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Abstract

A meshfree approximation scheme based on the radial basis function
methods is presented for the numerical solution of the options pricing
model. This thesis deals with the valuation of the European, Barrier,
Asian, American options of a single asset and American options of multi
assets. The option prices are modeled by the Black-Scholes equation.
The θ-method is used to discretize the equation with respect to time.
By the next step, the option price is approximated in space with radial
basis functions (RBF) with unknown parameters, in particular, we con-
sider multiquadric radial basis functions (MQ-RBF). In case of Ameri-
can options a penalty method is used, i.e. removing the free boundary
is achieved by adding a small and continuous penalty term to the Black-
Scholes equation. Finally, a comparison of analytical and finite difference
solutions and numerical results from the literature is included.
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Chapter 1

Introduction

An option is a derivative product representing a contract, which gives the
buyer a right to buy (call) or sell (put) the underlying asset at prescribed
price (the strike price) pending the certain period of time or on a prescribed
date (exercise date).

There are plenty of kinds of options in the market. In this thesis we
consider Vanilla options, i.e. the option without any special or unusual prop-
erties. A vanilla option can belong to different styles of options, namely the
European option or the American option. The difference between these two
styles of Vanilla options is the date of exercise: the European option can only
be exercised at the end of its life on the maturity date, while the American
option allows the holder the early exercise before the maturity date.

An analytical formula exists for the evaluation European call and put op-
tions. By assuming a risk-neutrality of the underlying asset price, Black and
Scholes [1] showed that the European call option value satisfies a lognormal
partial differential equation of diffusion type, which is known as the Black-
Scholes equation. However, there is no analytical formula for the American
option due to the free boundary. Until recently, there are a few grid-based
numerical methods for the valuation of the American option value, but in
this thesis we focus our attention on a ”meshfree radial basis function” (RBF)
approach as a spatial approximation for the numerical solution of the options
value and its derivatives in the Black-Scholes equation.

Recently the meshfree RBF approximation for solving the Black-Scholes
equation for both European and American options has been examined by a
couple of authors. For instance, the meshfree RBF approach has been con-
sidered as a spatial approximation for the numerical solution of American
option by Fasshauer et al. [2, 3]; Hon et al. [8, 9] examined application the
global RBFs to transform the Black-Scholes equation into a system of first-
order equations in time in order to approximate the numerical solution by
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2 Chapter 1. Introduction

known numerical schemes like, for example, the fourth-order Runge-Kutta
method; optimizing the method parameters has been investigated by Pet-
tersson et al. [13]. A RBF approximation for options value was also studied
by Koc et al. [10], Goto et al. [7] and Marcozzi et al. [12].

Hon and Mao [9] developed a numerical scheme by applying the global
radial basis functions, particularly Hardy’s multiquadric, as a spatial approx-
imation for the numerical solution of the options value and its derivatives in
the Black-Scholes equation. They showed that the method does not require
the generation of a grid in contrast to the finite difference method. More-
over, the computational domain is composed of scattered collocation points.
As we can see, the RBFs are infinitely continuously differentiable and this is
the reason why the higher order partial derivatives of the options value can
directly be computed by using the derivatives of the basis function.

Fasshauer, Khaliq and Voss [3] considered the Black-Scholes model for
American basket options with a nonlinear penalty source term. A basket
option is an option whose price is based on multiple underlying assets. A
penalty method replaces a constrained optimization problem by a series of
unconstrained problems whose solutions ideally converge to the solution of
the original constrained problem. The unconstrained problems are formed by
adding a term to the objective function that consists of a penalty parameter
and a measure of violation of the constraints. The measure of violation is
nonzero when the constraints are violated and is zero in the region where
constraints are not violated. The problem can be solved on a fixed domain.
The Gaussian radial function was used in this approach with a user-selectable
shape parameter in the numerical tests.

In Chapter 2 the foundations of the option pricing are presented. Mesh-
free methods are considered in Chapter 3. In Chapter 4 the procedure of
discretization is described and algorithms are given. All results are presented
in Chapter 5 and discussed and interpreted in Chapter 6.



Chapter 2

Option Pricing

An option is a derivative product representing a contract, which gives the
buyer a right to buy (call) or sell (put) the underlying asset at prescribed
price pending the certain period of time or on a prescribed date (exercise
date). The prescribed price of the asset is called a strike price.

There are plenty of kinds of options in the market, namely an European
option, an American option and so on.

The European option can only be exercised at the end of its life time
on the maturity date, while the American option allows the early exercise
before the maturity date. An exotic option is an option which possesses
more features than European and American options. An example of an
exotic option is a Barrier option, which become valuable (or worthless) when
the asset price reaches some barrier. Another example of an exotic option is
an Asian options, whose payoff which depends on the some kind of average
asset price for certain period of time. If the option can be based on multiple
underlying assets it is called a basket option.

In this thesis we consider the European, the American, the Barrier, the
Asian and the basket options.

2.1 European Options

An analytical formula exists for the evaluation of European call and put
options [17]. By assuming a risk-neutrality of the underlying asset price,
Black and Scholes [17] showed that the European call option value satisfies
a backward-in-time lognormal partial differential equation (PDE) of diffusion
type, which is known as the Black-Scholes equation.

We consider an option, whose price V (S, t) satisfies the following Black-

3



4 Chapter 2. Option Pricing

Scholes equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, 0 ≤ t ≤ T, (2.1)

where r is the risk-free interest rate, σ is the volatility of the asset price S,
V (S, t) is the option value at time t and asset price S. The terminal condition
at the time of expiry T is given as

V (S, T ) =

{
max {E − S, 0}, for a put option P (S, t) = V (S, t),
max {S − E, 0}, for a call option C(S, t) = V (S, t),

(2.2)
where E is the strike price of the option.

The boundary conditions for a European call option are given in the
following way

C(0, t) = 0, C(S, t) ∼ S as S → ∞, (2.3)

where C(S, t) is the value of the European call option satisfying the corre-
sponding equation (2.1).

The boundary conditions for a European put option are given in the
following way

P (0, t) = Ee−r(T−t), P (S, t) ∼ 0 as S → ∞, (2.4)

where P (S, t) is the value of the European put option satisfying the corre-
sponding equation (2.1) with a constant interest rate r.

By the simple exponential substitution S = ey the PDE (2.1) and con-
dition (2.2) can be changed to

∂U

∂t
+

1

2
σ2∂

2U

∂y2
+ (r − 1

2
σ2)

∂U

∂y
− rU = 0, (2.5)

U(y, T ) =

{
max {E − ey, 0}, for a put option,
max {ey − E, 0}, for a call option.

(2.6)

It is well known that the explicit solution of the European call option
problem (2.1) with corresponding conditions (2.2) and (2.3), when the in-
terest rate and the volatility are constant, can be given as [17]

C(S, t) = SN(d1)− Eer(T−t)N(d2), (2.7)

where N(·) is the cumulative distribution function for a standardised normal
random variable, given by

N(x) =
1√
2π

∫ x

−∞
e−

1
2
y2 dy.
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Here

d1 =
log S

E
+ (r + 1

2
σ2)(T − t)

σ
√
T − t

, (2.8)

and

d2 =
log S

E
+ (r − 1

2
σ2)(T − t)

σ
√
T − t

. (2.9)

The corresponding explicit solution for the European put option (2.1)
with conditions (2.2) and (2.4) is

P (S, t) = Eer(T−t)N(−d2)− SN(−d1). (2.10)

2.2 American Options

The typical feature of an American option is that it allows for an early
exercise before the maturity date. There is no explicit solution known for
this case due to the free boundary.

A valuation of the American option is difficult because at each moment
of time we have to determine not only the option value, but also the decision
whether or not the option should be exercised for each value of S. This
problem is known as a free boundary problem. In case of the American option
it is unknown a priori where the boundary conditions should be applied since
the optimal exercise price Sf is unknown.

The American option valuation problem can be specified by a few con-
straints. The first constraint says that the option value has to be greater
than or equal to the payoff function since the arbitrage profit, which is given
from early exercise, should not be greater than zero. To avoid arbitrage op-
portunity the option should be exercised in the region where the option value
is equal to the payoff function, or it has to satisfy the corresponding Black-
Scholes equation where it transcends the payoff. Therefore another constraint
requires that the Black-Scholes equation is replaced by an inequality. From
the arbitrage it also follows that the option value has to be a continuous
function of S.

The value V (S, t) of the American option satisfies the following inequality

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV ≤ 0. (2.11)

The terminal condition at the time of expiry T is given as

V (S, T ) =

{
max {E − S, 0}, for a put option,
max {S − E, 0}, for a call option,

(2.12)
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where E is the strike price of the option.
By the same exponential substitution S = ey as in the European option

case the inequality (2.11) and condition (2.12) can be changed to

∂U

∂t
+

1

2
σ2∂

2U

∂y2
+ (r − 1

2
σ2)

∂U

∂y
− rU ≤ 0, (2.13)

U(y, T ) =

{
max {E − ey, 0}, for a put option,
max {ey − E, 0}, for a call option.

(2.14)

In the region 0 ≤ S < Sf (t), where early exercise is optimal, the value of
the American put option P (S, t) satisfies

∂P

∂t
+

1

2
σ2S2∂

2P

∂S2
+ rS

∂P

∂S
− rP < 0, (2.15)

and
P = E − S. (2.16)

In the other region, Sf (t) < S <∞, early exercise is not optimal and the
value of the American put option P (S, t) satisfies the Black-Scholes equation

∂P

∂t
+

1

2
σ2S2∂

2P

∂S2
+ rS

∂P

∂S
− rP = 0, (2.17)

and
P > E − S. (2.18)

The boundary condition at S = Sf (t) are that P and its slope are con-
tinuous

P (Sf (t), t) = max (E − Sf (t), 0),
∂P

∂S
(Sf (t), t) = −1. (2.19)

The second condition in (2.19) is called ”smooth pasting condition” and
can be motivated by arbitrage arguments [16].

The value C(S, t) of the American call option satisfies the corresponding
equality in the holding region 0 ≤ S < Sf (t)

∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0, (2.20)

and inequality
P > S − E. (2.21)

In the region Sf (t) < S <∞ the early exercise is optimal for the Ameri-
can call option, therefore the value C(S, t) satisfies

∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
+ rS

∂C

∂S
− rC < 0, (2.22)

and
P = S − E. (2.23)
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2.3 Barrier Options

Barrier options can be ”knock-out” or ”knock-in” options. If the barrier price
of the option equal the barrier K, the option is called knock-out in case it
can be exercised unless the asset price S achieves the barrier K before expiry.
The option is called knock-in in case it can be exercised if the asset price S
passes the barrier K before expiry.

The knock-out options can be classified into ”up-and-out” and ”down-
and-out” options. The up-and-out option becomes worthless if the barrier
K is reached from below before expiry. The down-and-out option becomes
worthless if the barrier K is reached from above before expiry. The knock-in
options can be classified into ”up-and-in” and ”down-and-in” options. The
up-and-in option is worthless unless the barrier K is reached from below
before expire. The down-and-in option is worthless unless the barrier K is
reached from above before expire.

Barrier options are attractive because they give more flexibility: the op-
tion premium can be reduced through the barrier option by not paying a
premium to cover scenarios which are regarded as unlikely.

The value C(S, t) of the down-and-out call barrier option with the barrier
K satisfies

∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0, S > K, (2.24)

C(S, t) = 0, S ≤ K. (2.25)

The terminal condition on the expiration date T is given as

C(S, T ) = max {S − E, 0}. (2.26)

If the asset price S reaches K, the option is invalid. Therefore,

C(K, t) = 0, S = K. (2.27)

Consequently, the payoff X at the expiry date T satisfies

X =

{
max {S − E, 0}, if S > K for all t < T,
0, if S ≤ K at t < T.

(2.28)

2.4 Asian Options

Asian options are averaging options whose terminal payoff depends on some
form of averaging of the price of the underlying asset over a part or the whole
of the option’s life. For details we refer the reader to Kwok [11].
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Asian options have the following advantages: Asian options reduce the
risk of market manipulation; Asian options are typically cheaper than Euro-
pean or American options, because of the reducing of the volatility inherent
in the option.

There are two main classes of Asian options, the ”fixed strike” (average
rate) and the ”floating strike” (average strike) options. An average rate
option is a cash settled option whose payoff is based on the difference between
the average value of the asset during the period from the day of purchase
and the expiration date and a strike price. An average strike option is a cash
settled whose payoff is based on the difference between the average value of
the asset during the period and the asset price at the expiration date. The
terminal call payoff X is given as

X =

{
max(AT − E, 0), for a fixed strike,
max(ST − AT , 0), for an average strike.

(2.29)

Here ST - the asset price at expiry, E - the strike price, AT denotes some
form of average of the price of the underlying asset over the averaging period
[0, T ].

In the discrete case it can be used an arithmetic average

AT =
1

n

n∑
i=1

Sti , (2.30)

or the geometric one

AT =
[ n∏
i=1

Sti

] 1
n
, (2.31)

where, Sti - the asset price at discrete time ti, i = 1, 2 . . . , n.
In the limit n→∞ the discrete sampled averages become the continuous

sampled averages and could be arithmetic

AT =
1

T

∫ T

0

Stdt, (2.32)

or geometric

AT = exp
( 1

T

∫ T

0

lnStdt
)
. (2.33)

Consider that the payoff of an option depends on an average strike of an
asset
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1

t

∫ t

0

S(τ)dτ. (2.34)

Setting

I =

∫ t

0

S(τ)dτ, (2.35)

we can obtain the following governing PDE for the value of the Asian
option [11]

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
+ S

∂V

∂I
− rV = 0, (2.36)

where r is the risk free interest rate, σ is the volatility of the stock price
S, V (S, t) is the option value at time t and stock price S.

The terminal payoff X is given by the following expression for put and
call options

X =

{
max(S − 1

T

∫ t
0
S(τ)dτ, 0), for a call option,

max( 1
T

∫ t
0
S(τ)dτ)− S, 0), for a put option.

(2.37)

2.5 Basket Options

A basket option is an option whose price is based on several underlying
assets. The basket option is a good opportunity for a corporation to reduce
the several different risks at the same time and for this reason it is cheaper
[2].

Consider an American basket option. The price of d assets at time t is
denoted by

S(t) = (S1(t), . . . , Sd(t)). (2.38)

For the American option early exercise is allowed, therefore this problem
can be formulated as a free boundary problem that can be stated by a the
Black-Scholes equation for multi-asset problems

∂P

∂t
+

1

2

d∑
i=1

d∑
j=1

ρijσiσjSiSj
∂2P

∂SiSj
+

d∑
i=1

rSi
∂P

∂Si
− rP = 0, (2.39)

Si > Si(t), i = 1, . . . , d, 0 ≤ t < T, (2.40)
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where P (S, t) - the value of the American put option, S(t) = (S1(t), . . . , Sd(t))
- the moving boundary, T - time of expiry, σi - the volatility of the i-th un-
derlying asset, r - the risk free interest rate (assumed to be fixed throughout
the time period of interest), ρij - correlation between assets i and j.

The payoff function is given by

F (S) = max(E −
d∑
i=1

αiSi, 0), (2.41)

where E - the exercise price of the option, αi - are given constants.
The terminal condition

P (S, T ) = F (S), S ∈ Ω = {(S1, . . . , Sd) : Si > 0, i = 1, . . . , d}. (2.42)

Along the free boundary

P (S(T ), t) = F (S(t)), (2.43)

F (S(T )) = 0. (2.44)

The smooth pasting condition is given by

∂P

∂Si
(S, t) = −αi, i = 1, . . . , d. (2.45)

The boundary conditions read

lim
Si→∞

P (S, t) = 0, S ∈ Ω, i = 1, . . . , d, (2.46)

P (S, t) = gi(S, t), S ∈ Ωi, i = 1, . . . , d, (2.47)

where the Ωi denote the boundaries of Ω along which the price Si vanishes.
For the American option early exercise is allowed, therefore we have the

following positivity constraint [2]

P (S, t)− F (S) ≥ 0, S ∈ Ω. (2.48)



Chapter 3

Meshfree methods

Computation with high-dimensional data is an important issue in many areas
of science but a lot of traditional grid based numerical methods can not
handle such problems. Meshfree methods are better opportunity when we
deal with changes in the geometry of the domain of interest than classical
discretization techniques such as finite differences, finite elements or finite
volumes. Moreover, the meshfree discretization is independent from a mesh,
because these techniques are based only on a set of independent points.

The scattered data fitting problem is one of the fundamental problems in
approximation theory and data modelling in general. According to [4] the
meshfree approximation method can be applied to the PDE.

Problem 3.1 [4] Given data (xj, yj), j = 1, . . . , N with xj ∈ Rs, yj ∈ R
find a continuous function Pf such that Pf(xj) = yj, j = 1, . . . , N .

Here the xj are the measurement location (or data sites), and the yj
are the corresponding measurements (or data values). And these values are
obtained by sampling a data function f at the data sites, yj = fxj, j =
1, . . . , N , xj lies in a s-dimensional space Rs and it means that we can cover
many different types of problems.

We assume that the function Pf is a linear combination of certain ”basis
functions” Bk

Pf(x) =
N∑
k=1

ckBk(x), x ∈ Rs. (3.1)

Hence, we have to solve the following linear system

Ac = y, (3.2)

11



12 Chapter 3. Meshfree methods

where the entries of the interpolation matrix A ∈ RN×N are given by
ajk = Bk(xj), j, k = 1, . . . , N, c = [c1, . . . , cN ]T , y = [y1, . . . , yN ]T .

Problem 3.1 is well-posed, i.e. a solution to the problem will exist and be
unique, if and only if the matrix A is non-singular.

However, there is the following result for multivariate setting:

Theorem 3.1 [4] If Ω ⊂ Rs, s ≥ 2, contains an interior point, then there
exist no Haar spaces of continuous functions except for one-dimensional ones.

A Haar space is a space of functions in which the interpolation ma-
trix (Bk(xj))

N
j,k=1 has a property of invertibility, i.e. there exists a matrix

(B̂k(xj))
N
j,k=1 such that

(Bk(xj))
N
j,k=1(B̂k(xj))

N
j,k=1 = (B̂k(xj))

N
j,k=1(Bk(xj))

N
j,k=1 = I,

where I is an identity matrix.
From Theorem 3.1. we have that the basis needs to depend on the data

locations. There is a consideration of the positive definite matrices and func-
tions for this purpose.

Definition 3.1 [4] A real symmetric matrix A is called positive semi-definite
if its associated quadratic form is non-negative, i.e.,

hTAh =
N∑
j=1

N∑
k=1

hjhkajk ≥ 0, (3.3)

for h = [h1, . . . , hN ]T ∈ RN . If the only vector h that turns (3.3) into an
equality is the zero vector, then A is called positive definite.

All eigenvalues of positive definite matrices are positive which means that
a positive definite matrix is non-singular. Therefore, if the basis function Bk

in the expansion (3.1) generate a positive definite interpolation matrix, the
scattered data fitting problem is a well-posed interpolation problem.

Definition 3.2 [4] A real-valued continuous function Φ is positive definite
on Rs if and only if it is even and

N∑
j=1

N∑
k=1

hjhkΦ(xj − xk) ≥ 0, (3.4)

for any N pairwise different points x1, . . . , xN ∈ Rs, and h = [h1, . . . , hN ]T ∈
RN . The function Φ is strictly positive definite on Rs if the only vector h
that turns (3.4) into an equality is the zero vector.
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It means that the basis functions in (3.1) should be positive definite
functions

Bk(x) = Φ(x− xk),

or

Pf(x) =
N∑
k=1

hkΦ(x− xk), x ∈ Rs. (3.5)

This function will yield an interpolant that is translation invariant. Pos-
itive definite functions, which are also radial functions, are invariant under
all Euclidean transformations: translations, rotations and reflections.

Definition 3.3 [4] A function Φ : Rs → R is called radial provided there
exists a univariate function ϕ : [0,∞) → R such that Φ(x) = ϕ(r), where
r = ‖x‖, and ‖ � ‖ is some norm on Rs - usually the Euclidean norm.

The definition implies that a radial function Φ has a following property

If ‖x1‖ = ‖x2‖ then Φ(x1) = Φ(x2), x1, x2 ∈ Rd.

The interpolation problem with radial functions becomes insensitive to
the dimension s of the space in which the data sites lie.

The univariate function ϕ is called a positive definite radial function on
Rs if and only if the associated multivariate function Φ is positive definite
on Rs and radial.

An important part of the theoretical analysis of the radial basis functions
is the integral characteristics.

Definition 3.4 [4] The Fourier transform of f ∈ L1(Rs) is given by

f̂(ω) =
1√

(2π)s

∫
Rs

f(x)e−iω�xdx, ω ∈ Rs, (3.6)

and its inverse Fourier transform is given by

f̌(x) =
1√

(2π)s

∫
Rs

f(ω)eix�ωdω, x ∈ Rs.

Theorem 3.2 [4] Let Φ ∈ L1(Rs) be continuous and radial, Φ(x) = ϕ(‖x‖).
Then its Fourier transform Φ̂ is also radial, i.e., Φ̂(ω) = Fsϕ(‖ω‖) with

Fsϕ(r) =
1√
rs−2

∫ ∞
0

ϕ(t)t
s
2J(s−2)/2(rt)dt,

where J(s−2)/2 is the Bessel function of the first kind of order (s− 2)/2.
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The transform in the Theorem 3.2 is also known as a Bessel transform.

Definition 3.5 [4] The Laplace transform of a piecewise continuous func-
tion f that satisfies |f(t)| ≤ Meat for some constants a and M is given
by

Lf(s) =

∫ ∞
0

f(t)e−stdt, s > a.

The following theorem is one of the most important results on positive
definite functions.

Theorem 3.3 (Bochner’s Theorem)
[4] A function Φ ∈ C(Rs) is positive definite on Rs if and only if it is the
Fourier transform of a finite non-negative Borel measure µ on Rs,

Φ(x) = µ̂(x) =
1√

(2π)s

∫
Rs

e−ix�y dµ(y), x ∈ Rs.

The following theorem gives extension of Bochner’s characterization to
strictly positive definite functions.

Theorem 3.4 [4] Let µ be a non-negative finite Borel measure on Rs whose
carrier is not a set of Lebesgue measure zero. Then the Fourier transform of
µ is strictly positive definite on Rs.

Corollary 3.1 [4] Let f be a continuous non-negative function in L1(Rs)
which is not identically zero. Then the Fourier transform of f is strictly
positive definite on Rs.

This corollary describes the way to construct strictly positive definite
functions.

The criterion to check whether a given function is strictly postitive definite
contained in the following theorem.

Theorem 3.5 [4] Let Φ be a continuous function in L1(Rs). Φ is strictly
positive definite if and only if Φ is bounded and its Fourier transform is
non-negative and not identically equal to zero.

The following theorems gives us a criterion to check whether a given
function is positive definite and radial.
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Theorem 3.6 [4] A continuous function ϕ : [0,∞)→ R is positive definite
and radial on Rs if and only if it is the Bessel transform of a finite non-
negative Borel measure µ on [0,∞),

ϕ(r) =

∫ ∞
0

Ωs(rt) dµ(t), (3.7)

where

Ωs =

{
cos r fors = 1,
Γ( s

2
)(2
r
)(s−2)/2J(s−2)/2(r) fors ≥ 2,

(3.8)

and J(s−2)/2 is the classical Bessel function of the first kind of order (s−2)/2.

Theorem 3.7 [4] A continuous function ϕ : [0,∞)→ R is positive definite
and radial on Rs for all s if and only if it is of the form

ϕ(r) =

∫ ∞
0

e−r
2t2 dµ(t), (3.9)

where µ is a finite non-negative Borel measure on [0,∞).

There are some facts below about completely monotone functions which
leads to simple characterization of positive definite radial functions.

Definition 3.6 [4] A function ϕ : [0,∞) → R which is in C[0,∞) ∩
C∞(0,∞) and which satisfies

(−1)lϕ(l)(r) ≥ 0, r > 0, l = 0, 1, 2, · · · , (3.10)

is called completely monotone on [0,∞).

An integral characterization of completely monotone functions may be
found in the Appendix.

Examples
There are some examples of different types of functions.

1. The strictly positive definite function.
The Gaussian

Φ(x) = e−α‖x‖
2

, α > 0, (3.11)

is strictly positive definite on Rs for any s the reason by the Fourier
transform of a Gaussian is again a Gaussian.

2. The strictly positive definite and radial functions on Rs with
restrictions on the space dimension s.
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(a) The truncated power function

ϕl(r) = (1− r)l+, l ≥ b
s

2
+ 1c, (3.12)

where

(x)+ =

{
x for x ≥ 0,
0 for x < 0.

(b)

ϕ(r) =

∫ ∞
0

(1− rt)k−1
+ f(t) dt, k ≥ bs

2
+ 2c, (3.13)

where f ∈ C[0;∞) - non-negative and identically equal to zero.

3. The completely monotone and not constant functions. These
functions can be used as basic functions to generate bases for (3.5),
since they lead to strictly positive definite radial functions on any Rs.

(a) Inverse multiquadrics

ϕ(r) = (r + α2)−β, α, β > 0. (3.14)

Therefore

Pf(x) =
N∑
j=1

hj(‖x− xj‖2 + α2)−β, x ∈ Rs, (3.15)

can be used to solve the scattered data interpolation problem.

(b) Gaussian radial basis function.

ϕ(r) = e−αr, α > 0. (3.16)

We can use the following function for solving the interpolation
problem

Pf(x) =
N∑
j=1

hje
−α‖x−xj‖2 , x ∈ Rs. (3.17)

(c) Quadratic Matern RBF.
The Quadratic Matern RBF is given as

ϕ(r) = e−αr(3 + 3αr + (αr)2), α > 0. (3.18)

This function is C4 at the origin.

(d) Wendland’s RBF.
Wendland’s RBF is strictly positive definite in R3 and given as

ϕ(r) = (1− αr)6
+(35(αr)2 + 18αr + 3), α > 0. (3.19)

This function is C4 at the origin.



Chapter 4

Discretization and Algorithms

4.1 Discretization

For evaluating the prices of European, Barrier, Asian, American and
multi-asset American options with radial basis functions we consider
discretization methods which were proposed in Goto et al. [7] and
Fasshauer et al. [2].

4.1.1 The case of European Options

It is well-known that the following Black-Scholes equation holds for the
option price V (S, t) with asset price S at time t

∂V (S, t)

∂t
+

1

2
σ2S2∂

2V (S, t)

∂S2
+ rS

∂V (S, t)

∂S
− rV = 0, (4.1)

where the volatility σ is assumed to be constant between the date of
purchase and the expiration date.

If the differential operator is abbreviated as

F1 =
1

2
σ2S2 ∂

2

∂S2
+ rS

∂

∂S
− r, (4.2)

the PDE (4.1) becomes

∂V (S, t)

∂t
+ F1V (S, t) = 0, t ∈ [0, T ]. (4.3)

The backward-in-time parabolic PDE (4.3) is supplied with the terminal
conditions

17
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V (S, T ) =

{
max {E − S(T ), 0} = (E − S(T ))+, for a put,
max {S(T )− E, 0} = (S(T )− E)+, for a call.

(4.4)

An application of the theta-method for the time discretization of (4.3)
leads to

V (S, t+ ∆t)− V (t)

∆t
+ (1− θ)F1V (S, t+ ∆t) + θF1V (S, t) = 0, (4.5)

where 0 ≤ θ ≤ 1 denotes the implicitness parameter.
After rearranging terms in (4.5) we obtain

[1 + (1− θ)∆tF1]V (S, t+ ∆t) = [1− θ∆tF1]V (S, t), (4.6)

i.e.

H1V (S, t+ ∆t) = G1V (S, t), (4.7)

where

H1 = 1 + (1− θ)F1,

G1 = 1− θ∆tF1.

The multi-quadric radial basis function (MQ - RBF), which will be used for
the approximation of the option price V (S, t), is given as [7]

φ(S, Sj) =
√
c2 + ‖S − Sj‖2, (4.8)

where Sj is the asset price at the collocation point j for approximating the
option price V . ‖S − Sj‖ denotes the radial distance of each of the N
scattered data points Sj. The parameter c is a positive and it is know as
shape parameter. The value of c has dual effect on stability and accuracy of
the approximation: as c is increased, so does the accuracy, but only at the
cost of ill-conditionning of the matrix of the RBF. This effect is know as
the trade-off principle.
Therefore, the approximation for the option price V (S, t) by the radial
basis function is given as

V (S, t) '
N∑
j=1

λtjφ(S, Sj), (4.9)
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where N is the total number of the collocation points at the date t, λtj - the

unknown parameters depending on time t, λtj = λj(t), λ
t+∆t
j = λj(t+ ∆t),

where ∆t is the time-step size.
After substituting the ansatz (4.9) into equation (4.7) we get

N∑
j=1

λt+∆t
j H1φ(S, Sj) =

N∑
j=1

λtjG1φ(S, Sj). (4.10)

Starting from the terminal comdition (4.4), the coefficients λ are
determined from the numerical result by using any backward time
integration scheme at each time step T −∆t.

4.1.2 The case of Barrier Options

Consider the down-and-out option with the expiration price E and the
barrier K. It means that the option becomes worthless if the barrier K is
reached from above before expiry. The price of the option satisfies

∂V

∂t
+ F1V = 0 (S > K), (4.11)

V = 0 (S ≤ K). (4.12)

The terminal condition is given as

V (S, T ) = max(S(T )− E, 0) = (S(T )− E)+. (4.13)

If S reaches K, the following condition for the option value is satisfied

V (K, t) = 0 (S = K). (4.14)

Consequently, the payoff function X for the barrier option is given as:

X =

{
(S(T )− E)+, for S > K,
0, for S ≤ K.

(4.15)

The discretized equation derived from equation (4.11) is the same as for
the European option, equation (4.10), because the PDE is identical.

4.1.3 The case of Asian Options

For Asian options the payoff depends on an average strike of an asset S,
given as
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1

t

∫ t

0

S(τ) dτ. (4.16)

Let us set

I =

∫ t

0

S(τ) dτ, (4.17)

therefore, the following PDE for the Asian option price V holds

∂V

∂t
+ S

∂V

∂I
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0. (4.18)

By using the substitution [7]

V (S,R, t) = S ·H(R, t), (4.19)

where H denotes the option price and R is defined as

R =
1

S

∫ t

0

S(τ) dτ =
I

S
, (4.20)

equation (4.18) leads to the backward-in-time convection-diffusion equation

∂H

∂t
+ F2H = 0. (4.21)

Here, the operator F2 is defined as

F2 =
1

2
σ2R2 ∂2

∂R2
+ (1− rR)

∂

∂R
. (4.22)

The payoff function on the expiration date t = T for a call option is given as

V (S,R, T ) =
(
S − 1

T

∫ t

0

S(τ) dτ
)+

.

Using the equation (4.19) and (4.20) in expression for the payoff leads to

S ·H(R, T ) = S ·
(

1− R

T

)+

.

The terminal condition for equation (4.21) is given as

H(R, T ) =
(

1− R

T

)+

. (4.23)

The approximation for the option price H(R, t) by the radial basis function
is given as
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H(R, t) '
N∑
j=1

λtjφ(R,Rj), (4.24)

where N is the total number of the collocation points at the date t, λj - the
unknown parameters, and MQ-RBF φ(R,Rj) is given as

φ(R,Rj) =
√
c2 + ‖R−Rj‖2. (4.25)

As in the case of the European option the discretized equation reads

N∑
j=1

λt+∆t
j H2φ(R,Rj) =

N∑
j=1

λtjG2φ(R,Rj), (4.26)

where

H2 = 1 + (1− θ)∆tF2, G2 = 1− θ∆tF2.

4.1.4 The case of American Options and multi-asset
American Options

We apply the meshfree approximation schemes for the solution of the
American option problem and for the solution of the multi-asset American
option problems. According to Fasshauer, Khaliq and Voss [2], we will use
a penalty method to remove the free and moving boundary and a linearly
implicit θ - method for the time discretization.
The Black-Scholes equation is satisfied for multi-asset problems

∂P

∂t
+

1

2

d∑
i=1

d∑
j=1

ρijσiσjSiSj
∂2P

∂SiSj
+

d∑
i=1

rSi
∂P

∂Si
− rP = 0, (4.27)

where the additional condition is given as

Si > Si(t), i = 1, · · · , d, 0 ≤ t ≤ T,

where d denotes the amount of assets, which have the following prices at
time t: S(t) = (S1(t), · · · , Sd(t)), P(S, t) - the value of the American put
option, S(t) = (S1(t), · · · , Sd(t)) denotes the moving boundary, T - the time
of expiry, σi - the volatility of the i-th underlying asset, r - the risk free
interest rate, which is fixed throughout the time period of interest, and ρij
denotes the correlation between the assets i and j.
The American put option has the following payoff function



22 Chapter 4. Discretization and Algorithms

F (S) =
(
E −

d∑
i=1

αiSi

)+

, (4.28)

where E is the exercise price of the option and αi are given constants.
The terminal condition is given as

P (S, T ) = F (S), S ∈ Ω = (S1, · · · , Sd) : Si > 0, i = 1, · · · , d. (4.29)

To ensure that the exercise value and the continuation value of the option
are the same along the exercise boundary, the following conditions are
prescribed

P (S(t), t) = F (S(t)), (4.30)

F (S(T )) = 0. (4.31)

The smooth pasting condition for a smooth transition is given as

∂P

∂Si
(S, t) = −αi, i = 1, · · · , d. (4.32)

The boundary conditions are given as

lim
Si→∞

P (S, t) = 0, S ∈ Ω, i = 1, · · · , d, (4.33)

P (S, t) = gi(S, t), S ∈ Ωi, i = 1, · · · , d, (4.34)

where Ωi are the boundaries of Ω along which the price Si = 0.
The following positivity constraint is also necessary, because the early
exercise is permitted

P (S, t)− F (S) ≥ 0, S ∈ Ω. (4.35)

For eliminating the moving boundary, we will use a penalty term, which
was considered in the article by Fasshauer, Khaliq and Voss [2]. The
penalty term was chosen so that the solution stays above the payoff
function as the solution approaches expiry and small enough so that the
PDE still resembles the Black-Scholes equation very closely. Therefore, the
penalty term has the following form [2]

εC

Pε + ε− q
, (4.36)
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where 0 < ε� 1 is a small regularization parameter, C ≥ rE is a positive
constant, and the barrier function is given as

q(S) = E −
d∑
i=1

αiSi. (4.37)

After adding the penalty term (4.36) to the equation (4.27) the PDE
becomes

∂Pε
∂t

+
1

2

d∑
i=1

d∑
j=1

ρijσiσjSiSj
∂2Pε
∂SiSj

+
d∑
i=1

rSi
∂Pε
∂Si
− rPε +

εC

Pε + ε− q
= 0,

(4.38)
here

S ∈ Ω, 0 ≤ t ≤ T.

The same terminal and boundary conditions are satisfied

Pε(S, T ) = F (S), S ∈ Ω, (4.39)

Pε(S, t) = gi(S, t), S ∈ Ωi, i = 1, · · · , d, (4.40)

lim
Si→∞

Pε(S, t) = 0, S ∈ Ω, i = 1, · · · , d. (4.41)

By using the radial basis function approach the following expression for the
value of the option is obtained

P (S, t) =
N∑
j=1

aj(t)φ(‖S − xj‖).

Here the MQ-RBF is used

φ(‖S − xj‖) =
√
c2 + ‖S − xj‖2. (4.42)

The Single Asset Case

For this case the following Black-Scholes equation with a penalty term is
considered

∂Pε
∂t

+
1

2
σ2S2∂

2Pε
∂S2

+ rS
∂Pε
∂S
− rPε +

εC

Pε + ε− q(S)
= 0. (4.43)
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The boundary conditions are given as

Pε(0, t) = E, (4.44)

lim
S→∞

Pε(S, t) = 0. (4.45)

The terminal condition is given by

P (S, T ) = (E − S)+. (4.46)

By using the collocation approach the following expressions for the value of
the option and for the partial derivatives are obtained

Pε(S, t) =
N∑
j=1

aj(t)φ(‖S − xj‖), (4.47)

∂Pε
∂t

=
N∑
j=1

ȧj(t)φ(‖S − xj‖), (4.48)

∂Pε
∂S

=
N∑
j=1

aj(t)φ
′(‖S − xj‖), (4.49)

∂2Pε
∂S2

=
N∑
j=1

aj(t)φ
′′(‖S − xj‖), (4.50)

where

φ′(‖S − xj‖) = (c2 + ‖S − xj‖2)−
1
2 (S − xj), (4.51)

φ′′(‖S − xj‖) = −(c2 + ‖S − xj‖2)−
3
2 (S − xj)2 + (c2 + ‖S − xj‖2)−

1
2 . (4.52)

After substitution (4.47)- (4.50) into (4.43), we have [2]

N∑
j=1

ȧj(t)φ(‖S − xj‖) +
1

2
σ2S2

N∑
j=1

aj(t)φ
′′(‖S − xj‖)

+rS
N∑
j=1

aj(t)φ
′(‖S − xj‖)− r

N∑
j=1

aj(t)φ(‖S − xj‖)
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+
εC∑N

j=1 aj(t)φ(‖S − xj‖) + ε− q(S)
= 0. (4.53)

After collocation at the points xi, i = 1, · · · , N the following system is
satisfied for the coefficients aj, collected in the vector a

Φȧ +Ra +Q(a) = 0, (4.54)

where R = (r̂ij) such that

r̂ij =
1

2
σ2Φ′′S,ij + rΦ′S,ij − rΦij, (4.55)

and

Φij = φ(‖xi − xj‖), Φ′S,ij = xiφ
′(‖xi − xj‖), Φ′′S,ij = x2

iφ
′′(‖xi − xj‖).

(4.56)
Here vector Q(a) is determined by

Qi(a) =
εC

Φia + ε− q(xi)
, i = 1, · · · , N, (4.57)

where Φi denoting the i - th row of the matrix Φ.
Again, the theta-method is used for the time discretization

Φ
an+1 − an

∆t
+ θRan+1 + (1− θ)Ran + θQ(an+1) + (1− θ)Q(an) = 0, (4.58)

where an = a(n∆t) with ∆t the time step chosen for discretization in time
interval.
By replacing an in the penalty term by an+1 this method is turned into a
linearly implicit method, which is well studied, however the order of
accuracy in time is limited to first-order

Φ
an+1 − an

∆t
+ θRan+1 + (1− θ)Ran +Q(an+1) = 0, (4.59)

or

[Φ− (1− θ)∆tR]an = [Φ + θ∆tR]an+1 + ∆tQ(an+1). (4.60)

In case θ = 1
2

(the Crank-Nicolson method) the scheme is

[Φ− A]an = [Φ + A]an+1 + ∆tQ(an+1), (4.61)
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where

A =
1

2
∆tR.

From the terminal condition (4.46) and the fact that

Pε(S, T ) =
N∑
j=1

aj(T )φ(‖S − xj‖),

after collocation at the points xi, i = 1, · · · , N the following system can
be obtained for the coefficients aj(T )

Φa(T ) = P, (4.62)

where P = [Pε(x1, T ), · · · , Pε(xN , T )]T , a(T ) = [a1(T ), · · · , aN(T )].

The Multi-Asset Case

The value of the multi-asset option satisfies the same expression like the
single asset option does

Pε(S, t) =
N∑
j=1

aj(t)φ(‖S − xj‖). (4.63)

Since here the MQ - RBF are used, the partial derivatives of the radial
basis functions are given by

∂φ(‖S − xl‖)
∂Si

= (c2 + ‖S − xl‖2)−
1
2 (Si − xl,i),

∂2φ(‖S − xl‖)
∂Si∂Sj

= −(c2 + ‖S − xl‖2)−
3
2 (Si − xl,i)(Sj − xl,j), (4.64)

where xl,i denote the i - th component of the center xl.
The system of ODEs is also the same as for single asset options

Φȧ +Ra +Q(a) = 0. (4.65)

Here R denotes the following matrix

R =
1

2

d∑
i=1

d∑
j=1

ρijσiσjΦ
(i,j)
S +

d∑
i=1

rΦ
(i)
S − rΦ, (4.66)
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with the matrix Φ determined by Φkl = φ(‖xk − xl‖), and with the

following expressions for the Φ
(i)
S and Φ

(i,j)
S

Φ
(i)
S,kl = xk,i

∂φ(‖S − xl‖)
∂Si


S=xk

, (4.67)

Φ
(i,j)
S,kl = xk,ixk,j

∂2φ(‖S − xl‖)
∂Si∂Sj


S=xk

, (4.68)

where xk,i denotes the i - th component of the k - th center,
i = 1, · · · , d, k = 1, · · · , N.
The vector Q(a) is determined by

Qk(a) =
εC

Φka + ε− q(xk)
, k = 1, · · · , N. (4.69)

For the multi-asset case we have d single asset problems with the following
boundary conditions

∂gi
∂t

+
1

2
σ2S2

i

∂2gi
∂S2

i

+ rSi
∂gi
∂Si
− rgi +

εC

gi + ε− q(Si)
= 0, (4.70)

0 ≤ Si ≤ S∞, 0 ≤ t < T,

gi(Si, T ) = (E − αiSi)+, (4.71)

gi(0, t) =
E

αi
, (4.72)

gi(S∞, t) = 0, (4.73)

where i = 1, · · · , d, d - the number of underlying assets and
q(Si) = E − αiSi.
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4.2 Algorithms

In this section we consider algorithms for evaluating the option’s value.

4.2.1 European Options

The results of the discretization, which were obtained above, will be used
for evaluating the fair price of the European option. The following
procedure were proposed in Goto et al [7].

1. Smax is chosen big enough and N collocation points are taken
uniformly for the asset price S in the interval [0, Smax). When we
choose the number of the collocation points we have to remember
that the total number of the collocation points strongly affects the
computational accuracy. Computational error decreases and the
condition number increases according to the increase of the total
number of the collocation points.

2. The time-step size ∆t = T/M is chosen and the time interval [0, T ] is
discretized with the time-step ∆t, where t = 0 is the date of purchase,
t = T is the exercise date and M denotes the number of time steps.
In different papers we can see that the computational error is very
huge for ∆t > 0.02 and it is getting less at ∆t = 0.005.

3. The option price V (S, T ) at the expiration date t = T is calculated
from the corresponding terminal condition (4.4).

4. The parameter λTj = λj(T ) on the expiration date T is calculated
from the equation (4.9) on V (S, T ).

5. t← T −∆t.

6. To obtain the unknown coefficients λtj equation (4.10) is solved.

7. t← t−∆t.

8. If t > 0, the process goes to the step 6.

9. To obtain the fair price of the option V (S, 0), λ0
j = λ(0) is substituted

into equation (4.9).
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Algorithm 1 European Call Option evaluation

Choose N , Smax, T , M , E, r, σ, θ
Calculate ∆S, ∆t
S1 = ∆S
for j = 1 to N do

Calculate Sj = Sj + ∆S
end for
t← T
VT ← max (S − E, 0)
for j = 1 to N do

Calculate φ(S, Sj) =
√
c2 + ‖S − Sj‖2

Calculate ∂φ
∂S

(S, Sj) = (c2 + ‖S − Sj‖2)−
1
2 (S − Sj)

Calculate ∂2φ
∂S2 (S, Sj) = (c2 + ‖S − Sj‖2)−

3
2 (c2 + ‖S − Sj‖2 + (S − Sj))

end for
Calculate λTj from V (S, T ) '

∑N
j=1 λ

T
j φ(S, Sj) as

λT = φ−1VT

t← T −∆t
for j = 1 to N do

Calculate F1φ(S, Sj) = 1
2
σ2S2 ∂2φ

∂S2 (S, Sj) + rS ∂φ
∂S

(S, Sj)− rφ(S, Sj)
Calculate H1φ(S, Sj) = 1 + (1− θ)∆tF1φ(S, Sj)
Calculate G1φ(S, Sj) = 1− θ∆tF1φ(S, Sj)

end for
while t > 0 do

Calculate λt−1 = G1φ(S, Sj)\(λtH1φ(S, Sj))
t← t−∆t

end while
Calculate V0 from V (S, 0) '

∑N
j=1 λ

0
jφ(S, Sj)
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4.2.2 Barrier Options

Here we consider an algorithm suggested in Goto et al [7] for evaluating
the option fair price of the down-and-out option of the expiration price E
and the barrier K. Since the results of the discretization for the barrier
option are the same as for the European one, so the valuation algorithm is
as follows.

1. Smax is chosen big enough and N collocation points are taken
uniformly for the asset price S in the interval [0, Smax).

2. The time-step size ∆t = T/M is chosen and the time interval [0, T ] is
discretized with the time-step ∆t, where t = 0 is the date of purchase,
t = T is the exercise date and M denotes the number of time steps.

3. The option price V (S, T ) at the expiration date t = T is calculated
from the terminal condition (4.13).

4. The parameter λTj on the expiration date T is calculated from the
equation (4.9) on V (S, T ).

5. t← T −∆t.

6. To obtain the unknown coefficients λtj equation (4.10) is solved.

7. t← t−∆t.

8. If t > 0, the process goes to the step 6.

9. To obtain the fair price of the option V (S, 0), λ0
j is substituted into

equation (4.9).
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Algorithm 2 Barrier Option evaluation

Choose N , Smax, T , M , E, r, σ, θ, K
Calculate ∆S, ∆t
S1 = ∆S
for j = 1 to N do

Calculate Sj = Sj + ∆S
end for
t← T
for j = 1 to N do

if Sj > K then
V (Sj, T )← max (Sj − E, 0)

else
V (Sj, T )← 0

end if
end for
for j = 1 to N do

Calculate φ(S, Sj) =
√
c2 + ‖S − Sj‖2

Calculate ∂φ
∂S

(S, Sj) = (c2 + ‖S − Sj‖2)−
1
2 (S − Sj)

Calculate ∂2φ
∂S2 (S, Sj) = (c2 + ‖S − Sj‖2)−

3
2 (c2 + ‖S − Sj‖2 + (S − Sj))

end for
Calculate λTj from V (S, T ) '

∑N
j=1 λ

T
j φ(S, Sj) as

λT = φ−1VT

t← T −∆t
for j = 1 to N do

Calculate F1φ(S, Sj) = 1
2
σ2S2 ∂2φ

∂S2 (S, Sj) + rS ∂φ
∂S

(S, Sj)− rφ(S, Sj)
Calculate H1φ(S, Sj) = 1 + (1− θ)∆tF1φ(S, Sj)
Calculate G1φ(S, Sj) = 1− θ∆tF1φ(S, Sj)

end for
while t > 0 do

Calculate λt−1 = G1φ(S, Sj)\(λtH1φ(S, Sj))
t← t−∆t

end while
Calculate V0 from V (S, 0) '

∑N
j=1 λ

0
jφ(S, Sj)
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4.2.3 Asian Options

Here we consider an algorithm suggested in Goto et al [7] for evaluating of
option fair price of the Asian average strike call option. The algorithm is
similar to one for the European option, but it uses another formulation of
the discretized equation and the terminal condition.

1. Hmax is chosen big enough and N collocation points are taken
uniformly for the asset price H in the interval [0, Hmax).

2. The time-step size ∆t = T/M is chosen and the time interval [0, T ] is
discretized with the time-step ∆t, where t = 0 is the date of purchase,
t = T is the exercise date and M denotes the number of time steps.

3. The option price H(R, T ) at the expiration date t = T is calculated
from the terminal condition (4.23).

4. The parameter λTj on the expiration date T is calculated from the
equation (4.24) on H(R, T ).

5. t← T −∆t.

6. To obtain the unknown coefficients λtj equation (4.26) is solved.

7. t← t−∆t.

8. If t > 0, the process returns to the step 6.

9. To obtain the fair price of the option H(R, 0), λ0
j is substituted into

equation (4.24).
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Algorithm 3 Asian Average Strike Call Option evaluation

Choose N , Rmax, T , M , r, σ, θ
Calculate ∆R, ∆t
R1 = ∆R
for j = 1 to N do

Calculate Rj = Rj + ∆S
end for
t← T
H(Rj, T )← max (1− R

T
, 0)

for j = 1 to N do
Calculate φ(R,Rj) =

√
c2 + ‖R−Rj‖2

Calculate ∂φ
∂R

(R,Rj) = (c2 + ‖R−Rj‖2)−
1
2 (R−Rj)

Calculate ∂2φ
∂R2 (R,Rj) = (c2 + ‖R−Rj‖2)−

3
2 (c2 + ‖R−Rj‖2 + (R−Rj))

end for
Calculate λTj from H(R, T ) '

∑N
j=1 λ

T
j φ(R,Rj) as

λT = φ−1HT

t← T −∆t
for j = 1 to N do

Calculate F2φ(R,Rj) = 1
2
σ2R2 ∂2φ

∂R2 (R,Rj) + (1− r)R ∂φ
∂R

(R,Rj)
Calculate H2φ(R,Rj) = 1 + (1− θ)∆tF2φ(R,Rj)
Calculate G2φ(R,Rj) = 1− θ∆tF2φ(R,Rj)

end for
while t > 0 do

Calculate λt−1 = G2φ(R,Rj)\(λtH2φ(R,Rj))
t← t−∆t

end while
Calculate H0 from H(S, 0) '

∑N
j=1 λ

0
jφ(R,Rj)
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4.2.4 American Options and multi-asset American
Options

Using the discretization obtained above the following algorithm was
suggested by Fasshauer et al [2] in case of the single asset American
option.

1. Choose a time step ∆t and a value of θ.

2. Assemble the matrices Φ and R from (4.55) and (4.56).

3. Calculate the matrices R1 = Φ− (1− θ)∆tR and R2 = Φ + θ∆R.

4. Factor the matrices Φ and R1.

5. Initialize the solution vector P via
P (xi, T ) = max (E − xi, 0), i = 1, · · · , N .

6. For each time step

(a) Update the coefficients by solving Φa = P using the
factorization obtained in step 4.

(b) Compute b = R2a and the vector Q(a) from (4.57).

(c) Find the next coefficients by solving the linear system
R1a = b + ∆tQ(a) using the factorization computed in step 4.

(d) Update the solution vector P via P (xi, t) = Φa, i = 2, · · · , N − 1.

(e) Apply the boundary conditions P (x1, t) = E and P (XN , t) = 0.

The algorithm for the multi-asset option, which consists of d assets, is
similar for the previous one with only difference, that one time step for each
of the d− 1-dimensional boundary problems are included into the
time-stepping loop of the d - dimensional problem.
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Algorithm 4 American Put Option evaluation

Choose N , Smax, T , M , r, σ, θ
Calculate ∆S, ∆t
S1 = ∆S
for j = 1 to N do

Calculate Sj = Sj + ∆S
end for
for i = 1 to N do

for j = 1 to N do
Calculate Φij = φ(‖Si − Sj‖)
Calculate Φ′S,ij = Siφ

′(‖Si − Sj‖)
Calculate Φ′′S,ij = S2

i φ
′′(‖Si − Sj‖)

end for
end for
R← 1

2
σ2Φ′′S + rΦ′S − rΦ

R1 ← Φ− (1− θ)∆tR
R2 ← Φ + θ∆R
for i = 1 to N do
P (Si, T ) = max (E − Si, 0)

end for
while t > 0 do

Calculate a from Φa = P
Calculate b = R2a
for i = 1 to N do

Calculate Qi(a) = εC
Φia+ε−q(Si)

end for
Calculate a from R1a = b + ∆tQ(a)
for i = 2 to N − 1 do
P (Si, t)← Φa

end for
P (S1, t)← E
P (SN , t)← 0
t← t−∆t

end while
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Chapter 5

Results

Here we will present results of numerical experiments according to the
algorithms described before.

5.1 European Options

We consider a European call Option with strike E and expiration date T .
Parameters used in numerical example are presented in Table 5.1. We use a
few different values of the support radius c and a few kinds of RBF for the
radial basis function approximation of the option price Vt: the Multiquadric
(MQ) RBF (4.8) [7], the Quadratic Matern (QMat) RBF (3.18) [5],
Wendland’s (Wend) RBF (3.19) [5] and Inverse multiquadric (IMQ) RBF
(3.14) [5].

Table 5.1: Parameters for numerical analysis
Maximum asset price value Smax = 30
Number of asset data points N = 121
Number of time steps M = 100
Time-step size ∆t = 0.005
Expiration date T = 0.5 (year)
Exercise price E = 10.0
Risk free interest rate r = 0.05
Volatility σ = 0.2
Crank-Nicolson method θ = 0.5
Support radius c = 0.01

Numerical results for the RBF approximation with different RBF are shown
in Table 5.2 in comparison with analytical solution for the European call

37
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Option. Here VMQ denotes the result obtained with the MQ-RBF, VQMat is
the result obtained with the Quadratic Matern RBF, VWend is the result
obtained with the Wendland’s RBF and VIMQ is the result obtained with
the IMQ-RBF.

Table 5.2: Results for the European call Option, c = 0.01

Asset price S VAnalytical VMQ VQMat VWend VIMQ

0.0 0.0000 0.0000 0.0000 0.0000 0.0288
2.0 0.0000 0.0000 0.0000 0.0000 0.0415
4.0 0.0000 0.0000 0.0000 0.0000 0.2104
6.0 0.0000 0.0000 0.0000 0.0000 0.0015
8.0 0.0456 0.0415 0.0000 0.0000 0.0967
10.0 0.6888 0.5866 0.0000 0.0000 0.1152
12.0 2.2952 2.0421 2.0000 2.0000 2.3662
14.0 4.2496 3.9125 4.0000 4.0000 4.2607
16.0 6.2470 5.8556 6.0000 6.0000 5.9834
18.0 8.2469 7.8056 8.0000 8.0000 8.2129

The results obtained with the value of the support parameter c = 0.01 are
illustrated by Figure 5.1.
Numerical results obtained after increasing of the parameter c to c = 1.0
are shown in Table 5.3.

Table 5.3: Results for the European call Option, c = 1.0

Asset price S VAnalytical VMQ VQMat VWend VIMQ

0.0 0.0000 0.0000 0.0000 0.0000 0.0000
2.0 0.0000 0.0000 0.0000 0.0000 0.0000
4.0 0.0000 0.0000 0.0000 0.0000 0.0000
6.0 0.0000 0.0000 0.0000 0.0000 0.0000
8.0 0.0456 0.0014 0.0000 0.0000 0.0000
10.0 0.6888 0.0508 0.0000 0.0000 0.0000
12.0 2.2952 1.9544 2.0000 2.0000 2.0000
14.0 4.2496 3.9044 4.0000 4.0000 4.0000
16.0 6.2470 5.8551 6.0000 6.0000 6.0000
18.0 8.2469 7.8059 8.0000 8.0000 8.0000

The results obtained with the value of the support parameter c = 1.0 are
illustrated by Figure 5.2.
The computational error εRMSE was determined as the root mean square
error (RMSE) and calculated in the form
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Figure 5.1: Values of the European call Option, obtained by meshfree method
in comparison with the analytical solution for the European call Option with
parameters listed in Table 5.1. Here the MQ RBF, Quadratic Matern RBF,
Wendland’s RBF and IMQ RBF were used with the support parameter c =
0.01.

εRMSE =
1√
N

√√√√ N∑
j=1

| V (Sj, t)RBF − V (Sj, t)Analytical |2, (5.1)

where V (Sj, t)RBF and V (Sj, t)Analytical are the numerical solution by using
the RBF approximation and the theoretical solution, respectively.
The maximum computational error εmax is calculated as

εmax = max (| V (Sj, t)RBF − V (Sj, t)Analytical |). (5.2)

The RMSE and maximum computational error for different kinds of RBFs
and the various values of the parameter c are represented in Table 5.4.
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Figure 5.2: Values of the European call Option, obtained by meshfree method
in comparison with the analytical solution for the European call Option with
parameters listed in Table 5.1. Here the MQ RBF, Quadratic Matern RBF,
Wendland’s RBF and IMQ RBF were used with the support parameter c =
1.0

Table 5.4: The RMSE and the maximum computational error

c εMQ
RMSE εQMat

RMSE εWend
RMSE εIMQ

RMSE εMQ
max εQMat

max εWend
max εIMQ

max

0.01 0.6205 0.2413 0.2413 0.2276 1.9245 0.6889 0.6889 0.5947
1.0 0.4416 0.2414 0.2414 0.2414 0.8284 0.6889 0.6889 0.6889
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5.2 Barrier Options

We consider a down-and-out call option with strike E and barrier K.
Parameters used in numerical example are listed in Table 5.5. We use a
various values of the support parameter c and a few kinds of RBF for the
radial basis function approximation of the option price Vt: the MQ-RBF
(4.8) [7], the Quadratic Matern RBF (3.18) [5], the Wendland’s RBF
(3.19) [5] and the IMQ RBF (3.14) [5].

Table 5.5: Parameters for numerical analysis
Maximum asset price value Smax = 30
Number of asset data points N = 121
Number of time steps M = 100
Time-step size ∆t = 0.005
Expiration date T = 0.5 (year)
Exercise price E = 10.0
Barrier K = 9.0
Risk free interest rate r = 0.05
Volatility σ = 0.2
Crank-Nicolson method θ = 0.5
Support parameter c = 0.01

Numerical results for the RBF approximation with different RBF are shown
in Table 5.6 in comparison with analytical solution for the down-and-out
call Option. Here VMQ denotes the result obtained with the MQ-RBF,
VQMat is the result obtained with the Quadratic Matern RBF, VWend is the
result obtained with the Wendland’s RBF and VIMQ is the result obtained
with the IMQ RBF.
The results obtained with the value of the support parameter c = 0.01 are
illustrated by Figure 5.3.
Numerical results obtained after increasing of the parameter c to c = 1.0
are shown in Table 5.7.
The results obtained with the value of the support parameter c = 1.0 are
illustrated by Figure 5.4.
The RMSE and maximum computational error for different kinds of RBFs
and the various values of the parameter c are represented in Table 5.8.
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Table 5.6: Results for the down-and-out call option, c = 0.01

Asset price S VAnalytical VMQ VQMat VWend VIMQ

0.0 0.0000 0.0000 0.0000 0.0000 0.0288
3.0 0.0000 0.0000 0.0000 0.0000 0.0415
5.0 0.0000 0.0000 0.0000 0.0000 0.2104
7.0 0.0000 0.0000 0.0000 0.0000 0.0015
9.0 0.0000 0.2000 0.0000 0.0000 0.0967
11.0 1.3901 1.2235 1.0000 1.0000 0.1152
13.0 3.2587 2.9572 3.0000 3.0000 2.3662
15.0 5.2474 4.8819 5.0000 5.0000 4.2607
17.0 7.2469 6.8305 7.0000 7.0000 5.9834
19.0 9.2469 8.7803 9.0000 9.0000 8.2129

Figure 5.3: Values of the down-and-out call Option, obtained by meshfree
method in comparison with the analytical solution for the down-and-out call
Option with parameters listed in Table 5.5. Here the MQ RBF, Quadratic
Matern RBF, Wendland’s RBF and IMQ RBF were used with the support
parameter c = 0.01.
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Table 5.7: Results for the down-and-out call option, c = 1.0

Asset price S VAnalytical VMQ VQMat VWend VIMQ

0.0 0.0000 0.0000 0.0000 0.0000 0.0000
3.0 0.0000 0.0000 0.0000 0.0000 0.0000
5.0 0.0000 0.0000 0.0000 0.0000 0.0000
7.0 0.0000 0.0000 0.0000 0.0000 0.0000
9.0 0.0000 0.0033 0.0000 0.0000 0.0000
11.0 1.3902 0.9808 1.0000 1.0000 0.0000
13.0 3.2587 2.9293 3.0000 3.0000 2.0000
15.0 5.2474 4.8798 5.0000 5.0000 4.0000
17.0 7.2469 6.8305 7.0000 7.0000 6.0000
19.0 9.2469 8.7813 9.0000 9.0000 8.0000

Figure 5.4: Values of the down-and-out call Option, obtained by meshfree
method in comparison with the analytical solution for the down-and-out call
Option with parameters listed in Table 5.5. Here the MQ RBF, the Quadratic
Matern RBF, the Wendland’s RBF and the IMQ RBF were used with the
RBF parameter c = 1.0
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Table 5.8: The RMSE and the maximum computational error

c εMQ
RMSE εQMat

RMSE εWend
RMSE εIMQ

RMSE εMQ
max εQMat

max εWend
max εIMQ

max

0.01 0.6207 0.2303 0.2303 0.2199 1.9245 0.6166 0.6166 0.5430
1.0 0.4358 0.2303 0.2303 0.2303 0.8284 0.6166 0.6166 0.6166
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5.3 Asian Options

We consider an Asian average strike call option. Parameters used in
numerical example are listed in Table 5.9. We use a various values of the
support parameter c and a few kinds of RBFs for the radial basis function
approximation of the option price Vt: the MQ-RBF (4.8) [7], the
Quadratic Matern RBF (3.18) [5], the Wendland’s RBF (3.19) [5] and
the IMQ RBF (3.14) [5].

Table 5.9: Parameters for numerical analysis
Maximum R Rmax = 1.0
Number of asset data points N = 101
Number of time steps M = 1000
Time-step size ∆t = 0.0005
Expiration date T = 0.5 (year)
Risk free interest rate r = 0.1
Volatility σ = 0.4
Crank-Nicolson method θ = 0.5
Support parameter c = 0.06

Numerical results for the RBF approximation with different RBF are shown
in Table 5.10 in comparison with solution obtained by finite difference
method (FD), particularly, Crank-Nicolson method. Here HMQ denotes the
result obtained with the MQ-RBF, HQMat is the result obtained with the
Quadratic Matern RBF, HWend is the result obtained with the Wendland’s
RBF and HIMQ denotes the result obtained with the IMQ RBF.

Table 5.10: Results for the Asian average strike call option, c = 0.06

Asset price R HFD HMQ HQMat HWend HIMQ

0.0 0.9990 0.9922 1.0000 1.0000 0.9810
0.1 0.7990 0.7911 0.8000 0.8000 0.7842
0.2 0.5990 0.5912 0.6000 0.6000 0.5820
0.3 0.3990 0.3914 0.4000 0.4000 0.3501
0.4 0.1990 0.1920 0.2000 0.2000 0.1702
0.5 0.0014 0.0115 0.0000 0.0000 0.0305
0.6 0.0000 0.0015 0.0000 0.0000 0.0269
0.7 0.0000 0.0012 0.0000 0.0000 0.0239
0.8 0.0000 0.0014 0.0000 0.0000 0.0085
0.9 0.0000 0.0027 0.0000 0.0000 0.0156
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The results obtained with the value of the support parameter c = 0.06 are
illustrated by Figure 5.5.

Figure 5.5: Values of the Asian average strike call Option, obtained by mesh-
free method with parameters listed in Table 5.9, in comparison with the fi-
nite difference method with implicitness parameter θ = 0.5 (Crank-Nicolson
scheme). Here the MQ RBF, Quadratic Matern RBF, Wendland’s RBF and
IMQ RBF were used with the RBF parameter c = 0.06.

Numerical results obtained after increasing of the parameter c to c = 0.09
are shown in Table 5.11.
The results obtained with the value of the support parameter c = 0.09 are
illustrated by Figure 5.6.
The RMSE and maximum computational error for different kinds of RBFs
and the various values of the parameter c are represented in Table 5.12.
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Table 5.11: Results for the Asian average strike call option, c = 0.09

Asset price R HFD HMQ HQMat HWend HIMQ

0.0 0.9990 0.9919 1.0000 1.0000 0.9980
0.1 0.7990 0.7911 0.8000 0.8000 0.7764
0.2 0.5990 0.5912 0.6000 0.6000 0.5920
0.3 0.3990 0.3914 0.4000 0.4000 0.3828
0.4 0.1990 0.1919 0.2000 0.2000 0.1543
0.5 0.0014 0.0095 0.0000 0.0000 0.0071
0.6 0.0000 0.0014 0.0000 0.0000 0.0024
0.7 0.0000 0.0012 0.0000 0.0000 0.0215
0.8 0.0000 0.0014 0.0000 0.0000 0.0066
0.9 0.0000 0.0025 0.0000 0.0000 0.0337

Figure 5.6: Values of the Asian average strike call Option, obtained by mesh-
free method with parameters listed in Table 5.9, in comparison with the fi-
nite difference method with implicitness parameter θ = 0.5 (Crank-Nicolson
scheme). Here the MQ RBF, Quadratic Matern RBF, Wendland’s RBF and
IMQ RBF were used with the RBF parameter c = 0.09.



48 Chapter 5. Results

Table 5.12: The RMSE and the maximum computational error

c εMQ
RMSE εQMat

RMSE εWend
RMSE εIMQ

RMSE εMQ
max εQMat

max εWend
max εIMQ

max

0.06 0.0075 0.0025 0.0025 0.0262 0.0334 0.0239 0.0239 0.0735
0.09 0.0071 0.0025 0.0025 0.0253 0.0333 0.0239 0.0239 0.0627
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5.4 American Options

We consider an American put option, parameters used in numerical
example are listed in Table 5.13. We use a few kinds of RBF for the radial
basis function approximation of the option price Vt: the MQ-RBF (4.8)
[7], the Quadratic Matern RBF (3.18) [5], the Wendland’s RBF (3.19)
[5] and the IMQ RBF (3.14) [5].

Table 5.13: Parameters for numerical analysis
Maximum asset price Smax = 30
Number of asset data points N = 101
Number of time steps M = 100
Time-step size ∆t = 0.005
Expiration date T = 0.5 (year)
Exercise price E = 10.0
Risk free interest rate r = 0.05
Volatility σ = 0.2
Crank-Nicolson method θ = 0.5
Constant in the penalty term C = 0.9
Regularization parameter in the penalty term ε = 0.001

Numerical results for the RBF approximation with different RBF are shown
in Table 5.14 in comparison with solution obtained by finite difference
method (FD), particularly, Crank-Nicolson method. Here VMQ denotes the
result obtained with the MQ-RBF, VQMat is the result obtained with the
Quadratic Matern RBF, VWend is the result obtained with the Wendland’s
RBF and VIMQ is the result obtained with the IMQ RBF.
The results obtained with the value of the support parameter c = 0.02 are
illustrated by Figure 5.7.
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Table 5.14: Results for the American put option, c = 0.02

Asset price S VFD VMQ VQMat VWend VIMQ

0.0 9.7531 10.0000 10.0000 10.0000 10.0000
3.0 7.0000 6.8160 7.0000 7.0000 7.0000
6.0 4.0000 3.8859 4.0000 4.0000 4.0000
9.0 1.0652 1.0269 1.0000 1.0000 1.0000
12.0 0.0508 0.0426 0.0000 0.0000 0.0000
15.0 0.0007 0.0024 0.0000 0.0000 0.0000
18.0 0.0000 0.0019 0.0000 0.0000 0.0000
21.0 0.0000 0.0000 0.0000 0.0000 0.0000
24.0 0.0000 0.0000 0.0000 0.0000 0.0000
27.0 0.0000 0.0000 0.0000 0.0000 0.0000

Figure 5.7: Values of the American put Option, obtained by meshfree method
with parameters listed in Table 5.13, in comparison with the finite difference
method with implicitness parameter θ = 0.5 (Crank-Nicolson scheme). Here
the MQ RBF, the Quadratic Matern RBF, the Wendland’s RBF and the
IMQ RBF were used with the support parameter c = 0.02.



Meshfree Methods in Option Pricing 51

Numerical results obtained after increasing of the parameter c to c = 1.0
are shown in Table 5.15.

Table 5.15: Results for the American put option, c = 1.0

Asset price S VFD VMQ VQMat VWend VIMQ

0.0 9.7531 10.0000 10.0000 10.0000 10.0000
3.0 7.0000 6.8160 7.0000 7.0000 7.0000
6.0 4.0000 3.8859 4.0000 4.0000 4.0000
9.0 1.0652 0.9537 1.0000 1.0000 1.0000
12.0 0.0508 0.0034 0.0000 0.0000 0.0000
15.0 0.0007 0.0020 0.0000 0.0000 0.0000
18.0 0.0000 0.0019 0.0000 0.0000 0.0000
21.0 0.0000 0.0000 0.0000 0.0000 0.0000
24.0 0.0000 0.0000 0.0000 0.0000 0.0000
27.0 0.0000 0.0000 0.0000 0.0000 0.0000

The results obtained with the value of the support parameter c = 1.0 are
illustrated by Figure 5.8.
The RMSE and maximum computational error for different kinds of RBFs
relative to FD method and the various values of the parameter c are
represented in Table 5.16.

Table 5.16: The RMSE and the maximum computational error

c εMQ
RMSE εQMat

RMSE εWend
RMSE εIMQ

RMSE εMQ
max εQMat

max εWend
max εIMQ

max

0.02 0.0899 0.0796 0.0796 0.0796 0.2469 0.4093 0.4093 0.4093
1.0 0.1180 0.0796 0.0796 0.0796 0.4186 0.4093 0.4093 0.4093



52 Chapter 5. Results

Figure 5.8: Values of the American put Option, obtained by meshfree method
with parameters listed in Table 5.13, in comparison with the finite difference
method with implicitness parameter θ = 0.5 (Crank-Nicolson scheme). Here
the MQ RBF, the Quadratic Matern RBF, the Wendland’s RBF and the
IMQ RBF were used with the RBF parameter c = 1.0



Chapter 6

Conclusions

In this thesis, we analyzed the European, Barrier, Asian and American
options via the RBF approach to obtain the approximate value of the
option price. It is necessary to use accurate, fast methods with very low
memory requirements, because the financial markets are becoming more
and more complex.

The RBF approximation with infinitely smooth RBFs can be spectrally
accurate, meaning that the required number of node points for a certain
desired accuracy is relatively small. Moreover, the method has a meshfree
nature that makes it easy to use in higher dimensions. These methods in
contrast to the traditional simulation algorithms use the geometry of the
simulated object directly for calculations. Interpolation problem with radial
basis functions becomes insensitive to the dimension of the space in wich
the data sites lie, instead a multivariate function, whose complexity will
increase with increasing space dimension, we can use the same univariate
function for all choices of dimension. We analyzed the results obtained by
Goto et al. [7] and by Fasshauer et al. [2]. In [7] it was shown that the
results of the RBF approximation agreed well with the theoretical solution.
Fasshauer [2] got results for American options and multi-asset American
options problems comparable to the finite difference method with fewer
degrees of freedom.

In our study, we examined and implemented the RBF approximation to
obtain the fair price of the European, Barrier, Asian and American options.
As a new development, besides MQ RBF, we investigated different kinds of
RBFs such as the Quadric Matern RBF and Wendland’s RBF.

The meshfree approach can be more accurate and stable method compared
with the Finite Difference method and can be applied to solve partial
differential equations. In our work, the best results were obtained in case of
the Asian Option for the solution of the reduced equation, where the fair
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price of the option is purely comparable with the values, obtained by the
Finite Difference method.
The results obtained by the meshfree method strongly depends on the
choice of the RBF, implemented for the approximation of the value of the
option. In our investigation, the least root-mean-square error was obtained
with the MQ RBF in comparison with Quadric Matern and Wendland’s
RBF, however the greatest maximum error was shown in the case of the
MQ RBF.
The choice of the RBF’s shape parameter c also affects to the accuracy of
the method, however it was observed, that the influence of the change of
the RBF’s parameter c is the most intense for the MQ RBF while for the
another examined RBFs the RMSE and the maximum error remain almost
unaltered.
In the further research, we can examine the influence of the different
parameters of the method to the accuracy, particularly, to find the optimal
value of the RBF’s parameter c. It would also be very interesting for us to
find the RBF that gives better results then the RBFs examined before.



Notation

V (S, t) The price of the option.

C(S, t) The price of the call option.

P (S, t) The price of the put option.

r The risk-free interest rate.

σ The volatility of the asset price.

S The asset price.

T The expiration date of the option.

E The strike price of the option.

K The barrier of the Barrier option.

Sf The optimal exercise price (a free boundary) of the American option.

Sj The collocation point.

θ The implicit parameter.

c The RBF parameter.

φj , φ(S, Sj) The RBF at the collocation point j.
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Appendix

Here some integral characterizations of completely monotone functions are
presented.

Theorem 6.1 [4] (Hausdorff-Bernstein-Widder Theorem)
A function ϕ : [0,∞)→ R is completely monotone on [0,∞) if and only if it
is the Laplace transform of a finite non-negative Borel measure µ on [0,∞)

ϕ(r) = Lµ(r) =

∫ ∞
0

e−rt dµ(t). (6.1)

Theorem 6.2 [4] (Schoenberg)
A function φ is completely monotone on [0,∞) if and only if Φ = ϕ(‖ � ‖2)
is positive definite and radial on Rs for all s.

Theorem 6.3 [4] (Schoenberg)
If the function ϕ : [0,∞)→ R is completely monotone but not constant,
then ϕ(‖ � ‖2) is strictly positive definite and radial on Rs for any s.
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