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Abstract— Several natural systems adopt self-sorting mecha-
nisms based on segregative behaviors. Among these, cell segre-
gation is of particular interest since it plays an important role
in the formation of tissues, organs, and living organisms. The
Differential Adhesion Hypothesis states that cells naturally seg-
regate because of differences in affinity, which lead similar cells
to strongly adhere to each other. By exploring this principle, we
propose a controller that can segregate a heterogeneous swarm
of robots according to the characteristics of each agent, such
that similar robots form homogeneous teams and dissimilar
robots are segregated. We apply LaSalle’s Invariance Principle
to show convergence and perform simulated experiments in
order to demonstrate the robustness and effectiveness of the
proposed controller. Results show that our approach allows
a swarm of multiple heterogeneous robots to segregate in a
coherent and smooth fashion, without any inter-agent collisions.

I. INTRODUCTION

Swarm robotics studies multi-agent systems which consist

of a large number of relatively simple robots. These agents

can solve complex problems by relying on system-level prop-

erties such as robustness, flexibility, and scalability [1]. Most

researchers in swarm robotics usually focus on homogeneous

systems, in which all robots have the same characteristics.

However, several applications of multi-robot and swarm

systems require the use of heterogeneous teams of agents in

order to fulfill a given mission, as sometimes it is not possible

to integrate all of the required sensing and actuation capa-

bilities for the task in a single robot. These heterogeneous

systems are specially useful on cooperative assignments such

as search and rescue, surveillance, perimeter protection, and

transportation of large objects.

In some cases, heterogeneous agents must be able to

organize themselves in a specific manner to carry out their

assigned tasks. For instance, robots that gather distinct types

of materials may need to form teams which can maximize

the gathering of a particular resource. One strategy would

be to sort agents according to their specialization, such

that gatherers of similar materials stay in the same team.

Afterwards, these groups can be deployed to different regions

where a specific resource is abundant. We can say that such

system shows a segregative behavior since the sorting process

leads dissimilar agents into distinct teams.
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Segregation is a particular sorting mechanism that is

common in nature, being widely used by many individuals

such as cells and animals to shape these populations into

tissues as well as societies, respectively. This behavior has

been extensively studied by biologists, but few robotics

researchers have tried to simulate it on large swarm systems.

Therefore, we propose in this paper a controller that can

segregate a heterogeneous robotic swarm according to the

characteristics of each robot, such that similar robots form a

cohesive team, and dissimilar ones are separated from each

other. We base our approach on the differential potential

concept [2], an analogy for multi-agent systems of the

biological mechanisms by which cells segregate, extending

it to multiple groups. Furthermore, we employ LaSalle’s

Invariance Principle to demonstrate convergence and present

several simulated experiments in 2D and 3D spaces, which

validate the proposed controller.

This paper is organized as follows: Section II discusses re-

lated work on swarm control and segregation. In Section III,

we present our controller which is able to achieve segre-

gation in swarm systems. Experimental results in simulated

scenarios are detailed in Section IV, and Section V closes the

paper with our conclusions and directions for future work.

II. RELATED WORK

Reynolds [3] was one of the first researchers to realistically

simulate the movement of a swarm of agents, more specifi-

cally a flock of birds, known as boids. His algorithm relies

on three simple steering rules that an agent applies based

on the information of its surrounding neighbors: separation,

which avoids collisions; alignment, which steers the agents

towards their average heading; and cohesion, which moves

the agents towards their average position. Such interactions

can be modeled as a special case of the social potential field

method [4], an extension of the classical artificial potential

field technique [5] that specifically deals with multi-agent

systems. These works have been widely employed as foun-

dations to several methodologies on the control of robotic

swarms, such as behavior-based [6], leader-follower [7], [8],

hierarchical abstractions [9], [10], hydrodynamic-based [11],

and others [12], [13].

Segregation is a natural phenomenon that appears in

several biological systems. For instance, ants sort their brood

in annular patterns in which distinct broods tend to be placed

at particular annuli [14]. Another example is cellular segre-

gation, which is of central importance in embryogenesis, as

the formation of many tissues require an initial subdivision of

cells into regions, each with specific characteristics that will

allow particular cell types to be generated [15]. Steinberg’s



Differential Adhesion Hypothesis [16] states that differences

in cell adhesion generate mechanical forces which drive

cellular segregation. In other words, a cell population expe-

rience stronger cohesive forces from similar cells than from

dissimilar ones, and this imbalance is responsible for the

segregative behavior [15].

Robotics researchers have mostly focused on segregation

as a mechanism by which robots sort a collection of objects

(e.g., see [17]), but some authors have specifically dealt

with segregation of heterogeneous agents. For example,

Groß [18] discussed a motor schema that allowed mobile

robots to self-organize into annular structures. A distributed

controller considers robots as having distinct virtual sizes,

and local interactions make “larger” robots move outwards.

This procedure was inspired by the Brazil Nut Effect, a

granular convection phenomenon by which a mixture of

granular material subjected to vibrations will lead its largest

particles to the surface. This work was later extended to

consider real e-puck robots [19]. In spite of the interest-

ing results, the controller requires all robots to share a

common target in order to simulate the gravitational forces

responsible for the granular convection. This implies that

a centralized broadcast or a consensus algorithm must be

executed previously. Based on Steinberg’s work [16], Kumar

et al. [2] proposed the differential potential concept, which

asserted that agents should experience different magnitudes

of potential while interacting with agents of distinct types

in order to achieve segregation. Stability analysis as well

as convergence proofs were presented. Nevertheless, their

approach is limited to only two types of robots, and the use

of multiple types easily leads the system to local minima

where segregation does not occur, a result which we have

seen in many experiments performed with their controller.

Finally, in a previous work [20], we maintained segregation

among multiple robot groups during navigation by using

velocity obstacles [21], but our method depends on teams

being already segregated at the initial time step.

In the present work, we are interested in developing proper

mechanisms that ensure segregation in the case of multiple

robot types. We tackle this problem by adapting and extend-

ing Kumar’s work [2] to deal with this scenario. Besides, we

also introduce a new metric in order to define segregation in

a more convenient way, which can be easily verified. Apart

from 2D simulations, we explore our controller’s behavior

in 3D spaces as well.

III. METHODOLOGY

We consider a set of fully actuated mobile agents whose

dynamics are given by the double integrator

q̇i = vi and v̇i = ui i ∈ ϒ = {1,2, . . . ,n}, (1)

in which qi ∈ R
p, vi ∈ R

p, and ui ∈ R
p denote the position,

velocity, and control input of robot i, respectively. This set

of mobile agents consists of different types of robots, which

we represent by the partition τ = {τ1,τ2, . . . ,τm}, where each

τk ⊂ ϒ contains all agents of type k. We assume that ∀ j,k :

j 6= k → τ j ∩ τk = /0 and ∀ j,k : |τ j|= |τk|, i.e., each robot is

uniquely assigned to a single type and the type partition is

fully balanced, respectively.

Our objective is to synthesize a controller that can sort

robots of different types into m distinct clusters in the

workspace, such that each cluster contains agents of a single

type only. We refer to the latter as the segregation problem,

and a control system which solves this problem is said to

display a segregative behavior.

A. Control Law

Given a population of n heterogeneous mobile robots with

partition τ and dynamics specified by (1), we propose the

following control law:

ui =−∑
j 6=i

∇qi
Ui j(‖qi −q j‖)−∑

j 6=i

(vi − v j), (2)

in which Ui j(‖qi−q j‖) is an artificial potential function that

rules the interaction between agents i and j, ‖qi −q j‖ is the

Euclidean norm of the vector qi−q j, and ∇qi
is the gradient

with respect to the coordinates of agent i. The first term

represents the resultant force that acts on robot i given its

interactions with all other agents, whereas the second term

serves as damping and causes robots to match their velocities.

This kind of controller equation is a common approach for

potential-based swarm systems [2], [7], [12].

The artificial potential field Ui j : R→R>0 is a function of

the relative distance between a pair of agents that we express

as

Ui j(‖qi j‖) = α

(

1

2
(‖qi j‖−di j)

2 + ln‖qi j‖+
di j

‖qi j‖

)

, (3)

in which α is a scalar control gain, qi j is a shortened form

of writing qi − q j (i.e., qi j = qi − q j), and di j is a positive

parameter that will be described later. The initial conditions

and dynamics of the system exclude the situations where

‖qi j‖= 0, in which (3) is undefined. Furthermore, as we will

show later, if robots do not collide at the initial configuration

then there will be no collisions through all time steps.

Although there are m distinct types of robots involved in

the system, each agent classifies its neighbors as being either

of its own type or of a different type. This means that agents

see the system through a binary filter which reduces possible

robot interactions to only two kinds thereof: among robots of

the same type and among robots of distinct types. Formally,

we say that an agent i has a local type partition

i
τ = {τk,ϒ\ τk} i ∈ τk, (4)

where τk ∈ τ , and ϒ\ τk represents the set difference.

In order to segregate robots, we apply the differential

potential concept, i.e., pairs of dissimilar agents experi-

ence different magnitudes of potential than pairs of similar

agents [2]. We can accomplish this by defining the parameter

di j of (3) according to the local type partition i
τ .

di j(
i
τ) =

{

dAA, if i ∈ τk and j ∈ τk

dAB, if i ∈ τk and j 6∈ τk

(5)
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(a) Inter-agent potential.
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(b) Inter-agent force.

Fig. 1. Plot of the artificial potential field Ui j(‖q j −qi‖) and its underlying
forces given dAA = 2 and dAB = 5.

Equation (5) states that interactions among similar and

dissimilar types of robots are ruled by dAA and dAB, respec-

tively. Thus, the system exhibits a segregative behavior when

we choose values for these parameters such that

0 < dAA < dAB. (6)

We show in Figure 1(a) a plot of the artificial potential

function Ui j(‖qi j‖), whose minimum is located at ‖qi j‖= di j.

Furthermore, we depict the interaction forces among a pair of

robots in Figure 1(b), in which constraint (6) holds true. The

latter plot actually represents the scalar part of the gradient

∇Ui j(‖qi j‖) =α

(

‖qi j‖−di j +
1

‖qi j‖
− di j

‖qi j‖2

)

qi j

‖qi j‖
, (7)

in which we ignore the normalized vector term. It is easy

to see that, at any given distance, forces among agents of

similar types are greater than those among different types.

Therefore, our controller respects the differential potential

concept [2], and effectively implements an approximation of

Steinberg’s differential adhesion model [16].

B. Controller Analysis

In this section, we analyze the convergence of the multi-

agent system when using the proposed control law. We start

with the definition of the Lyapunov function

V (q,v) =U(q)+
1

2
v⊺v, (8)

where q ∈R
np and v ∈R

np are stacked vectors whose com-

ponents are the configurations and velocities of all robots,

respectively, and U(q) : Rnp →R>0 is the collective artificial

potential function, which we write as

U(q) =
1

2
∑

τk∈τ

∑
i∈τk

∑
j∈τk, j 6=i

Ui j(‖qi −q j‖)

+
1

2
∑

τk∈τ

∑
i∈τk

∑
j∈ϒ\τk

Ui j(‖qi −q j‖). (9)

Thus, we can model the collective dynamics of the system:

q̇ = v (10)

v̇ =−∇U(q)− L̂(q)v, (11)

in which L̂(q) = L(q)⊗ Ip is the Kronecker product of the

system’s graph Laplacian L(q) and the p× p identity matrix

Ip (for a complete description, see [12]). These definitions

let us introduce the proposition below.

Proposition 1: Assuming that the underlying adjacency

graph of the system is complete at all times, for any

initial condition that belongs to the level set ΩC = {(q,v) |
V (q,v)≤C}, with C > 0, a heterogeneous system with type

partition τ on n mobile agents, whose dynamics and control

laws are respectively given by (1) and (2), asymptotically

converges to the largest invariant set in ΩI = {(q,v) ∈ ΩC |
V̇ (q) = 0}, without any inter-agent collisions. At the largest

invariant set in ΩI , the velocity of each agent is bounded,

all velocities match, and the system’s collective potential

reaches a local minimum.

Proof: We aim to demonstrate that V̇ (q,v)≤ 0 in order

to apply LaSalle’s Invariance Principle to show convergence.

To achieve this, we can differentiate V (q,v) with respect to

time and then substitute (10) and (11) as follows:

V̇ (q,v) = q̇⊺∇U(q)+v⊺v̇

= v⊺∇U(q)+v⊺(−∇U(q)− L̂(q)v)

=−v⊺L̂(q)v =−1

2
∑

i
∑

j

‖v j − vi‖2 ≤ 0. (12)

The last step holds because the system’s adjacency graph

is complete [12]. From LaSalle’s Invariance Principle, all

initial conditions that lie on ΩC will lead the system to the

largest invariant set in ΩI , where V̇ (q,v) = 0. Therefore, (12)

implies that all velocities match, i.e., ∀i, j : vi = v j. By (8)

and (10), we have v⊺v ≤ 2C because V (q,v) ≤ C, which

leads to ‖v‖≤
√

2C. Consequently, all velocities are bounded



by
√

2C as well. Matching velocities imply that inter-agent

distances remain constant, hence ∀i, j : q̇i j = 0, and thus

U̇(q) =
1

2
∑

τk∈τ

∑
i∈τk

∑
j∈τk, j 6=i

q̇
⊺

i j∇qi j
Ui j(‖qi j‖)

+
1

2
∑

τk∈τ

∑
i∈τk

∑
j∈ϒ\τk

q̇
⊺

i j∇qi j
Ui j(‖qi j‖) = 0, (13)

which implies that U(q) is constant at the steady state.

Moreover, as L̂(q)v = 0 because of matching velocities, we

can reduce (11) to

v̇ =−∇U(q). (14)

Therefore, ∇U(q) must be the zero vector, as otherwise the

collective potential would reach a lower value instead of

being constant. This implies that the system has reached a

local minimum and velocities must not change.

Finally, assume that robots i and j collide, i.e., ‖qi j‖= 0.

We can see from (3) and (9) that this would take U(q)→ ∞,

but this contradicts the fact that V (q,v)≤C. Hence, no agent

collides with each other.

C. Metric

In order to measure segregation among clusters quantita-

tively, we propose a metric that is based on the pairwise

intersection area of their convex hulls:

M(q,τ) = ∑
τk∈τ

∑
τl∈τ,l 6=k

A

(

CH(
⋃

i∈τk

qi)
⋂

CH(
⋃

j∈τl

q j)

)

, (15)

in which A(Q) and CH(Q) denote the area and the convex

hull of set Q, respectively. We have chosen this metric

because the convex hull can be used as a simple and well-

defined shape representation of a cluster. This means that

segregation occurs when there is no overlap among clusters.

In other words, we say that the system is fully segregated

when M(q,τ) approaches zero.

IV. EXPERIMENTS

We executed a sequence of simulations in order to study

the performance and feasibility of our proposed approach.

We first present their results according to metric M(q,τ) and

then display some snapshots of these experiments. Finally,

we close the section with a discussion on the behavior of the

system as well as on particular details of our method.

A. Simulations

We have performed an extensive series of simulations in

order to analyze our controller under metric M(q,τ). Each

simulation consisted of 150 robots and a varying number

of agent types. At the initial state, all velocities were set

to zero, and robots were positioned according to a two-

dimensional uniform distribution, which is independent of

a robot’s type. Additionally, we have set dAA = 2 and dAB =
5 for all experiments. We present in Figure 2 the mean

and standard deviation of M(q,τ) among 100 experiments

given these initial conditions. In all cases, both the mean

and standard deviation approach zero as the number of
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Fig. 2. Mean intersection area of convex hulls for 100 experiments with
a varying number of robot types. Dashed lines represent one standard
deviation from the mean.

iterations increase. Moreover, systems with less types tend to

achieve segregation faster than those with more types. This

is expected, as given a fixed number of robots, the use of a

large number of types would result in few robots per cluster,

which in turn would lower the magnitude of the resultant

force towards it.

We display in Figure 3 a series of snapshots from particu-

lar instances of our experiments. Through a visual inspection,

we can see that similar robots quickly form clusters whose

size grows with time as other agents join them. Furthermore,

interesting geometrical patterns are organized at the stable

state. We have also observed two particular behaviors which

might be difficult to notice in the figures1: large ensembles

usually move to the outside of the main aggregate, the

one that embodies all agents of the system, and adjacent

dissimilar clusters form corridors which are used by agents of

a third type to move at higher speeds. Both of these behaviors

are compelling because they contribute to the opening of free

spaces, whereby smaller clusters and lone robots can take

advantage of the situation and form larger ensembles.

We have executed simulations in 3D space as well. Figure

4 contains two images from the initial and final configu-

rations of experiments comprising 150 robots and a varying

number of agent types. Initial conditions were chosen exactly

as in the 2D simulations. The controller was able to achieve

segregation, and robots have displayed the same overall

behavior as of their 2D counterparts. Particularly, we have

seen that it is easier for robots to form clusters in this

scenario because of the additional degree of freedom, which

allows agents to maneuver in new directions. Thus, in the 3D

case, it is unusual to find lone robots wandering towards their

cluster in later iterations, since larger clusters are aggregated

more quickly.

1An illustrative video of the simulations in Figures 3 and 4 can be found
in the Multimedia Attachment of this paper.



(a) 5 heterogeneous types.

(b) 10 heterogeneous types.

(c) 15 heterogeneous types.

Fig. 3. Snapshots of simulated executions with 150 robots and a varying number of heterogeneous types. In each sequence, the initial configuration is
depicted on the left, whereas the final configuration is displayed on the right. Each robot type is represented by a different color.

B. Discussion

Equation (3) represents an important distinction between

our controller and Kumar’s prior work [2]. Regarding their

potential function, we noticed that its gradient may vanish

on the free space among adjacent dissimilar clusters. This

is the reason why our initial experiments, which used their

controller with multiple types, had often reached undesirable

local minima. Thus, by adding the quadratic term in (3), we

have actually increased the norm of the gradient and biased

its direction, which allowed robots to keep moving towards

their respective cluster.

Desirable properties in swarm systems include scalability,

flexibility, and robustness [1]. These are specially important

on applications in which robots may be inserted or removed

from the system dynamically. One of the main advantages

of our approach is that a robot does not need to know either

how many agents or how many types exist in the system.

This is due to the second case of (5), in which we write

j 6∈ τk instead of j ∈ ϒ\τk as the former explicitly states that

robot i needs to recognize only agents that are similar to

itself. Consequently, robots can be added or subtracted from

the system at any time.

As can be seen in (2), our controller requires global per-

ception capabilities, i.e., each robot must know the position

and velocity of all agents. Thus, in spite of the robustness of

our approach, this constraint may hinder its applicability on

physical systems, as real sensors usually have constrained

capabilities which restrict robots to gather local informa-

tion only. This is also a limitation of the method in [2].

Regarding our metric, there is a possible drawback in real

(a) 5 heterogeneous types.

(b) 10 heterogeneous types.

(c) 15 heterogeneous types.

Fig. 4. Initial and final configurations of simulated experiments in 3D
space with 150 robots and a varying number of heterogeneous types. We
apply an orthographic projection and slightly rotate the stable state to better
depict the separation among clusters.



robotic systems. In case of robot failures, the metric could

give unsatisfactory results for an otherwise well-segregated

swarm, since the location of a single agent can have a large

impact on the metric.

Although we have constrained our approach to balanced

type partitions, we executed some simulations with un-

balanced partitions as well. In these experiments, robots

occasionally achieved segregation depending on the relative

balance of the partition, but several experiments reached local

minima when the type partition had been severely unbal-

anced. In these local minima, robots were not segregated

in the sense of our proposed metric. This usually happens

when robots cannot reach their cluster as the attractive forces

towards it are weaker than those repelling them away from

other agents. On the other hand, these types of local minima

in experiments with balanced type partitions are not common.

For example, among the 100 experiments with 15 types

presented in Figure 2, there was only one instance which

did not segregate. However, given the same initial conditions,

by choosing a larger value for dAB the controller was able

to achieve segregation. Thus, we think that this value should

be chosen according to how many robots and types exist

in the system, as larger numbers thereof may require wider

corridors between dissimilar clusters so that the gradient of

the potential function will not vanish.

Thus, we believe that, given a balanced type partition τ ,

and assuming that the underlying adjacency graph of the

system is complete at all times, for any initial condition that

belongs to the level set ΩC, there exists a finite value r such

that if
dAB
dAA

> r then M(q,τ)→ 0 as the number of iterations

approaches infinity. Nevertheless, it is still necessary to

gather more evidence in order to formally prove this claim.

V. CONCLUSION

In this work, we proposed a controller that can sort a

system of multiple heterogeneous mobile robots into ho-

mogeneous clusters, such that agents of similar types are

segregated from dissimilar ones. We based our approach

on the differential potential concept, a conceptualization

of the mechanisms by which biological systems achieve

segregation. In this framework, agents experience distinct

magnitudes of potential when they interact with agents of

different types. We presented stability analyses and several

experiments in 2D and 3D scenarios, which demonstrated

the effectiveness of the proposed approach.

Despite the good results, we still see room for improve-

ment. For instance, our assumptions that robots have global

sensing capabilities may not hold in real scenarios, and

severely unbalanced type partitions may lead them to stable

states that are not segregated in the sense of our metric.

Regarding the former, we think it would be interesting to

explore control laws and possibly other potential functions

that model local sensing into their methodologies, whereas

the latter could be tackled by employing non-symmetrical

potential functions. All in all, both problems can be regarded

as a more general one, and we believe that, by further

studying these, our controller can be improved to solve the

segregation problem in a wider variety of instances.
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