LAKSHYA (JEE)

Magnetism and Matter

DPP-01

- 1. The effective length of a magnet is 31.4 cm and its pole strength is 0.5 Am. The magnetic moment, if it is bent in the form of a semicircle will be
 - (A) 0.1 Am^2 (B) 0.01 Am^2
 - (C) 0.2 Am^2 (D) 1.2 Am^2
- 2. Two similar bar magnets P and Q, each of magnetic moment M, are taken. If P is cut along its axial line and Q is cut along its equatorial line, all the four pieces obtained have
 - (A) Equal pole strength
 - (B) Magnetic moment $\frac{M}{4}$
 - (C) Magnetic moment $\frac{M}{2}$
 - (D) Magnetic moment M
- **3.** A magnetic needle is placed on a cork floating in a still lake in the northern hemisphere. Does the needle together with the cork move towards the north of the lake
 - (A) Yes
 - (B) No
 - (C) May be or may not be move
 - (D) Nothing can be said
- 4. A magnet of magnetic moment M and pole strength *m* is divided in two equal parts, then magnetic moment of each part will be
 - (A) M
 - (B) M/2
 - (C) *M*/4
 - (D) 2*M*

5. Three identical bar magnets each of magnetic moment M are placed in the form of an equilateral triangle as shown

The net magnetic moment of the system is

- (A) Zero (B) 2M(C) $M\sqrt{3}$ (D) 3M/2
- 6. A uniform magnetic field, parallel to the plane of the paper existed in space initially directed from left to right. When a bar of soft iron is placed in the field parallel to it, the lines of force passing through it will be represented by

7. A magnetised wire of moment M is bent into an arc of a circle subtending an angle of 60° at the centre. The new magnetic moment is

- 8. A bar magnet when placed at an angle of 30° to the direction of magnetic field induction of 5×10^{-2} T, experiences a moment of couple 25×10^{-6} N-m. If the length of the magnet is 5 cm its pole strength is
 - (A) 2×10^{-2} A-m (B) 5×10^{-2} A-m
 - (C) 2 A-m (D) 5 A-m
- 9. A magnet of magnetic moment $50\hat{i}$ A-m² is placed along the x-axis in a magnetic field $\vec{B} = (0.5\hat{i} + 3.0\hat{j})$ T. The torque acting on the magnet is

(D) $25\sqrt{37} \hat{k}$ N-m

- (A) $175 \hat{k}$ N-m (B) $150 \hat{k}$ N-m
- (C) 75 \hat{k} N-m

- **10.** A bar magnet is held perpendicular to a uniform magnetic field. If the couple acting on the magnet is to be halved by rotating it, then the angle by which it is to be rotated is
 - (A) 30° (B) 45°
 - (C) 60° (D) 90°

ANSWER KEY

- 1. (A)
- 2. (C)
- **3.** (**B**)
- **4.** (**B**)
- 5. (B)
- 6. (B)
- 7. (D)
- 8. (A)
- **9.** (**B**)
- 10. (C)

Note - If you have any query/issue

Mail us at support@physicswallah.org

