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Abstract

In this paper, we propose a generalization of convolutional neural networks (CNN) to non-Euclidean domains for
the analysis of deformable shapes. Our construction is based on localized frequency analysis (a generalization of
the windowed Fourier transform to manifolds) that is used to extract the local behavior of some dense intrinsic
descriptor, roughly acting as an analogy to patches in images. The resulting local frequency representations are then
passed through a bank of filters whose coefficient are determined by a learning procedure minimizing a task-specific
cost. Our approach generalizes several previous methods such as HKS, WKS, spectral CNN, and GPS embeddings.
Experimental results show that the proposed approach allows learning class-specific shape descriptors significantly
outperforming recent state-of-the-art methods on standard benchmarks.

Categories and Subject Descriptors (according to ACM CCS): Computational Geometry and Object Modeling [I.3.5]:
— Feature Measurement [I.4.7]: — Learning [I.2.6]: —

1. Introduction

Shape descriptors are commonly used in a wide range of
geometry processing applications, such as correspondence,
segmentation, labeling, and retrieval. A shape descriptor is
a method for describing the local behavior of the surface
around some point, which is captured by a multi-dimensional
vector. The set of descriptors at all the points of the surface
can be thought of as a vector field thereon. Typically, one
wishes a descriptor that is discriminative (highlighting dis-
tinctive attributes), robust (invariant with respect to noise and
deformations) compact (using a small number of dimensions),
and computationally-efficient.

Previous work There is a plethora of literature on geomet-
ric shape descriptors, and we refer the reader to a recent
survey for a comprehensive overview [L⇤13]. Descriptors
like spin images [JH99], shape distributions [OFCD02], in-
tegral volume descriptors [MCH⇤06], and multi-scale fea-
tures [PKG03] are based on extrinsic structure of the shape
and therefore invariant under Euclidean transformations, but
not under deformations. One of the first works to deal with

deformations was Elad and Kimmel [EK03] employing multi-
dimensional scaling to represent the geodesic distance metric
in the Euclidean space. Other descriptors based on geodesic
were proposed in [HK03], while [BCG08] used conformal
factors.

Spectral descriptor try to exploit the geometry arising
from the eigenfunctions and eigenvalues of the Laplace-
Beltrami operator of the surface [BBG94, CL06, Lév06];
popular methods include shapeDNA [RWP06], global point
signature (GPS) [Rus07], heat kernel signatures (HKS)
[SOG09, GBAL09], wave kernel signatures (WKS) [ASC11],
and heat kernel maps [OMMG10].

Another class of approaches try to bring successful models
like SIFT [Low04] or shape context, [BMP00] from images
to surfaces [SB11,KBLB12]. Following the recent image pro-
cessing trend of learning invariant structure rather than trying
to hand-craft them, several learning frameworks have been
proposed in the geometry processing community as well, for
applications such as correspondence [RRBW⇤14], retrieval
[LBBC14], labelling and segmentation [KHS10, HSG13].
Several methods for learning descriptors have appeared very
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recently [LB14, COC14, MBBV15]. The main advantage of
learning methods is, instead of trying to model the noise or
shape variability axiomatically, one learns them from exam-
ples. In particular, learning methods allow creating class-
specific descriptors that address fine-grained differences be-
tween shapes in the class [LBBC14]. Human shapes are an
important and challenging class example, as they exhibit rich
geometric variability.

A particularly successful learning model recently re-
gaining popularity in the computer vision and pattern recog-
nition communities are convolutional neural networks (CNN)
[LBD⇤89], whose main strength is the ability to learn hierar-
chical abstractions from large collections of data with little
prior knowledge. CNNs with three-dimensional convolutions
have been applied for classification and retrieval of volumet-
ric rigid shapes in a very recent work of [WSK⇤15]. In order
to apply CNNs for the analysis of deformable shapes, one has
to define convolution in an intrinsic manner on a Riemannian
manifold, a rather difficult task due to the lack of shift invari-
ance on non-Euclidean domains. We are aware of two recent
attempts to extend the CNN framework to non-Euclidean
domains. Bruna et al. [BZSL14] proposed a spectral formula-
tion of CNNs on graphs. Masci et al. [MBBV15] proposed
a generalization of CNNs to triangular meshes using a local
geodesic charting technique of [KBLB12] in order to define
non-Euclidean ‘patches’.

Contribution This paper is a continuation of the previous
effort [MBBV15] to generalize the convolutional neural net-
work model to non-Euclidean domains for deformable shape
analysis applications, in particular, for constructing class-
specific dense intrinsic shape descriptors. The main nov-
elty of our present approach is an alternative generaliza-
tion of the convolution. Instead of the patch operator used
in [MBBV15] that is defined on triangular meshes, we use the
vertex-frequency analysis framework of [SRV13]. The core
of this construction is a windowed Fourier transform, allo-
wing to capture local context around a point on a surface and
represent it in the frequency domain. Combined with a lear-
ning framework similar to that of [MBBV15], we are able to
learn discriminative and robust descriptors that are specific to
a given class of deformable shapes. The significant advantage
of the spectral framework is that it is intrinsic by construction
and works only with eigenvalues and eigenfunctions of the
Laplacian, thus naturally allowing to deal with shapes in any
representation, e.g. meshes, point clouds, or graphs, as op-
posed to the previous construction of [MBBV15] limited to
meshes only. We show experimentally that our descriptor can
be efficiently computed, is highly discriminative and robust,
and compares favorable to previous methods.

2. Background

Manifold We model a 3D shape as a connected smooth com-
pact two-dimensional surface (manifold) X , possibly with

a boundary ∂X . Locally around each point x the manifold
is homeomorphic to the tangent plane TxX . The exponential
map expx : TxX ! X maps tangent vectors onto the surface. A
Riemannian metric is an inner product h·, ·iTxX : TxX⇥TxX !
R on the tangent space depending smoothly on x.

Laplace-Beltrami operator (LBO) Let us denote by L2(X)
the space of square-integrable real functions on X and by
h f ,giL2(X) =

R
X f (x)g(x)dx the standard inner product on

L2(X), where dx is the area element induced by the Rie-
mannian metric. Given a smooth function f 2 L2(X), the
composition f � expx : TxX ! R is a function on the tangent
plane. We define the Laplace-Beltrami operator (LBO) as a
positive semidefinite operator DX : L2(X)! L2(X) given by

DX f (x) = D( f � expx)(0), (1)

where D is the Euclidean Laplacian operator on the tangent
plane. The LBO is intrinsic, i.e., expressible entirely in terms
of the Riemannian metric. As a result, it is invariant to iso-
metric (metric-preserving) deformations of the surface.

Spectral analysis on manifolds The LBO of a compact
manifold admits an eigendecomposition DX fk = lkfk with
a countable set of real eigenvalues l1  l2  . . . and the
corresponding eigenfunctions f1,f2, . . . form an orthonormal
basis on L2(X). Consequently, a function f 2 L2(X) can be
represented as the Fourier series

f (x) =
Â

k�1
h f ,fkiL2(X)fk(x), (2)

where the analysis f̂k = h f ,fkiL2(X) can be regarded as the
forward Fourier transform and the synthesis

Âk�1 f̂kfk(x)
is the inverse one; the eigenvalues {lk}k�1 play the role
of frequencies. The first eigenvalue l1 = 0 corresponds to
a constant eigenvector (‘DC component’). The Laplacian
eigenbasis is a generalization of the classical Fourier ba-
sis to non-Euclidean domains, and one can easy verify that
eiwx are eigenfunctions of the Euclidean Laplacian operator
� d2

dx2 eiwx = w

2eiwx.

The generalized convolution of f and g on the manifold
can be defined by analogy to the classical case as the inverse
transform of the product of forward transforms,

( f ?g)(x) =
Â

k�1
h f ,fkiL2(X)hg,fkiL2(X)fk(x)

=
Â

k�1
f̂kĝkfk(x), (3)

and is in general non-shift-invariant.

Heat diffusion on manifolds is governed by the diffusion
equation,

(DX +∂t)u(x, t) = 0; u(x,0) = u0(x), (4)

where u(x, t) denotes the amount of heat at point x at time
t, u0(x) is the initial heat distribution (if the surface has a
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boundary, appropriate boundary conditions must be added).
The solution of (4) is obtained by applying the heat operator
Ht = e�tDX to the initial condition,

u(x, t) = Htu0(x) =
Z

X
u0(x

0)ht(x,x0)dx0, (5)

where ht(x,x0) is called the heat kernel. Since Ht has the same
eigenfunctions as DX with the eigenvalues {e�tlk}k�1, the
solution of (4) can be expressed a generalized convolution (3),

u(x, t) = Htu0(x) =
Â

k�1
hu0,fkiL2(X)e

�tlk
fk(x) (6)

=
Z

X
u0(x

0)
Â

k�1
e�tlk

fk(x)fk(x
0)

| {z }
ht (x,x0)

dx0,

where the coefficients e�tl play the role of a transfer function
corresponding to a low-pass filter sampled at frequencies
{lk}k�1.

3. Spectral descriptors

In this section, we provide a concise overview of several spec-
tral shape descriptors that will be important for our further
discussion. This overview is by no means exhaustive, and
we refer the reader to the cited related works and references
therein for a more complete picture.

Global Point Signature (GPS) Rustamov [Rus07] pro-
posed the global point signature (GPS) embedding, a dense
shape descriptor constructed using scaled LBO eigenfunc-
tions,

f(x) = (l
�1/2
1 f1(x), . . . ,l

�1/2
Q fQ(x))

>, (7)

thus associating each point x with a Q-dimensional descriptor
(see [BBG94,CL06] for earlier constructions in the theoretical
math community).

Due to an inherent ambiguity in the definition of the LBO
eigenbasis, GPS descriptors cannot be matched in a simple-
minded manner. First, an eigenfunction is defined up to sign,
DX (±fi) = li(±fi). Second, if an eigenvalue with non-trivial
multiplicity is present in the spectrum of DX , any rotation in
the corresponding subspace produces valid eigenfunctions.
Third, noise and non-isometric deformations may alter the
eigenvalues and eigenfunctions of the LBO. Trying to cope
with these ambiguities, several techniques have been pro-
posed trying to match GPS descriptors (see, e.g. [MHK⇤08]).

Heat/Wave Kernel Signature (HKS/WKS) Several popu-
lar spectral shape descriptor take a generic form of the diag-
onal of a parametric kernel diagonalized by the LBO eigen-
basis. Notable examples include the heat kernel signature
(HKS) [SOG09, GBAL09] and the wave kernel signature
(WKS) [ASC11]. More specifically, such methods construct

at each point a descriptor

f(x) =
Â

k�1
t(lk)f

2
k(x) (8)

expressed by a bank of transfer functions t(l) =
(t1(l), . . . ,tQ(l))

>. Such descriptors have several appealing
properties making their use popular in numerous applications.
First, they are intrinsic and hence invariant to isometric de-
formations of the manifold by construction. Second, they are
dense. Third, (8) can be efficiently computed using the first
few eigenvectors and eigenvalues of the Laplace-Beltrami
operator.

HKS uses low-pass transfer functions tt(l) = e�tl for var-
ious values of the parameter t 2 {t1, . . . , tQ}, giving rise to
the autodiffusivity function ht(x,x), whose physical interpre-
tation is the amount of heat remaining at point x after time
t. A notable drawback of HKS is poor spatial localization,
which is a consequence of the uncertainty principle: good
localization in the Fourier domain (large value of t) results in
a bad localization in the spatial domain.

WKS uses band-bass transfer functions t

n

(l) =

exp
⇣

log n�log l

2s

2

⌘
for various values of the parameter n 2

{n1, . . . ,nQ}. The physical interpretation of WKS is the prob-
ability to find a quantum particle at point x, given that it has
an initial log-normal energy distribution with mean value n

and variance s. Typically, WKS exhibits oscillatory behavior
and has a better localization compared to HKS.

Optimal spectral descriptors (OSD) Litman and Bronstein
[LB14] used parametric transfer functions expressed as

tq(l) =
M

Â

m=1
aqmbm(l) (9)

in some fixed (e.g. B-spline) basis b1(l), . . . ,bM(l), where
aqm (q = 1, . . . ,Q,m = 1, . . . ,M) are the parametrization co-
efficients. Plugging (9) into (8) one can express the qth com-
ponent of the spectral descriptor as

fq(x) =
Â

k�1
tq(lk)f

2
k(x) =

M

Â

m=1
aqm

Â

k�1
bm(lk)f

2
k(x)

| {z }
gm(x)

, (10)

where g(x) = (g1(x), . . . ,gM(x))> is a vector-valued function
referred to as geometry vector, dependent only on the intrinsic
geometry of the shape. Thus, (8) is parametrized by the Q⇥M
matrix A = (alm) and can be written in matrix form as f(x) =
Ag(x).

The main idea of [LB14] is to learn the optimal parameters
A by minimizing a task-specific loss. Given a training set
consisting of a pair of geometry vectors g,g+ representing
knowingly similar points (positives), and g,g� representing
knowingly dissimilar points (negatives), one tries to find A
such that kf� f+k= kA(g�g+)k is as small as possible and
kf� f�k= kA(g�g�)k is as large as possible. The authors
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Figure 1: Examples of different WFT atoms gx,k using different windows (top and bottom rows; window Fourier coefficients are
shown on the left), shown in different localizations (second and third columns) and modulations (fourth and fifth columns).

show that the problem boils down to a simple Mahalanobis-
type metric learning.

4. Windowed Fourier transform

A central piece to our construction of shape descriptors is
the notion of vertex-frequency analysis or windowed Fourier
transform (WFT), generalizing these constructions from clas-
sical signal processing to non-Euclidean domains. Here, we
follow the approach of Shumann et al. [SRV13] for the gener-
alization of the WFT in the spectral domain. We note that in
principle other methods for hierarchical and local frequency
analysis on graphs or manifolds can be used instead of the
presented construction, including wavelets [CL06] or com-
pressed modes [NVT⇤14].

Classical WFT The main idea of classical WFT is to analyze
the frequency content of a signal that is localized by means
of multiplication by a window. Given a function f 2 L2(R)
and some ‘mother window’ g localized at zero, one computes
the WFT as

(S f )x,w =
Z

R
f (x0)g(x0� x)e�ix0wdx0. (11)

Note that the WFT has two indices: spatial location x of the
window and frequency w of the signal in that window. Al-
ternatively, it can be presented as an inner product with a
translated an modulated window, (S f )x,w = h f ,M

w

TxgiL2(R),
where Tx and M

w

denote the translation and modulation oper-
ators, respectively.

Translation operator in the Euclidean setting is simply
(Tx0 f )(x) = f (x� x0). In order to generalize it to manifolds,
translation to point x0 can be replaced by convolution with a

delta-function centered at x0, yielding

(Tx0 f )(x) = ( f ?dx0)(x)
=

Â

k�1
h f ,fkiL2(X)hdx0 ,fkiL2(X)fk(x)

=
Â

k�1
f̂kfk(x

0)fk(x), (12)

where convolution is understood in the generalized sense
of equation (3). Note that such a translation is not shift-
invariant in general, i.e., the window would change when
moved around the manifold (see Figure 1).

Modulation operator in the classical case is a multiplica-
tion by a basis function (M

w

f )(x) = eiwx f (x). In the Fourier
domain, the action of modulation amounts to translation
([M

w

0 f )(w) = f̂ (w�w

0). In the generalized case, the modu-
lation is defined in exactly the same way,

(Mk f )(x) = fk(x) f (x), (13)

where the eigenvalue lk corresponding to the eigenfunction
fk plays the role of ‘frequency’.

Manifold WFT Combining the two operators together, we
have the modulated and translated window (transform ‘atom’;
see examples in Figure 1) expressed as

gx0,k(x) = (MkTx0g)(x) = fk(x)
Â

l�1
ĝlfl(x

0)fl(x). (14)

Note that the ‘mother window’ is defined here in the fre-
quency domain by the coefficients ĝl . We thus readily have
the WFT of a signal f 2 L2(X)

(S f )x,k = h f ,gx,kiL2(X) = Â

l�1
ĝlfl(x)h f ,flfkiL2(X), (15)
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which can be regarded as a meta-descriptor: given some
dense descriptor f (e.g. one of the components of HKS,
WKS, or a geometry vector (10)), we construct D(x) f =
((S f )x,1, . . . ,(S f )x,K)

> taking the first K frequencies of the
WFT. The WFT allows to capture the local context of a signal
on the manifold, making it roughly analogous to taking the
values of the signal in a small “patch”; here D(x) acts as a
position-dependent “patch operator” representing the local
structure of f around point x in the frequency domain.

Special cases We would like to point out the following spe-
cial cases of the WFT, which show that this framework can be
considered as a generalization of several previous approaches.

Case I: when ĝk = dk1, we simply have gx0,k(x) =
fk(x)f1(x0)f1(x). Since the first LBO eigenvector is constant,
the atom (up to scaling) is gx0,k(x)/ fk(x), i.e., the standard
LBO eigenbasis element independent on the location x0. The
WFT thus reduces to a simple Fourier transform (2). This
result is an intuitive consequence of the uncertainty princi-
ple: when the window is perfectly localized in the frequency
domain, it is perfectly delocalized in the spatial domain .

Case II: when f ⌘ 1, the WFT contains information only
about the geometric structure of the manifold. In this setting,

(S1)x,k =
Â

l�1
ĝlfl(x)hfk,fliL2(X)| {z }

dkl

= ĝkfk(x), (16)

and for a particular choice of ĝk = l

�1/2
k we get Rustamov’s

GPS descriptor (7).

Case III: when f = dx, the DC frequency of the WFT has
the form of (8),

(Sdx)x,1 =
Â

l�1
ĝlf

2
l (x), (17)

and in particular for ĝl = e�tll we obtain the HKS and for
ĝl = exp

⇣
log n�log ll

2s

2

⌘
the WKS at point x, respectively.

Discretization In the discrete setting, the surface X is sam-
pled at N points x1, . . . ,xN . On these points, we construct
a triangular mesh (V,E,F) with vertices V = {1, . . . ,N}, in
which each interior edge i j 2 E is shared by exactly two
triangular faces ik j and jhi 2 F , and boundary edges belong
to exactly one triangular face.

A function on the surface is represented by an N-
dimensional vector f = ( f (x1), . . . , f (xN))

>. The inner
product is discretized as hf,gi = f>Ag, where A =
diag(a1, . . . ,aN) and ai =

1
3 Â jk:i jk2F Ai jk denotes the local

area element at vertex i and Ai jk denoting the area of triangle
i jk. To discretize the LBO as an N ⇥N matrix L = A�1W,
we use the classical cotangent formula [PP93, MDSB03],
according to which

wi j =

8
<

:

(cotai j + cotbi j)/2 i j 2 E;
�

Âk 6=i wik i = j;
0 else;

(18)
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Figure 2: WFTs computed on two different poses of the same
shape at three points marked in red, blue, and green. Solid
lines represent the WFT of the shape on the left, dashed lines
the ones of the shape on the right.

where ai j,bi j denote the angles \ik j,\ jhi of the triangles
sharing the edge i j.

The first K N eigenfunctions and eigenvalues of the LBO
operator are computed by performing the generalized eigen-
decomposition WF

F

F = AF

F

FL

L

L, where F

F

F = (fff1, . . . ,fffK) is an
N ⇥K matrix containing as columns the discretized eigen-
functions and L

L

L = diag(l1, . . . ,lK) is the diagonal matrix of
the corresponding eigenvalues. Note that the eigenvectors are
A-orthonormal, i.e. F

F

F

>AF

F

F = I.

The discretized WFT is computed as

S fff = ( fff �F

F

F)> AAA F

F

F(ĝgg�F

F

F

>), (19)

where ĝ is the K-dimensional vector representing the window
in the frequency domain, f is the N-dimensional vector rep-
resenting the input function, and (a�B)i j = aibi j denotes
element-wise multiplication of a vector and matrix, repli-
cating the vector along the second dimension (repmat in
MATLAB). The resulting WFT is a matrix of size K ⇥N.

5. Localized spectral CNN

The main goal of this paper is to extend the convolutional
neural networks (CNN) to non-Euclidean domains. Convo-
lutional neural networks [LBD⇤89] are hierarchical architec-
tures built of alternating convolutional-, pooling- (non-linear
averaging), and fully connected layers. The parameters of
different layers are learned by minimizing some task-specific
cost function. In image analysis applications, the input into
the CNN is a function representing pixel values given on a
Euclidean domain (plane); due to shift-invariance the convo-
lution can be thought of as passing a template across the plane

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John Wiley & Sons Ltd.



D. Boscaini et al. / Learning class-specific shape descriptors using localized spectral convolutional networks

and recording the correlation of the template with the func-
tion at that location. One of the major problems in applying
the CNN paradigm to non-Euclidean domains is the lack of
shift-invariance, making it impossible to think of convolution
as correlation with a fixed template: the template now has to
be location-dependent.

Here, we propose using the WFT as a mechanism for ex-
tracting local ‘patches’ from functions defined on manifolds.
The spatial support of the ‘patch’ depends on the choice of
the window g. Note that in the definition of the WFT the geo-
metric structure of the manifold is captured by the Laplace-
Beltrami eigenfunctions. As a result, the same framework can
be used for any shape representation (e.g. mesh, point cloud,
etc.): the specific representation of the shape influences only
the construction of the Laplace-Beltrami operator.

We refer to our approach as localized spectral CNN
(LSCNN). For the sake of simplicity, the neural network
architecture considered in the following consists of only two
layers (comparable with the SN1 architecture in [MBBV15]).
The first layer is a fully connected layer, producing outputs
as weighted sums of the inputs, followed by a non-linear
function. The second layer applies the WFT to extract the
local structure of the input around each point. Since each
input dimension might contain features of different scale, we
employ a different window for each input dimension. The
WFTs are then passed through a bank of filters applied in the
frequency domain, producing the outputs used as the descrip-
tor dimensions. As the input to the first layer, any intrinsic
descriptor can be used (specifically, we use geometry vectors
defined in equation (10)). All the parameters of the layers
(weights, windows coefficients, and filters) are variables that
are found by means of supervised learning.

Fully connected layer Let us be given a P-dimensional in-
put fin(x) = ( f in

1 (x), . . . , f in
P (x)). The fully connected layer

produces a Q-dimensional output defined as

f out
q (x) = x

 
P

Â

p=1

K

Â

k=1
wqp f in

p (x)

!
, q = 1, . . . ,Q, (20)

where x(t) = max(0, t) is the ReLU activation function. Note
that without ReLU, if the inputs are geometry vectors, learn-
ing the weights of the fully connected layer is equivalent to
the OSD [LB14]. Fixing weights corresponding to low- or
band-pass filters, the fully connected layer implements the
HKS and WKS, respectively.

Convolutional layer Next, the output of the fully connected
layer acts as the input into the convolutional layer; we denote
the input again by fin(x) and its dimension by P. For each
input dimension, we use a different window. The family of P
windows is parametrized in some fixed interpolation basis in
the frequency domain as in (9),

gp(l) =
M

Â

m=1
bpmbm(l), p = 1, . . . ,P, (21)

0 500 1000 1500 2000 2500

0

eigenvalues

Figure 3: Example of a family of windows ĝ1, . . . , ĝP learned
by the LSCNN on the FAUST dataset.

where the P⇥M matrix (bpm) of weights defines the win-
dows. Figure 3 shows an example of the estimated windows
after the learning. The WFT of the pth input dimension uses
the respective pth window,

(S f in
p )x,k =

Â

l�1
gp(ll)fl(x)h f in

p ,flfkiL2(X), (22)

producing at each point a K-dimensional vector for each
of the P input dimensions. Our goal is to produce a Q-
dimensional output, and for this purpose, the WFTs are
passed through a bank of filters. The qth dimension of the
output is given by

f out
q (x) =

P

Â

p=1

K

Â

k=1
aqpk|(S f in

p )x,k|, q = 1, . . . ,Q. (23)

The output of the convolutional layer is used as our final
LSCNN descriptor.

Loss function The LSCNN comprising the fully-connected
and convolutional layer is a parametric hierarchical system
f
Q

(x) producing a Q-dimensional descriptor at each point x
(here Q = {(wqp),(bpm),(aqpk)} denotes the set of learnable
parameters). Given a training set of knowingly similar and
dissimilar pairs of points on pairs of shapes, respectively
positives T + = {(x,x+)} and negatives T � = {(x,x�)}, we
aim at estimating the optimal task-specific parameters of the
descriptor minimizing the aggregate loss

`(Q) = (1�µ)`+(Q)+µ `�(Q) (24)

where

`+(Q) =
1

|T +| Â

(x,x+)2T +

kf
Q

(x)� f
Q

(x+)k2
2, (25)

`�(Q) =
1

|T �| Â

(x,x�)2T �
max{0,M�kf

Q

(x)� f
Q

(x�)k2},

are the positive and negative losses, respectively, µ is a pa-
rameter governing their trade-off, and M is a margin mapping
the negatives apart.

We stress that HKS, WKS, and OSD descriptors are ob-
tained by a particular choice of the parameters Q. Thus, if
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the training set is designed well and training is performed
correctly, our descriptor can perform only better than the
above.

Comparison to ShapeNet Masci et al. [MBBV15] intro-
duced ShapeNet, a generalization of CNN to triangular
meshes based on geodesic local patches. The core of this
method is the construction of local geodesic polar coordi-
nates using a procedure previously employed for intrinsic
shape context descriptors [KBLB12]. The patch operator
(D(x) f )(q,r) in ShapeNet maps the values of the function f
around vertex x into the local polar coordinates q,r, leading
to the definition of the geodesic convolution

( f ⇤a)(x) =
Â

r,q

a(q+Dq)(D(x) f )(q,r), (26)

which follows the idea of multiplication by template, but is
defined up to arbitrary rotation Dq 2 [0,2p) due to the ambi-
guity in the selection of the origin of the angular coordinate.
In the ShapeNet convolutional layer, the outputs correspond-
ing to all the rotations of the templates are produced and then
a maximum is taken,

f out
q = max

Dq

P

Â

p=1
f in
p ⇤a

Dq,qp, (27)

where a
Dq

(q,r) = a(q+Dq,r) denotes the coefficients of the
template rotated by Dq, and the convolution is in the sense of
equation (26).

We note the following main drawbacks of this construction.
First, the charting method relies on a fast marching-like pro-
cedure requiring a triangular mesh. The method is relatively
insensitive to the triangulation, but may fail if the mesh is
very irregular. Second, the radius of the geodesic patches
must be sufficiently small compared to the convexity radius
of the shape, otherwise the resulting patch is not guaranteed
to be a topological disk. In practice, this limits the size of
the patches one can safely use, or requires an adaptive ra-
dius selection mechanism. In contrast, the proposed localized
spectral CNN is free of these limitations: it can work with
any shape representation, provided one can compute the dis-
cretized Laplace-Beltrami operator and its eigenfunctions and
eigenvalues for this representation; since the patch operator
is constructed in the frequency domain using the WFT, there
is also no issue related to the topology of the patch.

6. Results

Datasets We used two public-domain datasets of scanned
human shapes in different poses: SCAPE [A⇤05] and FAUST
[BRLB14], the latter being the most recent and particularly
challenging, given a high variability of non-isometric defor-
mations as well as significant variability between different
human subjects. The meshes in SCAPE were resampled to
12.5K vertices, whereas for FAUST we used the registration
meshes without further pre-processing. In addition we scaled

all shapes to have unit geodesic diameter. In both datasets,
groundtruth point-wise correspondence between the shapes
was known for all points.

Methods and Settings In all our experiments, we used
K = 300 LBO eigenfunctions and eigenvalues computed us-
ing MATLAB eigs function. For OSD and our descriptor,
we used M = 150-dimensional geometry vectors as inputs,
computed according to (9)–(10) using B-spline bases [LB14].
We compared the performance of the proposed approach to
HKS [SOG09], WKS [ASC11], OSD [LB14], spectral CNN
(SCNN) [BZSL14], and ShapeNet (SN1) [MBBV15] using
the code and settings provided by the respective authors. To
make the comparison fair, all the descriptors were Q = 16-
dimensional as in [LB14].

Our descriptor was tested in two configurations. LSCNN1,
consisting of a fully connected layer (reducing the dimen-
sionality of the 150-dimensional input to 16 dimensions),
followed by a convolutional layer using a fixed WFT Gaus-

sian window g(l) = e�
l

2

2s

2 with s = 10�5. In this config-
uration the parameters of the network that are learned are
Q = {(wqp),(aqpk)}. LSCNN2 is similar to LSCNN1, with
the difference that now the WFT windows are also learned.
We use 16 filters (one per dimension), each represented by
the B-spline coefficients. In this configuration, the free pa-
rameters are Q = {(wqp),(bpm),(aqpk)}. Furthermore, as a
‘sanity check’, we also used a configuration without the con-
volutional layer, comprising only a fully connected+ReLU
layer (referred to as NN1). This architecture is compatible
with the OSD, with the addition of a non-linearity at the
output.

Training Each dataset was split into disjoint training, valida-
tion, and test sets. On the FAUST dataset subjects 1–7 were
used for training (10 poses per subject, a total of 70 shapes),
subject 8 (10 shapes) for validation, and subject 9–10 for test-
ing (total of 20 shapes). On SCAPE, we used shapes 20–29
and 50–70 for training (total 31 shapes), five different shapes
for validation, and 40 remaining shapes for testing. The pos-
itive and negative sets of vertex pairs required for training
were generated on the fly, to keep the storage requirements for
the training algorithm, via uniform stochastic sampling. Each
point on the first shape has only a single groundtruth match
(given by the one-to-one correspondence) and is assigned to
one out of N �1 possible negatives: first, sample two shapes,
then form the positive set with all corresponding points, and
finally, form the negative set with first shape vertices and a
random permutation of the ones of the second shape. This
strategy differs from [LB14] who considered only points on
the same shape. The advantage of our sampling strategy is
that it allows learning invariance also across several poses
and subjects.

LSCNN was implemented in Theano [B⇤10] and trained
until convergence using Adadelta [Zei12], a stochastic first
order method with automatic adjustment of the learning rate
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(step size). Training was performed for 250 epochs, each
epoch consisting of 100 updates (stochastic gradient descent
steps). In each update of the training, we used N positive and
negative pairs, where N is the number of shape vertices.

Timing Typical training times for the more complex descrip-
tor (LSCNN2) are around two hours on a NVIDIA TITAN
Black GPU board and, at test time, the system is able to pro-
duce a throughput of approximately 30K vertices per second.
The pre-computation of the LB operator and its eigendecom-
position takes around 10s for a shape with 7K vertices.

Similarity map Figures 4 (compare to Figure 2 in [LB14]
and Figures 5–6 in [MBBV15]) depicts the Euclidean dis-
tance in the descriptor space between the descriptor at a
selected point and the rest of the points on the same shape as
well as its transformations. Figure 5 shows another example
of LSCNN on point clouds, where the WFT was computed
using the graph Laplacian. Our approach shows a good trade-
off between localization (similar to HKS) and accuracy (less
spurious minima than WKS and OSD), as well as robustness
to different kinds of noise.

Descriptor evaluation We evaluated the descriptor perfor-
mance using the cumulative match characteristic (CMC) and
the receiver operator characteristic (ROC). The CMC evalu-
ates the probability of a correct correspondence among the
k nearest neighbors in the descriptor space. The ROC mea-
sures the percentage of positives and negatives pairs falling
below various thresholds of their distance in the descriptor
space (true positive and negative rates, respectively). The
correspondence quality possible with our descriptors was
evaluated using the Princeton protocol [KLF11], plotting
the percentage of nearest-neighbor matches that are at most
r-geodesically distant from the groundtruth correspondence.

The performance evaluation is depicted in Figures 6–9. We
observe that NN1 (fully connected layer+ReLU) outperforms
the OSD, which we attribute to the non-linearity. We see
further significant improvement from using a convolutional
layer (LSCNN1 and LSCNN2). Furthermore, we observe that
LSCNN generalizes better to data from a different dataset
(transfer learning from FAUST to SCAPE and vice versa)
compared to ShapeNet.

7. Conclusions

In this paper, we proposed a new generalization of convo-
lutional neural networks to non-Euclidean domains using
the windowed Fourier transform for representing local shape
structures. In our localized spectral CNN, both the transform
window and a bank of filters that are applied to the trans-
form are learned. Using this approach, we were able to create
class-specific descriptors that are expressive, localized, and
robust.

Limitations The construction of class-specific descriptors
tacitly assumes that all shapes in the class share some com-
mon geometric structure, and their Laplacian eigenbasis, up
to known ambiguities, do not differ arbitrarily. We hypothe-
size that if one tries to deal with a class that is too broad (e.g.
all mechanical objects, or all living things), the performance
advantage of our method over ‘hand-crafted’ descriptors such
as HKS and WKS will diminish, and it is likely that we will
learn these descriptors (as they are a particular configuration
of our network).

Extensions The spectral formulation of our framework al-
lows application to a broad range of geometric structures,
such as point clouds or even abstract graphs and networks.
Constructing an analogy of successful convolutional neural
networks on such domains has been elusive so far, as there is
no clear notion of a local ‘patch’ and its representation. We
believe that our approach could be the right path towards this
goal.
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Figure 5: Distance map in the descriptor space computed using LSCNN on point clouds. A point on the reference shape (leftmost)
is compared to all other points on the same and on other shapes (four from SCAPE and four from FAUST datasets). Small
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Figure 6: Performance of descriptors trained on a subset of FAUST dataset and tested on a disjoint subset of FAUST dataset.
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Figure 8: Performance of descriptors trained on a of SCAPE dataset and tested on a disjoint subset of SCAPE dataset.
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