if the normal instruction attempts a register source with poison bit on, the instruction 

causes a fault 

 

4) A mechanism is provided to indicate: that an instruction is speculative; and the hardware 

buffers the instruction result until it is certain that the instruction is no longer speculative. 

 

Summary 

• Both the hardware and software mechanisms provides approaches to exploit ILP. 

• There are certain limitation on both mechanisms 

• We will discuss these limitations next time 
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Lecture 24 

Instruction Level Parallelism 

(Concluding Instruction Level Parallelism) 

Today’s Topics 

• Recap 

• Compile Time H/W Support: 

 To Preserve Exceptions - Typical Examples 

 For memory Reference Speculation 

• Speculation Mechanism: H/W Vs. S/W  

• Summary 

 

Recap: Compile Time H/W Support 

• Last time we discussed the methods to provide H/W support for exposing more 

parallelism at the compile time 

• We introduced the concept of extension in the Instruction set by including Conditional or 

predicated instructions 

• We found that such instructions can be used to eliminate branches and to convert 

control dependence to data dependence which is relatively simple to handle 

• Thus, it improves the processing performance 

• We also introduced the hardware and software-based abilities required to: move the 

speculated instructions before the branch condition evaluation while preserving the 

exception behavior 

• We further introduced four methods to support speculation; and, move of instruction 

such that the miss-predicted speculated sequence is not used in the final execution;  

• But, the exception behavior is preserved to take care of the exceptions that may be used 

later 

• However, in order to study these methods we distinguish between the exceptions that 

indicate program error  and:  

 normally cause termination; or 

 handle the error to resume normally  

• Typical example of the behavior-exception that indicate the program error and 

terminates is memory protection violation 

• The result of a program that gets such an exception is not well defined , therefore if such 

an exception arise in speculated instructions, we cannot take the exception, hence need 

not preserve such an instruction 

• The example of the behavior-exception that indicates the program error, which could be 

handled and program normally resumes is Page Fault in virtual memory 

• Such exceptions are preserved and are processed for speculative instruction as if they 

were normal instructions when the instruction is no longer speculative 

 

Methods to preserve exception behavior 

• Let us study in details, the methods to preserve exceptions.  

• The four methods which we introduced last time are: 

1. Fast mode approach 
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2. Speculative-instructions method 

3. Poison-bit Register method 

4. Hardware (Re-order) buffering  

 

Methods 1: Fast Mode 

• The simplest approach to preserve exceptions is one where hardware works 

cooperatively with the operating system and: handle presumable exceptions under the 

program control 

• This approach is referred to as the ―fast mode‖ to preserve exceptions 

• Here, the H/w and S/w preserves the exception behavior for the correct program, but 

ignores the exception behavior for the incorrect programs 

• Before we proceed further, let us define a correct and an incorrect program 

 

• Correct Program 

 A program may be correct if the instruction generating the terminating exception 

is speculative; and the speculative result is simply unused 

 i.e., the speculative instruction returns a value that is not harmful to the program 

 

• Incorrect Program 

 A incorrect program is one which previously have received a terminating 

exception, and  

 will get an incorrect result in the present instruction 

 Thus, the exception behavior is mispredicted 

 

• Fast Mode to preserve exception 

 Hence, the exception behavior as a result of speculated instruction will not be 

used in the final computation if mispredicted;  

 Now let us consider a typical correct code fragment for the if-then-else statement 

of the form: 

• Example Code fragment for Fast Mode 

If (A==0) A = B; 

Else A = A + 4; 

 

• And see how this code can be modified to preserve behavior exceptions 

• Assuming that A is at 0(R3) and B is at 0(R2); the code based on the speculation that  

the THEN clause is almost always executed, can be written as follows: 

 

  LD      R1,0(R3) ;load A 

  BNEZ      R1,L1 ;test A 

  LD      R1,0(R2) ;then clause 

  J      L2  ;skip else 

 L1: DADDUI   R1,R1,#4 ;else clause 

 L2: SD      R1,0(R3) ;store A 

  LD      R1,0(R3) ;load A 

Speculate that THEN 
clause is almost 
always executed i.e., 
program will rarely 
branch to else clause 
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  BNEZ      R1,L1 ;test A 

  LD      R1,0(R2) ;then clause 

  J      L2  ;skip else 

 L1: DADDUI   R1,R1,#4 ;else clause 

 L2: SD      R1,0(R3) ;store A 

 

Revised Code fragment with Exceptions preserved 

• Now in order to preserve the speculation we use a temporary register – say R14, to 

avoid destroying R1 when B is being loaded as in initial code  

 

  LD R1,0(R3)  ;load A 

  LD      R14,0(R2)  ;speculative load B 

  BEQZ      R1,L3  ;other branch of if 

  DADDUI  R14,R1,#4     ;else clause 

 L3: SD       R14,0(R3)      ;non-speculative store 

 L2: SD       R1,0(R3)  ;store A 

 

• Example Code fragment 

 Here, is a new code that preserve the speculation in a temporary register R14, to 

avoid destroying R1 when B is loaded  

 

LD     R1,0(R3)  ;load A 

 LD     R14,0(R2)  ;speculative load B 

 BEQZ     R1,L3  ;other branch of IF 

 DADDUI  R14, R1,#4   ;else clause 

L3: SD      R14,0(R3)      ;THEN clause: non-speculative store A 

 

Method 2: Speculative Instructions 

• This approach introduces speculative version of instructions, such as  

 Speculative Load – sLD 

 Speculative Check –  SPECCK  

• These instructions are used to preserve exception behavior exactly rather than 

speculatively 

• These instructions 

 Don‘t generate terminating exception; rather these instructions   check for such 

exceptions 

• The combined used of two or more speculative instructions, such as sLD and SPECCK, 

preserve the exception behavior exactly 

 

Example 2 

• Now let us reconsider our earlier example of IF-THEN-ELSE statement to see how it can 

be coded, using speculative load and check instructions to preserve exception behavior 

exactly 

• Here, we assume that the temporary register R14 is unused and available 

therefore the value B 
at 0(R2) must be 
preserved 

The speculative value 
B at 0(R2) is 
preserved in 
temporary register 
R14 to be used in 
THEN clause 
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Revised code using speculative instructions 

 

LD  R1,0(R3) ;load A 

  sLD  R14,0(R2) ;speculative,  

no termination 

  BNEZ  R1, L1  ;test A 

  SPECCK 0(R2)  ;speculative check 

  J  L2  ;skip else 

 L1: DADDUI R1,R1,#4 ;else clause 

 L2: SD  R1,0(R3) ;store A 

 

 

• Here, the load instruction speculate in respect of the branch instruction whether it will be 

taken or not-taken 

• The speculation check requires to maintain a basic block for THEN clause, thus 

preserve the exception behavior 

• Notice that extra code is required to check for possible exception – thus, result in 

overhead 

 

Method 3:  Poison Bit 

• The basic concept behind this approach is that the speculative movement of instructions, 

before branch or before reordering of load/store, must not cause exceptions 

• If an exceptional condition occurs during a speculative operation, the exception is not 

raised 

• Here, a set of bits called ―poison-bits‖ is attached to every instruction and to every result 

register to indicate whether the instruction is speculative 

• These bits are used to track exceptions as they occur; but postpones any terminating 

exception until a value is actually used 

• The speculative bits are simply propagated by speculative instructions  

• When a bit is set in the result register it indicates that an exceptional condition has 

occurred 

• When non-speculative operation encounters a register with speculative bit being set, an 

exception is raised 

• The poison-bits cause a fault when a normal instruction attempts to use the register   

• Sequence of steps to preserve exception behavior using poison bits 

1. The poison bit of the destination register is set whenever a speculative instruction 

results in terminating exception 

2. All other exceptions are handled immediately 

3. IF the speculative instruction uses a register with poison-bit turned ON; the 

destination register of the instruction simply has its poison-bit turned ON 

4. IF the normal instruction attempts to use a register source with poison-bit turned 

ON, the instruction causes a fault 

 

Speculate Branch 
taken/not-taken (in this 
example Not-Taken) and 
save value B at 0(R2) in 
temporary register R14; 
i.e., the basic block for 
THEN (in this case the 
value B) is maintained 

Check if the 
speculation is 
correct or not, i.e., 
Branch has taken 
or otherwise 
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Resulting Behavior: Poison-bits Approach 

• Thus, any program that would have generated an exception still generates one;  

• Although, at the first instant where a result is used by an instruction that is not 

speculative 

• Furthermore, STORES are never speculative as the poison-bits exist on registers only 

 

Example 3: Poison Bits Approach 

• Let us once again consider our earlier example and: 

 See how it would be compiled with speculative instructions SLD and register R14 

with poison-bit; and 

 Show where an exception for the speculative memory reference would be 

recognized 

• IF-THEN-ELSE Statement Reconsidered 

IF (A==0) THEN A = B; 

ELSE A = A + 4; 

• Assume A is at 0(R3) and B is at 0(R2); and  

• that R14 is unused and available 

 

LD     R1,0(R3) ;load A 

  sLD     R14, 0(R2) ;   

  BEQZ     R1,L3  

  DADDUI  R14,R1,#4  

L3: SD     R14,0(R3); 

 

 

 

 

• Note here, If the speculative sLD generates a terminating exception, the poison bit of the 

R14 will be turned on 

• When the non-speculative SW instruction occurs, it will raise an exception if the poison 

bit for R14 is turned on 

• Furthermore, to facilitate the operating system to save the user register on a context 

switch if the poison bit is set,  

• a special instruction is included in the instruction-set to set/save the state of the poison-

bit 

 

Method 4: Hardware Buffering 

1. A hardware buffer, such as the reorder buffer, is provided and the compiler: 

2. Marks instructions as speculative 

3. Includes an indicator of how many branches the instruction was moved speculatively 

o What branch action (Taken / not-taken) is assumed by the compiler? 

o The compiler accomplishes this by using either of the following two approaches: 

o For single branch: only 1 bit is used  to tell whether the speculated instruction 

has come from the branch taken or not-taken path 

Value B at 0(R2) is 
speculatively loaded in R14 
The poison bit of R14 is 
turned on if terminating 
exception is generated by 
speculative LOAD 

When non-speculative SW 
occurs, exception for 
speculative LW is raised if 
poison bit for R14 is ON 
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o Alternatively: The original location of the speculative instruction is marked by a 

sentinel; i.e., looked out or guarded. It tells the hardware that the earlier 

speculative instruction is no longer speculative, so the values may be committed 

4. The instructions marked as speculative are placed in the re-order buffer 

5. The re-order buffer tracks when instructions are ready to commit and delays the ―Write-

back‖ 

6. The speculative instructions are not allowed to commit until: 

o Either the branches have been speculatively moved and are ready to commit;  

o Or corresponding sentinel is reached 

7. At this stage, we  should know whether the speculated instruction should have been 

executed or not 

8. If it has been executed and has generated terminating exception then the program 

should be terminated  

o If not yet executed then exception is ignored 

 

Memory Reference Speculation 

• With so much discussion in respect of preserve exception behavior of speculated 

instructions using hardware support, let us extend our discussion on the compile time 

hardware support for memory reference speculation  

 

H/W support for Memory Disambiguation (Address Certainty) 

• While reducing the critical path length of the code, i.e., to optimize codes, it may be 

desirable to move  the LOAD(s) across STORE(s)  

• For example, in the following code segment if the latency of LOAD is high, it may be 

desirable to move LOAD before STORE 

• In order to optimize codes with memory reference instructions, the  critical path length of 

the code is reduced  

• This is accomplished mostly by moving  memory reference instructions with longer 

latency, such as the LOAD across the instruction which has relatively lesser latency, i.e., 

STORE instruction 

• For example, in the following code segment;  

• if the latency of LOAD is high, it may be desirable to move LOAD before STORE for 

desirable optimization 
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• However, this optimization is not valid if LOAD and STORE reference the same location; 

i.e., if R2 and R4 contain the same address 

• And, the compiler is not certain about this at the compile time 

• This issue can be resolved by providing rum-time memory address (certainty) 

disambiguation 

• In order to resolve this issue, two special instructions are included in the ISA 

• These instructions are …. 

 

• LDS  R1, 0(R2)  ;Load Speculatively 

o This instruction initiates a load a normal load instruction 

o A log entry is made in a table to store the memory location  

 

 
 

• LDV R2, 0(R2) ;Load Verify 

o This instruction checks to see if store to memory location has occurred since the 

LDS 

o If so, the new load is issued and pipeline stalls, otherwise it‘s a NO-OP 

 

 
• Here, LOAD is speculatively moved across the STORE, and 

• The LDV instruction is left at the original place of LOAD instruction (i.e., after the STORE 

instruction, in this example) which acts like a guardian and checks for the address 

conflict  

• When the speculated load LDS is executed, the hardware saves the address of the 

accessed memory location in log table and finds …. 

1. If the subsequent STORE changes the location before the check instruction LDV, 

then speculation has failed; whereas …… 

2. If the subsequent STORE doesn‘t touch the location before the check instruction 

LDV, then speculation is successful  
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• Now, let us see how the speculation failure is handled? 

• It is handled in one of the two ways!  

1. If only the load instruction was speculated then it is sufficient to redo the load  

o This is accomplished by using LDV instruction, which supplies target register 

in addition to memory address 

2. If the additional instruction (LDV) is also speculated then 

o re-execute all the speculated instruction, starting with the LOAD, using a fix-

up sequence 

o Here, the check instruction (LDV) specifies the address of the fix-up code 

• We have discussed the use hardware-intensive support with software–intensive 

approaches to achieve ILP  

• Here, we observed that the improvement of code by using predicted version of load-

word (LWC) instructions, which facilitate to move load instruction before branch 

 

Example: Conditional Moving up the Branch 

• This approach improves the execution time 

• However, such transformations are speculative and no improvement in the run-time is 

possible if the compiler mispredict the branch 

• This motivates to use conditional move instruction to: 

o eliminate branch; and to  

o guard against the memory access violation that may terminate the program 

• In order to explain the use of conditional move instruction, let us reconsider the example 

code sequence for a 2-issue superscalar, which we discussed last time 

• Here, the second LW after the branch depends of the prior load, therefore, this 

sequence wastes a memory operation slot and incur a data dependence stall if branch is 

not taken 

First instruction slot second instruction slot 

LW    R1,40 R2) ADD   R3,R4,R5 

 ADD   R6,R3,R7 

BEQZ  R10,L  

LW      R8,0(R10)  

LW      R9,0 R8)  

 

• Here, we discussed that if the LW immediately following the Branch is converted to 

predicted version of load-word (LWC) instruction, move it up by two slot, and assume 

load occurs unless third operand (R10) is ZERO, then it improve the execution time 

 

First instruction slot second instruction slot 

LW    R1,40 R2) ADD   R3,R4,R5 

LW C R8,0(R10), R10 ADD   R6,R3,R7 

BEQZ  R10,L  

BEQZ  R10,L  

LW      R9,0 R8)  
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• Here, the branch is written to skip the LW instruction if R10 = 0; and this instruction  

LW R8, 0(R10) is executed unconditionally 

• This is likely to cause a protection exception which should not occur 

• Now let us see how we can re-write the code using conditional move instruction 

• The code should be written assuming  that the loads, which are no longer control 

dependent, cannot raise an exception if they should not have been executed, i.e.,  

• The branch must guards against a memory access violation 

• As in this example code, a violation would terminate the program, therefore, while re-

writing the program we must consider that ―If the instruction LW R8, 0(R10) is moved 

before the branch, the effective address must not be zero‖ 

• Here, in order to guard the load by conditional move instruction, we need two 

unassigned registers; 

o One of the register must contain a safe address for the load (Let us use register 

R(29) instruction [LW R8, 0(R10) ] 

o The other register must save the original contents of R8 (Let us use the register 

R30 for this purpose) 

 

Example Cont’d: Revised code 

DADDI        R29,R0,#1000 ;initialize R29 to a safe address 

LW        R1,40(R2)  ;first load instruction of original code 

MOV        R30,R8  ;save R8 in unused R30 

CMOVNZ   R29,R10,R10 

LW        R8,0(R29) ;speculative load  

CMOVZ      R8,R30,R10  

BEQZ        R10,L 

LW        R9,0(R8) 

 

• R29 is unused and contain a safe address 

R29R10 if R10 contains a safe address ≠0 

• If R10=0 load is incorrectly speculated so restore R8 

• Here, the Load after the branch can be speculated using one more conditional move, 

and for this one more unused register will be  needed 

• However, there is a significant conditional instruction overhead 

• Using R31 as the unused register, the branch free code is as follows 

ADDI        R29,R0,#1000 

LW        R1,40(R2) 

MOV        R30,R8 

MOV        R31,R9  ;save R9 in unused R31 

CMOVNZ   R29,R10,R10 

LW        R8,0(R29) 

LW        R9,0(R8)  ;load speculated 

CMOVZ      R8,R30,R10 

CMOVZ      R9,R31,R10 ;restore R9, if needed 
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Summary: Hardware versus software speculation 

• Now while concluding our discussion on exploiting the ILP using hardware and software 

techniques we can say that both the approaches have certain limitations 

• These limitations can be summarized as follows: 

1. To speculate extensively, we must able to ascertain the memory references, 

which is difficult to do at the compile time 

o In a hardware based schemes, dynamic run time certainty of memory 

address is done using the Tomasulo‘s pipelined structure, which allows 

us to move loads past/before stores at run time 

2. Hardware based speculation works better when: 

o when control flow is unpredictable 

o And when hardware-based branch prediction is superior to software- 

based branch prediction, which is done at compile time 

3. Hardware based speculation maintains a completely precise exception model for 

speculated instructions 

4. Hardware based speculation does not require compensation which is needed by 

ambitious software speculation mechanism 

5. Compiler based approaches have the ability to see further in the code sequence,  

Thus, may provide better code scheduling than a purely hardware driven 

approach; for example, use of conditional move instruction 

6. Hardware based speculation with dynamic scheduling does not require different 

code sequences to achieve good performance for different implementation of 

architecture. However, the major disadvantage of hardware support for 

speculation is the extra hardware resources and Complexity of the structure 
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Lecture 25 

Memory Hierarchy Design 

(Storage Technologies Trends and Caching) 

Today’s Topics 

• Recap: Processor Performance 

• What is outside the processor 

• Storage Technologies 

• RAM and Enhanced DRAM 

• Disk Storage 

• Summary 

 

Recap: Processor Performance 

• Data path and control design of processor 

• Hardware-based and software-based techniques to expose the ILP 

 

What is outside processor? 

• Performance of a computer  

 what is outside the processor?  

 how the outside systems influence the performance of processors? 

• Whatever is outside the processor is referred to as the I/O system 

• The I/O systems include: 

 Memory System 

 Buses and controllers 

Memory System: An introduction 

• Memory system design for high performance computers  

• Design goal of memory system for high performance computers is to present the user 

with as much memory as is available 

• Fast memory is expensive and cheap memory is slow, therefore a memory hierarchy is 

organized into several levels 

 cost as low as of the cheapest memory and  

 speed as fast as of the fastest memory  
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Principle of Memory hierarchy 

• ―The principle of locality‖, where each type of the module is located in the memory 

system? 

 

Principle of Locality 

• Advantage of the principle of locality 

• An average access speed that is very close to the speed that is offered by the fastest 

technology and  

 Cost that is very close to the cheapest technology 

 

Storage Type in Memory System 

• The semiconductor memories such as registers, Static RAM and Dynamic RAM fast in 

access speed but are expensive 

• Used in small size and placed either inside or closest to the processor  

• Secondary storage devices which offer huge storage at lowest cost per bit are placed 

farthest away from the processor 

 

Levels of the Memory Hierarchy 
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Memory Hierarchy Pyramid 

 
 

Storage Systems 

• Classification of memory systems based on different attributes and their design  

• Attributes:  

 Material – Semiconductor, magnetic, optical 

 Accessing – Random, Sequential, Hybrid 

 Store/Retrieve – ROM, RMM and RWM 

 

Random-Access Memory (RAM) 

• Key features 

 RAM is packaged as a chip. 

 Basic storage unit is a cell (one bit per cell). 

 Multiple RAM chips form a memory 

• Types of RAM 

 Static RAM (SRAM) 

 Dynamic RAM (DRAM) 
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Static RAM: Basic Cell 

 
• Write: 

1. Drive bit lines (bit=1, bit=0) 

2. Select row 

• Read: 

1. Pre-charge bit and bit to Vdd 

2. Select row 

3. Cell pulls one line low 

4. Sense amp on column detects difference between bit and bit 

 

SRAM Organization: 16-word x 4-bit 
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Dynamic Random Access Memory (DRAM) 

• Each cell stores bit with a capacitor and transistor. 

• Value must be refreshed every 10-100 ms. 

• Sensitive to disturbances. 

• Slower and cheaper than SRAM. 

 

Basic DRAM Cell 

• Write: 

 Drive bit line and Select row 

• Read: 

 Pre-charge bit line to Vdd and Select row 

 Cell and bit line share charges 

o Here, very small voltage changes occurs on the bit line therefore Sense 

amplifier is used to detect changes 

 Apply Write to restore the value  

• Refresh 

 Just do a dummy read to every cell. 

 

 

• The state of the art DRAM cell only has one transistor.  The bit is stored in a tiny 

transistor. 

• The write operation is very simple.  Just drive the bit line and select the row by turning 

on this pass transistor. 

• For read, we will need to precharge this bit line to high and then turn on the pass  

transistor. 

• This will cause a small voltage change on the bit line and a very sensitive amplifier will 

be used to measure this small voltage change with respect to a reference bit line. 

• Once again, the value we stored will be destroyed by the read operation so an automatic 

write back has to be performed at the end of every read. 
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DRAM Organization 16 words x 8bit 

 

 
 

Reading DRAM Supercell (2,1) 

• Step 1(a): Row access strobe (RAS) selects row 2. 

• Step 1(b): Row 2 copied from DRAM array to row buffer. 
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• Step 2(a): Column access strobe (CAS) selects column 1. 

• Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually back to the 

CPU. 

 
 

64 MB DRAM Memory Module [8x8MB DRAM Chips] 
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Enhanced DRAMs 

1. Fast Page Mode DRAM (FPM DRAM) 

 In normal DRAM, we can only read and write M-bit at time because only one row 

and one column is selected at any time by the row and column address 

 In other words, for each M-bit memory access, we have to provide a row address 

followed by a  column address.   

 

Page Mode DRAM: Motivation 

• Regular DRAM Organization: 

 N rows x N column x M-bit 

 Read & Write M-bit at a time 

 Each M-bit access requires a 

RAS / CAS cycle 

• Fast Page Mode DRAM 

 N x M ―register‖ to save a 

row 

 

 
 

 
 

2. Extended data out DRAM (EDO DRAM) 

 It is the Enhanced FPM DRAM with more closely spaced CAS signals 

3. Synchronous DRAM (SDRAM) 

 It is driven with rising clock edge instead of asynchronous control signals. 

4. Double Data Rate synchronous DRAM (DDR SDRAM) 

 It is Enhancement of SDRAM that uses both clock edges as control signals. 

5. Video RAM (VRAM) 

 It is like FPM DRAM, but output is produced by shifting row buffer; and is 

 Dual ported to allow concurrent reads and writes 

 

Nonvolatile Memories 

• DRAM and SRAM are volatile memories 

 Lose information if powered off. 

• Nonvolatile memories retain value even if powered off. 

 Generic name is read-only memory (ROM). 

 Misleading because some ROMs can be read and modified. 



 

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com 
 

268 CS-704 Advanced Computer Architecture 

• Types of ROMs 

 Programmable ROM (PROM) 

 Erasable programmable ROM (EPROM) 

 Electrically erasable PROM (EEPROM) 

 Flash memory 

• Firmware 

 Program stored in a ROM 

o Boot time code, BIOS (basic input/output system) 

o graphics cards, disk controllers 

 

Disk Geometry 

 
 

Disk Geometry (Muliple-Platter View) 

• Aligned tracks form a cylinder. 

 
Disk Capacity 

• Capacity: maximum number of bits that can be stored. 

 Recording density (bits/in): number of bits that can be squeezed into a 1 inch 

segment of a track. 

 Track density (tracks/in): number of tracks that can be squeezed into a 1 inch 

radial segment. 

 Arial density (bits/in2): product of recording and track density. 
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Disk Operation (Multi-Platter View) 

 
 

Disk Access Time 

• Average time to access some target sector approximated by : 

 Taccess  =  Tavg seek +  Tavg rotation + Tavg transfer  

• Seek time (Tavg seek) 

 Time to position heads over cylinder containing target sector 

 Typical  Tavg seek = 9 ms 

• Rotational latency (Tavg rotation) 

 Time waiting for first bit of target sector to pass under r/w head. 

 Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min 

• Transfer time (Tavg transfer)  

 Time to read the bits in the target sector. 

• Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min. 

 

Disk Access Time Example 

• Given: 

 Rotational rate = 7,200 RPM 

 Average seek time = 9 ms. 

 Avg # sectors/track = 400. 

• Derived: 

 Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms. 

 Tavg transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec = 0.02 ms 

 Taccess  = 9 ms + 4 ms + 0.02 ms 

• Important points: 

 Access time dominated by seek time and rotational latency. 

 First bit in a sector is the most expensive, the rest are free. 

 SRAM access time is about  4 ns/doubleword, DRAM about  60 ns 

o Disk is about 40,000 times slower than SRAM,  

o 2,500 times slower then DRAM. 
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Logical Disk Blocks 

• The set of available sectors is modeled as a sequence of b-sized logical blocks (0, 1, 2, 

...) 

• Mapping between logical blocks and actual (physical) sectors 

 Maintained by hardware/firmware device called disk controller. 

 Converts requests for logical blocks into (surface, track, sector) triples. 

 

CPU-Memory Gap 

 
Summary 

• Memory hierarchy organization  

• Design of basic memory modules of DRAM and SRAM 

• Design and working of disk storages 

• Gap between the speed of processor and the storage devices - DRAM, SRAM and Disk 

is increasing with time 
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Lecture 26 

Memory Hierarchy Design 

(Concept of Caching and Principle of Locality) 

 

Today’s Topics 

• Recap: Storage trends and memory hierarchy 

• Concept of Cache Memory 

• Principle of Locality 

• Cache Addressing Techniques 

• RAM vs. Cache Transaction 

• Summary 

 

Recap: Storage Devices 

• Design features of semiconductor memories 

• SRAM  

• DRAM  

• Magnetic disk storage  

 

Speed and Cost per byte 

• DRAM is slow but cheap relative to SRAM  

• Main memory of the processor to hold moderately large amount of data and instructions 

• Disk storage is slowest and cheapest 

• Secondary storage to hold bulk of data and instructions 

 

CPU-Memory Access-Time 

• The gap between the speed of DRAM and Disk with respect to the speed of processor, 

as compared to that of the SRAM, is increasing very fast with time 

 

CPU-Memory Gap 
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Memory Hierarchy Principles 

• The speed of DRAM and CPU complement each other 

• Organize memory in hierarchy, based on the Concept of Caching; and  

 Principle of Locality 

 

1: Concept of Caching 

• staging area or temporary-place to:  

 store frequently-used subset of the data or instructions from the relatively 

cheaper, larger and slower memory; and  

 To avoid having to go to the main memory every time this information is needed 

 

Caching and Memory Hierarchy 

• Memory devices of different type are used for each value k – the device level 

• the faster, smaller device at level k, serves as a cache for the larger, slower device at 

level k+1 

• The programs tend to access the data or instructions at level k more often than they 

access the data at level k+1 

• Storage at level k+1 can be slower, but larger and cheaper per bit 

• A large pool of memory that costs as much as the cheap storage at the highest level 

(near the bottom in hierarchy) 

• serves data or instructions at the rate of the fast storage at the lowest level (near the top 

in hierarchy) 

 

Examples of Caching in the Hierarchy 
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2: Principle of Locality 

• Programs access a relatively small portion of the address space at any instant of time 

• E.g.; we all have a lot of friends, but at any given time most of us can only keep in touch 

with a small group of them  

 
 

Types of Locality 

• Temporal locality is the locality in time which says if an item is referenced, it  will tend to 

be referenced again soon. 

• Spatial locality is the locality in space.  It says if an item is referenced, items whose 

addresses are close by tend to be referenced soon 

 

• A well-written program tends to reuse data and instructions which are: 

 either near those they have used recently  

 or that were recently referenced themselves  

 

• Spatial locality:  Items with nearby addresses (i.e., nearby in space) be located at the 

same level, as they tend to be referenced close together in time 

 

• Temporal locality:  Recently referenced items (i.e., referenced close in time) be placed at 

the same memory level, as they are likely to be referenced in the near future 

 

• Locality Example: Program 

  sum = 0; 

for (i = 0; i < n; i++) 

    sum + = a[i]; 

return sum; 
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• Spatial Locality: All the array-elements a[i] or data, reference in succession at each loop 

iteration, so all the array elements be located at the same level. All the instructions of the 

loop are referenced repeatedly in sequence therefore be located at the same level 

 

• Temporal Locality: The data, sum is referred each iteration; i.e., recently referred data is 

referred in each iteration. The Instructions of a loop, sum += a[i] Cycle through loop 

repeatedly  

 

Based on Locality Principle How Memory Hierarchy works? 

• The memory hierarchy will keep the more recently accessed data items closer to the 

processor because chances are the processor will access them again soon 

• NOT ONLY do we move the item that has just been accessed closer to the processor, 

but we ALSO move the data items that are adjacent to it 

 

Hierarchy List 

• Register File Level 0  Datapath  

• L1   Level 1  Cache on Chip  

• L2   Level 2  External Cache 

• Main memory Level 3  System Board DRAM 

• Disk cache Level 4  Disk drive 

• Disk  Level 5  Magnetic disk 

• Optical  Level 6  CDs etc- bulk storage 

• Tape  Level 7  Huge cheapest Storage 

 

Intel Processor Cache 

• 80386 –  no on chip cache 

• 80486 –  8k byte lines 

• Pentium (all versions)  

 two on chip L1 caches 

 Data & instructions 

• Pentium 4 

• L1 caches Two 8k bytes 

• L2 cache 256k 

 Feeding both L1 caches 

 

Cache Devices 

• Cache device is a small SRAM which is made directly accessible to the processor; and  

• DRAM, which is accessible by the cache as well as by the user or programmer, is placed 

at the next higher level as the Main-Memory 

• Larger storage such as disk, is placed away from the main memory 
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Caching in a Memory Hierarchy 

 

 
 

Cache Organization 
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Cache Addressing – Direct Addressing 

 
 

Memory Hierarchy Terminology 

 
• Hit: the data the processor wants to access appears in some block in the upper level 

(example: Block X)  

 Hit Rate: the fraction of memory access that are found in the upper level (i.e., 

HIT) 

 Hit Time: Time to access the upper level which consists of  

i. RAM access time   

ii. Time to determine if this is hit or miss 

 

• Miss: data needed by the processor is not found in the upper level and has to be 

retrieved from a block in the lower level (Block Y) 

 Miss Rate  = 1 - (Hit Rate) 

 Miss Penalty is the sum of the time: 

i. to replace a block in the upper level  

ii. to deliver the block the processor 

• Recommendation: Hit Time must be much much smaller than Miss Penalty, otherwise 

no need for memory hierarchy 
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Cache Hit 

• CPU needs object d, which is stored 

in some block b, say 14 of the (k+1) 

memory and corresponding block 2 

of the cache at level k 

 

 Program finds block b (14) in 

the cache at level k.   

 Object d is transferred to 

CPU 

 
 

Cache Miss 

• Program needs object A, which is 

stored in some block C say block 12 

at level K+1 

• Cache miss 

 

 Block C (12 from K+1) is not 

at level k- It is cache Miss 

 Hence, level k cache  must 

fetch it from level k+1; and  

 transfer object A to the CPU 

 
Placement and Replacement Policies 

• If level k cache is full, then some current block must be replaced (evicted), which one is 

the ―victim‖? It depends upon: 

 Cache design that defines the relationship of cache addresses with the higher 

level memory addresses  

 Placement policy that determines where can the new block go? and 

 Replacement policy that defines which block should be evicted?  

 

Types of misses 

• Cold (compulsory) miss: Occurs when the cache is empty; at the beginning of the cache 

access. 

• Capacity miss: Occurs when the set of active cache blocks (working set) is larger than 

the cache. 

• Conflict miss: Occurs when the level k cache is large enough, but multiple data objects 

all map to the same level k block. 
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Example: Conflict Miss  

• If the placement policy is based on the direct addressing, then: 

 Block n at level k+1 must be placed in block (n mod 4) at level k 

• In thisd case, referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time as 8 mod 4 = 

0, as both the blocks 0 and 8 of level k+1 are placed at the location 00 at level k 

 

Cache Design 

• We have observed that more than one blocks from the level k+1 memory (say of the 

main memory), having N blocks, may be placed at the same location (given by N MOD 

M) in the level-k memory (say cache) having M blocks 

• Hence, a tag must be associated with each block in the level-k (cache) memory to 

identify its position in the level k+1 memory (Main memory) 

 

Direct Mapping Example 

• The 16 MB main memory has 24 address bus 

• It is organized in 32-bit blocks 

• 16 K word (64 KB) cache requires 16-bit address and 8-bit tag 

 

 
 

Direct Mapping Address Structure 

 
 

• 24 bit address 

• 2 bit word identifier (4 byte block) 

• 22 bit block identifier – for the main memory 
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 8 bit tag (=22-14) 

 14 bit slot or line or index value for cache 

• No two blocks in the same line have the same Tag field 

• Check contents of cache by finding line and checking Tag 

 

Direct Mapping Cache Organization 

 
 

Cache Design:  Another Example 

• Let us consider another example with realistic numbers: 

• Assume we have a 1 KB direct mapped cache with block size equals to 32 bytes 

• In other words, each block associated with the cache tag will have 32 bytes in it (Row 1). 
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Address Translation – Direct Mapped Cache 

• Assume the k+1 level main memory of 4GB, with Block Size equals to 32 bytes, and a k 

level cache of 1Kbyte  

 
 

Cache Design 

• With Block Size equals to 32 bytes, the 5 least significant bits of the address will be used 

as byte select within the cache block. 

• Since the cache size is 1K byte, the upper 32 minus 10 bits, or 22 bits of the address will 

be stored as cache tag 

• The rest of the address bits in the middle, that is bit 5 through 9, will be used as Cache 

Index to select the proper cache block entry 
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Lecture 27 

Memory Hierarchy Design 

(Cache Design Techniques) 

 

Today’s Topics 

• Recap: Caching and Locality 

• Cache Performance Metrics 

• Cache Designs 

• Addressing Techniques 

• Summary 

 

Recap: Memory Hierarchy Principles 

• High speed storage at the cheapest cost per byte 

• Different types of memory modules are organize in hierarchy, based on the: 

 Concept of Caching  

 Principle of Locality 

 

Recap: Concept of Caching 

• A small, fastest and most expensive storage be used as the staging area or temporary-

place  

 Store frequently-used subset of the data or instructions from the relatively 

cheaper, larger and slower memory; and  

 To avoid having to go to the main memory every time this information is needed 

 

Recap: Principle of Locality 

• To obtain data or instructions of a program, the processor access a relatively small 

portion of the address space at any instant of time 

• There are two different types of locality 

 Temporal locality  

 Spatial locality 

 

Recap: Working of Memory Hierarchy 

• The memory hierarchy will keep the more recently accessed data items closer to the 

processor because chances are the processor will access them again soon. 

• NOT ONLY do we move the item that has just been accessed closer to the processor, 

but we ALSO move the data items that are adjacent to it 

Recap: Cache Devices 

• Cache device is a small SRAM which is made directly accessible to the processor 

• Cache sits between normal main memory and CPU as data and instruction caches and 

may be located on CPU chip or as a module 

• Data transfer between cache - CPU, and cache- Main memory is performed by the 

cache controller 

• Cache and main memory is organized in equal sized blocks 
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Recap: Cache/Main Memory Data Transfer 

• An address-tag is associated with each cache block that defines the relationship of the 

cache block with the higher-level memory (say main memory) 

• Data Transfer between CPU and Caches takes place as the word transfer 

• Data transfer between Cache and the Main memory takes place as the block transfer 

 

Recap: Cache operation 

• CPU requests contents of main memory location 

• Controller checks cache blocks for this data 

• If present, i.e., HIT, it gets data or instruction from cache - fast 

• If not present, i.e., MISS, it reads required block from main memory to cache, then 

deliver from cache to CPU 

 

Cache Memory Performance 

• Miss rate, Miss Penalty, and Average access time are the major trade-off of Cache 

Memory performance 

• Miss Rate: is the fraction of memory accesses that are not found in the level-k memory 

or say the cache 

 Miss Rate = number of misses / total memory accesses 

• As, Hit rate is defined as the fraction of memory access that are found in the level-k 

memory or say the cache, therefore Miss Rate = 1 – Hit Rate 

• Miss Penalty is the memory stall cycles – i.e., the number of cycles CPU is stalled for a 

memory access; and is determined by the sum of: 

1. The Cycles (time) to replace a block in the cache, upper level and 

2. The Cycles (time) to deliver the block to the processor 

• Average Access Time = Hit Time x (Hit Rate)  +  Miss Penalty x Miss Rate 

• The performance of a CPU is the product of clock cycle time and sum of CPU clock 

cycles and memory stall cycles 

• CPU Execution Time = (CPU Clock Cycles + Memory Stall Cycles) x clock cycle time 

Where,  

• Memory stall cycles   = 

= Number of Misses x Miss Penalty 

= IC x (Misses / Instructions)x Miss Penalty 

= IC x [(Memory Access / Instructions)] x Miss Rate x Miss Penalty  

• Number of cycles for memory read and for memory write may be different,  

• Miss penalty for read may be different from the write 

• Memory Stall Clock Cycles = Memory read stall cycles + Memory Write stall cycles 

 

Cache Performance Example 

• Assume a computer has CPI=1.0 when all memory accesses are hit; the only data  

accesses are load/store access; and these are 50% of the total instructions 

• If the miss rate is 2% and miss penalty is 25 clock cycles, how much faster the computer 

will be if all instructions are HIT  

• Execution Time for all Hit = IC x 1.0 x cycle time 
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• CPU Execution time with real cache = CPU Execution time + Memory Stall time 

• Memory Stall Cycles = 

      = IC x (Instruction access + data access) per instruction x miss rate x miss penalty  

      = IC (1+ 0.5) x 0.02 x 25  

      = IC x 0.75 

• CPU Execution time (with cache) =   

      = (IC x 1.0 + IC x 0.75) x clock time 

      = 1.75 x IC x Cycle time 

Computer with no cache misses is 1.75 times faster 

 

Block Size Tradeoff: Miss Rate 

• Miss rate probably will go to infinity. 

It is true that if an item is accessed, 

it is likely that it will be accessed 

again soon. 

• This is called the ping pong effect 

• The data is acting like a ping pong 

ball bouncing in and out of the 

cache.  

• MISS RATE is not the only cache 

performance metrics, we have to 

worry about the miss penalty 

 

Block Size Tradeoff: Miss Penalty 

 

Block Size Tradeoff: Average Access Time 

• Block size passes a certain point, 

the miss rate actually goes up. 

• Block size passes a certain point, 

the miss rate actually goes up.  

• Average Access Time 

• Performance metric than the miss 

rate or miss penalty   
 

 
Block Size Tradeoff: Average Access Time 
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• Not only is the miss penalty is increasing,  

• Miss rate is increasing as well 

 

How do you Design a Cache? 

 

 
 

• read:  data <= Mem [Physical Address] 

• write: Mem [ Physical Address] <= Data 

 

 
 

Categories of Cache Organization 

• Cache can be organized in three different way based on the block placement policy 

• The block placement policy defines where a block from main (Physical) memory be 

placed in the cache  

• There exist three block placement policies namely:  

 Direct Mapped 

 Fully Associative 

 Set Associative 
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Direct Mapped Cache Organization 

• Direct mapped cache organization is one where each block has only one place it can 

appear in the cache. 

 

 
 

Direct Mapping Example 

• For example, a computer uses 16 MB main memory and IMB cache. 

• These memories are organized in 4-byte blocks 

• That is, the main memory has  IM Blocks and the cache is organized in 256K blocks 

each of 4-byte 

• Each block in the main as well as in cache is address by a line-number 

• Now in order to understand the placement policy, the main memory is logically divided 

into 16 sections each of 256K blocks (lines) 

• Each section is represented by a Tag number 

 

Direct Mapping Characteristics 

• Each block of main memory maps to only one cache line 

• e.g., the block number at line 339CH from any of the 16 sections must be place at line 

number 0CE7 with corresponding tag in the cache 

• This shows that the direct mapping is given by: (Block address) MOD (Number of Blocks 

in the cache) 

  (00339C)   MOD (3FFF) = 0CE7 

  (16339C)   MOD (3FFF) = 0CE7 
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Direct Mapping Address Structure 

 
• 24 bit address 

• 2 bit word identifier (4 byte block) 

• 22 bit block identifier – for the main memory 

 8 bit tag (=22-14) 

 14 bit slot or line or index value for cache 

• No two blocks in the same line have the same Tag field 

• Check contents of cache by finding line and checking Tag 

 

Direct Mapping Cache Organization 

• Least Significant w bits identify unique word 

• Next Significant s bits specify one memory block 

• The MSBs are split into a cache line field r and a tag of s-r (most significant) 

 
Cache Design:  Another Example 

• Let us consider another example with realistic numbers: 

• Assume we have a 1 KB direct mapped cache with block size equals to 32 bytes 

• In other words, each block associated with the cache tag will have 32 bytes in it (Row 1). 
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Address Translation – Direct Mapped Cache 

• Assume the k+1 level main memory of 4GB, with Block Size equals to 32 bytes, and a k 

level cache of 1Kbyte  

 
 

Direct Mapping pros & cons 

• Simple, Inexpensive 

• Fixed location for given block 

 If a program accesses 2 blocks that map to the same line repeatedly, cache 

misses are very high 

• Valid bit is included to see if the cache contents are valid … explanation  

 

Associative Mapping 

• A main memory block can load into any line of cache 

• Memory address is interpreted as tag and word 

• Tag uniquely identifies block of memory 

• Every line‘s tag is examined for a match 

 

Fully Associative Cache Organization 

• Forget about the Cache Index 

• Place any block of the main memory any where in the cache 
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• Store all the upper bits of the address (except Byte select) that is associated with the 

cache block as the cache tag and have one comparator for every entry. 

 
 

Associative Mapping Example 
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Associative Mapping: Address Structure 

 

 
 

• 22 bit tag stored with each 32 bit block of data 

• Compare tag field with tag entry in cache to check for hit 

• Least significant 2 bits of address identify which 16 bit word is required from 32 bit data 

block 

• e.g. 

Address  Tag  Data  Cache line 

FFFFC   3FFFFC 24682468 3FFF 

Fully Associative 

 
 

• While the direct mapped cache is on the simple end of the cache design spectrum, the 

fully associative cache is on the most complex end. 

• It is the N-way set associative cache carried to the extreme where N in this case is set to 

the number of cache entries in the cache. 

• In other words, we don‘t even bother to use any address bits as the cache index. 

• We just store all the upper bits of the address (except Byte select) that is associated with 

the cache block as the cache tag and have one comparator for every entry. 

 

Fully Associative Cache Organization 

• The address is sent to all entries at once and compared in parallel and only the one that 

matches are sent to the output.  

• This is called an associative lookup. 

• Hardware intensive.  
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• Fully associative cache is limited to 64 or less entries. 

• Conflict miss is zero for a fully associative cache. Assume we have 64 entries here.  The 

first 64 items we accessed can fit in. 

• But when we try to bring in the 65th item, we will need to throw one of them out to make 

room for the new item.   

• This bring us to the cache misses of type Capacity Miss 

 

Set Associative Mapping Summary 

• Address length = (s + w) bits 

• Number of addressable units = 2s+w words or bytes 

• Block size = line size = 2w words or bytes 

• Number of blocks in main memory = 2d 

• Number of lines in set = k 

• Number of sets = v = 2d 

• Number of lines in cache = kv = k * 2d 

• Size of tag = (s – d) bits 

 

Set Associative Mapping 

• Cache is divided into a number of sets 

• Each set contains a number of lines 

• A given block maps to any line in a given set 

• e.g. Block B can be in any line of set i 

• e.g. 2 lines per set 

• 2 way associative mapping 

• A given block can be in one of 2 lines in only one set 

 

Set Associative Cache 

• This organization allows to place a block in a restricted set of places in the cache, where 

a set is a group of blocks in the cache at each index value 

• Here a block is first mapped onto a set (i.e., mapped at an index value and then it can be 

placed anywhere within that set 

• The set is usually chosen by bit-selection; i.e.,  

• (block address) MOD (Number of sets in cache) 

• If there are n-blocks in a set, the cache placement is referred to as the n-way set 

associative 

 

• This is called a 2-way set associative cache because there are two cache entries for 

each cache index.  Essentially, you have two direct mapped cache works in parallel. 

• This is how it works: the cache index selects a set from the cache. The two tags in the 

set are compared in parallel with the upper bits of the memory address. 

• If neither tag matches the incoming address tag, we have a cache miss. 

• Otherwise, we have a cache hit and we will select the data on the side where the tag 

matches occur. 

• This is simple enough.  What is its disadvantages? 
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Set Associative Mapping Address Structure 

 
• Use set field to determine cache set to look in 

• Compare tag field to see if we have a hit, e.g 

Address  Tag Data  Set number 

1FF 7FFC  1FF 12345678 1FFF 

001 7FFC  001 11223344 1FFF 

Two Way Set Associative Mapping Example 

 

 
 

Two-way Set Associative Cache 

• Let us consider this example 2-way set Associative Cache 

• Here, two cache entries are possible for each index 

• i.e., two direct mapped caches  are working in parallel 
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Working of Two-way Set Associative Cache 

• Let us see how it works? 

 The cache index selects a set from the cache. The two tags in the set are 

compared in parallel with the upper bits of the memory address. 

 If neither tag matches the incoming address tag, we have a cache miss 

 Otherwise, we have a cache hit and we will select the data on the side where the 

tag matches occur. 

• This is simple enough.  What are its disadvantages? 

 

Disadvantage of Set Associative Cache 

• First of all, a N-way set associative cache will need N comparators instead of just one 

comparator (use the right side of the diagram for direct mapped cache). 

• A N-way set associative cache will also be slower than a direct mapped cache because 

of this extra multiplexer delay. 

• Finally, for a N-way set associative cache, the data will be available AFTER the hit/miss 

signal becomes valid because the hit/miss is needed to control the data MUX. 

• For a direct mapped cache, that is everything before the MUX on the right or left side, 

the cache block will be available BEFORE the hit/miss signal (AND gate output) because 

the data does not have to go through the comparator. 

• This can be an important consideration because the processor can now go ahead and 

use the data  without  knowing if it is a Hit or Miss.   

• If it assumes that it is a hit; it will be ahead by 90% of the time as cache hit rate is in the 

upper 90% range, and for other 10% of the time that it is wrong,  just make sure that it 

can recover 

• We cannot play this speculation game with a N-way set - associative cache because as 

we said earlier, the data will not be available to until the hit/miss signal is valid. 
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Lecture 28 

Memory Hierarchy Design 

(Cache Design and policies) 

Today’s Topics 

• Recap: Cache Addressing Techniques 

• Placement and Replacement Policies 

• Cache Write Strategy 

• Cache Performance Enhancement  

• Summary 

 

Recap: Block Size Trade off 

• Impact of block size on the cache performance and categories of cache design 

• The trade-off of the block size verses the Miss rate, Miss Penalty, and Average access 

time , the basic CPU performance matrices 

 The larger block size reduces the miss rate, but If block size is too big relative to 

cache size, miss rate will go up; and  

 Miss penalty will go up as the block size increases; and  

 Combining these two parameters, the third parameter, Average Access Time 

 

Recap: Cache Organizations 

• Cache organizations 

• Block placement policy, we studied three cache organizations. 

 

Recap: Cache Organizations 

• Direct Mapped where each block has only one place it can appear in the cache – 

Conflict Miss 

• Fully Associative Mapped where any block of the main memory can be placed anywhere 

in the cache; and 

• Set Associative Mapped which allows to place a block in a set of places in the cache 

 

Memory Hierarchy Designer’s Concerns 

1. Block placement: Where can a block are placed in the upper level?  

2. Block identification: How is a block found if it is in the upper level? 

3. Block replacement: Which block should be replaced on a miss? 

4. Write strategy: What happens on a write?  

Block Placement Policy 

• Fully Associative: Block can be placed anywhere in the upper level (Cache) 

 E.g. Block 12 from the main memory can be place at block 2, 6 or any of the 8 

block locations in cache  
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• Set Associative: Block can be placed any where in a set in upper level (cache) 

• The set number in the upper level given as:  

• (Block No) MOD (number of sets)  

• E.g., an 8-block, 2-way set associative mapped cache, has 4 sets [0-3] each of two 

blocks;  therefore and block 12 or 16 of main memory can go anywhere in  

 set # 0  as (12 MOD 4 = 0) and  

 (16 MOD 4 = 0) 

• Similarly, block 14 can be placed at any of the 2 locations in set#2 (14 MOD 4 = 2)  

 
• Direct Mapped: (1 way associative) Block can be placed  at only one specific location in 

upper level (Cache) 

• The location in the cache is given by: 

• Block number MOD No. of cache blocks 

• E.g., the block 12 or block 20 can be place at location 4 in cache having 8 blocks as:  

• 12 MOD 8 = 4 
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Block Identification  

• How a block is found if it is in the upper level? Tag/Block 

• A TAG is associated with each block frame 

• The TAG gives the block address 

• All possible TAGS, where a block may be placed are checked in parallel 

• Valid bit is used to identify whether the block contains correct data  

• No need to check index or block offset 

 

• Direct Mapped: 

 Lower Level (Main) memory: 4GB – 32-bit address  
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Block Replacement Policy 

• In case of cache miss, a new block needs to be brought in 

• If the existing block locations, as defined by Block placement policy, they  are filled,  

• then an existing block has to be fired  based on  

 Cache mapping; and 

 some block replacement policy 

 

• Random: replace any block  

 it is simple and easiest to implement 

 The candidate for replacement are randomly selected 

 Some designers use pseudo random block numbers 

 

• Least Recently Used (LRU): replace the  block either never used of used long ago 

 It reduces the chances of throwing out information that may be needed soon 

 Here, the access time and number of times a block is accessed is recorded 

 The block replaced is one that has not been used for longest time 

 E.g., if the blocks are accessed in the sequence 0,2,3,0, 4,3,0,1,8,0 the victim to 

replace is block 2 

 

• First-in, First-out (FIFO): the block first place in the cache is thrown out first; e.g., if the 

blocks are accessed in the sequence 2,3,4,5,3,4  

 then to bring in a new block in the cache, the block 2 will be thrown out as it is 

the oldest accessed block in the sequence 

  FIFO is used as approximation to LRU as LRU can be complicated to calculate  

 

• Conclusion: 

 

Associativity 2-way 4-way 8-way 

Size LRU Random LRU Random LRU Random 

16 KB 5.0% 5.7% 4.7% 5.3% 4.4% 5.0% 

64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5% 

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12% 
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Write Strategy 

• Must not overwrite a cache block unless main memory is up to date 

• Multiple CPUs may have individual caches 

• I/O may address main memory directly 

• Memory is accessed for read and write purposes 

• The instruction cache accesses are read  

• Instruction issue dominates the cache traffic as the writes are typically 10% of the cache 

access 

• Furthermore, the data cache are 10%-20% of the overall memory access are write 

• In order to optimize the cache performance, according to the Amdahl‘s law, we make the 

common case fast 

• Fortunately, the common case, i.e., the cache read, is easy to make fast as: 

• Read can be optimized by making the tag-checking and data-transfer in parallel 

•  Thus, the cache performance is good 

• However, in case of cache-write, the cache contents modification cannot begin until the 

tag is checked for address-hit 

• Therefore the cache-write cannot begin in parallel with the tag checking 

• Another complication is that the processor specifies the size of write which is usually a 

portion of the block 

• Therefore, the write needs consideration 

 

 Write back — the information is written only to the block in the cache. The 

modified cache block is written to main memory only when it is replaced 

o Pros and Cons 

o No write to the lower level for repeated writes to cache 

o  a dirty bit is commonly used to indicate the status as the cache block is 

modified (dirty) or not modified (clean) 

o Reduce memory-bandwidth requirements, hence the reduces the memory  

power requirements 

 

 

 Write through —The information is written to both the block in the cache and to 

the block in the lower-level memory 

o Pros and Cons 

o Simplifies the replacement procedure  

o the block is always clean, so unlike write-back strategy the read misses 

cannot result in writes to the lower level 

o always combined with write buffers so that don‘t wait for lower level 

memory 

o Simplifies the data-coherency as the next lower level has the most recent 

copy (we will discuss this later) 
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Write Buffer for Write Through 

 

• Write buffer is just a FIFO: Typical number of entries: 4 

• Once the data is written into the write buffer and assuming a cache hit, the CPU is done 

with the write.  

• The memory controller will then move the write buffer‘s contents to the real memory 

behind the scene 

• DRAM cycle time sets the upper limit on how frequent you can write to the main 

memory. 

• The write buffer works as long as the frequency of store, with respect to the time, is not 

too high, i.e., 

• Store frequency << 1 / DRAM write cycle 

• If the stores are too close together or the CPU time is so much faster than the DRAM 

cycle time, you can end up overflowing the write buffer and the CPU must stop and wait. 

• A Memory System designer‘s nightmare is when the Store frequency with respect to 

time  approaches 1  over the DRAM Write Cycle Time, i.e.,    

• The CPU Cycle Time   <=  DRAM Write Cycle Time 

• We call this Write Buffer Saturation 

Write Buffer Saturation 

• In that case, it  does NOT matter how big you make the write buffer, the write buffer will 

still overflow because you are simply feeding things in it faster than you can empty it 

• There are two solutions to this problem: 

• The first solution is to get rid of this write buffer and replace this write through cache with 

a write back cache 

 

 
Write-Miss Policy 

• In case of write-miss, two options are used, these options are : 

• Write Allocate: A block is allocated on a write-miss, followed by the write hit action 

• No-write Allocate: Usually the write-misses do not affect the cache, rather the block is 

modified only in the lower level memory, i.e.,  
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• Let‘s look at our 1KB direct mapped cache again. 

• Assume we do a 16-bit write to memory location 0x000000 and causes a cache miss in 

our 1KB direct mapped cache that has 32-byte block select. 

• After we write the cache tag into the cache and write the 16-bit data into Byte 0 and Byte 

1, do we have to read the rest of the block (Byte 2, 3, ... Byte 31) from memory? 

• If we do read the rest of the block in, it is called write allocate. But stop and think for a 

second.  Is it really necessary to bring in the rest of the block on a write miss? 

• True, the principle of spatial locality implies that we are likely to access them soon. 

• But the type of access we are going to do is likely to be another write. 

• So if even if we do read in the data, we may end up overwriting them anyway so it is a 

common practice to NOT read in the rest of the block on a write miss. 

• If you don‘t bring in the rest of the block, or use the more technical term, Write Not 

Allocate, you better have some way to tell the processor the rest of the block is no longer 

valid. 

• This brings us to the topic of sub-blocking. 

• The blocks stay out of the cache in no-write allocate until the program tries to read the 

blocks, but  

• The blocks that are only written will still be in the cache with write allocate 

• Let us discuss it with the help of example  

• Let‘s look at our 1KB direct mapped cache again 

• Assume we do a 16-bit write to memory location 0x000000 and causes a cache miss in 

our 1KB direct mapped cache that has 32-byte block select. 

 
 

• Assume we do a 16-bit write to memory location 0x000000 and causes a cache miss in 

our 1KB direct mapped cache that has 32-byte block select 

 

• After we write the cache tag into the cache and write the 16-bit data into Byte 0 and Byte 

1, do we have to read the rest of the block (Byte 2, 3, ... Byte 31) from memory? 

• If we do read the rest of the block in, it is called write allocate.  

• True, the principle of spatial locality implies that we are likely to access them soon. 

• But the type of access we are going to do is likely to be another write. 
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• So if even if we do  read in the data, we may end up  overwriting them anyway so it is a 

common practice to NOT read in the rest of the block on a write miss. 

• If you don‘t bring in the rest of the block, or use the more technical term, Write Not 

Allocate, you better have some way to tell the processor the rest of the block is no longer 

valid. 

• This bring us to the topic of sub-blocking. 

 

• As the principle of spatial locality implies that we are likely to access them soon. 

• But the type of access we are going to do is likely to be another write. 

• So even if we do read in the data, we may end up  overwriting them anyway so it is a 

common practice to NOT read in the rest of the block on a write miss. 

• If you don‘t bring in the rest of the block, or use the more technical term, Write Not 

Allocate, you better have some way to tell the processor the rest of the block is no longer 

valid. 

 

Example: No write-allocate verses write allocate 

• Let us consider a fully associative write-back cache with cache entries that start empty  

• Consider the following sequence of five memory operations and find 

• The number of hits and misses when using no-write allocate verses write allocate 

Write Mem [100] 

Write Mem [100] 

Read Mem [200] 

Write Mem [200] 

Write Mem [100] 

 

• For no-write allocate, the address [100] is not in the cache (i.e., its tag is not in the cache 

• So the first two writes will result in MISSES 

• Address [200] is also not in the cache, the reed is also miss 

• The subsequent write [200] is a hit 

• The last write [100] is still a miss 

• The result is 4 MISSes and 1 HIT 

• For the write-allocate policy 

• The first access to 100 and 200 are MISSES 

• The rest are HITS as [100] and [200] are both found in the cache 

• The result is 2 MISSes and 3 HITs 

• Conclusion 

 Either write miss policy could be used with the write-through or write-back 

 Normally 

 Write-back caches use write-allocate, hopping that the subsequent write to the 

block will be captured by the cache 

 Write-through caches often use No Write Allocate, the reason is that even if there 

is a subsequent write to the block, the write must go to the lower level memory 
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Lecture 29 

Memory Hierarchy Design 

Cache Performance Enhancement by: 

Reducing Cache Miss Penalty 

Today’s Topics 

• Recap: Cache Design  

• Cache Performance  

• Reducing Miss Penalty 

• Summary 

 

Recap: Memory Hierarchy Designer’s Concerns 

• Block placement: Where can a block be placed in the upper level?  

• Block identification: How is a block found if it is in the upper level? 

• Block replacement: Which block should be replaced on a miss? 

• Write strategy: What happens on a write?  

 

Recap: Write Buffer for Write Through 

• cache write strategies 

• write back  

• write through  

• use of write-buffer 

 

Recap: Write Buffer for Write Through 

• level-2 cache is introduce in between the Level-1 cache and the DRAM main memory 

 Write Allocate and  

 No-Write Allocate 

 

Recap: Write Miss Policies 

• Write Allocate:  

 A block is allocated in the cache on a write miss, i.e.,  the block to be written is 

available in the cache 

• No-Write Allocate:  

 The blocks stay out of the cache until the program tries to read the blocks; i.e., 

the block is modified only in the lower level memory 

 

Impact of Caches on CPU Performance 

• CPU Execution Time equation  

• CPU (ex-Time) = (CPU Exe. clock cycle + Memory Stall cycles) x Clock Cycle Time 

 

Example 

• Assumptions 

 the cache miss penalty of 100 clock cycles  

 all instructions normally take 1 clock cycle 

 Average miss rate is 2% 
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 Average memory references per instruction = 1.5 

 Average number of cache misses per 1000 inst. = 30 

• Find the impact of cache on performance of CPU considering both the misses per 

instruction and miss rate 

• CPU Time =  

 (CPU Exe. clock cycle + Memory Stall cycles) x Clock Cycle Time 

• CPU Time with cache  (including cache miss) 

 = (IC x (1.0 + (30/1000 x 100) x clock cycle time 

 = IC x 4.00 x clock cycle time 

• CPU Time with cache  (including miss rate) 

 = (IC x (1.0 + (1.5 x 2% x 100) x clock cycle time 

 = IC x 4.00 x clock cycle time 

 

Cache Performance (Review) 

• Number of Misses or miss rate 

• Cost per Miss or miss penalty 

• Memory stall clock cycles equal to the sum of  

 IC x Reads per inst.  x Read miss rate x Read Miss Penalty; and  

 IC x writes per inst.  x Write Miss Rate x Write Miss Penalty 

 (Number of reads x read miss rate x read miss penalty) 

+ 

(Number of write x write miss rate x write miss penalty) 

• Averaging the read and write miss rate 

• Memory stall clock cycles =  

•  Number of memory access x Misses rate x miss penalty 

• Average Memory Access Time =  

•    Hit Time x Misses rate x miss penalty 

• Note that the average memory access time is an indirect measure of the CPU 

performance and is not substitute for the Execution Time 

• However, this formula can decide about the split caches (i.e., instruction cache and data 

cache) or unified cache 

• E.g., if we have to find out which of these two types of caches has lower miss rate we 

can use this formula as follows: 

 

Example: 

• Statement: Let us consider 32KB unified cache with misses per 1000 instruction equals 

43.3 and instruction/data split caches each of 16KB with instruction cache misses per 

1000 as 3.82 and data cache as 40.9; Assume that  

 36% of the instructions are data transfer instructions;  

 74% of memory references are instruction references; and 

 hit takes 1 clock cycle where the miss penalty is 100 cycles and  

 a load or store takes one extra cycle on unified cache 
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• Assuming write-through caches with write-buffer and ignore stalls due to write buffer – 

Find the average memory access time in each case 

• Note to solve this problem we first find the miss rate and then average memory access 

time 

 

Solution: 

1. Miss Rate = (Misses/1000) / (Accesses/ inst.) 

 Miss Rate 16KB Inst = (3.82/1000) /1.0  = 0.0038 

 Miss Rate 16KB data = (40.9/1000) /0.36 = 0.114 

 As about 74% of the memory access are instructions therefore overall miss rate 

for split caches = (74% x 0.0038) + (26% x 0.114) = 0.0324 

 Miss Rate 32KB unified = (43.3/1000) /(1+0.36) = 0.0318 

 i.e., the unified cache has slightly lower miss rate 

 

2. Average Memory Access Time  

= %inst x (Hit time + Inst. Miss rate x miss penalty)  

+  

   %data x (Hit time + data Miss rate x miss penalty) 

 

 Average Memory Access Time split  

= 74% x (1 + 0.0038 x 100) + 26% x (1 + 0.114 x 100) = 4.24 

 Average Memory Access Time unified  

= 74%x (1 + 0.0.0318 x 100) + 26% x (1+1+0.0318 x 100) = 4.44 

 i.e., the split caches have slightly better average access time and also avoids 

Structural Hazards 

 

Improving Cache Performance 

• Average memory access time gives framework to optimize the cache performance 

• The Average memory access time formula: 

• Average Memory Access time = Hit Time + Miss Rate x Miss Penalty  

Four General Options 

1. Reduce the miss penalty, 

2. Reduce the miss rate,  

3. Reduce miss Penalty or miss rate via    Parallelism 

4. Reduce the time to hit in the cache  

 

Reducing Miss Penalty 

1. Multilevel Caches 

2. Critical Word first and Early Restart  

3. Priority to Read Misses Over write Misses 

4. Merging Write Buffers 

5. Victim Caches  
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1: Multilevel Caches (to reduce Miss Penalty) 

• This technique ignores the CPU but concentrates on the interface between cache and 

maim memory 

• Multiple levels of caches 

• Tradeoff between cache size (cache effectiveness and cost (access time) a small fastest 

memory is used as level-1 cache 

• Performance Analysis 

• Average access Time is:  

• Access Time average  

 = Hit Time L1 + Miss Rate L1 x Miss Penalty L1 

 Where, Miss Penalty L1  

 = Hit Time L2 + Miss Rate L2 x Miss Penalty L2 

 

• The Average memory access time  

  = Hit Time L1 + Miss Rate L1 x (Hit Time L2 + Miss Rate L2 x Miss Penalty L2 ) 

 

• Stall/instruction average  

= Misses per instructionL1 x Hit Time L2 + Misses per instructionL2 x Miss PenaltyL2  

 

• Local Miss Rate: Measure of misses in a cache divided by the total number of misses in 

this cache. 

 

• Global Miss Rate: Measure of the number of misses in the cache divided by the total 

number of memory access generated by the CPU 

 1st level cache = Miss Rate L1  

 2nd level cache = Miss Rate L1 x Miss Rate L2 

 

• Example: Find the local and global miss rates, the Average Memory Access Time and 

Average memory stall cycles per instruction, given that for 1000 reference with 40 

misses in L1 cache and 20 in L2 Cache;  

• Assume: 

 miss penalty for L2 cache-memory = 100 clock cycles  

 hit time for L2 cache is 10 clock cycle 

 Hit time for L1 cache is 1 Clock cycle 

 Memory Reference per instruction = 1.5  

• Solution: 

• Miss rate for either local or global  

• L1 cache is same = 4% [(40/1000)x100] 

• Local Miss Rate for L2 = 50% [20/40] 

• Global Miss Rate for L2 cache = 2% [(20/1000)x100] 

• Average Memory Access time 

  = Hit Time L1 + Miss Rate L1 x Miss Penalty L1 ..(1) 

• where, Miss Penalty L1 

  = Hit Time L2+Miss Rate L2 x Miss Penalty L2 .. (2) 
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• Substituting 2 in 1 we get,  

• Average Memory Access time 

= Hit Time L1 + Miss Rate L1 x (Hit Time L2 + Miss Rate L2 x Miss Penalty L2) 

=1 + 4% x (10 +50% x 100) = 3.4 cycles 

 

• Average Memory Stalls per instruction (i.e., miss penalty) 

  = Misses per instruction L1 x Hit Time L2 

 + Misses per instruction L2 x Miss Penalty L2 

 

• For Memory references  per instruction = 1.5 

 Misses per instruction for L1 = 40 x 1.5 = 60 per 1000 instructions 

 Misses per instruction for L2 = 20 x 1.5 = 30 per 1000 instructions 

 

• Average Memory Stalls per instruction 

=  (60/1000) x10 + 30/1000) x 100 

= 0.6 +3.0 = 3.6 clock cycles  

• i.e., the average miss penalty using multi level caches reduces by a factor of 100/3.6 = 

28 relative to the single level cache  

 

 
 

• Miss rate verses cache size for multilevel caches 

• The miss-rate of single level cache verses size is plotted against the local and global 

miss rates of 2nd level cache using 32 KB 1st level cache – L2 unified cache is 2-way set 

associative with LRU replacement 
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2: Critical word first and early restart 

• Don‘t wait for full block to be loaded before restarting CPU 

• The CPU normally needs one word of a block at a time, thus it doesn‘t have to wait for 

full block to be loaded before sending the requested word and restarting the CPU 

• Early Restart: Request the words in a block in normal order . As soon as the requested 

word of the block arrives, send it to the CPU and let the CPU continue execution 

• Critical Word First: ―Request the missed word from memory first; and the memory sends 

it to the CPU as soon as it arrives‖ 

• The CPU continues filling the rest of the words in the block afterwards 

 

• Example: 

• Consider a computer using 64-byte [8 word] cache blocks  

• An L2 cache takes 11 clock cycles to get first 8-byte (critical word) and then 2 clock 

cycles per 8- byte word to get the rest of the block (and 2 issues per cycle) 

1. with critical word first (assuming no other access to the rest of the block) 

2. without critical word first (assuming following instructions read data sequentially 8-

byte words at a time from the rest of the block; i.e., block load is required in this 

case) 

 

• Solution: 

1. With Critical word first:  

Average miss penalty  

= Miss Penalty of critical word + Miss penalty of the remaining words of the block 

 = 11 x 1 + (8-1) x 2 = 11+ 14 = 25 clock cycles 

 

2. Without critical word first (it requires block load) 

= [Miss Penalty of first word + miss penalty of the remaining words of the block]  

        + clock cycles to issue the load  

 = [11 x 1 + (8-1) x 2 ] + 8/4 = 25 + 4= 29 clock cycles 

2 issues/cycle so 4cycles for 8 issues 

 

• Merit: The merit of this technique is that it doesn‘t require extra hardware  

• Drawback: This technique is generally useful only in large blocks, therefore the 

programs exhibiting spatial locality may face a problem is accessing the data or 

instruction from the memory, as the next miss is to the remainder of the block 

 

3: Priority to Read Miss over the Write misses 

• This technique reduces the average miss penalty by considering the overlap between 

the CPU and cache miss-penalty  

• We have already discussed how the write-buffer reduces the write stalls in write-through 

caches 

• The write-buffers ensure that write to memory does not stall the processor; 

• Furthermore, write-buffer may hold the updated value of a locations needed on a read 

miss and the processor is blocked till read returns 
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• Thus, the write buffers do complicate memory access and needs consideration 

• Let us consider an example program segment and discuss how the complexities of write 

buffer can be simplified by giving priority to read misses over the write misses 

• Consider the code: 

SW R3, 512 (Ro)  ; M[512] R3 Cache index 0  

LW R1, 1024 (R0)  ;R1<-M[1024] Cache index 0  

LW R2, 512(R0)  ;R2<- M[512] Cache index 0 

 

• Assuming that the code is implemented using a direct mapped, write-through cache that 

maps 512 and 1024 to same block and a 4-word write buffer  

• Find if  value in R2 always be equal to value in R3 

• Note that this is case of RAW data hazard 

• Let us see how the cache access is performed 

• The Data in R3 is placed in write-buffer after first instruction; i.e., after the store 

instruction using the index 512 

• The following load instruction (i.e., the 2nd instruction) uses the same index 512;  and is 

therefore a miss 

 The second load instruction (i.e., the 3rd instruction is sequence) tries to put the 

value in location 512 into register R2; this also results into a miss  

 If the write buffer hasn‘t completed writing to location 512 in memory, the read of 

location 512 will put the old value into the cache and then into R2.  

 Thus R3 would not equal to R2, this is because the reads are served before write 

have been completed, i.e.,  

 

• Write through with write buffers offer RAW conflicts with main memory reads on cache 

misses; and  

• If processor simply waits for write buffer to empty, it might increase read miss penalty 

(say for old MIPS 1000) by 50% ) 

• The simplest way to come of this dilemma is to give priority to read miss; i.e., 

 either Wait for write buffer to empty  

 or Check write buffer contents on a read miss; and if there are no conflicts and 

memory system is available then let the memory access continue for read 

 

• Note that by giving priority to Read Miss the cost (penalty) of write by the processor in 

the write-back register can also be reduce 

• In Write-back caches, the read miss may require replacing a dirty block, which is  

 Normally done by Writing dirty block to memory, and then do the read 

 Better alternative is to Copy the dirty block to a write-buffer, then do the read, 

and then do the write 

• In this case, the CPU stall less since it restarts as soon as read is done, hence reduces 

the miss-penalty 
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4:  Merging Write Buffer 

• Write-through cache rely on write-buffer as all stores must be sent to the lower level of 

hierarchy  

• Even the write back caches use a simple buffer when a block is replaced 

• In Normal mode of operation, the write buffer absorbs write from CPU; and commit it to 

memory in the background 

• However, here the problem, particularly in write-through caches, is that small write-buffer 

may end up stalling processor if they fill up; and the Processor needs to wait till write 

committed to memory 

• This problem is resolved by Merging cache-block entries in the write buffer, because: 

 Multiword writes are usually faster than writes performed one at a time 

 Writes usually modify one word in a block; Thus ….. 

• If a write buffer already contains some words from the given data block we will merge 

current modified word with the block parts already in the buffer 

• That is, If the buffer contains other modified blocks the address can be checked to see if 

the address of this new data matches the address of valid write buffer entry  

• Then the new data are combined with the existing entry - it is called Write Merge 

• Note that here, the CPU continues to work while the write-buffer prepares to write the 

word to memory 

• This technique, therefore, reduces the number of stalls due to write-buffer being full; 

hence 

• reduces the miss penalty  through improvement in efficiency of write-buffer  
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5: Victim Caches: Reducing Miss Penalty 

• Another way to reduce the miss penalty is to remember what was discarded as it may 

need again. 

• This method reduces the miss penalty since the discarded data has already been 

fetched so it can be used again at small cast 

• The victim cache contains only discarded blocks because of some earlier miss; and are   

checked on another miss to see if they have the desired data before going to the next 

lower-level memory 

• If the desired data (or instruction) is found then the victim block and cache block are 

swapped  

• This recycling requires small fully associative cache between a cache and its refill path - 

called the victim cache as shown in the following figure 

 

 
Summary 

• The first approach, ‗multi level caches‘ is: ‗the more the merrier – extra people are 

welcome to come along‘ 

• The second technique, ― Critical Word First and Early Restart‘,  is the intolerance 

• The third method, ‗priority to read miss over the write miss‘, is the favoritism The fourth 

technique, ‗merging write-buffer,‖is acquaintance 

• Combining sequential writes into a single block for fast memory transfer 

• The fifth technique, victim cache‘ is: salvage 

• All these methods help reducing 

• Miss penalty; however, the first one – multi level caches, are the most important and 

efficient 

• However, reducing miss rate and hit rate to improve the memory hierarchy performance 

are also important metrics 

• We will take up these metrics next time – till then 
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Lecture 30 

Memory Hierarchy Design 

Cache Performance Enhancement 

(Reducing Miss Rate) 

Today’s Topics 

• Recap: Reducing Miss Penalty 

• Classification of Cache Misses 

• Reducing Cache Miss Rate 

• Summary 

 

Recap: Improving Cache Performance 

• The miss penalty 

• The miss rate  

• The miss Penalty or miss rate via Parallelism 

• The time to hit in the cache 

 

Recap: Reducing Miss Penalty 

1. Multilevel Caches 

 ‗The more the merrier 

2. Critical Word first and Early Restart  

 Reduces miss-penalty 

3. Priority to Read Misses Over writes 

 Favoritism 

4. Merging Write Buffers 

 Acquaintance 

5. Victim Caches  

 Salvage 

 

Cache Misses 

• Compulsory Misses (cold start or first reference misses) 

 Block must be brought into the cache 

• Capacity Misses 

 Capacity misses occur in Fully Associative cache 

• Conflict Misses(collision or interference misses) 

 Many blocks map to the same address or set 
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Reducing Miss Rate 

1. Larger Block Size 

2. Larger Caches  

3. Higher Associativity 

4. Way Prediction and Pseudo-associativity 

5. Compiler Optimization 

 

1: Larger Block Size 

• Reduce the miss rate  

• Spatial locality 

• Larger block have maximum number of data or instructions 

• In small cache , larger blocks may increase 
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• Assumption 

• 80 clock cycles of over head 

• Delivers 16 bytes every 2 clock cycle 

• Hit time of 1 clock cycle 

• Solution: 

• Average memory access time = Hit time + Miss Rate x Miss Penalty 

• 4KB cache, the miss rate = 7.24% 

• Miss penalty = 80 +4 = 84 clocks 

 

 
• Average Memory Access Time = 1 +(7.25% x 84) = 7.082 Clock cycles 

• Copy table  5.18  pp 428 

• Latency and bandwidth of the lower level memory  

• High latency and high bandwidth 
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2: Large Cache Size 

• Reduce Capacity misses  

• In 2001 

• 2nd – level and 3rd-level caches  

• Drawback  

• Longer hit time 

• Higher cost (access time) 

 

3: Higher Associativity 

 
• The CCT for 2 way to 8-way associative  

 CCT 2way = 1.36 x CCT 1way 

 CCT 4way    = 1.44 x CCT 1way 

 CCT 8way    = 1.56 x CCT 1way 
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4: Way Prediction and Pseudo-associativity 

• Fast hit time of direct-mapped caches  

• Lower conflict misses of set-associative caches 

• Reduces the conflict misses 

• Way Prediction   

 Block in a set  

 Steps 

1. Extra bits 

o 2-way prediction  

o  4-way prediction 

2. Multiplexer 

o Single tag 

• Other blocks for matches in subsequent clock cycles 

• Alpha 21264 

• Latency of 1 clock cycle  

• 3 clock cycles 

• Pseudo-associative  

 Column associative caches 

 Miss 

 ―Pseudo-set‖ 

• Pseudo Associative caches 

 Performance  

 ―Slower hit‖ 

 

5: Compiler Optimization 

• Reduce both the data caches misses and instruction cache misses 

• Instruction  

• Code optimization 

 Reordering the Procedures 

 Using Cache-line Alignment 

• The code reordering 

 Determines conflicts 

• The code-line alignment method: 

 Decreases cache miss  

 Entry point is at the beginning of a cache block 

• Data misses are reduced  

• Spatial locality  

• Temporal locality  

• Array calculation 

 loop interchange   blocking  

• program having nested loops that access data in non-sequential order for j (0100) and 

in sequential order for i (05000) 

• Using Loop Interchange 
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• First Version: 

for (k = 0; k < 100; k = k+1) 

 for (j = 0; j < 100; j = j+1) 

  for (i = 0; i < 5000; i = i+1) 

   x[i] [j] = 2 * x[i] [j]; 

• Reorderd version: 

for (k = 0; k < 100; k = k+1) 

 for (i = 0; i < 5000; i = i+1) 

  for (j = 0; j < 100; j = j+1) 

   x[i][j] = 2 * x[i][j]; 

• Using Blocking 

 Example of improving Temporal Locality 

 program to perform matrix multiplication 

 ‗Row major order‘ (row-by-row) ‗Column major order‘  

 Iteration for matrix multiplication 

 

/* Initial version of matrix multiplication code */ 

for (i = 0; i < N; i = i+1) 

  for (j = 0; j < N; j = j+1) 

  {r = 0; 

  for (k = 0; k < N; k = k+1) { 

   r = r + y[i][k]*z[k][j];   }; 

  x[i][j] = r; 

  }; 

 
Summary 

• Large block size to reduce compulsory misses 

• Large cache size to reduce capacity misses 

• Higher associativity to reduce conflict misses 

• The way-prediction techniques checks a section of cache for hit and then on miss it 

checks the rest of the cache 

• The final technique – loop interchange and blocking, is a software approach to optimize 

the cache performance 

• Next time we will talk about the way to enhance performance by having processor and 

memory operate in parallel – till then 
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Example: Avg. Memory Access Time vs. Miss Rate 

• Example: assume CCT = 1.10 for 2-way, 1.12 for 4-way, 1.14 for 8-way vs. CCT direct 

mapped 

• (Red means A.M.A.T. not improved by more associativity) 
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Lecture 31 

Memory Hierarchy Design 

Cache Performance Enhancement by 

(Miss Penalty/Rate Parallelism and Hit time) 

Today’s Topics 

• Recap: Reducing Miss Rate 

• Reducing Miss Penalty or Miss Rate using Parallelism  

• Reducing Hit Time 

• Summary – Cache Optimizatio 

 

Recap: 3 C Model and Reducing Miss Rate 

• Large block size to reduce compulsory misses 

• Large cache size to reduce capacity misses 

• Higher associativity to reduce conflict misses 

• In addition we discussed the way-prediction technique that checks a section of cache for 

hit first; and then on miss, it checks the rest of the cache 

• At the end we discussed the compiler based techniques, namely the loop interchange 

and blocking, to optimize the cache performance 

• Today, we will talk about the other ways to enhance cache performance 

• These methods include: 

1. Reducing Miss Penalty or Miss Rate via parallelism – Overlapping the execution 

of instructions with activities in the memory hierarchy   

2. Reducing the hit time 

 

Reducing Miss Penalty or Rate via Parallelism 

• The basic idea is to reduce miss penalty or miss rate by performing multiple outstanding 

memory operations through overlapping the memory activities and the instruction 

execution activities which take place in the processor  

• This can be accomplished by using three different techniques 

1. Non-blocking Caches:  reduces stall on misses 

2. Hardware Prefetch: reduces number of misses 

3. Software (compiler controlled) Prefetch: reduces number of misses 

 

Non-blocking Caches 

• Memory hierarchy  

• Instruction and data caches are decoupled  

• Out-of-order execution CPU 

• Non-blocking or lockup-free  

• The ―hit under miss‖ 

• ―Hit under multiple miss‖  

• ―Miss under miss‖  

• Complexity  

• 1000 and later a miss to address 1032 

• Complexity of the cache controller increases 
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• Memory system can service multiple misses 

• Pentium Pro 

 
Hardware Prefetch: Reduces Misses 

• 2 blocks 

•  Requested block  

• ―Stream buffer‖ 

• Available in the stream buffer 

1. Original cache request is cancelled 

2. Block is read from the stream buffer and  

3. Next pre-fetch request is issued 

• ‗Demand misses‘ 

• Jouppi in 1990 

1. 15% - 25% of misses 

2. 4 blocks stream buffer  

3. 43% for stream fetching  

4. 50% at the same address 

5. 16-block stream buffer  

6. 72% misses 

• Efficiently for data caches 

• Hardware identifies stream of accesses 

• Palacharla & Kessler in 1994 

• 8 stream buffers  

• 50% to 70%  

• 64KB, 4-way set associative caches 
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• Example: For UltraSPARC III, 64 KB data cache and 256 KB cache has average miss 

per 1000 instruction of 36.9 and 326 respectively, assuming  

1. prefetching hit rate equals 20% 

2. hit time is 1 clock cycle,  

3. miss penalty is 15 cycles 

4. 1 extra clock cycle if the data misses the cache but are found in prefetch buffer  

5. data references equal 22% 

• solution: 

1. Miss rate prefetch  

= [Misses/1000] / data references 

= [36.9 /1000] / [22 /100]  

= 36.9/220 = 16.7% 

 

2. Average memory access time prefetch 

= Hit Time + Miss rate x Prefetch hit time x 1  

                 + Miss rate x (1-prefetch hit time) x miss penalty 

 

Average memory access time prefetch 

= 1+ (16.7% x 20% x 1) + (16.7% (1-20%) x 15)  

= 3.046 

 

a)  Effective Miss rate pre fetched 64K 

  = [Average memory access time – Hit time] / Miss Penalty 

  = [3.064 – 1 ] / [15] = 2.064/ 15 = 13.6% 

 

b) From the given data, 256KB data cache yields miss rate: 

   Miss rate256KB  = 33.6/ (22% x 1000) =14.8 % 

 

Software (Compiler Controlled) Prefetch: 

• Two variants of prefetch  

 Register Prefetch: Load data into register (HP RISC) 

 Cache Prefetch: Load data only into cache and not the register (MIPS IV, 

PowerPC, SPARC v. 9) 

 

• Issues and limitations of compiler prefetching 

1. Register or Cache prefetching  

o Faulting prefetch  

o Non-Faulting prefetch 

2. Compiler prefetching  

o Semantically Invisible,  

o Cannot cause virtual memory faults  

3. Caches do not stall 

4. Issuing the prefetch instructions 
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Summary reducing Cache Miss Penalty or miss rate via parallelism 

• The non-blocking caches  

• Bandwidth behind the cache Instruction-level parallelism  

• Hardware and Software prefetching 

 

Final Component to reduce Average memory Access Time- Hit Time 

• five techniques to reduce the miss penalty 

• five methods to reduce the miss rate 

• three approaches to reduce the miss penalty  

•  miss rate in parallel to reduce the average memory access time 

• Hit time 

 

Reducing Hit Time 

1. Clock rate of the processor 

2. Cache Access time  

 

The four commonly used techniques  

1. Small and Simple Caches 

2. Avoiding Address translation during Indexing  

3. Pipelined Cache Access 

4. Trace Cache 

 

Small and Simple Caches 

• While discussing the cache design, we have observed the most time consuming 

operation in cache hit is to compare long address tag 

• This operation definitely require bigger circuit which is always slow as compared to 

smaller circuits 

• Thus an obvious approach to keep the hit time small is to keep the cache Smaller and 

simpler 

• The cache be kept small to fit it on the same chip as the processor to avoid the time 

penalty going off chip; and 

• Simpler, such as the direct-mapped the tag comparison can be overlapped with the data 

transmission 

• The impact of cache size and complexity, i.e.,  associativity and number of read/write 

ports is shown in this graph 
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• Size of L1 caches 

• The 16KB L1 cache on Pentium III  

• 8KB on Pentium IV 

 

Avoiding Address Translation during Indexing 

• Small and simple cache 

• Translation Look-aside Buffer (TLB) 

• Virtual address from CPU 

• Virtual memory system 

• Two levels of address mapping  

• Address of the virtual memory to main memory and  

 Main memory to cache 

• Virtual address for the cache  

• Directly mapped  

• Virtual caches  

• Physical cache  

• Eliminated from cache hit   

• Amdahl's rule 

• Virtual caches we have to consider two issues 

• Limitation  

 Virtually addressed caches 

• Reasons are 

 Protection 

 Page address  

 Physical Address difference 

 virtual address refers to different physical address 

 Aliasing/synonyms 

 Two different virtual addresses  

  Two processes  

 The hardware solution to synonym  

 2-way set associative cache 

• The software solution is to share some address bit 

 

Pipelined Cache Access 

• Cache hit time  

• Pipelining the cache access  

• Latency of the first level cache-hit  

• Fast cycle time which increases the bandwidth of instructions 

 for Pentium I takes 1 clock-cycle to access the instruction cache;  

 for Pentium Pro through Pentium II its takes 2 clock cycles, and  

 for Pentium IV it takes 4 clock cycles   
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Trace Caches 

• Multiple-issue processors  

• Trace caches  

• Dynamic sequence  

• Load into the cache block 

• Branch prediction  

• Instruction prefetching 

• No wasted words and no conflicts  

• Conflicts are avoided 

• Complicates the address mapping  

• No longer aligned to power 2 multiples of words  

• Requirement for address mapping 

• Demerit 

• Same instruction may be stored multiple times 

 

Summary – Cache Optimization 

• 5 methods to reduce the miss penalty 

• 7 ways to reduce 3Cs 

• 3 methods for reducing miss rate and miss penalty via parallelism; and  

• 4 techniques to reduce hit time 

 

Technique   Miss  MR  HT  Complexity Comments 

   Penalty  Rate  Time 

Miss Penalty 

Multilevel caches  +           2  Costly H/W 

Early Restart &  +           2  Widely Used 

Critical Word 1st 

Priority to Read +           1  Trivial for Uni-processor 

Misses         

Merging write buffer  +           1  used with w/t through 

Victim Caches  +   +         2  

 

 

 

Technique   Miss  MR  HT  Complexity Comments 

   Penalty  Rate  Time 

Miss Rate 

Larger Block Size  -  +    0 Trivial 

Larger Cache Size -  +   1 Widely Used 

Higher Associativity  +   –    1 Widely Used 

Pseudo-Associative  +      2 Used in L2  

Way Predicted    +   2 Used in I-Cache  

Compiler Reduce  +      0 S/W approach 

Misses 
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Technique   Miss  MR  HT  Complexity Comments 

   Penalty  Rate  Time 

Parallelism 

Non-Blocking   +          3  out-of-order CPU 

HW Prefetching  +   +        2inst 

of Instr/Data           3 data 

Compiler Cont-   +   +        3  need non- blocking cache 

rolled Prefetching      

Hit  Time 

Avoiding Address     +       2  Widely Used 

Translation  

Trace Cache      +       3  Used in P  
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Lecture 32 

Memory Hierarchy Design 

(Main and Virtual Memories) 

Today’s Topics 

• Recap: Memory Hierarchy and Cache performance 

• Main Memory Performance 

• Virtual Memory Performance 

• Summary 

 

Recap: Memory Hierarchy 

• design goal of memory system  

• Low cost as of cheapest memory fast speed as of fastest memory  

• The fastest, smallest and most costly memories 

• The slowest, biggest and cheapest memories 

 Average access speed  

 Cost  

 Cheapest technology 

• Semiconductor memories  

• Static and Dynamic RAMs  

• Upper levels in the memory hierarchy 

 

Recap: Caches Design 

• The Caches use Static Random Access Memory 

• Main Memory is Dynamic Random Access Memory (DRAM)  

• (~8 ms, <5% time) 

• The magnetic, optical or other medias 

• virtual memory 

• Cache and main memory are organized in equal sized blocks 

• Word transfer  

• Bock transfer 

• The CPU requests contents of main memory  

• Word transfer is fast 

 

Recap: Cache Performance 

• If misses 

• Miss penalty 

• Cache design and the performance  

• Techniques 

 Miss rate 

 Miss penalty  

 Hit time 

 

Main Memory Organization  

• Organizations of main memory  

• Source for Caches  

• Destination virtual memory 
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DRAM logical organization (4 M Bit) 

 

 
 

Main Memory Performance 

• Performance of DRAM 

1. Fast page mode DRAM 

2. Synchronous DRAM 

3. Double Data Rate DRAM 

 

• Fast page mode: Optimizes sequential access  

• Synchronous DRAM (SDRAM): Avoid handshaking  

• Double Data Rate (DDR) DRAM: Transmit data 

• Latency: Average memory access time 

• Bandwidth: Number of bytes read/write per unit time 

 Access Time 

 Cycle Time 

 

• Inputs/outputs and multiprocessors 

• Low-latency memory 

• Multiprocessor demand higher bandwidth 

•  2nd level caches with larger block size 

 

Improving Main Memory Performance 

• The most commonly used techniques are 

 Wider Main Memory 

 Simple Interleaved Memory 

 Independent Memory Banks 
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1: Wider Main Memory: Example 

• 4 words (i.e. 32 byte) block 

 Time to send address  =  4 clock cycles 

 Time to send the data word  =  4 clock cycles 

 Access time per word  =  56 clock cycles 

 Miss Penalty =  

No. of words x [time to: send address + send data word +  access word] 

 

For 1 word organization 

 Miss Penalty = 4 x (4 +4+56) = 4 x (64)  

= 256 Clock Cycles;   

 

The memory bandwidth = bytes/clock cycle  

= 32/256 = 1/8 byte /cycle 

 

For 4-word organization  

Miss Penalty = 1 x (4 +4+56) = 64 Clock 

Cycles; and  

Memory bandwidth = 32/64 = 1/2 

bytes/cycle;  

 

 

 
  

 

 

Main 

L1 
cach

Wider L2 Cache 
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2: Interleaved Memory 

• bank 0 has all word whose:  Address MOD 4 = 0 

• bank 1 has all word whose:  Address MOD 4 = 1 

• bank 2 has all word whose:  Address MOD 4 = 2  

• bank 3 has all word whose:  Address MOD 4 = 3  

 

 
 

 

 
 

Example: 

• Bandwidth Calculation:  

• bandwidth of 4 words interleaved memory using the time model as used in case of wider 

memory 

• The miss penalty for 4-word interleave memory is: 

 

 = time to send address + time to access +  

  number of banks x time to send data  

 = 4 + 56 + 4 x 4 =76 clock cycles  

 

Bandwidth = 32/76 = 0.4 byte per clock 

Bandwidth = 32/256= 1/8 = 0.125 byte per clock 
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3: Independent Memory Banks 

• Memory banks offer independent accesses 

• Multiprocessors 

• I/O 

• CPU with Hit under n Misses 

• Non-blocking Caches 

 

 
 

 An input device may use one controller and one bank  

 The cache read may use another and  

 The cache write still another  

 

Summary: Main Memory Bandwidth 

• Using memory banks 

• Making memory and its bus wider  

• Doing both 

• How many the banks should be there?  

 

Summary: Main Memory Bandwidth Enhancement 

• This decision is essential to ensure that 

• if   memory is being accessed sequentially    

(e.g. when processing an array)  

• then   by the time you try to read a second  word from a bank,  

the first access has finished 

• Otherwise it will return to original bank before it has the next word ready 

 

• 8 banks, each of 64-bit 

• Access time of 10 clock cycle  

 Clock cycle 1 

 Bank 0 after 10 clock cycles 

 After 10 clock cycles,  

 The bank 0 would fetch the next desired word  

 7 banks sequentially till the 18th clock cycle  

 18th clock  

 Bank 0  

 CPU cannot start fetching  

 Clock cycle 20  
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 10 clock cycles again 

 Number of bank ≥ Number of clock cycles to access word in bank 

 

Virtual Memory 

 

• Multiple processes 

• Single process  

• Exceed physical memory available 

• Increasing gap  

• High cost of main memory  

• Physical DRAM as a cache for the disk  

• Single level store 

• Single level storage  

• Virtual Memory System 

• Manages two levels of memory hierarchy  

• Main memory and secondary storage 

• Segments, named as a page 

• Page  

• Block 

• Contiguous pages 

 

 
• Attributes 

 Protection 

 Relocation 
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Protection 

• Operate in different address space 

• Different permissions 

• Cannot access privileged information 

 

 
 

 

• Relocation 

 Simplifies loading of program  

 Allows to place a program anywhere 

• Hardware  

• Software 

 

Cache verses Virtual memory 

• Page or segment is used for block  

• Page fault or address fault is used for miss 

• CPU produces virtual address  

• The virtual addresses are translated to the main memory or physical addresses 

• Address translation  

• Mapping of  virtual address to the physical address  

• Page table 

• Physical address of the segment or the page 
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• Replacement on cache miss  

• Page fault  

• The size of processor address  

• Cache size is independent of the processor address 

• Secondary storage  

• Lower-level backing store for main memory 

• File system occupies the space on secondary storage 

 

Issues of Virtual Memory Design 

• Line size 

• Large, since disk better at transferring large blocks 

• Associativity 

• High, (fully associative) to minimize miss rate 

• Write Strategy  

•  Write through or write back 

• miss rate: Extremely low.  << 1% 

• hit time: Must match cache/maim memory performance 

• miss latency: Very high.  ~20ms 

• tag storage overhead: Low, relative to block size 
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Typical  System with Virtual Memory 

• The CPU generates the Virtual Address 

• Operating system manages a lookup table  

• Location of the page or segment  

• Virtual addresses to physical addresses 

 

Page Faults (like “Cache Misses”) 

• Indicates virtual address not in memory 

• OS exception handler invoked  

• Current process suspends 

• OS has full control over placement  
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Lecture 33 

Memory Hierarchy Design 

(Virtual Memory System) 

Today’s Topics 

• Recap: Main memory and Virtual memory Design 

• Virtual Memory Address Translation 

• Virtual Memory Performance 

• Protection of multiple processes sharing memory  

• Summary 

 

Recap: Memory Hierarchy 

• Main memory organization 

• Organized using banks of memory arrays  

• Dual Inline Memory Modules - DIMMs 

• Fast page mode 

•  Synchronous 

•  Double Data Rate DRAMs 

 

Recap: Main Memory Performance 

• Fast page mode 

• Synchronous DRAM (SDRAM)  

• Double Data Rate (DDR) DRAM  

• latency and bandwidth 

 

Recap: Main Memory Performance 

• concern of caches 

• bandwidth  

• Inputs/outputs and multiprocessors 

• Wider Main Memory 

• Simple Interleaved Memory 

• Independent Memory Banks 

 

Recap: Virtual Memory 

• Multiple processes  

• Dedicate a full address space  

• Virtual Memory 

• Fix-sized fragment  

• Variable-sized fragment  

• Contiguous pages in virtual memory 

• Physically available on the main 

memory 

• Protection and Relocation 

• Protection  

• Relocation  
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Recap: Cache verses Virtual memory 

• Page fault or address fault  

• CPU produces virtual address  

• Mapping of a virtual address 

• Replacement  

• The size of processor address 

• Secondary storage 

• The page replacement strategies  

• FIFO – First –in-First Out 

• LRU – Least recently Used  

• Approximation to LRU 

 Bit  

 Resets the reference bit 

 Page with a reference bit 

• VM Write strategies may be: 

• Write Back 

• Write Through 

• Write through is impossible because: 

 Too long access to disk 

 The write buffer  

 The I/O system

 

Recap: Virtual Memory operation 

• The CPU generates the Virtual Address 

• Lookup table 

• Location of the page or segment  

• Virtual addresses to physical addresses 

• page fault 

 The OS has full control over placement  

 OS exception handler is invoked  

 current process suspends the data is to the main memory by the OS 

• The contents of the page table are updated 

 

VM Address Translation Concept 

• Assume that Virtual Address space V comprises a set of N pages V = {0, 1, …, N–1} 

• And, Physical Address space P comprises a set of M pages P = {0, 1, …, M–1}  

where M < N 

• Assuming n-bit virtual address, m-bit physical address and p-bit page offset, the virtual 

and physical address limits and the page size can be expressed as 

 Virtual address limit = N = 2n  

 Physical address limit = M = 2m   

 page size (bytes) =  PS = 2p   

• page offset  

• page number 

 

VM Address Translation Concept 
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Page Table 

 

 
Page Table Operation: 3 steps 

1. Translation 

2. Computing Physical Address 

3. Checking Protection 

 

Address Translation via Page Table 

 
 

 



 

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com 
 

338 CS-704 Advanced Computer Architecture 

Simple Memory System Example 

• Addressing 

 14-bit virtual addresses 

 12-bit physical address 

 Page size = 64 bytes 

 

 
 

Simple Memory System Page Table 

• Only show first 16 entries 

 
 

Fast Address Translation 

• large and in the main memory 

• miss penalty 

•  one memory access to obtain the physical address  

• second to get the data 

• Miss penalty can be reduced 
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Fast Translation with a TLB 

 
 

 
 

Address Translation with a TLB 
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• Fully associative placement policy 

• Violation against protection information in the TLB 

• The physical address 

• The page offset  

• A full physical address 

• Merits of TLB: 

 Fully associative, set associative, or direct mapped 

 128 - 256 entries  

 Mid-range machines use small n-way set associative organizations. 

 

Address Translation Example 

• virtual address of 64 bits 

 Physical Address: 41 bits 

 TLB – direct mapped with 256 entries 

 First Level Caches: direct mapped with 8KB entries, block size 64 byte 

 Second Level Cache: direct mapped 4MB direct mapped; block size 64 bytes 

 

Address Translation Example VA – L2 
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VM Protection Process 

 
VM Protection Mechanisms 

• The address translation mechanis 

• Protection attribute bits  

• (PTE) and TLB 

 Protection 

 Does not have permission 

 An exception is raised 

• Protection mechanism  

• The address is said to be valid if 

• Base  <=  address  <= Bound 

• Base and Bound register 

• Page tables each pointing to the distinct pages of memory 

• Prevented from modifying these tables 

 

Summary 

Cache memories: 

• HW-management 

• Separate instruction and data caches permits simultaneous instruction fetch and data 

access 

• Four questions: 

 Block placement 

 Block identification 

 Block replacement 

 Write strategy 

• Virtual memory: 

 Software-management 

 Very high miss penalty 
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 => miss rate must be very low 

• Also supports: 

 program loading 

 memory protection 

 Multiprogramming 

• Memory hierarchy organization  

• Modules of DRAM and SRAM 

• design and working of disk storages 

•  DRAM, SRAM and Disk 

 

Recap: Memory Hierarchy Principles 

• Concept of Caching  

• Principle of Locality 

 

Recap: Principle of Locality 

• Data or instructions  

• Processor access a relatively small portion of the address space  

• Fastest memory closet to the processor 

 

Recap: Types of Locality 

• Temporal locality 

• Spatial locality 

 

Recap: Improving Cache Performance 

• The miss penalty 

• The miss rate  

• The miss Penalty or miss rate via Parallelism 

• The time to hit in the cache 

 

Recap: Reducing Miss Penalty 

• Multilevel Caches 

• Critical Word first and Early Restart  

• Priority to Read Misses Over writes 

• Merging Write Buffers 

• Victim Caches  

 

Recap: Reducing Miss Penalty 

• ‗Multi level caches‘  

 the more the merrier 

• ― Critical Word First and Early Restart‘, 

• ‗priority to read miss over the write miss‘,  

 Favoritism 

• ‗merging write-buffer,‘ 

 acquaintance 
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• ―victim cache‘  

 salvage 

• Reducing miss penalty 

• Reducing miss rate  

• Cache-misses and methods to reduce the miss rate 

 

Summary – Cache Optimization 

• 5 methods to reduce the miss penalty 

• 7 ways to reduce 3Cs 

• 3 methods for reducing miss rate and miss penalty via parallelism; and  

• 4 techniques to reduce hit time 

• The performance of these methods is summarized here 
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Lecture 34 

Multiprocessors 

(Shared Memory Architectures) 

Today’s Topics 

• Recap: 

• Parallel Processing 

• Parallel Processing Architectures 

• Symmetric Shared Memory 

• Distributed Shared Memory 

• Performance of Parallel Architectures 

• Summary 

 

Recap 

• So far our focus have been to study the performance of a single instruction stream 

computers; and methodologies to enhance the performance of such machines 

• We studied how 

• the Instruction Level Parallelism is exploited among the instructions of a stream; and 

• the control, data and memory dependencies are resolved 

 

Recap: ILP 

• These characteristics are realized through: 

• Pipelining the datapath 

• Superscalar Architecture 

• Very Long Instruction Word (VLIW) Architecture 

• Out-of-Order execution  

 

Parallel Processing and Parallel Architecture 

• However, further improvements in the performance may be achieved by exploiting 

parallelism among multiple instruction streams, which uses: 

• Multithreading, i.e., number of instruction streams running on one CPU 

• Multiprocessing, i.e., streams running on multiple CPUs where each CPU can itself be 

multithreaded 

 

Parallel Computers Performance: Amdahl’s Law 

• Furthermore, while evaluating the performance enhancement due to parallel processing 

two important challenges are to be taken into consideration 

 Limited parallelism available in program 

 High cost of communication 

• These limitations make it difficult to achieve good speedup in any parallel processor 

• For example, if a portion of the program is sequential, it limits the speedup; this can be 

understood by the following example: 
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Example: What fraction of original computation can be sequential to achieve speedup of 80 

with 100 processors? 

• Answer: The Amdahl‘s law states that: 

• Speedup = 1 / (Fraction Enhanced / Speedup Enhanced) + (1- Fraction Enhanced) 

• Here, the fraction enhanced is the fraction in parallel, therefore speedup can be 

expressed as 

  80 = 1 / [(Fraction parallel/100 + (1-Fractionparallel )] 

 

• Simplifying the expression, we get 

 0.8*Fraction parallel + 80*(1-Fraction parallel) = 1 

        80 - 79.2* Fraction parallel = 1 

• Fraction parallel  = (80-1)/79.2  = 0.9975 

 

• i.e., to achieve speedup of 80 with 100 processors only 0.25% sequential allowed! 

• The second major challenge in parallel processing is the communication cost that 

involves the latency of remote access 

• Now let us consider another example to explain the impact of communication cost on the 

performance of parallel computers 

 

Example: Consider an application running on 32-processors multiprocessor, with 40 nsec. time 

to handle remote memory reference 

• Assume instruction per cycle for all memory reference hit is 2 and processor clock rate is 

1GHz, and find:  

• How fast is the multiprocessor when there is no communication versus 0.2% of the 

instructions involve remote access? 

• Solution: The effective CPI for multiprocessor with remote reference is: 

• CPI = Base CPI + Remote request rate x remote access cost 

Introduction to Parallel Processing 

Substituting the values we get:  

 CPI =  [1/Base IPC] + 0.2%  x remote request cost 

                   =  [1/2] + 0.2% x (400 cycle)  

        =  0.5 +0.8 = 1.3 

• And, CPI without remote reference  

         =  1/Base IPC = 0.5 

• Hence, the multiprocessor with all local reference is 1.3/0.5 = 2.6 times faster as 

compare to that with no remote reference 

• Considering these limitations let us explore how improvement in computer performance 

can be accomplished using Parallel Processing Architecture 

• Parallel Architecture is a collection of processing elements that cooperate and 

communicate to solve larger problems fast 

• Parallel Computers extend the traditional computer architecture with a communication 

architecture to achieve synchronization between threads and consistency of data in 

cache 
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Parallel Computer Categories 

• In 1966, Flynn proposed simple categorization of computers that is still valid today  

• This categorization forms the basis to implement the programming and communication 

models for parallel computing 

• Flynn looked at the parallelism in the instruction and in the data streams called for by the 

instructions and proposed the following four categories: 

1. SISD (Single Instruction Single Data) 

 This category is Uniprocessor 

2. SIMD (Single Instruction Multiple Data) 

 Same instruction is executed by multiple processors using different data streams 

 Each processor has its own data memory (i.e., multiple data memories) but there 

is a single instruction memory and single control processor 

 Illiac-IV and CM-2 are the typical examples of SIMD architecture, which offer: 

i. Simple programming 

model 

ii. Low overhead 

iii. Flexibility 

iv. All custom integrated 

circuits 

 

3. MISD (Multiple Instruction Single Data) 

 Multiple processors or consecutive functional units are working on a single data 

stream  

 (However, no commercial multiprocessor of this type is available till date) 

 

4. MIMD (Multiple Instruction Multiple Data) 

 Each processor fetches its own instructions and operates on its own data 

 Examples: Sun Enterprise 5000, Cray T3D,  SGI Origin. The characteristics 

these machines are: 

i. Flexibility: it can function as Single-user multiprocessor or as multi-

programmed multiprocessor running many programs simultaneously 

ii. Use of off-the-shelf microprocessors 

 

MIMD and Thread Level Parallelism 

• MIMD machines have multiple processors and can be used as: 

 Either  each processor executing different processes in a multi-program 

environment  

 Or multiple processors execute a single program sharing the code and most of 

their address space 

• In the later case, where multiple processes share code and data, such processes are 

referred to as the threads 

• Threads may be  

 either large-scale independent processes, such as independent programs, 

running in multi-programmed fashion  

 Or parallel iterations of a loops having thousands of instructions, automatically 

generated by a compiler 

• This parallelism in the threads in called Thread Level Parallelism 
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MIMD Classification 

• Based on the memory organization and interconnect strategy, the MIMD machines are 

classified as:   

 Centralized Shared Memory Architecture 

 Distributed Memory Architecture 

 

Centralized Shared-Memory 

• The Centralized Shared Memory design, shown here, illustrates the interconnection of 

main memory and I/O systems to the processor-cache subsystems 

• In small-level designs, with less than a dozens processor-cache, subsystems share the 

same physical centralized memory connected by a bus; while  

• In larger designs, i.e., the designs with a few dozens processor- cache subsystems, the 

single bus is replaced with multiple buses or even a switch are used. 

 

 
• However, the key architectural property of the Centralized Shared Memory design is the 

Uniform Memory Access – UMA;  

• i.e., the access time to all memory from all the processors is same 

• Furthermore, the single main memory has a symmetric relationship to all the processors 

• These multiprocessors, therefore are referred to as the Symmetric (Shared Memory) 

Multi-Processors (SMP) 

• This style of architecture is also sometimes called the Uniform Memory Access (UMA) 

as it offers uniform access time to all the memory from all the processors 

 

Decentralized or Distributed Memory 

• The decentralized or distributed memory design style of multiprocessor architecture is 

shown here 

• It consists of number of individual nodes containing a processors, some memory and I/O 

and an interface to an interconnection network that connects all the nodes 

• The individual nodes contain a small number of processors which may be 

interconnected by a small bus or a different interconnection technology 

• Furthermore, it is a cost effective way to scale the memory bandwidth if most of the 

accesses are to the local memory in the node 
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• Thus, the distributed memory provides more memory bandwidth and lower memory 

latency 

• This makes the design more attractive for small number of processors 

• The disadvantage of the distributed memory is that the data communication between the 

processors is complex as there doesn‘t exist direct connection between the processors 

 

Parallel Architecture Issues 

• While studying parallel architecture we will be considering the following fundamental 

issues that characterize parallel machines: 

 How large is a collection of processor? 

 How powerful are processing elements? 

 How do they cooperate and communicate? 

 How are data transmitted? 

 What type of interconnection? 

 What are HW and SW primitives for programmer? And 

 How does it translate into performance? 

 

Issues of Parallel Machines 

• These issues can be classified as: 

1. Naming 

2. Synchronization 

3. Latency and Bandwidth 

 

Fundamental Issue #1: Naming 

• Naming deals with: 

 How to solve large problem fast? 

 What data is shared? 

 How it is addressed? 
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 What operations can access data? 

 How processes refer to each other? 

• The segmented shared address space locations are named uniformly for all processes 

of the parallel program as: <process number, address>  

• Choice of naming affects: 

 Code produced by a compiler as for message passing via load, the compiler just 

remembers address or keep track of processor number and local virtual address 

 Replication of data, because in case of cache memory hierarchy the replication 

and consistency through load or via SW is affected by naming  

 Global Physical  and Virtual address space, as naming determines if the address 

space of each process can  be configured to contain all shared data of the 

parallel program 

 

Issue #2: Synchronization 

• In parallel machines to achieve  synchronization between two processes, the processes 

must coordinate: 

 Message passing implicitly coordinates with transmission or arrival of data 

 Shared addresses explicitly coordinate through additional operations, e.g., write 

a flag, awaken a thread, interrupt a processor 

 

Issue #3: Latency and Bandwidth 

• Bandwidth 

 Need high bandwidth in parallel communication; however, bandwidth cannot be 

scaled, but stays close to the requirements 

 Match limits in network, memory, and processor 

 Overhead to communicate is a problem in many machines 

• Latency 

 Affects performance, since processor may have to wait 

 Affects ease of programming, since requires more thought to overlap 

communication and computation 

• Latency Hiding 

 As the latency increases the programming system burden, therefore  

mechanisms are found to  help hide latency 

• Examples:  

 overlap message send with computation 

 prefetch data 

 switch to other tasks 

 

Framework for Parallel processing 

• The framework for parallel architecture is defined as a two layer representation 

• These layers define Programming and Communication Models  

• These models present sharing of address space and message passing in parallel 

architecture 
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• The shared address space model at: 

 The communication layer, defines the communication via memory to handle load, 

store, and etc.; and at 

 The programming layer, it defines handling several processors operating on 

several data sets simultaneously; and to exchange information globally and 

simultaneously 

• Message passing model at the: 

 communication layer defines sending and receiving messages and library calls; 

and at the 

 programming layer provides a multiprogramming model to conduct lots of jobs 

without I/O communication simultaneously 

 

Shared Address Space Architecture (for Decentralized Memory Architecture) 

• Shared Address space is referred to as the Distributed Shared Memory – DSM; where, 

each processor can name every physical location in the machine; and each process can 

name all data it shares with other processes 

• Data transfer takes place via load and store 

• Data size is defined as: byte, word, ... or cache blocks 

• Uses virtual memory to map virtual to local or remote physical 

• Processes on multiple processors are time shared 

• Multiple private address spaces offer message passing multicomputer via separate 

address space 

 

Shared Address Space Architecture Programming Model 

 

 
• The programming model defines how to  share code, private stack, some shared heap, 

some private heap 
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• Here, Process is defined as virtual address space plus one or more threads of control 

• Multiple processes can overlap, but ALL threads share a process address space, i.e., 

portions of address spaces of processes are shared; and 

• Writes to shared address space by one thread are visible to reads of all threads in other 

processes as well 

• There exist number of shared address space architectures 

• The most popular architectures are: 

1. Main Frame Computers 

2. Minicomputers – Symmetric Multi Processors (SMP) 

3. Dance Hall 

4. Distributed Memory – Non-Uniform Multiprocessor Architecture (NUMA) 

 

1: Main Frame Architecture – Shared Address Space Architecture 

 
• The main frame architecture was motivated by multiprogramming 

• As shown here, it extends crossbar for processor interface to memory modules and I/O  

• Initially this architecture was limited by processor cost; but, later by the cost of crossbar  

• IBM S/390 (now z-Server) is typical example of cross-bar architecture 

 

2: Minicomputers (SMP) Architecture 

• The minicomputer architecture was also motivated by multiprogramming and multi-

transaction processing 

• As shown here, as all the components are on shared bus and all memory locations have 

equal access time so this architecture is referred to as the Symmetric Multi Processors 

(SMPs) 
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• However, the bus is bandwidth bottleneck as sharing is limited by Bandwidth when we 

add processors, I/O 

• Furthermore, caching is key to the coherence problem – we will talk about this later  

• The typical example of SMP architecture is Intl Pentium Pro Quad 

 

Intel Pentium Pro Quad 

• Here, all the coherence and multi-processing is glued in processor module 

• It is highly integrated  and have low latency and bandwidth 

 

 
3: Dance Hall Architecture 

• All processors are on one side of the network and all memories on the other side 

 
• As we have notice that in the cross-bar architecture the major cost is of interconnect and 

in SMPs bus bandwidth is the bottleneck 

• This architecture offers solution to both the problems through its scalable interconnect 

network where the bandwidth is scalable 
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• However, the interconnect network has larger access latency; and  

• caching is key to the coherence problem 

 

4: Distribute Memory Architecture 

• It is a large scale multiprocessor architecture where Memory is distributed with Non-

Uniform Access Time  

• This architecture is therefore referred to as Non Uniform Memory Access (NUMA)  

 
 

• Cray T3E is a typical example of NUMA architecture 

 
• Cray T3E is a typical example of NUMA architecture which scales up to 1024 processors 

with 480 MB/sec. links 

• Here, the non-local references are accessed using communication requests generated 

automatically by the memory controller in the external I/Os 

• Here no hardware coherence mechanism is employed rather directory based cache-

coherence protocols are used – We will discuss this in detail later 

 

Message Passing Architecture 

• So far we have been talking about the programming and communication models of 

shared-memory address space architecture and their evolution 

• Now let us discuss the programming and communication models of Message passing 

Architecture 

• The programming model depicted here illustrates that the whole computers (CPU, 

memory, I/O devices) communicate as explicit I/O operations 
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Message Passing Architecture: Programming Model 

 

 
 

• Note that the message passing is essentially NUMA but it is integrated at I/O devices vs. 

memory system 

• Here, the local memory is directly accessed, i.e., it directly accesses the private address 

space (e.g., the processor P directly access the local address X); and  

• Communication takes place via explicit message passing, i.e., via send/receive 

• Send specifies local buffer and the receiving process on remote computer 

• Receive specifies sending process on remote computer and local buffer to place data 

(i.e., address Y on Processor Q) 

 Usually send includes process tag and receive has rule on tag: match 1, match 

any 

• Send and receive is memory-memory copy, where each supplies local address,  

AND does pair-wise  synchronization 

• The synchronization is achieved as follows: 

• receive wait for send when  

 send completes 

 buffer free and  

 request accepted 

 

Message Passing Architecture: Communication Model 

• The high-level block diagram for complete computer as a building block, similar to the 

distributed memory spared address space is shown here to describe the communication 

abstraction 
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• Here, the communication is 

integrated at IO level, and not into 

memory system  

• It has networks of workstations 

(clusters), but tighter integration 

• It is easier to build than scalable 

shared address space machines 

• Typical example of Message 

Passing Machines are IBM SP 

shown here  

• IBM SP: Message Passing Machine 

• Made out of essentially complete 

RS6000 workstations 

• Network interface integrated in I/O 

bus  

• Bandwidth is limited by I/O bus 
 

Summary 

• Today we have explored how further improvement in computer performance can be 

accomplished using Parallel Processing Architectures 

• Parallel Architecture is a collection of processing elements that cooperate and 

communicate to solve larger problems fast 

• Then we described the four categories of Parallel Architecture as: SISD, SIMD, MISD 

and MIMD architecture 

• We noticed that based on the memory organization and interconnect strategy, the MIMD 

machines are classified as:   

 Centralized Shared Memory Architecture and Distributed Memory Architecture 

• We also introduced the framework to describe parallel architecture as a two layer 

representation: Programming and Communication models 

• These models present sharing of address space and message passing in parallel 

architecture 

• The advantages of Shared-Memory Communication model are as follows: 

 Ease of programming when communication patterns are complex or vary 

dynamically during execution  

 Lower communication overhead, better use of BW for small items 

 HW-controlled caching to reduce remote comm. by caching of all data, both 

shared and private 

• The advantages of message passing communication model are as follows: 

 Communication is explicit and simpler to understand where as in shared memory 

it can be hard to know when communicating and when not, and how costly it is 

 Easier to use sender-initiated communication, which may have some advantages 

in performance 

 Synchronization is associated with sending messages 
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Lecture 35 

Multiprocessors 

(Cache Coherence Problem) 

Today’s Topics 

• Recap: 

• Multiprocessor Cache Coherence  

• Enforcing Coherence in: 

• Symmetric Shared Memory Architecture 

• Distributed Memory Architecture 

• Performance of Cache Coherence Schemes 

• Summary 

 

Recap: Parallel Processing Architecture 

• Last time we introduced the concept of Parallel Processing to improve the computer 

performance 

• Parallel Architecture is a collection of processing elements that cooperate and 

communicate to solve larger problems fast 

• We discussed Flynn‘s four categories of computers which form the basis to implement 

the programming and communication models for parallel computing 

• These categories are: 

 SISD (Single Instruction Single Data) 

 SIMD (Single Instruction Multiple Data) 

 MISD (Multiple Instruction Single Data) 

 MIMD (Multiple Instruction Multiple Data) 

• The MIMD machines implement Parallel processing architecture 

 

Recap: MIMD Classification 

• We noticed that based on the memory organization and interconnect strategy, the MIMD 

machines are classified as:   

 Centralized Shared Memory Architecture 

 Here, the subsystems share the same physical centralized memory connected by 

a bus. The key architectural property of this design is the Uniform Memory 

Access – UMA; i.e., the access time to all memory from all the processors is 

same 

 

Recap: MIMD Classification 

• Distributed Memory Architecture 

 It consists of number of individual nodes containing a processors, some memory 

and I/O and an interface to an interconnection network that connects all the 

nodes 

 The distributed memory provides more memory bandwidth and lower memory 

latency 
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Recap: Framework for Parallel processing 

• Last time we also studied a framework for parallel architecture 

• The framework defines the programming and communication Models for centralized 

shared-memory and distributed memory parallel processing architectures 

• These models present address space sharing and message passing in parallel 

architecture 

• Here, we noticed that the shared-memory communication model has compatibility with 

the SMP hardware; and  

• offers ease of programming when communication patterns are complex or vary 

dynamically during execution 

• While the message-passing communication model has explicit Communication which is 

simple to understand; and is easier to use sender-initiated communication 

 

Multiprocessor Cache Sharing 

• Today, we will look into the sharing of caches for multi-processing in the symmetric 

shared-memory architecture 

• The symmetric shared memory architecture is one where each processor has the same 

relationship to the single memory 

• Small-scale shared-memory  machines usually support  caching of both the private data 

as well as the shared data 

• The private data is used by a single processor,  while the shared data is replicated in the 

caches of the multiple processors for their simultaneous use 

• It is obvious that the program behavior for caching of private data is identical to the  that 

of a Uniprocessor, as no other processor uses the same data,  

• i.e., no other processor cache has copy of the same data 

 

Multiprocessor Cache Coherence 

• Whereas when shared data are cached the shared value may be replicated in multiple 

caches 

• This results in reduction in access latency and fulfill the bandwidth requirements,  

• but, due to difference in the communication for load/store and strategy to write in the 

caches, values in different caches may not be consistent, i.e., 

• There may be conflict (or inconsistency) for the shared data being read by the multiple 

processors simultaneously  

• This conflict or contention in caching of sheared data is referred to as the cache 

coherence problem 

• Informally, we can say that memory system is coherent  if any read of a data item 

returns the most  recently written value of that data item 

• This definition contains two aspects of memory behavior: 

 Coherence that defines what value can be returned by a read? 

 Consistency that determines when a written value will be returned by a read? 

• Let us explain the cache coherence problem with the help of a typical shared memory 

architecture shown here! 
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Cache Coherency Problem? 

• Note that here the processors P1, P2, P3 see old values in their caches as there exist 

several alternative to write to caches!  

• For example, in write-back caches, value written back to memory depends on which 

cache flushes or writes back value (and when);  

• i.e., value returned depends on the program order, program issue order or order of 

completion etc. 

• The cache coherency problem exists even on uniprocessors where due interaction 

between caches and I/O devices the infrequent software solutions work well 

• However, the problem is performance-critical in multiprocessors where the order among 

multiple processes is crucial and needs to be treated as a basic hardware design issue 

 

Order among multiple processes? 

• Now let us discuss what does order among multiple processes means! 

• Firstly, let us consider a single shared memory, with no caches 

 Here, every read/write to a location accesses the same physical location  and the 

operation completes at the time when it does so 

• This means that a single shared memory, with no caches,  imposes a serial or total order 

on operations to the location, i.e.,  

 the operations to the location from a given processor are in program order; and  

 the order of operations to the location from different processors is some 

interleaving that preserves the individual program orders 

• Now, let us discuss the case of  a single shared memory, with caches 

• Here,  the latest means the most recent in a serial order with operations to a location 

from a given processor in program order 

• Note that for the serial order to be consistent, all processors must see writes to the 

location in the same order 

 

Formal Definition of Coherence! 

• With this much discussion on the cache coherence  problem, we can say that 

• A memory system is coherent if the results of any execution of a program are such that 

for each location, it is possible to construct a hypothetical serial order of all operations to 

the location that is consistent with the results of the execution 

• In a coherent system 

 the operations issued by any particular process occur in the order issued by that 

process, and 

 the value returned by a read is the value written by the last write to that location 

in the serial order 

 

Features of Coherent System 

• Two features of a coherent system are: 

 write propagation: value written must become visible to others, i.e., any write 

must eventually be seen by a read 

 write serialization: writes to a location seen in the same order by all 
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Cache Coherence on buses 

• Bus transactions and Cache state transitions are the fundamentals of Uniprocessor 

systems 

• Bus transaction passes through three phases: arbitration, command/address, data 

transfer 

• Cache State transition deals with every block as a finite state machine 

• The write-through, write no-allocate caches have two states: valid, invalid 

• write-back caches have one more state: modified (―dirty‖) 

 

Multiprocessor cache Coherence 

• Multiprocessors extend both the bus transaction and state transition to implement cache 

coherence 

 
Coherence with write-through caches! 

• Here, the controller snoops on bus events (write transactions) and invalidate / update 

cache 

• As in case of write-through, the memory is always up-to-date therefore invalidation 

causes next read to miss and fetch new value from memory, so the bus transaction is 

indeed write propagation 

• The Bus transactions impose write serialization as the writes are seen in the same order 

 

Cache Coherence Protocols 

• In a coherent multiprocessor, the caches provide both the relocation (migration) and 

replication (duplication) of shared data items 

• There exist protocols which use different techniques to track the sharing status to 

maintain coherence for multiprocessor  

• The protocols are referred to as the Cache Coherence Protocols 

 

Potential HW Coherency Solutions 

• The two fundamental classes of Coherence protocols are: 

 Snooping Protocols: All cache controllers monitor or snoop (spy) on the bus to 

determine whether or not they have a copy of the block that is requested on the 

bus 
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 Directory-Based Protocols: The sharing status of a block of physical memory is 

kept in one location, called directory 

• The Snoopy solutions: 

 Send all requests for data to all processors 

 Processors snoop to see if they have a copy and respond accordingly  

 Requires broadcast, since caching information is at processors 

 Works well with bus (natural broadcast medium) 

 Dominates for small scale machines (most of the market) 

• Directory-Based Schemes 

 Keep track of what is being shared in one centralized place 

 Distributed memory employs distributed directory for scalability and to avoids 

bottlenecks 

 Send point-to-point requests to processors via network 

 Scales better than Snooping 

 Actually existed BEFORE Snooping-based schemes 

 

Basic Snooping Protocols 

• There are two ways to maintain coherence requirements using snooping protocols. 

These techniques are: write invalidate and write broadcast  

1. Write Invalidate Method 

 This method ensures that processor has exclusive access to the data 

item before it write that item and all other cached copies are invalidated or 

canceled on write 

 Exclusive excess ensures that no other readable or writeable copies of an 

item exist when the write occurs 

 

1. Write Invalidate Protocol 

• Uses Multiple readers and single writer 

• For Write to shared data:   

 an invalidate information is sent to all caches  

 Considering this information, the controller snoop and invalidate any copies 

• For Read Miss, in case of:  

 Write-through: memory is always up-to-date, so no problem; and  

 Write-back: it snoop in caches to find most recent copy 

• Example: The following table shows the working of invalidation protocol for snooping 

bus with write-back cache 
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• Here, we assume that both the caches of CPU A and B do not initially hold X, and that 

the value of X in the memory is 0 (First row) 

• Here, to see how this protocol ensures coherence, we consider a write followed by a 

read by another processor 

• As the write requires exclusive access, any copy held by the reading processor must be 

invalidated; thus 

• When the read occurs it misses in the cache and is forced to a new copy of data 

• Furthermore, the exclusive write access prevents any other processor from being writing 

simultaneously  

• In the table, the CPU and memory contents show the value after the processor activity 

• A blank indicates no activity or no copy cached and bus activity have completed 

• When 2nd miss by B occurs, the CPU A responds with the value cancelling the response 

from memory 

• In addition, both the contents of B‘s cache and memory contents of x are updated 

• The values given in the 4th row show the invalidation for the memory location x when A 

attempts to write 1 

• This update of the memory, which occurs when block becomes shared, simplifies the 

protocol 

 

2: Write Broadcast Protocol 

• The alternative to Write Invalidate protocol is the write update or write broadcast protocol 

• Instead of invalidating this protocol updates all the cached copies of a data item when 

that item is written 

• This protocol is particularly used for write through caches, here for 

• Write to shared data the processors snoop, and update any copies by broadcasting on 

bus 

• Example: The following table shows the working of write update protocol for snooping 

bus with write-back cache 

 
• Here, we assume that both the caches of CPU A and B do not initially hold X, and that 

the value of X in the memory is 0 (First row) 

• The CPU and memory contents show the value after the processor and bus activity have 

both completed 

• As shown in the 4th row, when CPA writes a 1 to memory X it update the value in caches 

of A and B and the memory 
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Write Invalidate versus Broadcast 

• Invalidate requires one transaction for multiple writes to the same word 

• Invalidate uses spatial locality: one transaction for write to different words in the same 

block 

• Broadcast has lower latency between write and read 

 

An Example Snooping Protocol 

• A bus based protocol is usually implemented by incorporating a finite state machine 

controller in each node 

• This controller responds to the request from the processor and from the bus based on: 

 the type of the request 

 Whether it is hit or miss in the cache 

 State of the cache block specified in the request 

• Each block of memory is in one of the three states: 

 (Shared) Clean in all caches and up-to-date in memory 

 OR (Exclusive) Dirty in exactly one cache 

 OR Not in any caches 

• Each cache block is in one of the three state (track these): 

 Shared : block can be read 

 OR Exclusive : cache has only copy, its writeable, and dirty 

 OR Invalid : block contains no data 

• Read misses: cause all caches to snoop bus 

• Writes to clean line are treated as misses 

 

Finite State Machine for Write Invalidation Protocol and write Back Caches 

• Now let discuss the finite-state Transition for a single cache block using a write 

invalidation protocol and write back caches 

• The state machine has three states:  

 Invalid 

 Shared (read only) and  

 Exclusive (read/write) 

• Here, the cache states are shown in circles where access permitted by the CPU without 

a state transition shown in parenthesis 

• The stimulus causing the state transition is shown on the transition arc in yellow and the 

bus action generated as part of the state transition is shown in orange 

• The state in each cache node represents the state of the selected cache block specified 

by the processor or bus request 

• In reality there is only one state-transition diagram but for simplicity the states of the 

protocol are duplicated here to represent:  

 Transition based on the CPU request 

 Transition based on the bus request 

• Now let us discuss the state-transition based on the actions of CPU associated with the 

cache, shown state machine -I 

 



 

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com 
 

363 CS-704 Advanced Computer Architecture 

Snoopy-Cache State Machine-I: for CPU requests for each cache block 

 

• Note that a read miss in the 

exclusive or shared state and a write 

miss in the exclusive state occurs 

when the address requested by the 

CPU does not match the address in 

the cache block 

• Further an attempt to write a block in 

the shared state always generates 

miss even if the block is present in 

the cache, since the block must be 

made exclusive 

• Here, note that in case of read hit, 

the shared and exclusive states read 

data in cache and address the 

conflict miss 

• The invalid state places the read 

miss on the bus;  

• For write hit, the exclusive state 

writes the data in cache and shared 

state place write miss on bus 

• In case of write miss, the invalid 

state places the miss on the bus  

• shared and exclusive states address 

the conflict miss;  

• the shared state places write miss 

on the bus, while  

• the exclusive state write-back block 

and then places write miss on the 

bus 

 
Snoopy-Cache State Machine-I 

 

 
Snoopy-Cache State Machine-II

 

Finite State Machine for Write Invalidation Protocol and write Back Caches 

• Now let us discuss the state-transition based on the actions of bus request  associated 

with the cache, shown as state machine-II 

• Here, when ever a bus transaction occurs, all caches that contain the cache block 

specified in the bus transaction take the action as shown in this state machine 

• Here, the protocol assumes that 

• Memory provides data on a read miss for a block that is clean in all caches 

• Note that read miss, the stared state take no action, and allows the memory to service 

read miss;  

• where as the exclusive state, attempts to share the data, places the cache block on the 

bus and change the state to shared. 
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• For the write miss, the shared state attempts to write shared block and invalidates the 

block 

• Whereas, the exclusive state attempts to write block that is exclusive elsewhere; write 

back the cache block and make the state invalid 

 

Summary 

• Today, we talked about sharing of caches for multi-processing in the symmetric shared-

memory architecture 

• We studied the cache coherence problem and studied two methods to resolve the 

problem 

• Here, we discussed the write invalidation and write broadcasting schemes 

• At the end we discussed the finite state machine for the implementation of snooping 

algorithm 

• We will further explain the snooping protocol with the help of example next time. 
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Lecture 36 

Multiprocessors 

(Cache Coherence Problem … Cont’d) 

 

Today’s Topics 

• Recap: 

• Example of Invalidation Scheme 

• Coherence in Distributed Memory Architecture 

• Performance of Cache Coherence Schemes 

• Summary 

 

Recap: Cache Coherence Problem 

• Last time we discussed the sharing of caches for multi-processing in the symmetric 

shared-memory architecture, wherein each processor has the same relationship to the 

single memory 

• Here, we distinguished between the private data and shared data, i.e.,  

 the data used by a single processor and  

 the data replicated in the caches of the multiple processors for their simultaneous 

use 

• Then we discussed cache coherence problem in symmetric shared memory which 

results due to inconsistency or conflict in caching of shared data, being read by the 

multiple processors simultaneously 

• We studied the cache coherence problem with the help of a typical shared memory 

architecture where each of the processor contained write-back cache 

• In write-back caches, values written back to memory depend on which cache flushes or 

writes back the value and when? 

• We noticed that the cache coherency problem exists even on uniprocessors due 

interaction between caches and I/O devices 

• However, in multiprocessors the problem is performance-critical where the order among 

multiple processes is crucial, i.e., 

 

Recap: Order among multiple processes 

• For single shared memory, with no caches, a serial or total order is imposed on 

operations to the location; and for 

• single shared memory, with caches, the serial order be consistent, i.e., all processors 

must see writes to the location in the same order 

• Considering this we can say that in a coherent system: 

 the operations issued by any particular process occur in the order issued by that 

process, and 

 the value returned by a read is the value written by the last write to that location 

in the serial order 

• Then we talked about write propagation and write serialization as the two features of the 

coherent system 
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Recap: Multiprocessor cache Coherence 

• We also noticed that to implement cache coherence the multiprocessors extend both the 

bus transaction and state transition 

• The cache controller snoops on bus events (write transactions) and invalidate / update 

cache 

• Then we discussed the cache coherence protocols, which use different techniques to 

track the sharing status and maintain coherence for multiprocessor  

 

Recap: Coherency Solutions 

• The two fundamental classes of Coherence protocols are: 

 Snooping Protocols: All cache controllers monitor or snoop (spy) on the bus to 

determine whether or not they have a copy of the block that is requested on the 

bus 

 Directory-Based Protocols: The sharing status of a block of physical memory is 

kept in one location, called directory 

 

Recap: Basic Snooping Protocols 

• The snooping protocols are implemented using two techniques: write invalidate and write 

broadcast  

• The Write Invalidate method ensures that processor has exclusive access to the data 

item before it write that item and all other cached copies are invalidated or canceled on 

write 

• The write broadcast approach, on the other hand, updates all the cached copies of a 

data item when that item is written 

 

Recap: Write Invalidate versus Broadcast 

• We noticed that  

 Invalidate requires one transaction for multiple writes to the same word; and it 

uses spatial locality, i.e., one transaction for write to different words in the same 

block; and  

 Broadcast has lower latency between write and read 

• Then we discussed the finite state machine controller implementing the snooping 

protocols 

 

Recap: An Example Snooping Protocol 

• This controller responds to the request from the processor and from the bus based on: 

 the type of the request 

 Its hit or miss status in the cache; and  

 State of the cache block specified in the request 

• Furthermore, each block of memory is in one of the three states: Shared, Exclusive or 

Invalid (Not in any caches) and each cache block tracks these three states 
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Example: Working of Finite State Machine Controller 

• Today we will continue our discussion on the finite state machine controller for the 

implementation of snooping protocol; 

•  and will try to understand its working with the help of example 

• Here, we assume that two processors P1 and P2 each having its own cache, share the 

main memory connected on bus 

• The status of the processors, bus transaction and the memory is depicted in a table for 

each step of the state machine 

• Here, the state of the machine for each processor and cache address and value cached, 

the bus action and shared-memory status is shown for each step of operation 

• Initially the cache state is invalid (i.e., the block of memory is not in the cache); and 

memory blocks A1 and A2 map to the same cache block where the address A1 is not 

equal to A2 

• At Step 1 – P1 writes 10 to A1 

I. write miss on bus occurs and the state transition from invalid to exclusive takes 

place  

 
 

• At Step 2 – P1 reads A1 

I. CPU read HITs occurs, hence the FSM Stays in exclusive state  
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• At Step 3: P2 reads A1 

I. As P2 is initially in invalid state, therefore, read miss on the bus occurs; the 

controller state changes from invalid to Shared 
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II. P1 being in Exclusive state, remote read write-back is asserted and the state 

changes from exclusive to Shared; and 

III. the value (10) is read 1 from the shared-memory at address A1, into P1 and P2 

caches at A1; and both P1 and P2 controllers are in shared state 

 

• At Step 4: P2 write 20 to A2 

I. P1 find a remote write, so the state of the controller changes from shared to 

Invalid 

II. P2 find a CPU write, so places write miss on the bus and changes the state from 

shared to exclusive and writes value 20 to A1 

III. The memory address to A1 with value A1 

 

 
 

• At Step 5: P2 write 40 to A2 

 P2 being in Exclusive state, CPU write Miss occurs, and initiates write-back to P2 

at A2 

 P2 remains in Exclusive state, with address A2 and value 40 
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Implementation Complications 

• With this example, we have observed that the finite state machine implementation of the 

snooping protocols works well 

• However, the following implementation complications have been observed 

 Write Races 

 Interventions and invalidations 

• Write Races occur when one processor wants to update the cache but another 

processor may get bus first and then write the same cache block! 

• We know that bus transaction is a two step process: 

 Arbitrate for bus  

 Place miss on bus and complete operation 

• If miss occurs to block while waiting for bus, handle miss, i.e. invalidate, and then restart. 

• Furthermore, to overcome the write races, split transaction bus, so that 

 it can have multiple outstanding transactions for a block 

 Multiple misses can interleave, allowing two caches to grab block in the 

Exclusive state 

 Must track and prevent multiple misses for one block 

 

Snooping Cache Conflict 

• In snooping cache method, the CPU assess the cache and the bus transaction checks 

the cache tags 

• Processors continuously snoop on address bus and if the address matches tag, it either 

invalidate or update 
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• Since every bus transaction checks cache tags; therefore there could be interference 

with CPU 

• There are two ways to reduce the interference; the methods are: 

1. Duplicate set of tags for L1 caches  

o CPU uses a different set of tags  

o The CPU gets stalled during cache access when snoop has detected a 

copy in the cache and tags need to be updated 

2. Multi-level caches with inclusion: i.e., L2 cache already duplicate, provided L2 

obeys inclusion with L1 cache; here 

o Content of primary cache (L1) is in secondary cache (L2) 

o Most CPU activity directed to L1 

o Snoop activity directed to L2 

o If snoop gets a hit then it arbitrates L1 to update and possibly get data; 

this will stall CPU 

o Can be combined with ―duplicate tags‖ approach to further reduce 

contention 

 

Snooping Cache Variations 

• MESI Protocol:  

• This protocol contains four (4) states 

 Modified  

 Exclusive  

 Shared  

 Invalid 

• Exclusive now means exclusively cached but clean upon loading 

 

Four State Machine 

• Bus serializes writes, getting bus ensures no one else can perform memory operation 

• On a miss in a write back cache, may have the desired copy and its dirty, so must reply 

• Add extra state bit to cache to determine shared or not 

• Add 4th state Modify that Modifies for exclusive writes 

 

Snooping Cache Variations: Berkeley Protocol 

• The main idea is to allow cache to cache transfers on the shared bus 

• It adds the notion of ―owner‖ 

• the cache that has the block in a Dirty state is the owner of that block: 

• The last one who writes, is the owner 

• The owner responsible to transfer data if read occurs and to update main memory;  If a 

block is not owned by any cache, memory is the owner 
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Summary Snooping Cache Variations: Summary 

 

 
 

• Illinois Protocol 

 Private Dirty 

 Private Clean 

 Shared 

 Invalid 

• MESI  Protocol 

 Modfied (private,°Memory) 

 eXclusive (private,=Memory) 

 Shared (shared,=Memory) 

 Invalid 

 

• If read sourced from memory, then Private Clean 

• if read sourced from other cache, then Shared 

• Can write in cache if held private clean or dirty 

 

Snoop Cache Extensions 
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Extensions:  

A. Berkeley Protocol: 

 Fourth State: Ownership 

 Shared-> Modified, need invalidate only (upgrade request), don‘t read memory 

B. MESI Protocol:  

 Clean exclusive state (no miss for private data on write) 

C. Illinois Protocol:  

 Cache supplies data when shared state (no memory access) 

 

Larger Microprocessors 

• Use separate Memory per Processor 

• Local or Remote access via memory controller 

• 1 Cache Coherency solution is using non-cached pages  

• Alternative is to use: directory containing information for every block in memory that 

tracks state of every block in every cache, which caches have a copies of block, dirty vs. 

clean, etc 

• The use of information per memory block vs. per cache block has some plus and minus 

points 

 PLUS: In memory => simpler protocol as compared to centralized/one location 

 MINUS: In memory => directory is function of memory size)  as compared to 

simple protocol where director is function of cache size 

 

Directory Based Protocol: Distributed Shared Memory 

 

 
 

Directory Based Protocol 

• The director base protocol is similar to Snoopy Protocol:  

• The Three states of the protocol are: 

 Shared:   1 processors have data, memory up- to-date 

 Uncached  (no processor has it; not valid in any  cache) 

 Exclusive:  1 processor (owner) has data; memory out-of-date 
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• In addition to cache state, must track which processors have data when in the shared 

state (usually bit vector, 1 if processor has copy) 

• Keep it simple(r): 

 Writes to non-exclusive data => write miss 

 Processor blocks until access completes 

 Assume messages received and acted upon in order sent 

• No bus and don‘t want to broadcast: 

 interconnect no longer single arbitration point 

 all messages have explicit responses 

• Typically 3 processors involved 

 Local node where a request originates 

 Home node where the memory location of an address resides 

 Remote node has a copy of a cache block, whether exclusive or shared 

• Example messages are as follows: Here P is used for processor number, A for address 

 

Message type  Source   Destination  Msg Content  

 

Read miss  Local cache  Home directory P, A 

Processor P reads data at address A; make P a read sharer and arrange to send data back  

 

Write miss   Local cache    Home directory  P, A 

Processor P writes data at address A; make P the exclusive owner and arrange to send data 

back  

 

Invalidate  Home directory Remote caches A 

Invalidate a shared copy at address A. 

 

Fetch    Home directory   Remote cache  A 

Fetch the block at address A and send it to its home directory 

 

Fetch/Invalidate    Home directory    Remote cache  A 

Fetch the block at address A and send it to its home directory; invalidate the block in the cache 
 

Data value reply    Home directory   Local cache   Data 

Return a data value from the home memory (read miss response) 

 

Data write-back    Remote cache     Home directory  A, Data 

Write-back a data value for address A (invalidate response) 

 

State Transition Diagram for an Individual Cache Block in a Directory Based System 

• States identical to snoopy case; 

• Transactions very similar. 

• Transactions are caused by read misses, write misses, invalidates, data fetch requests 

• Generates read miss & write miss messages to home directory. 
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• Write misses that were broadcast on the bus for snooping results in explicit invalidate & 

data fetch requests. 

• Note: on a write, a cache block is bigger, so need to read the full cache block 

 

CPU - Cache State Machine  

• State machine for CPU  requests for each memory block 

• Invalid state if in memory 

 
 

State Transition Diagram for the Directory 

• Here, the same states & structure is shown as the transition diagram for an individual 

cache 

• Two actions performed are:  

1. update of directory state  and  

2. send messages to satisfy requests  

• The controller tracks all copies of memory block; and also indicates an action that 

updates the sharing set, called Sharers, as well as sending a message 

 

Directory State Machine 

• State machine for Directory requests for each memory block 

• Un-cached state if in memory 
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Example Directory Protocol 

• Message sent to directory causes two actions: 

 Update the directory 

 More messages to satisfy request 

• Block is in Uncached state: the copy in memory is the current value; only possible 

requests for that block are: 

 Read miss: requesting processor sent data from memory & requestor made only 

sharing node; state of block made Shared 

 Write miss: requesting processor is sent the value & becomes the Sharing node. 

The block is made Exclusive to indicate that the only valid copy is cached. 

Sharers indicates the identity of the owner.  

• Block is Shared state => the memory value is up-to-date; the read miss and write miss 

activities are: 

 Read miss: requesting processor is sent back the data from memory & 

requesting processor is added to the sharing set. 

 Write miss: requesting processor is sent the value. All processors in the set 

Sharers are sent invalidate messages, & Sharers is set to identity of requesting 

processor. The state of the block is made Exclusive. 

• Block is Exclusive: Current value of the block is held in the cache of the processor 

identified by the set Sharers (the owner), three possible directory requests: 

 Read Miss 

 Data Write back  

 Write Miss 
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• Read miss:  

 Owner processor sent data fetch message, causing state of block in owner‘s 

cache to transition to Shared; and  

 Causes owner to send data to directory, where it is written to memory & sent 

back to requesting processor 

 Identity of requesting processor is added to set Sharers, which still contains the 

identity of the processor that was the owner (since it still has a readable copy).  

State is shared. 

 

• Data write-back:  

 Owner processor is replacing the block and hence must write it back, making 

memory copy up-to-date  

 The block is now Uncached, and the Sharer set is empty.  

 

• Write miss:  

 Block has a new owner. 

 A message is sent to old owner causing the cache to send the value of the block 

to the directory from which it is sent to the requesting processor, which becomes 

the new owner.  

 A sharer is set to identity of new owner, and state of block is made Exclusive. 

 

Summary 

• Caches contain all information on state of cached memory blocks  

• Snooping and Directory Protocols are similar;  

• However, bus makes snooping easier because of broadcast  

• Directory has extra data structure to keep track of state of all cache blocks 
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Lecture 37 

Multiprocessors 

(Performance and Synchronization) 

Today’s Topics 

• Performance of Multiprocessors with 

 Symmetric Shared-Memory 

 Distributed Shared Memory 

• Synchronization in Parallel Architecture 

• Conclusion 

 

Recap: Cache Coherence Problem 

• So far we have discussed the sharing of caches for multi-processing in the: 

 Symmetric shared-memory architecture  

 Distributed shared memory architecture 

• We have studied cache coherence problem in symmetric and distributed shared-memory 

multiprocessors; and have noticed that this problem is indeed performance-critical 

 

Recap: Multiprocessor cache Coherence 

• Last time we also studied the cache coherence protocols, which use different techniques 

to track the sharing status and maintain coherence without performance degrading 

• These protocols are classified as:  

 Snooping Protocols  Directory-Based Protocols 

• These protocols are implemented using a FSM controller  

 

Recap: Snooping Protocols 

• Snooping protocols employ write invalidate and write broadcast  techniques 

• Here, the block of memory is in one of the three states, and each cached-block tracks 

these three states; and the controller responds to the read/write request for a block of 

memory or cached block, both from the processor and from the bus  

 

Recap: Implementation Complications of snoopy protocols 

• The three states of the basic FSM are: Shared, Exclusive or Invalid 

• However, the complications such as: write races, interventions and invalidation have 

been observed in the implementation of snoopy protocols; and 

•  to overcome these complications number of variations in the FSM controller have been 

suggested 

• These variations are: MESI Protocol, Barkley Protocol and Illinois Protocol 

 

Recap: Variations in snoopy protocols 

• These variations resulted in four (4) states FSM controller 

 The states of MESI Protocol are: Modify, Exclusive, Shared and Invalid 

 The sates of Barkley Protocol are: Owned- Exclusive, Owned-Sheared, Shared 

and Invalid; and of  

 Illinois Protocol are: Private Dirty, Private clean, shared and Invalid 
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Recap: Directory based Protocols 

• The larger multiprocessor systems employ distributed shared-memory , i.e., a separate 

memory per processor is provided 

• Here, the Cache Coherency is achieved using non-cached pages or directory containing  

information for every block in memory 

• The directory-based protocol tracks state of every block in every cache and finds the 

caches having copies of block being dirty or clean  

• The directory-based protocol tracks state of every block in every cache and finds the 

caches having copies of block being dirty or clean 

• Similar to the Snoopy Protocol, the directory-based protocol  are implemented by FSM 

having three states: Shared, Uncached and Exclusive 

 

 
Recap: Directory Based Protocols 

• These protocols involve three processors or nodes, namely: local, home and remote 

nodes 

 Local node originates the request 

 Home node stores the memory location of an address 

 Remote node holds a copy of a cache block, whether exclusive or shared 

• The transactions are caused by the messages such as: read misses, write misses, 

invalidates or data fetch requests  

• These messages are sent to the directory to cause actions such as: update directory 

state and to satisfy requests  

• The controller tracks all copies of memory block; and indicates an action that updates 

the sharing set 

 

Example: Working of Finite State Machine Controller 

• Now are going to discuss the state transition and messages generated by FSM 

controller in each state to implement the directory-based protocols. 



 

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com 
 

380 CS-704 Advanced Computer Architecture 

• We consider an example distributed shared-memory multiprocessor having two 

processors P1 and P2 where each processor has its own cache, memory and directory 

• Here, if the required data is not in the cache and is available in memory associated with 

the respective processor, then the state machine is said to be in Uncached state; and 

transition to other states is caused by messages such as: read miss, write miss, 

invalidates and data fetch request 

• Dealing with read/write misses 

 
A1 and A2 map to the same cache block 

• Let us assume that the initially the cache states are Uncached (i.e., the block of data is 

in memory); and at the first step P1 write 10 to address A1, here the following three 

activities take place  

1. The bus action is write miss and the processor P1 places the address A1 on the 

bus; 

2. the data value reply message is sent to the controller, P1 is inserted in the 

directory sharer-set {P1}; and  

3. the state transition from Uncached to exclusive takes place, these operations are 

shown here in the red color 

 
• At Step 2:  P1 reads A1; CPU read HITs occurs, hence the FSM Stays in exclusive state  
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• At Step 3: P2 reads A1 

i. Read miss occurs on the bus as P2 is initially in Uncached state; the controller 

states of P1 and P2 change from Uncached to Shared 

ii. P1 being in Exclusive state, remote read write-back is asserted and the state 

changes from exclusive to Shared; and 

iii. The value (10) is read 1 from the shared-memory at address A1, into P1 and P2 

caches at A1; and both P1 and P2 controllers are inserted in sharer-set {P1,P2} 

• Working of FSM Controller 
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• At Step 4: P2 write 20 to A2 

i. As A1 and A2 maps to the same cache block; P1 find a remote write, so the state 

of the controller changes from shared to Invalid 

ii. P2 find a CPU write, so places write miss on the bus and changes the state from 

shared to exclusive and writes value 20 to A1 

iii. The director addresses to A1 with sharer-set containing {P2} 

 

 
A1 and A2 map to the same cache block 

 

• At Step 5: P2 write 40 to A2 

i. P2 being in Exclusive state, P2 write Miss at A2 occurs 

ii. Director of A2 is in exclusive state and places P2 in the sharer-set {P2} 

iii. P2 write-back 20 at A1 completes; the directory at A1 is in Uncached state; the 

sharer-set is empty and value 20 is placed in the memory  

iv. P2 remains in Exclusive state, with address A2 and value 40 

 

 
A1 and A2 map to the same cache block 
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Performance of Multiprocessors: Symmetric Shared-Memory Architecture 

In bus-based multiprocessor using an invalidation protocols, several phenomenon combine to 

determine performance: 

• Overall cache performance is combination of the behavior of the Uniprocessor cache 

miss-traffic and the traffic caused by the communication due to invalidation and 

subsequent cache miss 

• Changing processor count, cache size and block size effect these two components of 

miss rate 

 The misses arising from inter-processor communication, called coherence misses, 

can be from two sources true sharing and false sharing. 

 

• True Sharing: The so-called true sharing misses arise from communication of data 

through cache-coherence mechanism 

 The first write by processor to a shred cache-block caused an invalidation to 

establish ownership of that block 

 When another processor attempts to read modified word, a miss occurs and the 

resultant block is transferred 

 Both the misses are classified as true-sharing misses, as they arise from the 

sharing of data 

 

• False Sharing: it arise from the use of invalidation-base coherence algorithm with a 

single valid bit per cache block 

 False sharing occurs when a block is invalidated and a subsequent reference 

causes a miss. i.e., 

 the word being written and the word read are different and the invalidation does not 

cause a new value to be communicated, but only causes an extra cache miss 

 Here, the block is shared but no word in the block is shared and the miss would not 

occur is the block size were a single word 

Example of True and False Sharing: 

• Considering the previous example, assume the words A1 and A2 are in the same cache 

block, which is in the shared state in the caches of P1 and P2 

• Let us identify the true-sharing miss and false sharing miss for the following sequence of 

events 

Time P1 P2 

1 Write A1  

2  Read A2 

3 Write A1  

4  Read A2 

5 Write A2  

• Event 1: P1 Write A1 – is true sharing miss, since A1 was read by P2 and needs to be 

invalidated from P2 

• Event 2: P2 Read A2 – is false sharing miss, since A2 was invalidated by the write of A1 

in P1, but the value of A1 is not used in P2 
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• Event 3: P1 Write A1 – is false sharing miss; since the block containing A1 is marked 

shared due to read in P2; but P2 did not read A1 

• Event 4: P2 Write A2 – is false sharing miss; since the block containing A2 is marked 

shared due to read in P2 (event 2); but P2 did not Write A2 

• Event 5: P1 Read A2 – is true sharing miss; since the value being read by P2 was 

written by P2 (in event 4) 

 

Performance of Multiprocessors 

Distributed Shared-Memory Architecture 

• The performance of directory-based multiprocessors depends on many of the same 

factors (such as processor count, cache size and block size etc.) that influence the 

performance of bus-based multiprocessor 

• In addition, the location of requested data item which depends on both the initial 

allocation and sharing pattern also influence the performance of distributed shared-

memory architecture 

• Here, the distribution of memory requests between local memory and remote memory is 

key to the performance, because it affects both the consumption of both global 

bandwidth and latency seen by the requests 

• This can be visualized from these figures 

• Here the cache misses are separated into the local and remote requests  

• The graphs for data miss rate vs. cache size, obtained using same benchmarks, show 

that miss rate decrease as cache size grow 

• Note that there is a steady decrease in the local miss rate while the decline in the remote 

miss rate  depend on coherence misses 

• In all cases shown here, the decrease in the local miss rate is larger than the decrease 

in the remote miss rate 

• The graphs for data miss rate vs. block size, obtained using same benchmarks, show 

that miss rate decrease as block size increases 

 

Synchronization 

• Why Synchronization? 

 While using multiprocessor architecture, we need to know when it is safe for 

different processes to use shared data 

 This is accomplished by using the synchronization mechanisms 

• These mechanisms are built with user-level software routines that rely on the hardware 

supplied synchronization instructions 

• For small multiprocessors Uninterruptable instruction are used to fetch and update 

memory which is referred to as the atomic operation 

• For large scale multiprocessors, synchronization can be a bottleneck 

• Several techniques have been proposed to reduce contention and latency of 

synchronization 

• Here, we will examine the hardware primitives to implement synchronization and then 

construct synchronization routines 
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Hardware Primitives: Uninterruptable Instructions 

• The basic requirement to implement synchronization in a multiprocessor is the set of 

hardware primitives with the ability to atomically read and modify a memory location,  

 i.e., read and modify are performed in one step 

• One typical operation that interchanges a value in a register for a value in memory is 

referred to as Atomic exchange 

• There are number of other atomic primitives that can be used to implement 

synchronization 

• The key property of these atomic primitives is that they read and update a memory value 

atomically 

• The other such operations used in many old multiprocessors is Test-and-Set and fetch-

and-increment etc. 

• Now let us understand how the atomic operation work? 

 

• Atomic Exchange: To see how we can use this primitive to build synchronization, let us 

assume we want to build a simple lock where  

 0 indicates that lock is free; and 

 1 indicates that lock is unavailable 

• To implement synchronization, a processor tries to set the lock by exchange of 1, which 

is in the register, with the memory address corresponding to the lock 

• The value returned from the exchange instruction is 1 if some other processor had 

already claimed access, otherwise the value returned is 0; i.e.,  

• The synchronization is locked and unavailable if some other processor had already 

claimed access; otherwise the value returned is 0 

• In the later case, where the value returned is 0, the value is changed to 1, preventing 

any competing exchange from also retrieving 0 

 

Example: 

• Consider two processors trying to exchange simultaneously 

• This race is broken when one of the processor exchange first and returns 0, and the 

second processor will return 1 when it does the exchange 

• Test-and-set: tests a value and sets it if the value passes the test 

• Fetch-and-increment: it returns the value of a memory location and atomically 

increments it 

• Key to the atomic operations is that each operation is indivisible 

• Implementing a single atomic instruction in hardware is complex and is hard to have 

read & write in one instruction; therefore 

• In the recent multiprocessor pair of instructions is used – the two instructions are: 

 Load linked (or load locked) and  

 Store conditional 

• Here, the second instruction returns a value from which it can be deduced as if the 

instruction were executed as atomic 
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• Note that: 

 Load linked (LL) returns the initial value 

 Store conditional (SC) returns 1 if it succeeds (no other store to same memory 

location since proceeding load) and 0 otherwise 

 

• These instructions are used in sequence: 

 If the contents of memory location, specified by the LL are changed before the 

before the SC to the same address occurs, then the SC fails 

 The store conditional returns a value 1 or 0 indicating whether  the SC was 

successful or not 

• Let us consider an example program segment showing implementation of atomic 

exchange on memory location specified by the contents of register R1 

• Example doing atomic swap with LL & SC: 

 

 try: MOV R3,R4    ; mov exchange value 

 ll R2,0(R1)  ; load linked 

 sc R3,0(R1)  ; store conditional 

 beqz R3,try     ; branch store fails (R3 = 0) 

 mov R4,R2    ; put load value in R4 

 

• At the end of this sequence, the contents of R4 and memory location specified by R1 

have been atomically exchanged 

• The LL –SC primitive can be used to build other primitives, e.g., the atomic fetch and 

increment can be constructed as: 

• Example doing fetch & increment with LL & SC: 

 

 try: ll R2,0(R1) ; load linked 

  addi R2,R2,#1  ; increment (OK if reg–reg) 

  sc R2,0(R1)  ; store conditional  

  beqz R2,try    ; branch store fails (R2 = 0) 

 

• As the SC instruction simply checks that its address matches that in the link register, 

therefore, register-register instructions can safely be place after the LL instruction; 

however, the number of instructions in between LL and SC must be kept small 

 

Summary: 

• In this series of four lectures on multiprocessors we have studied how improvement in 

computer performance can be accomplished using Parallel Processing Architectures 

• Parallel Architecture is a collection of processing elements that cooperate and 

communicate to solve larger problems fast 

• Then we described the four categories of Parallel Architecture as: SISD, SIMD, MISD 

and MIMD architecture 
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• We noticed that based on the memory organization and interconnect strategy, the MIMD 

machines are classified as:   

 Centralized Shared Memory Architecture 

 Distributed Memory Architecture 

• We also introduced the framework to describe parallel architecture as a two layer 

representation: Programming and Communication models 

• We talked about sharing of caches for multi-processing in the symmetric shared-memory 

architecture in details 

• Here, we studied the cache coherence problem and introduced two methods, write 

invalidation and write broadcasting schemes, to resolve the problem 

• We also discussed the finite state machine for the implementation of snooping algorithm 

• Today we have discussed FSM controller to implement Directory Based Protocols which 

involve three processors or nodes, namely: local, home and remote nodes 

• We discussed the state transition and messages generated by FSM controller in each 

state to implement the directory-based protocols 

• We have also discussed in details the performance of distributed and centralized 

shared-memory architecture 

• Concluding our discussion on the multiprocessor, we can say that multiprocessors are 

highly effective for multi-programmed work loads 

• More recently, multiprocessors have proved very effective for commercial workloads 

such as web searching 

• The centralized memory architecture, also known as Symmetric Multiprocessors (SMPs) 

maintain a single centralized memory with uniform access time; while…… 

• In contrast, the Distributed Shared-Memory Multiprocessor (DSMs) have non uniform 

memory architecture and can achieve greater scalability 

• The advantages of these two architecture, i.e., maximizing uniform memory access while  

allowing greater scalability can be partially combined in the Sun Microsystems's Wildfire 

architecture, shown here  

• Here, note that large SMPs (such as E6000) are used as nodes to maximize uniform 

memory access and greater scalability is achieved by using Wildfire Interface (WFI)  

• Each E6000 can accept up to 15 processors or I/O Boards on Giga-plane bus 

interconnect 

• WFI can connect 2 or 4 E6000 multiprocessors by replacing one I/O board with WFI 

board 

• You may look into further details of the Sun Microsystems's Wildfire architecture from 

literature and study its performance 
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Lecture 38 

Input Output Systems 

(Storage and I/O Systems) 

Today’s Topics 

• Recap: 

• Disk Storage Systems 

• Interfacing Storage Devices 

• Conclusion 

 

Recap: Multiprocessing 

• In last four lectures we discussed how the computer performance can be improved by 

Parallel Architectures 

• Parallel Architecture is a collection of processing elements that cooperate and 

communicate to solve larger problems fast 

• Parallel architectures are implemented as: SIMD, MISD and MIMD machines, where the 

MIMD machines facilitate complete parallel processing 

• The MIMD machines are classified as:   

 Centralized Shared Memory Architecture 

 Distributed Memory Architecture 

• The centralized memory architecture, maintain a single centralized memory with uniform 

access time 

• In contrast, the distributed Shared-Memory multiprocessors  have non uniform memory 

architecture but offer greater scalability 

• The sharing of caches for multi-processing introduces cache coherence problem  

• In Centralized shared-memory architecture, the cache coherence problem is resolved by 

using write invalidation and write broadcasting schemes those implement Snooping 

algorithm 

• In Distributed shared-memory architecture, the cache coherence problem is resolved by 

using Directory Based Protocols 

 

Recap: outside processor 

• Today the :  

 Processing Power doubles every 18 months 

 Memory Size doubles every 18 months; and 

 Disk positioning rate (Seek + Rotate) doubles every 10 Years 

• Recall the 2nd lecture, where we discussed the quantitative principles to define the 

computer performance, we noticed that the execution time of CPU is not the only 

measure of computer performance 

 

Introduction: outside the processor 

• The overall performance of a computer is measured by its throughput, which is very 

much influenced by the systems external to the processor 

• As we have already pointed out in 25th lecture that measuring the overall performance of 

a  powerful Uni-processor or a parallel processing architecture without considering the 
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I/O devices and their interconnection, is just like trying to determine the road 

performance of a car, which is fitted with powerful engine but is without wheels  

• The effect of neglecting the I/Os on the overall performance of a computer system can 

best be visualized by Amdahl's Law which identifies that: system speed-up limited by the 

slowest part!  

• Let us consider computer whose response time is 10% longer than the CPU time  

• If the CPU time is speeded up by a factor of 10 then neglecting the I/Os, the overall 

speed up as determined using the Amdahl's Law is 5; i.e., 

• Half of what we would have achieved if both the CPU time and I/O time were sped up 10 

times 

• In other words we can say 50% lose in the speed-up 

• Similarly, if the CPU time is speeded up 100 times and neglecting the I/Os, the overall 

speed up is 10; i.e., 

• 10% of what we would have achieved if both the CPU time and I/O time were sped up 

100 times 

• In other words we can say that ignoring the I/Os there is 90% lose in the speed-up 

• Thus, I/O performance increasingly limits the system performance and efficiency 

• After having detailed discussion on the performance enhancement of: 

 instruction Set Architecture 

 computer hardware 

 instruction level parallelism 

 memory hierarchy systems and  

 parallel processing architecture 

• We are, now,  going to focus our discussion on the study of the systems outside 

processor, i.e., I/O systems 

 

I/O System 

• An I/O system comprises storage I/Os and Communication I/Os 
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• The Storage I/Os consist of Secondary and Tertiary Storage Devices; and  

• The communication I/O consists of I/O Bus system which interconnect the 

microprocessor and memory with the I/O devices  

• Today we will talk about the storage I/O  

• The secondary and tertiary storages include: magnetic disk, magnetic tape automated 

tape libraries, CDs, and DVDs 

• These devices offer bulk data storage, but on the contrary are too large for embedded 

applications 

 

Disk Storages: Technology Trends 

• As you can see from the plot shown here that extensive improvement have been made 

in the disk capacity;  

• before 1990 disk capacity doubled every 36 months; and now every 18 months; 

 
Storage Technology Drivers 

• This improvement in the technology trend is driven by the prevailing computing paradigm 

• In 1950s computing observed migration from batch to on-line processing where as 

• In 1990s on-line processing migrated to ubiquitous computing; i.e., 

 computers in phones, books, cars, video cameras, … 

 nationwide fiber optical network with wireless tails 

• This development in processing effected the storage industry and motivated to develop:   

 the smaller, cheaper, more reliable and lower power embedded storages for 

ubiquitous computing 

 high capacity, hierarchically managed storages as data utilities  

• Before discussing the storage technologies, let us perceive the historical perspective of 

magnetic storages 
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Historical Perspective 

• 1956 - early 1970s 

 IBM Ramac and Winchester were developed for mainframe computers as 

proprietary interfaces 

 Steady shrink in form factor: 27 in. to 14 in. 

• 1970s developments 

 5.25 inch floppy disk form-factor (microcode into mainframe) 

 early emergence of industry standard disk interfaces 

o ST506, SASI, SMD, ESDI 

 

Disk History 

• Capacity of Unit Shown Megabytes; and  

• Data density: M bit/sq. in. 

 
 

 
 

Historical Perspective 

• Early 1980s: Era of PCs and first generation workstations; and  

• Mid 1980s: Era of Client/server computing and Centralized storage on file server 

• This voyage of computing from first generation to client/server resulted in end of 

proprietary interfaces and: 

 Accelerated disk downsizing: 8 inch to 5.25 inch 

 Mass market disk drives become a reality 

 industry standards: SCSI, IPI, IDE 

 5.25 inch drives for standalone PCs,  

• Late 1980s - Early 1990s: Era of Laptops, note-books, (palmtops) 

 3.5 inch, 2.5 inch, (1.8 inch form factors) 

 Form factor plus capacity drives market, 
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• Challenged by DRAM, flash RAM in PCMCIA cards 

 still expensive, Intel promises but doesn‘t deliver 

 unattractive M Bytes per cubic inch 

• Optical disk failed on performance but found slot (CD ROM) 

 

Disk History 

 

 
 

1989: 

63 Mbit/sq. in 

60,000 MBytes 

 

1997: 

1450 Mbit/sq. in 

2300 MBytes 

 

1997: 

3090 Mbit/sq. in 

8100 MBytes 

A huge disk drive changed to palm-drive 

 

DRAM as % of Disk over time MBits per square inch: 

• In 1974, the use of DRAM was only 10% of the disk storage  

• It reached to the peak in 1986 when DRAM was 40% of the disk storage 

• This trend once again started reducing and was up to 15% in 1998 
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Alternative Data Storage Technologies: Early 1990s 

 

Technology Cap (MB) BPI TPI BPI*TPI 
(Million) 

Data Xfer 
(KByte/s) 

Access 
Time 

 
Conventional Tape: 
Cartridge (.25") 
IBM 3490 (.5") 
 
Helical Scan Tape: 
Video (8mm) 
DAT (4mm) 
 
Magnetic & Optical Disk: 
Hard Disk (5.25") 
IBM 3390  (10.5") 
Sony MO (5.25") 
 

 
 
150 
800 
 
 
4600 
1300 
 
 
1200 
3800 
640 

 
 
12000 
22860 
 
 
43200 
61000 
 
 
33528 
27940 
24130 
 

 
 
104 
38 
 
 
1638 
1870 
 
 
1880 
2235 
18796 

 
 
1.2 
0.9 
 
 
71 
114 
 
 
63 
62 
454 

 
 
92 
3000 
 
 
492 
183 
 
 
3000 
4250 
88 

 
 
min 
sec 
 
 
45 secs 
20 secs 
 
 
18 ms 
20 ms 
100 ms 

 

Devices: Magnetic Disks 

• Purpose: 

 Long-term, nonvolatile storage 

 Large, inexpensive, slow level in the storage hierarchy 

• Characteristics: 

 Seek Time (~8 ms avg) 

o positional latency 

o rotational latency 

• Transfer rate 

 About a sector per ms (5-15 MB/s) 

 Blocks 

•  Capacity 

 Gigabytes 

 Quadruples every 3 years  (aerodynamics) 

 

Devices: Magnetic Disks 
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• Speed: 7200 RPM = 120 RPS => 8 ms per rev 

• Ave rot. latency = 4 ms 

• 128 sectors per track => 0.25 ms per sector 

• 1 KB per sector => 16 MB / s 

 

Tape vs. Disk 

• Longitudinal tape uses same technology as hard disk; tracks its density improvements 

• Disk head flies above surface, tape head lies on surface 

• Disk fixed, tape removable 

• Inherent cost-performance based on geometries: disk Vs. Tape 

• Disk: fixed rotating platters with gaps 

(random access, limited area, 1 media /  reader) 

 

Current Drawbacks to Tape 

• Tape wear out: 

 Helical 100s of passes to 1000s for longitudinal  

• Head wear out:  

 2000 hours for helical 

• Both must be accounted for in economic / reliability model 

• Long rewind, eject, load, spin-up times; not inherent,  

• just no need in marketplace (so far) 

 

I/O Performance Parameters 

• Diversity:  Which I/O device can connect to the CPU  

• Capacity:  How many I/O devices can connect to the CPU  

• Latency:  Overall response time to complete a task 

• Bandwidth: Number of task completed in specified time - throughput 

 

• The parameters diversity that refers to which I/O device and capacity means how many 

I/O devices can connect to the CPU are the I/O performance measures having no 

counterpart in CPU performance metrics.  

• In addition, the latency (response time) and bandwidth (throughput) also apply to the I/O 

system.  

• An I/O system is said to be in equilibrium state when the rate at which the I/O requests 

from CPU arriving, at the input of I/O queue (buffer) equals the rate at which the 

requests departs the queue after being fulfilled by the I/O device. 

 

I/O Vs. CPU Performance 

• The parameters diversity refers to I/O device and capacity  

• It identifies how many I/O devices can connect to the CPU 

• Note that the I/O performance measures have no counterpart in CPU performance 

metrics  

• In addition, the latency (response time) and bandwidth (throughput) also apply to the I/O 

system 
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• Recall from our discussion in the 3rd lecture, where we studied that an I/O system works 

on the principle of producer-server model 

• This model comprises an area called queue, wherein the tasks accumulate waiting to be 

serviced and the device performing the requested service, called server.  

• Producer creates tasks to be processed and place them in a FIFO buffer – queue.  

• Server takes the task form buffer and perform them 

 

 
 

• The response time is the time task takes from the moment it arrives in the buffer to the 

time the server finishes the task 

 

Disk I/O Performance Measure 

• The metrics of disk I/O performance are: 

 Response Time  is the time to Queue + Device Service time 

 Throughput: the percent of the total bandwidth 

• The graph shows the relationship between the response time and throughput of disk I/O 

system 

• Here, the minimum response time achieves only 10% of the throughput 

• The response time of 100% throughput takes 7-8 times the minimum response time 

 

 
I/O Transaction Time: Performance parameters 

• The interaction time or transaction time of a computer is sum of three times: 

 Entry Time:  the time for user to enter a command – average 0. 25 sec; from 

keyboard 4.0 sec. 
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 System Response Time:  time between when user enters the command and 

system responds 

 Think Time: the time from reception of the command until the user enters the 

next command 

 

Response Time vs. Productivity 

• Example: Let us see what happens to transaction time as system response time shrinks 

from 1.0 sec to 0.3 sec?  

• Assume:  

 with Keyboard the entry time is 4.0 sec and think time is 9.4 sec; and  

 With Graphics:  0.25 sec entry, 1.6 sec think time 

• The upper part of graph showing the response time for conventional use (keyboard) 

depicts that: 

 

 
 

• 1.0 – 0.3 = 0.7sec off response saves 4.9 sec (34%) 

• And, lower graphs for graphics saves  2.0 sec (70%) of  total time per transaction; 

• i.e., shrinkage in the response time results in greater productivity 

 

Processor Interface Issues 

• Processor interface 

 Isolated I/O  

 Memory mapped I/O 

 Interrupts 

 

 

 

 

 

•  I/O Control Structures 

 Polling 

 Interrupts 

 DMA 

 I/O Controllers 

 I/O Processors 

• Capacity, Access Time, Bandwidth  

• Interconnections 

 Busses 
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I/O - Processor Interface 

• Isolated I/O Bus is implemented as: 

 Independent I/O bus  

 common memory & I/O bus 

It requires separate I/O instructions (in, out) 

 

Independent I/O Bus 

 

 
 

Common Memory & I/O Bus 
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Memory Mapped I/O 

 
 

Programmed I/O (Polling) 

 

 
 

Interrupt Driven Data Transfer 

 

 



 

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com 
 

399 CS-704 Advanced Computer Architecture 

Direct Memory Access 

• CPU sends a starting address, direction, and length count to DMAC. Then issues "start". 

 

 
 

• DMAC provides handshake signals for Peripheral Controller, and Memory Addresses 

and handshake signals for Memory. 

 

Input / Output Processors 

• I/O Processor looks in memory for commands 

 
Input / Output Processors 
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1. CPU issues instruction to IOP 

2-3  IOP steals memory cycles. 

  Device to/from memory transfers are controlled by the IOP directly. 

4 IOP interrupts CPU when done 

 

Summary 

• Disk industry growing rapidly, improves:  

 bandwidth 40%/yr ,  

 areal density 60%/year, $/MB faster? 

• queue + controller + seek + rotate + transfer 

• Advertised average seek time benchmark much greater than average seek time in 

practice 

• Response time vs. Bandwidth tradeoffs 

• Value of faster response time: 

 0.7sec off response saves 4.9 sec and 2.0 sec (70%) total time per transaction 

=> greater productivity 

 everyone gets more done with faster response, but novice with fast response = 

expert with slow 

• Processor Interface: today peripheral processors, DMA, I/O bus, interrupts 
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Lecture 39 

Input Output Systems 

(Bus Structures Connecting I/O Devices) 

Today’s Topics 

• Recap: 

• I/O interconnect Trends 

• Bus-based Interconnect 

• Bus Standards 

• Conclusion 

 

Recap: I/O System 

• Last time we noticed that the overall performance of a computer is measured by its 

throughput, which is very much influenced by the systems external to the processor 

• The effect of neglecting the I/Os on the overall performance of a computer system can 

best be visualized by Amdahl's Law which identifies that: system speed-up limited by the 

slowest part!  

• We noticed that an I/O system comprises storage I/Os and Communication I/Os 

• The Storage I/Os consist of Secondary and Tertiary Storage Devices; and  

• The communication I/O consists of I/O Bus system which interconnect the 

microprocessor and memory with the I/O devices  

• The development in processing effected the storage industry and motivated to develop:   

 The smaller, cheaper, more reliable and lower power embedded storages for 

ubiquitous computing; and high capacity, hierarchically managed storages as 

data utilities  

• We noticed that diversity, capacity, latency and bandwidth are the most important 

parameters of I/O performance measurement 

• I/O system works on the principle of producer-server model, which comprises an area 

called queue, wherein the tasks accumulate while waiting to be serviced 

• The metrics of disk I/O performance are: 

 Response Time, which is the time to Queue + Device Service time; and  

 Throughput, which is the percent of the total bandwidth 

 

Example:  

Comparing the performance of different I/Os. Assume the following parameters, and compare 

the time to read and write a 64Kbyte block to flash memory and disk 

• Flash memory takes:  

 65 ns to read 1 byte 

 1.5 µsec. to write 1 byte and 

 5 msec. to erase 4KB 

• Disk Storage has:  

 Average seek time = 4.0 msec. 

 Average rotational delay = 8.3 msec. 

 Transfer time = 4.2 MB/sec; 

 Controller overhead = 0.1 msec. 
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• Average read or write time for disk is same and is calculated as: 

= Average seek time + Average rotational delay + Transfer time + Controller overhead 

= 4.0 ms+ 8.3 ms + 64KB/4.2 MB/sec + 0.1 ms 

= 27.3 msec. 

 

• Read time for flash is the ratio of the flash size to the read bandwidth: 

= 64KB/1B/65ns = 4.3 ms 

 

• Flash is about 6 times faster than the disk for reading 64KB 

• Write time for flash is sum of the erase time and the ratio of the flash size to the write 

bandwidth: 

= (64KB/4KB/5ms) + (64KB/1B/1.5µs)  

= 178.3 ms 

• The disk is about 6 times faster than the flash for writing 64KB 

 

Interconnect Trends 

• The I/O interconnect is the glue that interfaces computer system components 

• I/O interconnects are facilitated using High speed hardware interfaces and logical 

protocols 

• Based on the desired communication distance, bandwidth, latency and reliability, 

interconnects are classified as used: 

•  Backplanes, channels, Networks 

 

 
 

Bus-Based Interconnect 

• Communication on different interconnects is done via buses 

• Bus is a shared communication link between subsystems 

• The advantages of using buses are: 

 Low cost: a single set of wires is shared multiple ways 

 Versatility: Easy to add new devices & peripherals may even be ported between 

computers using common bus 
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• Disadvantage 

 The major disadvantage of a bus is that it creates a communication bottleneck, 

possibly limiting the maximum I/O throughput 

 In server systems, where I/O is frequent, design a bus-system capable of 

meeting the demand of the processor is a real challenge 

 

• Bus speed is limited by physical factors, such as: 

 the bus length 

 the bus loading, i.e., number of devices connected to a bus 

 

• These physical limits prevent arbitrary bus speedup, which make the bus design difficult 

• Buses are classified into Two generic types as: 

 I/O busses:  are lengthy, facilitate to connect  many types of devices, offer wide 

range in the data bandwidth, and follow a bus standard (I/O bus is sometimes 

called a channel) 

 CPU–memory buses: high speed, matched to the memory system to maximize 

memory –CPU bandwidth, single device (sometimes called a backplane) 

 

Bus Transactions 

• Bus transactions are usually defined with reference to the memory, i.e., what they do 

with memory – memory read or memory write 

• Bus transaction includes two parts: Sending the address and Receiving the data 

• Read Transaction:  

 Address is first sent down the bus to the memory together with asserting the read 

signal; and …. 

 

• The memory responds by sending the data and de-asserting the wait signal 

• Write Transaction:  

 Address and data are sent down the bus to the memory together with asserting 

the write signal 

 The memory stores the data and de-asserting the wait signal 

 

Bus Transition Protocols 

• Bus transition or bus Communication Protocols  specify the sequence of events and 

timing requirements in transferring information 

• Synchronous Bus Transfers:  follows a sequence of operations relative to a common 

clock 

• Asynchronous Bus Transfers is not clocked and uses control lines (req., ack.) which 

provide handshaking among the devices having bus transition 
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Synchronous Bus Protocols 

 

 
 

• The address transmitted in the 1st clock, using control lines to indicate the type of 

request; the read begins when NOT READ is asserted 

 

 
 

• The data are not ready until the wait signal is reasserted  

 

Asynchronous Handshake 

• The asynchronous bus is not clocked, rather it is self timed 

• Hand shaking protocols are used between the bus sender and receiver 

 
 

• t0 : Master has obtained control and asserts address, direction, data; Waits a specified  

•       amount of time for slaves to decode target 

• t1:   Master asserts request line 

• t2:   Slave asserts ack, indicating data received 
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• t3:   Master releases req 

• t4:   Slave releases ack 

 

Read Transaction 

 

 
 

Read Transaction 

• t0 :  Master has obtained control and asserts address, direction, data; Waits a specified  

•        amount of time for slaves to decode target\ 

• t1:   Master asserts request line 

• t2:   Slave asserts ack, indicating ready to transmit data 

• t3:   Master releases req, data received 

• t4:   Slave releases ack 

 

Bus Arbitration Protocols 

• Having understood the bus transactions, the most important is to understand how is a 

bus reserved by a device that wishes to communicates when multiple devices need the 

bus access? 

• This is accomplished by introducing one or more bus masters into the system 

• A Bus Master has ability to control the bus requests and initiate a bus transaction 

• Bus Slave is module activated by the master for transaction 

• In a simple system processor is a bus master as it initiates a bus request; and memory is 

usually a slave 

• Alternately, a system may have multiple bus masters, each of which may initiate a bus 

transfer to the same slave 

• This will create chaos; as it is similar to when number of students (masters) in a class 

room start asking questions to the instructor (slave)  

• How the instructor will overcome this situation?   

• The instructor must have a protocol to decide who is the next (master) to talk  

• Similarly, the  protocol to manage the bus transaction by more than one masters is 

referred to as Bus Arbitration Protocol  

• Bus Arbitration Protocol provide the mechanism for arbitrating (deciding) access to the 

bus so that it is used in a cooperative manner 
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• Here, a device or processor (master) wanting to use the bus signals a bus-request and 

is later granted the bus 

• Once the bus is granted the master uses the bus and when finished the transaction 

signals the arbiter that bus is no more required 

• The arbiter then may grant the bus to another master 

 

 
• The multiple-master bus have a set of three control lines for performing the request, 

grant and release operation 

• The bus arbitration schemes usually try to balance two factors: 

 Bus-priority: every device has certain priority; the device with highest priority 

should be serviced first 

 Fairness: every device that want to use the bus is guaranteed to get the bus 

eventually 

• The bus arbitration schemes can be classified as: 

 Daisy Chain Arbitration 

 Centralized Parallel Arbitration 

 Distributed Arbitration  

 

Bus Arbitration Schemes 

• The bus-grant line is run through the devices from highest-to-lowest priority 

• If the device has requested bus access, it uses the grant line to determine access has 

been given to it 
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Bus Arbitration Schemes 

• Sequence of Daisy Chain Arbitration 

1. Signal the request line 

2. Wait for a transition on the grant line from low-to-high (it indicates that bus is 

being reassigned) 

3. Intercept the grant signal, and do not allow the lower priority devices to see it. 

(stop asserting the request line) 

4. Use the bus 

5. Signal that the bus is no longer required by asserting the release line 

 

• Centralized Parallel Arbitration 

 This scheme uses multiple request lines 

 The devices independently request the bus 

 A centralized arbiter chooses from among the devices, request the bus access 

and notify the selected device that is now the bus-master 

 

• Distributed Arbitration schemes are classified as: 

 Distributed arbitration by self-selection 

o This scheme also uses multiple request line 

o The devices requesting the bus access determine who will be granted the 

access 

o Here, each device wanting the access  places a code indicating its 

identity on the bus  

o By examining this code, the devices can determine the highest priority 

device that has made request 

 Distributed arbitration by Collision Detection 

o In this scheme each device independently request the bus 

o Multiple simultaneous requests result is collision 

o A device is selected among the collided devices based on the priority  

 

Bus Options: Design Decisions 

 

Option High performance Low cost 

Bus width Separate address & data lines Multiplex address & data lines 

Data width Wider is faster (e.g., 32 bits) Narrower is cheaper (e.g., 8 bits) 

Transfer size Multiple words has less bus overhead Single-word transfer is simpler 

Bus masters Multiple (requires arbitration) Single master (no arbitration) 

Split 
transaction? 

Yes—separate  
Request and Reply 
packets gets higher bandwidth 

No—continuous 
connection is cheaper and has lower latency 
(needs multiple masters) 

Clocking Synchronous Asynchronous 

 

 

 

 

 



 

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com 
 

408 CS-704 Advanced Computer Architecture 

Bus Design Decisions 

• The decisions regarding design of a bus system depend on: 

1. Bus Bandwidth 

2. Data width 

3. Transfer size 

• Based on the bus bandwidth; separate address and data buses are used for high 

performance while the multiplexed address and data line are used for low cost design 

• Based on the data width; wider (64-bit) data bus is recommended for high performance 

systems and narrow (8-bit) offers cheap solution 

• Based on the transfer size, multiple word are transferred for high performance 

computing as it offers less overhead while single word transfer is used for low cost 

design as it is simples 

• Split transition, Bus masters, and clocking are other important parameters in bus design 

decisions 

• Based on the bus masters, multiple master are used in high performance computing; 

and single master that involve no arbitration is used for low cost systems 

• Split transition is used for high performance design where separate requests and reply 

packets get higher bandwidth; it involves multiple masters 

• The synchronous multiple masters protocols are described hereafter 

 

Synchronous Bus Protocols- Multiple Masters 

 

 
• Where as bus has multiple masters, the multiple processors or I/O devices can initiate 

bus transaction 

• Here, the bus can offer higher bandwidth using packets as opposed to holding the bus 

for full transaction 

• This technique is called a split transaction or pipelined bus 

• Here, the bus events are divided into number of requests and replies; so the bus can be 

used in time between request and reply 

• The split transaction makes the bus available for other masters while the memory reads 

the word from requested address 
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Bus Standards  

• Clock rate: 5 MHz / 10 MHz (fast) / 20 MHz(ultra) 

• Width: n = 8 bits / 16 bits (wide);   

• up to n – 1 devices to communicate on a bus or ―string‖ 

• Devices can be slave (―target‖) or master (―initiator‖) 

• SCSI protocol: a series of ―phases‖, during which specific actions are taken by the 

controller and the SCSI disks 

 

SCSI: Small Computer System Interface 

• Bus Free: No device is currently accessing the bus 

• Arbitration: When the SCSI bus goes free, multiple devices may request (arbitrate for) 

the bus; fixed priority by address 

• Selection: informs the target that it will participate (Reselection if disconnected) 

• Command: the initiator reads the SCSI command bytes from host memory and sends 

them to the target 

• Data Transfer: data in or out,  initiator: target 

• Message Phase: message in or out,  initiator: target (identify, save/restore data pointer, 

disconnect, command complete) 

• Status Phase: target, just before command complete 

 

1993 I/O Bus Survey (P&H, 2nd Ed) 

 

 
1993 MP Server Memory Bus Survey 
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Lecture 40 

Input Output Systems 

(RAID and I/O System Design) 

Today’s Topics 

• Recap: 

• Redundant Array of Inexpensive Disks 

• I/O Benchmarks 

• I/O System Design 

• Conclusion 

 

Recap: I/O device’s performance 

• Last time we compared the performance of disk storage and flash memory  

• We noticed that flash is six times faster than the disk for read and the disk is six time 

faster than the flash for data write 

• Then we discussed the trends in I/O inter-connects as: the networks, channels and 

backplanes 

• The networks offer message-based narrow-pathway for distributed processors over long 

distance  

 

Recap: I/O Interconnects 

• The backplanes offer memory-mapped wide pathway for centralized processing over 

short distance 

• The interconnects are implemented via buses 

•  The buses are classified in two major categories as the I/O bus and CPU-Memory bus 

• The channels are implemented using I/O buses and backplanes using CPU-Memory 

buses  

 

Recap: I/O buses 

• Then we discussed the bus transition protocols  which specify the sequence of events 

and timing requirements in transferring information as synchronous or asynchronous 

communication 

• We also discussed bus arbitration protocols ― the protocols to reserve the bus by a 

device that wishes to communicates when multiple devices need the bus access 

• Here, we noticed that the bus arbitration schemes usually try to balance two factors: 

 

Recap: I/O System 

• Bus-priority: the device with highest priority should be serviced first 

• Fairness: every device that want to use the bus is guaranteed to get the bus eventually 

• The three bus arbitration schemes are: 

 Daisy Chain Arbitration 

 Centralized Parallel Arbitration 

 Distributed Arbitration 
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Storage I/O Performance 

• Now having discussed the basic types of storage devices and the ways to interconnect 

them to the CPU, we are going to look into the ways to evaluate the performance of 

storage I/O systems 

• We know that if a storage device crashes then prime objective of a storage device 

should be to remember the original information to make storage device reliable 

• The reliability of a system can be improved by using the following four methods 

 

Reliability Improvement 

• Fault Avoidance – prevent fault occurrence by construction 

• Fault Tolerance – providing service complying with the service specification by 

redundancy 

• Error Removal – minimizing the presence of errors by verification 

• Error Forecasting – to estimate the presence, creation and consequence of errors by 

evaluation 

 

Reliability, availability and dependability 

• The performance of storage I/Os is measured in terms of its reliability, availability and 

dependability 

• These terminologies have been defined by Laprie; in the paper entitled  

‗Dependable Computing and Fault Tolerance: Concepts and Terminology; 

Published in the Digest of papers of 15th Annual Symposium on Fault Tolerant 

Computing (1985) 

 

Dependability 

• Laprie defined dependability as the quality of delivered service such that reliance can 

justifiably be placed on this service;  

• Where the service delivered by a system is its observed actual behavior and the system 

failure occurs when actual behavior deviates from the specified behavior 

• Note that a user perceives a system alternating between two states of delivered service; 

these states are: 

 Service Accomplishment – service is delivered as specified and 

 Service Interruption – delivered service is different from the specified service 

 

• Quantifying the transitions between service accomplishment and service interruption is 

the measure of the dependability 

• The dependability is measured in terms of the measure of: 

 module reliability, which is the measure of the continuous service 

accomplishment; 

 and, module availability, which is the measure of the swinging between the 

accomplishment and interruption states of delivered service 
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Measuring Reliability 

• Now before we discuss the reliable and dependable designs of the storage I/O let us 

understand the terminologies used to measure reliability, availability and dependability 

• The reliability of a module is the measure of the time to failure from a reference initial 

instant 

• In other words we can say the Mean Time To Failure (MTTF) of a storage module, a 

disk, is the measure of reliability; and 

• The reciprocal of the MTTF is the rate of failure; and  

• The service interruption is measured as the Mean Time To Repair (MTTR) 

• Now let us understand, with the help of an example, how can we use these 

terminologies to measure the availability of a disk subsystem 

 

Example 

• Consider a disk subsystem comprising the following component 

 10 disks 

 1SCSI controller 

 1 SCSI cable 

 1 power supply 

 1 fan 

•  For the given values of MTTF of each component; find the system failure rate and 

hence the system MTTF 

• 10 disks, each with MTTF  = 1,000,000 Hrs 

• 1SCSI controller with MTTF  = 500,000 Hrs 

• 1 SCSI cable with MTTF  = 1,000,000 Hrs 

• 1 power supply with MTTF  = 200,000 Hrs 

• 1 fan with MTTF   = 200,000 Hrs 

 

Solution: 

• System Failure Rate  

= 10 (1/1,000,000) +1/500,000 + 1/1,000,000 + 1/200,000 +1/200,000 

 = 23 /1,000,000 Hrs 

 

• System MTTF = 1/Failure Rate = 1,000,000/23  

  = 43,500 Hrs = 5 years 

 

Availability 

• The availability of a module is the measure of the service accomplishment with respect 

to the swinging between the two states of accomplishment and interruption 

• The module availability, therefore can be quantified as the ratio of the MTTF and Mean 

Time Between Failure – MTBF (which is equal to the sum of MTTF and MTTR); i.e., 

• Availability = MTTF / (MTTF +MTTR) 

                  = MTTF / MTBF 
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Network Attached Storages and Reliability 

• Last time we discussed the disk storages and their interface with the processor using 

channel and backplane interconnects; and talked about the impact of disk storages and 

interconnects on the overall performance of the complete computing system 

 

• Today we will discuss the network interconnects to interface multiple processers located 

at a long distance and need high performance storage service 

• A network provides well defined physical and logical interfaces; i.e., interconnect 

separate CPU and storage system 

• The networks are capable of sustaining high bandwidth transfer and their file-server 

Operating system supports remote file access 

• Hence, the network attached storages are more vulnerable to the reliability and their 

dependability is very high 

 

Network Attached Storage 

 

 
 

Network Attached Storages and Reliability 

• So to improve both the availability and performance of storage system, disk arrays are 

introduced, which contain many low cost disks 

• The throughput of disk arrays is improved by having high bandwidth disk system which 

employ many small disk drives; and 

• The throughput of a disk array is increased by having many small arms on small (3.00‖ – 

1.8‖) disk drives rather than one long arm on a larger disk (14‖ – 24‖); and 
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Manufacturing Advantages of Disk Arrays 

 
 

Replace Small # of Large Disks with Large # of Small Disks! (1988 Disks) 

 

 
 

Network Attached Storages and Reliability 

• Simply spreading the data over many disk forces access to may several disks and hence 

improve the throughput 

 
• The drawback to an array with more devices is that dependability and hence the 

reliability decreases – generally N devices have 1/N reliability 
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Array Reliability: Example 

• Reliability of N disks = Reliability of 1 Disk ÷ N 

• Disk system MTTF = 50,000 Hours ÷ 70 disks  

•           = 700 hours 

• Drops from 6 years  to 1 month! 

• However, the dependability can be improved by adding redundant disks to the array to 

tolerate faults 

• Arrays (without redundancy) too unreliable to be useful! 

 

Subsystem Organization 

 

 
 

Redundant Arrays of Disks 

• In a disk array, files are "striped" across multiple spindles 

• Adding redundant disk to achieve high fault tolerance yields high data availability 

• Here, if Disks fails, the contents are reconstructed from data redundantly stored in the 

array 

• However the drawbacks of redundant disk are: 

 Capacity penalty to store it 

 Bandwidth penalty to update 
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System-Level Availability 

 

 
 

Redundant Arrays of Disks 

• These systems are known as RAID: 

 Redundant Array of Inexpensive Disks or  

 Redundant Array of Independent Disks 

• There exist several different approaches to include redundant disks in the disk array  

• These approaches are usually classified by numerical value which identifies the RAID 

level 

• Each of these techniques have different overheads and performance 

• The fault tolerance and overhead in redundant disk for RAID having 8 disks of user data 

is as given below: 

 

RAID Level No. of disk  
faults survived 

Corresponding 
check disks 

0. No Redundancy 0 0 

1. Mirrored 1 8 

2. Memory –Style ECC 1 4 

3. Bit Interleaved Parity 1 1 

4. Block Interleaved Parity 1 1 

5. Block interleaved distributed parity 1 1 

7. P+Q Redundancy 2 2 
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RAID 0 – Non Redundant Striped 

• RAID 0 is the disk array without any redundant disk  

• However, here the data is stripped across a set of disks which makes the collection 

appears to the software as a single large disk 

• Note that the taxonomy RAID 0 is a misnomer as there is no redundant disk; but as the 

data stripping is used here, so it is normally referred to as the RAID 

 

RAID 1: Disk Mirroring/Shadowing 

 

 
 

• Each disk is fully duplicated onto its "shadow―  

• Targeted for high I/O rate  

• Whenever data are written to one disk those data are also written to redundant disk 

• If a disk fails, the system just goes to the mirror, so there are 8 survivals in this example 

provided one disk of mirrored pair fails 

• It is the most expensive solution: 100% capacity overhead 

• One Logical write = two physical writes  

• If the data worth 4 disk is to be striped and stored on 8 disks, there are two way to strip 

the data 

1. RAID 1+0  

Create 4 pairs of disks, each organized as RAID 1 

and then strip data across the 4 RAID pairs 

2. RAID 0+1 

Create two sets of 4-disks, each organized as RAID 0  

and Mirror write to both RAID 0 

• Note that since 2001, as there is no commercial implementation of RAID 2, we will not 

discuss this technique 

 

RAID 3: Bit-Interleaved Parity Disk 

• Rather than having a complete copy of the original disk, we can achieve desired 

dependability by adding enough redundant information to restore the lost information on 

failure 

• RAID 3 uses one extra disk, called Parity disk, that holds the check information in case 

of failure 

• RAID 3 act logically as single high capacity, high transfer rate disk 

• The arms are synchronized logically and spindles rotationally 
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• Here, every read or write access goes to all the disk 

• For every read access, the parity is computed across recovery group to protect against 

hard disk failures 

• Note that for the RAID 3 shown here, there is 33% capacity cost for parity  

• However, the wider arrays reduce capacity costs, but  decreases expected availability 

and increases reconstruction time 

 

RAID 4: Block-Interleaved Parity and  

RAID 5: Distributed Block-Interleaved Parity 

• Both the RAID 4 and RAID 5 levels use the same ratio of data disk to parity disk as 

RAID 3, but they access data differently 

• The distribution of data in RAID 4 verses RAID 5 is shown here.  

• In the Block-Interleaved Parity RAID 4, the parity disk is associated to each data block, 

identical to RAID 3 

• So it supports a mixture of small read and small writes and large read and large writes 

• However, one drawback of this system is that the parity disk must be uploaded on every 

write, which is bottleneck for back-to-back write 

• This bottleneck is resolved in Block interleaved parity RAID 5, where the parity disk is 

distributed among the blocks 

• Note from the RAID 5 organization shown here that the parity associated each row of the 

data block is no longer restricted to a single disk  

• Hence, this organization allows multiple writes to occur simultaneously as long as the 

stripe-units are not located in the same disk 

• For example: 

•  1st  write to block 8 must also access its parity block P2 (i.e., two reads from two disks – 

the 1st and 3rd disks) and  
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RAID 4:  Block-Interleaved Parity 

 

 
 

RAID 5:  Distributed Block-Interleaved Parity 
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RAID 4 and RAID 

• 2nd write to block 5 imply an update in P1 (i.e., two reads from two disks – the 2nd  and 4th  

disks)  

• Thus, the two write could occur at the same time in parallel 

• Where as we you look into the organization of RAID 4, both the P1 and P2 are on the 

same disk (5th disk) so it would be bottleneck and could not be written simultaneously 

 

RAID 4 and RAID 5 

• In RAID 4 and RAID 5, the parity is stored as blocks and is associated with a set of data 

blocks 

• In RAID 3 every access goes to all the disks while the levels 4 and 5 use smaller 

accesses which allow independent access to occur in parallel  

• In RAID 4 and RAID 5 error detection information in each sector is checked 

independently for ‗small reads‘ to see if the data are correct in one sector 

• While each ‗small write‘ would demand that all other disks be accessed to read the rest 

of information needed to recalculate the parity 

• Let us compare the recalculation of parity on small write for RAID level 3, 4 and 5 

• Let us assume that we have 4 blocks of data and block of parity  

• The parity calculation of RAID 3, shown here, is straightforward 

 

Small Writes update on RAID 3 

 
 

RAID 3 verses RAID 4 and RAID 5 

• The parity calculation reads blocks D1, D2, and D3 before adding Block D0‘ to calculate 

the new parity P‘  

• Note that here the new data D0 comes directly from CPU, so disk are not involved in 

reading it  

• The small writes in case of RAID 4/5 are as shown here 

• Here, the old value of D0 is read (1: Read) and compared with new value D0‘ to see 

Which bit will change 
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RAID 4/RAID 5:  Small Writes 

 
 

RAID 3 verses RAID 4 and RAID 5 

• Once it has been checked, then the old parity P is read and corresponding bits are 

changed to form P‘ 

• This is accomplished by the logical EX-ORs 

• In this example, the 3 disk reads (D1, D2, D3) and 2 disk writes (D0‘ and P‘) involving all 

the disks, are replaces with the 2 disk reads (D0,P) and 2 disk writes (D0‘, P‘), each 

involving just 2 disks  

• Hence we can say that one (1) Logical Write in RAID 4 and RAID 5 is equivalent to  2 

Physical Reads and 2 Physical Writes 

 

System Availability: Orthogonal RAIDs 
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Lecture 41 

Networks and Clusters 

(Networks: Interconnection and Topology) 

Today’s Topics 

• Recap: 

• A Simple Network 

• Network Topology 

• Internetworking 

• Summary 

 

Recap: I/O Systems and Storages 

• Last time we concluded our discussion on the storage I/Os and communication I/Os 

• Here, we noticed that the dependability, reliability, availability of the storage I/Os mostly 

influence the overall performance of computer systems 

• Dependability is the quality of delivered service such that confidence can be placed on 

this service; and measured by quantifying the transitions between service 

accomplishment and service interruption 

 

Recap: Dependability, reliability and Availability 

• The dependability is measured in terms of the reliability and availability of a module 

• The reliability of a module is the measure of the continuous service accomplishment or 

the measure of the time to failure, from a reference initial instant 

• The availability of a module is the measure of the service accomplishment with respect 

to the swinging between the accomplishment and interruption states 

 

Recap: I/O and Storage Systems & Network Attached Storages 

• The storages are interfaced with the processor using channel and backplane and 

network interconnects 

• The networks are capable of sustaining high bandwidth transfer and their file-server 

operating system supports remote file access 

• Hence, the network attached storages have very high dependability, but are more 

vulnerable to the reliability, so to improve the availability and performance of network 

attached storage system, disk arrays are introduced 

• Here, the data is stripped across a set of disks which makes the collection appears to 

the software as a single large disk 

• The throughput of disk arrays is improved due many small disk drives having high 

bandwidth 

• The drawback to an array with more devices is that dependability of the device 

increases, hence, the reliability decreases; as generally N devices have 1/N reliability 

 

Recap: Redundant Arrays of Disks 

• The dependability of disk array is improved by adding redundant disks to the array to 

tolerate faults 

• Such a disk array is called Redundant Array of Inexpensive Disk – RAID 
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• There exist several different approaches to include redundant disks in the disk array  

• These approaches are usually classified by numerical value which identifies the RAID 

level 

• RAID 0 is the disk array without any redundant disk, but employs the stripping of data 

across a set of disks 

• RAID 1 or disk Mirror array is one where each disk is fully duplicated onto its "shadow―  

• RAID 3 or Bit-Interleaved Parity Disk employs a parity disk for each group of data; the 

parity computed across recovery group to protect against hard disk failures 

• RAID 4 or Block Interleaved Parity and the RAID 5 or Block Interleaved Distributed 

Parity, both use the same ratio of data disk to parity disk as RAID 3, but they access 

data differently 

• In RAID 4 level, the parity disk is associated to each data block, identical to it is 

associated to each data group in RAID 3, so it supports a mixture of both the small and 

large reads and writes 

• In RAID 5 level, the parity disk is associated to each data block  

• The data blocks are distributed among different disks in each row;  

• i.e., the stripped data units are not located in the same disk 

• This allows simultaneous read and write of more than one block 

 

Interconnection Networks 

• Till now the focus of our studies has been the architecture of the components of a single 

computer and their performance 

• Now today and in the following a few lectures we will talk about how to connect 

computers together forming network of computers 

• The formation of a generic interconnection network is depicted here 
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• The standard components of a computer network are:  

 Computer nodes (also called host or end system) 

 H/W and S/W interface 

 Links to the interconnection network 

 Interconnection networks (also called network or communication subnet) 

• The coordinated use of interconnected computers in a machine room is referred to as 

the cluster  

• The connection of two or more interconnec-tion networks is called Internetworking 

• The typical example of Internetworking is the Internet 

• Internetworking relies on the communication standards to convert information from one 

kind of network to another 

• Depending on the number of nodes and their proximity or nearness the interconnections 

are designated as: 

• Local Area Network-LAN: Hundreds of computer distributed in a building within a 

distance of up to a few kilometers 

• Wide Area Network-WAN: Interconnection of thousands of computers distributed 

throughout the world at a maximum distance of thousands of kilometer – Automatic 

Teller Machine (ATM) is a typical example 

• System Area Network-SAN: Interconnection network of hundreds of nodes within the 

machine room; so the distance of the link is less than 100 meters 

• SAN is basically the cluster 

• However, the Moor‘s Law have contracted the definition of network to an extent that it 

defines the interconnection of components within a single computer 

• In order to discuss the complexities and performance of networks, let us consider a 

simple interconnection model of two computers and understand the implications of 

network parameters 

 

Networks Communication Model 

• The communication model depicted here shows that two machines are connected via 

two unidirectional wires with a FIFO (queue) at the end to hold the data 

• Here, each machine wants receive a word or message from the other 

 

 
 

• The  machine A to get data from B, it sends a request to B, which responds by sending a 

reply along with the data 

• In order to send a request and reply a message contains extra information beyond data, 

as shown in the example message format 
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Networks Message Format 

 

 
 

• Here, a 1 bit header specifies the message as a request (header=0) or reply (header=1)  

• The request carries the address of the data word and the reply the data word 

 

Networks Interconnection Software 

• Interconnection networks involve software to establish communication 

• For the simple network considered here, the software is invoked to translate the request 

and reply messages  

• The network software: 

 cooperate with the operating system to distinguish between the processes on the 

other networks  

 protect the processes running on networks  

 Ensures reliable delivery of message, i.e., to ensure that the message is neither 

distorted nor lost in transit 

• It is worth mentioning here that reliability the message format is modified by adding an 

error detection code (checksum or CRC) and using 2-bit header as shown here 

• This information is calculated at the sending-end and is added to the message;  

• then at the receiving-end this message is checked; and the receiver sends an ack-

nowledgment if the message passes the test  

 

 
 

• Furthermore, to ensure reliable deliver of message, the sender activates a timer each 

time a message is sent;  

• The sender copies the data into an operating system buffer to resend the message if 

acknowledgement doesn‘t arrive by time the timer expires, as it is presumed to be lost 

• At the receiving end the message is copied into the operating system buffer 

• The checksum is checked, if it passes the test acknowledgment is sent other wise the 
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message is deleted from the buffer 

Networks Interconnection Protocol 

• So far we have been talking about the acknowledgment - protocol for reliable 

communication on a simple network 

• However, there are many more issues of reliable communication; e.g. 

 Two machines from two different manufacturers might be using different byte-

order within a word (Big Endean or Little Endean) – so the software must have to 

reverse the order accordingly 

 The duplicate delivery of message should be guarded against the late delivery of 

the original message, if it was stuck in the network 

 The order or the sequence of the message should not change; so sequence 

number should be included in the message 

 It must also work when the receiver‘s FIFO is full; so some feedback mechanism 

be incorporated 

 

Networks Performance Model 

• Having discussed the issues of protection, reliability and network protocols, let us 

understand the performance model of networks 

• The performance of a network can be modeled at any level, i.e., inside a chip, between 

chips on PCB and between computers in a cluster, through the interconnection 

performance parameters  

• These parameters are: 

 Bandwidth: the maximum rate at which the network can propagate information  

 Time of Flight: time of the first bit of the message from time departed  to the time 

it arrives at the receiver 

 Transmission Time: The time of the message to pass through the network not 

including the time of flight; in other words, it is the time between the first and the 

last bit of the message arrives at the receiver  

 Transport Latency: The sum of time of flight and transmission time 

 Sender Overhead: time for the processor to inject the message into the network, 

including both the hardware and software components 

 Receiver Overhead: the time for the receiver processor to pull the message from 

the interconnection network, including both the hardware and software 

components  

• Based on the network performance parameters, the  

Total Latency of a message = 

Sender overhead + time to flight + (message size / bandwidth) + Receiver overhead 

 

Interconnection Network Media Hierarchy 

• Just as the memory hierarchy, there is hierarchy of media to interconnect computer  

• The interconnect media varies in cost, performance and reliability based on the 

maximum distance between nodes 

• The three most popular media are: 

 Twisted Pair (of Copper wire) 



 

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com 
 

395 CS-704 Advanced Computer Architecture 

 Coaxial Cable  Fiber Optics 

Twisted Pair of Copper Wire 

• Two insulated copper wires, about 1mm thick twisted together to reduce the electrical 

interference 

• The original twisted pair telephone line gives the data transfer rate of a few mega-bits 

per sec and is referred to as Level-1 or Category-1 UTP (Unshielded Twisted Pair) 

• Level 3 or Cat-3 UTP is good for 10M bits/sec Ethernet and Cat-5 for 100M bits/sec and 

up to 1000 M bits/sec when distance is limited to 100 meters 

• (Insert fig. 8.11 (a)  pp 802) 

 

Coaxial Cable 

• Coaxial Cable is a stiff single copper wire surrounded by insulating material which is 

covered by cylindrical sheath woven as a braided mesh 

• A 50 ohm base-band coaxial cable can deliver 10 M bits/sec over a kilometer 

• Coaxial cable can deliver higher rate over a few kilometers and offers high bandwidth 

and good noise immunity. (Insert fig. 8.11 (b)  pp 802) 

 

Fiber Optics 

• Unlike the twisted par or coaxial cable, Fibers are one-way of simplex media 

• Two fibers are used for 2-way or full-duplex connections  

• Fiber Optics contains a glass fiber core surrounded by cladding to confine light, which is 

covered by a protecting buffer. (Insert fig. 8.11 (c) pp 802) 

• A light source (LED or laser) and a light detector (photo diode) are employed as 

transmitter and receiver 

• As we know that light bends or refracts at interfaces and can spread slowly as it travels 

down the cable 

• However, if the diameter of the cable is equal to or less than one wavelength, then it is 

transferred into straight line (here the angle of refraction is more than the critical angle 

and total reflection takes palace) 

• Fiber Optic Cables are of two forms: Single-mode and Multimode Fiber:  

• Multimode Fiber: 

 It uses inexpensive light source with wavelength larger than that of light, and   

 offers wider dispersion where some wave frequencies have different propagation 

velocities 

 Its dispersion is therefore limited to a few hundred meters at 1000 M bit/sec or up 

to a few kilo-meters at 100 M bit/sec 

• Single-mode Fiber:  

 It uses more expensive lasers with single wavelength  

 It can transmit G bits/sec for hundreds of kilo-meters 

 The drawbacks of single mode fiber are: 

o It is more difficult to attach connecters 

o It is less reliable and more expensive and has restrictions on the degree it 

can be bent 

o The cost, distance and bandwidth are affected by the power of light 
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source 

Interconnection Networks 

• So far we have discussed connecting two computers over private lines 

• However, interconnecting hundreds of computers is more interesting and challenging 

• The bus-based LAN or Ethernet is the simplest way to interconnect more than two 

computers sharing a single media 

 

 
. 

Bus Based Networks Interconnection 

• Here, the processors and memory units are connected through a ―bus‖ 

• It is Simple and cost-effective for small-scale multiprocessors 

• However, the bus bandwidth limits the number of processors 

• The bus-based interconnect is more challenging also as it requires coordination and 

arbitration as more than one computer may need the same media simultaneously 

 

Interconnection Networks 

• However, if the network is small, spread over a few hundred meters, centralized 

arbitration may be used 

• The centralized arbitration doesn‘t work when the network nodes spread over kilometers 

so we have to go for distributed arbitration 

• However, as the arbitration works on the principle: ―Look before you leap‖; but looking 

first doesn‘t guarantee success; as 

• If two nodes get hold of the media and transmit simultaneously, it leads to collision 

• So to avoid collision, different techniques such as collision detection and token passing 

are used 

• Alternative to sharing media is to use switching 

• Switch have a dedicated line which it provides in turns to all destinations 

• Switching allow point-to-point communication much faster than the shared media 

• Switches are also called data switching exchanges, multistage interconnection networks 

or interface message processor (IMPs) 

 

Network Topology 

• With this much discussion regarding sharing of media using buses and switches, let us 

discuss the topologies used to construct computer networks 

• There exist numerous topologies of SANs, LANs and WANs, however, the most popular 

switch-based topologies are classified as: at present are: 

 Centralized Switch Topologies 

 Distributed Switch Topologies 

• Today we will be talking about 

 The basic Centralized Switch Topologies as: 
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o Crossbar o Multistage 

 And, the Distributed Switch Topologies as: 

o 2D Grid or mesh 

o 2D Torus  

o Hypercube tree 

 

Crossbar Switch Topology 

• A crossbar switch is a non-blocking switch that facilitate unidirectional interconnection of 

all the inputs (any processor) to any output to the other processor  

• The interconnection of 2x2 crossbar switch are shown here [Fig. 8.13 c] 

• As you can see that 2 nodes A, B can pass information equally to outputs C and D 

• i.e., here no connections block any connection between other processor or memory units 

• The organization of a crossbar topology for 8-nodes (processors) is shown here  

 

 
• Note that a crossbar uses n2 switches where n is the number of processors  

• Here, the links are unidirectional, i.e., the data comes in at one (left) link and goes out at 

other (right) link 

• The routing depends on the style of addressing 

• In source-based routing where message specifies the path to the destination, the 

message includes the sequence of out-bound arcs to teach the destination 

• Thus, once an outgoing link (arc)  is picked, the portion of the routing sequence is 

dropped from the packet 

• In destination-based routing the message simply contains the destination address; and  

• a program running in the switch decides from routing table which port to take for a given 

address 

• A crossbar switch offers low latency and high throughput 

 

Multistage Interconnection Topology 

• An intermediate class of networks which lies between crossbar and bus based networks 

 Performance: more scalable than bus 

 Cost: more scalable than crossbar 
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• Built from small (e.g., 2x2 crossbar) switch nodes, with a regular interconnection pattern 

• The Omega Topology, depicted here Is a typical implementation of Multistage Topology 

 
• Here each switch is a 2x2 crossbar 

• It has log2 n identical stages 

• Here, the switches used are n/2 log2 n verses n2 in crossbar 

 

Omega Interconnection Topology 

• Here, the connection occur between the messages and depend on the pattern of 

communication and may give rise to blocking 

• For example, for the Omega network shown, a message from P1 to P7 blocks while 

waiting for a message from P0 to P6 as has to follow the same path 

 

 
Fully Connected Switching Network 

• So far we have been discussing centralized switching topologies 

• The distributed switching network is one where the switching is distributed throughout 

the network 
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• An ideal situation may be when the distributed switching allows to interconnect all nodes 

to each other, as shown here 

• Such a network is called fully connected network 

 

Terminology of Distributed Network 

• Degree: Number of link to each node 

• Diameter: Number of nodes between source and destination 

• For fully connected Network 

 Diameter =1 

 Deg= K-1 where K is the number of nodes 

 Links = K * (K-1)/2 

 Bisects = K * K/5 

 

Distributed Switch Topologies 

• The simplest possible, low cost alternative to the fully interconnected network topology, 

is a distributed switch ring network, shown here 

 
• As shown, a small switch is placed at every computer connected to the ring 

• Here, as only two node are connected to a particular node, therefore the message will 

have to hop along intermediate node until the arrive at the final destination 

 

Ring Network 

• For example, where the 1st node is to connect to the 4th node, it hops the 2nd and 3rd 

nodes 

• A variation to the Ring Network, to simplify the arbitration, is the Token Ring 

• Here, a single slot (token) goes around the ring to determine which node is allowed to 

send the message – a node can send a message it  gets a token 
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• The ring network has the following measure 

 Degree: 2 

 Diameter : N/2 

 Bisect: 2 

 Bandwidth = N 

 Latency = N/2  

• For example, where the 1st node is to connect to the 4th node, it hops the 2nd and 3rd 

nodes 

• A variation to the Ring Network, to simplify the arbitration, is the Token Ring 

• Here, a single slot (token) goes around the ring to determine which node is allowed to 

send the message – a node can send a message it  gets a token 

 

2D Grid and 2D Torus Mesh 

• Connecting the switches associated with each node to the switches on the left and right 

and up and down and also connecting the switches to the of the top and bottom rows 

gives a grid structure 

• Also connecting the switches of left and right columns give 2D Torus Mesh  
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Lecture 42 

Networks and Clusters 

(Networks Topology and Internetworking  ... Cont’d) 

Today’s Topics 

• Recap: 

• Switch Topologies.. Cont‘d 

 Centralized Switch Topology  

 Distributed Switch Topology 

• Cluster 

• Summary 

 

Recap: Lecture 41 

• Last time we discussed: 

 The formation of generic interconnection networks and their categorization; 

 The networks communication model, performance, media, software, protocols,  

subnet and networks topologies 

• Here, we noticed that a generic interconnection network comprises: 

 Computer nodes (host or end system) 

 H/W and S/W interface 

 Links to the interconnection network and  

 Communication subnet 

• The interconnections are classified based on the number of processors or nodes and the 

distance between them as: 

 Local Area Network-LAN 

 Wide Area Network-WAN 

 System Area Network-SAN 

• The interconnect communication model shows that two machines are connected via two 

unidirectional wires with a FIFO (queue) at the end to hold the data 

• The communication software separates the header and trailer from the message and 

identifies the request, reply, their acknowledgments and error checking codes 

• The communication protocols suggest the sequence of steps to reliable communication 

• The network performance that defines the latency of the message as the sum of the: 

• Sender overhead, time to flight, receiver overhead and the ratio of the message size to 

the bandwidth 

• We also discussed the properties and performance of interconnect network media or link  

the unshielded twisted pair (UTP), coaxial cable and fiber optics 

• At the end we discussed the formation of bus-based and switch-based communication 

subnets and introduced the network topologies 

• Here, we observed that the bus-based LAN or Ethernet is the simplest way to 

interconnect more than two computers sharing a single media 

• However, the interconnect sharing media are challenging as it requires coordination and 

arbitration when more than one computer needs the same media simultaneously 

• Alternative to sharing media is to use a switch to provide a dedicated line to all 

destinations in order; and facilitates point-to-point communication much faster than the 

shared media 
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• A switch provides unidirectional inter-connection of input to any one of multiple output 

terminals 

• The switch that facilitates unidirectional inter-connection of every processor to all the 

processors in the network is referred to as the non-blocking switch 

• The Crossbar switch is typical example of non-blocking switch; an is employed in the 

centralized switching topology 

• Last time we discussed the crossbar topology in detail and noticed that a crossbar uses 

n2 switches to interconnect n processors in a network 

• Here the routing, to establish interconnection between two node at a time, depends on 

the addressing style 

• i.e., source-based routing where message specifies the path to the destination or 

• destination-based routing where the message simply contains the destination address 

and a program running in the switch selects the port to take for a given destination 

 

Multistage Interconnect Network 

• Today, continuing our discussion on the centralized switching topologies, we will discuss 

an intermediate class of network interconnect which lies between crossbar and bus-

based networks 

• This interconnect topology is referred to as the Multistage network topology 

• A centralized multistage network, shown here, is built from number of large switch 

boxes, placed at multiple stages to interconnect all of the nodes 

 

Multistage Interconnection Topology 

 

 
• Each stage contains number of 

small crossbar switches and allows 

the straight or cross connections 

through the switch, as shown  

• The number of stages are related to 

the number of nodes and the size of 

the crossbar switch 
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• Consequently, its performance and cost are more scalable than bus-based networks 

• The number of identical stages (Ns) in the network having n nodes and switches of size 

m x m, in each stage, is given as: 

Ns = log m n 

• And, the number of switches per stage is n/m 

• Thus, the total number of switches used in multistage network of n nodes is n/m log m n 

i.e., its cost is  

  O(n log n) as compared O(n2 ) for crossbar 

• To understand the design and working of multistage networks, let us consider Omega 

Network, depicted here, as a typical implementation of multistage network 

 

Omega Topology 

• Here, 8 nodes (processors), are addressed using 3-bit code and 3 stages of 2x2 

crossbar switches 

 
 

• number of identical stages [log2 8] = 3 

• And, switches per stage [n/m] = 8/2 =4 

 

Omega Topology: Multistage Interconnect 
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• let us see how the switches at each stage operate to establish connection 

• Note that for the 8-nodes Omega Network the node address is of 3 bits, which is equal 

to number of stages of the switch 

 

Omega Network: Example 

• Here, the 3-bit code a2a1a0 represents 3 stages of the network, as stage S2S1S0, from left 

to right 

• To find the connection pattern XOR the source and destination, e.g.,  

• Src (010)  dest (110) then XOR results 

• 100  Cross (S2)  Straight (S1)  Straight (S0) 

The switch connections are shown Green Circles 

 

• Thus, the generalized rule to find the switch connection can be summarized as 

 For the stage i 

IF       the source and destination differ in ith bit  

THEN      Connection Cross the switch in the ith stage‖ 

ELSE      Connection is Straight in the ith stage‖ 

 

Characteristics of Omega 

• There exist an single path from source to destination, thus contrary to the non-blocking 

crossbar network, the omega network is blocking network 

• This is shown here as: 

 the path 010  110 (red) and  

 the path 110  100 (blue)  

 

Have blockage as the S2 for 110 has to wait till 010 has passed otherwise it results in 

collision 

 
• However, in order to minimize collisions and to improve fault tolerance to achieve high 

reliability and dependability extra pathways can be added 
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Butterfly Network 

• Alternative to the Omega Topology of multistage switching, is Butterfly Network shown 

here 

 
 

• Here, irrespective of the source address, for the destination a2a1a0, the ith stage switch 

sends to: 

• Upper port if ai = 0 and to 

• Lower port if ai = 1 

 

Distributed Switch Networks 

• So far we have been discussing the 

Centralized switching topologies 

• The distributed switching network is 

one where the switches are 

distributed throughout the network 

and they allow interconnection of 

one node to: 

 either all the nodes  

 or to a limited number of 

nodes 

 
 

• A network where each node interconnects all nodes of the network is called, Fully 

connected network 

• There exist different interconnects for distributed switch networks 

• Before discussing these interconnects, let us understand the parameters of interconnect 

performance measure 

 

Interconnect Performance Measure Criteria 

• Latency: Number of Links and must be small 

• Bandwidth: The number of messages or the length of massages; it should be large 

• Node Degree: Number of links connected to a node 

• Diameter: Maximum distance between any two processors, i.e., the number of nodes 

between source and destination; this is indeed the measure of maximum latency  
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• Bisect: The imaginary line that divides the interconnect into roughly two equal parts, 

each having half the nodes 

• Bisection Bandwidth: Sum of the bandwidth of lines crossing the imaginary bisection line 

• It measures the volume of communication allowed between any two halves of network 

with equal number of nodes 

 

Parameters of Interconnect Performance Measure 

• Note that the bisect is not clear in non-symmetric networks, therefore, in order to draw 

the bisect line the bisection band-width is considered 

• Furthermore, it is to be noted that the bisection bandwidth is the worst-case metric of 

non-symmetric interconnect 

• Therefore, the division or the bisect line that makes the bandwidth worst is chosen 

 

Distributed Switch Topologies 

• Based on the concept of distributed-switch interconnects, there exist numerous 

topologies 

• The most popular and commercially available are: 

 Linear Array and Ring 

 Fully Connected 

 2D Mesh and Torus  

 Hypercube  

 Tree 

 

Linear Array / Ring 

• The simplest possible, low cost distributed switch network topology, is a linear array and 

ring network 

 
 

• As shown here, the Linear Array networks is one where a small switch is placed at every 

node (processor)  

• The switch at the i th node connects the ith node to the: 

 (i-1) th node except  for i=1, and  

 (i+1) th node except for i =n 

•  

• In the linear array, as the i th node is connected to (i-1) th and (i+1) th node, therefore the 

message will have to hop along intermediate node until it arrives at the final destination 

at (i ± m) where m>1 

• For example, where the message is to pass from 1st node is to the 4th node, it hops the 

2nd and 3rd nodes 

• The ring network is established by establishing an interconnect between the 1st and the 

nth nodes in the linear array network 
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Ring /Token Ring 

• Like linear array, in Ring network some massages hop along the intermediate nodes 

until they reach destination 

• However, it allows many transfers simultaneously; the 1st node can send to the 2nd at the 

same time as the 3rd can send to 4th and so on. 

• A variation called Token Ring is used in the Ring Network, to simplify the arbitration in 

the ring topology 

 

Ring Network 

• Here, a single slot (token) goes around the ring to determine which node is allowed to 

send the message – a node can send a message if it  gets a token 

• The common performance of an n - node linear array and ring network are as follows: 

 Cost: Cheap as the cost is O(n) 

 Bandwidth: Overall bandwidth is high  

 Latency: High as it is of O(N) 

 

Performance: Array verses Ring 

• Linear Array 

 Degree: 2 

 Diameter : N 

 Bisection width = 1 

 Bandwidth = N-1 

 Mean Latency = N/2 

 Asymmetric 

 Heterogeneous   

• Ring 

 Degree: 2 

 Diameter : N/2 

 Bisection Width = 2 

 Bandwidth = N 

 Latency = N/2  

 Symmetric 

 Homogeneous 

 

Fully Connected 

• A straight forward, symmetric but 

expensive distributed network, 

equivalent of the crossbar network, 

is Fully connected network  

• Here, very node has a direct link 

with all the other nodes of the 

network  
 

• As shown here the node A is interconnected with the nodes B, C, and D 

• Its performance metrics are as follows: 

 Diameter = 1 

 Degree = n-1 

 Links = n * (n-1)/2 

 Bisects = n * n/5 and  

 Bisection bandwidth is 

 proportional to  (n/2)2 
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2D Mesh and 2D Torus 

• Two dimensional Mesh or Grid is an example of  asymmetric network topology and uses 

bisection bandwidth as the performance metric 

• Here, the nodes (processors) are arranged in a array structure forming 2D Grid or Mesh 

• An example 3x4 mesh structure is shown here 

 

 
• A switch is associated to each (processor) node [shown as blue circle]  

• Each switch has one port for the processor and four ports to interconnect the processor 

to the four nearest-neighbor nodes, i.e., the nodes to the left - right and up - down 

position 

• This structure is sometimes also referred to as NEWS communication pattern, 

representing North, East, West and South communication 

• Note that here the switches associated with the top/bottom rows or left/right columns 

don‘t connect among themselves, thus have unused ports 

 

 
• Connecting the unused ports of switches of the top/bottom rows and the left/right 

columns forms 2D Torus, using wraparound links, as shown here 

• The performance metrics of n-node 2D Mesh / Torus are as follows 

 Degree =  4 

 Diameter = 2√N 

 Bisection width  = √N 

 Bandwidth = N 

 Asymmetric 
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Tree Network Topology 

• Another example of distributed switch network is the Tree Topology  

• Here, the switches associated with each node have the number of ports equal to the 

number of braches of the tree plus one for the processor 

 
• A Binary Tree structure shown here has two branches of the root node and branch 

nodes 

• The performance metrics of  N-nodes Tree Network are as follows 

 Cost: It is cheap as cost is O(N) 

 Degree: Number of branches 1, 2, 3 … 

 Latency: O(log deg N) 

 Diameter: 2log deg N 

 Bisection Width: 1 

 

Tree Network: Bottlenecks 

• The root node and the branch nodes 

of the leaf-nodes are the bottleneck 

• For example, leaf-nodes 1, 2 of the 

branch nodes 9 and 3,4 of branch 

node 10, may be interconnect-ed 

simultaneously, but the leaf-nodes 

1,3 and 2,4 cannot, as the there may 

be collision at branch nodes 13, 9 

and 10   

 

Fat Tree Network 

• To avoid root being the bottleneck, multiple paths are provided between any two nodes, 

as shown here. This structure is called the Fat Trees 
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• Here, the black dots show the processor-memory nodes connected through the multiple 

stages of 2x2 crossbar, 4x (2+2) crossbar and 8 x (4+4) crossbars switches and so on 

• This 3D switching increase the bandwidth via extra links at each level over simple tree 

• In CM-5 the concept of Fat Tree is used as Centralized switching Network 

 

Hypercube Network Topology 

• Another example of distributed switch network is the Hypercube topology which is also 

called binary n-cubes, as it has 2 nodes of n-cubes 

• It is an n-dimensional interconnect for 2n nodes 

• As can be seen from the figure here, that for 16 nodes; the hyper cube is a 4D structure  

as 

N=16 = 24 therefore n=4 

 
 

• It requires n ports per switch plus one for the processor this have n nearest neighbors 

nodes 

• Thus, it minimizes hops and have latency of O(log2 N); the other performance metrics 

are: 

 Nodes = N= 2n  

 Degree = n; Diameter = n 

 Links = n * 2(n-1) 

 Bisection width = 2(n-1) 

• The other topologies, such as tree, mesh etc., can be embedded in hypercube 

• Note that the bisection bandwidth is good but it is difficult to layout in 3D space 

• Hypercube has been popular in early message passing machines, e.g., Intel iPSC, 

NCUBE etc 

 

K-ary n-cube Network Topology 

• Rather than having just 2 nodes of n-cubes in the binary hypercube, the generalization 

of hypercube is to interconnect k nodes of n-cubes in a string 

• The total number of nodes: N= k n 

•  A 64 node, where 64 = 43 [4 ary 3 cube) structure is shown here 

• This structure allows for wider channel but requires more hops 

 

64 = 43 [4-ary 3-cube) 

(3 cube is a 16 nodes binary hypercube) 
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Comparing Network Topologies 

• The relative cost and performance of topologies discussed, based on the bisection 

bandwidth and number of links for 64 nodes network is given in the table here 

 

Evaluation 
Category 

Bus Ring 2D Torus Fully 
Connected 

Performance: 

Bisection 
Bandwidth 

1 2 16 1024 
 

Cost 

Ports/switch N/A 3 5 64 

Total Links 1 128 192 2080 

 

• Here, bus is used as the standard reference at unit cost, all transfers are done by taking 

the time units equal to the number of messages 

• Where as the fully connected network has all nodes at equal distance therefore the 

number of links and ports per switch are maximum and all transfers are done in parallel 

taking only unit time 

• The nodes for ring topology are differing distances 

• Here, bus is used as the standard reference at unit cost, all transfers are done by taking 

the time units equal to the number of messages 

• Where as the fully connected network has all nodes at equal distance therefore the 

number of links and ports per switch are maximum and all transfers are done in parallel 

taking only unit time 

• The nodes for ring topology are differing distances 

 

Internetworking 

• Internetworking deals with the communication of computers on independent and 

incompatible networks reliably and efficiently 

•  The software standards are the basic enabling technologies of internetworking 

• (Transmission Control Protocol/Internet Protocol) TCP/IT  is the most popular 

internetworking standard 

• The detailed discussion on Internetworking is beyond the scope of this course 
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Cluster 

• Internetworking deals with the communication of computers on independent and 

incompatible networks reliably and efficiently 

•  The software standards are the basic enabling technologies of internetworking 

• (Transmission Control Protocol/Internet Protocol) TCP/IT  is the most popular 

internetworking standard 

• The detailed discussion on Internetworking is beyond the scope of this course 

 

Summary 

• Today, we discussed an intermediate class of network interconnect which lies between 

crossbar and bus-based networks, referred to as the Multistage Switch network topology 

• A multistage centralized switch is built from number of large switch boxes, placed at 

number of stages to interconnect all of the nodes 

• Here, The number of identical stages (Ns) in the network having n nodes and switches in 

each stage are of size m x m is as given as: 

Ns = log m n 
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Lecture 43 

Networks and Clusters 

(Internetworks and Clusters) 

Today’s Topics 

• Recap: 

• Internetworks 

• Cluster 

• Case Studies 

• Summary 

 

Recap: 

• In our last two lectures on Networks and Cluster we discussed: 

 The formation of generic interconnection networks and their categorization, the 

networks communication model, performance, media, software, protocols,  

subnet and networks topologies 

 Here, we noticed that a generic interconnection network comprises: Computer 

nodes, H/W and S/W interface, Links to the interconnection network and 

Communication subnet 

• The interconnect communication model shows that two machines are connected via two 

unidirectional wires with a FIFO (queue) at the end to hold the data 

• The communication software separates the header and trailer from the message and 

identifies the request, reply, their acknowledgments and error checking codes 

• The communication protocols suggest the sequence of steps to reliable communication 

• We also discussed: 

 The properties and performance of interconnect network media or link – the 

unshielded twisted pair (UTP), coaxial cable and fiber optics 

 The formation of bus-based and switch-based communication subnets and 

introduced the network topologies 

 The bus-based communication subnets share the common media where 

arbitration is the bottleneck 

 Alternative to sharing media is to use a switch to provide a dedicated line to all 

destinations in order; and facilitates point-to-point communication much faster 

than the shared media 

 The switch-based networks are classified as the centralized and distributed 

switch networks 

• Here the routing, to establish interconnection between two node at a time, depends on 

the addressing style: source-based routing and destination-based routing 

• The performance of a distributed network is measured in terms of: 

 Latency - number of Links between source and destination 

 Bandwidth – number or length of messages passing per sec. 

 Degree - number of links connected to a node 

 Diameter - number of nodes between source and destination; this is indeed the 

measure of maximum latency 
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 Bisection - the imaginary line that divides the interconnect into roughly two equal 

parts, each having half the nodes 

 Bisection Bandwidth: the volume of communication allowed between any two 

halves of network with equal number of nodes 

• Last time, we discussed an intermediate class of network interconnect – Multistage 

Switch network 

• It is built from number of large switch boxes each containing number of small crossbar  

• The performance of Multi-stage switch lies  between performance of non-locking 

crossbar and bus-based networks 

• Following the discussion on centralized switch topologies we studied the distributed-

switch interconnects; which are categorized as the fully-connected and partially-

connected, symmetric or asymmetric interconnects 

• The distributed-switch interconnect topologies, such as: linear array, ring, 2D mesh/torus 

and hypercube were studied 

• We also discussed the relative cost and performance of these  topologies, based on the 

bisection bandwidth and number of links for 64 nodes network; which is shown in the 

following table 

 

Evaluation Category  Bus Ring 2D Torus Fully Connected 

         

Performance:  

Bisection B/W   1   2     16  1024 

 

Cost: 

Ports/switch   N/A   3      5  64 

Total Links   1 128    192  2080 

 

Internetworking 

• So far we have been talking about the design styles, topologies and performance of 

interconnection networks 

• Now we are doing to talk about the connection of two or more interconnection networks, 

called Internetworking; the Internet is typical example of Internetworking 

• Internetworking deals with the communication of computers on independent and 

incompatible networks reliably and efficiently 

• Internetworking relies on the communication standards to convert information from one 

kind of network to another 

• These standards are composed of hierarchy of layers, where each layer is responsible 

for a portion of overall communication 

• Each computer, network and switch implements its layer of standards, called the 

Protocol Families or Protocol suites, and facilitates applications to work with any inter-

connection 
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OSI: 7- Layer Model 

• The Open Systems Interconnect – OSI developed a 7-layer model, which describes a 

network as the series of layers; with 

• Application layer at the top (i.e., layer 7) and Physical layer at the bottom (layer 1) and 

presentation, session, transport, network and data link layers in between the  top to 

bottom layers, as layer-6 down to layer-2, respectively 

• The OSI model, layer-7, the Application layer is used for applications specifically written 

to run over the network, e.g., Network File System (NFS) etc.  

• The layer-6, Presentation layer translates from application to network format and vice 

versa 

• The layer-5, Session Layer, establishes maintains and ends the sessions across the 

network 

• The layer-4, Transport Layer, facilitates additional connection below the session layer; 

the protocol is referred to as the Transmission Control Protocol - TCP 

• The layer-3, Network Layer, translates the network address and names to their physical 

address; e.g., computer name to Media Access Control –MAC; the layer-3 protocol is 

referred to as Internet Protocol or IP  

• The layer-2, Data Link layer, turns packets into raw bits and at the receiving end turns 

bits into packets; the example protocol is Ethernet 

• The layer-1, Physical Layer, transmits raw bit-stream over physical cable/media; IEEE 

802 is typical example physical layer protocol  

 

TCP/IP Families 

• The protocol family divides the responsibilities among the layers, with each layer offering 

services needed by the layer above 

• The Transmission Control Protocol/Internet Protocol - TCP/IP is the most popular 

internetworking standard  

• TCP/IP is the basis of Internet, which connect the tens of millions of computers around 

the world 

• The protocol at each level is implemented by adding headers and trailers at the sending 

layer and removing at the receiving layer 

• The original message, from the top layer, includes a header and trailer sent by the lower-

level protocol 

• The next-lower protocol in turn adds its own header (and possibly trailer) to the message 

and so on 

• If the message is too large for a particular layer, then it is broken into smaller messages; 

this division of message and addition of header and trailer continues till the message 

descends to the physical transmission media 

• The message is then sent to the destination 

• Each level of protocol family at the receiving end, from bottom to the top layer, checks 

the message at its level and remove its header and trailer, and pass it on to the next 

higher level 

• The message is rebuilt by putting the pieces together 
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• This nesting of protocols layers is referred to as the Protocol Stack as it reflects the Last-

in First out nature of addition and removal of the header and trailer 

• A typical TCP/IP datagram, containing header and message, is depicted here  

• Fig. 8.27 pp 835 Text book 

 

• The standard IP and TCP headers are 20 byte each, stacked as shown 

• However, the length can optionally be increased which is specified by the length field (L) 

• The length of the whole datagram is identified by a separate field ‗Length‘ in IP header, 

while the TCP header includes this information in the ‗sequences number field‘  

 

Internetworking 

• As the detailed discussion on the TCP / IP is beyond the scope of this course on 

Computer Architecture, therefore  

• we are leaving this discussion here and are going to talk about ‗cluster‘, the last topic of 

our study of the ‗Networks and Cluster‘;  

• rather the last topic of this course on Advance Computer Architecture 

• However,  the students interested in further study of Internetworks may consult literature 

and books on Computer Networks and Internetworking 

 

Clusters – System Area Networks 

• The coordinated use of interconnected computers in a machine room is referred to as 

the cluster or System Area Network 

• Massively parallel machine providing high bandwidth can be built from off-the-shelf 

components, instead of depending on the custom machines or networks 

•  A cluster , i.e.,  a collection or bunch of desk-top computer and disk offers low cost 

computing infrastructure that could tackle very large problems and applications, such as: 

databases, file servers, Web servers, simulation and multiprogramming and batch 

processing 

• The clusters face some performance confront  such as: 

 Non-standard connections  Division of memory 

• Let us talk about these confronts one by one 

• Non-Standard Confront: As you know that the multiprocessors are usually connected 

memory bus which offers high bandwidth and low latency; and 

• Contrary to this, the clusters are connected using I/O bus of the computer, thus have 

large conflicts at high speed 

• Division of Memory: A large single program running on a cluster of N machines requires 

N independent  memory units and N copies of operating system; on the other hand,  

• A shared address multiprocessor allows to use almost all memory in the computer 

• However, contrary to these challenges, clusters have advantages in respect of 

dependability and scalability 

• The weakness of separate memories for program size in case of cluster, as discussed 

earlier, is indeed a strength in terms of system availability and expandability (or say the 

scalability) 
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• Furthermore, as the cluster consists of independent computers connected through LAN, 

and cluster software is a layer that runs on top of the local operating system, therefore,  

• it is easier  as compared to the multiprocessor, to replace any computer without bringing 

down the all computer of the cluster, hence a cluster offers high dependability and 

scalability 

• Furthermore, it is easier to expand a cluster, therefore, it is attractive to the world wide 

web service providers 

 

Cluster Design Examples 

• In order to study practical aspects of cluster designs, we are going to discuss different 

cluster design comprising: 32 processors,  32 GB DRAM, and 32 or 64 disks 

• For different cluster designs let us consider P-III processors operating at clock rate of 

700 MHz and 1000 MHz include large L2 cache ranging from 256 KB to 1MB 

• However, note that due to larger die size, the processor chip price with 1 MB cache is 

double as compared to that of with 256KB Cache chip  

• In cluster design, the higher chip price of chip matters little; but the objective is to 

minimize cost for desired performance target   

• We are considering following four cases: 

1. Cost of cluster hardware with local disk 

2. Cost of cluster hardware with disk over SAN (system or storage area network) 

3. Cost of cluster options that is more realistic 

4. Cost and Performance of a cluster for transaction processing 

 

Example 1: (Cluster Design Examples) 

In order to discuss the first case, Cost of cluster hardware with local disk, let us consider 

three logical organizations of clusters: 

a. Uniprocessor Cluster 

b. 2-way SMP (Symmetric Shared Memory Processor) cluster 

c. 8-way SMP cluster 

 

a. Uniprocessor Cluster Design 

• The Uniprocessor cluster organization, shown here, consists of 32 xSeries 300 computer 

(for 32 processors). Fig 8.34 a pp 846 

• As the maximum memory for this computer is 1.5 GB, so it easily allows desired 32 GB 

(1 x 32) memory 

• As each computer has 2 disk drives each of 36.4 GB so it yield 32 x 2 36.4 = 2330 GB     

• The organization uses the built-in slots for storage, so computer can accept its own G-bit 

hot adopter, hence 32 cables are available for the IGB Ethernet switch 

• However, as the switch has 30 ports, therefore 2 switches are used 

• These two switches are connected together with 4 cables, leaving 56 ports for 32 

computers 

• The standard rack is 19‖ x 30‖ x 72‖ [W x D x H]  and can accommodate 32 

uniprocessors computers, 34 rack units (32 for computers and 2 for switches)  

• This design is cost effective 
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b. 2-way SMP Cluster Design 

• In we use the 2-processor computer of xSeries 330, as shown here, every thing is 

halved  

Fig 8.34 (b) pp 846 

• Here, 32 processor need only 16 computers, a single 30-port switch can work as there 

are 16 cables to be interfaced 

• Furthermore, the rack size 18 RU instead of 44 RU which is less than half the standard 

size 

 

c. 8-way SMP Cluster Design 

• The 8-processor computer of xSeries 370, as shown here, only 4 computer are used at 

they contain 4 x 8 =32 processors 

Fig 8.34 (c) pp 846 

• The maximum memory is 32 GB but we need only 8 GB per computer and for 4 

computers only 8-port switch is sufficient 

• However, at 2 disk per computer, the 4 computers can hold 8 disks with maximum 

capacity per disk 73.4 GB; hence we need expansion storage box which can hold up to 

14 disks; and 2 racks are needed in place of 1 in the previous cases 

 

Comparison of 3-Cluster Designs 

• The price of three clusters with a total of 32 processors, 32 GB memory and 2.3 Tetra-

byte disk is shown here 

Fig 8.35 848 

• Note that the network cost decreases as the size of the SMP increases; because the 

memory buses supply more of the inter-processor communication  

• Furthermore, the 4 of the 8-way SMP cost more than 32 Uniprocessor computers 

• The price of three clusters with a total of 32 processors, 32 GB memory and 2.3 Tetra-

byte disk is shown here 

Fig 8.35 848 

• Note that the network cost decreases as the size of the SMP increases; because the 

memory buses supply more of the inter-processor communication  

• Furthermore, the 4 of the 8-way SMP cost more than 32 Uniprocessor computers 

 

Example 2: (Cluster Design Examples) 

• Now let us discuss the 2nd  case, Cost of cluster hardware using SAN (storage area 

network) for disks 

• In the previous we set the disks local to the computer which reduces the cost and space 

• However, it offers the following problems for the operator 

1. No protection against single disk failure 

2. State in each computer must be manages separately;  

• This results in system-down state on the disk failure 

• To overcome this problem, a RAID controller and Fiber Channel Arbitrated Loop (FC-

AL), is used as the storage area network (SAN) 

• In this case all the SCSI disks are replaced FC-AL disk behind the RAID storage server 
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• Note that FC-AL can be connected in a loop with up to 127 devices 

• The price comparison for the three clusters, using SAN, show here 

Fig. 8.37 pp 850 

• Illustrates that the cost of SAN also shrinks as the servers increase in number of the 

processors per computer 

 

Example 3: (Cluster Design Examples) 

• Now let us discuss the 3rd case, cluster design considering other costs 

•  In the first two design we considered the cost of hardware only 

• However, the software (data base) cost and hardware maintenance cost ( cost of 

operator to keep the machine running) has not been considered 

• The other costs include the cost of backup tapes, cost of space to house the servers 

• A complete comparison of the earlier three clusters including the other cost is shown 

here 

Fig. 8.39 pp 852 

•  It shows that 2-way SMP using SAN is lowest in total price 

• However, over the 3 years, the cost of operator will be more than the cost of the 

hardware; so we must reduce the purchase cost of the old computers to reduce the 

overall cost 

 

Example 4: (Cluster Design Examples) 

• Now let us discuss the 4th  case, cluster design for transaction processing, shown here 

Fig. 8.40 pp 853 

• The cluster has 32 P-III processors, using the same IBM computer as the basic building 

block which was employed in earlier design 

• The key differences are: 

 Disk Size: Small and fast disks are used as this structure cares more about I/Os 

per second (IOPS) 

 RAID: No RAID is required as this as the performance benchmark doesn't 

include the human cost 

 Memory: Maximum DRAM is packed into the servers, so each of the four 8-way 

SMPs is stuffed with maximum of 32 GB, yielding 128 GB  

 Processor: 900 MHz P-III with 2 MB L2 cache is used 

• The cost performance analysis of this structure shows that almost half of the cost is in 

software, installation and maintenance  

• Summarizing the cluster design examples we conclude that as the cost of purchase is 

less than half the cost of the ownership, therefore, the cost of hardware solves only a 

part of the problem 

 

Summary 

In this module on the Networks and clusters we studied that: 

• The formation of a generic interconnection network that comprises 

 Computer nodes (host or end system) 

 H/W and S/W interface 
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 Links to the interconnection network and  

 Communication subnet 

• The interconnections are designated as: 

 Local Area Network-LAN 

 Wide Area Network-WAN 

 System (or Storage) Area Network-SAN 

• While talking about the interconnect model, software and protocols we studied that: 

 The interconnect communication model shows that two machines are connected 

via two unidirectional wires with a FIFO (queue) at the end to hold the data 

 The communication software separates the header and trailer from the message 

and identifies the request, reply, their acknowledgments and error checking 

codes 

 The communication protocols suggest the sequence of steps to reliable 

communication 

• Then we studied the network performance that defines the latency of the message as 

the sum of Sender overhead, time to flight, receiver overhead and the ratio of the 

message size to the bandwidth 

• We also discussed the properties and performance of interconnect network media or link 

– the unshielded twisted pair (UTP), coaxial cable and fiber optics; and  

• the formation of bus-based and switch-based communication subnets and introduced 

the network topologies 

 

• We also studied an intermediate class of network interconnect, which lies between 

crossbar and bus-based networks, referred to as the Multistage Switch that is built from 

number of large switch boxes each containing small crossbar switches; here 

• The number of identical stages (Ns) of large switch boxes each having m x m crossbar 

switches, in the network having n nodes, is equal to log m n; and, the switches per stage 

is n/m 

• The cost of multistage switch network is of O(n log n) which is considerable small as 

compared to that of crossbar network that is of O(n2 ) when n is large 

• The typical examples of multistage switching topologies discussed are Omega and 

Butterfly networks 

• Following the discussion on centralized switch topologies we considered the distributed-

switch interconnects where the switches are distributed among the nodes (processor) 

• We classified the distributed switch interconnects as the fully and partially connected, 

symmetric and asymmetric interconnects 

• Then we discussed the linear array, ring, 2D mesh/torus and hypercube topologies and 

their performance measures 

• The relative cost and performance of these  topologies, based on the bisection 

bandwidth and number of links for 64 nodes network is as follows 

• Today we discussed Internetworking, i.e., the connection of two or more interconnection 

networks to communicate reliably and efficiently 

• Internetworking relies on the communication standards composed of hierarchy of layers 
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• The internet communication Protocol Families facilitates applications to work with any 

inter-connection 

• The Transmission Control Protocol/Internet Protocol - TCP/IP is the most popular 

internetworking standard  

• The protocol at each level is implemented by adding headers and trailers at the sending 

layer and removing at the receiving layer 

• Have introduced the basic concept of internetworking we discussed the computer cluster 

which is coordinated use of interconnected computers in a machine room 

• Here, we studied Non-standard connections and Division of memory as the performance 

confront of clusters; furthermore 

• Contrary to these challenges, clusters have advantages in respect of dependability and 

scalability 

• At the end we studied the practical aspects of cluster designs through four examples 

 

Conclusion 

• Today we have completed our discussion on almost all topics related to this course on 

Advanced Computer Architecture 

• In the following last two lecture we will review the complete course following some case 

studies 
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Lecture 44 

Putting It All Together 

(Case Studies) 

Today’s Topics 

• Case Studies 

 Power PC 750 Architecture 

 Power PC 970 Architecture 

 Intel Pentium – VI Architecture 

• Summary 

 

PowerPC 750 - General 

• PowerPC 750 is an implementation of PowerPC microprocessor family of reduced 

instruction set computer (RISC) microprocessors 

• 750 implements the 32-bit portion of the PowerPC architecture 

• It provides 32-bit effective addresses for: 

 Integer data types of 8, 16, and 32 bits 

 Floating-point data types of 32 and 64 bits 

• It is high-performance, superscalar micro-processor architecture that has Six execution 

units and two register files. It can: 

 fetch from the instruction cache as many as four instructions per cycle 

 dispatch as many as two instructions per clock 

 execute as many as six instructions per clock 

 

PowerPC Instructions 

• Instructions are encoded as single-word (32-bit) 

• Instruction formats are consistent among all instruction types, permitting efficient 

decoding to occur in parallel with operand accesses 

• This fixed instruction length and consistent format greatly simplifies instruction pipelining 

• Integer instructions are:  

 Integer arithmetic, Integer compare, logical, rotate and shift 

• Floating-point instructions are:  

 Floating-point arithmetic, multiply/add, rounding and conversion, compare, status 

and control instructions 

• Load/store instructions are: 

 Integer and Floating-point load and store; and atomic memory operations (lwarx 

and stwcx) instructions 

• Flow control instructions are: 

 branching, condition register logical, trap, and other instructions that affect the 

instruction flow 

• Processor control instructions are: 

 used for synchronizing memory accesses and management of caches, TLBs, 

and the segment registers 

• Memory control instructions are:  

 provide control of caches, TLBs, and SRs 
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PowerPC 750 Block Diagram 
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PowerPC 750 – Instruction Flow 

• Now let discuss the instruction flow in PowerPC 750, which includes: 

 Instruction fetch, 

 Instruction decode and 

 Instruction dispatch 

• The instruction flow in PowerPC 750 is illustrated here with the help of block diagram 

• PowerPC 750 allows maximum four instruction fetch per clock cycle 

 

PowerPC 750: Instruction Flow (decode/dispatch) 

 

 
 

PowerPC 750 – Instruction Fetch 

• However, the number of clock cycles necessary to request instructions from the memory 

system depends on where exactly is the: 

1. branch target instruction cache 

2. on-chip instruction L1 cache 

3. L2 cache 

• Having understood the instruction let us discuss how the PowerPC decodes and 

dispatch the instruction 

 

PowerPC 750 – Decode/Dispatch 

• Refer to the instruction flow diagram again and note that: 

 Instructions can be dispatched only from the two lowest instruction queue entries, 

IQ0 and IQ1 
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 A maximum of two instructions can be dispatched per clock cycle (although an 

additional branch instruction can be handled by the Branch Processing Unit-BPU 

 Only one instruction can be dispatched to each execution unit per clock cycle 

• Note that to facilitate dispatch: 

 There must be a vacancy in the specified execution unit  

 A rename register must be available for each destination operand specified by 

the instruction 

 There must be an open position in the completion queue; If no entry is available, 

the instruction remains in the IQ. 

 

PowerPC 750: Superscalar Pipeline 

 

 
PowerPC 750 – Execution Units 

• Refer to the PowerPC 750 superscalar pipeline shown here and note that it contains two 

integer units (IUs), 

 IU1 can execute any integer instruction 

 IU2 can execute all integer instructions except multiply and divide 

• Which share thirty-two GPRs for integer operands and a Single-entry reservation station 

for each 

• Furthermore, there exist  

 One three-stage floating point unit (FPU) that allows both single- and double-

precision operations 

 Hardware support for demoralized numbers and Single-entry reservation station 

are provided  

 Thirty-two 64-bit FPRs for single- or double-precision operands 

 

• Two-stage LSU (Load/Store Unit) contains 
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 Two-entry reservation station 

 Single-cycle, pipelined cache access 

 Three-entry store queue 

• Supports both big- and little-endian modes 

• It‘s dedicated adder performs (extended addition) EA calculations 

• It performs alignment and precision conversion for floating-point data and sign extension 

for integer data 

 

PowerPC 750: Completion Unit 

• Completion unit retires an instruction from the six-entry reorder buffer (completion 

queue) when: 

1. All instructions ahead of it have been completed, and 

2. The instruction has finished execution, and 

3. No exceptions are pending 

• The completion unit guarantees sequential programming model (precise exception 

model) 

• Monitors all dispatched instructions and retires them in order 

• Tracks unresolved branches and flushes instructions from the mispredicted branch 

• Retires as many as two instructions per clock 

 

PowerPC 750 Rename Buffers 

• 750 provides rename registers for holding instruction results before the completion 

commits them to the architected register 

• Refer to the instruction flow diagram again and note that there are six GPR rename 

registers, six FPR rename registers, and one each for the CR, LR, and CTR 

• When an instruction is dispatched to its execution unit, a rename register for the results 

of that instruction is assigned 

• Dispatcher also provides a tag to the execution unit identifying the rename register that 

forwards the required data for an instruction 

• When the source data reaches the rename register, execution can begin 

• Results are transferred from the rename registers to the architected registers by the 

completion unit when an instruction is retired from completion queue 

• Results of squashed instructions are flushed from the rename registers 

 

PowerPC 750 Branch Prediction Unit 

• Featuring both static and dynamic branch predictions, only one is used at any given time 

• Static branch prediction 

 It is defined by the PowerPC architecture and involves encoding the branch 

instructions 

 The PowerPC architecture provides a field in branch instructions (the BO field) to 

allow software to hint whether a branch is likely to be taken 

 Rather than delaying instruction processing until the condition is known, the 750 

uses the instruction encoding to predict whether the branch is likely to be taken 

and begins fetching and executing along that path 
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• Dynamic branch prediction:  

 750 use the 512-entry Branch history table (BHT) with two bits per entry 

 Allows prediction as: Not-taken, strongly not-taken, taken, strongly taken 

 

PowerPC 750  Branch Target Cache - BTC 

• 750 uses the BTC to reduce time required for fetching target instructions when branch is 

predicted to be taken 

• Branch Target Instruction Cache (BTIC) 

 64-entry (16-set, four-way set-associative) 

 Cache of branch instructions that have been encountered in branch/loop code 

sequences 

 BTIC hit: instructions are fetched into the instruction queue a cycle sooner than it 

can be made available from the instruction cache 

 

PowerPC 750 Multiple Branch Prediction 

• The 750 executes through two levels of prediction 

• Instructions from the first unresolved branch can execute, but they cannot complete until 

the branch is resolved. 

• If a second branch instruction is encountered in the predicted instruction stream, it can 

be predicted 

• Instructions can be fetched, but not executed, from the second branch 

• No action can be taken for a third branch instruction until at least one of the two previous 

branch instructions is resolved 

 

PowerPC 750 Cache 

• Separate on-chip instruction and data caches 

 32-Kbyte, eight-way set-associative instruction 

 Pseudo least-recently-used (PLRU) replacement 

 32-byte (eight-word) cache block 

 Physically indexed/physical tags 

 Cache write-back or write-through operation per-block basis 

 Caches can be disabled in software 

 Caches can be locked in software 

 Data cache coherency (MEI) maintained in hardware 

 The critical double word is made available to the requesting unit 

 The cache is non-blocking 
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PowerPC 750: Data and Instruction Cache Organization 

 
• Data Cache: 

 32-word blocks (5 bits) 

 128 sets (7 bits) 

 Tags (20 bits) 

 State: MEI 

 

• Instruction Cache 

 32-word blocks (5 bits) 

 128 sets (7 bits) 

 Tags (20 bits) 

 Valid/Not valid 

 Not snooped 

PowerPC 750: Multiprocessing 

• 750 Multiprocessing support features include: 

 Hardware-enforced, three-state cache coherency protocol (MEI) for data cache. 

 Load/store with reservation instruction pair for atomic memory references, 

semaphores, and other multiprocessor operations 

• The 750‘s three-state cache-coherency protocol (MEI) supports the Modified, Exclusive, 

and Invalid states 

 

PowerPC 750 

• Three states: 

 Invalid 

 Modified 

 Exclusive 

• No shared state 

• Caching-Inhibited Reads 
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PowerPC 970 FX 

 

 
 

PowerPC 970 FX: Organization 

• 64-bit implementation of the PowerPC® AS Architecture (version 2.01) 

• Vector/SIMD Multimedia eXtension 

• Deeply pipelined design consisting: 

 16 stages for most fixed-point register-register operations 

 18 stages for most load and store operations (assuming an L1 D-cache hit) 

 Up to 25 stages for floating point operations 

 The VALU. 

 19 stages for vector permute operations 

• Dynamic instruction cracking 

 Some complex instructions are broken into two simpler, more RISC-like 

instructions! 

 Allows for simpler inner core dataflow 

 

PowerPC 970 FX: General 

• Aggressive branch prediction 

 Prediction for up to two branches per cycle 

 Support for up to 16 predicted branches in flight 

 Prediction support for branch direction and branch addresses 

• In-order dispatch of up to five operations into distributed issue queue structure 
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• Out-of-order issue of up to 10 operations into 10 execution pipelines 

 Two load or store operations 

 Two fixed-point register-register operations 

 Two floating-point operations 

 One branch operation 

 One condition register operation 

 One vector permute operation 

 One vector ALU operation 

• Register renaming 

• Cache coherency protocol: MERSI (modified/exclusive/recent/shared/invalid) 

• Large number of instructions in flight (theoretical maximum of 215 instructions) 

• Up to 16 instructions in the instruction fetch unit (fetch buffer and overflow buffer) 

• Up to 32 instructions in the instruction fetch buffer in instruction decode unit 

• Up to 35 instructions in three decode pipe stages and four dispatch buffers 

• Up to 100 instructions in the inner-core (after dispatch) 

• Up to 32 stores queued in the store queue (STQ) (available for forwarding) 

• Fast, selective flush of incorrect speculative instructions and results 

• Specific focus on storage latency management 

• Out-of-order and speculative issue of load operations 

• Support for up to eight outstanding L1 cache line misses 

• Hardware initiated instruction prefetching from L2 cache 

• Software initiated data stream prefetching with support for up to eight active streams 

• Critical word forwarding / critical sector first 

• New branch processing / prediction hints for branch instructions 

 

PowerPC 970 FX: Instruction Fetch 

• 64KB, direct-mapped instruction cache (I-cache) 

 128-byte lines (broken into four 32-byte sectors) 

 Dedicated 32-byte read/write interface from L2 cache – critical sector first reload 

policy 

• Four-entry, 128-byte, instruction prefetch queue above the I-cache; hardware-initiated 

prefetches 

• Fetch 32-byte aligned block of eight instructions per cycle 

 

PowerPC 970 FX: Branch Prediction 

• Scan all eight fetched instructions for branches each cycle 

• Predict up to two branches per cycle 

• Three-table prediction structure 

 Local (16K entries, 1-bit each); Taken/Not taken 

 Global (16K entries, 1-bit each) 11-bit history XORed with branch instruction 

address; Taken/ Not taken 

 Selector (16K entries, 1-bit each) indexed as above; Use local predictor/Use 

global predictor 
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• This combination of branch prediction tables has been shown to produce very accurate 

predictions on a wide range of workload types. 

• 16-entry link stack for address prediction (with stack recovery)- predict the target 

address for a branch to link instruction that it believes corresponds to a subroutine return 

(pushed into the stack earlier) 

• 32-entry count cache for address prediction (indexed by the address of Branch 

Conditional to Count Register (bcctr) instructions) 

 

PowerPC 970 FX: Instruction Decode and Preprocessing 

• Three cycle pipeline to decode and preprocess instructions; Cracking one instruction into 

two internal operations 

• Cracked and micro-coded instructions have access to four renamed emulation GPRs 

(eGPRs), one renamed emulation FPR (eFPR), and one renamed emulation CR (eCR) 

field (in addition to architected facilities) 

• 8-entry (16 bytes per entry) instruction fetch buffer (up to eight instructions in, five 

instructions out each cycle) 

 

PowerPC 970 FX: Instruction Dispatch and Completion Control 

• Four dispatch buffers which can hold up to four dispatch groups when the global 

completion table (GCT) is full 

• 20-entry global completion table 

 Group-oriented tracking associates a five operation dispatch group with a single 

GCT entry 

 Tracks internal operations from dispatch to completion for up to 100 operations 

 Capable of restoring the machine state for any of the instructions in flight 

 Very fast restoration for instructions on group boundaries (i.e., branches) 

 Slower for instructions contained within a group 

• Supports precise exceptions 

 

PowerPC 970 FX: Branch and Condition Register Execution Pipeline 

• One branch execution pipeline 

 Computes actual branch address and branch direction for comparison with 

prediction 

 Redirects instruction fetching if either prediction was incorrect 

 Assists in training/maintaining the branch table predictors, the link stack, and the 

count cache 

• One condition register logical pipeline 

 Executes CR logical instructions and the CR movement operations 

 Executes some Move to/from Special Purpose Register (mtspr and mfspr) 

instructions also 

• Out-of-order issue with bias towards oldest operations first 
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PowerPC 970 FX: Data Stream Prefetch 

• Eight (modeable) data prefetch streams supported in hardware.  

• Eight hardware streams are only available if vector prefetch instructions are  disabled 

• Four vector prefetch streams supported using four of the eight hardware streams.  

• The vector prefetch mapping algorithm supports the most commonly used forms of 

vector prefetch instructions 

 

Intel P-VI: General 

• The P6 family of processors is the generation of processors that succeeds the Pentium® 

line of Intel processors 

• This processor family implements Intel‘s dynamic execution micro-architecture 

 Multiple branch prediction 

 Data flow analysis 

 Speculative execution 

 

Intel P-VI: Three Engines and Interface with Memory 

 

 
 

Intel P-VI: Major Units  

• The FETCH/DECODE unit: 

 An in-order unit that takes as input the user program instruction stream from the 

instruction cache, and  

 Decodes them into a series of μ-operations (μops) that represent the dataflow of 

that instruction stream  

• The pre-fetch is speculative 
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• The DISPATCH/EXECUTE unit: 

 An out-of-order unit that accepts the dataflow stream, schedules execution of the 

μops subject to data dependencies and resource availability and temporarily 

stores the results of these speculative executions 

• The RETIRE unit: 

 An in-order unit that knows how and when to commit (―retire‖) the temporary, 

speculative results to permanent architectural state 

• The BUS INTERFACE unit: 

 The bus interface unit communicates directly with the L2 (second level) cache 

supporting up to four concurrent cache accesses.  

 The bus interface unit also controls a transaction bus, with MESI snooping 

protocol, to system memory 

 

Intel P-VI: Inside Fetch 

 
 

• The L1 Instruction Cache fetches the cache line corresponding to the index from the 

Next_IP and presents 16 aligned bytes to the decoder. 

• The decoder converts the Intel Architecture instructions into triadic μops (two logical 

sources, one logical destination per μop) 

• Most Intel Architecture instructions are converted directly into single μops, some 

instructions are decoded into one-to-four μops and the complex instructions require 

microcode 

• The μops are queued, and sent to the Register Alias Table (RAT) unit, where 

• the logical Intel Architecture-based register references are converted into references to 

physical registers in P6 family processors physical register references 

• μopa are entered into the instruction pool 

• The instruction pool is implemented as an array of Content Addressable Memory called 

the Re-Order Buffer (ROB). 
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Intel P-VI: Inside Dispatch /Execute 

 
• The Dispatch unit selects μops from the instruction pool depending upon their status 

• If the status indicates that a μop has all of its operands then the dispatch unit checks to 

see if the execution resource needed by that μop is also available 

• If both are true, the Reservation Station removes that μop and sends it to the resource 

where it is executed 

• The results of the μop are later returned to the pool 

• There are five ports on the Reservation Station, and the multiple resources are accessed 

as shown 

• The P6 family of processors can schedule (in an out-of-order fashion) at a peak rate of 5 

μops per clock, one to each resource port, but a sustained rate of 3 μops per clock is 

more typical 

• Note that many of the μops are branches 

• The Branch Target Buffer (BTB) will correctly predict most of these branches 

• Branch μops are tagged (in the in-order pipeline) with their fall-through address and the 

destination that was predicted for them 

• But if mispredicted, then the Jump Execution Unit (JEU) changes the status of all of the 

μops behind the branch to remove them from the instruction pool 

• In that case the proper branch destination is provided to the BTB which restarts the 

whole pipeline from the new target address 
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Intel P-VI: Inside Retire 

• The Retire Unit is also checking the status of μops in the instruction pool 

• Once removed, the original architectural target of the μops is written as per the original 

Intel Architecture instruction. 

• The Retire Unit must also re-impose the original program order on them 

• The Retire Unit must first read the instruction pool to find the potential candidates for 

retirement and determine which of these candidates are next in the original program 

order 

• Then it writes the results of this cycle‘s retirements to the Retirement Register File 

(RRF).  

• The Retire Unit is capable of retiring 3 μops per clock. 

 

Intel P-VI: Bus Interface Unit  

 

 
• Loads are encoded into a single μop. 

• Stores therefore require two μops, one to generate the address and one to generate the 

data. These μops must later re-combine for the store to complete. 

• Stores are never performed speculatively since there is no transparent way to undo 

them 

• Stores are also never re-ordered among themselves 

• A store is dispatched only when both the address and the data are available and there 

are no older stores awaiting dispatch 

• A study of the importance of memory access reordering concluded: 

 Stores must be constrained from passing other stores, for only a small impact on 

performance. 

 Stores can be constrained from passing loads, for an inconsequential 

performance loss. 

 Constraining loads from passing other loads or stores has a significant impact on 

performance. 
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• The Memory Order Buffer (MOB) allows loads to pass other loads and stores by acting 

like a reservation station and re-order buffer 

• It holds suspended loads and stores and re-dispatches them when a blocking condition 

(dependency or resource) disappears 

 

Summary 

• Today we have studied four advance computer architecture: 

 PowerPC 750 and 970 FX  

 Intel P-VI 

• With this we have completed our discussion on all topic of Advanced Computer 

Architecture 

• Next time, in the last lecture we will review all concepts we have studied in our earlier 

lectures 
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Lecture 45 

Putting It All Together 

(Review: Lecture 1 - 43) 

Today’s Topics 

• Module 1: Introduction 

• Module 2: Instruction Set Architecture 

• Module 3: Computer hardware design 

• Module 4:  Instruction Level Parallelism –Dynamic 

• Module 5:  Instruction Level Parallelism – Static 

• Module 6: Memory Hierarchy system 

• Module 7: Multiprocessing 

• Module 8: I/O Systems 

• Module 9: Networks and Clusters 

 

Module 1: Introduction and Quantitative Principles 

• We started this course distinguishing the computer organization and computer 

architecture 

• Architecture refers to those attributes of a computer visible to the programmer or 

compiler writer; e.g., instruction set, memory addressing techniques, I/O mechanisms  

• Organization refers to how the features of a computer are implemented; e.g., control 

signals are generated using the principles of FSM or microprogramming 

• The architecture of the members of a processor family are same whereas  organization 

of same architecture may differ between different members of the family 

 

Module 1: Introduction Computer Development 

• We also introduced the computers developments with academic and commercial 

perspectives   

• Academically, modern computer developments have their infancy in 1944-49, when 

John von Neumann introduced the concept of stored-program computer, referred to as 

Electronic Discrete Variable Automatic Computer – EDVAC 

• Commercially, the first machine was built by Eckert-Mauchly Computer Corporation in 

1949 

• In 1971, Intel introduced first cheep microprocessor 4004 and then 80 x 86 series 

• In 1998, more than 350 million microprocessors with different instruction set 

architectures were in use; this number has risen to more than a billion in 2006 

• Technological developments, from vacuum tubes to VLSI circuits, dynamic memory and 

network technology gave birth to four different generations of computers 

• This course has viewed the Computer Architecture from four perspectives 

 Processor Design 

 Memory Hierarchy 

 Input/output and storages 

 Multiprocessor and Network interconnection 
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Module 1: Quantitative Principles 

• The key to the quantitative analysis in determining the effectiveness of the entire 

computing system is the computer hardware and software performance  

• In this respect , we discussed: 

 Price-performance design 

 CPU performance metrics 

 CPU benchmark suites 

 

Module 1: Price-Performance Design 

• The issue of cost-performance is complex one 

•  At one extreme, high-performance computers designer may not give importance to the 

cost in achieving the performance goal.  

• At the other end, low-cost designer may sacrifice performance to some extent.  

• The price-performance design lies between these extremes where the designer 

balances cost and hence price verses performance.  

 

Module1: CPU Benchmark Suites 

• In order to compare the performance of two machines, a user can simply compare the 

execution time of the same workload running on both the machines.  

• In practice users want to know, without running their own programs, that how well the 

machine will perform on their workload.  

• This is accomplished by evaluating the machine using a set of benchmarks – the 

programs specifically chosen to measure the performance.  

• Five levels of programs are used as benchmarks: 

 Real Applications – scientific programs evaluate the performance of a machine 

 Modified Applications – the real applications with certain blocks modified to focus 

desired aspects of application,  

 Kernels – the small key pieces extracted from the real program 

 Toy benchmarks – small codes normally used as beginning programming 

assignments. 

 Synthetic benchmarks – the small section of Artificially created program 

 

Module1: Quantitative Principles of Performance Measurement 

• Quantitatively the performance of a system can be enhanced by speedup of a fraction of 

system based on the concept of the common case first 

• Amdahl‘s Law is the basis of the measure of the performance enhancement, which 

defines the Speedup due to enhancement E that accelerates a fraction F of the task as: 

 

Module 1: Amdahl's Law 

• Speedup (E) = Ex Time without Enhancement / Ex Time with Enhancement   

         = Performance with Enhancement / Performance without Enhancement 
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Module 2: Instruction Set Architecture 

• The three pillars of computer architecture are: 

 hardware,  

 instruction set   

 software 

• Hardware facilitates to run the software and instruction set is the interface between the 

hardware and software 

• While talking about the Instruction set architecture the focus of our discussion has been: 

 ISA Taxonomy 

 Types of operands  

 Types of operations 

 Memory Addressing modes 

 

Module 2: Taxonomy of Instruction Set 

• The taxonomy of Instruction set was defined as:  

 Stack Architecture:  

 Accumulator Architecture 

 General Purpose Register Architecture 

o Register – memory 

o Register – Register (load/store) 

o Memory – Memory Architecture (Obsolete) 

 

Module 2: Types of Operands and Operations 

• Operands Types:  

 Integer, FP and Character 

• Operand Size: 

 Half word, word, double word 

•  Classification of operations: 

 Arithmetic, data transfer, control  

 and support operations 

 

Module 2: Types of Operands addressing modes 

• Operand Addressing Modes: 

 Immediate, register, direct (absolute) and  Indirect 

•  Classification of Indirect Addressing: 

 Register, indexed, relative (i.e. with  displacement) and memory 

•  Special Addressing Modes: 

 Auto-increment, auto-decrement and scaled 

•  Control Instruction Addressing modes: 

 Branch, jump and procedure call/return 
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Module 3: Computer Hardware design 

• Basic building blocks of a computer 

• Sub-systems of CPU: Datapath and Control 

• Processor design steps 

• Processor design parameters 

• Hardware design process 

• Timing signals 

• Uni-bus, 2-bus and 3-bus structures 

• 3-bus based single cycles data path 

 

Sub-systems of Central Processing Unit 

• At a ―higher level‖ a CPU can be viewed as consisting of two sub-systems 

 Data path: The path that facilitates the transfer of information from one part 

(register/memory/ IO) to the other part of the system 

 Control: the hardware that generates signals to control the sequence of steps 

and direct the flow of information through the data path 

 
Module 3: Datapath Implementations 

• The datapath is the arithmetic organ of the Von- Neumann‘s stored-program 

organization 

• Typically, the datapath may be implemented as: 

 Unibus structure 

 2-bus structure 

 3-bus structure 

• Based on the concepts of single cycle, multiple cycle and pipelined architecture 

• It consists of registers, internal buses, arithmetic units and shifters 
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• Each register in the register file has: 

• a load control line that enables data load to register 

• a set of tri-state buffers between its output and the bus   

• a read control line that enables its buffer and place the register on the bus 

 

Module 3: Single/Multiple Cycle Approach 

• In the Single Cycle implementation, the cycle time is set to accommodate the longest 

instruction, the Load instruction. 

• In the Multiple Cycles implementation, the cycle time is set to accomplish longest step, 

the memory read/write 

• Consequently, the cycle time for the Single Cycle implementation can be five times 

longer than the multiple cycle implementation. 

 

Module 3: Pipelined Datapath 

• Pipelining is a fundamental concept 

• Where an instructions is completed in multiple steps using distinct resources 

• It utilizes capabilities of the Datapath by 

• Starting next instruction while working on the current one 

• The pipelined datapath may encounter three types of hazards 

 Structural, Data and Control 

 

Module 3: Pipeline Hazards 

• Structural hazards occur when same resource is accessed by more than one 

instructions; e.g., One memory port or one register write port 

• It can be removed by using either multiple resources or inserting stall  

• Stall degrades the pipeline performance  

• Data Hazards occur when attempt is made to read invalid data 

• Data hazard can be removed by using stall and forwarding techniques 

• Control hazards occur when an attempt is made to branch prior to the evaluation of the 

condition 

• Four ways to handle control hazards 

 

Module 3: 4 ways to handle control hazard 

1. Stall until branch direction is clear 

2. Predict Branch Not Taken 

3. Execute successor instructions in sequence 

 Predict Branch Taken 

4. Delayed Branch 

 Define branch to take place AFTER a following instruction 
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Module 4: Instruction Level parallelism 

• Simple pipeline facilitates in-order execution 

• Whereas, in order to enhance the performance of the pipeline, we want to begin 

execution as soon as the data operands are available, i.e., out-of-order execution 

• Out-of-order execution may introduce data hazards of type WAR and WAW 

• Instruction Level Parallelism can be achieved by Hardware or Software 

• In SW parallelism, the dependencies are defined by program result in hazards if HW 

cannot resolve 

• HW exploiting ILP works when dependence cannot be determined at run time 

• These hardware techniques to exploit ILP are referred to as Dynamic Scheduling 

techniques 

• Dynamic scheduling is accomplished by dividing the ID stage into two parts  

 Issue the instruction in-order 

 Read operand out-of-order 

• Structural and data dependencies are checked at ID stage 

• It facilitates out-of-order execution  which results in out-of-order completion 

• We discussed the score-boarding and Tomasulo‘s algorithm as the basic concepts for 

dynamic scheduling in integer and floating-point datapath  

• The structures implementing these concepts facilitate out-of-order execution to minimize 

data dependencies thus avoid data hazards without stalls 

• Tomasulo's Approach for IBM 360/91 to achieve high Performance without special 

compilers. Here, the control and buffers are distributed with Function Units (FU) 

• Registers in instructions are replaced by values or pointers to reservation stations(RS) ; 

i.e., the registers are renamed 

• Unlike Scoreboard, Tomasulo can have multiple loads outstanding 

• We also discussed branch-prediction techniques and different types of branch-

predictors, used to reduce the number of stalls due to control hazards 

• The concept of multiple instructions issue was discussed in details 

• This concept is used to reduce the CPI to less that one, thus, the performance of the 

processor is enhanced 

• We studied extensions to the Tomasulo‘s structure by including hardware-based 

speculation. It allows to speculate that branch is correctly predicted, thus may execute 

out-of-order but commit in-order having confirmed that the speculation is correct and no 

exceptions exist. The major hardware-based techniques studied are summarized here: 

 

Technique Hazards type stalls Reduced 

Forwarding and bypass Potential Data Hazard Stalls 

Delayed Branching and Branch Scheduling Control Hazard Stalls 

Basic Dynamic Scheduling (score boarding)  Data Hazard Stalls from true dependences 

Dynamic Scheduling with renaming 
(Tomasulo‘s Approach) 

Stalls from: data hazards 
from anti-dependences and  
from output dependences 

Dynamic Branch Prediction Control Hazard stalls 

Speculation Data and Control Hazard stalls 

Multiple Instructions issues per cycle Ideal CPI > 1 
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Module 5: Static Approach for ILP 

• The multiple-instruction-issues per cycle processors are rated as the high- performance 

processors 

• These processors exist in a variety of flavors, such as: 

 Superscalar Processors 

 VLIW processors 

 Vector Processors 

• The superscalar processors exploit ILP using static as well as dynamic scheduling 

approaches  

• The VLIW processors, on the other hand, exploits ILP using static scheduling only 

• The major software scheduling techniques, under discussion, to reduce the data and 

control stalls, are as follows: 

 

Technique Hazards type stalls Reduced 

Basic Compiler scheduling Data hazard stalls 

Loop Unrolling Control hazard stalls  

Compiler dependence Ideal CPI, Data hazard stalls 

Trace Scheduling Ideal CPI, Data hazard stalls 

Compiler Speculation Ideal CPI, Data and control hazard stalls 

 

Module 6: Memory Hierarchy System 

• Here, we discussed how the gap between the speed of processor and the storage 

devices - DRAM, SRAM and Disk is increasing with time 

• We studied that in order to obtain high speed storage at the cheapest cost per byte, 

different types of memory modules are organize in hierarchy, based on the: 

 Concept of Caching and 

 Principle of Locality 

• The principle of locality states that to obtain data or instructions of a program, the 

processor access, at any instant of time, a relatively small portion of the address space 

of the fastest memory closet to the processor 

• There are two different types of locality: 

 Temporal locality is the locality in time 

 Spatial locality is the locality in space 

• Concept of caching states that a small, fastest and most expensive storage be used as 

the staging area or temporary-place to:  

 Store frequently-used subset of the data or instructions from the relatively 

cheaper, larger and slower memory; and  

 To avoid having to go to the main memory every time this information is needed 

• The performance of cache is limited by different types of penalties 

• Then we that talked four options to improve the cache performance 

• These options are used to reduce:  

 the miss penalty 

 the miss Penalty or miss rate 

via Parallelism 

 the miss rate  

 the time to hit in the cache 
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Module 7: Multiprocessing 

• In this series of four lectures on multiprocessors we have studied, how improvement in 

computer performance can be accomplished using Parallel Processing Architectures? 

• Parallel Architecture is a collection of processing elements that cooperate and 

communicate to solve larger problems fast 

• Then we described the four categories of Parallel Architecture as: SISD, SIMD, MISD 

and MIMD architecture 

• We noticed that based on the memory organization and interconnect strategy, the MIMD 

machines are classified as:   

 Centralized Shared Memory Architecture 

 Distributed Memory Architecture 

• We also introduced the framework to describe parallel architecture as a two layer 

representation: Programming and Communication models 

• We talked about sharing of caches for multi-processing in the symmetric shared-memory 

architecture in details 

• Here, we studied the cache coherence problem and introduced two methods, write 

invalidation and write broadcasting schemes, to resolve the problem 

• We also discussed the finite state machine for the implementation of snooping algorithm 

 

Module 8: I/O Systems 

• The overall performance of a computer is measured by its throughput, which is very 

much influenced by the systems external to the processor 

• The effect of neglecting the I/Os on the overall performance of a computer system can 

best be visualized by Amdahl's Law which identifies that: system speed-up limited by the 

slowest part!  

• Then we discussed the trends in I/O inter-connects as: the networks, channels and 

backplanes 

• The networks offer message-based narrow-pathway for distributed processors over long 

distance  

• The backplanes offer memory-mapped wide pathway for centralized processing over 

short distance 

• The interconnects are implemented via buses 

• The buses are classified in two major categories as the I/O bus and CPU-Memory bus 

• The channels are implemented using I/O buses and backplanes using CPU-Memory 

buses  

• We discussed the bus transition protocols  which specify the sequence of events and 

timing requirements in transferring information as synchronous or asynchronous 

communication 

• We also studied bus arbitration protocols ― the protocols to reserve the bus by a device 

that wishes to communicates when multiple devices need the bus access 

• Here, we noticed that the bus arbitration schemes usually try to balance two factors: 

• Bus-priority: the device with highest priority should be serviced first 

• Fairness: every device that want to use the bus is guaranteed to get the bus eventually 
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• The three bus arbitration schemes are: 

 Daisy Chain Arbitration 

 Centralized Parallel Arbitration 

 Distributed Arbitration 

• Having discussed the basic types of storage devices and the ways to interconnect them 

to the CPU, we studied the ways to evaluate the performance of storage I/O systems 

• Here, we noticed that the reliability of a system can be improved by using the following 

four methods 

 

Fault Avoidance Prevent fault occurrence by construction 

Fault Tolerance providing service complying with the service specification 
by redundancy 

Error Removal minimizing the presence of errors by verification 

Error 
Forecasting 

to estimate the presence, creation and consequence of 
errors by evaluation 

 

Module 9: Networks and Clusters 

• The formation of a generic interconnection network that comprises 

 Computer nodes (host or end system) 

 H/W and S/W interface 

 Links to the interconnection network and  

 Communication subnet 

• The interconnections are designated as: 

 Local Area Network-LAN 

 Wide Area Network-WAN 

 System (or Storage) Area Network-SAN 

• While talking about the interconnect model, software and protocols we studied that: 

 The interconnect communication model shows that two machines are connected 

via two unidirectional wires with a FIFO (queue) at the end to hold the data 

 The communication software separates the header and trailer from the message 

and identifies the request, reply, their acknowledgments and error checking 

codes 

 The communication protocols suggest the sequence of steps to reliable 

communication 

• We classified the distributed switch interconnects as the fully and partially connected, 

symmetric and asymmetric interconnects 

• Then we discussed the linear array, ring, 2D mesh/torus and hypercube topologies and 

their performance measures 

• We also discussed Internetworking, i.e., the connection of two or more interconnection 

networks to communicate reliably and efficiently 

• Internetworking relies on the communication standards composed of hierarchy of layers 

• The internet communication Protocol Families facilitates applications to work with any 

inter-connection 

 


