Contents

1. *Rapport sur la formule des traces* 4
2. Quasi-unipotent monodromy 16
3. Weil II 19
4. *Faisceaux Pervers* 51
5. Applications de la formule des traces aux sommes trigonométriques 75
7. Théorèmes de finitude en cohomologie ℓ-adique 120
1. Rapport sur la formule des traces

p, q, ℓ, F_q, F: p is a prime number, $q = p^f$ is a power of p and F an algebraic closure of the field F_q; ℓ is a prime number $\neq p$.

X_0, X: X_0 is a scheme on F_q, $X = X_0 \times_{F_q} F$. If \mathcal{F}_0 is an (étale) sheaf on X_0, F denotes its inverse image on X.

1.1. Mise en garde. The exposition beginning with 1.3 is based on SGA 5, Exposé XIV by C. Houzel. This approach is explicit at the expense being somewhat anti-conceptual and overloaded with cumbersome notation, which makes it hard to remember. On the other hand, Deligne’s approach to Frobenius is conceptually beautiful and easy to remember, but the first time I read it I couldn’t understand it. Now that I do, I write these notes. Deligne uses φ to denote what he calls the ‘Frobenius substitution’; it is the well-known topological generator of $\text{Gal}(F/F_q)$. He uses F to denote the ‘Frobenius endomorphism’, notated fr_{X_0} below, which is the endomorphism of a scheme X_0/F_q obtained by $x \mapsto x^q$ on the structure sheaf \mathcal{O}_{X_0}. Finally, he uses F^s to denote the action of Frobenius on sheaves on a scheme over F_q (and base extensions of such), and their cohomology.

1.2. Frobenius following Deligne.

1.2.1. Representing the Frobenius correspondence. Let Q be any scheme and \mathcal{G} an (étale) sheaf on Q. Let Q_{pet} denote the category (Et/Q) of algebraic spaces étale over Q, equipped with the étale topology. We ‘recall’ the following

Proposition. \mathcal{G} is represented over Q_{pet} by l’espace étalé $[\mathcal{G}]$ of \mathcal{G}: an algebraic space, locally separated and étale over Q. If moreover \mathcal{G} is

(α) locally constant constructible

(β) locally constant,

(γ) constructible,

then $[\mathcal{G}]$ may be taken to be

(α) a scheme finite étale over Q (SGAA Exp. IX 2.2).
(β) a scheme étale over \mathbb{Q} (SGA6 Exp. IX 2.2).
(γ) étale and finitely presented as an algebraic space over \mathbb{Q} (SGA6 Exp. IX 2.7).

In other words, \mathcal{G} is the sheaf of local sections of the space \mathcal{I}: for each $V \in \text{Et}/\mathbb{Q}$,

$$\mathcal{G}(V) = \text{Hom}_\mathbb{Q}(V, \mathcal{I}).$$

M. Artin constructs the espace étalé $[\mathcal{G}]$ associated to an arbitrary étale sheaf \mathcal{G} on a scheme \mathbb{Q} in *Théorèmes de représentabilité pour les espaces algébriques* VII §1. A sketch: put

$$(\mathcal{U} \to \mathcal{G}) := \bigsqcup_{U, \xi \in \mathcal{G}(U)} (U \xrightarrow{\xi} \mathcal{G}),$$

the sum executed over affine schemes U étale over \mathbb{Q} and the $\xi \in \mathcal{G}(U)$. The canonical morphism $\mathcal{U} \times_\mathcal{G} \mathcal{U} \to \mathcal{U} \times_\mathcal{G} \mathcal{U}$ induced by $\xi \in \mathcal{G}(U)$ and $\eta \in \mathcal{G}(V)$ (U, V affine étale schemes over \mathbb{Q}) is an open immersion and defines an étale equivalence relation on \mathcal{U}. Let $[\mathcal{G}]$ be the quotient of \mathcal{U} by this equivalence relation; it is an algebraic space over \mathbb{Q}, in general not separated, but only locally separated; in other words, $\mathcal{U} \times_\mathcal{G} \mathcal{U} \to \mathcal{U} \times_\mathcal{G} \mathcal{U}$ is not necessarily a closed immersion.

Now let X_0 be a scheme over \mathbb{F}_q and \mathcal{F}_0 a sheaf on X_0. The formation of the espace étalé $[\mathcal{F}_0]$ of \mathcal{F}_0 yields the commutative square

$$
\begin{array}{ccc}
[\mathcal{F}_0] & \xrightarrow{F} & [\mathcal{F}_0] \\
\downarrow & & \downarrow \\
X_0 & \xrightarrow{F} & X_0.
\end{array}
$$

and hence a morphism $[\mathcal{F}_0] \to F^*[\mathcal{F}_0]$. Replacing S with X_0, and X_0 with $[\mathcal{F}_0]$, 1.3.1 below finds that this morphism is relative Frobenius $F_{[\mathcal{F}_0]/X_0}$; as $[\mathcal{F}_0]$ is étale over X_0, 1.3.3 tells us that this morphism is an isomorphism $[\mathcal{F}_0] \xrightarrow{\sim} F^*[\mathcal{F}_0]$ with inverse Deligne’s Frobenius correspondence (1.2.1)

$$F^* : F^*\mathcal{F}_0 \xrightarrow{\sim} \mathcal{F}_0.$$
This morphism is the same as the one constructed with different notation in 1.3.4. The point is that by putting additional hypotheses on \(\mathcal{F}_0 \), one may assume that \([\mathcal{F}_0]\) is in fact a scheme étale over \(X_0 \).

1.2.2. The Frobenius correspondence and the Frobenius endomorphism. Let \(\mathcal{F}_0 \) be an abelian sheaf on \(X_0 \). We wish to elucidate Deligne’s approach in 1.8 of Rapport to show that

\[
F^{r-1} = \varphi \quad \text{(on } H_c^i(X, \mathcal{F})\text{).}
\]

Letting \(Y_0 = \text{Spec } \mathbf{F}_q \), as written \(H_c^i(X, \mathcal{F}) = [R^i f_! \mathcal{F}_0](\mathbf{F}) \), and noting \(F = \text{id on } Y_0 \) we have the (stupid) diagram

\[
\begin{array}{ccc}
[R^i f_! \mathcal{F}_0] & \xrightarrow{F} & [R^i f_! \mathcal{F}_0] \\
\downarrow{\text{id}} & & \downarrow{\text{id}} \\
Y_0 & \xrightarrow{\text{id}} & Y_0
\end{array}
\]

which just serves to connect this discussion to that of the previous section and show that the morphism defining the inverse of the Frobenius correspondence \(F^{r} \) on \([R^i f_! \mathcal{F}_0]\) is indeed \(F : [R^i f_! \mathcal{F}_0] \to [R^i f_! \mathcal{F}_0] \); as \(F \) acts on geometric points by \(\varphi \), we see that

\[
F^{r-1} : [R^i f_! \mathcal{F}_0](\mathbf{F}) \to [R^i f_! \mathcal{F}_0](\mathbf{F})
\]

coinsides with \(\varphi \).

1.3. Frobenius following Houzel.

Definition. We denote by \(\text{fr}_{X_0} \) the morphism of schemes \(X_0 \to X_0 \) which is the identity on the underlying topological space \([X_0]\) and acts on the structure sheaf \(\mathcal{O}_{X_0} \) by \(g \mapsto g^q \).

This morphism is called absolute Frobenius.

1.3.1. If the structure morphism \(X_0 \to \mathbf{F}_q \) factors through some scheme \(S \), then we denote by \(X_0^{(q/S)} := X_0 \times_{S, \text{fr}_S} S \) the fiber product of \(g : X_0 \to S \) by the morphism
fr_S : S → S with projection π_{X_0/S} : X_0^{(q/S)} → X_0. The absolute Frobenius fr_{X_0} then factors through the morphism π_{X_0/S}. We can form the diagram

\[
\begin{array}{ccc}
X_0 & \xrightarrow{fr_{X_0}} & X_0^{(q/S)} \\
\downarrow{fr_S} & & \downarrow{π_{X_0/S}} \\
S & \xrightarrow{fr_S} & S
\end{array}
\]

Definition. The morphism Fr_{X_0/S} is called *relative Frobenius*.

1.3.2. Frobenius acts on geometric points. Consider the set of geometric points \(X(F) = X_0(F) \). Frobenius acts on this set by \(q \in Gal(F/F_q) \), \(q(x) = x^q \). In particular, as \(F_q \) is perfect, \(X^F = X_0(F_q) \), where \(X^F \) denotes the geometric points fixed by Frobenius. In slightly more words, consider a geometric point \(\overline{x} \) → \(X_0 \) centered on \(x \). The fiber \(X ×_{X_0} x \) is isomorphic to the spectrum of \(A = F ⊗_{F_q} k(x) \). As \(k(x)/F_q \) is separable, \(A \sim \prod_{[k(x):F_q]} F \), and \([k(x) : F_q] \) is also equal to the number of \(F_q \)-embeddings \(k(x) → F \). Such an embedding is fixed by \(q \) iff \(k(x) = F_q \), and by \(q^f \) iff \(k(x) ⊂ F_{q^f} \). So for every point \(x \in |X_0| \) with \([k(x) : F_q] = f \), there are \(f \) geometric points centered on \(x \); \(F \) acts transitively by \(q \) on this set, and \(F^f \) fixes each of these geometric points.

1.3.3. Behavior of relative Frobenius. The relative Frobenius Fr_{X_0/S} is integral, surjective, and radical, hence a universal homeomorphism. This is clear when \(S = F_q \); i.e. for \(fr_{X_0} = π_{X_0/S} ∘ Fr_{X_0/S} \), it follows that Fr_{X_0/S} is radicial [EGA, I 3.5.6 (ii)]. Moreover, \(π_{X_0/S} \) is separated and radical, therefore Fr_{X_0/S} is integral [EGA, II 6.1.5 (v)] and surjective.

Suppose moreover that \(g : X_0 → S \) is étale. The same is true of \(g^{(q)} : X_0^{(q)} → S \), and therefore Fr_{X_0/S} : \(X_0 → X_0^{(q)} \) is étale. As Fr_{X_0/S} is also radicial and surjective, it is an isomorphism.

1.3.4. Frobenius correspondence. Let \(X_0 \) be a scheme over \(F_q \) and \(ℱ_0 \) a sheaf of sets on \((X_0)_{ét} \) (the small étale site of \(X_0 \) whose underlying category is the category of schemes étale over \(X_0 \)). We have for all \(U → X \) étale \((fr_{X_0})_*ℱ_0(U) = ℱ_0(U^{(q/X)}) \).
The isomorphism $\mathcal{F}_0(\text{Fr}_U/X_0) : (\text{fr}_{X_0})*\mathcal{F}_0(U) \to \mathcal{F}_0(U)$ is natural in U and induces an isomorphism of sheaves

$$\mathcal{F}_0(\text{Fr}_U/X_0) : (\text{fr}_{X_0})*\mathcal{F}_0 \sim \mathcal{F}_0;$$

by adjunction applied to $\mathcal{F}_0(\text{Fr}_U/X_0)^{-1}$ we obtain a morphism

$$F^* : \text{fr}_{X_0}^* \mathcal{F}_0 \to \mathcal{F}_0.$$

As fr_{X_0} is integral, surjective, and radial, $\text{fr}_{X_0}^* : (X_0)_{\text{et}} \to (X_0)_{\text{et}}$ is an equivalence of sites, and the functors

$$(\text{fr}_{X_0})*, \text{fr}_{X_0}^* : (\overline{X_0})_{\text{et}} \to (\overline{X_0})_{\text{et}}$$

are autoequivalences and quasi-inverses, where $(\overline{X_0})_{\text{et}}$ denotes the étale topos on X_0 [SGAA, Exp. VIII, 1.1]. Therefore F^* is also an isomorphism.

Definition. The isomorphism $F^* : \text{fr}_{X_0}^* \mathcal{F}_0 \to \mathcal{F}_0$ is called the **Frobenius correspondence**.

1.3.5. **Frobenius acts on cohomology.** Consider \mathcal{F}_0 a sheaf of Λ-modules, for some commutative ring Λ. The canonical morphism $\alpha : \mathcal{F}_0 \to \text{fr}_{X_0}^* \mathcal{F}_0$ gives rise to

$$\Gamma(X_0, \mathcal{F}_0) \xrightarrow{\alpha} \Gamma(X_0, \text{fr}_{X_0}^* \mathcal{F}_0) \xrightarrow{F^*} \Gamma(X_0, \mathcal{F}_0);$$

we also denote the composition of these maps by F^*. When $\mathcal{F}_0 = \Lambda$, this composition is easily seen to coincide with $\text{id}_\Gamma(X_0, \Lambda)$, and as every section $s \in \Gamma(X_0, \mathcal{F}_0)$ corresponds to a morphism $s : \Lambda \to \mathcal{F}_0$ and F^* is evidently functorial in \mathcal{F}_0, we find $F^* \circ \Gamma(X_0, s) = \Gamma(X_0, s) \circ F^* = \Gamma(X_0, s)$, ergo $F^* s = s$, so F^* induces the identity on $\Gamma(X_0, \mathcal{F}_0)$. Recalling the definition of the Frobenius correspondence via adjunction, this action of Frobenius on $\Gamma(X_0, \mathcal{F}_0)$ coincides with the composition

$$(*) \quad \Gamma(X_0, \mathcal{F}_0) \xrightarrow{\mathcal{F}_0(\text{Fr}_U/X_0)^{-1}} \Gamma(X_0, \text{fr}_{X_0}^* \mathcal{F}_0) = \Gamma(X_0, \mathcal{F}_0).$$

Considering \mathcal{F}_0 now as an object of $D^+(X_0, \Lambda)$, we have $\text{fr}_{X_0}^*$ preserves injective objects; hence the composition

$$F^* : R\Gamma(X_0, \mathcal{F}_0) \xrightarrow{\mathcal{F}_0(\text{Fr}_U/X_0)^{-1}} R\Gamma(X_0, \text{fr}_{X_0}^* \mathcal{F}_0) \to R\Gamma(X_0, \mathcal{F}_0)$$
can be computed by applying (*) term-by-term to an injective resolution of \(\mathcal{F}_0 \), whence we see that \(F^* \) acts by identity on \(R\Gamma(\mathcal{F}_0) \), and hence

\[
F^* : H^i(X_0, \mathcal{F}_0) \to H^i(X_0, \mathcal{F}_0)
\]

is the identity for all \(i \).

Suppose that \(X_0 \) is separated and of finite type over \(\mathbf{F}_q \). Then we can replace \(\Gamma \) in the above discussion by \(\Gamma_c \) to find that Frobenius acts on compactly supported cohomology

\[
F^* : H^i_c(X_0, \mathcal{F}_0) \to H^i_c(X_0, \mathcal{F}_0).
\]

2.1. The trace formula for \(\text{Spec } \mathbf{F}_{q^n} \to \text{Spec } \mathbf{F}_q \). Let \(X_0 = \text{Spec } \mathbf{F}_{q^n} \), \(q = p^f \), and \(\mathcal{F}_0 \) be a constructible \(\mathbf{Q}_\ell \)-sheaf on \(X_0 \), \(\mathcal{F} \) its inverse image on \(X \). In this case, the cohomological description of the L-function \(L(X_0, \mathcal{F}_0) \) reads very simply

\[
(*) \quad \det(1 - F^*_x t^{d(x), \mathcal{F}})^{-1} = \det(1 - F^* t^{f}, H_c^0(X, \mathcal{F}))^{-1},
\]

where \(d(x) = [k(x): \mathbf{F}_p] \). We first need to make precise how Frobenius is acting on the left and right sides.

On the left side, we fix a geometric point \(\overline{x} \to x = X \) and construct the action of Frobenius on the fiber \(\mathcal{F}_{\overline{x}} \) by picking the smallest power of \(F(\overline{x}) \) which actually fixes the geometric point \(\overline{x} \), namely \(F(\overline{x}) = F(\overline{x})^n \). The notation \(F^*_x \) denotes the endomorphism of \(\mathcal{F}_{\overline{x}} \) induced by \(F^*_x \). Up to isomorphism, \((F^*_x, \mathcal{F}_{\overline{x}}) \) do not depend on the choice of geometric point \(\overline{x} \to x \), and the trace, determinant of this action are denoted by \(\text{Tr}(F^*_x, \mathcal{F}) \), etc.

Now, on the right side, we have the Frobenius correspondance on cohomology. We will make use of the identity

\[
F^{*-1} = q,
\]

where \(q \) is the Frobenius considered as the topological generator of \(\text{Gal}(\mathbf{F}, \mathbf{F}_q) \) (c.f. remark below). The data of a \(\mathbf{Q}_\ell \)-sheaf on \(X \) is equivalent to the data of a finite-dimensional \(\mathbf{Q}_\ell \)-vector space \(V = \mathcal{F}_{\overline{x}} \) on which \(\text{Gal}(\overline{k}(x)/k(x)) = \pi_x \) acts continuously.
There is a canonical isomorphism
\[\pi_x = \text{Gal}(\overline{k}(x), k(x)) \cong \hat{\mathbb{Z}} \]
furnished by the Frobenius element
\[q_x \in \text{Gal}(\overline{k}(x), k(x)) = \text{Gal}(F/F_{q^n}), \quad q_x(\lambda) = \lambda q^n, \]
so that the action of \(\pi_x \) on \(V = \mathcal{F}_\pi \) is known once one knows the automorphism \((q_x)_V \)
(under the one condition that \((q_x)^{\nu} \to \text{id}_V \) as \(\nu \to 0 \) multiplicatively). If
\[\text{pr}_x : X = \text{Spec}(F_{q^n}) \to \text{Spec} F_q = e \]
is the canonical morphism, \(\pi_x \) is identified via \(\text{pr}_x \) with a subgroup of the analogous
Galois group \(\pi_e \) for \(e = \text{Spec}(F_q) \), itself topologically generated by \(q \), and via this
identification we have the identity
\[q_x = q^n. \]
The sheaf \(\text{pr}_x(\mathcal{F}) \) is defined by the induced module
\[\text{pr}_x(\mathcal{F})_\pi \cong \mathcal{F}_\pi \otimes_{\pi_x} \pi_e, \]
from which one deduces that, letting \(f = q_x^{-1} \), \(q^{-1} \) acts on \(\text{pr}_x(\mathcal{F})_\pi \) by
\[f^{(n)} : (x_1, \ldots, x_n) \mapsto (f(x_n), x_1, \ldots, x_{n-1}), \]
where here we have written \(\text{pr}_x(\mathcal{F})_\pi \) with respect to a basis as a free \(\pi_x \)-module
of rank \(n \). Now the formula (\(* \)) is a matter of verifying the formula
\[\det(1 - ft^n) = \det(1 - f^{(n)}t) \]
for \(f \) acting on a free module of rank \(n \). This is Deligne’s corollary 3.4.
Remark. Perhaps one way to think about the identification $F^* = q^{-1}$ is by setting up the usual diagram

\[
\begin{array}{c}
\text{X} \xrightarrow{\text{Fr}_{X/X_0}} \text{X}(q/X_0) \xrightarrow{\pi_{X/X_0}} \text{X} \\
\downarrow{g(q)} \hspace{1cm} \downarrow{g} \\
\text{X}_0 \xrightarrow{\text{Fr}_{X_0}} \text{X}_0
\end{array}
\]

with g the base extension of the map $\text{Spec } F \to \text{Spec } F_q$ that arises from fixing an algebraic closure of F_q, and then observing that $\text{Fr}_{X/X_0} = q \times_{F_q} \text{id}_{X_0}$. Recalling that F^* on \mathcal{F}_0/X_0 is induced by Fr_{U/X_0}^{-1} for $U \to X_0$ étale, and by functoriality F^* on \mathcal{F}/X is induced by pulling back the same, hence by Fr_{U/X_0} for $U \to X$ étale, in particular we have that F^* on $H^0_c(X, \mathcal{F})$ is induced by $\mathcal{F}(\text{Fr}_{X/X_0})^{-1} = \mathcal{F}(q^{-1} \times_{F_q} \text{id}_{X_0})$.

3.1. Le sorite de la notation. It is very important to note that in Deligne’s notation, $\text{Tr}(F^*_x, \mathcal{F})$ and $\text{Tr}(F^*, \mathcal{F}_x)$ are traces of possibly different operators on the fiber \mathcal{F}_x. Namely, if \mathcal{F} is a \mathbf{Q}_ℓ-sheaf on X_0 a scheme separated and of finite type over F_q, then \mathcal{F}_x is a \mathbf{Q}_ℓ vector space, for a choice of geometric point \bar{x} centered on a closed point x of X_0. Then F^*_x denotes the Frobenius $F^*_{q^n} = F_q^n$ raised to the power of the residue field extension $n = [\deg k(x) : F_q]$. This power of Frobenius is the least that fixes each geometric point centered on x, and the notation $\text{Tr}(F^*_x, \mathcal{F})$ means $\text{Tr}(F^*_x, \mathcal{F}_x)$.

On the other hand, if, say, $x \in X^{\text{F}_n}$ is a geometric point centered on a point of X_0 defined over F_q, $\text{Tr}(F^*, \mathcal{F}_x)$ denotes (absolute) q-power Frobenius acting on the fiber. So, unless $x \in X^F$, $\text{Tr}(F^*, \mathcal{F}_x)$ and $\text{Tr}(F^*_x, \mathcal{F})$ are traces of different operators on the same vector space, the latter a power of the other.

3.2. Le sorite des faisceaux localement constants.

The case of locally constant sheaves of sets. Let X be a scheme and \mathcal{L} a locally constant sheaf of sets with finite fibers on X. (With additional assumptions on X, the case of a locally constant sheaf of sets with infinite fibers is reduced to the finite case in the course of the discussion of Weil II 1.7.8.) We know that $\mathcal{L} = h_U$ for some $U \to X$
revêtement étale. We know that every revêtement étale of X is étale-locally on X trivial; namely for some $V \rightarrow X$ étale, $U_V \sim \bigsqcup V$. We wish to show that we may take $V \rightarrow X$ to be a revêtement étale (with no further work, we could then take it to be a galoisian revêtement, i.e. a connected torsor for the automorphism group of the fiber, as principal Galois objects in a Galois category form a cofinal system).

First note that if $f : X \rightarrow Y$ is any morphism of schemes and $V \rightarrow Y$ is étale, then $f^* h_V \sim h_{V \times_Y X}$. To see this, observe

$$\text{Hom}(f^* h_V, \mathcal{G}) = \text{Hom}(h_V, f_* \mathcal{G}) = f_* \mathcal{G}(V) = \mathcal{G}(V \times_Y X) = \text{Hom}(h_{V \times_Y X}, \mathcal{G}).$$

Evidently, this argument holds true for any morphism of sites.

So, it will suffice to show that any revêtement étale can be trivialized after base extension by a revêtement étale. To see this, assume X connected and let $U \rightarrow X$ be a revêtement étale of constant degree d and proceed by recurrence on d, the case $d = 1$ being trivial. (Of course, in the special case that $U \rightarrow X$ is galoisian with Galois group G, $U \times_X U \sim U \times G$ is a trivial G-torsor, and we are done.)

As $U \rightarrow X$ is étale, hence net, and finite, the diagonal morphism $U \rightarrow U \times_X U$ is simultaneously an open and closed immersion, hence an isomorphism onto a connected component of $U \times_X U$, allowing us to write $U \times_X U = U \bigsqcup Z$ with $Z \rightarrow U$ of constant degree $d - 1$. By hypothesis, there exists a revêtement étale $V \rightarrow U$ such that $Z \times_U V \sim \bigsqcup V$. Our desired revêtement is then simply the composition $V \rightarrow U \rightarrow X$:

$$V \times_X U = V \times_U U \times_X U = V \times_U (U \bigsqcup Z) = V \bigsqcup (V \times_U Z) = \bigsqcup V.$$

The case of locally constant constructible sheaves. Let Λ be a commutative, noetherian torsion ring. We adapt the above discussion to locally constant constructible (l.c.c.) sheaves of Λ-modules. Let \mathcal{F} be a l.c.c. sheaf of Λ-modules on a connected scheme X. Then the fibers of \mathcal{F} are finite sets and the above discussion yields a revêtement étale $f : V \rightarrow X$ with V a (connected) galoisian cover with Galois group H (i.e. V is a H-torsor) such that $f^* \mathcal{F}$ is a constant sheaf. Its constant value $H^0(V, f^* \mathcal{F})$ is a $\Lambda[H]$-module.
The sheaf $f_!\Lambda$ on X, together with the natural action of H, is a rank 1 l.c.c. sheaf of $\Lambda[H]$-modules. Relative to the natural action of H on $f_*f^*_\mathcal{F}$, the trace morphism $f_*f^*_\mathcal{F} \to \mathcal{F}$ factors by an isomorphism

$$(f_*f^*_\mathcal{F})_H \to \mathcal{F},$$

and we have $f_*f^*_\mathcal{F} = f_*\mathcal{M} = f_*\Lambda \otimes_\Lambda \mathcal{M}$ with the diagonal action of H.

The above discussion shows that a l.c.c. sheaf of Λ-modules on a connected scheme X is determined by its restriction to the small étale site of X. Sheaves on the small étale site \mathcal{U} are in turn determined by Grothendieck’s Galois theory: fixing a geometric point \overline{x} of X and putting $G := \pi_1(X, \overline{x})$, the functor

$$\text{Sh}(\mathcal{U}) \to \text{finite } G\text{-sets}$$

$$\mathcal{F} \mapsto \mathcal{F}_{\overline{x}}$$

admits the inverse

$$\text{finite } G\text{-sets} \to \text{Sh}(\mathcal{U})$$

$$\mathcal{F}_{\overline{x}} \mapsto [V \in \mathcal{U} \mapsto \text{Hom}_G(V_{\overline{x}}, \mathcal{F}_{\overline{x}})].$$

To verify this, as the torsors are cofinal in a covering of any $V \in \mathcal{U}$, we may cover V by a torsor W with Galois group H and combine the equalizer description of $\mathcal{F}(V)$

$$\mathcal{F}(V) \to \mathcal{F}(W) \rightrightarrows \mathcal{F}(W \times_V W)$$

with the description of such in the case of a Galois torsor; c.f. [SGA 4\frac{1}{2}, I §5].

The discussion in the previous section can be rephrased using the monodromy representation of a l.c.c. sheaf. Namely, let \mathcal{F} be a l.c.c. sheaf of Λ-modules on a connected scheme X pointed by a geometric point \overline{x} as above; \mathcal{F} corresponds to a representation $\pi_1(X, \overline{x}) \to \text{GL}(\mathcal{F}_{\overline{x}})$. As the latter is a finite group, the kernel of this representation is of finite index, and as the Galois coverings are cofinal, we can find a Galois cover of X corresponding to a open subgroup contained in the kernel. The sheaf \mathcal{F} becomes constant when restricted to this cover.

The case of lisse sheaves. Let $E \subset \overline{Q}_\ell$ be an finite extension of Q_ℓ with valuation ring R, integral closure of Z_ℓ in E, m the maximal ideal of R. Every \overline{Q}_ℓ-sheaf \mathcal{G} is obtained
as $\mathcal{F} \otimes_{E} \mathbb{Q}_{\ell}$ for some E and some torsion-free (i.e. flat) constructible E-sheaf \mathcal{F}. This means that $\mathcal{F} = \text{"lim proj" } \mathcal{F}_n$, the latter a flat \mathcal{R}-sheaf. A lisse \mathcal{R}-sheaf has all the \mathcal{F}_n locally constant sheaves of \mathcal{R}/m^n-modules, and for each n, the above discussion shows that the functor ‘fiber at \mathfrak{x}’ gives an equivalence of categories between the category of lisse \mathcal{R}/m^n-sheaves and the category of \mathcal{R}/m^n-modules of finite type together with a continuous action of $\pi_1(\mathcal{X}, \mathfrak{x})$. Since the \mathcal{F}_n have $\mathcal{F}_n \otimes_{\mathcal{R}/m^n} \mathcal{R}/m^n \xrightarrow{\sim} \mathcal{F}_{n-1}$, by passing to the limit we get an equivalence between the category of lisse \mathcal{R}-sheaves and the category of finite \mathcal{R}-modules with continuous action of $\pi_1(\mathcal{X}, \mathfrak{x})$.
Bibliography

[EGA] Eléments de géométrie algébrique par A. Grothendieck.
[SGA5] SGA 5, Exposé XV par C. Houzel.
[SGA 4+1/2] SGA 4+1/2, Rapport sur la formule des traces par P. Deligne.
2. Quasi-unipotent monodromy

Some notes about Grothendieck’s theorem on quasi-unipotent monodromy. We study the arithmetic proof. It uses a proposition proved by Grothendieck in the appendix of Serre and Tate’s article *Good Reduction of Abelian Varieties*.

We may assume that K is complete since, following Serre, *Corps Locaux*, II§3 Cor. 4, completing K leaves the decomposition unchanged. Now, we may assume that any matrix in the image of ρ has coefficients in \mathbb{Z}_l and is congruent to $1 \mod l^2$ as these are both open conditions, ρ is continuous, and we are free to pass to an open subgroup of $I(\overline{\nu})$ by making a finite extension of K.

Note also that $\text{im} \rho$ is a pro-l group since, while $\text{GL}(n, \mathbb{Z}_l)$ is not a pro-l-group, its first congruence subgroup of matrices congruent to $1 \mod l$ is a pro-l-group (c.f., e.g., §5.1 of *Analytic Pro-p Groups* by Dixon, du Sautoy, Mann & Segal). We see therefore that the prime-to-l part of the order of $\text{GL}(n, \mathbb{Z}_l)$ is finite. As the image of a pro-p group under a continuous homomorphism is pro-p, the continuous image of a pro-p group in $\text{GL}(n, \mathbb{Z}_l)$ is finite. As $\text{im} \rho$ is by construction pro-l, the image of a pro-p group in $\text{im} \rho$ is $\{1\}$.

Now, if L is a finite extension of K_l, we wish to show that the polynomial $f(T) = T^l - a$ splits in L for any $a \in L$. If it does not, then as f is separable and L contains all l^{th} roots of unity, $L(\sqrt[l]{a})$ is the splitting field of f and is Galois. The automorphism of $L(\sqrt[l]{a})/L$ sending $\sqrt[l]{a} \mapsto \zeta_l \sqrt[l]{a}$, where ζ_l is a primitive l^{th} root of unity, acts transitively on the roots of f, hence f is irreducible. But K_l is the l-part of the maximal tamely ramified extension of K_{nr}, hence l cannot divide $[L : K_l]$. (Recall that K_l is the maximal tamely ramified extension of K, and we have

$$\text{Gal}(K_l/K_{nr}) \simeq \prod_{q \neq p} \mathbb{Z}_q \quad \text{Gal}(K_l/K_l) = \prod_{q \neq p, l} \mathbb{Z}_q \quad \text{Gal}(K_s/K_l) \text{ a pro-p group}$$

as q runs over primes, so $\text{Gal}(K_s/K_l)$ is an extension of a group isomorphic to $\prod_{q \neq p, l} \mathbb{Z}_q$ by a pro-p group, and therefore has no finite quotient of order divisible by l.) This allows one to conclude that l does not divide the order of $\text{Gal}(K_s/K_l)$. The order of $\text{im} \rho$ is a power of l as it is a pro-l group.
An alternative way to see that l does not divide the order of $\text{Gal}(K_i / K_f)$ that is more faithful to the original proof proceeds by showing directly that for a finite extension L/K_f, every element of L is of the form $a_i = \alpha(t)$ for $\alpha(t)$ an irreducible separable polynomial $\alpha(t) = a_n t^n + a_{n-1} t^{n-1} + \ldots + a_0$, and suppose t is not an lth power in L. This implies that the polynomial $\alpha_1(t) = a_n t^n + a_{n-1} t^{(n-1)} + \ldots + a_0$ is irreducible and separable over K_f. Let K'/K be a finite Galois extension containing all lth roots of unity and the a_i, and contained in K_f. The extension $K'[t]/\alpha(t)$ is finite and separable and is contained in a finite Galois extension K'' of K' with l dividing $[K'' : K']$, so l divides the ramification index or the residual degree. If the latter, making a finite unramified extension of K' produces a contradiction on the irreducibility of $\alpha(t)$ over K_f. If the former, replacing K'' by $K' \sigma_{1/l} \subset K_f$ similarly yields a contradiction. Now to see that every finite Galois extension L of K_f cannot have l dividing its degree, note that $\text{Gal}(L/K_f)$ contains a cyclic subgroup H of order l, and we claim $L = L^H(a^{1/l})$ for some element $a \in L^H$. Let σ generate H, and let $b \in L - L^H$. Then the element
\[\sum_{m=1}^{l} \zeta_{l}^m \sigma^m(b) \]
satisfies $c = \zeta_{l} \sigma(c)$, where ζ_{l} is a primitive lth root of unity. So
\[c' = \prod_{m=1}^{l} \sigma^m(c) \in L^H, \]
and letting $a = c'$ we find that $L^H(a^{1/l})$ is a nontrivial subextension of L^H, hence must actually coincide with L.
Bibliography

3. Weil II

0.5. Let \(X \) be a scheme of finite type over a field \(k \). If \(X \) is connected, the structure morphism \(X \to \text{Spec}(k) \) admits a unique factorization \(X \to \text{Spec}(k') \to \text{Spec}(k) \) with \(k'/k \) finite separable and \(X \to \text{Spec}(k') \) geometrically connected. \(~\sim\) Stacks, tag 04PZ. Proof uses notion of ‘weakly étale \(k \)-algebra.’

1.1.2. First of all, to see that if \(K \in D_c^b(X, R) \), then \(K \otimes^L R/m^n \in D_{ctf}^b(X, R/m^n) \), see Stacks, tag 0942. Note that \(K \otimes^L R/m^n \) can be represented by a bounded complex of flat constructible sheaves by \textit{Rapport}, 4.7. Also recall that the locally constant sheaves form a weak Serre subcategory of the constructible sheaves on a site (093U).

\textit{Claim a).} On the subject of the category \(D_c^b(X, R) \), claim a) is that for each \(i \), the projective system of cohomology sheaves \(\mathcal{H}^i(K) := \text{“lim proj”} \mathcal{H}^i(K \otimes^L R/m^n) \) of a complex \(K \) in \(D_c^b(X, R) \) is an \(R \)-constructible sheaf. First a trivial statement: of course the reduction modulo \(m^n \) of a complex of flat sheaves representing \(K_{n+1} \) induces a map on cohomology, but a priori it need not induce an isomorphism \(\mathcal{H}^i(K_{n+1}) \otimes R/m^n \to \mathcal{H}^i(K_n) \). For example, in

\[
\begin{array}{cccc}
0 & \to & \mathbb{Z}/\ell^n & \to & \mathbb{Z}/\ell^n & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & \mathbb{Z}/\ell^{n-1} & \to & \mathbb{Z}/\ell^{n-1} & \to & 0 \\
\end{array}
\]

the first nonzero cohomology in the top row is \(\ell \mathbb{Z}/\ell^n \cong \mathbb{Z}/\ell^{n-1} \), which gets mapped by the down arrow to \(\ell \mathbb{Z}/\ell^{n-1} \cong \mathbb{Z}/\ell^{n-2} \), even though the first nonzero cohomology in the bottom row is all of \(\mathbb{Z}/\ell^{n-1} \). Moreover, \(\mathbb{Z}/\ell^{n-1} \cong \mathbb{Z}/\ell^{n-1} \otimes_{\mathbb{Z}/\ell^n} \mathbb{Z}/\ell^{n-1} \), so the map on cohomology after reduction mod \(\ell^{n-1} \) is neither injective nor surjective.

It is important to note that in (1.1.1), the term ‘\(R \)-faisceau constructible’ is used to describe all pro-sheaves in the essential image of the functor \(\mathcal{F} \mapsto \text{“lim proj”} \mathcal{F} \otimes R/m^n \).

In Exposé V of SGA 5, Jouanolou studies \(J \)-adic projective systems, where \(J \) is an ideal in a commutative ring \(A \). All references in this paragraph will be to this exposé unless indicated otherwise. There is a conflict of indexing, in that Deligne in Weil II has \(K_n \), annihilated by \(m^n \), while Grothendieck, Jouanolou and Deligne in SGA 4 1/2 have \(K_n \).
annihilated by n^{n+1}. As a predictable but no less unfortunate result, both conventions are effectively in force in different parts of these notes. Jouanolou begins with an abelian category \mathcal{C} and forms $P = \underline{\text{Hom}}(\mathbb{N}, \mathcal{C})$, the category of projective systems indeed by the ordered set \mathbb{N} of positive integers with values in \mathcal{C}. Given an object $X = (X_n, u_n)_{n \geq 0}$ of P and an integer $r \geq 0$, $X[r]$ denotes the projective system $(X_{n+r}, u_{n+r})_{n \geq 0}$. If r, s are integers satisfying $s \geq r \geq 0$, then iterated application of the transition morphisms u define a morphism $w_{sr} : X[s] \rightarrow X[r]$. For each integer $r \geq 0$ and X in P, the morphism $w_{r0} : X[r] \rightarrow X$ is also denoted V_{rX}. With this notation, X is said to satisfy the condition Mittag-Leffler-Artin-Rees (MLAR) if there exists an integer r such that for each integer $s \geq r$,

$$\text{im}(X[s] \xrightarrow{w_{0s}} X) = \text{im}(X[r] \xrightarrow{w_{r0}} X).$$

In particular, if there exists an $r \geq 0$ such that the canonical morphism $X[r] \rightarrow X$ is null, X is said to be AR-null. The full subcategory P_0 of P whose objects are the AR-null projective systems is thick. The quotient category is called the category of projective systems in \mathcal{C} up to translation and noted $\underline{\text{Hom}}_{\text{AR}}(\mathbb{N}, \mathcal{C})$ or P_{AR}. It is abelian and the quotient functor $p_{\text{AR}} : P \rightarrow P_{\text{AR}}$ is exact (2.4.4). Equivalently, P_{AR} is obtained from P by a (left or right) calculus of fractions with respect to the set of morphisms $\{V_{rX}\}$, as X runs over the set of objects in P and r over the set of integers ≥ 0. Denote this set by AR. Now suppose ρ equips \mathcal{C} with the structure of an A-category (1.1) and either that J is of finite type or that \mathcal{C} possesses infinite direct sums.

Definition (3.1.1). An object X of P is called J-adic if the following two conditions are verified.

(i) For every integer $n \geq 0$, $J^{n+1}X_n = 0$.

(ii) For every couple (m, n) of integers with $m \geq n \geq 0$, the morphism $A/J^{n+1} \otimes_A X_m \rightarrow X_n$ deduced from the transition morphism $X_m \rightarrow X_n$ is an isomorphism.

If moreover the components of X are noetherian objects of \mathcal{C}, then X is called noetherian J-adic.

The full subcategory of P (resp. of P_{AR}) generated by the J-adic projective systems (resp. the images of the noetherian J-adic systems) is notated $\text{J−ad}(\mathcal{C})$ (resp. $\text{J−adn}(\mathcal{C})$).
Two objects X and Y of the category P are said to be AR-isomorphic if $p_{AR}(X)$ and $p_{AR}(Y)$ are isomorphic in the category P_{AR}.

Definition (3.2.1-3.2.2). An object X of P is called AR-J-adic if it satisfies the following conditions.

(i) $J^{n+1}X_n = 0$ for all $n \geq 0$.

(ii) There exists a J-adic projective system Y isomorphic to X in the category P_{AR}.

If moreover the components of X are noetherian objects of C, then X is called noetherian AR-J-adic.

The full subcategory of P (resp. of P_{AR}) generated by the noetherian AR-J-adic projective systems (resp. by their images) is denoted E_C (resp. AR-J-adn(C)).

Proposition (3.2.3). Let X be in P. Suppose $J^{n+1}X_n = 0$ for all $n \geq 0$. In order for X to be AR-J-adic, it is necessary and sufficient that it verify the property (MLAR) and that, denoting by X' its projective system of universal images, there exist an integer $r \geq 0$ such that, for each pair (m, n) of integers with $m \geq n + r$, the ‘transition morphism’ below be an isomorphism:

$$X'_m/J^{n+1}X'_m \longrightarrow X'_{n+r}/J^{n+1}X'_{n+r}.$$

Note that if X verifies (MLAR), it is AR-isomorphic to its projective system of universal images. The hypothesis made on X' implies that the projective system $(X'_{n+r}/J^{n+1}X'_{n+r})_{n \geq 0}$ is J-adic. This projective system is AR-isomorphic to X'. This proves sufficiency.

The restriction of the functor p_{AR} to J–ad or J–adn induces an equivalence

$$p^n_{AR} : J$–adn($C$) \longrightarrow AR–J–adn(C).

Suppose X, Y are noetherian J-adic projective systems. Then a morphism $X \rightarrow Y$ is represented for a certain integer r by a morphism $X[r] \rightarrow Y$. As $J^{n+1}Y_n = 0$ for all $n \geq 0$ and X is J-adic, this morphism is the composition of a morphism $X \rightarrow Y$ with $X[r] \rightarrow X$. Hence p^n_{AR} is full. Moreover, a given morphism $X \rightarrow X$ goes to zero under
\(p^n_{AR} \) if it goes to zero in the inductive limit

\[
\lim_{\rightarrow} \Hom(X[r], Y);
\]

i.e. if precomposition by \(V_rX : X[r] \to X \) is null for some \(r \). Such is not the case when \(X \) is \(J \)-adic. Thus \(p^n_{AR} \) is faithful, and, as \(AR-J-adn(\mathcal{C}) \) is evidently the essential image, an equivalence.

Proposition (5.2.1). The category \(\mathcal{E}_C \) is stable by kernels and cokernels in \(P \). In other words, \(\mathcal{E}_C \) is an abelian category and the inclusion functor \(\mathcal{E}_C \hookrightarrow P \) is exact.

Theorem (5.2.3). The categories \(J-adn(\mathcal{C}) \) and \(AR-J-adn(\mathcal{C}) \) are abelian and noetherian.

We have enough to prove the first statement. (5.2.1) implies on the spot that the category \(AR-J-adn(\mathcal{C}) \) is abelian: given an arrow \(A \to B \) in \(AR-J-adn(\mathcal{C}) \), up to isomorphism of \(A \) and \(B \) this arrow comes from an arrow in \(P \) with kernel and cokernel in \(\mathcal{E}_C \); as the functors \(\mathcal{E}_C \to P \to P_{AR} \) are exact, the kernel and cokernel lie in \(AR-J-adn(\mathcal{C}) \). Therefore \(J-adn(\mathcal{C}) \) must also be abelian as the two categories are equivalent.

Remark. If \(A \) is a noetherian (commutative) ring complete and separated with respect to an ideal \(J \) such that \(A/J \) is artinian, then the following is true and provides a kind of ‘spiritual underpinning’ for the category \(J-adn \).

Proposition. The functor \(\lim \) induces an equivalence between the categories \(AR-J-adn(A-mod) \) and the category of finite \(A \)-modules.

Specializing to the category \(\text{Ab}(X) \) of abelian sheaves on \(X_{\text{et}} \), \(X \) a scheme, when \(X \) is noetherian, the abelian noetherian sheaves are the abelian constructible sheaves \([SGAA, IX 2.9]\). Let \(\text{Abc}(X) \) denote the category of abelian constructible sheaves and \(\ell-adc(X) \) the full subcategory of \(\text{Hom}(N^\infty, \text{Abc}(X)) \) generated by the constructible \(\ell \)-adic sheaves. Then we have shown that, when \(X \) is noetherian,

\[
\ell-adc(X) = (\ell\mathbb{Z})-\text{ad}(\text{Abc}(X)) = (\ell\mathbb{Z})-\text{adn}(\text{Ab}(X)),
\]

the first equality holding with no assumptions on \(X \). In \(P \), given an exact sequence \(0 \to X \to Y \to Z \to 0 \) with \(X \) strict and \(Y \) \(J \)-adic, \(Z \) is \(J \)-adic. Let \(u : \mathcal{F} \to \mathcal{G} \) be a
morphism of ℓ-adic sheaves on a scheme X. We apply the above formalism in the case
A = R, J = m, C = Ad(X), P = Hom(N^n, Ad(X)). Let \(\mathcal{F}' := \text{im} u \) and \(\mathcal{G}' := \text{coker} u \)
computed in the category P. Then the following diagram has exact rows and commutes.

\[
\begin{array}{c}
\text{R}/m^{n+1} \otimes_R \mathcal{F}_m & \text{id} \otimes h_{nm} & \text{R}/m^{n+1} \otimes_R \mathcal{G}_m \\
\downarrow f_{nm} & \downarrow g_{nm} & \downarrow h_{nm} \\
0 & \mathcal{F}'_n & \mathcal{G}'_n
\end{array}
\]

As \(f_{nm} \) is an epimorphism and \(g_{nm} \) an isomorphism, the snake lemma implies that \(h_{nm} \)
is an isomorphism; therefore \(\mathcal{G}' \) is a cokernel of \(u \) in \(m\text{-ad}(X) \). On a noetherian \(X \), we
have the following simple description of \(\ker u \). Let \(\mathcal{K} := \ker u \) in \(P \); \(\mathcal{K} \) is AR-\(m \)-adic.
Denoting by \(\mathcal{K}' \) the system of universal images of \(\mathcal{K} \), grâce à (3.2.3) there exists an
integer \(r \) such that the projective system

\[
m_r(\mathcal{K}') := (\mathcal{K}'_{n+r}/\ell^{n+1}, \mathcal{K}'_{n+r})_{n \in \mathbb{N}}
\]
is \(m \)-adic constructible. The composition below is a kernel of \(u \) in \(m\text{-ad}(X) \):

\[
m_r(\mathcal{K}') \longrightarrow \mathcal{K}' \longrightarrow \mathcal{K}.
\]

Returning to the setting of Deligne’s article, note that the AR-null sheaves become null
objects in the category of pro-sheaves on \(X \), as morphisms in that category between
two objects \(X := (X_i)_{i \in I}, Y := (Y_j)_{j \in J} \) indexed by sets \(I,J \) both equipped with filtered
preorders are given by

\[
\text{Pro Hom}(X, Y) := \lim_{\leftarrow} \lim_{\rightarrow} (X_i, Y_j),
\]
and if \(X \) is an AR-null object of \(P \), it is clear that the identity morphism goes to zero in
Pro Hom(\(X,X \)), so by the universal property of \(P_{AR} \), the AR-\(m \)-adn(\(\text{Ab}(X) \)) sheaves are
in the essential image of the \(m \)-adic constructible sheaves in the category of pro-sheaves.

Returning to claim a), the reduction to the punctual case requires a few words. The
equivalence between the categories we have seen above specializes to an equivalence
\(\mathbb{Z}_\ell - \text{fc} \rightarrow (\text{AR}, \mathbb{Z}_\ell) - \text{fc} \), where the latter is really the category AR-\(m \)-adn(\(\text{Ab}(X) \))=AR-
\(m \)-adn(\(\text{Ab}(X) \)) [SGA5, VI, 1.5.5], so given the projective system \((\mathcal{K}_n) \) where \(\mathcal{K}_n =
H^i(K \otimes^L \text{R}/m^n) \), letting \(j : U \rightarrow X \) be an open over which \(\mathcal{K}_0 \) is locally constant,
i : X − U → X the inclusion of the complement, by the stability of the property AR-
m-adic in short exact sequences [SGA5, V, 3.2.4], in order to conclude that \(\mathscr{H}_n \) is an
(AR, R)-constructible sheaf suffices to show that the projective systems \((j^* j_* \mathscr{H}_n) \) and
\((i^* i_* \mathscr{H}_n) \) are (AR, R)-constructible. This allows us to reduce to the situation where \((\mathscr{H}_n) \)
is a projective system of locally constant constructible sheaves, since the functors \(i_* j^* \) send
\(m \)-adic sheaves to \(m \)-adic sheaves and AR-null sheaves to AR-null sheaves (this can be
checked pointwise), now use [SGA5, V, 2.4.5]. By ‘gluing’ (c.f. proof of [SGA5, VI,
1.5.5]), we can reduce to proving over an open cover trivializing \(\mathscr{H}_0 \). More concretely,
we can cover our space by finitely many opens over which \(\mathscr{H}_0 \) is constant, and if we can
show that \(\mathscr{H}_0 \) is AR-m-adic over each, then the construction (3.2.3) above allows us to
find an integer for each open in our cover; taking the maximum \(r \) of these, replacing
\((\mathscr{H}_n) \) by its system of universal images \((\mathscr{H}_n') \), and forming \((\mathscr{H}'_{n+r}/m^{n+1} \mathscr{H}'_{n+r})_{n \in \mathbb{N}} \), we
have produced an R-constructible sheaf which is AR-isomorphic to the system \((\mathscr{H}_n) \).

In the punctual case, the results of [SGA5, XV p. 473] allow us to suppose that
we have a projective system \((K_r)_{r \in \mathbb{N}} \), where \(K_r \) is a complex of free \(R/m^r \)-modules of
finite type, null outside of an interval \([a, b]\) independent of \(r \), with transition morphisms
\(K_{r+1} \to K_r \) isomorphic (as morphisms of complexes) to \(K_{r+1} \to K_{r+1}/m^{r+1} K_{r+1} \), for
all \(r \in \mathbb{N} \). We will show that the projective system of cohomology “\(\lim \text{proj} \)” \(H^i(K_r) \) is
AR-m-adic, which will imply that it is an R-constructible sheaf in Deligne’s sense; i.e.
that it is isomorphic, as a pro-object, to a bona fide R-constructible sheaf. Abusively, put
\(K := \lim_{\leftarrow r} K_r \) (before, \(K \) refers to the stalk of an object in \(\mathbf{D}_{\text{c}}(X, R) \)). A key ingredient
is EGA 0 III 13.2.3, which says that if a projective system of complexes such as \((K_r) \)
satisfies the Mittag-Leffler condition, and if the projective system \((H^{i-1}(K_r)) \) does too,
then the canonical map \(H^i(K) \to \lim_{\leftarrow r} H^i(K_r) \) is bijective. As in our situation, the \(K_r \)
are complexes of finite groups and their cohomology modules \(H^i(K_r) \) are also finite
groups, the Mittag-Leffler condition is automatic. Our hypotheses on the complexes \(K_r \)
imply the existence of isomorphisms \(K_{r+s} \otimes_{R/m^{r+s}} R/m^s \cong K_s \) and the exactness of the
sequence

\[
0 \to K_{r+s} \otimes_{R/m^{r+s}} R/m^s \to K_{r+s} \otimes_{R/m^{r+s}} R/m^r \to 0
\]
for $1 \leq r, s$. The projective limit as $s \to \infty$ of the associated cohomology sequence is still exact by the fact that everything is still finite (ML). This projective limit can be broken up into short exact sequences

$$0 \to H^i(K)/m^r \to H^i(K_r) \to H^{i+1}(K)[m^r] \to 0.$$

Note that $\text{Tor}^R_1(M, R/m^r R) \cong M[m^r]$ for M an R-module. Since the modules $H^{i+1}(K)[m^r]$ stabilize as $r \gg 0$ and the transition morphisms on $(\text{Tor}^R_1(H^{i+1}(K), R/m^r))_{r \in \mathbb{N}}$ are multiplication by m, this projective system is evidently AR-null. As the projective system $(H^i(K)/m^r)_{r \in \mathbb{N}}$ is evidently m-adic, $(H^i(K_r))_{r \in \mathbb{N}}$ is AR-m-adic, and hence its image in the category of pro-sheaves “lim proj” $H^i(K_r)$ is isomorphic to the image of the m-adic system “lim proj” $H^i(K)/m^r$, which shows the former is m-adic in Deligne’s sense.

Remark. To see that each transition morphism on the projective system

$$(\text{Tor}^R_1(H^{i+1}(K), R/m^r))_{r \in \mathbb{N}}$$

is multiplication by m, note that by the equivalence $K^-((\mathcal{P})) \to D^-(R\text{-mod})$, where $K^-((\mathcal{P}))$ is the full triangulated subcategory of $K^-(R\text{-mod})$ generated by the complexes with projective objects in all degrees, there is, up to homotopy, a unique map of projective resolutions of R/m^r and R/m^{r-1} inducing the desired map $R/m^r \to R/m^{r-1}$, namely

$$
\begin{array}{c}
0 \longrightarrow R \longrightarrow R \longrightarrow 0 \\
\downarrow m \hspace{1cm} \downarrow \text{id} \\
0 \longrightarrow R \longrightarrow R \longrightarrow 0.
\end{array}
$$

Tensoring by $H^{i+1}(K)$ we find that the map on Tor^R_1 is indeed multiplication by m.

Claim c). Let $f : Y \to X$ be an arrow between schemes of finite type over S with S regular of dimension ≤ 1. Claim c) is that about the categories $D^b_{\text{ctf}}(X, R/m^n)$ being stable by the six functors, and that these functors also commute with reduction modulo m^n. This can be broken into 3 claims about the six functors: (1) that they preserve constructibility, (2) that they preserve finite tor-dimension, and (3) that they commute with reduction modulo m^n. The discussion of Th. finitude 1.1, 1.5–1.7 covers claims 1 & 2 for the four functors $Rf_*, f^*, Rf_!, Rf^!$, as well as RHom. Claim 3 for RHom is discussed below. The case of \otimes^L is more or less trivial. Claim 3 for the four functors
is the presence of isomorphisms like $R/m^n \otimes^L Rf_!(K \otimes^L R/m^{n+1}) \sim Rf_!(K \otimes^L R/m^n)$ in $D^b_{ctf}(X, R/m^n)$. Because of the finitude hypotheses (c.f. note to Th. finitude 1.3), we can apply the recipe of Rapport 4.12 to construct the arrow in $D^b_{ctf}(X, R/m^n)$ in the cases of $Rf_!, Rf_!$. To see the arrow is an isomorphism, we can then copy the reasoning of Rapport 4.9.1. The case of f^* is trivial, since after replacing $K \otimes^L R/m^{n+1}$ by a bounded complex of flat sheaves M, we have isomorphisms

$$f^*(K \otimes^L R/m^{n+1}) \otimes^L R/m^n \sim f^*(M) \otimes R/m^n \sim f^*(M \otimes R/m^n) \sim f^*(K \otimes^L R/m^n),$$

as tensor product commutes with inductive limits. As for $Rf^!$, to simplify the notation, let K_{n+1} denote $K \otimes^L R/m^{n+1}$. We obtain an arrow

$$R/m^n \otimes^L_{R/m^{n+1}} Rf^!(K_{n+1}) \to Rf^!(K_{n+1} \otimes^L R/m^n)$$

in $D^+(Y, R/m^n)$ from the adjunction

$$\text{Hom}_{D^+(X, R/m^n)}(Rf_!L, M) \cong \text{Hom}_{D^+(Y, R/m^n)}(L, Rf^!M)$$

with $L = R/m^n \otimes^L_{R/m^{n+1}} Rf^!(K_{n+1})$ and $M = K_{n+1} \otimes^L R/m^n$ in the following way:

$$R/m^n \otimes^L Rf^!(K_{n+1}) \to Rf^!Rf_!(R/m^n \otimes^L Rf^!(K_{n+1})) \sim$$

$$\sim Rf^!(R/m^n \otimes^L Rf_iRf^!(K_{n+1})) \to Rf^!(R/m^n \otimes^L K_{n+1}).$$

As claims 1 & 2 have been verified, this actually yields an arrow in $D^b_{ctf}(Y, R/m^n)$. We can localize this morphism with respect to $u : U \to Y$ étale, as $Ru^! = u^*$, which we know commutes with reduction modulo m^n, and in this way, replacing Y by U, assume f factors as $U \leftarrow i \to Z \twoheadrightarrow h \to X$ with i a closed immersion and h smooth of relative dimension d. As the above morphisms are natural, and the composition of the unit and counit $Rf^! \to Rf^!Rf_! \to Rf^!$ is the identity transformation of $Rf^!$, and $Rf^! = Rh^!Ri^!$ (since the left adjoint i_* of $i^!$ is exact), it suffices to show that $Rh^!$ and $Ri^!$ commute with reduction modulo m^n. The case of $Rh^!$ is trivial since $Rh^!K_{n+1} = K_{n+1}(d)[2d]$. Turning to $Ri^!$, let $j : Z \leftarrow U \to X$ denote the open immersion of the complement of U; we have a commutative diagram with distinguished triangles
for rows
\[
\begin{array}{c}
\xymatrix{
R/m^n \otimes^L i_* R^j i^! K_{n+1} \ar[r] & R/m^n \otimes^L K_{n+1} \ar[r] & R/m^n \otimes^L j_* j^* K_{n+1} \\
\ar[u] & \ar[u] & \ar[u] \\
i_* R^j i^!(K_{n+1} \otimes^L R/m^n) \ar[r] & R/m^n \otimes^L K_{n+1} \ar[r] & R/j_* j^!(K_{n+1} \otimes^L R/m^n) \\
\ar[u] & \ar[u] & \ar[u] \\
& \ar[d] & \\
& & .
\end{array}
\]

We obtain an isomorphism \(R/m^n \otimes^L i_* R^j i^! K_{n+1} \overset{\sim}{\to} i_* R^j i^!(K_{n+1} \otimes^L R/m^n) \) from (TR3).

Returning now to \(\mathbb{R} \text{Hom} \), here is a useful lemma which adapts Th. finitude 4.6.

Lemma. Let \(X \) be a noetherian scheme, \(\Lambda \) a left noetherian ring, and \(K \in D^- (X, \Lambda) \). Then the following are equivalent.

1. \(K \) is of finite Tor-dimension and the sheaves \(\mathcal{H}^i (K) \) are locally constant constructible.

2. \(K \) is locally isomorphic to a bounded complex of locally constant, flat \(\Lambda \)-modules; i.e. there is a finite étale covering \(\{ U_i \to X \} \) such that \(K|_{U_i} \) is isomorphic (in \(D^- (U_i, \Lambda) \)) to a bounded complex of constant sheaves of projective \(\Lambda \)-modules of finite type.

The argument follows Th. finitude 4.5, except now the \(\mathcal{H}^i (K) \) are moreover locally constant constructible. The sheaves \(A \) and \(B \) are defined by the cartesian diagram

\[
\begin{array}{ccc}
K^n & \to & K^n/\text{im } d \\
\uparrow & & \uparrow \\
A & \overset{u}{\to} & B \\
\uparrow & & \uparrow \\
& \to & \ker d
\end{array}
\]

and \(B \) is locally free as it sits in the middle of the exact sequence

\[
0 \to \mathcal{H}^n (K) \xrightarrow{(\text{id}, 0)} B \to \ker d \to \mathcal{H}^{n+1} (K)
\]

where \(\ker d \) here denotes the kernel of the differential on the complex \(K' \) being constructed and is hence locally constant constructible.

As \(u \) is surjective, localizing, we may assume \(B \) constant constructible and that \(u \) surjects on global sections, defining a morphism \(v : \Lambda^{\otimes d} \to A \) with the property that \(vu \) is an epimorphism, and we define \(K^m = \Lambda^{\otimes d} \).
Suppose K is of Tor-dimension $\leq r$. Propagating the above procedure to the left as far as degree $-r - 1$, we produce an étale morphism $U \to X$, constant constructible sheaves

$$K^{r-r+1} \to K^{r-r} \to K^{r-r+2} \to \cdots$$

with the property that $K^{r-r}/\text{im} \, d$ is constant constructible and flat. Then, over U, the complex

$$\cdots \to 0 \to K^{r-r}/\text{im} \, d \to K^{r-r+1} \to K^{r-r+2} \to \cdots$$

is quasi-isomorphic to K, and has the desired properties.

Corollary (Th. finitude 1.7). If Λ is moreover commutative and of torsion, and in the situation of Th. finitude, then

$$R \text{Hom} : D^b_{ctf}(X, \Lambda) \times D^b_{tf}(X, \Lambda) \to D^b_{tf}(X, \Lambda).$$

Following Th. finitude 1.7, as the finite Tor-dimension is stable by $R \, f^\ast, \, R \, f_\ast, \, f^\ast, \, R \, f_\ast$, devissant the first variable (say, \mathcal{F}) relative to a partition of X, and using the adjunction

$$R \, \text{Hom}(j_! \mathcal{F}, \mathcal{G}) \leftarrow R \, j_! \, R \, \text{Hom}(\mathcal{F}, R \, j^! \mathcal{G})$$

for $j : Y \to X$ the inclusion of a locally closed subscheme (c.f. SGA 4, IX 2.5 & XVIII §3.1), one reduces to the situation where the $\mathcal{H}^i(\mathcal{F})$ are locally constant. Localizing, we can replace \mathcal{F} by a bounded complex of constant sheaves of projective Λ-modules of finite type. As in this case Hom computes pointwise, we can compute $R \, \text{Hom}$ with respect to such a complex. Finally, if N and M are Λ-modules, N projective and M of Tor-dimension $\leq r$, then $\text{Hom}(N, M)$ is of Tor-dimension $\leq r$, which can be seen after replacing M by a complex of flat modules 0 to the left of $-r$ and writing N as a direct summand of a free module.

Returning to the setting of the paper, with R the ring of integers of a finite extension of \mathbb{Q}_p, m its maximal ideal, let’s assume that reduction mod m^n commutes with the four
operations $Rf_*, f^*, Rf_!$, and $Rf_!$, and show that for $\mathcal{F}, \mathcal{G} \in D_{\text{ctf}}^b(X, R)$,

\[(\dagger) \quad R\text{Hom}(\mathcal{F} \otimes^L R/m^{n+1}, \mathcal{G} \otimes^L R/m^{n+1}) \otimes^L_{R/m^{n+1}} R/m^n = R\text{Hom}(\mathcal{F} \otimes^L R/m^n, \mathcal{G} \otimes^L R/m^n) \quad \text{in } D_{\text{ctf}}^b(X, R/m^n).\]

Devissant $\mathcal{F} \otimes^L R/m$ with respect to a partition of X, we may assume that its cohomology sheaves are locally constant, and therefore the same is true of $\mathcal{F} \otimes^L R/m^{n+1}$ by considering the m-adic filtration on a finite complex of flat sheaves representing it. Localizing, we may replace $\mathcal{F} \otimes^L R/m^{n+1}$ with a bounded complex N^* of free R/m^{n+1}-modules of finite type and compute $R\text{Hom}$ with respect to N^*, since for \mathcal{F} locally free, $\text{Hom}(\mathcal{F}, \mathcal{G})_x = \text{Hom}(\mathcal{F}_x, \mathcal{G}_x)$. Now the equality (\dagger) is clear.

Consider the example: X finite type over S, \mathcal{F} and \mathcal{G} two constructible torsion-free R-sheaves. The claim is that the projective system

$$\text{Ext}^i(\mathcal{F}, \mathcal{G}) := \mathcal{H}^i R\text{Hom}(\mathcal{F}, \mathcal{G}) = \text{“lim proj ”}\text{Ext}^i_{R/m^n}(\mathcal{F} \otimes R/m^n, \mathcal{G} \otimes R/m^n)$$

forms a constructible R-sheaf. By part (a) of 1.1.2, it suffices to show that $R\text{Hom}(\mathcal{F}, \mathcal{G}) \in D_{\text{ctf}}^b(X, R)$. By Th. finitude 1.6 and the previous corollary, $R\text{Hom}$ sends $D_{\text{ctf}}^b(X, R/m^n) \times D_{\text{ctf}}^b(X, R/m^n)$ into $D_{\text{ctf}}^b(X, R/m^n)$, so $R\text{Hom}(\mathcal{F} \otimes R/m^n, \mathcal{G} \otimes R/m^n) \in D_{\text{ctf}}^b(X, R/m^n)$. Finally, by (\dagger),

$$\text{“lim proj ”} R\text{Hom}(\mathcal{F} \otimes R/m^n, \mathcal{G} \otimes R/m^n) \in D^-(X, R).$$

Truncation & Tor-dimension. In part (e), Deligne addresses the truncation operators $\tau_{\leq n}$. The issue is that, while a submodule of a flat R-module is flat, a submodule of a flat R/m^n-module need not be. To address this deficiency, Deligne introduces the modified truncation operators $\tau'_{\leq n}$, which preserve the finite Tor-dimension. As these properties are of a pointwise nature, we may consider the situation in the category of R-modules, and the categories $D_{\text{part}}(R), D_{\text{part}}(R/m^k)$. Applying Houzel’s argument at the end of SGA 5, Exp. XV to the stalk of $K \in D_{\text{ctf}}^b(X, R)$, we may represent $K_k = K \otimes^L R/m^k$ by a bounded complex of free R/m^k-modules and the isomorphisms $K_{k+1} \otimes^L_{R/m^{k+1}} R/m^k \cong K_k$ by isomorphisms of complexes $K_{k+1} \otimes R/m^k \cong K_k$. Taking the projective limit of these complexes, we obtain a bounded complex of free R modules which we will again, as in the notes to claim a), (abusively) notate K. (To see freeness,
note that if \(r \) equals the rank of \(K_1^i = K^i \otimes R/m \), there exists by Nakayama an exact sequence

\[
N \to R^r \to K^i \to 0
\]

which after tensoring by \(R/m^k \) induces an isomorphism \((R/m^k)^r \simeq K^i_k\), showing \(N \subset m^k R \) for all \(k \) and hence \(N = 0 \). As before, by the Mittag-Leffler condition, \(H^i(K) = \varprojlim H^i(K_k) \). Therefore, the submodule of \(\ker d \) consisting of cycles whose image in \(H^n(K_k) \) are in \(\text{im}(H^nK \to H^n(K_k)) \) is the reduction modulo \(m^k \) of a flat \(R \)-module, as these cycles coincide with the reduction mod \(m^k \) of cycles of \(K^i \), which form a free submodule of \(K^i \). More precisely, in view of the commutative diagram

\[
\begin{array}{ccc}
K^{n-1} & \xrightarrow{d^{n-1}} & K^n & \xrightarrow{d^n} & K^{n+1} \\
\downarrow & & \downarrow & & \downarrow \\
K^{n-1} \otimes R/m^n & \xrightarrow{d^{n-1} \otimes \text{id}} & K^n \otimes R/m^k & \xrightarrow{d^n \otimes \text{id}} & K^{n+1} \otimes R/m^k
\end{array}
\]

the submodule of \(\ker(d^i \otimes \text{id}) \) consisting of cycles whose image in \(H^i \) lie in \(\text{im}(H^i(K) \to H^i(K \otimes R/m^k)) \) is the submodule \((\ker d^n) \otimes R/m^k + \text{im}(d^{n-1} \otimes \text{id}) \subset K^n \otimes R/m^k \). As \(\text{im}(d^{n-1} \otimes \text{id}) \subset (\ker d^n) \otimes R/m^k \), confirming the above description and recognizing \(\tau'_{\leq n} K_k \) as a bounded complex of free \(R/m^k \) modules. It may be that \(\tau'_{\leq n} K_k \) is no longer quasi-isomorphic to \(K_k \), but it is clear by construction that the pro-sheaf \(H^n(K_k) \) is not affected by the operator \(\tau'_{\leq n} \); more precisely, by the exact sequence (*) of claim a), \(H^i(\tau'_{\leq n} K_k) \simeq H^i(K) \otimes_{R} R/m^k \) and hence both are AR-isomorphic to \(H^i(K_k) \).

1.1.3. Extension of scalars from \(R \) to \(E \) for a constructible \(R \)-sheaf \(F \) is more or less straightforward: letting \(E = Q_\ell, R = Z_\ell \), the idea is that if is \(Z_\ell \)-constructible, the torsion subsheaves \(\text{Tor}^Z_1(\mathcal{F}, Z/\ell^n) = \ker \ell^n \) stabilize for some \(n \), and then multiplication by \(\ell \) on \(F \) means multiplying \(F \otimes Z/\ell^n \) by \(\ell^n \) for each \(m \) to produce an AR-\(\ell \)-adic sheaf, and then forming the associated \(\ell \)-adic sheaf, to produce the exact sequence of \(\ell \)-adic sheaves

\[
0 \to \text{Tor}^Z_1(\mathcal{F}, Z/\ell^n) \to \mathcal{F} \xrightarrow{\ell^n} \mathcal{F}/\ker \ell^n \to 0.
\]
The story in $D^b_c(X, \mathbb{Z}_\ell)$ works more or less the same way. For an object K in this category, we represent $K_m = K \otimes^L \mathbb{Z}/\ell^m$ by a complex of \mathbb{Z}/ℓ^m-flat sheaves (i.e. with free stalks); multiplication by ℓ^n means multiplying K_m by ℓ^n. This induces multiplication by ℓ on the cohomology, and we’re back in the previous situation, since the cohomology sheaves form AR-ℓ-adic systems. More generally, if a is in \mathbb{Z}_ℓ, letting a_m denote the image of a in \mathbb{Z}/ℓ^m, the commutativity of the diagram

$$
\begin{array}{ccc}
K_{m+1} & \xrightarrow{a_{m+1}} & K_{m+1} \\
\downarrow \otimes \mathbb{Z}/\ell^m & & \downarrow \otimes \mathbb{Z}/\ell^m \\
K_m & \xrightarrow{a_m} & K_m
\end{array}
$$

shows that a induces an endomorphism of $D^b_c(X, \mathbb{Z}_\ell)$.

1.1.7. A representation $\mathbb{Z} \to \text{GL}(V)$, sending n to F^n, where V is a \mathbb{Q}_ℓ-vector space of dimension n, is continuous if and only if the eigenvalues of F are ℓ-adic units.

To see sufficiency, note that we can choose a basis for V so that the morphism $\mathbb{Z} \to \text{GL}(V)$ factors through $\text{GL}(\mathbb{Z}_\ell^n) = \varprojlim \text{GL}((\mathbb{Z}/\ell^n)^n)$, a profinite group, and we may extend $\mathbb{Z} \to G$ to a morphism $\hat{\mathbb{Z}} \to G$ for any profinite group G by the universal property of profinite completion, which we state and prove now.

The profinite completion of a group H (with respect to normal subgroups of finite index in H) is denoted \hat{H}, so that $H \to \hat{H}$ has dense image. The profinite completion \hat{H} enjoys the universal property that for every profinite group G and continuous homomorphism $H \to G$, there is a unique homomorphism $\hat{H} \to G$ making the diagram

$$
\begin{array}{ccc}
H & \longrightarrow & \hat{H} \\
\downarrow & & \downarrow \\
G & \leftarrow & \text{ }
\end{array}
$$

commute.

To see this, simply use the description of G as $\varprojlim G/N$ as N ranges over open normal subgroups of G. The preimage M of N in H is an open normal subgroup of finite index, as G/N is finite. Therefore $H \to G/N$ factors through H/M, and to give a continuous morphism from \hat{H} to G it suffices to give compatible continuous maps
\(\hat{H} \to G/N. \) Continuity is assured by the above remark; compatibility is assured by the map \(H \to G, \) which determines the maps \(\hat{H} \to G/N. \)

Returning to (1.1.7), to see necessity, we assume we have found a continuous extension \(\rho. \)

\[\begin{array}{ccc}
\mathbb{Z} & \to & \text{GL}(V) \\
\rho & \to & \hat{\mathbb{Z}}
\end{array} \]

The image \(\rho(\hat{\mathbb{Z}}) \) is compact, so the set \(\rho(\hat{\mathbb{Z}})Z^n_\ell \) is compact, for \(Z^n_\ell \) a \(\mathbb{Z}_\ell \)-lattice in \(V, \) so \(\rho(\hat{\mathbb{Z}})Z^n_\ell \subset \frac{1}{p^m}Z^n_\ell \) for some \(m. \) Letting \(L \) denote the \(\mathbb{Z}_\ell \)-span of \(\rho(\hat{\mathbb{Z}})Z^n_\ell, \) \(L \) is a \(\mathbb{Z}_\ell \)-submodule of \(\frac{1}{p^m}Z^n_\ell, \) hence free (of rank \(n). \) This recognizes \(F \in \rho(\hat{\mathbb{Z}}) \) as an element of \(\text{Aut}(L), \) so the eigenvalues of \(F \) are \(\ell \)-adic units indeed.

1.2.6. ‘On notera que, pour \(k \) un corps fini, une représentation \(V \) de \(W(\overline{k}, k) \) est automatiquement \(\iota \)-mixte.’ \(\rightsquigarrow \) This follows from the existence of Jordan normal form.

1.3.9. (When reading the corollary, recall that a semisimple algebraic group is connected by definition.) We wish to understand why \(G^{00} \) is reductive. Note first that the sum of the simple \(\pi_1(X, \overline{x}) \)-modules is \(W \)-stable since if \(w \in W \) and \(V \) is a \(\pi_1(X, \overline{x}) \)-module, then \(wV \) is again a \(\pi_1(X, \overline{x}) \)-module since \(\pi_1(X, \overline{x}) \) is a normal subgroup of \(W; \) applying this argument with \(wV \) shows that \(wV \) is simple iff \(V \) is. Next observe that if \(\rho : W(X_0, \overline{x}) \to \text{GL}(\mathcal{F}_\pi) \) is the representation defining \(\mathcal{F}_0, \) then \(\rho(\pi_1(X, \overline{x})) \) and its Zariski closure \(G^0 \) have the same invariant subspaces (to see this, form a basis for \(\mathcal{F}_\pi \) beginning with a basis for an invariant subspace). Therefore we see that \(G^0 \) acts semisimply since \(W(X_0, \overline{x}) \) does by assumption.

Now recall that \(R(G^0), \) the radical of \(G^0, \) is a connected and solvable normal subgroup of \(G^0. \) By the argument above, any normal subgroup of \(G^0 \) acts semisimply; combining this with the Lie-Kolchin theorem, we see that \(\mathcal{F}_\pi \) decomposes as a direct sum of one-dimensional irreducible \(R(G^0) \)-modules. The unipotent part of \(R(G^0), \) which is the unipotent radical \(R_u(G^0), \) must therefore act by the identity, and we see that \(R_u(G^0) = R_u(G^{00}) = \{1\}; \) i.e. that \(G^{00} \) is reductive. Note we have proved the following
Lemma. If \(\mathcal{V} \) is a finite-dimensional vector space over an algebraically closed field and \(G \) is a closed subgroup of \(\text{GL}(\mathcal{V}) \), then \(G \) is reductive.

This result appears in [Milne, 21.60] as

Proposition. Let \(G \) be a connected group variety over a perfect field \(k \). The following conditions on \(G \) are equivalent.

1. \(G \) is reductive;
2. The radical \(R(G) \) of \(G \) is a torus;
3. \(G \) is an almost-direct product of a torus and a semisimple group;
4. \(G \) admits a semisimple representation with finite kernel.

More is true. In fact, for \(G \) a connected reductive group, say, over an algebraically closed field \(k \), the maximal central \(k \)-torus \(Z \) coincides with \((\mathcal{C}G)^\circ\), the connected component of the identity of the center of \(G \), and the multiplication homomorphism \(Z \times \mathcal{D}(G) \to G \) is a central isogeny, i.e. an isogeny with central kernel, where \(\mathcal{D}(G) = (G, G) \) is the derived subgroup. This implies that \(Z \to G/\mathcal{D}(G) \) is a central isogeny. Here, our \(G \) is Deligne’s \(G^{0(0)} \), our \(Z \) is Deligne’s \(T_1 \), and our \(G/\mathcal{D}(G) \) is Deligne’s \(T \), as a connected, smooth, reductive, and commutative group is a torus [Milne, 19.12], and a quotient of a reductive group over a field of characteristic 0 is reductive.

The set \(F \) of characters by which \(T_1 \) acts on \(\mathcal{F}_T \) generates \(X(T_1) \) since the representation of \(T_1 \) is faithful, and, as \(T_1 \) is a torus, diagonalizable. Therefore, with the right choice of basis, the representation of \(T_1 \) looks like \(\text{diag}(\chi_i) \) for characters \(\chi_i \in F \). As the representation is faithful, these characters generate the character group \(X(T_1) \). (The character group of \(\text{diag}(\chi_i) \), which is isomorphic to the character group of \(T_1 \), is generated by the \(\chi_i \).)

The group \(W(X_0, \overline{X}) \) acts on \(G^0 \) by conjugation. Recall that the neutral component of an algebraic group is a characteristic subgroup, and so is the center. Therefore \(T_1 \), which can be described as the neutral component of \(Z(G^{00}) \), is acted upon by \(W(X_0, \overline{X}) \). Recall that the functor \(X \) which takes an algebraic group to its character group induces a contravariant equivalence from the category of diagonalizable algebraic groups with
the finitely generated commutative groups, and as we have seen, $W(X_0, \pi)$ acts on $X(T_1)$ by permuting factors, hence through a finite quotient.

We would like to know why the group of outer automorphisms of G^{00} restricting to the identity on T_1 is finite. The group G^{00} admits a maximal split torus T_2 so that (G^{00}, T_2) is a split reductive group. The radical $R(G^{00}) = T_1$ is the largest subgroup of the multiplicative group $Z(G^{00})$, so the quotient $Z(G^{00})/R(G^{00})$ is finite [Milne, 19.10]. Recall the definition of isomorphism of root data [Milne, 23.2]. An isomorphism φ of split reductive groups defines an isomorphism f of root data, and every isomorphism of root data f arises from a φ, unique up to an inner automorphism [Milne, 23.26]. Moreover for a split reductive group (G, T) we have a canonical isomorphism $\text{Out}(G) \simeq \text{Aut}(X, \Phi, \Delta)$, where the latter is automorphisms of based root data [Milne, 23.46]. Given such a $\varphi : (G, T) \rightarrow (G', T')$, the map f is defined by the formula $f(\chi') = \chi' \circ \varphi|_T$ for $\chi' \in X(T')$ [Milne, 23.5]. Suppose φ is now an automorphism of (G^{00}, T_2) and restricts to the identity on the radical T_1. The isomorphism f is a fortiori a central isogeny and its action on $Z\Phi$ (the Z-submodule of $X^*(T_2)$ generated by the roots Φ) preserves the base Δ, hence its action on $Z\Phi$ amounts to permuting a finite set. On the other hand, the quotient $T_2/Z(G^{00})$ has character group the subgroup $Z\Phi$ of $X^*(T_2)$ [Milne, 21.9], hence the the root lattice $Z\Phi$ has finite index in $X^*(T_2/T_1)$. As $Z(G^{00})/T_1$ is finite, this is enough to conclude that subgroup of $\text{Aut}(X, \Phi, \Delta)$ corresponding to automorphisms of G^{00} which restrict to the identity on T_1 is finite, hence that the subgroup of $\text{Out}(G^{00})$ consisting of those automorphisms fixing T_1 is also finite.

Now, if w is an element of $W(X_0, \pi)$ of degree 1, and \overline{w} the image of w in $GL(\overline{F}_T)$, G is the semi-direct product of Z by $G^0 = G^{00}$ relative to the action $\text{int}(\overline{w})$ of Z on G^0. As this action is given by an interior automorphism of G^0, by multiplying w by an element of $\pi(X, \pi)$, we make the action of $\text{int}(\overline{w})$ trivial, and recognize $G \simeq G^{00} \times Z$.

The proof of (1.3.9) follows easily from (1.3.8). Note that once one has reduced to \mathcal{F}_0 semisimple, it is easy to see that the radical of G^{00} in this case is trivial, as it is by definition the largest connected solvable normal subgroup variety of G^{00}, hence contained in the connected component of the identity of G^0, so if G^0 is an extension of a finite, hence discrete, group, $R(G^{00})$ lies in the kernel of this extension, namely in the
semisimple subgroup, so in fact \(R(G^{(0)}) = \{ e \} \), as connected normal subgroup varieties of a semisimple group are semisimple [Milne, 21.52].

1.3.10. Note that (iv) should read 'Le centre de \(G \) s'envoie sur un sous-groupe d'indice fini de \(Z \).' The crux of the direction (iv) \(\Rightarrow \) (i) is that, while \(G \) is not \(a \) priori a linear algebraic group, \(G/Z \), as an extension of a finite group by a linear algebraic group, is.

1.3.12. The central element \(g \) acts by a scalar by Schur's lemma.

1.3.13. (i) The claim rests on the following

Lemma. Let \(X_0, X'_0 \) be normal connected schemes of finite type over a field with generic points \(\xi, \xi' \) and function fields \(K = k(\xi) \) and \(K' = k(\xi') \). Let \(\Omega, \Omega' \) be algebraically closed extensions of \(K, K' \), defining geometric points \(a, a' \) of \(X_0, X'_0 \) centered on \(\xi, \xi' \), respectively. If \(f : X'_0 \to X_0 \) is a dominant morphism, then the image of the induced map \(\pi_1(X'_0, a') \to \pi_1(X_0, a) \) is an open subgroup of finite index.

Observing that \(\pi_1(X'_0, a') \) acts on \((f^* \mathcal{F})_{a'} \) via the map on \(\pi_1 \) in the lemma induced by \(f \), we see that there is a central element \(g \in G' \) of positive degree and a morphism \(G' \to G \) sending \(g \) to a central element of \(G \) of positive degree, and the action of \(g \) on \(\mathcal{F}_{0,a} \) via this map is the same as the action of \(g \) on \((f^* \mathcal{F}_0)_{a'} \).

Proof of Lemma. The extensions \(\Omega, \Omega' \) define geometric points \(a_1, a'_1 \) of \(S = \text{Spec}(K) \) and \(S' = \text{Spec}(K') \), respectively. The dominant morphism \(f : X'_0 \to X_0 \) induces an extension of fields \(K \subset K' \). Then \(\pi_1(S, a_1) \to \pi_1(X_0, a) \) is surjective [SGA1, V 8.2], and after identifying \(\pi_1(S, a_1) \) with \(\text{Gal}(K^{\text{sep}}, K) \), the kernel is identified with those automorphisms which fix all finite extensions of \(K \) in \(\Omega \) which are unramified over \(X_0 \), and likewise for \(\pi_1(S', a'_1) \to \pi_1(X'_0, a') \). If \(L \) is an extension of \(K \) unramified over \(X_0 \), then \(L \otimes_K K' \) is an extension of \(K' \) unramified over \(X'_0 \) [SGA1, I 10.4(iii)]. The operation on étale covers of \(X_0 \) consisting of taking inverse image along \(f \) followed by fiber at \(a' \) is a fiber functor for \(X_0 \), hence induces a continuous homomorphism of groups \(\pi_1(X'_0, a') \to \pi_1(X_0, a) \) [SGA1, V 6.2]. The action of \(\pi_1(X'_0, a') \) on \((f^* \mathcal{F}_0)_{a'} \) is by restriction with respect to this homomorphism. This homomorphism, in turn, is
induced by restriction of $\pi_1(S', a'_i) \to \pi_1(S, a)$, since if L is as above, an automorphism $\sigma \in \ker(\pi_1(S', a'_i) \to \pi_1(X'_0, a')$ acts on $L \otimes_K K'$ by the identity as $L \otimes_K K'$ is unramified. As K'/K is finitely generated, $K' \cap K^{\text{sep}}$ is a finite extension of K, so the image of $\pi_1(S', a'_i) \to \pi_1(X_0, a)$ is an open subgroup of finite index isomorphic to the image of $\text{Gal}(K^{\text{sep}}/K' \cap K^{\text{sep}})$ in $\pi_1(X_0, a)$. \hfill \square

(ii) Choose a basis for representations corresponding to \mathcal{R}_0 and \mathcal{G}_0 so that Frobenius is upper-triangular in both, and then recall the form of the Kronecker (tensor) product of matrices, which has the property that the Kronecker product of upper-triangular matrices is upper-triangular.

(iii) The claim rests on two observations. The first is that if \mathcal{R}_0 is defined by a representation V of G, the eigenvalues of any $g \in G$ coincide with the eigenvalues of g acting on the semi-simplification of V with respect to any Jordan-Hölder series. To see this, choose a basis for each graded piece so that g is upper-triangular, and then order a lift of these bases according to the filtration, beginning with the smallest piece. The second observation is that if we begin with an ordered basis (a_i) for V with respect to which g is upper triangular, then a basis B for $\bigwedge^d V$ consisting of a-forms in the a_i can be found. If the function w takes an a-form in the a_i and outputs the sum of the subscripts which appear (so $w(a_1 \wedge a_3 \wedge a_4) = 8$), then g is upper-triangular with respect to any ordering of B which respects the total order w. The claim follows.

1.3.14. It suffices to show that the image of $W(X_0, x)$ in $\text{GL}(r, E)$ is bounded by the argument of (1.1.7), which we repeat now. We lose nothing by supposing $E = \mathbf{Q}_\ell$, in which case the image W of $W(X_0, x)$ in $\text{GL}(r, E)$ is bounded if it is contained in $\frac{1}{\ell} \text{GL}(r, \mathbf{Z}_\ell)$. Applying W to Z'_ℓ and taking the Z'_ℓ span, we get a free \mathbf{Z}_ℓ-submodule of $\frac{1}{\ell} \mathbf{Z}_\ell'$ of rank r, on which W acts by automorphisms. This recognizes W as isomorphic to a subgroup of $\text{GL}(r, \mathbf{Z}_\ell)$, a profinite group to which it is easy to extend a map $W(X_0, x) \to \text{GL}(r, \mathbf{Z}_\ell)$ to a map from the completion $\pi_1(X_0, x) \to \text{GL}(r, \mathbf{Z}_\ell)$.

To see that $\rho(W^0_1) \subset G^{00}$ is compact and Zariski dense, observe that W^0_1 is a closed subgroup of $\pi_1(X, \overline{x})$, hence a profinite group, and G^0 is by definition the Zariski closure of the image of $\pi_1(X, \overline{x})$. In particular, the inverse image of G^{00} is Zariski dense in G^{00}.
1.3.15. Relevant sources are Bourbaki, *Lie Groups and Lie Algebras* II, §7, Demazure and Gabriel, *Groupes Algébriques*, II, §6, [Milne, 10, 14d]. Bourbaki explains how to extend the logarithm to the union of all compacta. You need to know that for all compact $G \subset H(E)$, $x \in G$, and neighborhood about e, there is a strictly increasing sequence of integers (n_i) such that $x^{n_i} \in V$, which allows one to extend the logarithm by Deligne’s formula. Bourbaki also explains that there is an open subgroup V of e in $H(E)$ such that log is an analytic isomorphism of V onto an open subgroup of $\text{Lie} H$, with inverse exp. It follows that L^1, the E-linear span of log K, coincides with the E-linear span of log$(K \cap V)$. We have for $X \in \text{log} E$ that $\exp(nX) = \exp(X)^n$, and $\log(g^n) = n \log(g)$ for any g where log is defined.

For $g \in H(E)$, $X \in \text{Lie} H$,

\[(\dagger) \quad g \cdot \exp(X) \cdot g^{-1} = \exp(\text{Ad}(g)(X)), \]

whenever these expressions converge. Taking $X \in \text{log}(K \cap V)$ and $g \in V \cap K$, we find that the left side is in $K \cap V$. Moreover there is an $n \in \mathbb{Z}$ such that both $n \text{Ad}(g)(X)$ and nX lie in $\text{log} V$. We find that $\text{Ad}(g)(nX) \in K \cap V$, therefore that for $g \in V \cap K$, $\text{Ad}(g)$ preserves L^1, therefore L^1 is also preserved by V, which is the Zariski closure of $V \cap K$ in K.

Therefore the adjoint representation

\[\text{Ad} : H \to GL(\text{Lie} H) \]

factors through the algebraic subgroup $F \subset GL(\text{Lie} H)$ which fixes the L^1. Applying the functor Lie, one finds that

\[\text{ad} : \text{Lie} H \to gl(\text{Lie} H) \]

factors through $\text{Lie} F$. As ad induces the bracket on $\text{Lie} H$, it follows that L^1 is an ideal in $\text{Lie} H$. As H is semisimple over a field of characteristic 0, Lie subalgebras of $\text{Lie} H$ are in bijection with connected algebraic subgroups of H (c.f. e.g. Demazure and Gabriel, *Groupes Algébriques*, II §6 2.4 & 2.7). As the exponential is functorial (c.f. *ibid*, 3.4), the algebraic subgroup corresponding to \mathfrak{t} contains K, hence must equal H by density, hence $L^1 = \text{Lie} H$.
Let N denote the normalizer of K and $g \in N$. Let $X \in K$. Then there is an integer n such that both $X^n \in V$ (hence $n \log X \in \log V$) and $n \text{Ad}(g)(\log X) \in \log V$. Applying (†) to $\log(X^n) = n \log X$ we find that $\exp(\text{Ad}(g)(n \log X)) = g \cdot X^n \cdot g^{-1} \in V \cap K$ so that $\log(g \cdot X \cdot g^{-1}) = \text{Ad}(g)(\log X)$ and we find $\text{Ad}(g)$ preserves the set $\log K$ and a fortiori L^0.

The morphism Ad factors as a quotient $H \to H/Z(H)$ followed by a closed immersion. As H is semisimple, $Z(H)$ is finite, hence the quotient $H \to H/Z(H)$ is finite (a fortiori proper) [Milne, 21.7, 7.15, 5.39].

The subgroup $K \subset H(E)$ is a compact subset of a complete metric space, hence closed for the topology induced by the non-archimedean metric on E. Hence K is a closed Lie subgroup of $H(E)$ for that metric, and hence N is a closed subgroup of $H(E)$ with respect to the metric induced by the one on E. As L^0 is compact and isomorphic to an \mathcal{O}_E-lattice in $\text{Lie} H$, its automorphism group $\text{Aut} L^0$ is compact; as Ad is proper, $\text{Ad}^{-1}(\text{Aut} L^1) \subset H(E)$ is compact, and $N \subset \text{Ad}^{-1}(\text{Aut} L^0)$ is a closed subgroup, hence also compact.

1.4.1. (b) See Weil I, (2.9).

1.4.2. Let \mathfrak{X} be a geometric point of X; as X_0 is absolutely irreducible, X is connected. The pullback of lisse sheaves along the morphism $X \to X_0$ identifies with the restriction of representations along the continuous homomorphism $\pi_1(X, \mathfrak{X}) \to W(X_0, \mathfrak{X})$, and likewise the pullback of lisse sheaves along the structural morphism $X_0 \to \text{Spec}(\mathcal{O}_q)$ with restriction along $W(X_0, \mathfrak{X}) \to \mathbb{Z}$. Given a lisse sheaf \mathcal{F} on X_0 with monodromy representation V, the largest subsheaf (resp. quotient sheaf) becoming constant on X is obtained by taking invariants (resp. coinvariants) of V with respect to $\pi_1(X, \mathfrak{X})$. Both $V^{\pi_1(X, \mathfrak{X})}$ and $V_{\pi_1(X, \mathfrak{X})}$ carry natural actions of \mathbb{Z} which induces lisse sheaves F'_0, F''_0 on $\text{Spec}(\mathcal{O}_q)$ with inverse images $V^{\pi_1(X, \mathfrak{X})}$ and $V_{\pi_1(X, \mathfrak{X})}$, respectively. (The exact sequence $0 \to \pi_1(X, \mathfrak{X}) \to W(X_0, \mathfrak{X}) \to \mathbb{Z}$ identifies those lisse sheaves invariant under geometric monodromy with the inverse image of sheaves on $\text{Spec}(\mathcal{O}_q)$.)

1.4.3. The point is that on the one hand, the constituents of the sheaves F', F'' are among the constituents of \mathcal{F}_0, on the other hand as representations of $W(X_0, \mathfrak{X})$, F', F'' are
invariant for geometric monodromy, so they have one-dimensional constituents which are determined once Frobenius is put in Jordan normal form. Therefore the eigenvalues of Frobenius on F' and F'' appear among the determinantal weights for \mathcal{F}_0, and, in consideration of (1.4.2), up to a twist the same is true of eigenvalues of Frobenius on $H^0(X, \mathcal{F})$, $H^0_c(X, \mathcal{F})$, and $H^2_c(X, \mathcal{F})$.

1.4.6. See Ahlfors, *Complex Analysis*, Ch. 5 §2.2 for a characteristically elegant review of the convergence properties of infinite products, which elucidates the equivalence of the absolute convergence of Deligne’s Euler product with that of of his geometric series.

1.5.1. Perhaps the only thing to remark is that if a lisse sheaf \mathcal{F} on X is t-real, then all of its exterior powers are, too: choosing a basis for \mathcal{F}_x with respect to which F_x is upper-triangular, the resulting canonical basis for $\wedge \mathcal{F}$ can be ordered so that F_x remains upper triangular (1.3.13 iii), which makes it easy to see that $t \det(1 - F_x t, \wedge \mathcal{F})$ has coefficients which are symmetric polynomials in the eigenvalues of F_x. As the coefficients of $t \det(1 - F_x t, \mathcal{F})$ are the elementary symmetric polynomials in these eigenvalues, and are real, the coefficients of $t \det(1 - F_x t, \wedge \mathcal{F})$ are real too.

1.6.11. To see the Clebsch-Gordon decomposition (1.6.11.2), let

$$
H = dt \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
$$

in the notation of (1.6.8), and let

$$(\dagger) \quad \chi_d(\lambda) = \text{Tr}(e^{\lambda H}) = \sum_{\substack{j=-d \\ j \equiv d(2)}}^{d} \lambda^j$$

as a function of $\lambda \in k$. These characters transform additively under direct sum and multiplicatively under tensor product, so finding the decomposition of $S_d \otimes S_{d'}$ is the same as finding the additive decomposition of

$$(\lambda^{-d} + \lambda^{-d+2} + \cdots + \lambda^d)(\lambda^{-d'} + \lambda^{-d'+2} + \cdots + \lambda^{d'})$$
into sums of the form (†). In this case the decomposition is into $d' + 1$ sums of the form $\chi_j(\lambda)$ for $j \in P(d, d')$.

1.6.13. It is asserted that the inclusion \subset of assertion 2) results from the fact that the image of N^iM_i in $Gr_0^W(V)$ is $N^iM_i(Gr_0^W V) = M_i(Gr_0^W V)$. To see this, recall that in the construction (1.6.1), N^{d-1} sends $\ker N^d/\text{im} N^d$ onto $M_{-d+1}/\text{im} N^d$, hence sends M_{d-1} onto M_{-d+1}, and proceed inductively.

The inequality $k - 2i - 2 \geq k \geq 2j - k$ should read $k - 2i - 2 \geq -k \geq 2j - k$ at the end of the discussion of 3). Note $N^{k-j} : Gr_k^M G \rightarrow Gr_{2j-k}^M G$.

1.6.14. It seems as though (1.6.14.3) should read

$$\text{Gr}_i^M V \simeq \bigoplus_{j \geq |i|} P_{-i} \left(\frac{-i - j}{2} \right).$$

For, when $i \leq 0$, N induces an isomorphism of $\text{Gr}_i^M V/P_i$ onto $\text{Gr}_{i-2}^M V$. Scaling $N \mapsto \lambda N$ also multiplies this isomorphism by λ, so we need to twist by $\otimes N^{-1}$. Similarly, the isomorphism $N^i : \text{Gr}_i^M V \rightarrow \text{Gr}_{-i}^M V$ scales by λ^i so we need to twist by $-i$.

With this modification, the isomorphism

$$P_{-i} \simeq \bigoplus_{j \in P(j'); j''} P'_{-j} \otimes P''_{-j} \left(\frac{j - j' - j''}{2} \right)$$

is justifiable by passing through a suitable graded piece

$$P_{-i} \left(\frac{-i - j}{2} \right) \rightarrow \text{Gr}_i^M V \leftarrow \bigoplus_{j \in P(j); j''} P'_{-j} \otimes P''_{-j} \left(\frac{-i - j' - j''}{2} \right).$$

As for the isomorphism

$$P_{-j}(V^*) \simeq P_{-j}(V)^*(j),$$

consider $V = S_j$ identified with the representation of $\text{SL}(2)$ on homogeneous polynomials in variables x and y of degree j. Suppose $P_{-j}(V)$ is generated by the vector y^j; then $P_{-j}(V)^*$ is generated by the covector on y^j and $P_{-j}(V^*)$ is the covector on x^j. The map $P_{-j}(V)^* \rightarrow P_{-j}(V^*)$ is obtained by precomposing by N^j. Upon scaling $N \mapsto \lambda N$,
this map is scaled by λ^j. Therefore the canonical isomorphism is obtained by twisting by N^{-j}:

$$P_{-j}(V)^* \rightarrow P_{-j}(V^*)(-j).$$

1.7.3. ‘Il commute à l’action de $W(\overline{K}, K)$’ this statement is somewhat opaque. Which action(s)? When you let $W(\overline{K}, K)$ act on V via ρ and on $\overline{Q}_e(n)$ via $\text{Gal}(\overline{k}, k)$, the statement is that if $\tau \in W(\overline{K}, K)$,

$$\tau N\overline{\tau}^{-1} = N : V(1) \rightarrow V.$$

Let $\sigma \in \overline{Q}_e(1)$. As $\tau^{-1}\lambda = (\deg \tau)^{-1}\lambda\tau^{-1}$, the statement is equivalent to the statement

$$\tau N\lambda\overline{\tau}^{-1} = (\deg \tau) N\lambda.$$

$\text{Gal}(\overline{K}, K)$ acts on the inertia character ι by the formula

$$\iota(\tau \sigma \overline{\tau}^{-1}) = \tau \iota \sigma,$$

where on the right τ acts through $\text{Gal}(\overline{k}, k)$, so if we assume I_1 is a normal subgroup of I and take $\sigma \in I_1$,

$$\exp(\rho(\tau) N_{\iota}(\sigma) \rho(\overline{\tau}^{-1})) = \rho(\tau \sigma \overline{\tau}^{-1}) = \exp(N_{\iota}(\tau \sigma \overline{\tau}^{-1})) = \exp(N(\deg \tau)_{\iota}(\sigma)).$$

1.7.4. A normal unipotent subgroup of an algebraic group acts trivially on all semisimple representations, hence the factorization of the action of I by a finite quotient

[Milne, 19.16].

The semisimple representation of $W(\overline{K}, K)$ therefore factors through the quotient by I_1. The conjugation action of $W(\overline{K}, K)$ on I/I_1 is has a kernel U of finite index, as a finite group has only finitely many automorphisms. So for some $m_1, F'^{m_1}, F'^{m_1} \in U$. $F'^{m_1} = aF'^{m_1}$ for some $a \in I$, but now F'^{m_1} commutes with a, so if $a^{m_2} = 1$, then $F'^{m_1 m_2} = a^{m_2} F'^{m_1 m_2} = F'^{m_1 m_2}$, so we may take $n = m_1 m_2$.

1.7.5. In the proof it is asserted ‘On a $\text{NM}_i \subset M_{i-2}$.’ This is because of the commutativity of (1.7.3). Namely, $F'N = NF'$ and if $\lambda \in \overline{Q}_e(1)$, $F'N\lambda = q^{-1}N\lambda F'$. Therefore $N\lambda$ sends M_i into M_{i-1} and $N : M'_i(1) \subset M'_{i-2}$.
While proving that M' is independent of F', Deligne introduces $\exp(\lambda N)$ for $\lambda \in \overline{Q}_\ell(-1)$. Let me instead deduce from the fact $F'' = F'''$ mod I_1 that for an appropriate choice of $\lambda \in \overline{Q}_\ell(1)$,

$$F''' = \exp(N\lambda)F''.$$

Leaving the definition of μ unchanged, we have

$$\exp(N\lambda)F'' = \exp(N\mu)F'' \exp(N\mu)^{-1},$$

since if we expand $F'' \exp(-N\mu)$ as a series

$$F'' \left(1 - N\mu + \frac{(-N\mu)^2}{2!} + \cdots\right),$$

we have that N commutes with F'' and that $F''\mu^i = q^i\mu^i$, so that

$$\exp(N\mu)F'' \exp(N\mu)^{-1} = \exp(N\mu) \exp(-q^i N\mu)F'' = \exp(N\lambda)F''.$$

This identity shows that $\exp(N\mu)$ sends M' into M''. As $(N\mu)M'_i \subset M'_{i-2}$,

$$\exp(N\mu) = 1 + N\mu + \frac{(N\mu)^2}{2!} + \cdots$$

also sends M'_i into M'_{i-2}, so $M''_i \subset M'_i$.

1.7.7. Let F' be as in (1.7.5), let $\alpha \in \overline{Q}_\ell^\times$, and let V^{α} equal the sum of the generalized eigenspaces of F' acting on V with eigenvalue in the class of $\alpha \mod$ roots of 1. Then V^{α} is independent of lift and $N\lambda : V^{\alpha} \to V^{\alpha/q}$, and

$$V^{\alpha} = \sum_{i \in \mathbb{Z}} V^{\alpha q^i},$$

is stable under $\exp(N\lambda)$ for $\lambda \in \overline{Q}_\ell(1)$ and hence under the action of I_1. By the argument of (1.7.5), V^{α} is therefore stable under $W(\overline{K}, K)$.

1.7.8. First, the matter of what it means for the locally constant sheaf of sets \mathcal{P} on $X - D$ to be tamely ramified along the divisor D. In Grothendieck-Murre [GM], the notion of a tamely ramified covering is discussed. If \mathcal{P} is a locally constant sheaf of
finite sets on \(X - D\), it is represented by an étale covering of \(X - D\). What about if \(\mathcal{F}\) is a locally constant sheaf of sets on a scheme \(S\) with infinite fibers?

Let \(\{S_i\}_{i \in I}\) be a covering trivializing \(\mathcal{F}\). If \(S\) is quasi-compact we can take this covering to be finite quasi-compact. Over each \(S_i\), \(\mathcal{F}\) is represented by an étale morphism \(X_i \to S_i\), namely the disjoint union \(\bigsqcup_{i \in I} S_i\) with the set \(I\) in bijection with \(a(ny)\) fiber of \(\mathcal{F}\). This yields a separated, locally of finite presentation, and locally quasi-finite descent datum \(X_i\) relative to the covering \(S_i\) (c.f., e.g. Stacks, tag \(\text{02W4}\)). By [SGAD, Exp. X, 5.4], this descent datum is effective and yields an \(S\)-scheme \(X\).

In the case that \(S\) is quasi-compact, then as the faithfully flat covering \(\bigsqcup_i S_i\) was taken to be quasi-compact, \(X\) is separated [SGA1, Exp. VIII, 4.8 or Exp. IX, 2.4], but in any case it is evidently étale as its restriction to each \(S_i\) is. This elucidates the proof of Lemma 2.2 in [SGAA, Exp. IX], with one refinement:

Lemma. Let \(S\) be a scheme and \(\mathcal{F}\) a locally constant sheaf of sets on \(S\). Then \(\mathcal{F}\) is represented by a \(X/S\) étale. If \(S\) is quasi-compact, then \(X\) is separated. If the fibers of \(\mathcal{F}\) are finite (resp. and non-empty), then \(X\) is an étale covering (resp. and surjective).

Now suppose \(S\) is normal, integral, and quasi-compact with generic point \(\eta\). By EGA IV \(\text{4.18.10.7 and 18.10.8, the étale } X \to S\) is isomorphic to a disjoint union of integral normal schemes \(X_\alpha\) such that \(f_\alpha^{-1}(\eta)\) is a finite separable extension of \(k(\eta)\) and moreover if \(S'_\alpha \xrightarrow{\gamma_\alpha} S\) denotes the normalization of \(S\) in \(f_\alpha^{-1}(\eta)\), then \(S'_\alpha\) is a revêtement étale, and \(f_\alpha\) factorizes as \(X_\alpha \xrightarrow{f'_\alpha} S'_\alpha \xrightarrow{\gamma_\alpha} S\) with \(f'_\alpha\) an open immersion.

Hence \(\mathcal{F}\) decomposes as a disjoint union of sheaves \(\mathcal{F}_\alpha = h_{X_\alpha}\), with \(h_{X_\alpha}\) locally constant constructible. The property of the \(h_{X_\alpha}\) being locally constant implies that the open immersions \(f'_\alpha\) are in fact isomorphisms, and we sum up in the following

Lemma. Let \(S\) be a normal, integral, and quasi-compact scheme and let \(\mathcal{F}\) be a locally constant sheaf of sets on \(S\). Then \(\mathcal{F} \simeq \bigsqcup_{\alpha} h_{X_\alpha}\); i.e. \(\mathcal{F}\) decomposes as a disjoint union of locally constant constructible sheaves represented by revêtements étales \(X_\alpha \to S\).
Now we recall the definition of divisors with normal crossings \([\text{GM}, 1.8]\). Let \(S\) be a locally noetherian scheme and \((D_i)_{i \in I} = D\) a finite set of divisors on \(S\). For simplicity we often denote the inverse image of the \(D_i\) in \(\text{Spec } \mathcal{O}_{S,s} \to S\) by the same letter \(D_i\).

Definition.

a) We say that the \((D_i)_{i \in I}\) have *strictly normal crossings* if for every \(s \in \bigcup_{i \in I} \text{supp } D_i\) we have:

i) \(\mathcal{O}_{S,s}\) is a regular local ring,

ii) if \(I_s = \{i : s \in \text{supp}(D_i)\}\), then for \(i \in I_s\) we have

\[
D_i = \sum_{\lambda} \text{div}(x_{i,\lambda})
\]

with \(x_{i,\lambda} \in \mathcal{O}_{S,s}\) and \((x_{i,\lambda})_{i,\lambda}\) part of a regular system of parameters at \(s\).

b) We say that the set \((D_i)_{i \in I}\) has *normal crossings* if for every \(s \in \bigcup_{i \in I} \text{supp } D_i\) there exists an étale neighborhood \(S' \to S\) of \(s\) in \(S\) such that the family of inverse images of the \((D_i)_{i \in I}\) on \(S'\) has strictly normal crossings.

Remark. The concept of (strictly) normal crossings is stable by étale base change, and one can check whether a set of divisors has normal crossings étale-locally.

In the setting of \(X\) a regular scheme and \(D\) a divisor on \(X\) with normal crossings, the definition of a tamely ramified covering \(f : V \to X\) relative to \(D\) given in Grothendieck-Murre is equivalent to the property that \(V\) be étale over \(X - D\), and that the inertia at each \(d \in D\) of codimension one act trivially on \(V\) (see also \([\text{SGA}1, \text{Exp. } XIII, 2.1]\)). More precisely, let \(D\) be a union of lisse divisors \(D_i, d, X_{(d)}, \bar{\eta}\) be as in (1.7.8). Then the corresponding inertia group should act trivially on \(V_{\bar{\eta}}\). Evidently this definition extends to a locally constant sheaf of sets \(\mathcal{F}\). The ramified Kummer covering \(\pi : X_n \to X\) is a homeomorphism, and if \(\mathcal{F}\) is a locally constant sheaf of sets on \(X - D\), \(L\)-ramified along \(D\), for \(L\) a set of primes invertible on \(X\), then there is an \(n\) invertible on \(X\) such that the action of inertia with respect to every point of \(X_n\) on \(\pi^*\mathcal{F}\) is trivial.

More explicitly, let \(U = X - D, U_n = \pi^{-1}(U)\). The Kummer covering \(\pi\) is a revêtement étale when restricted to \(U_n\), which corresponds to the homomorphism \(\varphi : \pi_1(U_n, \bar{\eta}) \to \pi_1(U, \bar{\eta})\) of topological groups which is the inclusion of the former group as an open subgroup of the latter corresponding to the connected, pointed étale cover \(U_n \to U\). Let \(\sigma \in \text{Gal}(\bar{\eta}/\eta)\) be any element of the inertia corresponding to the
monodromy around any of the D_i which acts nontrivially on $\mathcal{F}_{\overline{\eta}}$. Then the image of σ in $\pi_1(U, \overline{\eta})$ is nonzero in $\pi_1(U, \overline{\eta})/\pi_1(U_n, \overline{\eta})$; in particular it does not lie in $\text{Gal}(\overline{\eta}/\eta_n)$ where η_n is the generic point of U_n. Therefore the representation of $\pi_1(U_n, \overline{\eta})$ obtained by restricting $\pi^*\mathcal{F}$ to U_n coincides with the restriction of a continuous representation of $\pi_1(X_n, \overline{\eta})$ by the continuous map $\pi_1(U_n, \overline{\eta}) \to \pi_1(X_n, \overline{\eta})$; i.e. $\pi^*\mathcal{F}$ extends to a locally constant sheaf \mathcal{F} on X_n.

1.7.11. As this paragraph reinterprets the construction of (1.7.8), it is implicit that X is a henselian trait. A remark on the equality $\text{Gal}(K_1/K) = \text{Gal}(k_1/k)$: this is effectively saying that there is an equivalence of Galois categories of finite étale covers of the points $\text{Spec} K$ and $\text{Spec} k$. The functor of restriction to the special fiber does induce an equivalence of categories of finite étale covers of X with that of $\text{Spec} k$; this is [EGA, IV$_4$ 18.5.11]. For the equality of Galois groups in the setting of $R \subset R^{sh}$, $K \subset K_1$, R local henselian normal, R^{sh} its strict henselization, we use the following facts.

For any finite separable subextension $k \subset k_2 \subset k_1$, there exists a unique (up to unique isomorphism) finite étale local ring extension $R \subset R_2$ with specified residue field extension. Since the functor of restriction to the special fiber induces an equivalence of categories, the inductive system of finite separable subextensions $k \subset k_2 \subset k_1$ specifies an inductive system of local ring homomorphisms $R \subset R_2 \subset R^{sh}$, of which R^{sh} is the colimit (Stacks, tag 0BSL).

The following is a variation on the theme of the aforementioned equivalence. It is Lemma 7, §2.3 of Néron Models by Bosch, Lütkebohmert, and Raynaud (compare Corps Locaux III §5 Th. 3).

Lemma. Let R be a local ring, S an étale R-scheme, and s' a point of S' above the closed point s of $S = \text{Spec} R$. Let R' be the local ring $\mathcal{O}_{S', s'}$ of S' at s' and let k' be the residue field of R'. Furthermore, let A be a local R-algebra with residue field k_A. Then all R-algebra morphisms from R' to A are local. So there is a canonical map

$$\text{Hom}_R(R', A) \to \text{Hom}_k(k', k_A).$$

This map is always injective; it is bijective if A is henselian.
3. WEIL II

The group $\text{Gal}(K_1, K)$ acts on R^sh with fixed subring R. Let $k \subset k_2 \subset k_1$ and $R \subset R_2$ be as above, then R_2 is normal as R is, and we have an isomorphism

$$\text{Hom}_K(K_2, K_1) = \text{Hom}_R(R_2, R^\text{sh}) \sim \text{Hom}_K(k_2, k_1).$$

As $R \subset R_2$ is étale, K_2 is separable over K, in the inductive limit we find that the induced map $\text{Gal}(K_1, K) \to \text{Gal}(k_1, k)$ is an isomorphism.

1.8.1. The inclusion $\hat{\mathcal{O}}_s \mathcal{F}_0 \subset j_* \hat{\mathcal{O}} \mathcal{F}_0$ comes about by considering that étale locally about a point $s \in S_0$ neither sheaf may be locally free, as restricting étale neighborhoods of s to U_0 may not be enough to trivialize either sheaf; in other words, a trivialization may ramify when extended to X_0. Let $V \to X_0$ be an étale neighborhood of s. Then the inclusion above simply reflects the fact that sections of $\hat{\mathcal{O}} \mathcal{F}_0$ over $V|U_0 := V \times_{X_0} U_0$ include those coming from the tensor product of k sections in $\mathcal{F}_0(V|U_0)$, but might include more besides.

Here is an example: let $X = \text{Spec } R$ and let \mathcal{F} be the locally free sheaf on X represented by $\text{Spec } R[x]/(x^3 - 1)$; this is the sheaf μ_3 of third roots of unity and it is a locally free sheaf of $\mathbb{Z}/3$-modules of rank 1. Then $\mathcal{F}(R) = \{1\}$ and if ζ is a primitive 3rd root of unity, $\mathcal{F}(C) = \{1, \zeta, \overline{\zeta}\}$. $\text{Gal}(C/R) \simeq \mathbb{Z}/2$ and \mathcal{F} corresponds to the representation V of $\mathbb{Z}/2$ given by complex conjugation on the $\mathbb{Z}/3$-module $\{1, \zeta, \overline{\zeta}\}$. Then $\mathcal{F} \otimes_{\mathbb{Z}/3} \mathcal{F}$ corresponds to the tensor representation $V \otimes_{\mathbb{Z}/3} V$. Its sections over R are its $\mathbb{Z}/2$-invariant sections of $V \otimes V$. These are $\{1 \otimes 1, \zeta \otimes \overline{\zeta}\}$.

1.8.4. The fiber of $j_* \mathcal{F}_0$ at \overline{s} can be computed by taking first the inverse image of $j_* \mathcal{F}$ to $\text{Spec } \mathcal{O}_{X_0, s}$, the local ring of X_0 at s, and then taking the colimit along all étale ring maps $\mathcal{O}_{X_0, s} \to U$, these being equivalent to finite separable extensions of $k(\eta)$ which are non-ramified over s. So in the end we are computing the colimit of sections of the inverse image of \mathcal{F}_0 along $\eta \to X_0$ over finite separable field extensions of $k(\eta)$ fixed by I; this is nothing other than $\mathcal{F}^I_{\mathcal{O}_{X_0}}$.

The last line of the proof references (1.6.14.3), which has been corrected in the note (1.6.14) above.
1.8.5. The ι-weights of \mathcal{F}_η are integers, as guaranteed by (1.8.4); therefore, we can apply (1.7.5). The nilpotent endomorphism N respects the filtration W on \mathcal{F}_η, since all of $W(\eta, \eta)$ respects the filtration, and hence the inertia does, so that the logarithm of the unipotent part of the local monodromy does too. For the local monodromy filtration on \mathcal{F}_η, rel. W to exist, it remains only to check that N^k induces isomorphisms $\operatorname{Gr}^W_{i+k} \mathcal{F}_\eta \cong \operatorname{Gr}^W_i \mathcal{F}_\eta$; i.e. that the weight filtration M_1 on $\operatorname{Gr}^W_i \mathcal{F}_\eta$ coincides with the local monodromy monodromy filtration M_2 on $\operatorname{Gr}^W_i \mathcal{F}_\eta$, shifted by i; i.e. that

$$(\dagger) \quad \operatorname{Gr}^M_j \operatorname{Gr}^W_i \mathcal{F}_\eta = \operatorname{Gr}^M_{j-i} \operatorname{Gr}^W_i \mathcal{F}_\eta.$$

But (1.7.5) shows that the weight filtration M_1 is the unique finite increasing filtration on $\operatorname{Gr}^W_i \mathcal{F}_\eta$ which is stable under $W(\mathcal{K}, \mathcal{K})$ such that $\operatorname{Gr}^M_j \operatorname{Gr}^W_i \mathcal{F}_\eta$ is ι-pure of weight j. On the other hand, (1.8.4) shows that the local monodromy filtration M_2 on $\operatorname{Gr}^W_i \mathcal{F}_\eta$ is a finite increasing filtration which is stable under $W(\eta, \eta)$ such that $\operatorname{Gr}^M_j \operatorname{Gr}^W_i \mathcal{F}_\eta$ is ι-pure of weight $i + j$. This shows that the filtration M_2, shifted by i, coincides with M_1; i.e. we have verified (\dagger), and hence the existence of the local monodromy filtration on \mathcal{F}_η, rel. W.

Remark. Both the local monodromy filtration and the weight filtration involve a choice of point $s \in S$, but end up defining a filtration on the fiber \mathcal{F}_η.

1.8.8. With regards to remark 2), twist the sheaf $\mathcal{F}_0 \sim \mathcal{F}_0^{(b)}$ so that it has weight 0 (following (1.2.7), $b = \rho^{-b}$). Then apply (1.8.7) with the trivial filtration W to see that $\operatorname{Gr}^M_i j_*(\mathcal{F}_0^{(b)}|D_0)$ is punctually ι-pure of weight i. Twist back to conclude that $\operatorname{Gr}^M_i j_*(\mathcal{F}_0|D_0)$ is punctually ι-pure of weight $b + i$.

1.8.9. In c), $j_*(\mathcal{F}_0 \hookrightarrow \varepsilon_*j_*(\varepsilon^*\mathcal{F}_0)$ follows, after writing $\varepsilon_*j_*(\varepsilon^*\mathcal{F}_0 = j_*\varepsilon_*\varepsilon^*\mathcal{F}_0$, from the observation that $\mathcal{F}_0 \hookrightarrow \varepsilon_*\varepsilon^*\mathcal{F}_0$ injects since on stalks, a finite extension of a henselian ring splits as a product of henselian rings; i.e. the adjunction morphism corresponds to the inclusion along the diagonal

$$\mathcal{F}_x \hookrightarrow \coprod_{\varepsilon^{-1}x} \mathcal{F}_{x'}.$$

In d), reduce to a constant sheaf, where it is obvious.
In the explanation for e), the strict henselization of X_0 at x is irreducible hence a fortiori the inverse image of any open set is connected. Then, since the fiber product of any étale cover of x with U_0 is an étale neighborhood of z, there is a map $(i^*j_*\mathcal{F}_0)_x \to (\mathcal{F}_0)_z$. As the former can be computed as sections over the inverse image of U_0 in the strict henselization of X_0 at x; since this is a connected scheme, and \mathcal{F}_0 is lisse, the arrow is injective. The factorization of this arrow as

$$(i^*j_*\mathcal{F}_0)_x \to (k_*k^*j_*\mathcal{F}_0)_x \to (j_*\mathcal{F}_0)_y \to (\mathcal{F}_0)_x$$

can be explained as follows. After rewriting $k_*k^*j_*\mathcal{F}_0$ as $k_*k^*i^*j_*\mathcal{F}_0$, the first arrow is just adjunction for k. The middle arrow can be rewritten $(k_*k^*i^*j_*\mathcal{F}_0)_x \to (i^*j_*\mathcal{F}_0)_y$ so that it is a statement about sheaves on F_0. Take an étale neighborhood W_0 of x in F_0; then $W_0 \times_{F_0} V_0$ is an étale neighborhood of y. The projective system of étale $W'_0 \to F_0$ s.t. $W'_0 \times_{F_0} V_0$ admits an arrow to $W_0 \times_{F_0} V_0$ has the property that the projective system W'_0 is a subcategory of the projective system of étale neighborhoods of y in F_0. Therefore there is an arrow from the colimit of $i^*j_*\mathcal{F}_0$ applied to the former system to the colimit of $i^*j_*\mathcal{F}_0$ applied to the latter, which is $(i^*j_*\mathcal{F}_0)_y$. This gives an arrow $(k_*k^*i^*j_*\mathcal{F}_0)(W_0) \to (i^*j_*\mathcal{F}_0)_y$, functorial in W_0, and hence an arrow $(k_*k^*i^*j_*\mathcal{F}_0)_x \to (i^*j_*\mathcal{F}_0)_y$.

The last arrow is in effect the observation that the fiber product of U_0 with an étale neighborhood of y in X_0 is an étale neighborhood of z.

In the proof of (1.8.9), the reductions are all clear except perhaps the reduction to \mathcal{F}_0 tamely ramified at the generic points of F_0. Suppose all the other dévissages have been made except that one; then as there are finitely many generic points and \mathcal{F}_0 is a lisse \mathbf{Q}_ℓ sheaf corresponding to a representation V of $\pi_1(U_0, \overline{x})$ for some geometric point \overline{x} of U_0, the image of the wild inertia at the finitely many generic points of F_0 in $\text{Aut} V$ is finite. In particular, the preimage of the congruence subgroup Γ_1 of $\text{Aut} V$ in $\pi_1(U_0, \overline{x})$ is open and of finite index, corresponding to an étale cover of $V_0 \to U_0$ which extends to a finite surjective morphism to X_0. Applying c), we reduce to the desired situation.

To complete the proof, we are almost there, except F_0 is just a Weil divisor, and need not satisfy the smoothness assumption of (1.8.6). The idea is to use e) and recurrence
on dim U_0 to shrink X_0 and throw away the bad points of F_0. If we replace X_0 by an open set containing U_0 whose intersection with F_0 is a lisse divisor, then (1.8.8) 2) shows that (1.8.9) is true there. We can find finitely many such open sets with inclusions j_i, the union of which, X_0', intersects F_0 in a dense set V_0. If $j' : U_0 \hookrightarrow X_0'$, then $j'_* \mathcal{F}_0 \hookrightarrow \prod_i j_i^* \mathcal{F}_0$ so (1.8.9) is proved for j'. By recurrence on dimension we may assume that (1.8.9) holds for k_*. In light of this, applying e) to the lisse sheaf \mathcal{F}_0, yields that $i^* j_* \mathcal{F}_0$ satisfies the conclusions of (1.8.9); in effect, $k^* j_* = k^* j'_*$. Finally, $j_* \mathcal{F}_0 \hookrightarrow j'_* \mathcal{F}_0 \times i_* i^* j_* \mathcal{F}_0$ allows us to conclude that j_* satisfies (1.8.9).

1.8.11. A Jordan-Hölder series for \mathcal{F}_0 allows us to reduce to \mathcal{F}_0 irreducible. The restriction of an irreducible lisse sheaf to a nonempty open U_0 of a normal connected scheme X_0 is still irreducible because if η denotes the generic point of X_0, and $\bar{\eta}$ a geometric point centered on η, we have by [SGA1, Exp. V, 8.2]

$$\text{Gal}(\bar{\eta}/\eta) \rightarrow \pi_1(U_0, \bar{\eta}) \twoheadrightarrow \pi_1(X_0, \bar{\eta}).$$

Now, \mathcal{F}_0 is t-mixed, so admits an t-pure subsheaf \mathcal{G}_0 which is lisse when restricted to some U_0. Therefore $\mathcal{F}_0|U_0$, irreducible yet containing $\mathcal{G}_0|U_0$, must equal $\mathcal{G}_0|U_0$.

1.8.12. Let $f : X'_0 \rightarrow X_0$ be the normalization morphism. It induces a bijection on irreducible components, and X'_0 is a disjoint of normal integral schemes. We make use of the fact, true for any morphism, that if $x_0 \in X_0$, the weights of \mathcal{F}_0 at x_0 coincide with the weights of $f^* \mathcal{F}_0$ at every point of the fiber $f^{-1}(x_0)$. If \mathcal{F}_0 is t-pure of weight β at a point x_0, then all the points of X'_0 in the fiber over x_0 are also t-pure of the same weight; therefore (1.8.11) implies that all the points of the irreducible components of X'_0 meeting the fiber of x_0 are t-pure of weight β, which in turn implies that all the points in the irreducible components of X_0 meeting x_0 are t-pure of weight β, which shows that the locus of points where \mathcal{F}_0 is t-pure of weight β is closed. This locus is also open because, taking any x_0 in it, there is an open neighborhood of x_0 which meets only the irreducible components of X_0 on which x_0 lies. Then the above construction shows that all the points in this neighborhood are also t-pure of weight β.
Bibliography

[WeilII] Deligne, Weil II.
[GM] The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme par A. Grothendieck et J. Murre.
[SGA5] SGA 5, dirigé par Grothendieck
[SGA 4 1/2] SGA 4 1/2, Rapport sur la formule des traces par P. Deligne.
4. Faisceaux Pervers

1.1.11. To verify the anti-commutativity of the 9th square, as the morphism of triangles $(X'', Y'', Z'') \to (X'[1], Y'[1], Z'[1])$ factors as the composition of two morphisms of triangles $(X'', Y'', Z'') \to (A, Y'', Z'[1]) \to (X'[1], Y'[1], Z'[1])$, where the second arrow is the rotation of $(Z', A, Y'') \to (Z', X'[1], Y'[1])$, it suffices to verify that the triangle $(Z', X'[1], Y'[1])$ which appears in this last morphism of triangles has all arrows induced by the arrows of (X', Y', Z') or translates of them (with the same parity). This is not hard to check from the diagram (1). (The stated explanation appears to be an un-explanation.)

1.3.3. Though it is not stated explicitly, it is immediate from the definition $\mathcal{D}^{\leq n} := \mathcal{D}^{<0}[-n], \mathcal{D}^{\geq n} := \mathcal{D}^{>0}[-n]$ that $(\tau_{\leq n} X)[m] = \tau_{\leq n-m}(X[m])$ and $(\tau_{\geq n} X)[m] = \tau_{\geq n-m}(X[m])$. Namely, for X in \mathcal{D} and T in $\mathcal{D}^{\leq n}$, $T = T'[-m]$ for some T' in $\mathcal{D}^{\leq n-m}$, so

\[
\begin{align*}
\text{Hom}(T, (\tau_{\leq n-m}(X[m]))[-m]) &= \text{Hom}(T'[-m], (\tau_{\leq n-m}(X[m]))[-m]) \\
&= \text{Hom}(T'[-m], \tau_{\leq n-m}(X[m]))[-m] = \text{Hom}(T', X[m])[-m] = \text{Hom}(T'[-m], X) \\
&= \text{Hom}(T, X).
\end{align*}
\]

1.4.2.1. The argument for why the derived functors continue to satisfy the stated adjunctions is as follows (this argument is also found in SGA 4 Exp. XVIII 3.1.4.11). Given F, G an adjoint pair of functors on abelian categories

\[
\begin{array}{ccc}
\mathcal{A} & \xrightarrow{F} & \mathcal{B} \\
\downarrow{G} & & \downarrow{F} \\
\end{array}
\]

where both categories have enough injectives and L is exact. The functors F and G extend to functors $D^+(\mathcal{A}) \rightleftarrows D^+(\mathcal{B})$. Given $K' \in D^+(\mathcal{A}), L' \in D^+(\mathcal{B})$, we may assume L' is a complex of injective objects; we have an isomorphism of triple complexes

\[
\text{Hom}'(F(K'), L) \rightleftarrows \text{Hom}'(K', G(L')).
\]

As G preserves injectives, taking H^0 of the associated simple complex (calculated with products) finds the desired

\[
\text{Hom}_{K(\mathcal{B})}(F(K'), L') \rightleftarrows \text{Hom}_{K(\mathcal{A})}(K', G(L')).
\]
where both sides are also Hom in the respective derived categories, since \(L' \) and \(G(L') \) are complexes of injectives.

1.4.4. The question is, why are the adjoints to the Verdier quotients fully faithful? Let’s consider the quotient \(Q : \mathcal{J} \to \mathcal{J}/\mathcal{U} \), where \(\mathcal{U} \) is the strictly full coreflective triangulated subcategory of \(\mathcal{J} \); \((\mathcal{U}, \mathcal{V})\) form a t-structure on \(\mathcal{J} \); \(\mathcal{U} = \perp \mathcal{V} \), and \(\mathcal{V} = \mathcal{U}^\perp \). Since the embedding \(u : \mathcal{U} \to \mathcal{J} \) admits a right adjoint \(u \), it follows that \(Q \) admits a right adjoint \(Q \), [CD, I 6-5]. There is a natural isomorphism of functors \(Q \circ Q \cong v \circ v' \), where \(v' \) is the left adjoint to the inclusion \(v : \mathcal{V} \to \mathcal{J} \) [CD, I 6-6]. The functor \(v' \) is nothing other than \(\tau_{\geq 0} \) for the t-structure \((\mathcal{U}, \mathcal{V})\), and therefore, restricted to \(\mathcal{V} \), \(v \circ v' = \text{id} |_{\mathcal{V}} \). On the other hand, the functor \(Q \) when restricted to \(\mathcal{V} \) is fully faithful [CD, I 5-3]. Therefore \(Q \), restricted to the essential image of \(\mathcal{V} \) under \(Q \) is fully faithful. This essential image is all of \(\mathcal{J}/\mathcal{U} \), since every object \(X \) in \(\mathcal{J} \) belongs to an exact triangle \((U, X, V)\) with \(U, V \) objects in \(\mathcal{U}, \mathcal{V} \), respectively. The assertion that \(v' \) yields an equivalence \(v' : \mathcal{J}/\mathcal{U} \to \mathcal{V} \) (functor obtained by applying the universal property of \(\mathcal{J}/\mathcal{U} \) to \(v' \)) is easy since \(Q \circ v : \mathcal{V} \to \mathcal{J}/\mathcal{U} \) is an equivalence, and \(v' \circ Q \circ v = v' \circ v = \text{id} \). The corresponding statement for \(\mathcal{J} \to \mathcal{J}/\mathcal{V} \) follows identically.

1.4.6. In part b), there is the following consideration. Given triangulated categories \(\mathcal{J}, \mathcal{J}' \), a thick subcategory \(\mathcal{U} \subset \mathcal{J} \) with Verdier quotient \(Q : \mathcal{J} \to \mathcal{J}/\mathcal{U} \), exact functors \(F, G : \mathcal{J}/\mathcal{U} \to \mathcal{J}' \) and a natural transformation \(\Phi : F \circ Q \to G \circ Q \), there is an obvious candidate for a natural transformation \(\Phi : F \to G \), since \(\text{Ob}(\mathcal{J}/\mathcal{U}) = \text{Ob}(\mathcal{J}) \). But is it still a natural transformation? Let \(f : X \to Y \) in \(\mathcal{J}/\mathcal{U} \) be represented by \(X \leftarrow Z \to Y \), where \(s \) is in the saturated multiplicative system of morphisms corresponding to \(\mathcal{U} \). The commutative diamond

![Diagram](image-url)
shows that \(\varphi(X) \circ G(f) \) coincides with \(F(X) \xleftarrow{F(s)} \xrightarrow{\varphi(Z)} G(Y) \), but as
\[
\begin{align*}
F(Z) & \xrightarrow{F(a)} F(Y) \\
\downarrow q(Z) & \downarrow q(Y) \\
G(Z) & \xrightarrow{G(a)} G(Y)
\end{align*}
\]
commutes, this morphism is just \(F(X) \xleftarrow{F(Z)} \xrightarrow{q(Y) = F(a)} G(Y) = F(f) \circ \varphi(Y) \), which shows that \(\varphi \) is indeed a natural transformation.

1.4.7. In c), by 1.1.9, the morphism \(B \to C \) is the unique such that completes the morphism of triangles \((B, j_!j^*X[1], j_*j^*X[1]) \to (C, X[1], j_*j^*X[1]) \).

1.4.13. The distinguished triangle \((\tau^F_{\leq p} X, X, i_*\tau_{>p} i^*X) \) is the distinguished triangle \((A, Y, i_*\tau_{>p} i^*Y) \) of 1.4.10, since as remarked, \(X = Y \) since \(\tau_{>0} j^*X = 0 \). To check that \(A = \tau^F_{\leq p} X \), note that \(A \) belongs to \(D^{\leq p} \), as \(i^*A \simeq \tau_{\leq p} i^*X \), and that if \(T \) belongs to \(D^{\leq p} \), then by applying \(\text{Hom}(T, -) \) to the above distinguished triangle and observing that as \(i_* \) is t-exact, it commutes with truncation, so \(i_*\tau_{>p} i^*X[-1] \) lies in \(D^{>p+1} \), \(\text{Hom}(T, i_*\tau_{>p} i^*X) = 0 = \text{Hom}^{-1}(T, i_*\tau_{>p} i^*X) \), and \(\text{Hom}(T, X) \simeq \text{Hom}(T, A) \).

The distinguished triangle \((\tau^F_{\leq p-1} X, X, i_*\tau_{>p-1} i^*X) \) and the fact that \(i_* \) commutes with truncation establishes \(i_*\tau_{>p-1} i^*X \) as \(\tau_{>p-1} X \) for the t-structure on \(D \); applying \(\tau_{\leq p} \) and passing it through the \(i_* \) gives the statement about cohomology.

1.4.14. To find the dual statement at the end of the proof, reverse arrows and exchange \(j_l \leftrightarrow j_* \), \(i^* \leftrightarrow i^l \) to obtain the distinguished triangle \((i_*i^lX[-1], j_lY, X) \), then use (b’), the isomorphism \(j_l/j_i \simeq i^l/j_i[1] \) of 1.4.6.4, (and the note to 1.3.3) to write
\[
i_*i^lX[-1] = i_*(\tau_{\leq p-1}(j_*/j_i)Y)[-1] = i_*\tau_{\leq p}(j_*/j_i)Y[-1] = i_*\tau_{\leq p}j_!Y,
\]
establishing \(X \) as \(\tau^F_{\geq p+1}j_!Y \).

1.4.17.1. A little note: \(p i^*X \) is the largest quotient of \(X \) belonging to \(\mathcal{C}_F \). First we check that it is a quotient from 1.4.17 (ii). Then, suppose \(A \) belongs to \(\mathcal{C}_F \) and \(X \to A \);
then $p^iX \to p^iA \to A$, as p^i is fully faithful, so the adjunction morphism $p^i \circ p_{i*} \to \text{id}$ is an isomorphism, and p^iX is indeed the largest quotient of X in \mathcal{C}_F. Dually for $p^i\text{'}i\text{'}$.

1.4.18. A little note about T faithful: as p^j is an exact functor, if $p^j f_1 = 0$, this means that $p^j \text{im}(f_1) = \text{im}(p^j f_1) = 0$, which is to say that $\text{im} f_1$ belongs to $\overline{\mathcal{C}}_F$.

1.4.23. In the distinguished triangle $(i_*H^0j_!B, \tau_{\geq 0}^F j_!B, \tau_{\geq 1}^F j_!B)$, as $j_!B = \tau_{\geq 0}^U j_!B$, $\tau_{\geq p} = \tau_{\geq p}^U$, and $j_!$ is right t-exact, $\tau_{\geq 0}^F j_!B$ sits in \mathcal{C}. Likewise, i_* is t-exact, so $i_*H^0i^!j_!B$ also sits in \mathcal{C}, and from the long exact sequence of H^i one finds that $\tau_{\geq 1}^F j_!B$ is in $\mathcal{D}^{[-1,0]}$.

2.1.2. In the discussion ‘Si les foncteurs $\circ i^*_S$ sont de dimension cohomologique finie...’ it is claimed that there is a neighborhood of S in which $H^i\tau_{<a}K$ is supported on S. To find such a neighborhood, simply discard $\overline{S} - S$ and the closure of any stratum which doesn’t meet S. The assumption that the closure of each stratum is a union of strata implies that the induced stratification of the resulting neighborhood of S has the property that every stratum contains S in its closure, and therefore $H^i\tau_{<a}K$ vanishes on every stratum distinct from S. By construction, S is a closed set in this neighborhood.

As for the isomorphism $H^i\tau_{<a}K \leftarrow H^i\tau_{<a}^iK$ for $i < a$, let us replace X by the neighborhood above, in which case the adjunction morphism $\tau_{>a}K \to i_*i^*_S\tau_{<a}K$ is an isomorphism as $\circ i^*_S \circ i^*_S$ and $\circ i^*_S$ are exact and the induced morphism on cohomology $H^i(\tau_{>a}K) \to i_*i^*_S\tau^iH^j(\tau_{<a}K)$ is an isomorphism for all j. Therefore by 1.4.1.2, $i^*_S\tau_{<a}K \to i^*_S\tau_{<a}^iK \to i^*_S\tau^i\tau_{<a}\tau_{<a}K \to i^*_S\tau_{<a}K$.

2.1.13. To get the desired conclusion from the spectral sequence $R^pj_*H^qK \Rightarrow H^{p+q}Rj_*K$, recall that the locally constant constructible sheaves form a weak Serre subcategory of the category of constructible sheaves of \mathcal{O}-modules. For $j^!$ when j is a closed immersion, just use that $j^! = j_*$ is exact in the long exact sequence of cohomology for the distinguished triangle $(j_!j^!K, K, k, k^*K)$.

One can deduce that the truncation operators $\tau_{\leq p}$ and $\tau_{\geq p}$ respect $D_c(X, R)$ from the proof of 1.4.10 by induction on the number of strata à la 2.1.3.
2.1.14. For the isomorphism $i^! L \simeq i^* L \otimes_{X} [−d]$, combine Proposition 4.3.6 from Dimca, *Sheaves in Topology* with the description of the relative dualizing complex in, e.g., Remark 3.3.5 in Kashiwara-Schapira, *Sheaves on Manifolds*, taking $S = \{∗\}$ there and noting that $f^! A_{X}$ is the relative dualizing complex $ω_{Y/X}$ (Definition 3.1.16), and the orientation sheaves are self-dual (so that Deligne’s or coincides with $ω_{T} \otimes i^* ω_{S}$). The ‘non-characteristic’ hypothesis in Dimca’s Proposition is trivial in light of the result that precedes it and the fact that $H^n j^! K$ are locally constant.

Note that by the description of $i^!$ in terms of local cohomology, this gives a statement like, $H^n_{T}(S, F)$ vanishes in degrees less than the codimension of T, for F a locally free sheaf (with obvious extension to F a bounded below complex with locally free H^n).

2.1.16. In the remarks about Verdier duality, the fact that the functor D exchanges $j_{!} \leftrightarrow j_{*}, j^! \leftrightarrow j^*$ follows by taking L to be the dualizing complex in the local formulas of adjunction

$$j_{!} D K = j_{*} \underline{\text{RHom}}(K, j^! L) \sim \text{RHom}(j_{!} K, L) = D j_{*} K$$
$$D j^* K = \underline{\text{RHom}}(j^* K, j^! L) \sim j^! \text{RHom}(K, L) = j^! D K$$

(the latter may be found, e.g. in SGA 4 Exp. XVIII 3.1.12.2, or Dimca, 3.3.7, but see especially SGA 5 Exp. I 1.12). These formulæ hold for more general morphisms than the inclusion of a locally closed subscheme; the condition is compactifiability.

In *Th. finitude* §4 ‘Bidualité locale,’ Deligne puts Verdier duality for étale cohomology on firm footing in the case of $a : X \rightarrow S$ a scheme of finite type over S a regular scheme of dimension 0 or 1. If $A = Z/n, K_{S}$ constant sheaf on S with value A, and K in $D^{b}_{etf}(X, A)$, put $K_{X} := Ra^{!} K_{S}$ and $DK := \text{RHom}(K, K_{X})$. Then K_{X} is dualizing; i.e.

Theorem (Deligne). $K \sim DK$.

This involutivity establishes the stated duality in the formalism, since we may write

$$D j_{!} K = D j_{*} DDK = DDj_{!} DK = j_{!} DK.$$

It is essential that the cohomology sheaves be locally constant of finite rank when restricted to each stratum and that R have the proscribed properties so that Poincaré
duality holds on each stratum. In fact, the definition of perverse sheaf is engineered expressly so that on each stratum we have Poincaré duality, and this data determines the Verdier dual of the sheaf on the stratified space.

About the formula $H^dDK = (H^{-d-i}K)\dual \otimes \{\}$ or, let’s do it instead in the case $R = \mathbb{Z}/\ell$, in which case the dualizing complex is $\mathbb{Z}/\ell(d)[2d]$ and the formula is

$$(\dual) \quad H^dDK = (H^{-2d-i}K)\dual(d).$$

This is simply Poincaré duality (SGAA XVIII 3.2.5). (In light of the note to 2.1 in Th. finitude, this is the immediate consequence of the weakly convergent spectral sequence

$$E_2^{pq} = \text{Ext}^p(H^{-q}(K), \mathbb{Z}/\ell(d)) \Rightarrow \text{Ext}^{p+q}(K, \mathbb{Z}/\ell(d))$$

which collapses at the E_2 page.)

The business about exchanging R^pH^i and R^pH^{-i} is seen to be true for H^0, then use $H^iK = H^0(K[i])$ and $D(K[n]) = \text{RHom}(K[n], -) = \text{RHom}(K, -)[-n] = (DK)[-n]$

2.2.2. A word about the ‘trivial’ implication (ii)⇒(iii). As each S in \mathcal{I} is lisse equidimensional, applying (ii) to each irreducible component we find there exists a Zariski dense open $i : U \hookrightarrow S$ such that $i^*H^jK = H^jK$ (resp. $i^*H^jK = H^jK$) vanish in degrees $i > p(S)$ (resp. $i < p(S)$); as H^jK and H^jK are locally constant, this implies they also vanish when their restrictions to U do.

In the second paragraph, ‘il reste à montrer que chacune implique que $H^iK = 0$ pour $i > b$ (resp. $i < a$).’ Without securing this, we would not have that $\tau_{\geq b}K$ (resp. $\tau_{\leq b}K$) belongs to D^b_ℓ and the proof in the first paragraph wouldn’t apply. In both cases, the verification for $i > b$ is easy as i^* is exact. The verification for (iii) $i < a$ follows the proof of (2.1.2.1) exactly, after \mathcal{J} has been replaced by a finer stratification. The verification for (ii) follows immediately by the noetherian property from the stated claim that for each irreducible subvariety S' and each $i < a$, there exists a dense open S of S' such that H^iK vanishes on S. To prove this claim we proceed by descending induction on $\dim S'$, the maximal nonvacuous case being easy since such an S' is an irreducible component of X, and H^iK vanishes on the dense open S obtained from (ii) since S is open in X and $i_{S}^! = i_{S}^*$ is exact. The case of general S' will follow from the argument
of the proof of (2.1.2.1) (see note for 2.1.2) if we can find a neighborhood \(U \) of the \(S \) obtained from (ii) so that \(\text{supp}(H^j\tau_{<0}K)|_U \subset S \). Begin with the irreducible component containing \(S' \); the inductive assumption gives an open set which has either empty or nonempty intersection with \(S' \). If nonempty, then this intersection is the desired open of \(S' \) of the claim. If empty, \(S' \) belongs to the complement. Throw away all irreducible components of the complement that do not contain \(S' \) and apply the same process to the irreducible component of the complement that contains \(S' \). After finitely many steps we are left only with \(S' \), and we throw away \(S' - S \). The open neighborhood \(U \) is the set we are left with after throwing away finitely many closed sets of \(X \), and \(S \) is closed in \(U \).

2.2.3. In the discussion of the intermediate extension, the triangle \((\tau_{<i}^*j_!^*A, i^*j_*A, \tau_{<i}^*j_!^*A)\) is distinguished, not the one written, and if \(\tau_{\geq i}^*j_!^*A \) is in \(pD_c^{\geq 0} \), then indeed \(p\tau_{<0}j_!^*A \sim \tau_{<i}^*j_!^*A \) and \(\tau_{\geq i}^*j_*A \sim p\tau_{\geq 0}j_*A \); the latter isomorphism establishes an isomorphism \(p\tau_{<0}j_!^*A \sim \tau_{<i}^*j_!^*A \), which differs by one character from what is written.

2.2.8. The discussion of \(\text{RHom} \) differs from what is proved in 2.1.20 in that there is no longer a fixed stratification. Fortunately, if \(p \leq a, b \geq q \), there are only finitely many solutions to \(i = m - n \) for a fixed \(i \) and for \(n \leq a, m \geq b \). Therefore for each \(i \), we can apply the reasoning of 2.1.20 to a common refinement of only finitely many stratifications.

2.2.10. In order to have a good (involutive) Verdier duality on each stratum as in 2.1.16, it is necessary to secure that the complex of sheaves has l.c.c. cohomology, and that the stratum is smooth. The program outlined in this paragraph achieves both. Here is an explication of the smoothness condition (a).

Lemma (EGA 0IV 22.5.8 & IV 6.7.6, 6.7.8, Stacks tags 07EL & 038X). Let \(X \) be a scheme locally of finite type over a field \(k \) and \(x \in X \). Then the following are equivalent:

(i) \(X \to \text{Spec} \, k \) is smooth at \(x \).

(ii) \(X \) is geometrically regular at \(x \), i.e. for every finite extension \(k' \) of \(k \), the semi-local ring \((\mathcal{O}_X)_x \otimes_k k' \) is regular.

(iii) \(X \times_k \overline{k} \) is regular at any point lying over \(x \).
The smoothness condition on strata is that over \(\overline{k} \), each stratum \(S \), with the reduced subscheme structure, is smooth. The claim is then that on \(S \) equidimensional of dimension \(d \), the dualizing complex is given by \(\mathbf{Z}/\ell(d)[2d] \). After replacing \(k \) by its perfect closure, anodyne operation with respect to the étale topology, we may assume \(S \) is of finite type over a perfect field \(k \). The fact that \(S \times_k \overline{k} \) is smooth implies (in light of the lemma and Stacks tag \(\mathbf{030U} \)) that \(S \), with its reduced scheme structure, is smooth. In this case, the fact about the dualizing complex is standard (SGA Exp. XVIII 3.2.5).

2.2.14. A brief review of Galois cohomology of a finite field \(k \), to recall why the groups \(H^i(\text{Gal}(\overline{k}/k'), \mathbf{Z}/\ell) \) are finite for every finite extension \(k' \) of \(k \). We have

\[
H^0 = H^1 = \mathbf{Z}/\ell \\
H^i = 0 \quad i > 1.
\]

The case of \(H^0 \) is obvious as it corresponds to taking \(G = \text{Gal}(\overline{k}/k') \)-invariants of a trivial \(G \)-module. The \(H^1 \) is the corollary of a formula given in Serre, *Corps Locaux*, Ch. XIII Prop. 1 (p. 197 in the 1968 édition Hermann). The vanishing in degrees \(> 1 \) is because a finite field is \(C_1 \) and hence has finite cohomological dimension; now see (1.6) in *Arcata*, SGA 4\(\frac{1}{2} \). For more details see Serre, *Cohomologie Galoisienne*, Ch. II, §3.

Let \(\mathcal{D}_n = D^b_{ctf}(X, \mathbf{Z}/\ell^n) \), \(K, L \) objects of \(\mathcal{D}_n, G = \text{Gal}(\overline{k}, k) \), and \(f : X \to \text{Spec} \ k \) the structure morphism. Why does the above imply that \(\text{Hom}_{\mathcal{D}_n}(K, L) \) is finite? Deligne’s finiteness theorems show that the sheaves \(R\text{Hom}(K, L) \) belong to \(\mathcal{D}_n \). The Hochschild-Serre spectral sequence gives

\[
(\dagger) \quad E^2_{ij} = H^i(G, R^j \Gamma(X \times_k \overline{k}, R\text{Hom}(K, L))) \Rightarrow R^{i+j} \Gamma(X, R\text{Hom}(K, L)).
\]

As \(R\Gamma(X \times_k \overline{k}, R\text{Hom}(K, L)) \) coincides with the stalk of the constructible sheaf \(Rf_* R\text{Hom}(K, L) \) at any geometric point of \(\text{Spec} \ k \), it belongs to \(D^+_c(\mathbf{Z}/\ell^n) \) (even \(D^+_{ctf} \); c.f. Th. finitude 1.7).

Fix \(j \) and let \(A := R^j \Gamma(X \times_k \overline{k}, R\text{Hom}(K, L)) \); it is a finite \(G \)-module. Let \(U \) denote the kernel of \(G \to \text{Aut} \ A \); it is an open normal subgroup of finite index corresponding to a finite extension \(k' \) of \(k \). The Galois group \(U = \text{Gal}(\overline{k}, k') \) acts trivially on \(A \) and a simple dévissage reducing to the case \(\mathbf{Z}/\ell \) shows that the \(H^i(U, A) \) are finite. As \(G/U \)
is a finite group, the spectral sequence (c.f. *Cohomologie Galoisienne* §2.6b)
\[H^p(G/U, H^q(U, A)) \Rightarrow H^{p+q}(G, A) \]
shows that the groups \(H^i(G, A) \) are also finite, and therefore that the objects on the \(E^2 \) page of (†) are finite \(\mathbb{Z}/\ell^n \)-modules so that \(R^i\Gamma(X, R\text{Hom}(K, L)) = \text{Hom}_{\mathcal{D}_n}(K, L) \) is finite.

2.2.16. See note to Weil II (1.1.2).
In that paper, the functor \(H^i(K) \) is defined as the pro-sheaf which is the projective system defined by the \(H^i(K_n) \); the corresponding projective system is AR-isomorphic to an \((\ell\mathbb{Z}) \)-adic sheaf in the naïve sense. This allows us to upgrade the pointwise exact sequence (∗) of those notes to the corresponding sequence of sheaves (2.2.16.1). There, he uses the notation \(K \otimes^L \mathbb{Z}/\ell/n \) for \(K_n \), whereas here \(\otimes \) is used instead of \(\otimes^L \). In the interest of consistency, I will continue with the notation \(K \otimes^L \mathbb{Z}/\ell^n \) for \(K_n \). So in this paragraph, we are implicitly in the AR category or in the category of pro-sheaves. (In Weil II, Deligne uses the definition of \(\mathcal{Z}_\ell \)-sheaf as any pro-sheaf in the essential image of the \(\mathcal{Z}_\ell \)-sheaves; i.e. the \((\ell\mathbb{Z}) \)-adic objects of the category of abelian constructible sheaves.) For the business about \(H^0 \) inducing an equivalence between \(D^b_c(X, \mathcal{Z}_\ell)^{\leq 0} \cap D^b_c(X, \mathcal{Z}_\ell)^{> 0} \) and \(\mathcal{Z}_\ell \)-constructible sheaves, this is simple, since for such a \(K \) we can represent \(K \otimes^L \mathbb{Z}/\ell \) by a sheaf concentrated in degree 0. As every complex of flat sheaves representing the \(K_n \) admits an \(\ell \)-adic filtration with successive quotients quasi-isomorphic to \(K \otimes^L \mathbb{Z}/\ell \), we can represent \(K \) by a projective system of flat sheaves concentrated in degree 0. In this case, \(K \) is a bona fide \(\ell \)-adic sheaf.

As for checking whether \(K \) belongs to \(D^b_c(X, \mathcal{Z}_\ell)^{\leq 0} \), the statement is punctual and we may consider the problem in \(D_{\text{parf}} \). If \(H^i(K \otimes^L \mathbb{Z}/\ell^n) \) is null for one \(n \), then \(H^i(K) \otimes \mathbb{Z}/\ell^n \) is null by (2.2.16.1), so \(H^i(K) \otimes \mathbb{Z}/\ell \) is null. This implies by the exact sequence
\[0 \rightarrow \ell H^i(K)/\ell^a H^i(K) \rightarrow H^i(K)/\ell^{a+1} H^i(K) \rightarrow H^i(K)/\ell H^i(K) \rightarrow 0 \]
and the fact that \(H^i(K)/\ell^{a+1} \rightarrow \ell H^i(K)/\ell^n \) surjects that \(H^i(K) \otimes \mathbb{Z}/\ell^n \) is null for all \(n \) and so \(K \) is in \(D^b_c(X, \mathcal{Z}_\ell)^{\leq 0} \). On the other hand, if \(K \) is in \(D^b_c(X, \mathcal{Z}_\ell)^{\leq 0} \), the exact sequence (2.2.16.1) for \(n = 1 \) tells us that \(H^i(K \otimes^L \mathbb{Z}/\ell) = 0 \) for \(i > 0 \). The \(\ell \)-adic filtration on
4. FAISCEAUX PERVERS

flat complexes representing $K \otimes^L \mathbb{Z}/\ell^n$ has successive quotients quasi-isomorphic to $K \otimes^L \mathbb{Z}/\ell$ and the sequence of cohomology then establishes that $H^i(K \otimes^L \mathbb{Z}/\ell^n)$ is null.

2.2.17. On the equivalent conditions: suppose $K \otimes^L \mathbb{Z}/\ell^n$ is in $D^b_{\mathcal{S},\mathcal{L}}(X, \mathbb{Z}/\ell^n)$ for one n. In the spirit of Weil II (1.1.2) claim a), observe that as the projective system $H^i(K \otimes^L \mathbb{Z}/\ell^k)$ is noetherian AR-(\ell\mathbb{Z})-adic, the projective system $H^i(K \otimes^L \mathbb{Z}/\ell^{kn})$ is noetherian AR-(\ell^n\mathbb{Z})-adic and AR-isomorphic by (3.2.3) of that section (i.e. [SGA5, V, 3.2.3]) to the (\ell^n\mathbb{Z})-adic system $(\mathcal{H}_k^i/\ell^{kn}\mathcal{H}_k^i)_{k \in \mathbb{N}}$ for some integer $r \geq 0$, where \mathcal{H}_k^i denotes the projective system of universal images of the system $H^i(K \otimes^L \mathbb{Z}/\ell^{kn})$. As $K \otimes^L \mathbb{Z}/\ell^n$ is in $D^b_{\mathcal{S},\mathcal{L}}(X, \mathbb{Z}/\ell^n)$, the $H^i(K \otimes^L \mathbb{Z}/\ell^n)$ are locally constant on the strata in \mathcal{S}. Taking successive quotients on the ℓ^n-adic filtration on bounded complexes of flat sheaves representing the $K \otimes^L \mathbb{Z}/\ell^n$, we find that the $H^i(K \otimes^L \mathbb{Z}/\ell^{kn})$ are also locally constant on the strata. Therefore the sheaves \mathcal{H}_k^i are, as well as the sheaves $\mathcal{H}_k^i/\ell^{(k+1)n} \mathcal{H}_k^i$. For $k = 0$, the latter sheaf is isomorphic to $H^i(K) \otimes \mathbb{Z}/\ell^n$, so we have shown that $H^i(K) \otimes \mathbb{Z}/\ell^n$ is locally constant on the strata \mathcal{S}.

(An equivalent way to argue is again to use the description of [SGA5, V, 3.2.3] and just note that when computing the universal image subsheaves of $H^i(K \otimes^L \mathbb{Z}/\ell^{kn})$, one can restrict to looking at the images of the sheaves $H^i(K \otimes^L \mathbb{Z}/\ell^{kn})$, and when finding an r, if r works, then s works for any $s \geq r$, so r can be taken to be a multiple of kn.)

As $H^i(K) \otimes \mathbb{Z}/\ell^n$ is locally constant and includes into $H^i(K \otimes^L \mathbb{Z}/\ell^n)$, on each stratum $\mathcal{S} \in \mathcal{S}$ consider a Jordan-Hölder series for both. The constituents of the former are a subset of the constituents of the latter and therefore also belong to $\mathcal{L}(\mathcal{S})$. We have shown that $H^i(K) \otimes \mathbb{Z}/\ell^n$, and therefore $H^i(K) \otimes \mathbb{Z}/\ell$, is $(\mathcal{S}, \mathcal{L})$-constructible.

On the other hand, suppose the $H^i(K) \otimes \mathbb{Z}/\ell$ are $(\mathcal{S}, \mathcal{L})$-constructible, and without loss of generality let K be in $D^b_{\mathcal{S},\mathcal{L}}(X, \mathbb{Z})^{\leq 0}$. Proceed by recurrence on $-j$; in the case $j = 0$, $H^1(K) = 0$ and $H^0(K) \otimes \mathbb{Z}/\ell \sim H^0(K \otimes^L \mathbb{Z}/\ell)$. The ℓ-adic filtration on any bounded complex of flat sheaves representing $K \otimes^L \mathbb{Z}/\ell^n$ has successive quotients quasi-isomorphic to $K \otimes^L \mathbb{Z}/\ell$; taking the long exact sequence of cohomology finds that $H^0(K \otimes^L \mathbb{Z}/\ell^n) \sim H^0(K) \otimes \mathbb{Z}/\ell^n$ are $(\mathcal{S}, \mathcal{L})$-constructible for all n. In particular, this implies that each $\text{Tot}^L_1(H^0(K), \mathbb{Z}/\ell^n)$ is $(\mathcal{S}, \mathcal{L})$-constructible. To see why, note that the increasing sequence of ℓ-adic subsheaves $\ker \ell^n \subset H^0(K)$ must stabilize, say at $a = N$.
as $H^0(K)$ is noetherian. Let \mathcal{H} denote $\ker \ell^N$; it is an ℓ-adic subsheaf of $H^0(K)$ and is (S, \mathcal{L})-constructible since $H^0(K) \otimes \mathbb{Z}/\ell^N$ is. Then
\[
\text{Tor}^Z_1(H^0(K), \mathbb{Z}/\ell^n) \cong \text{Tor}^Z_1(\mathcal{H}, \mathbb{Z}/\ell^n) \cong \mathcal{H}[\ell^n]
\]
This last sheaf is easily seen to be (S, \mathcal{L})-constructible, as it is locally constant wherever \mathcal{H} is, and as a subsheaf, its constituents on a stratum are a subset of the constituents of \mathcal{H} on that stratum. Since $\text{Tor}^Z_1(H^0(K), \mathbb{Z}/\ell^n)$ and $H^{-1}(K) \otimes \mathbb{Z}/\ell$ are (S, \mathcal{L})-constructible, (2.2.16.1) shows that $H^{-1}(K \otimes \mathbb{Z}/\ell)$ is (S, \mathcal{L})-constructible, hence that $H^{-1}(K \otimes \mathbb{Z}/\ell^n)$ is for all n. The argument above then shows that $H^{-1}(K) \otimes \mathbb{Z}/\ell^n$ are (S, \mathcal{L})-constructible for all n, and hence that $\text{Tor}^Z_1(H^{-1}(K), \mathbb{Z}/\ell^n)$ are for all n, etc.

In order to proceed to define the t-structure in imitation of 2.2.10, one needs to extend the six functors to $D^b_c(X, \mathbb{Z}_\ell)$. This is trivial because they commute with reduction modulo ℓ^n; see note to Weil II 1.1.2c. Then the claim about K belonging to $D^\leq_0(X, \mathbb{Z}_\ell)$ iff its reduction modulo ℓ belongs to $D^\leq_0(X, \mathbb{Z}/\ell)$ is also trivial.

2.2.18. See note to Weil II 1.1.3. Multiplication by ℓ on complexes of flat sheaves representing K in $D^b_c(X, \mathbb{Z}_\ell)$ induces a multiplication by ℓ on their cohomology. To see that the image $D^b_{S, \mathcal{L}}(X, \mathbb{Z}_\ell) \otimes \mathbb{Q}_\ell$ consists of those K such that each H^iK is the $\mathbb{Q}_\ell \otimes$ of an (S, \mathcal{L})-constructible \mathbb{Z}_ℓ-sheaf, well, certainly it is contained in it. On the other hand, given K in $D^b_c(X, \mathbb{Z}_\ell)$ with each H^iK the $\mathbb{Q}_\ell \otimes$ of an (S, \mathcal{L})-constructible \mathbb{Z}_ℓ-sheaf \mathcal{F}_i, then for each of finitely many nonzero i, there exist nonzero $a_i, b_i \in \mathbb{Z}_\ell$ such that $a_iH^iK = b_i\mathcal{F}_i$; $b_i\mathcal{F}_i$ is a subsheaf of \mathcal{F}_i and is also (S, \mathcal{L})-constructible. Then $(\prod_i a_i)K$ has cohomology sheaves which are (S, \mathcal{L})-constructible, showing the reverse containment.

Turning now to the claim that the forgetful functor ω induces an equivalence
\[
D^b_c(X, \mathbb{E}_\ell) \to \{\text{category of objects } K \text{ of } D^b_c(X, \mathbb{Q}_\ell) \text{ equipped with a morphism of } \mathbb{Q}_\ell\text{-algebras } \mathbb{E}_\ell \to \text{End}(K)\},
\]
the essential surjectivity of ω follows from the fact that if K is in $D^b_c(X, \mathbb{Q}_\ell)$ and equipped with an action ϕ : $\mathbb{E}_\ell \to \text{End}(K)$, and $K \otimes_{\mathbb{Q}_\ell} \mathbb{E}_\ell$ has \mathbb{E}_ℓ acting on itself, then there is an \mathbb{E}_ℓ-equivariant imbedding $K \to K \otimes \mathbb{E}_\ell$ with retraction r. Let α be a primitive element
for the extension \(E_\lambda / \mathbb{Q}_\ell \) so that \(E_\lambda \cong \mathbb{Q}(\alpha) \), and let \(d \) denote the degree \([E_\lambda : \mathbb{Q}_\ell] \). The maps are given by

\[
i : K \to K \otimes E_\lambda \quad \quad \quad \quad r : K \otimes E_\lambda \to K
\]

\[
K \mapsto \frac{1}{d} \sum_{i=0}^{d-1} \phi(\alpha)^i K \otimes \alpha^{-i} \quad \quad \quad K \otimes a \mapsto \phi(a)K.
\]

This implies that \(K \) is indeed a direct factor of \(K \otimes E_\lambda \); see Neeman, *Triangulated Categories* 1.2.10. This in turn gives an idempotent in \(\text{End}(K \otimes E_\lambda) \), and if the image of this idempotent is represented in \(D^b_c(X, E_\lambda) \), then this implies a splitting of \(K \otimes E_\lambda \) in \(D^b_c(X, E_\lambda) \) which is sent by \(\omega \) to the direct factor \(K \). A category in which every idempotent splits is called alternatively Cauchy complete, idempotent complete, or Karoubi complete (see SGA 4, I 8.7.8), so we are done if we show that \(D^b_c(X, E_\lambda) \) is Karoubi complete. The splitting of an idempotent \(e \) in the endomorphism ring of an object in some category is equivalent to the existence of the equalizer \(i = \ker(e, \text{id}) \) or the coequalizer \(r = \text{coker}(e, \text{id}) \), and this (co)equalizer, if it exists, is an absolute (co)limit; i.e. it is preserved by every functor (see Proposition 1 of Borceaux and Dejean, *Cauchy Completion in Category Theory*). As \(D^b_c(X, E_\lambda) \) is a projective limit of categories \(D^b_{ctf}(X, R/m^n) \) for \(R \) the ring of integers in \(E_\lambda \), it is easily seen that if the categories \(D_n := D^b_{ctf}(X, R/m^n) \) are Karoubi complete, if \(e \) is an idempotent in \(\text{End}(K \otimes E) \), its reductions in \(D_n \) are idempotents which split, and as these splittings are absolute (co)limits, they automatically give an object in \(D^b_c(X, E_\lambda) \) splitting \(e \). It will suffice to show that \(D_n \) is Karoubi complete. Let’s say that a triangulated category has direct sums if it has (arbitrary) categorical direct sums and if the (arbitrary) direct sum of distinguished triangles is distinguished. Bökstedt and Neeman show in *Homotopy limits in triangulated categories* 3.2 that if a triangulated category has direct sums, it is Karoubi complete. The category \(D(X, R/m^n) \) is therefore Karoubi complete. An object \(C \) of an additive category with arbitrary direct sums is said to be compact if \(\text{Hom}(C, -) \) commutes with arbitrary direct sums. Any direct summand of a compact object \(C \) is compact, since a finite colimit of compact objects is compact (maps out of a finite colimit is a finite limit, and finite limits commute with filtered colimits in \(\text{Set} \)). Therefore as \(D(X, R/m^n) \) is Karoubi complete, so is the full subcategory generated
by compact objects. That $\mathcal{D}_{et}^b(X, R/m^n)$ coincides with the subcategory generated by compact objects of $\mathcal{D}(X, R/m^n)$ is 6.4.8 of Bhatt-Scholze, The pro-étale topology for schemes, after you recall that the objects of $\mathcal{D}_{et}^b(X, R/m^n)$ can be represented by bounded complexes of R/m^n-flat constructible sheaves (Rapport 4.6).

2.2.19. The fact that $i^! f_* = f_* i^!$ is SGAA XVIII 3.1.12.3. The ‘argument habituel d’homotopie’ referenced in the last sentence of the proof is referring to, e.g. Th. 5.7.1 in Godement, Théorie des faisceaux, but a more accessible reference is Stacks 09UY. If you have two open coverings $\mathcal{U} = (U_i)_{i \in I}$ and $\mathcal{V} = (V_j)_{j \in J}$ of a space X, and \mathcal{U} is a refinement of \mathcal{V}, so that we can choose a map $\phi : I \to J$ such that $U_i \subset V_{\phi(i)}$ for all $i \in I$. This induces a map of Čech complexes $\phi^* : \check{\mathcal{C}}'(\mathcal{V}, F) \to \check{\mathcal{C}}'(\mathcal{U}, F)$ for any sheaf F on X. The result then says that if you have a second $\phi' : I \to J$ such that $U_i \subset V_{\phi'(i)}$, the maps ϕ^*, ϕ'^* are homotopic. This instantly implies that if \mathcal{U}, \mathcal{V} are mutual refinements, they have the same Čech cohomology, since in this case we can choose $\phi : I \to J$ and $\psi : J \to I$ satisfying $U_i \subset V_{\phi(i)}$ and $V_j \subset U_{\psi(j)}$; the maps $\phi \circ \psi$ and $\psi \circ \phi$ must then induce the identity on Čech cohomology as they are homotopic to the identity on the chain level. Our case is formally equivalent to this statement for \hat{H}^0.

In more words: A is defined as an equalizer of two maps

$$\prod_I p_{ij*} A_{U_i} \rightrightarrows \prod_{i \times I} p_{ij*} A_{U_{ij}}$$

where one map d_0^0 is the product over $(i, j) \in I \times I$ of the maps

$$\prod_I p_{ij*} A_{U_i} \xrightarrow{pr_j} p_{j*} A_{U_j} \to p_{j, j*} A_{U_{ij}},$$

(here the second map is j_{i*} of the unit of the adjunction on U_i if $\cdot = i$ and 0 if $\cdot \neq i$), and the other map d_1^0 is the product over $(i, j) \in I \times I$ of the maps

$$\prod_I p_{ij*} A_{U_i} \xrightarrow{pr_j} p_{j*} A_{U_j} \to p_{j, i*} A_{U_{ij}},$$

(the second map is j_{j*} of the unit of the adjunction on U_j if $\cdot = j$ and 0 if $\cdot \neq j$). This recognizes A as $\ker(d_0^0 - d_1^0)$. Let f denote maps of the type

$$U_{i_0} \times \cdots \times U_{i_q} \times \cdots U_{i_0} \times \cdots \times \hat{U}_{i_a} \times \cdots U_{i_p},$$
In higher degrees, the differential is determined by the formula

\[\text{pr}_{i_0 \ldots i_{p+1}} \circ d = \sum_{a=0}^{p+1} (-1)^a \text{pr}_{i_{0} \ldots i_{a} \ldots i_p} (\eta(A_{i_0 \ldots i_p})) \circ \text{pr}_{i_0 \ldots i_a \ldots i_{p+1}}, \]

where \(\eta \) is the unit of the adjunction \(\text{id} \to p f_* p f^* \). Let \(\mathcal{U} \) be the cover of \(X \) as above and \(s : I \to J \) satisfying \(s_i : U_i \to V_{s(i)} \) as above. The chain map induced by \(s \) has the explicit description

\[\text{pr}_{i_A} \circ s^* = p j_{s(i_A)^*} (\eta(A_{i_A})) \circ \text{pr}_{s(i_A)}, \]

where \(i_A \) is a multi-index \(i_0 i_1 \ldots i_p \), \(s(i_A) = s(i_0) \ldots s(i_p) \), and \(\eta \) is the unit of the adjunction \(\text{id} \to p s_{i_A}^* p s_{i_A}^* \) on \(V_{s(i_A)} \), where \(s_{i_A} : U_{i_0} \times \cdots \times U_{i_p} \to V_{s(i_0)} \times \cdots \times V_{s(i_p)} \) is deduced by taking the product of the maps \(s_i \).

Now given another map \(t : I \to J \) satisfying \(t_i : U_i \to V_{t(i)} \), let \(0 \leq a \leq p \) and let \(f \) now denote maps of the sort

\[U_{i_0} \times \cdots \times U_{i_p} \to V_{s(i_0)} \times \cdots \times V_{s(i_a)} \times V_{t(i_a)} \times \cdots \times V_{t(i_p)}, \]

where here we use the map \(U_{i_a} \to V_{s(i_a)} \times V_{t(i_a)} \). We set up a homotopy \(h \) by the formula

\[\text{pr}_{i_0 \ldots i_p} \circ h = \sum_{a=0}^{p} (-1)^a \text{pr}_{i_0 \ldots i_a \ldots i_p} (\eta(A_{s(i_0) \ldots s(i_a) \ldots s(i_p)}) \circ \text{pr}_{s(i_0) \ldots s(i_a) \ldots s(i_p)}, \]

where here \(\eta \) is the unit of the adjunction \(\text{id} \to p f_* p f^* \).

Now we can follow the argument of Stacks 01FP.

4.1.1. The following proof of Artin’s theorem was given to me by Sasha Beilinson. The \(\eta \) notation, along with the construction of a retraction, is discussed after the proof.

Below \(D(X) := D^b_c(X, \mathbb{Z}/\ell^n), D(X)^{\leq 0} := \{ \mathcal{F} \in D(X) : \dim \text{supp} H^i \mathcal{F} \leq -i \} \), i.e., this is \(p D(X)^{\leq 0} \) where \(p \) is the middle perverse \(t \)-structure.

Theorem (Artin). For an affine map \(f : X \to Y \) of schemes of finite type over a field \(k \) (with \(\text{char} k \) prime to \(\ell \)) the functor \(f_* : D(X) \to D(Y) \) is right \(t \)-exact.
4. FAISCEAUX PERVERS

Proof. Pick $\mathcal{F} \in D(X)^{\leq 0}$; we want to show that $f_*\mathcal{F} \in D(Y)^{\leq 0}$. Let $d(\mathcal{F})$ be the dimension of support of \mathcal{F}. We use induction by $d(\mathcal{F})$, so we assume that for every f, k as in the theorem and $\mathcal{G} \in D(X)^{\leq 0}$ with $d(\mathcal{G}) < d(\mathcal{F})$ one has $f_*\mathcal{G} \in D(Y)^{\leq 0}$.

(o) We can assume that k is algebraically closed (since f_* commutes with the base change to an algebraic closure of k).

(i) It is enough to show that for every closed point $y \in Y$ the complex $(f_*\mathcal{F})_y$ is connective (i.e., acyclic in degrees > 0): We need to check that for a point η of Y of dimension $\delta > 0$ the complex $(f_*\mathcal{F})_{\eta}[-\delta]$ is connective. Let $Z \subset Y$ be the closure of η. Replacing Y by an étale neighborhood of η, choose a retraction $Y \to Z$ (it exists since k is perfect). Consider Y as a Z-scheme and f as a map of Z-schemes. Let $f^o : X^o \to Y^o$ be the map of the generic fibers (over $\eta = \text{Spec } k_{\eta} \in Z$); this is an affine morphism of k_{η}-schemes. Since $\mathcal{F}|_{X^o} \in D(X)^{\leq -\delta}$ and $d(\mathcal{F}|_{X^o}) \leq d(\mathcal{F}) - \delta$, one has $f^o_*(\mathcal{F}|_{X^o})[-\delta] \in D(Y)^{\leq 0}$ by the induction assumption applied to f^o, k_{η}, and $Z|_{X^o}[-\delta]$. Now $(f_*\mathcal{F})|_{Y^o} = f^o_*(\mathcal{F}|_{X^o})$, hence $(f_*\mathcal{F})_{\eta}[-\delta] = f^o_*(\mathcal{F}|_{X^o})_{\eta}[-\delta]$ is connective, q.e.d.

(ii) The case when f is an open embedding $j : X \hookrightarrow \overline{X}$ with $Q := \overline{X} - X$ a Cartier divisor: We can assume that y as in (i) lies in Q which is a principal divisor $h = 0$. Let K be the field of fractions of the henselian local ring at $0 \in A_k^1$, \overline{K} its separable closure, $G := \text{Gal}(\overline{K}/K)$, and $\Psi = \Psi_h : D(X) \to D(Q)$ be the nearby cycles functor. One has $(j_*\mathcal{F})_y = R\Gamma(G, \Psi(\mathcal{F})_y)$, so, since G has cohomological dimension 1, it is enough to check that $\Psi(\mathcal{F})_y[-1]$ is connective. By definition, $\Psi(\mathcal{F})_y$ is inductive limit of complexes $R\Gamma(U_{k}, \mathcal{F}|_{U_{k}})$ where U/\overline{X} runs the category of affine étale neighborhoods of y, $U_{k} := U \times_{A^1} \text{Spec } \overline{K}$, $\mathcal{F}|_{U_{k}}$ is the pullback of \mathcal{F} by the map $U_{k} \to X$. Since $\mathcal{F}|_{U_{k}} \in D(U_{k})^{\leq -1}$ and $d(\mathcal{F}|_{U_{k}}) < d(\mathcal{F})$, each complex $R\Gamma(U_{k}, \mathcal{F}|_{U_{k}})[-1]$ is connective by the induction assumption applied to the affine map $U_{k} \to \text{Spec } \overline{K}$, and so $\Psi(\mathcal{F})_y[-1]$ is connective.

(iii) The case when f is the projection $p : X = A^1 \times Y \to Y$: For y as in (i) consider the complementary embeddings $i_y : X_y = A^1_y \hookrightarrow X$, $j_y : X - X_y \hookrightarrow X$. Applying $p_*(-)_y$ to the exact triangle $j_y \circ i_y^*: \mathcal{F} \to i_y i_y^*\mathcal{F}$ we see that it is enough to show that $(p_*i_y \circ i_y^*\mathcal{F})_y$ and $(p_*j_y \circ j_y^*\mathcal{F})_y$ are connective.

(\(p, i_y, i_y^* F\)) is connective: One has \((p, i_y, i_y^* F)_y = R\Gamma(A_k^1, i_y^* F)\), so it is enough to check that for every successive quotient of the (usual) canonical filtration on \(i_y^* F\) the complex \(R\Gamma(A_k^1, Gr_i i_y^* F)\) is connective. Since \(Gr_{>0} F = 0\) and \(Gr_0 F\) is supported at finitely many points, we are reduced to the claim that for a (usual) sheaf \(\mathcal{G}\) on \(A_k^1\) one has \(H^1(A_k^1, \mathcal{G}) = 0\) which is SGA 4 IX 5.7.

\((p, j_y, j_y^* F)_y\) is connective: One has \(\mathcal{G} := j_y j_y^* F \in D(X)^{\ge 0}\). Consider the open embedding \(j : X = (\mathbb{P}^1 - \{\infty\}) \times Y \hookrightarrow \mathbb{P}^1 \times Y\). Let \(\overline{\mathcal{P}} : \overline{X} \to Y\) be the projection, and \(\overline{i}_y : \mathbb{P}^1_k \to \overline{X}\) be the embedding \(\overline{i}_y(a) = (a, y)\). Then \(p = \overline{\mathcal{P}} j, (p, \mathcal{G})_y = (\overline{\mathcal{P}}, j_y \mathcal{G}) = R\Gamma(\mathbb{P}^1_k, \overline{i}_y^* j_y^* \mathcal{G})\) be proper base change, and so \((p, \mathcal{G})_y = (j_y \mathcal{G})_{\overline{i}_y(\infty)}\) since \(\overline{i}_y^* \mathcal{G} = 0\). We are done by (ii) applied to \(j\) and \(\mathcal{G}\).

(iv) The general case: It is enough to write \(f\) as a composition \(f = f_0 f_{n-1} \ldots f_0\) of affine maps \(f_i\) such that our claim is true for each \(f_i\) (indeed, the sheaves \(\mathcal{F}_i := (f_i f_{i-1} \ldots f_0)_* \mathcal{F}\) satisfy \(d(\mathcal{F}_i) \le d(\mathcal{F})\), and so \(\mathcal{F}_i = f_i^* \mathcal{F}_{i-1} \in D^{\le 0}\) by induction by \(i\)). Now locally on \(Y\) we can factor \(f\) as composition \(X \hookrightarrow A^n \times Y \to Y\) where \(\hookrightarrow\) is a closed embedding and \(\to\) is the projection. Thus \(f = f_n f_{n-1} \ldots f_0\) where \(f_0 = \hookrightarrow\) and \(f_i\) is the projection \(A^{n-i+1} \times Y \to A^{n-i} \times Y\) for \(i > 0\). Our claim is true for \(f_0\) since \(f_0^*\) is t-exact and for \(f_i, i > 0\), by (iii), and we are done.

Constructing retractions. In the above, \(\eta\) is used simultaneously for a point of the topological space of the scheme \(Y\) and for a geometric point centered on this (scheme-theoretic) point. Let \(\overline{\eta}\) be a geometric point of \(Y\) centered on a point \(\eta\) of \(Y\) and \(Z = \{\eta\}\).

As \(k\) is perfect, the smooth locus of \(Z\) is nonempty, so we may assume that \(Z\) factors as \(Z \to A^\delta \to \text{Spec} k\) for \(h\) étale. Suppose \(Y = \text{Spec} A, Z = \text{Spec} B\) and form the pullback

\[
\begin{array}{ccc}
A' & \longrightarrow & k[x_1, \ldots, x_\delta] \\
\downarrow & & \downarrow \\
A & \longrightarrow & B
\end{array}
\]

of rings; it is easy to find a retract \(k[x_1, \ldots, x_\delta] \to A'\). Let \(Y' = \text{Spec} A'\).

\[
\begin{array}{ccc}
Z & \longleftarrow & Y \\
\downarrow & & \downarrow \\
A^\delta & \longleftarrow & Y'
\end{array}
\]

\[
\text{Rep} Z \hookrightarrow \text{Rep} Y \\
\text{Rep} A^\delta \hookrightarrow \text{Rep} Y'
\]
The map $Z \times_{A^0} Y \to Y$ is étale and the base change by $Z \to Y$ is given by $Z \times_{A^0} Z \to Z$, which admits the diagonal as section. As h is étale, this diagonal is is an isomorphism onto a connected component of $Z \times_{A^0} Z$ (SGA 1 I 9.3) and we identify Z with this component. Let U denote $Z \times_{A^0} Y$ minus the closed subscheme $Z \times_{A^0} Z - Z$; U is an étale neighborhood of η and is equipped with a retract $U \to Z$, namely the one
\[Z \hookrightarrow U = Z \times_{A^0} Y - (Z \times_{A^0} Z - Z) \to Z \]
induced by the first projection $Z \times_{A^0} Y \to Z$.

4.1.7. The Čech spectral sequence is also called the Cartan-Leray spectral sequence and its existence in an arbitrary topos is established in SGAA, Exp. V 3.3.

4.1.8. The only thing worth mentioning is that the entire second paragraph is implicitly local to U_i. After all, on U_i we have that $\tau_{\leq -i}K$ is in $\mathcal{P}D^{<0}$, and to show that $K|U_i$ is in $\mathcal{P}D^{<0}$, it suffices to show that $H^q(\tau_{\geq -i}K)|U_i = 0$ for all q (i.e. for all $q > -i$).

Proceeding by descending induction on $q > -i$, the induction step consists of showing that $H^q(V \cap W, \mathcal{L}) = 0$ for all affine open V implies that $\mathcal{L} = 0$.

4.2.5. As f^* and $\mathbf{R}\mathrm{Hom}$ commute with reduction modulo ℓ^n, it is enough to prove the statement in the category $D^b_{et}(X, \mathcal{Z}/\ell^n)$, and the equality $\Gamma H^0\mathbf{R}\mathrm{Hom} = H^0\Gamma R\mathbf{H}$ holds in $D(X, \mathcal{Z}/\ell^n)$ because, as $\mathbf{R}\mathrm{Hom}$ is in $D_c^{>0}$, $H^0 = \tau_{\leq 0} \ker d_0$, and Γ commutes with the formation of kernels. For (4.2.5.3), the retraction $\mathcal{H} \to \circ f_*, f^* \mathcal{H}$ is $\circ f_*(\eta(f^*\mathcal{H})$ where η is the unit $\text{id} \to \circ e_\ast e^*$:
\[\mathcal{H} \to \circ f_*, f^* \mathcal{H} \to \circ f_* \circ e_\ast e^* f^* \mathcal{H} = \mathcal{H}, \]
and it remains to check that the first arrow is surjective. The references in the rest of this paragraph are to SGAA Exposé XV. By, (1.1), it suffices to show that $H^0(Y', \mathcal{H}) \to H^0(X', f'^*\mathcal{H})$ is bijective for each $Y' \to Y$ étale. Replacing Y by Y', we know by (1.5) that f is (-1)-acyclic; i.e. that $\alpha : H^0(Y, \mathcal{H}) \to H^0(X, f^*\mathcal{H})$ is injective, as f is surjective. Moreover, f is locally acyclic as it is smooth. Then, (1.16) shows that α is surjective iff for every geometric point \overline{y} of Y algebraic over a point y of Y, $\overline{\alpha} : H^0(\overline{y}, \mathcal{H}_{\overline{x}}) \to H^0(\overline{x}_\overline{y}, f^*\mathcal{H}(\overline{x}_\overline{y})$ is, so we may assume Y is the spectrum of an algebraically closed field, in which case X is connected, as the fibers of f were assumed
geometrically connected. Then α is seen to be bijective by another application of (1.1), which reduces the matter to the corresponding question for a constant sheaf. Note that the existence of a retraction discussed above is irrelevant to this argument.

4.2.6. This paragraph, as written, is nonsense. The correct (equivalent) statements are

(a) u^* identifies \mathcal{A} with a subcategory of \mathcal{B} closed under subquotients.
(b) the unit of adjunction $\eta_! : \text{id}_\mathcal{B} \to u^* u_!$ is a natural epimorphism;
(b') the counit of adjunction $\varepsilon_* : u^* u_* \to \text{id}_\mathcal{B}$ is a natural monomorphism.

Note that statement (a) is different from \mathcal{A} being épaisse, as an épaisse subcategory is also closed under extensions. A general remark: an adjunction $F : \mathcal{C} \rightleftarrows \mathcal{D} : G$ with unit η and counit ε is called idempotent if it can be factored as a reflection and a coreflection, in which case many things are true; see the nLab page ‘idempotent adjunction.’ In particular, εF and ηG are natural isomorphisms. In our situation, both $u_! \dashv u^*$ and $u^* \dashv u_*$ are idempotent adjunctions as they are reflective and coreflective, respectively, so we get that $\varepsilon_* u^*$ and $\eta_! u^*$ are natural isomorphisms. Of course, $u_!$ is right exact and u_* is left exact. We prove (a)\iff(b'); dual arguments give (a)\iff(b).

To prove (a)\implies(b'), let B be an object of \mathcal{B}. In the commutative diagram with exact rows,

\[
\begin{array}{cccccc}
0 & \longrightarrow & \ker \varepsilon_*(B) & \longrightarrow & u^* u_* B & \longrightarrow & B \\
& & \uparrow{\alpha} & & \uparrow{\beta} & & \\
0 & \longrightarrow & u^* u_* \ker \varepsilon_*(B) & \longrightarrow & u^* u_* u^* u_* B & \longrightarrow & u^* u_* B
\end{array}
\]

$\ker \varepsilon_*(B)$ is in the essential image of \mathcal{A} as \mathcal{A} is closed under subobjects. Therefore α, β, and γ are isomorphisms, which shows $u^* u_* \ker \varepsilon_*(B) = 0$ and therefore $\ker \varepsilon_*(B) = 0$.

Now let’s prove (b')\implies(a). In the commutative diagram

\[
\begin{array}{cccccc}
0 & \longrightarrow & A & \longrightarrow & u^* B & \longrightarrow & C & \longrightarrow & 0 \\
& & \uparrow & & \uparrow & & \uparrow & & \\
0 & \longrightarrow & u^* u_* A & \longrightarrow & u^* u_* u^* B & \longrightarrow & u^* u_* C
\end{array}
\]
with exact rows, the middle arrow is an isomorphism and the outer arrows are monomorphisms. By the four-lemma, the first arrow is also an epimorphism, hence an isomorphism, identifying A in the essential image of \mathcal{A}. Therefore this essential image is closed under subobjects and hence also under subquotients, as u^* is exact.

Identifying \mathcal{A} with its essential image, a full subcategory of \mathcal{B}, every object B of \mathcal{B} has a largest subobject in \mathcal{A}, viz. u^*u_*B, and a largest quotient in \mathcal{A}, viz. $u^*u_!B$. To see this, simply observe that both candidates are indeed in \mathcal{A}, and if A is in \mathcal{A} and a subobject of \mathcal{B}, then $A \cong u^*u_*A \leftarrow u^*u_*B \twoheadrightarrow B$, and dually.

The example adjunction is backwards: $u!(X \to Y) = (Y \to Y)$ is the left adjoint, $u_*(X \to Y) = (X \to X)$ is the right adjoint, since the diagrams

$$
\begin{array}{ccc}
A & \to & B \\
\downarrow & & \downarrow \\
C & \to & D
\end{array}
\quad
\begin{array}{ccc}
A & \to & B \\
\downarrow & & \downarrow \\
C & \to & D
\end{array}
$$

have unique completions to commutative squares. Then $e_* : u^*u_* \to \text{id}_\mathcal{B}$ needn’t be a natural monomorphism, as a commutative diagram of the sort

$$
\begin{array}{ccc}
A & \to & B \\
\downarrow & \downarrow \\
C & \to & C \\
\downarrow_{\text{id}} & \downarrow \\
C & \to & D
\end{array}
$$

determines the morphism $A \to C$ but isn’t enough to determine the morphism $B \to D$.

4.2.6.1. The Jordan-Hölder theorem holds in any abelian category, and since u^* is exact and preserves simple objects, identifying \mathcal{A} with its essential image, it follows that the components of any A in \mathcal{A} also belong to \mathcal{A}. To show that \mathcal{A} is closed under subobjects, and therefore subquotients, it will suffice to show that if $0 \to B \to A \to S \to 0$ with A in \mathcal{A}, B in \mathcal{B}, and S simple, then B is in \mathcal{A}. Since S is simple, it is a component of A and therefore in \mathcal{A}. The five-lemma, applied to the diagram with exact
rows obtained by applying \(e_* \)
\[
\begin{align*}
0 & \longrightarrow B & \longrightarrow A & \longrightarrow S \\
& \uparrow & \sim \uparrow & \sim \uparrow \\
0 & \longrightarrow u^*u_*B & \longrightarrow u^*u_*A & \longrightarrow u^*u_*S,
\end{align*}
\]
shows that indeed \(u^*u_*B \sim B \), and \(B \) is in \(\mathcal{A} \).

4.2.6.2. Notes on the proof are below; the proof depends on the middle perversity insofar as the commutativity of intermediate extension with \(f^*[d] \) relies on the relative dimension coinciding with the change in perversity between an irreducible component and its inverse image by \(f \). The proof doesn’t work for \(\mathbb{Z}_\ell \)-sheaves as it relies on 4.3.1 which fails for \(\mathbb{Z}_\ell \)-cohomology.

Commutation of \(f^*[d] \) with intermediate extension. We wish to show that \(f^*[d] j_! = j_! f^*[d] \). The transitivity of \(j_! \) for \(f \) the inclusion of a locally closed subset allows us to factorize the inclusion of \(V \) as the open immersion \(V \hookrightarrow \overline{V} \) followed by the closed immersion \(\overline{V} \hookrightarrow Y \); the latter posing no problem as in this case lower shriek, lower, and intermediate extension all coincide and commute with \(f^*[d] \) by smooth base change. Reduced to the case of open immersion \(Y = \overline{V} \), let \(m \) be minimal such that \(F = Y - V \) is of dimension \(\leq m \), and put \(t := p(2m) \). We can find a stratification of \(F \) into strata satisfying 2.2.10 (a) so that for \(A \) in \(D^b_c(V, \mathbb{R}/m^n) \), the \(H^i j_* A \) are locally constant on each stratum for \(i \geq t \). Let \(U_n \) (resp. \(F_n \)) denote the union of strata \(S \) in this stratification of \(F \) satisfying \(p(S) \leq n \) (resp. \(p(S) \geq n \)). For such an \(S \), \(S - \overline{S} \) is a union of strata of dimension strictly less than \(\dim S \). Therefore each \(S \) in the stratification of \(U_n - U_{n-1} \) is closed in \(U_n \). By transitivity of the intermediate extension, it will suffice to extend \(A \) from \(V \) to \(V \cup U_t \), as the complement of the latter in \(Y \) is \(F_{t+1} \), closed; \(V \cup U_t - V = U_t \) is also closed in \(V \cup U_t \), and nonempty. \(U_t \) is a disjoint union of equidimensional strata smooth over \(\overline{k} \) (hence by the note to 2.2.10, the étale topology sees them as smooth), so that the \(H^i j_* A \) are locally constant on \(U_t \) for \(i \geq t \). We have reduced to the setting of 2.2.4: \(Y = \overline{V}, F = Y - V \) smooth of dimension \(m \), \(H^i j_* A \) are locally constant on \(F \) for \(i \geq t := p(2m) \), and \(j_! A = \tau^F_{\leq t-1} j_* A \). As \(f \) is smooth of relative dimension \(d \), \(f^{-1} F \) is also equidimensional, now of dimension \(m + d \). As
pullbacks of locally constant sheaves, the $H^i(j_*f^*A)$ are still locally constant on $f^{-1}F$. If $t' = p(2(d + m)) = -d - m$, then shifting by d and applying $\tau_{t'}^F$ is the same as applying τ_{t}^F and then shifting by d. It only remains to verify that f^* commutes with τ_{t}^F, but this is easy: letting $i : F \hookrightarrow Y$ be the closed immersion, $(f^*\tau_{t}^F A, f^*A, f^*i_*\tau_{t}^0i^*A)$ defines $f^*\tau_{t}^F A$, but $f^*i_*\tau_{t}^0i^*A = i_*\tau_{t}^0i^*f^*A$ (notating i as usual for the base extension as well), hence also defines $\tau_{t}^F f^*A$.

Irreducibility of the inverse image of an irreducible local system on an irreducible scheme by a smooth morphism with geometrically connected fibers. SGA 1, Exp. IX, 5.6 shows that if $f : S' \to S$ is universally submersive (e.g. faithfully flat and quasi-compact) with geometrically connected fibers, and S is connected, then S' is connected, and, choosing a geometric point s' of S' and letting s be the image of s' in S, the homomorphism $\pi_1(S', s') \to \pi_1(S, s)$ is surjective. This immediately implies that if \mathcal{L} is an irreducible local system on S, $f^*\mathcal{L}$ is an irreducible local system on S'. Of course, smooth with geometrically connected fibers means smooth with geometrically irreducible fibers as these fibers are themselves smooth (SGA 1, Exp II, 2.1) and therefore regular. It is a topological fact (Stacks 004Z) that if Y is irreducible and $f : X \to Y$ is open with irreducible fibers, then X is irreducible. This verifies that the if V is irreducible and f is smooth with connected fibers, the inverse image on $f^{-1}V$ of an irreducible local system on V is again irreducible.

4.2.7. Let X', X, Y be of finite type over a field k and $f : X' \to X$. We wish to show that \boxtimes commutes with direct image; i.e. that the below arrow is an isomorphism.

$$f_*K \boxtimes L \to (f \times \text{id})_* (K \boxtimes L)$$

We will compute locally about a geometric point $\xi := (x, y) \to X \times Y (x, y$ geometric points of X, Y respectively), so that all the objects in $X_x \leftarrow (X \times Y)_{\xi} \to Y_y$ are spectra of strictly henselian local rings. Let $t \to X_t$ be a geometric point centered on the generic point of an irreducible component of X_x. Th. finitude 2.16 gives that $Y \to \text{Spec } k$ is universally locally acyclic, so for any M in $D^+(X \times Y, \mathbb{Z}/\ell)$,

$$\Gamma((X \times Y)_{\xi}, M) = \Gamma((X \times Y)_{\xi}, M),$$
where \((X \times Y)_{\xi,t}\) denotes the geometric fiber in \(t\) of \((X \times Y)_{\xi} \to Y_y\). To pass from \(X_t\) to \((X_t)_t = t\) we can first pass to the limit of Zariski neighborhoods of \(t\), which is the spectrum of an artinian local ring, then kill nilpotents and extend scalars. As lower star commutes with smooth base change and the étale topology doesn’t see nilpotents, we may therefore assume \(X = t\), the spectrum of a separably closed extension \(k(t)\) of \(k\), and \(Y = Y_y\). As \(X_t \to \text{Spec} \bar{k} \leftarrow Y_y, \text{Spec} \bar{k} \times_k Y_y\) is the disjoint union of copies of \(Y_y\), and \(\xi\) picks one of them; i.e. \((\text{Spec} \bar{k} \times_k Y_y)_{\xi} = Y_y\). So we may assume \(Y_y \to \bar{k}\), and write

\[
\Gamma((X \times Y)_{\xi,t}, M) = \Gamma(Y_y \times_{\bar{k}} k', M) = \Gamma(Y_y, M),
\]

where the second equality is Arcata V 3.3. We are reduced to \(k = \bar{k}, X = \bar{k}, Y = Y_y\), in which case the formula is

\[
\Gamma(X', K) \otimes \Gamma(Y, L) \to \Gamma(X' \times Y, K \boxtimes L),
\]

which is obtained from the Künneth formula of Th. finitude 1.11 by smooth base change and passage to the limit along \(Y_y \to Y\).

4.2.8. It would appear that \(\boxtimes\) is only right \(t\)-exact in \(\mathbb{Z}_t\)-cohomology, due to the possible appearance of Tor.

4.3.1. This is a theorem in \(\mathbb{Q}_t\)-cohomology and not in \(\mathbb{Z}_t\)-cohomology because the latter has few irreducible objects; in particular, the category of lisse \(\mathbb{Z}_t\)-sheaves is not artinian; the irreducible lisse \(\mathbb{Z}_t\) sheaves are torsion. . . .

4.3.3. ‘la monodromie de \(\mathcal{L}\) ne change pas par restriction à \(U\)’ \(\sim\) SGA 1 Exp. 1 10.3.

4.3.4. The dévissage of the perverse sheaf \(\mathcal{F}\) should occur over an irreducible affine smooth open so that we can apply the results of 4.1.10–4.1.12. The sequence 4.1.10.1 has outer terms supported on \(X \setminus U\) and so reduces the problem for \(\mathcal{F}\) to that for \(j_! j^* \mathcal{F} = j_! \mathcal{L}[\dim U]\); 4.1.12.3 then reduces the problem for \(j_! \mathcal{L}[\dim U]\) to that for \(j_! \mathcal{L}[\dim U]\). This allows us to proceed by induction on the length of \(\mathcal{L}\). Let \(\mathcal{L}' \subset \mathcal{L}\) be a simple lisse subsheaf. It suffices to remark that the kernel of \(j_! \mathcal{L}'[\dim U] \to j_! \mathcal{L}[\dim U]\) is
supported on $X - U$, and the restriction of the cokernel to U has strictly lesser length than that of \mathcal{L}'.
Bibliography

[BBD] Faisceaux Pervers par Beilinson, Bernstein, Deligne (& Gabber!).
[CD] Catégories Dérivées (Etat 0) par Verdier, dans SGA 4\(\frac{1}{2}\).
[SAG5] SGA 5, dirigé par Grothendieck
5. *Applications de la formule des traces aux sommes trigonométriques*

1.2. Suppose X is locally noetherian and X' is a connected component of X pointed by a geometric point $a \to X'$. Via Grothendieck’s Galois theory, over X', the A-torsor T can be identified (after a choice e of identity for the stalk of T at a) with the set A with (continuous) left action of $\pi_1(X', a)$ and right action of A.

Given a homomorphism $\tau : A \to B$, we wish to produce a map of sets $\tau : A \to B$ so that $\tau(ta) = \tau(t)\tau(a)$ and give the set B with right action of B a left action of $\pi_1(X', a)$ with respect to which τ is equivariant. The given homomorphism of groups sets up a map of sets compatible with the actions of A and B, and the formula

$$g\tau(t) := \tau(gt)$$

defines a left π_1 action on $\tau(A)$. For $s \in B$ not necessarily in $\tau(A)$,

$$gs := g\tau(e)s = \tau(ge)s$$

extends the left action of π_1 to all of B. The B-torsor $\tau(T)$ is then identified with the set B with right action of B and the given left action of π_1, with respect to which $\tau : T \to \tau(T)$ is equivariant by construction. This discussion depends on the choice of identity for the torsor T (the identity for $\tau(T)$ is obtained from the choice for T and the homomorphism τ) and therefore only defines the torsor $\tau(T)$ up to isomorphism.

Let R (resp. E_2) be a finite \mathbb{Z}_ℓ-algebra (resp. finite \mathbb{Q}_ℓ-algebra). Recall (SGA 5 Exp. VI (α) 1.2.4, (β) 1.4.1, (γ) 1.4.2, (δ) 1.4.3) that the category of

- (α) lisse \mathbb{Z}_ℓ-sheaves
- (β) lisse R-sheaves
- (γ) lisse \mathbb{Q}_ℓ-sheaves
- (δ) lisse E_2-sheaves

on a connected locally noetherian scheme X, pointed by a geometric point $a \to X$ is equivalent to the category of

- (α) \mathbb{Z}_ℓ-modules of finite type on which $\pi_1(X) := \pi_1(X, a)$ acts continuously for the ℓ-adic topology
(β) R-modules of finite type equipped with a continuous and R-linear action of $\pi_1(X)$ on the underlying \mathbb{Z}_ℓ-module of finite type

(γ) \mathbb{Q}_ℓ-vector spaces of finite dimension equipped with a continuous action of $\pi_1(X)$

(δ) E_λ-vector spaces of finite dimension equipped with a continuous and E_λ-linear action of $\pi_1(X)$ on the underlying \mathbb{Q}_ℓ-vector space.

Given an A-torsor T on X and a finite-dimensional E_λ-vector space V, the data of an E_λ-sheaf \mathcal{F}, lisse of rank $\operatorname{dim} V$, together with a morphism of sheaves $\rho : T \to \operatorname{Isom}(V, \mathcal{F})$ satisfying $\rho(ta) = \rho(t)\rho(a)$ is the same (after a choice of identity e for the stalk of T at a) as the data of a continuous and E_λ-linear action of $\pi_1(X)$ on the underlying \mathbb{Q}_ℓ-vector space of V and a π_1-equivariant group homomorphism $\rho : A \to \operatorname{GL}(V)$, where the action of π_1 on $\operatorname{GL}(V)$ is induced by the action of π_1 on the second factor of $\operatorname{Hom}(V, V)$.

Given $\rho : A \to \operatorname{GL}(V)$ a linear representation of A, there is a unique continuous and E_λ-linear action of π_1 on the \mathbb{Q}_ℓ-vector space underneath V that makes ρ π_1-equivariant:

$\pi_1(X) \times V \to V$

$(g, v) \mapsto \rho(ge)v \quad \leadsto \quad \rho(gea) = \rho(ge)\rho(a) = g\rho(a)$.

1.3. Torsors can be discussed in the language of schemes or sheaves; the distinction comes down to whether the torsor is representable as a sheaf, and this distinction motivates the introduction of algebraic spaces. In SGA 1 Exp. V §2 and SGAD Exp. III §0 & Exp. IV §5 the notion of principal homogeneous space is developed; these are the representing objects for certain (sheaf) torsors. There, an A-torsor is called a principal homogeneous space under A. More precisely, given a category \mathcal{C}, let $\tilde{\mathcal{C}}$ denote its category of set-valued presheaves $\operatorname{Hom}(\mathcal{C}^\circ, \operatorname{Set})$. If A is a $\tilde{\mathcal{C}}$-group acting on X an object of $\tilde{\mathcal{C}}$, X is formally principal homogeneous under A (i.e. an A-pseudo torsor) if the equivalent conditions below are satisfied:

(i) for each object S of \mathcal{C}, the set $X(S)$ is empty or principal homogeneous under $A(S)$;

(ii) the morphism of functors $A \times X \to X \times X$ defined setwise by $(a, x) \mapsto (ax, x)$ is an isomorphism.
It amounts to the same to say that the canonical morphism of functors

$$X \times A \to X \times X$$

is an isomorphism. If \mathcal{C} is equipped with a topology, then one says that the S-object X with S-group of operators A is fibered principal homogeneous under A (i.e. is an A-torsor) if it is locally trivial; i.e. there exists a covering family $\{ S_i \to S \}$ such that for each i, the S_i-functor $X \times_S S_i$ with S_i-functor-group of operators $A \times_S S_i$ is trivial.

The category $\hat{\mathcal{C}}$ has a final object \mathbf{e} which sends an object of \mathcal{C} to $\{ \emptyset \}$, the set with one element. This functor is representable iff \mathcal{C} admits a final object. The ‘sections’ functor Γ is defined on $\hat{\mathcal{C}}$ as $\text{Hom}(\mathbf{-}, \mathbf{e})$ and on \mathcal{C} via $X \mapsto h_X$; if \mathcal{C} admits a final object, this latter functor is isomorphic to $\text{Hom}(e, \mathbf{-})$. SGAD Exp. IV 5.1.2, 5.1.3 observes that X is formally principal homogeneous under A, there is an isomorphism

$$\Gamma(X) \xrightarrow{\sim} \text{Isom}_{A,\text{obj}}(A, X)$$

of principal homogeneous sets under $\Gamma(A)$; therefore an isomorphism of A-objects

$$X \xrightarrow{\sim} \text{Isom}_{A,\text{obj}}(A, X).$$

The proof is simply that to each section x of X one associates the morphism $A \to X$ defined setwise by $a \mapsto xa$. This implies that an object with group of operators is trivial iff it is formally principal homogeneous and possesses a section.

The algebraic group schemes in the given extension can also be considered as sheaves for the fpqc topology on S. En effet, the surjectivity of π implies that π is faithfully flat, and therefore an fpqc covering.

Proposition (SGAD Exp. IV 5.1.7.1). Let \mathcal{C} denote a category possessing a final object, stable by fiber products, and equipped with a subcanonical topology \mathcal{T} (such as Sch equipped with fppf, fpqc, étale). Suppose $\pi : G' \to G$ is a morphism of \mathcal{C}-groups which is covering for the topology \mathcal{T}, and $A = \ker \pi$. Then G represents the quotient sheaf G'/A, and π is an A_G-torsor; i.e. G' is an A-torsor on G.

Therefore it makes sense to say ‘G' is an A-torsor on G’ or that ‘the sheaf T of local sections of π, $T = \text{Hom}_G(\mathbf{-}, G')$, is an A-torsor on G’; the former represents the latter.
The A-torsor G' on G is indeed locally trivial for fpqc: pulling back along the faithfully flat covering π, we find

$$G' \times_G A \to G' \times_G G'$$

$$(g', a) \mapsto (g', g'a)$$

is indeed an isomorphism, as can be checked setwise.

In order to understand how to add torsors, it is instructive to first recall how to add extensions of abelian groups. Suppose

$$0 \to A \to G' \to G \to 0$$

$$0 \to A \to G'' \to G \to 0$$

are exact sequences of abelian groups. G' and G'' are A-torsors in Set. The Baer sum $G' + G''$ is constructed from the direct sum of extensions by pushout along addition for A and pullback along the diagonal for G.

$$
\begin{array}{cccccccc}
0 & \to & A \oplus A & \to & G' \oplus G & \to & G \oplus G & \to & 0 \\
& & \downarrow_{+} & & \downarrow & & \downarrow & & \\
0 & \to & A & \to & +_{*}(G' \oplus G'') & \to & G \oplus G & \to & 0 \\
& & \uparrow_{\Delta} & & \uparrow & & \uparrow_{\Delta} & & \\
0 & \to & A & \to & \Delta_{*} +_{*}(G' \oplus G'') & \to & G & \to & 0
\end{array}
$$

Here, the square marked with \uparrow_{Δ} is cartesian while the one marked with \downarrow is cocartesian.

The Baer sum of G' and G'' is $\Delta_{*} +_{*}(G' \oplus G'')$. Now consider the case of 1.3 where we are given an extension of commutative algebraic group schemes over S, and G' is an A-torsor over G. Pulling back G' along addition for G yields the fiber product $+_{G'} G' = G' \times_G G \times_S G$. If X is a scheme over S, to give a morphism over S to $+_{G'} G'$ amounts to giving two objects $g_1, g_2 \in G(X)$ and an object in $g \in G'(X)$ such that $\pi g = g_1 + g_2$. This data is equivalent to the data of two objects g'_1, g'_2 in $G'(X)$ mapping to g_1, g_2, respectively, modulo the relation which considers two such pairs equivalent if their sum is the same. This generalizes pushing out by addition on A to the case of torsors. The pullback of torsors is given on representing objects by fiber product, so that given an S-morphism $f : X \to G$, $f^{*}T = \text{Hom}_{X}(\cdot, X \times_{f, \pi} G')$. This torsor is trivial
if there is a section $X \to X \times_{f, \pi} G'$ over X; i.e. a commutative diagram

\[
\begin{array}{ccc}
X & \xrightarrow{f} & G' \\
\pi & \searrow & \\
& G,
\end{array}
\]

In other words, the torsor f^*T is defined up to isomorphism by the image of f in $\text{Hom}_S(X, G)/\pi \text{Hom}_S(X, G')$.

If $g : X \to G$ is another S-morphism, then g^*T is represented by $X \times_{g, \pi} G'$. The fiber products $X \times_{f, \pi} G'$ and $X \times_{g, \pi} G'$ are A-torsors over X. In analogy with Baer sum, a sum of torsors is given by pushing out by the addition on A followed by pulling back by the diagonal $\Delta_X : X \to X \times_S X$. Since G' is defined by an extension and both torsors come from pulling back G' (i.e. T), this is the same as pulling back G' along the composition of morphisms

\[
X \xrightarrow{(f, g)} G \times_S G \xrightarrow{+} G.
\]

More explicitly, the morphism $X \to G \times_S G$ factors as

\[
X \xrightarrow{\Delta} X \times_S X \xrightarrow{(f \circ \text{pr}_1, g \circ \text{pr}_2)} G \times_S G
\]

and therefore pulling back along this morphism corresponds to pulling back (f^*T, g^*T) along the diagonal Δ_X. Of course, the fiber product $G' \times_{G'} (G' \times_S G') \simeq G' \times_S G'$ corresponds to the $A \times A$-torsor (T, T). As we have already seen, pulling back G' along $G \times_S G \xrightarrow{+} G$ is the quotient of (T, T) by the relation the action of (a_1, a_2) and (a'_1, a'_2) if $a_1 + a_2 = a'_1 + a'_2$. Therefore, $(f + g)^*T$ is the quotient of (f^*T, g^*T) by this same relation, which verifies the formula

\[
(f + g)^*T = f^*T + g^*T.
\]

The Lang torsor. For the development of the Lang isogeny and its properties, see Borel, *Algebraic Groups* §16. There, he proves that \mathcal{L} is surjective when G^0 is connected. If the group G^0 is smooth (i.e. geometrically reduced), then \mathcal{L} is seen to be étale (as a morphism of schemes) by computing its differential and Milne, *Algebraic*
Groups, 1.63. That the functor $G_0^F = G_0(F_q)$ is a consequence of the description of F on the set $G_0(F)$; see Rapport 1.1.

1.6. If G_0 is a commutative algebraic group defines over F_q, then the norm map

$$N : G_0(F_{q^n}) \rightarrow G_0(F_q) \subset G_0(F_{q^n})$$

is defined, as F is a group homomorphism. In the case $G_0 = G_a$, then $G_a(F_{q^n}) = F_{q^n}$ and N coincides with the field trace $N(x) = x + x^q + \cdots + x^{q^n-1}$, as the group operation is addition. If $G_0 = G_m$, on the other hand, then $G_m(F_{q^n}) = F_{q^n}^\times$ and N coincides with the field norm $N(x) = x \cdot x^q \cdots x^{q^n-1}$, as the group operation is multiplication.

1.7. The formulæ $\mathcal{P}(\chi, f_0) = f_0^* \mathcal{P}(\chi, \text{id}_{G_0})$, etc. result from the fact that the pullback of lisse sheaves corresponds to the homomorphism of π_1 induced by f_0; i.e. if $x \rightarrow X_0$ is a geometric point and $g = f_0(x)$, then both sides of these identities result from the composition of maps

$$\pi_1(X_0, x) \rightarrow \pi_1(G_0, g) \xrightarrow{L_0} G_0(F_q) \xrightarrow{\chi^{-1}} E^*_x,$$

where the L_0 indicates the homomorphism of groups defining the Lang torsor $L_0(G_0)$.

The formula that motivates this whole business

$$F_x^* = \chi f_0(x)$$

follows from the hint that the fiber in x of the morphism 1.2.2 commutes with F_x^*. This is true for the following reason: the geometric point $x \in X^F$ and f_0 give homomorphisms

$$\text{Gal}(F, F_q) \rightarrow \pi_1(X_0, x) \rightarrow \pi_1(G_0, x)$$

and F_x^{*-1} coincides with the image of the Frobenius substitution $\varphi \in \text{Gal}(F, F_q)$. Commutation of F_x^* with f_0^* is clear and it remains to show that ρ_x of 1.2.2 is $\pi_1(X, x)$-equivariant. The formula (‖) of the note to 1.2 shows this explicitly.

1.8. (ii) The inverse image by f of the E_λ-sheaf obtained from $\chi^{-1}(L_0(G_0))$ by extension of scalars from F_q to k is probably better written $f^* \mathcal{P}(\chi)_1$ than $\mathcal{P}(\chi f)$.
1.10. The subtlety in this argument is building a bridge between C and F_q. Of course, the isomorphisms on singular cohomology with Q coefficients imply isomorphisms on singular cohomology with Q_ℓ coefficients for all ℓ. The quadric hypersurface X'_0 and hyperplane Y'_0 in P^N_0 over F_q are each defined by the vanishing of a homogeneous polynomial of degree two and one, respectively, in the ring $F_q[X_0, X_1, \ldots, X_{2N}]$; let f_0 denote the polynomial defining X'_0. As X'_0 is a nonsingular variety over a perfect field, it is smooth over F_q. Let $m(x)$ be the minimal polynomial for a primitive element of F_q over F_p; lifting the coefficients of m to Z, m remains irreducible, and defines a finite extension of domains $Z \to Z[x]/(m(x)) =: A$ so that $A/(p) \simeq F_q$. The coefficients of f_0 now lift to A and define a projective quadric X'_S in P^N_S which is, in particular, flat over $S := \text{Spec } A$, and such that the fiber over (p) is X'_0. Recalling EGA IV 12.2.4, the set of points $s \in S$ such that $(X'_S)_s$ is smooth over $k(s)$ is open. In particular, the fiber over the generic point $\xi \in S$ is smooth over $k(\xi)$, which is a finite extension of Q. The strict henselization \bar{A} of A at (p) is a regular local ring with spectrum \bar{S}; $X'_S \to \bar{S}$ is proper and smooth, and $k(\bar{\xi})$ is an algebraic extension of $k(\xi)$. Let $\text{Spec } C = t \to \bar{S}$ be a geometric point centered on $\bar{\xi}$, and put $X := (X'_S)_t$. The specialization morphism
\[H^*(X', Q_\ell) \to H^*(X, Q_\ell) \]
is an isomorphism (Arcata V 3.1). As X is a projective nonsingular quadric in P^N_C, the comparison theorem between ordinary cohomology and étale cohomology (Arcata V 3.5.1) allow us to apply the transcendental argument to conclude.

1.13. To compute $R^i f_! Q_\ell$, we may assume Y is the spectrum of a separably closed field and $X = A^1$. By Poincaré duality and Artin’s theorem, $H^0_\ell(A^1, Q_\ell) = 0$. As for H^1_ℓ, the short exact sequence of sheaves on P^1
\[0 \to (Q_\ell)_{|A^1} \to Q_\ell \to (Q_\ell)_\infty \to 0 \]
gives rise to a long exact sequence of cohomology
\[0 \to Q_\ell \to Q_\ell \to H^1_\ell(A^1, Q_\ell) \to H^1(P^1, Q_\ell) = 0 \quad (\text{as Pic}^0(P^1) = 0), \]
verifying $H_i^1(A^1, Q_\ell) = 0$. Evidently $H^0(A^1, Q_\ell) = Q_\ell$; by Poincaré we conclude
\[
\begin{cases}
R^i f_! Q_\ell = 0 & i \neq 2 \\
R^2 f_! Q_\ell = Q_\ell(-1).
\end{cases}
\]

2.3*. Leray spectral sequence for cohomology with proper support is a particular case of spectral sequence of composed functors, but the proof that for all composition of morphisms $f = gh : X \xrightarrow{h} Y \xrightarrow{g} Z$ we have ‘well-behaved’ transitivity isomorphisms between $Rf_!$ and $Rg_*Rh_!$ is not straightforward; it is SGAA Exp. XVII 5.1.8, which also proves that the functors $Rf_!$ are ‘way out’ and triangulated. The proof of transitivity is formal, relying on §3 of the same exposé, which reduces the problem to the analogous ones for proper morphisms and open immersions, provided one ‘compatibility’ isomorphism, which is 5.1.6. With transitivity in hand, the spectral sequence
\[
E_2^{pq} = R^p g_! R^q h_!(K) \Rightarrow R^{p+q} f_!(K),
\]
valid for K in $D(X, \mathcal{A}_X)$ (\mathcal{A} a sheaf of rings), is a consequence of a general spectral sequence written down by Verdier: for all L in $D(Y, \mathcal{A}_Y)$
\[
E_2^{pq} = R^p g_!(\mathcal{H}^q(L)) \Rightarrow R^{p+q} g_!(L);
\]
see Des catégories dérivées des catégories abéliennes 4.4.6.

2.4*. Küneth formula in cohomology with proper support is SGA 4 Exp. XVII 5.4.

2.5*. The spectral sequence (2.5.2)* is the spectral sequence associated to a filtration of chain complex. Namely, the complements of the closed subsets in the filtration on X gives rise to a filtration on X by open subsets $U_p \subset U_{p+1}$. To calculate cohomology with proper support, fix a compactification $j : X \hookrightarrow \overline{X}$. In what follows, we write \mathcal{F} for the sheaf and its various inverse images. Let $j_p : U_p \hookrightarrow \overline{X}$ and $i_{p+1} : U_{p+1} - U_p = X_p - X_{p+1} \hookrightarrow \overline{X}$ be the immersions. The filtration $j_{p+1}^! \mathcal{F} \subset j_{p+1}^! \mathcal{F}$ on $j_{p+1}^! \mathcal{F}$ has successive quotients isomorphic to $i_{p+1}^! \mathcal{F}$. In light of the spectral sequence (2.3.1)*, the spectral sequence associated to a filtered injective resolution of $j_{p+1}^! \mathcal{F}$ (Stacks 05TT)
gives rise (Stacks 015W) to the spectral sequence

\[E_1^{p,q} = H^{p+q}(\mathcal{X}, i_{p+1!}\mathcal{F}) = H_c^{p+q}(X_{p} - X_{p+1}, \mathcal{F}) \Rightarrow H^{p+q}(\mathcal{X}, j_!\mathcal{F}) = H_c^{p+q}(X, \mathcal{F}). \]

Remark. Let \(C \) be a curve of finite type over an algebraically closed field \(k \), \(P \) the set of rational points of the curve, \(\mathcal{F} \) the constant sheaf with value \(A \) on \(C \), and \(x \in C(k) \). The fiber of \(P, P^* \mathcal{F} \) is not \(\mathcal{F}_x \); rather, it can be identified with functions from \(P \) to \(A \) continuous for the discrete topology on \(P \), modulo the relation that \(f \sim g \) if \(f(x) = g(x) \) and \(f \) and \(g \) disagree on only finitely many points.

**2.6*. SGAA Exp. V §3 introduces the Čech complex and the Cartan-Leray spectral sequence associated to a covering, which is simply the spectral sequence of the composition of functors, where the first is inclusion of sheaves into presheaves and the second is \(\check{H}^0 \) (it is shown that the \(\check{H}^l \) associated to the Čech complex are indeed right derived functors of \(\check{H}^0 \) on presheaves). The condition on the morphisms in the covering is simply that fibered products are representable, which is true in the category of schemes. However, this is not done for cohomology with support. In the introduction to SGAA Exp. Vbis, the Leray spectral sequence is discussed for an open covering and for a locally finite closed covering, and this guides SGAA Exp. XVII 6.2.8–6.2.10, which discusses in full detail the construction of the so-called ‘extraordinary’ spectral sequence (2.6.2)*. One can also obtain the more ‘ordinary’ spectral sequence of (2.6.1)* from the argument there by replacing the trace morphism \(u_1 u^* \to id \) in the case of \(u : Y \to X \) separated, étale, surjective, and finite type with the unit of adjunction \(id \to u_* u^* \) when \(u \) arises from a finite covering by closed subschemes. Then instead of getting a left resolution of the sheaf, one gets a right resolution, as in the usual Čech resolution.

Given \((X_i)_{i \in I} \) a finite covering by closed subschemes, let \(u : Y = \bigsqcup_{i \in I} X_i := Y \to X, \)

\[Y_n = Y \times_X \cdots \times_X Y, \]

\(n+1 \) times

and \(u_n : Y_n \to X. \) The sheaves \(\mathcal{F}_n = u_{n*} u_n^* \mathcal{F} \) form, via the units of adjunction \(\mathcal{F} \to u_{n*} u_n^* \mathcal{F} \), a simplicial sheaf coaugmented by \(\mathcal{F} \). As discussed in SGAA Exp. Vbis, if \(\mathcal{C}^*(\mathcal{F}) \) denotes an injective resolution of \(\mathcal{F} \), the double complex

\[\mathcal{F} \to (u_{p*} \mathcal{C}^q(u_p^*(\mathcal{F})))_{p,q} \]
defines a resolution of \mathcal{F} by injective sheaves.

$$
\begin{array}{ccc}
Y & \xrightarrow{u} & X \\
\downarrow{f} & & \downarrow{g} \\
\text{Spec } k & & \\
\end{array}
$$

If f_\ast is the projection of Y_\ast to Spec k, then $Rf_\ast = Rg_\ast u_\ast = Rg_\ast u_\ast$. Applying the functor g_\ast to the double complex and filtering by semi-simplicial degree gives rise to the Čech spectral sequence

$$
E_i^{p,q} = R^q f_\ast (u_\ast^p \mathcal{F}) \Rightarrow R^{p+q} g_\ast \mathcal{F};
$$

this is (2.6.1)* for cohomology with support.

The problem when taking the X_i to be open is that $u_\ast \neq u_\ast$ and there is no longer a coaugmentation map $\text{id} \rightarrow u_\ast u_\ast$. The trace morphism, however, provides an augmentation map $u_\ast u_\ast \\rightarrow \text{id}$ and one proceeds by resolving to the left to produce the extraordinary Čech resolution and spectral sequence

$$
E_i^{-p,q} = R^q f_\ast (u_\ast^p \mathcal{F}) \Rightarrow R^{-p+q} g_\ast \mathcal{F};
$$

this is (2.6.2)*. For more on the extraordinary Čech resolution, see SGAA Exp. XVII 6.2.8–6.2.10.
Bibliography

[Sommes trig.] *Application de la formule des traces aux sommes trigonométriques* dans SGA $4^{1/2}$.
6. Laumon, *Transformation de Fourier*

As a warm-up, let’s recall some Galois theory from SGA 1 in connection with the beginning of *Sommes trig*. All references in this paragraph are to SGA 1 Exposé V. The Lang isogeny for \mathbb{G}_a, F_q is written

$$0 \longrightarrow F_q \longrightarrow \mathbb{G}_a \xrightarrow{x^q - x} \mathbb{G}_a \longrightarrow 0$$

and is a revêtement étale called the Artin-Schreier revêtement. The sheaf of sections defines an F_q-torsor. The Galois group of the Artin-Schreier revêtement is therefore F_q, as a connected torsor under a finite group G has Galois (= automorphism) group G. Just as in the theory of fields, the choice of words ‘Galois group’ in place of ‘automorphism group’ is reserved for Galois objects in the Galois category. Remark 5.11 characterizes the Galois objects in a Galois category \mathcal{C} equipped with fiber functor F as the connected torsors X under a finite group G (torsor = principal homogeneous space). The implications go as follows: an object X is galoisian if it is connected, not isomorphic to $0_\mathcal{C}$, the initial object of \mathcal{C} ($\Leftrightarrow F(X) \neq 0$), and $\text{Aut} X$ is transitive (\Leftrightarrow simply transitive) (N° 4, f) & 5.4). X is a torsor under the group opposite $\text{Aut} X$ iff $F(X)$ is a torsor under the group opposite $\text{Aut} X$; i.e. $\text{Aut} X$ acts simply transitively. Therefore X is a connected torsor under the group opposite $\text{Aut} X$. On the other hand, suppose X is a torsor under G, i.e. G acts on X on the right and on $F(X)$ simply transitively, yielding a natural injection from G into the group opposite $\text{Aut} X$. As G acts simply transitively, $\text{Aut} X$ acts transitively. If moreover X is connected, then N° 4 f) gives that $\text{Aut} X$ acts transitively iff it acts simply transitively, showing that the injection above is actually an isomorphism between G and the group opposite $\text{Aut} X$. This is justification for the fact ‘In a Galois category, a connected torsor under a finite group G is a Galois object with Galois group $G’.”
1.1.1.5. En vue de l’additivitée de t (0.9), l’énoncé $t_{K, E}(\infty) = 1 - q$ résulte de la
dpureté relative pour $A^1 \hookrightarrow P^1 \leftrightarrow \infty$ (Arcata V 3.4) en ce que
\[
\begin{align*}
 j_! Q_\ell &= Q_\ell \\
 R^1 j_! Q_\ell &= Q_\ell(-1)_{\infty} \\
 R^q j_! Q_\ell &= 0 &\text{pour } q \geq 2.
\end{align*}
\]

1.1.3. The action of Frobenius on the fiber is clearer in *Sommes trig.* 1.5, 1.6 since
Deligne’s notation for Frobenius is clear and consistent.

The rigidification (1.1.3.1) is a consequence of the fact that there is a distinguished
element of $L^{-1}(1)$, namely 1.

The trivialization (1.1.3.2) depends on the construction of $L_{\mathbb{E}}$ from a torsor defined
by an extension. In the setting of *Sommes trig.* 1.3, the A-torsor T is defined as the sheaf
of local sections of an extension π. As H represents m^*T in the commutative diagram
with exact rows ($\tau = \text{cartesian}$ and m denotes the group law)
\[
\begin{array}{ccccccccc}
0 & \longrightarrow & A \times A & \longrightarrow & G' \times G' & \longrightarrow & G \times G & \longrightarrow & 0 \\
& & \hspace{1cm} \downarrow m \hspace{1cm} & & \hspace{1cm} \downarrow \pi \times \pi \hspace{1cm} & & \hspace{1cm} \downarrow \hspace{1cm} & & \\
0 & \longrightarrow & A & \longrightarrow & H & \longrightarrow & G \times G & \longrightarrow & 0 \\
& & \hspace{1cm} \downarrow r \hspace{1cm} & & \hspace{1cm} \downarrow m \hspace{1cm} & & \hspace{1cm} \downarrow \hspace{1cm} & & \\
0 & \longrightarrow & A & \longrightarrow & G' & \longrightarrow & G & \longrightarrow & 0
\end{array}
\]
in the language of torsors there is a canonical isomorphism
\[
m(T \times T) = m^*T.
\]

The structure of group on G provides commutative diagrams
The diagram
\[
\pi_1(G \times G, (1, 1)) \xrightarrow{pr_1 \times pr_2} \pi_1(G, 1) \times \pi_1(G, 1) \xrightarrow{m} \pi_1(G, 1)
\]
gives the action of \(\pi_1(G \times G, (1, 1)) \) on the torsors \(T \times T \) and \(m(T \times T) = m^*T \). Pushing by \(\chi^{-1} \) gives a representation of \(\pi_1(G \times G, (1, 1)) \) on \(\overline{Q}_\ell \), which is induced by
\[
(g_1, g_2) \mapsto \chi^{-1}(g_1) \otimes \chi^{-1}(g_2),
\]
demonstrating explicitly an isomorphism
\[
m^* \mathcal{L}_\chi \simeq \text{pr}_1^* \mathcal{L}_\chi \otimes \text{pr}_2^* \mathcal{L}
\]
and hence a trivialization of \(\mathcal{D}_2(\mathcal{L}_\chi) \) compatible with the identification of the fibers of \(\mathcal{D}_2(\mathcal{L}_\chi) \) and \(\overline{Q}_\ell \) at \((1, 1) \).

(1.1.3.3) = Sommes trig. 1.7.7 (see note to Sommes trig. 1.6)

(1.1.3.4) = Sommes trig. 2.7*.

The remark (1.1.3.7) can be summed up by the morphism of torsors induced by the commutative diagram below, the projective limit of which defines \(\lim_{\leftarrow l(k)} \mu_N(k) \):

\[
\begin{array}{cccccc}
1 & \longrightarrow & \mu_{NM}(k) & \longrightarrow & G_{m,k} & \longrightarrow & 1 \\
\downarrow^{[M]} & & \downarrow^{[M]} & & \downarrow^{[M]} & & \\
1 & \longrightarrow & \mu_N(k) & \longrightarrow & G_{m,k} & \longrightarrow & 1.
\end{array}
\]

As \(F_q^x \simeq \mathbb{Z}/(q - 1) \), \(I(F_q) = \{ n \in \mathbb{N}_{>0} : n|q - 1 \} \).

1.2.1. The pairing \(\langle , \rangle : E \times_S E' \rightarrow G_{a,k} \) should rather land in \(G_{a,S} \). See Sommes trig. 1.7 c) to make sense of what this does to \(\mathcal{L}_q \).

To be maximally pedantic, if \(q = p^n \), with the notation of (1.1.3.3) we should write \(\psi_{n} \) where \(\psi_{q} \) appears in the definition of \(\hat{I} \).
1.2.2. Locally $S = \text{Spec } A$, $E = \text{Spec } A[t_1, \ldots, t_r]$, $E \times_S E = \text{Spec } A[t_1, \ldots, t_r, t'_1, \ldots, t'_r]$, and the addition $E \times_S E \to E$ is given by $t_i \mapsto t_i + t'_i$ while $[-1]$ is given by $t_i \mapsto -t_i$.

More to the point, writing $\mathcal{E} \cong \text{Spec } \text{Sym}(\mathcal{E})$ with $\text{Sym}(\mathcal{E})$ the symmetric algebra on a locally free sheaf \mathcal{E}, then addition of sections gives addition on E, and vice versa, as the sheaf of local sections of E coincides with \mathcal{E}^\vee.

(1.2.2.1) Identifying E with E'' via $e \mapsto \langle e, \rangle = -a(e)$, the diagram becomes the base change by $\pi' : E' \to S$ of addition on E'',

$$
\begin{array}{ccc}
E'' \times_S E'' & \xrightarrow{(e''_1, e''_2) \mapsto e''_1 + e''_2} & E'' \\
\text{pr} & & \text{pr} \\
\downarrow & & \downarrow \\
E'' & \xrightarrow{(e'_1, e'_2) \mapsto e'_1 + e'_2} & E'' \\
\downarrow & & \downarrow \\
S & \xrightarrow{\pi'} & S \\
\end{array}
$$

and the isomorphism

$$
\text{pr}^*_1 \mathcal{L}(\langle , \rangle) \otimes \text{pr}^*_2 \mathcal{L}(\langle , \rangle) = \alpha^* \mathcal{L}(\langle , \rangle)
$$

becomes (1.1.3.2) on the nose.

$$
\mathcal{F}' \circ \mathcal{F}(K) = R \text{ pr}''(R \text{ pr}'(R \text{ pr}'(R \text{ pr}'(K) \otimes \mathcal{L}(\langle , \rangle)) \otimes \mathcal{L}(\langle , \rangle))[2r] \\
\cong R(\text{ pr}'' \circ \text{ pr}_{23})(R \text{ pr}'(R \text{ pr}'(K) \otimes \mathcal{L}(\langle , \rangle)) \otimes \mathcal{L}(\langle , \rangle))[2r] \\
\cong R(\text{ pr}'' \circ \text{ pr}_{23})(R \text{ pr}'(K) \otimes \alpha^* \mathcal{L}(\langle , \rangle))[2r] \\
\cong R(\text{ pr}'' \circ \text{ pr}_{23})(R \text{ pr}'(K) \otimes \mathcal{L}(\langle , \rangle))[2r] \\
\cong R \text{ pr}'(R \text{ pr}^* K \otimes \mathcal{L}(\langle , \rangle))[2r] \\
\cong R \text{ pr}'(R \text{ pr}^* K \otimes \mathcal{L}(\langle , \rangle))[2r].
$$

In (1.2.2.2), the first equation of the proof is missing a π''; it should read

$$
\mathcal{F}(\pi^* L[r]) = \pi'' L \otimes R \text{ pr}' \mathcal{L}(\langle , \rangle)[2r].
$$
The rest of the proof of (1.2.2.2) is straightforward. It allows us to write
\[\mathcal{F}' \circ \mathcal{F}(K) \simeq R \operatorname{pr}_1''(\operatorname{pr}^* K \otimes \beta^* \mathcal{F}'(\overline{Q}_{t,E}[r])) \]
\[\simeq R \operatorname{pr}_1''(\operatorname{pr}^* K \otimes \beta^* \sigma'' \overline{Q}_{t,S}(-r)) \]
\[\simeq a_* K(-r), \]
as \(\beta^* \sigma'' \) is supported precisely on the locus where \(e'' = a(e) \), and after base change along \(E \times_{a, \text{id}} E'' \to E \times_S E'' \), which commutes with \(\operatorname{pr}_1'' \), we find \(R \operatorname{pr}_1'' \operatorname{pr}^* K = a_* \).

\[\begin{array}{ccc}
E \times_{a, \text{id}} E'' & \xrightarrow{\pi''} & E \times_S E'' \\
\downarrow \text{id} & & \downarrow \pi \\
E'' & & E
\end{array} \]

Remark. Identifying \(E \simeq (E')^\vee \) in the canonical way, the involutivity can be written
\[\mathcal{F}' \circ \mathcal{F}(K) \simeq [-1]_* K(-r), \]
and the inverse image under \([-1]\) of this identity is \(\mathcal{F}'_{\psi^{-1}} \circ \mathcal{F}(K) \simeq K(-r) \), since \([-1]^* \mathcal{F}'_{\psi} = \mathcal{F}'_{\psi^{-1}} \) in light of the fact that \([-1]^* \psi((e'', e')) = \psi((-e, e')) = \psi^{-1}((e, e')). \)

(1.2.2.4) The adjunction upon which the equality rests is
\[\langle f(s), \varphi \rangle_2 = \langle s, f'' \varphi := \varphi \circ f \rangle_1, \]
as pullback by f' on a section φ of E'_2 gives, by definition, the element of E'_1 which, to a section s of E_1, applies f then φ. We then write

$$\mathcal{F}_2(Rf_!K_1) = R pr'_2((pr'_2(Rf_!K_1) \otimes \mathcal{L}(\langle \ , \ \rangle)))[r_2]$$

$$\approx R pr'_2(R(f \times 1)_!(pr'_1 K_1) \otimes \mathcal{L}(\langle \ , \ \rangle))[r_2]$$

$$\approx R(pr'_2 \circ (f \times 1))_!(pr'_1 K_1 \otimes (f \times 1)^* \mathcal{L}(\langle \ , \ \rangle))[r_2]$$

$$\approx R pr'_2((1 \times f')^* R(f \times 1)_!(pr'_1 K_1 \otimes \mathcal{L}(\langle \ , \ \rangle)))[r_2]$$

$$\approx f'' R pr'_1((pr'_1 K_1 \otimes \mathcal{L}(\langle \ , \ \rangle)))[r_2]$$

$$\approx f'' \mathcal{F}_1(K_1)[r_2 - r_1].$$

(1.2.2.5) If $(\pi')'$ is the morphism of dual bundles $S \to E''$ induced by π', then $(\pi')'' a_* \simeq \sigma^*$. To make sense of the morphism $(\pi')' : S \to E''$, you have to unpack what it means to consider S as a vector bundle of rank 0 over S. The only section of S is the zero section, as at all points of S, as a rank 0 vector bundle returns the vector space $\{0\}$ at every point of S. In other words, we dispose of a tautological isomorphism $S \simeq S \times_k * = S \times \{0\}$. Thinking about $\pi' : E' \to S$ as sending $(s, e') \mapsto (s, 0)$, the map $(\pi')' : S \to E''$ turns the 0 section of S into a section of E'', i.e. the one which to a section s' of E' returns the 0 section of S. Therefore $(\pi')'$ is the embedding by zero section $0 : S \hookrightarrow E''$; as $-0 = 0$, the zero section of E'' corresponds under the isomorphism a to the zero section of E, which sees $(\pi')'' a_* \simeq \sigma^*$.

(1.2.2.7) For the isomorphism

$$\mathcal{F}(K_1 \boxtimes S K_2) \simeq \mathcal{F}(K_1) \boxtimes_S \mathcal{F}(K_2),$$

perhaps it helps to write the commutative diagram

$$
\begin{array}{c}
E \leftarrow E \times_S E \rightarrow E \\
E \times_S E' \leftarrow (E \times_S E) \times_S (E' \times_S E') \rightarrow E \times_S E \\
E' \leftarrow E' \times_S E' \rightarrow E' \\
\end{array}
$$
If one imagines this diagram drawn on the xy-plane in 3D with the center at $(0,0,0)$, places S at $(0,0,1)$, and connects every node of this diagram to this S, every row and column of the 3×3 above will then form a cartesian square with this S. The equality of Fourier transform then follows from the Küneth formula in light of the isomorphism

$$\operatorname{pr}_1^* \mathcal{L}(\langle , \rangle_{E_1}) \otimes \operatorname{pr}_2^* \mathcal{L}(\langle , \rangle_{E_2}) \simeq \mathcal{L}(\langle , \rangle_{E_1 \oplus E_2}),$$

which is an obvious consequence of the fact that given vector bundles E_1, E_2,

$$\langle , \rangle_{E_1 \oplus E_2} = \langle , \rangle_{E_1} + \langle , \rangle_{E_2}.$$

The character ψ carries this additive identity to a multiplicative one, hence the \otimes.

To go from here to the stated isomorphism

$$\mathcal{F}(K_1 \ast K_2) \simeq \mathcal{F}(K_1) \otimes \mathcal{F}(K_2)[-r],$$

after applying (1.2.2.4) in the given way, one is faced with the problem of justifying

$$s''(\mathcal{F}(K_1) \boxtimes S \mathcal{F}(K_2)) \simeq \mathcal{F}(K_1) \otimes \mathcal{F}(K_2).$$

It is useful to reason by adjunction, writing the following adjoint pair of diagrams.

The point is that given e, e' sections of E, E' respectively,

$$\langle e, (\operatorname{pr}_i \circ s')(e') \rangle = \langle \sigma_i(e), s'(e') \rangle = \langle (s \circ \sigma_i)(e), e' \rangle = \langle e, e' \rangle.$$

Ergo,

$$s''(\mathcal{F}(K_1) \boxtimes S \mathcal{F}(K_2)) = (\operatorname{pr}_1 \circ s')^* \mathcal{F}(K_1) \boxtimes S (\operatorname{pr}_2 \circ s')^* \mathcal{F}(K_2)) \simeq \mathcal{F}(K_1) \otimes \mathcal{F}(K_2).$$

1.2.3. Quelques détails supplémentaires pour les exemples donnés suivent.
(1.2.3.1) With \(\sigma^*_F : S \to P' \),
\[
\mathcal{F}(i_* \mathcal{O}_{\ell, E}[s]) \simeq i'' \mathcal{F}(\mathcal{O}_{\ell, E}[s])[r - s] \simeq i'' \sigma^*_{F*}(\mathcal{O}_{\ell, S}(-s))[r - s];
\]
now use proper base change for the cartesian square
\[
\begin{array}{ccc}
E' & \xleftarrow{i'_*} & F' \\
\downarrow{i'} & & \downarrow{\pi'} \\
F' & \xleftarrow{\sigma'_*} & S.
\end{array}
\]

(1.2.3.2) A few useless words: \(e_* \mathcal{O}_{\ell, S} \) is the sheaf on \(E \) that is supported precisely on the section \(e \) of \(E \). Restricted to the closed subscheme which is the image of \(e \), \(e_* \mathcal{O}_{\ell, S} \) is constant with value \(\mathcal{O}_{\ell} \). Therefore \((e_* \mathcal{O}_{\ell, S}) \boxtimes_S K \) has support contained in \(e \times_S E \), and restricted to this closed subscheme, \(s \) is an isomorphism with inverse \(E \xrightarrow{s} (-e) \times_S E \xrightarrow{\sim} E \xrightarrow{\sim} e \times_S E \). En effet, \(\tau_e \) factors as \(E \xrightarrow{\sim} e \times_S E \xrightarrow{\sim} E \).

After applying (1.2.2.7), one uses (1.2.3.1) to compute
\[
\mathcal{F}(e_* \mathcal{O}_{\ell, S}) \simeq e'_+ \mathcal{O}_{\ell, E}[r] \simeq \mathcal{L}((e,))[r].
\]

(1.2.3.3) The isomorphism \(\alpha \) gives rise to a nondegenerate bilinear form \(B : E \times_S E \to G_{\alpha, S} \) via \(B(e_1, e_2) = \langle e_1, \alpha(e_2) \rangle \), and \(\alpha \) is symmetric if \(B \) is; equivalently,
\[
\langle \alpha^{-1}(e'), \alpha(e) \rangle = \langle e, e' \rangle.
\]
This allows the easy verification of the identity
\[
(\dagger) \quad q(e) + \langle e, 2e' \rangle = q(e + \alpha^{-1}(e')) - q'(e').
\]
The cartesian square
\[
\begin{array}{ccc}
E \times E' & \xrightarrow{id \times [2]} & E \times E' \\
\downarrow & & \downarrow \\
E' & \xrightarrow{[2]} & E'
\end{array}
\]
and proper base change gives
\[
[2]^* \mathcal{F}(\mathcal{L}(q)) \simeq \text{R pr}_{1*}(\text{pr}_2^* \mathcal{L}(q) \otimes \mathcal{L}((-2, 2))).
\]
where here we write \(\mathcal{L}(\langle , 2 \rangle) \) for \((\text{id} \times [2])^* \mathcal{L}(\langle , \rangle)\). Let \(f \) denote the composition of maps in the diagram

\[
E \times E' \xrightarrow{\text{id} \times \alpha'^{-1}} E \times_S E \xrightarrow{s} E.
\]

We have the following correspondences between functions and sheaves on \(E \times_S E' \).

\[
q(e + \alpha^{-1}(e')) \longleftrightarrow f^* \mathcal{L}(q)
\]

\[
- q'(e') \longleftrightarrow \mathcal{L}(-q')
\]

\[
q(e) \longleftrightarrow \text{pr}^* \mathcal{L}(q)
\]

\[
\langle e, 2e' \rangle \longleftrightarrow (\text{id} \times [2])^* \mathcal{L}(\langle , \rangle) =: \mathcal{L}(\langle , 2 \rangle).
\]

Disposing of this dictionary, the identity \((\dag)\) gives an isomorphism of sheaves on \(E \times_S E' \)

\[
\text{pr}^* \mathcal{L}(q) \otimes \mathcal{L}(\langle , 2 \rangle) \simeq \text{pr}^* \mathcal{L}(-q') \otimes f^* \mathcal{L}(q).
\]

Therefore the stated isomorphism rests on showing that

\[
\text{R pr}^*_{\dag}(\text{pr}^* \mathcal{L}(-q) \otimes f^* \mathcal{L}(q)) \simeq \mathcal{L}(-q') \otimes \pi'^* \text{R pr}^*_{\dag} \mathcal{L}(q).
\]

The following diagram is commutative with cartesian squares.

\[
\begin{array}{ccc}
E \times_S E' & \xrightarrow{f} & E \\
\downarrow{\text{pr}} & & \downarrow{\pi} \\
E' & \xrightarrow{\pi'} & S
\end{array}
\]

To see that the right square is cartesian, note that the isomorphism

\[
\beta : E \times_S E \to E \times_S E
\]

\[
(e_1, e_2) \mapsto (e_1 - e_2, e_2)
\]
induces an isomorphism of cartesian squares

\[
\begin{array}{ccc}
E \times_S E & \xrightarrow{\text{id}} & E \\
\beta \downarrow & & \downarrow \pi \\
E \times S E & \xrightarrow{s} & E \\
\downarrow \text{id} & & \downarrow \text{id} \\
E & \xrightarrow{\pi} & S.
\end{array}
\]

By the projection formula and proper base change, we conclude

\[
R \text{pr}_1^*(\text{pr}^*\mathcal{L}(-q) \otimes f^\ast \mathcal{L}(q)) \simeq \mathcal{L}(-q') \otimes R \text{pr}_1^*f^\ast \mathcal{L}(q) \simeq \mathcal{L}(-q')\pi'^\ast R\pi_1^*\mathcal{L}(q).
\]

(1.2.3.4) Let \(p : G \to S \) denote the structure morphism and its various base extensions along \(\pi, \pi' \). Let \(f = (\text{pr}_G, m)^{-1} \), with transpose \(f' = (\text{pr}_G, m') \). The diagram

\[
\begin{array}{ccc}
G \times_S E' & \xrightarrow{f'} & G \times_S E' \\
\downarrow m' \;
\end{array}
\]

commutes, so that

\[
m'^\ast \mathcal{F}(K) = f'^\ast p^\ast \mathcal{F}(K) \simeq f'^\ast \mathcal{F}(p^\ast K) \simeq \mathcal{F}(f \circ p^\ast K).
\]

where in the first isomorphism we have used (1.2.2.9) and in the second (1.2.2.4). The commutative diagram

\[
\begin{array}{ccc}
G \times_S E & \xrightarrow{f} & G \times_S E \\
\downarrow \text{id} \;
\end{array}
\]

\[
\begin{array}{ccc}
G \times_S E & \xrightarrow{(\text{pr}_G, m)} & G \times_S E \\
\downarrow m \;
\end{array}
\]

\[
\begin{array}{ccc}
G \times_S E & \xrightarrow{\text{id}} & G \times_S E \\
\downarrow \text{id} \;
\end{array}
\]

\[
\begin{array}{ccc}
G \times_S E & \xrightarrow{p} & E \\
\downarrow \text{id} \;
\end{array}
\]

\[
\begin{array}{ccc}
G \times_S E & \xrightarrow{(\text{pr}_G, m)} & G \times_S E \\
\downarrow m \;
\end{array}
\]

together with the isomorphism \(L \to f_\ast f^\ast L = f_\ast f^\ast L \) for all \(L \) in \(D^b_c(G \times S E, \mathbb{Q}_\ell) \) and the hypothesis \(m^\ast K \simeq M \boxtimes_S L \) let us write

\[
\mathcal{F}(f \circ p^\ast K) \simeq \mathcal{F}(m^\ast K) \simeq \mathcal{F}(M \boxtimes_S L).
\]
Letting \(pr, pr' \) denote \(E \xleftarrow{pr} E \times_S E' \xrightarrow{pr'} E' \) and their base extensions by \(p \), the commutative diagrams below have cartesian diamonds marked.

The projection formula and proper base change find

\[
\mathcal{F}(M \boxtimes_S L) \simeq R pr'_!(pr'^*M \boxtimes_S L) \otimes \mathcal{L}((\ , \)) \\
\simeq R pr'!(pr'^*\pi'^*M \otimes p'^*L) \otimes \mathcal{L}((\ , \)) \\
\simeq R pr'!(pr'^*\pi'^*M \otimes p'^*L \otimes \mathcal{L}((\ , \))) \\
\simeq \pi'^*M \otimes R pr'_!(p'^*(pr'^*L \otimes \mathcal{L}((\ , \)))) \\
\simeq \pi'^*M \otimes p'^*\mathcal{F}(L) = M \boxtimes_S \mathcal{F}(L).
\]
1.2.3.5. As $E_1 \times_S E' \simeq E_1 \times_{S_1} E'_1 \simeq E \times_S E'_1$, the diagram below has cartesian diamonds.

\[
\begin{array}{c}
\text{S}_1 \\
\downarrow \\
E_1 \times_{S_1} E'_1 \\
\downarrow \phi_1 \\
E_1 \\
\downarrow f \\
E \times S \\
\end{array}
\]

In light of the fact that $\mathcal{L}(\langle \ , \rangle)$ on $E_1 \times_{S_1} E'_1$ coincides with the inverse image under f of $\mathcal{L}(\langle \ , \rangle)$ on $E \times S E'$, proper base change and the projection formula for f give

\[
F(Rf_{E!}K_1) \simeq R\text{pr}'_!(Rf_{!1}\phi_1^*K_1 \otimes \mathcal{L}(\langle \ , \rangle)) \simeq R(\text{pr}' \circ f)_!(\text{pr}_1^*K_1 \otimes f^*\mathcal{L}(\langle \ , \rangle)) \\
\simeq R(f_{E'} \circ \text{pr}_1^!)(\text{pr}_1^*K_1 \otimes \mathcal{L}(\langle \ , \rangle)) \simeq Rf_{E'!}\mathcal{F}_1(K_1).
\]

1.3.1–1.3.2. I would like to advocate for something of a shortcut through these sections.

t-exactness of \mathcal{F}. Laumon deduces the t-exactness of \mathcal{F} from the fact that the ‘forget supports’ map is an isomorphism. However, the following direct argument (lifted from the appendix to the reprinted Astérisque 100) is immediate. As in the remark to the note to (1.2.2.1), $\mathcal{F}_{\psi^{-1}} \circ \mathcal{F}_\psi(K) = K(-r)$, As \mathcal{F}_ψ is the composition of exact functors $\text{pr}^[n], \mathcal{L}(\langle \ , \rangle)$ and the left t-exact functor $\text{pr}_!$ (BBD 4.1.2), it is left t-exact. But it is also left adjoint to its inverse, and this inverse is also left t-exact since up to a Tate twist it coincides with $\mathcal{F}_{\psi^{-1}}$. Therefore \mathcal{F}_ψ is also right t-exact (BBD 1.3.17 (iii)).

‘Forget supports’. The theorem (1.3.1.1) in Laumon’s paper states that for all K in $D_c^b(E, \overline{Q}_\ell)$, the ‘forget supports’ map

\[
R\text{pr}_!(\text{pr}^*K \otimes \mathcal{L}(\langle \ , \rangle)) \rightarrow R\text{pr}'_*(\text{pr}^*K \otimes \mathcal{L}(\langle \ , \rangle))
\]
is an isomorphism. Laumon refers the reader to his paper with Katz, where they give an involved geometric proof that ends up yielding more. But Verdier gave the first proof of this isomorphism, and his proof is very short and completely formal. It can be found in Katz’s 1988 Séminaire Bourbaki talk ‘Travaux de Laumon.’

As for the proof of (1.3.2.1), surely the stated isomorphism should read

$$\text{RHom}(\mathcal{F}_\psi(K), \pi'^!L) \simeq \text{Rpr}'(\text{pr}'(\text{RHom}(K, \pi^!L)) \otimes \mathcal{L}_{\psi^{-1}}((,))) .$$

1.4.1.

$$A \times A \xrightarrow{pr'} A'$$

$$\downarrow _{\alpha \times \alpha'} \quad \quad \downarrow _{\alpha'}$$

$$D \times D' \xrightarrow{pr'} D'$$

$$\alpha', \mathcal{F}(K) = \text{Rpr}'(\alpha \times \alpha'): (\text{pr}^* K \otimes \mathcal{L}(xx'))[1]$$

$$= \text{Rpr}'((\alpha \times \alpha'); \text{pr}^* K \otimes \mathcal{L}(xx'))[1]$$

$$= \text{Rpr}'(\text{pr}^* \alpha: K \otimes \mathcal{L}(xx'))[1] .$$

1.4.2.

On a curve X with $j : U \hookrightarrow X$ a dense smooth open with complement F and A a lisse sheaf on U, $A[1]$ is perverse on U and Verdier’s formula [BBD, 2.2.4] gives

The simple perverse sheaves on a curve come as (a) i_* of an irreducible \mathcal{Q}_l-sheaf on a closed point or (b) from $j_*[1]$ of an irreducible sheaf on a dense open. (T$_1$) takes care of (a), but we must verify that a K of type (b) is either (T$_2$) or (T$_3$). Given a K of type (T$_2$),

$$K|\overline{\mathcal{A}} = (\text{pr}_{\overline{\mathcal{A}}})_*(\mathcal{L}(x, \overline{s}') \otimes \text{pr}'_{\overline{s}} F')[1]$$

where \overline{s}' denotes the geometric fiber of s', a discrete set on which F' is a constant sheaf, so that $K|\overline{\mathcal{A}}[-1]$ has all of its constituents (as a lisse sheaf [Weil II, 1.1.6]) isomorphic to $\mathcal{L}(x.a')$ for some $a' \in \overline{k}$.

Proof. Let ϵ denote $\text{Spec } \overline{k} \rightarrow \text{Spec } k$ and its various extensions. The constituents of ϵ^*K' coincide with $j'_* [1]$ of the constituents of the lisse sheaf ϵ^*F' (exact sequences of lisse sheaves give rise to distinguished triangles concentrated in degree 0, apply triangulated functor $j'_*[1]$ followed by \mathcal{P}^1); in particular they are all of type (b). As \mathcal{F} induces an equivalence of perverse sheaves on A and A', \mathcal{F} is a fortiori exact (likewise for \mathcal{F}'), so that the constituents of ϵ^*K' coincide with those of $\mathcal{F} \circ \mathcal{F}'(\epsilon^*K')$; in particular, they are still of type (b), and this implies that none of the constituents of $\mathcal{F}'(\epsilon^*K')$ are of type (T$_2$). As the formation of Fourier transform commutes with any base change (1.2.2.9), this implies the same for the constituents of $\epsilon^*\mathcal{F}'(K') = \epsilon^*K$; i.e. that none are isomorphic to $\mathcal{L}(x.a')[1]$ for some $a' \in \overline{k}$. In light of [BBD, 4.3.2] or the lemma in the note to 4.3.2 below, which says that if F is a lisse sheaf on a normal connected curve, the unit of adjunction $F \rightarrow j_* j^* F$ is an isomorphism, this implies that K is of type (T$_3$): if ϵ^*F had a constituent isomorphic to $\mathcal{L}(x.a')[\overline{U}]$, by the above ϵ^*K would have a constituent isomorphic to $j_*(\mathcal{L}(x.a')[\overline{U}])[1] \cong \mathcal{L}(x.a')[1]$, where $\overline{j} = \epsilon^* j_* : \overline{U} \hookrightarrow \overline{A}$. □

Corollary. \mathcal{F} exchanges (T$_3$) and (T'$_3$).

Proof. Given a simple perverse sheaf K' of type (T'$_3$), $\mathcal{F}'(K')$ is simple and is not (T$_1$) by (1.4.2.1 (i)), therefore must be of type (b); i.e. $\mathcal{F}'(K')$ satisfies the hypotheses of the lemma, so is (T$_3$). □

Corollary (Dichotomy). An irreducible lisse \mathcal{Q}_ℓ-sheaf \mathcal{F} on a dense open $U \hookrightarrow A$

(a) has every constituent of $\epsilon^*\mathcal{F}$ isomorphic to $\mathcal{L}(x.a')[\overline{U}]$ for various $a' \in \overline{k}$, or

(b) has no constituent of $\epsilon^*\mathcal{F}$ isomorphic to $\mathcal{L}(x.a')[\overline{U}]$, for any $a' \in \overline{k}$.

Remark. In analogy with the Fourier transform on function spaces on \mathbb{R},

constant functions \leftrightarrow (T$_2$)

$L^2(\mathbb{R}) \leftrightarrow$ (T$_3$)

point masses \leftrightarrow (T$_1$).

Remark. It is tempting to observe that if we were in the abelian category of constructible sheaves (perverse of perversity $p = 0$) shifted by 1, of course $j_! A \leftrightarrow j_* A$,.
although in the category of perverse sheaves for the middle perversity, $j_*A[1]$ is simple. In this category,

$$\ker(j_*A[1] \to j_*A[1]) = i_*H^0i^*Rj_*A = i_*R^1i^!j_*A$$

placed in degree 0,

where i denotes the immersion of the complement \cite{BBD, 4.1.2}. The point is that although $i^!j_*A = 0$, $R^1i^!j_*A$ vanishes iff j_*A extends to a lisse sheaf on X. Assuming it doesn’t, $j_*A[1]$ is not simple, as it admits a nontrivial subobject $i_*p^!H^0Ri^!j_*A[1] = i_*p^!i^!j_*A[1]$; this is nothing other than $i_*R^1i^!j_*A$ placed in degree 0, and coincides with the largest sub-object of $j_*A[1]$ in the essential image (via $p_{!*}$) of the category of perverse sheaves on S (for the middle perversity – this is simply the category of constructible sheaves on the finite set S) \cite{BBD, 1.4.25}.

\[2.1.1. \text{As } R \text{ is equicharacteristic, the inertia admits this simple description; c.f. note to Weil II, 1.7.11.}\]

One must always repair to \textit{Corps Locaux} Ch. IV for the ultra-mystical ‘upper numbering’ filtration on I. In Proposition 3 of §1, it is claimed that $s(f) - f$ has all its coefficients divisible by $s(y) - y$. If we let $p_{K'}$ denote the maximal ideal of $A_{K'}$, the definition of $i_{G/H}$ means that $s(y) - y$ is of order $i_{G/H}(s)$ in $A_{K'}$; i.e. $(s(y) - y) = \psi_{K'}^{i_{G/H}(s)}$. Lemma 1 then shows that all the coefficients of $s(f) - f$ have order $\geq i_{G/H}(s)$, hence are divisible by $s(y) - y$.

In light of \textit{Corps Locaux} IV §3 Prop. 14 & Rmk. 1, if L/K is an infinite Galois extension with Galois group G, one defines $G^v := \lim \leftarrow G(L'/K)^v$ as L' runs over the set of finite Galois sub-extensions of L. This description shows that G^v is a compact subgroup of G, hence closed in G, hence also in the compact open subgroup $I = G_0 = G^0$, (provided of course $v \geq 0$). It also shows that G^v is normal, as it is a projective limit of the normal groups $G(L'/K)^v$ \cite{Corps Locaux IV Prop. 1}. Left continuity

$$G^v = \bigcap_{w < v} G^w$$

amounts to the statement that if $s \in G$ is not in G^v, then $s \not\in G^w$ for some $w < v$. An element $s \in G$ belongs to G^v if for every finite Galois subextension $L \supset L' \supset K$ with $\text{Gal}(L'/K) = H$, $i_{G/H}(s) \geq \psi(v)$, so it will suffice to show that if there is some L' as
above with $i_{G/H}(s) < \psi(v)$, then there is some $w < v$ such that $i_{G/H}(s) < \psi(w)$. As ψ is continuous and increasing, this is trivial.

Laumon considers the induced filtration on $I = G_0 = G^0$. The filtration is separated,

$$\bigcup_{\lambda \geq 0} I^{(\lambda)} = \{1\},$$

as the same is true for G/H for every normal open subgroup H of G (Corps Locaux IV Prop. 1).

It’s clear that $I^{(\lambda+)} \subset I^{(\lambda)}$ as $I^{(\lambda)}$ is closed. But why $I^{(0+)} = P$? On the level of a finite Galois extension L' of K, Corps Locaux IV §2 explains that over a perfect field of characteristic p, G_1 is a p-group and the quotient G_0/G_1 is sent isomorphically by the inertia character to a subgroup of the group of roots of unity of the residue field of $\overline{L'}$; this is the tame inertia, and G_1 is the wild inertia. It is necessary to switch to the upper numbering filtration in order for the filtration to play well with quotients, and as the index $(G_0 : G_1)$ increases (corresponding to more tame inertia in the extension L'), $\varphi(1)$ approaches 0 from the right. This means that (provided the maximal tamely ramified extension of K is not finite over K_r, the maximal unramified extension of K) for every $\varepsilon > 0$ and $s \in I^{(0+\varepsilon)}$ there exists an extension L' of K with $1/(G_0 : G_1) < \varepsilon$, so that $s \notin G_1$, $G := \text{Gal}(L'/K)$. So P coincides with the completion of $\bigcup I^{(0+\varepsilon)}$, which coincides with the closure of $\bigcup I^{(0+\varepsilon)}$ in I.

2.1.2. (2.1.2.2) The kernel of the representation of P is closed and of finite index, hence open, hence by Corps Locaux IV Prop 14. & Prop. 1, $I^{(\lambda)}$ acts trivially for $\lambda \gg 0$. The corollary (2.1.2.3) is Maschke’s theorem. In the definition of \textit{pente}, $R_\lambda := R_{\geq 0}$, and λ may equal 0; $\lambda = 0$ iff W is trivial. If H denotes the kernel of the representation $P \to \text{GL}(V)$, then P/H is a finite group and $(P/H)^v = P^vH/H$ (Corps Locaux IV Prop. 14). The slope λ coincides with the largest real number v such that $(P/H)^v = \{1\}$; in the vocabulary of Corps Locaux IV §3 Rmk. 1, this is the largest break in the filtration on P/H. The canonical slope decomposition (2.1.2.4) of V is a decomposition as I- or G-module since if W is a simple P-submodule of V of slope λ and $g \in G$, then gW is still simple as P-module and still of slope λ, as the groups $I^{(\lambda)}$ are normal subgroups of G, for all $v \geq 0$. Therefore V_λ is preserved by G.
(2.1.2.8) To see that $L_q(1/\pi)$ has slope 1, it will suffice to show that if $\Gamma := \text{Gal}(\eta'/\eta)$, then $\Gamma = \Gamma_1$ and $\Gamma_2 = \{1\}$. It would follow that $q(1) = 1$ for this extension so that

$\Gamma^{\varepsilon} = \Gamma_1 = \Gamma$ and $\Gamma^{1+\varepsilon} = \{1\}$ for all $\varepsilon > 0$. With the criterion of *Corps Locaux* IV §2 Prop. 5, it would suffice to show that for all $s \in \Gamma$,

$s(\pi')/\pi' \equiv 1 \pmod{\pi'}$

$s(\pi')/\pi' \neq 1 \pmod{(\pi')^2}$.

As $s(\pi')/\pi' = 1/(1 + \alpha\pi')$ for $\alpha \in F_p$,

$s(\pi')/\pi' \equiv 1 - \alpha\pi' \pmod{(\pi')^2}$.

2.1.4. Schur’s lemma gives that every simple tame I-module has rank 1. The action of $\text{Gal}(\overline{k}/k)$ on $\hat{Z}(1)(\overline{k})$ by inner automorphisms coincides with the action of Galois on roots of unity; c.f. Stacks tag 0BU5.

2.1.5. The equivalence of the three conditions can be seen as follows: (i) trivially implies (ii) and (iii) as V^1 (resp. V_1) is the largest subobject (resp. quotient) on which I acts trivially. The decomposition $V = \oplus V_{\lambda}$ permits us to assume $V = V_{\lambda}$. If $\lambda > 0$, then by definition $V^1_{\lambda} = 0$ and moreover P acts nontrivially. Restricting the action of P to a simple P-submodule W of V_{λ}, one finds $W_P = 0$, hence $(V_{\lambda})_P = 0$ and *a fortiori* $(V_{\lambda})_I = 0$. Moreover, V_{λ} has no nontrivial subquotient on which I acts trivially, as such a subquotient would be a direct sum of simple P-modules of slope λ, so (i), (ii), and (iii) are automatically verified and we consider $V = V_0$, a tame G-module. The existence of a geometrically constant subquotient of V as G-module implies the same as I-module, and therefore we need only show that (ii)\iff(iii) and the combination implies that there exists no I-module subquotient of the tame I-module V. As $T := I/P \simeq \hat{Z}(1)(\overline{k})$ is procyclic with topological generator, say, t, and the representation V of T is continuous,

$$0 \to V^T \to V \xrightarrow{t^{-1}} V \to V_T \to 0$$

is exact, and shows that $V^T = 0 \iff V_T = 0$. Given T-submodules

$$V = V_0 \supset V_1 \supset V_2 \supset 0,$$
$V_i^T = 0 \Rightarrow (V_1)_T = 0$ for each i, so if V_1/V_2 is T-invariant, the quotient $V_1 \to V_1/V_2$ factors through $(V_1)_T = 0$, and $V_1/V_2 = 0$. So, V has no T-invariant subquotient.

Duality $V \mapsto V^\vee$ sends $\mathcal{G}_{(0,\infty]}$ into itself as $(V^\vee)^1 = (V_1)^\vee$.

2.2.1. Of course, the various functions are extended additively with sign, so that e.g. for a perverse sheaf K on X, $s_x(K) \leq 0$ for $x \in |X|$.

(2.2.1.1) Let $x \xleftarrow{i} X \xrightarrow{j} X - x$. There is a distinguished triangle $(i^! = Ri^!$ etc.)

$$i!K \to i^*K \to i^*j_!j^*K \to$$

As K is perverse, $\mathcal{H}^{-1}(i^!K) = 0$ and $\mathcal{H}^j(j^*K) = 0$ for $j \neq -1$. Representing j^*K by a complex I of injectives in degrees ≥ -1

$$0 \to \cdots \to 0 \to I_{-1} \xrightarrow{d_{-1}^{-1}} I_0 \to I_1 \to \cdots$$

we have $\mathcal{H}^{-1}(j^*K) = \ker d^{-1}$. As j_* is left exact,

$$\mathcal{H}^{-1}(j_!j^*K) = \mathcal{H}^{-1}(j_*I) = \ker j_*(d^{-1}) = j_*(\ker d^{-1}) = j_*\mathcal{H}^{-1}(j^*K) = j_*j^*\mathcal{H}^{-1}(K),$$

so that

$$0 \to i^*\mathcal{H}^{-1}(K) \to i^*j_!(j^*\mathcal{H}^{-1}(K))$$

is exact, proving $\mathcal{H}^{-1}(K)_\tau \subset j_!(j^*\mathcal{H}^{-1}(K))_\tau$ and the inequality $r(K) \leq r_x(K)$, as $r(\mathcal{H}^{0}(K)) = 0$, and showing that $\mathcal{H}^{-1}(K)$ is lisse at x iff I_x acts trivially on $\mathcal{H}^{-1}(K)_\tau$ iff $r_x(\mathcal{H}^{-1}(K)) = r(\mathcal{H}^{-1}(K))$; of course $\mathcal{H}^{0}(K)_\tau = 0$ iff $r_1(\mathcal{H}^{0}(K)) = 0$. As $r_0(K) = r_0(\mathcal{H}^{0}(K)) - r_0(\mathcal{H}^{-1}(K))$ and $r(K) = -r(\mathcal{H}^{-1}(K))$, $r_x(K) \geq r(k)$ with equality iff (i) holds. Of course, s_x measures wild ramification and so (ii)\Leftrightarrow(iii) trivially. See Reprise.

2.2.2. The tame quotient $\pi_1(\xi, \xi) \to \pi_1(\xi, \xi)^{mod}$ has not actually been defined; ‘tame quotient’ in (2.1.1) meant $I \to I/P$. This tame quotient corresponds to $G \to G/P$.

(2.2.2.1) It suffices to show \tilde{i}_s^{mod} is an isomorphism in light of the short exact sequence of π_1 (SGA 1 6.11) which expresses the fundamental group as extension of $\text{Gal}(\overline{k}/k)$ by the geometric fundamental group.
(2.2.2.2) This mysterious theorem is found in Katz, *Local-to-global extensions of representations of fundamental groups*, where he also proves a cohomological formula for the ℓ-adic Swan representation. In light of Reprise below, some cursory analysis of the meaning of this theorem can be made. The discussion doesn’t change if one replaces \(k \) by \(\overline{k} \). First of all, \(\operatorname{Gal}(\overline{\kappa}/k(u)) \) surjects onto \(\pi_1(\mathbf{G}_{m,k}, \overline{\kappa}) \), and we can describe the kernel in terms of the monodromy at all geometric closed points of \(\mathbf{G}_{m,k} \).

\[
G := \operatorname{Gal}(\overline{\kappa}/k(u)) \twoheadrightarrow \pi_1(\mathbf{G}_{m,k}, \overline{\kappa}) \twoheadrightarrow \pi_1(\mathbf{G}_{m,k}, \overline{\kappa})^{\text{mod,∞}} \twoheadrightarrow \pi_1(\mathbf{G}_{m,k}, \overline{\kappa})^{\text{mod}}
\]

With the notation (2.2.1), the kernel of the first map is topologically generated by \(\{1_x\}_{x \in \mathbf{G}_{m,k}} \). The kernel of the second map is topologically generated by \(\mathbf{P}_\infty \). The kernel of the third map is topologically generated by \(\mathbf{P}_0 \). (Both \(\mathbf{P}_\infty, \mathbf{P}_0 \subset G \).) The injection \(\pi_1(\overline{\kappa}, \overline{\kappa}) \hookrightarrow G \) corresponds to the Galois extension \(k(\overline{\kappa})/k(u) \).

That \(\pi_1(\overline{\kappa}, \overline{\kappa}) \) injects into \(\pi_1(\mathbf{G}_{m,k}, \overline{\kappa})^{\text{mod,∞}} \) corresponds simply to the statement that membership in the latter group puts no condition on the monodromy at 0. An object in the latter Galois category corresponds to a finite cover of \(\mathbf{P}^1 \setminus \{0\} \) which is étale away from \(\infty \) and tamely ramified at infinity. The injection \(\pi_1(\overline{\kappa}, \overline{\kappa}) \hookrightarrow \pi_1(\mathbf{G}_{m,k}, \overline{\kappa})^{\text{mod,∞}} \) corresponds to the statement that the constraints on monodromy at all closed points of \(\mathbf{P}^1 \) other than 0 imposed by membership in \(\pi_1(\mathbf{G}_{m,k}, \overline{\kappa})^{\text{mod,∞}} \) put in effect ‘no constraints’ on the monodromy at 0.

The isomorphism \(\pi_1(\xi \otimes \overline{k}, \overline{\kappa})^{\text{mod}} \cong \pi_1(\mathbf{G}_{m,\overline{k}}, \overline{\kappa})^{\text{mod}} \) is the statement that the Galois category of étale covers of the generic point of \((\mathbf{A}^1_k)_{(0)} \) tamely ramified at the closed point is equivalent to the category of étale covers of \(\mathbf{G}_{m,\overline{k}} \) which are tamely ramified at 0 and \(\infty \). The proof given notes that both are isomorphic to \(\mathbf{Z}(1)(\overline{k}) \), but this fact for \(\mathbf{G}_{m,\overline{k}} \) is not proved in (1.1.3.7), which introduces the Kummer coverings of \(\mathbf{G}_{m,\overline{k}} \). What’s needed is Grothendieck’s comparison theorem for curves (SGA 1 XIII 2.12), which immediately shows that the tame fundamental group of \(\mathbf{P}^1_k \setminus \{\infty\} \) is trivial (this is the automorphism group of a fiber functor on the Galois category consisting of finite covers of \(\mathbf{P}^1_k \) étale over \(\mathbf{A}^1_k \) and tame at \(\infty \)) and that \(\pi_1(\mathbf{G}_{m,\overline{k}}, \overline{\kappa})^{\text{mod}} \) is freely generated by a generator of the tame inertia at 0, hence is indeed isomorphic to \(\mathbf{Z}(1)(\overline{k}) \). In light of this, we know that the Kummer coverings of (1.1.3.7) do exhaust the set of finite maps to \(\mathbf{P}^1_k \) étale over \(\mathbf{G}_{m,\overline{k}} \) and tamely ramified at 0 and \(\infty \).
2.3.1. (2.3.1.1) The negative sign before \(\psi \) is due to the shift [1] in the formula for Fourier transform. The contribution in the formula of Grothendieck-Ogg-Safarevič from \(a_{\infty}(K) \) is \(r(K) - s(F,_{\eta_{\infty}} \otimes \mathcal{L}(x.s')_{\eta_{\infty}}) \) and of course \(r_{\infty}(K') = 0 \) as our \(K \) on \(\mathbb{P}^1 \) is obtained as extension by zero of \(K \) on \(A \). The Swan conductor \(s_{\infty} \) doesn’t care about the stalk of \(K \) at \(\infty \) but only about the restriction of \(K \) to the generic point \(\eta_{\infty} \) of the henselian trait \((\mathbb{P}^1_{k})_{(\infty)} \). As \(\mathcal{L} \) is locally constant on \(A \), \(a_s(K) \otimes \mathcal{L}(x.s') = a_s(K) \) for \(s \in S \).

To understand \(\mathcal{L}(x,a')_{\eta_{\infty}} \) when \(a' \neq 0 \), let’s again write the Artin-Schreier covering

\[
0 \to F_p \to G_{a,k} \xrightarrow{t^p - t} G_{a,k} \to 0.
\]

The induced map \(k[t_1] \to k[t_2] \) on coordinate rings is \(t_1 \mapsto t^p_2 - t_2 \), as can be readily seen by remembering what \(F^* \) and plus do on the coordinate ring of \(G_{a,k} \). The Artin-Schreier sheaf \(\mathcal{A} \) is the sheaf of local sections of this covering. It is an \(F_p \)-torsor on \(G_{a,k} = \text{Spec } k[t_1] \). As the above map on coordinates makes \(t_2 \) integral over \(k[t_1] \) with equation of integral dependence \(t^p_2 - t_2 = t_1 \), \(\mathcal{A} \) is represented over \(G_{a,k} = \text{Spec } k[t_1] \) by the revêtement étale \(\text{Spec } k[t_1,t_2]/(t^p_2 - t_2 - t_1) \). Pushing \(\mathcal{A} \) by the character \(\psi^{-1} \) gives \(\mathcal{L}_e \) but it is conceptually easier to keep working with \(\mathcal{A} \). The pullback of \(\mathcal{A} \) to \(A \) via \(A \times a' \to A \times A' \to G_a \) corresponds to the revêtement étale of \(A = \text{Spec } k[x] \) given by \(\text{Spec } k[x,t]/(t^p - t - xa') \), this is the one-parameter family of Artin-Schreier coverings

\[
t^p - t = xa', \quad a' \in \bar{k}.
\]

Let \(F = \bar{F}_p \). Given \(x \in A(F) \), \(x' \in A'(F) \), we can consider \(x, x' \) as elements of \(F_q \) for some \(q = p^n \), \(\mathcal{L}(xx') = \psi^{-1}(N_{F_q/F_p}(xx')) \). When \(k \) is merely a perfect field of characteristic \(p \), \(\mathcal{L}(x,a') \) corresponds to the push of the above \(F_p \)-torsor \(\mathcal{A} \) by \(\psi^{-1} : F_p \to \bar{Q}_f^\times \). The sheaf \(\mathcal{A} \) corresponds to the representation of \(\text{Gal}(\eta'/\eta) \) discussed in the note to (2.1.8); likewise \(\mathcal{L}(x.a')_{\eta_{\infty}} \) corresponds to \(L_\psi(1/xa') \); here \(xa' \) corresponds to \(\pi \) and indeed \(1/xa' \) is a uniformizer for the strictly henselian trait \((\mathbb{P}^1_{k})_{(\infty)} \). So \(\mathcal{L}(x,a')_{\eta_{\infty}} \) has slope 1.

If there is an \(a'_1 \in \bar{k} \) such that

\[
((F,_{\eta_{\infty}}) \otimes \mathcal{L}(x,a'_1)_{\eta_{\infty}})^{(1)} \neq 0,
\]
then for all $a'_2 \neq a'_1 \in \overline{k}$,

$$(F_{\overline{\eta}_{ko}})_1 \otimes \mathcal{L}(x.a'_2)_{\overline{\eta}_{ko}})^{\otimes (1)} = ((F_{\overline{\eta}_{ko}})_1 \otimes \mathcal{L}(x.a'_1)_{\overline{\eta}_{ko}} \otimes \mathcal{L}(x.(a'_2 - a'_1))_{\overline{\eta}_{ko}})^{\otimes (1)} = 0,$$

as $\mathcal{L}(x.(a'_2 - a'_1))_{\overline{\eta}_{ko}}$ has slope 1.

Formula (i): in light of the above discussion, (2.1.2.7) gives that for almost all $a' \in \overline{k}$,

$$s(F_{\overline{\eta}_{ko}} \otimes \mathcal{L}(x.a')_{\overline{\eta}_{ko}}) = r((F_{\overline{\eta}_{ko}})[0,1]) + r((F_{\overline{\eta}_{ko}})_1) + s((F_{\overline{\eta}_{ko}})_1,\infty).$$

By (2.2.1.1), $r(K') = r_{a'}(K')$ for all but the finitely many $s' \in S'$. Combining these two facts with the Grothendieck-Ogg-Šafarevič formula for $r_{a'}(K')$ gives

$$r(K') = r(F_{\overline{\eta}_{ko}}) + \sum_{s \in S} \deg(s).a_s(K) - (r((F_{\overline{\eta}_{ko}})[0,1]) + r((F_{\overline{\eta}_{ko}})_1) + s((F_{\overline{\eta}_{ko}})_1,\infty))$$

$$= \sum_{s \in S} \deg(s).a_s(K) + r((F_{\overline{\eta}_{ko}})_1,\infty) - s((F_{\overline{\eta}_{ko}})_1,\infty).$$

The difference between formulae (i) and (ii) is $s((F_{\overline{\eta}_{ko}})_1 \otimes \mathcal{L}(x.s')_{\overline{\eta}_{ko}})$; in the generic formula (i) we could discard the finitely many geometric points of A' where this differs from $r((F_{\overline{\eta}_{ko}})_1)$. Therefore,

$$r_{a'}(K') - r(K') = -s((F_{\overline{\eta}_{ko}})_1 \otimes \mathcal{L}(x.s')_{\overline{\eta}_{ko}}) + r((F_{\overline{\eta}_{ko}})_1).$$

The difference between formulae (i) and (iii) is that in (i) we applied (2.1.2.7) while in (iii) we cannot, so that

$$r(K')_0 - r(K') = -s(F_{\overline{\eta}_{ko}}) + r((F_{\overline{\eta}_{ko}})[0,1]) + r((F_{\overline{\eta}_{ko}})_1) + s((F_{\overline{\eta}_{ko}})_1,\infty))$$

$$= -s((F_{\overline{\eta}_{ko}})[0,1]) + r((F_{\overline{\eta}_{ko}})[0,1]).$$

Intermezzo: SGA 7 Exposé XIII. §1 In the definition of a compatible action of G on a sheaf of sets \mathcal{F} on \overline{Y}, to an étale $a : U \to \overline{Y}$ and $g \in G$ we must associate an
isomorphism

\[\tilde{Y} \times_{u(g),a} U \cong U \xrightarrow{u(g)} U \]

\[\mapsto \quad \mathcal{F}(U) \xrightarrow{u(g)} U \rightarrow \tilde{Y} \rightarrow \mathcal{F}(U) \xrightarrow{u(g)} \tilde{Y} \]

so as to induce morphisms of sheaves \(\sigma(g) : u(g)^* \mathcal{F} \rightarrow \mathcal{F} \) in a compatible way so that \(\sigma(g h) = \sigma(g) \sigma(h) \). In effect, there is an obvious choice: \(\mathcal{F}(u(g)) \), and this choice explains why, given \(\mathcal{G} \) on \(Y \), the action of \(\text{Gal}(k, k) \) on \(\mathcal{G} \) by transport of structure is compatible with the action of the same group on \(\tilde{Y} \) (action ‘by transport of structure’ means the above action). \textit{A priori} the compatible action of \(G \) on \(\mathcal{F} \) need not even factor through \(u \).

(1.2.7) Let \(f : S' \rightarrow S \) be a surjective morphism of henselian traits. Then \(\eta' \mapsto \eta, s' \mapsto s \), and we can choose \(\bar{s}', \bar{s}, \bar{\eta}', \bar{\eta} \) so that \(\bar{s}' \rightarrow s \) factors through \(\bar{s} \) and likewise \(\bar{\eta}' \rightarrow \bar{\eta} \rightarrow \eta \) so that the diagram below commutes.

This implies that for \(\mathcal{F} \) a sheaf on \(Y \), \(f^* \mathcal{F}_{\bar{s}'} := f^* \bar{s}'^* \mathcal{F} = \bar{s}'^* f^* \mathcal{F} \), so that \(\text{Gal}(\bar{s}'/s') \) acts on \(f^* \mathcal{F}_{\bar{s}} \) via the homomorphism

\[\text{Gal}(\bar{s}'/s') \rightarrow \text{Gal}(\bar{s}/s) \quad \text{induced by the restriction of } f \text{ to } s'; \]

likewise, \(\text{Gal}(\bar{\eta}'/\eta') \) acts on \(f^* \mathcal{F}_{\bar{\eta}} \) via the homomorphism

\[\text{Gal}(\bar{\eta}'/\eta') \rightarrow \text{Gal}(\bar{\eta}/\eta) \quad \text{induced by the restriction of } f \text{ to } \eta'. \]

(1.3) Typo: \(\overline{X} := X \times_S \overline{S} \). Recall that \(\overline{S} \) is the normalization of \(S \) in \(\overline{\eta} \), which is the spectrum of a strictly henselian d.v.r.; its separably closed residue field may be an inseparable extension of \(k(s) \), but we take \(\overline{s} \) to denote the spectrum of this separably closed field, which can be considered as the closed point of \(\overline{S} \) or, by light abuse of notation (0.2.4), as defining a geometric point of \(S \).
It is perhaps worth comparing $i^* j^* \eta^*$ with $i^* \overline{j} \overline{s} \overline{\eta}$ in the definition of Ψ_{η}. Let \mathcal{F} be a sheaf on $Y \to S$; then $\mathcal{F}_{\overline{\eta}}$ carries action of $\text{Gal}(\overline{\eta}/\eta)$. In effect, the stalk of $i^* j^* \mathcal{F}$ is $\mathcal{I}^1_{\overline{\eta}}$, while $i^* \overline{j} \overline{s} \mathcal{F} = \mathcal{F}_{\overline{\eta}}$ endowed with continuous action of $\text{Gal}(\overline{\eta}/\eta)$ compatible with the action of the latter on $Y_{\overline{\eta}}$. In galoisian terms of (1.2.2), this is the observation that $\text{Gal}(\overline{\eta}/\eta) = \{ e \}$.

In (1.3.6.2), the ψ is omitted on the left hand side because it induces an equivalence (see note to (2.1.8) below). The $X_s \times_s \eta$-component of both sides is readily computed from the definitions, keeping in mind that $\psi_{\overline{\eta}}$ is a sheaf on $X_{\overline{\eta}}$; namely,

$$
\Psi_{\eta}(f_* \mathcal{F}) = i^* \overline{j} \overline{s}(f_*(\mathcal{F}_{\overline{\eta}})) = i^* \overline{j} \overline{s} \Gamma(X_{\overline{\eta}}, \mathcal{F}),
$$

which, as $\text{Gal}(\overline{\eta}/\eta)$-module, is simply $\Gamma(X_{\overline{\eta}}, \mathcal{F})$ (sitting on $\overline{\eta}$). With $f : X_{\overline{\eta}} \to \overline{s}$,

$$
f_* \Psi_{\eta}(\mathcal{F}) = \Gamma(X_{\overline{\eta}}, \Psi_{\eta}(\mathcal{F})).
$$

(1.3.8) The commutativity of f_i with change of base does not require that f be quasi-finite, only separated and locally of finite type [SGAA, Exp. XVII 6.1.4]. The morphism $f_i j_i \to \overline{j}_s f_i$ follows from the definition of f_i [SGAA, Exp. XVII 6.1.2] and the observation that the sections of $\overline{j}_s f_i$ over X' are the sections of $\overline{j}_s f_i$ over $X_{\overline{\eta}}$ with support proper over $X'_{\overline{\eta}}$ while the sections of $f_i \overline{j}_s$ are the same, only they must now have support proper over the larger space \overline{X}'. Therefore the map is induced simply by the inclusion $\overline{\eta} \hookrightarrow \overline{S}$. When f is finite it is proper and all these maps are isomorphisms.

(1.3.9) Commute with direct image \sim [SGAA, Exp. XVIII 3.1.12.3].

$$
i^* f' \sim f' i^* \sim [\text{SGAA, Exp. XVIII 3.1.14.2}].
$$

f étale \sim [SGAA, Exp. XVIII 3.1.8].

(1.3.10) The definition of this arrow is clarified with a diagram in [Th. finitude, 3.7], where the derived version of this map is shown to be an isomorphism, provided you assume \mathcal{F} is of torsion prime to the residual characteristic of S.

(1.4) The business of securing the injectivity of η' is the usual trick (SGA V Exp. XV p. 479). Namely, the cone of $sp^* K_s$ (where here $sp = sp \circ j$ in the sense of (1.2.2)) is the cone of the identity map on this complex; i.e. the complex $C(sp^* K_s)^\wedge :=$
\((sp^* K_s)^i \oplus (sp^* K_s)^{i-1}\) with differential \(d^i(x, y) = (d^i x, x - d^{i-1} y)\). The identity map on this complex is homotopic to 0 via the homotopy \(h(x, y) = (y, 0)\), so it is acyclic and \(K'_{\eta} = K_{\eta} \oplus C(sp^* K_s)\) is homotopic to \(K_{\eta}\). Replacing \(\varphi\) by \(\varphi' := (\varphi, \id, 0)\) (as \(sp^* K_s\) coincides with \(K_{\eta}\) with action of \(\Gal(\overline{\eta}/\eta)\) factoring through \(\Gal(\overline{\eta}/s)\) so that \(\varphi'\) remains equivariant), \(\varphi'\) is now a termwise split injection with termwise splitting given by projection to the second factor. In (1.4.2.2) \(sp\) again coincides with \(sp \circ j\) (1.2.2). En termes imagés, \(\Phi(K)\) keeps track of the sections of \(K_{\eta}\) which do not come from residual extension of sections of \(K_s\); bref, the discrepancy between \(K_{\eta}\) and \(K_s\).

(2.1.2) ‘l’image réciproque \(F_{\eta}\) est acyclique’ \(\rightsquigarrow [\text{SGAA, VII 5.7}].\)

(2.1.3) \(S_{\text{nr}}\) is a strictly henselian trait coinciding with the normalization of \(S\) in \(\eta_{\text{nr}}\).

Claim: \(\overline{X}_{(\overline{\eta})} \simeq X_{(\overline{\eta})} \times_{S_{\text{nr}}} \overline{S}\). As \(\overline{X} = X \times_S S_{\text{nr}} \times_{S_{\text{nr}}} \overline{S}\) and \(X_{(\overline{\eta})}\) coincides with the strict henselization of \(X \times_S S_{\text{nr}}\) at \(\overline{\eta}\), \(X_{(\overline{\eta})} \times_{S_{\text{nr}}} \overline{S}\) is pro-étale over \(\overline{X}\). On the other hand, let \(\eta'\) be a finite separable extension of \(\eta_{\text{nr}}\) and \(S'\) the normalization of \(S_{\text{nr}}\) in \(\eta'\). Then \(X_{(\overline{\eta})} \times_{S_{\text{nr}}} S'\) is finite over \(X_{(\overline{\eta})}\), so splits as a disjoint union of henselian local ring spectra indexed by the points in the closed fiber \(\overline{X} \times S_{\text{nr}} S'\). As the closed fiber of the map \(S' \to S_{\text{nr}}\) is radicial, the map \(\overline{X} \times S_{\text{nr}} S' \to \overline{X}\) is injective and hence we see that \(\overline{X} \times S_{\text{nr}} S'\) is one point (Stacks tag \(01S2\)) so that \(X_{(\overline{\eta})} \times S_{\text{nr}} S'\), and hence by passage to the limit \(X_{(\overline{\eta})} \times S_{\text{nr}} \overline{S}\) too, are strictly henselian local (Stacks tag \(04GI\)). It is now immediate that the generic fiber of the strict henselization of \(\overline{X}\) at \(\overline{\eta}\) coincides with

\[
(X_{(\overline{\eta})} \times S_{\text{nr}} \overline{S})_{\overline{\eta}} = X_{(\overline{\eta})} \times_{\eta_{\text{nr}}} \overline{\eta}.
\]

(2.1.5) Considering \(\mathcal{F}\) as concentrated in degree 0, then so too is \(sp^* i^* \mathcal{F}\). We write the long exact sequence of cohomology associated to the stalk at \(\overline{\eta}\) (technically the stalk at the point \((\overline{\eta}, \eta)\) of the topos \(X_s \times_s \eta\)) of the distinguished triangle (2.1.2.4)

\[
0 \to \mathcal{F}_{\overline{\eta}} \xrightarrow{\sim} (j_{\overline{\eta}} \mathcal{F})_{\overline{\eta}} \to R^0\Phi(\mathcal{F}) \to 0 \to R^1\Psi(\mathcal{F})_{(\overline{\eta}, \overline{\eta})} \to R^1\Phi(\mathcal{F}) \to \cdots
\]

with the second arrow an isomorphism as \(\mathcal{F}\) is lisse (c.f. Reprise). (2.1.3) gives that

\[
R^1\Psi(\mathcal{F})_{(\overline{\eta}, \overline{\eta})} \simeq H^1(X_{(\overline{\eta})} \times_{\eta_{\text{nr}}} \overline{\eta}, \mathcal{F})
\]

and the note to (2.1.3) above shows that \(X_{(\overline{\eta})} \times_{\eta_{\text{nr}}} \overline{\eta}\) is a variety of vanishing cycles of \(f\) at the point \(\overline{\eta}\) in the sense of Arcata V 1.3 (more properly it should be called a variety
of nearby cycles); as \(f \) is smooth hence (universally) locally acyclic (Arcata V 2.1) and the restriction of \(\mathcal{F} \) to \(X(\overline{\eta}) \) is constant, this same definition 1.3 gives that \(R\Psi(\mathcal{F})_{(\overline{\iota},\overline{\eta})} \) is connective (i.e. acyclic in degrees \(> 0 \)) so that \(R\Phi(\mathcal{F})_{(\overline{\iota},\overline{\eta})} = 0 \).

In the case of a complex \(K \) in \(D^+(X, \Lambda) \) with \(f \) smooth and the \(\mathcal{H}^i(K) \) lisse, we can reduce to the previous paragraph with the help of the spectral sequence

\[
E_\infty^{p,q} = R^p\Psi_\eta(\mathcal{H}^q(K_\eta)) \Rightarrow \mathcal{H}^{p+q}(\Psi_\eta(K))
\]

which finds that the map \(sp^* i^* K \to R\Psi_\eta(K_\eta) \) is a quasi-isomorphism.

(2.1.6) \(Rf_* \) is described as a functor \(D^+(Y \times_s S, \Lambda) \to D^+(Y \times_s S, \Lambda) \).

c) \(f \) quasi-fini \(\Rightarrow f_i \) exact \(\sim \) [SGAA, XVII 6.1.4].

d) \(f \) quasi-fini \(\Rightarrow Rf^! \) is the right derived functor of \(f^! \) \(\sim \) [SGAA, XVIII 3.1.8 (i)].

(2.1.7) Climbing to the highest heights of pedantry, to derive (1.3.6.1), start by representing our \(K \) in \(D^+(X, \Lambda) \) by a complex of injectives \(I_1 \); as \(f_* \) preserves injectives, \(R\Psi Rf_* K = \Psi f_* I_1 \). By (1.3.6.1) we find a morphism of complexes \(\Psi f_* I_1 \to f_\ast \Psi I_1 \).

Taking a quasi-isomorphism \(\Psi I_1 \to I_2 \) into a complex of injectives \(I_2 \) composes to give

\[
R\Psi Rf_* K = \Psi f_* I_1 \to f_\ast \Psi I_1 \to f_\ast I_2 = Rf_* R\Psi K.
\]

The same method gives (2.1.7.2) and the first arrow in the below for (2.1.7.3).

\[
Rf_! R\Psi = Rf_! j_! R\Psi \to Rf_! R\Psi j_! \to R\Psi Rf_! j_! = R\Psi Rf_!.
\]

For \(f \) quasi-finite, \(f^! \) is right adjoint to the exact functor \(f! \) and so preserves injectives.

Deligne shows [Th. finitude, 3.7] that the formation of nearby cycles \(R\Psi \) commutes with change of trait; i.e. the base-change morphism (2.1.7.5) is an isomorphism (for sheaves of torsion prime to the residual characteristic of \(S \)). Confusingly, he calls \(R^i \Psi_\eta \) vanishing cycles.

(2.1.8) Typo: \(K \) belongs in \(D^+(X, \Lambda) \). When \(X' = S, \Psi \) induces an equivalence of sheaves on \(S \) with sheaves on the topos \(s \times_s S \) (1.2.2 b)) and is therefore omitted. The \(X_s \times_s \eta \)-component of the left-hand side of (2.1.8.1) is

\[
R \Psi_\eta Rf_* K = i^! j_* j^! Rf_* K = i^! j_* (Rf_* K)_{\overline{\eta}} = i^! j_* R\Gamma(X_{\overline{\eta}}, K).
\]
As in the note to (1.3) above, as $\text{Gal}(\overline{\eta}/\eta)$-module, $\Gamma(X_{\overline{\eta}}, K) = \Gamma(X_{\eta}, K)$, but the left-hand side can be considered as sitting on $\overline{\eta}$ while the right-hand side sits on η. This is pedantry. In any event, the $X_s \times_s \eta$-component of the right-hand side of (2.1.8.1) coincides with the right-hand side of (2.1.8.3) in light of (2.1.6.2), which in itself is pedantic and simply recognizes that the object $R\Psi_{\eta}(K)$ sits on $X_{\overline{\eta}}$, and we take the stalk at the point $(\overline{\eta}, \eta)$ of $X_s \times_s \eta$ as in (2.1.3). In other words, with $f : X_{\overline{\eta}} \to \overline{\eta}$,

$$Rf_* \Psi_{\eta}(K) = Rf_* \Gamma(X_{\overline{\eta}}, \mathcal{T}_s(K_{\overline{\eta}})) = \Gamma(X_{\overline{\eta}}, \mathcal{T}_s(K_{\overline{\eta}})) = \Gamma(X_{\overline{\eta}}, R\Psi_{\eta}(K)).$$

The long exact sequence (2.1.8.9) exists when f is proper because in that case (2.1.8.3) is an isomorphism.

2.3.2. The translation of the note to (2.2.1.1) into $G_{s'}$-modules is that

$$\mathcal{H}^{-1}(K_{s'}) \subset F_{\overline{\eta'}}^{I_{s'}}.$$

which confirms the exactness

4.2.2. (4.2.2.2) Write $\mathcal{F} := F$ to harmonize with Deligne’s notation. The condition that ‘the action of I_s be unipotent of echelon 2’ corresponds, in the vocabulary of [Weil II, 1.7.2], to the property that the filtration of local monodromy on $\mathcal{F}_{\overline{\eta}}$ has at most 3 nonzero graded pieces; i.e. if I does not act trivially on $\mathcal{F}_{\overline{\eta}}$, then the nilpotent operator N arising from the logarithm of the unipotent part of the local monodromy has $N \neq 0$ but $N^2 = 0$. In this case, as described in [Weil II, 1.6.1], the filtration has $M_1 = \mathcal{F}_{\overline{\eta}}, M_0 = F_{\overline{\eta}}^I$, and $M_{-1} = \text{im} N$, and $\text{Gr}_1^M = F_{\overline{\eta}}^I/F_{\overline{\eta}}$ which [Weil II, 1.8.4] says is t-pure of weight $w + 1$.

(4.2.2.3) Recall the decomposition (1.6.14.3) of Weil II and the fact that there is a typo in it (c.f. note to 1.6.14). Recall that, as in the proof of [Weil II, 1.8.4], if $s \in S$, the fiber $(j_*(\mathcal{F})_\overline{\eta})$ coincides with $\ker N = \mathcal{F}^I_{\overline{\eta}}$, where N is the logarithm of the local monodromy (we can assume that all of I acts unipotently). Recall that N is compatible with the filtration of local monodromy, that $\text{Gr}_i^M(\ker N) \to P_i$ [Weil II, 1.6.6], and that $P_i = 0$ for $i > 0$ [Weil II, 1.6.4]. The eigenvalues of F_s on $j_*(\mathcal{F})_\overline{\eta}$ are in bijection with the eigenvalues of F on the $P_i(\mathcal{F}_{\overline{\eta}})$, where F is the conjugation class of liftings of Frobenius in the Weil group (or one such [Weil II, 1.7.4]). Now Laumon’s proof goes
through after you correct all the typos: \(P_{-i}(\mathcal{F}_\eta) \) is \(t \)-pure of weight \(w + i \) [Weil II, 1.8.4],

\[
P_{-i}(\mathcal{F}_\eta) \simeq P_{-i}(\mathcal{F}_\eta)^{\vee}(i),
\]

and \(\alpha \) is an eigenvalue of Frobenius on some \(P_{-i}(\mathcal{F}_\eta) \) (for this you need to know that the filtration of local monodromy is stable under the action of \(W(\eta, \eta) \), which is true by [Weil II, 1.7.5, 1.8.5]).

4.3.1. (4.3.1.1) It is implicitly claimed that \(H^0(U, \mathcal{F}) = 0 \), which is a consequence of the fact that \(\mathcal{F} \) is assumed irreducible and not geometrically constant. If \(\bar{u} \) is a geometric point of \(\bar{U} = U \times_{F_q} F \), there is an exact sequence

\[
e \to \pi_1(\bar{U}, \bar{u}) \to \pi_1(U, \bar{u}) \to \text{Gal}(F/F_q) \to e
\]

(SGA 1 6.1), and \(\mathcal{F} \) is not geometrically constant if \(\pi_1(\bar{U}, \bar{u}) \) does not act trivially on \(\mathcal{F}_u \); i.e. the reciprocal image of \(\mathcal{F} \) on \(\bar{U} \) is not constant. As \(\mathcal{F}^{\pi_1(\bar{U}, \bar{u})} \) is stable under \(\pi_1(U, \bar{u}) \), it must be 0, as \(\mathcal{F} \) is assumed irreducible, so \(\Gamma(U, \mathcal{F}) = 0 \).

4.3.2. Following Deligne, we decorate with a subscript 0 those objects over \(F_q \) and remove this subscript to indicate the extension of scalars to \(F \).

(4.3.2.1) Reduction to \(X_0 = D_0 \). We notate \(f_0 : U_0 \hookrightarrow X_0 \) and \(\mathcal{F}_0 \) lisse on \(U_0 \). The choice of a nonconstant meromorphic function on \(X_0 \) gives rise to a finite morphism \(f_0 : X_0 \to D_0 \). The only condition on the function is that it induce a morphism with nonempty étale locus. As \(X_0 \) is smooth, this is easy: just pick a point \(x \in X_0 \) and a generator of the local ring \(\mathcal{O}_{X,x} \) (SGA 1 I 9.11). Leray gives

\[
\text{R} \Gamma(D, f_{0*} j_* \mathcal{F}_0) \simeq \text{R} \Gamma(X, j_* \mathcal{F}_0).
\]

It suffices to find some open \(j_0' : U_0' \hookrightarrow D_0 \) a lisse \(\overline{Q}_\ell \)-sheaf \(\mathcal{F}_0' \) on \(U_0' \), \(t \)-pure of weight \(w \), and an identification \(f_{0*} j_{0*} \mathcal{F}_0 \simeq j_{0*} \mathcal{F}_0' \) on \(D_0 \).

Lemma. Let \(\mathcal{F} \) be a lisse sheaf on a normal connected curve \(S \) and \(j : U \hookrightarrow S \) an open immersion. The unit of adjunction \(\mathcal{F} \to j_* j^* \mathcal{F} \) is an isomorphism.
Admitting the lemma, pick some nonempty U'_0 such that $X_0 \times_{D_0} U'_0 \rightarrow U'_0$ is étale, and let $u_0 : V_0 := U_0 \cap (X_0 \times_{D_0} U'_0) \hookrightarrow U_0$. As the diagram

$$
\begin{array}{ccc}
V_0 & \xrightarrow{u_0} & U_0 \\
\downarrow f_0 & & \downarrow f_0 \\
U'_0 & \xrightarrow{j'_0} & D_0
\end{array}
$$

commutes,

$$j'_0 \circ (f_0|V_0)_* (u'_0 \mathcal{F}_0) = f_0 \circ j_0 \circ u_0 \circ u'_0 \mathcal{F}_0 \simeq f_0 \circ j_0 \circ \mathcal{F}_0,$$

and the sheaf $(f_0|V_0)_* (u'_0 \mathcal{F}_0)$ is lisse. More precisely, if $\bar{\eta}$ denotes a geometric generic point of V_0 (and its image in U'_0), and $u'_0 \mathcal{F}_0$ is defined by the monodromy representation $\pi_1(V_0, \bar{\eta}) \rightarrow \text{Aut} \mathcal{F}_{\bar{\eta}}$, the étale $f_0|V_0$ induces a morphism

$$\pi_1(V_0, \bar{\eta}) \rightarrow \pi_1(U'_0, \bar{\eta})$$

which is an injection of the former group onto the open subgroup of the latter corresponding to the revêtement étale $f_0|V_0$. The sheaf $(f_0|V_0)_* (u'_0 \mathcal{F}_0)$ is defined by the induced representation

$$\mathcal{F}_{\bar{\eta}} \otimes_{\pi_1(V_0, \bar{\eta})} \pi_1(U'_0, \bar{\eta}).$$

Therefore we take $\mathcal{F}'_0 := (f_0|V_0)_* (u'_0 \mathcal{F}_0).

\textbf{Proof of lemma.} The lemma can be recovered as a corollary of the \textit{reprise} below, and, perhaps more cheekily, from \cite[4.3.2]{BBD} in light of the note to 1.4.2 above. A simple direct proof goes as follows. Checking the statement fiberwise at a geometric point \bar{s} centered on a point $s \in S - U$ reduces us to the setting of a henselian trait $(S, \eta, s, \bar{\eta}, \bar{s})$ \cite[0.6]{WeilII} and \mathcal{F} a lisse sheaf on S. We have the usual exact sequence

$$e \rightarrow I \rightarrow \text{Gal}(\bar{\eta}/\eta) \rightarrow \text{Gal}(\bar{s}/s) \rightarrow e.$$

where by SGA 1 V 8.2 & Arcata IV 2.2 the map $\text{Gal}(\bar{\eta}/\eta) \rightarrow \text{Gal}(\bar{s}, s)$ factors as

$$\text{Gal}(\bar{\eta}/\eta) \rightarrow \pi_1(S, \bar{\eta}) \rightarrow \pi_1(S, \bar{s}) \rightarrow \pi_1(s, \bar{s}) \simeq \text{Gal}(\bar{s}, s).$$
The stalk \((\eta, \eta^* \mathcal{F})_\tilde{\eta}\) can be identified with \(\mathcal{F}^1_{\tilde{\eta}}\), where here \(\mathcal{F}_{\tilde{\eta}}\) is the \(\text{Gal}(\overline{\eta}, \eta)\)-representation defined by \(\text{Gal}(\overline{\eta}, \eta) \to \pi_1(S, \tilde{\eta})\). The factorization above shows that I dies in this quotient and therefore acts trivially. \(\square\)

Returning to the proof of (4.3.2.1), Poincaré duality on \(D\) as stated rests on

Theorem (Deligne, SGA 4\(1\frac{1}{2}\) Dualité 1.3). Let \(j : U \hookrightarrow S\) be a dense open of a regular scheme \(S\) purely of dimension 1 and \(\mathcal{F}\) a locally constant constructible sheaf of \(\mathbb{Z}/n\)-modules on \(U\). One has \(D_j \mathcal{F} = j_* D \mathcal{F}\), i.e. \(\text{Hom}(j_*=\mathcal{F}, \mathbb{Z}/n) = j_* \text{Hom}(F, \mathbb{Z}/n_U)\) and \(\text{Ext}^i(j_*=\mathcal{F}, \mathbb{Z}/n) = 0\) for \(i > 0\).

Let \(\overline{A} := A \otimes_{\mathbb{F}_q} \overline{k}\) and \(\overline{D}\) likewise. To calculate \(H^i_c(\overline{A}, j_* \mathcal{F})\), the perfect pairing

\[
H^i_c(\overline{A}, j_* \mathcal{F}) \otimes H^{2-i}(\overline{A}, j_* \mathcal{F}) \to \overline{Q}(-1)
\]

and Artin’s theorem give \(H^0_c(\overline{A}, j_* \mathcal{F}) \simeq 0\) and \(H^2_c(\overline{A}, j_* \mathcal{F}) \simeq M(-1)\), as \(H^0(\overline{A}, j_* \mathcal{F}) = \overline{M}\). The exact sequence

\[
0 = H^0_c(\overline{A}, j_* \mathcal{F}) \to H^0(\overline{D}, j_* \mathcal{F}) \to \mathcal{F} \to H^1_c(\overline{A}, j_* \mathcal{F}) \to H^1(\overline{D}, j_* \mathcal{F}) \to 0
\]

reduces the calculation of \(H^1_c(\overline{A}, j_* \mathcal{F})\) to that of \(H^1(\overline{D}, j_* \mathcal{F})\), as \(\overline{\partial} = 0\). Relative purity (Arcata V 3.4) gives that \(j_* \mathcal{F}\) is constant on \(\overline{A}\), and the standard computation \(H^1(\overline{X}, \mathbb{Z}/\ell^n(1)) \simeq \text{Pic}(\overline{X}/\overline{k}) \ell^n\) for a smooth connected curve \(\overline{X}\) over \(\overline{k}\) shows that

\(H^1(\overline{D}, \mathbb{Z}/\ell^n) = 0\) and hence the same is true for \(H^1(\overline{D}, j_* \mathcal{F})\) (Arcata III 3.1, IV 6.2).

Reprise: le sorcier des faisceaux localement constants. The action of local inertia on a normal curve \(S\) determines the net locus (and therefore the étale locus by SGA 1 I 9.11) of the normalization of \(S\) in a finite separable extension of its function field in the following way. Let \(\overline{\eta}\) be a geometric point centered on the generic point \(\eta\) of \(S\), \(L\) a finite Galois extension of the function field of \(S\), and \(S'\) the normalization of \(S\) in \(L\). Let \(\overline{s}\) be a geometric point centered on a closed point of \(S\), \(S_{(s)}\) and \(S_{(\overline{s})}\) the spectra of the henselization and strict henselization, respectively of the local ring of \(S\) at \(s\). Both are henselian traits. Let \(S'_{(s)} := S' \times_S S_{(s)}\); \(S'_{(s)} \to S_{(s)}\) is generically étale. As \(S_{(s)}\) is a henselian local ring, \(S'_{(s)}\) splits as a disjoint union of henselian local rings \(S'_{i(s')}\) indexed by \(\xi_i \in \text{Spec} L \otimes_{k(\eta)} k(\eta_i)\) (in bijection with the scheme-theoretic fiber of \(S' \to S\) over
s) Let s'_i denote the corresponding closed point of $S'_i(s'_i)$ (and by abuse of notation the corresponding point in the scheme-theoretic fiber of $S' \to S$ over s). $S'_i(s'_i)$ is pro-étale over S' and henselian, with the same residue field as $\mathcal{O}_{S'_i(s'_i)}$, therefore coincides with the henselization of $\mathcal{O}_{S'_i(s'_i)}$, hence is also normal. $S'_i(s'_i)$ is finite and generically étale over $S(s)$, a fortiori integral. Hence $S'_i(s'_i)$ coincides with the normalization of $S(s)$ in $k(\xi_i)$. Considering s'_i as a point in the scheme-theoretic fiber over s, $S' \to S$ is étale at s'_i iff $S(s'_i) \to S(s)$ by faithfully flat descent (Stacks tag 02VN). Fixing some i and letting $s' := s'_i, \xi := \xi_i$ we reduce to studying the normalization of the henselian trait $S(s)$ in a finite separable extension $k(\xi)$ of its function field. Let η_s be a geometric point centered on the generic point η_s of $S(s)$. The local inertia at s is defined by the exact sequence

$$e \to I_s \to \text{Gal}(\overline{\eta}/\eta_s) \to \text{Gal}(\xi/s) \to e.$$

Lemma. $S(s') \to S(s)$ is étale iff I_s acts trivially on $S(s')$.

Proof. ‘\Rightarrow’ Arcata IV 2.2. ‘\Leftarrow’ $k(\xi)$ is a finite separable extension of $k(\eta_s)$; let K denote the Galois closure of $k(\xi)$ in $k(\eta)$, $S(s) := \text{Spec } A, S(s') := \text{Spec } A'$, and B the normalization of A in K. $A \subset (A')^1 = A' \subset B^1$ and $A \subset B^1$ is étale (Stacks tag 09EH), so $S(s') \to S(s)$ is étale.

A question that should be easy is: describe the category of lisse sheaves on a normal connected curve in terms of the Galois group of the function field. More precisely, given a lisse sheaf on an open subscheme S of a smooth complete curve \overline{S}, describe the locus of \overline{S} over which the sheaf can be extended to a lisse sheaf. In the case of finite coefficients, the answer goes like this. Let η be a geometric point centered on the generic point η of the curve S. A l.c.c. sheaf \mathcal{F} on S is the same as a revêtement étale $X \to S$; i.e. an open subgroup of $\pi_1(S, \eta)$. S in turns corresponds to a closed subgroup Q of $\text{Gal}(\overline{\eta}, \eta)$ via the exact sequence

$$e \to Q \to \text{Gal}(\overline{\eta}, \eta) \to \pi_1(S, \eta) \to e.$$

To each point $s \in S$ we attach an inertia subgroup I_s which is a subgroup of $\text{Gal}(\overline{\eta}/\eta_s)$, where η_s is the generic point of $S(s)$. As $S(s)$ is a projective limit of revêtements étalés
of S, I_s embeds into $\text{Gal}(\overline{\eta}/\eta)$ via

$$I_s \subset \text{Gal}(\overline{\eta}/\eta_s) \subset \text{Gal}(\overline{\eta}/\eta).$$

We must have that each I_s be contained in Q, since as we saw above, the map $\text{Gal}(\overline{\eta}/\eta_s) \twoheadrightarrow \text{Gal}(\overline{s}/s)$ factors through the projection $\text{Gal}(\overline{\eta}/\eta_s) \twoheadrightarrow \pi_1(S, \overline{\eta})$. On the other hand, there may be other points in $\overline{S} - S$ with nontrivial monodromy; i.e. the corresponding inertia acts nontrivially. This means that the direct image along $S \hookrightarrow \overline{S}$ of the sheaf on S represented by X is not locally constant on a neighborhood of such a point. Geometrically, we can take the normalization X' of \overline{S} in the function field of X; $X' \times_S S \simeq X$ (SGA 1 I 10.2). X' is étale at a point if it is net there (SGA 1 I 9.11), so \mathcal{F} extends to a lisse sheaf over $U \hookrightarrow \overline{S}$ if $X' \times_S S \simeq U$ is net. By the lemma above, this is true iff the inertia at each point $u \in U$ acts trivially on the $\text{Gal}(\overline{\eta}/\eta_u)$-representation corresponding to the sheaf on $S_{(u)}$ represented by $X' \times_S \overline{S}_{(u)}$. Properly said, I_u acts on the fiber of this sheaf at $\overline{\eta}$. If I_u acts trivially, then X' is net in the fiber over u and X extends (via X') to a revêtement étale of $S \cup \{u\}$. (By the above lemma, is isomorphic to the direct image of \mathcal{F} under $S \hookrightarrow S \cup \{u\}$.) Thinking about I_u as a subgroup of $\text{Gal}(\overline{\eta}, \eta)$, the condition that I_u act trivially on $X' \times_S \overline{S}_{(u)}$ is equivalent to that I_u act trivially on the $\text{Gal}(\overline{\eta}/\eta)$-representation $\mathcal{F}_{\overline{\eta}}$. Therefore, the locus of \overline{S} over which \mathcal{F} can be extended to a lisse sheaf coincides with the union of the $s \in \overline{S}$ such that I_s acts trivially on $\mathcal{F}_{\overline{s}}$. This justifies the

Proposition. Let S be a normal connected curve with generic point η and \mathcal{C} the category with objects pairs (\mathcal{F}, U) with U a nonempty open of S and \mathcal{F} a l.c.c. sheaf on U, modulo the equivalence relation $(\mathcal{F}, U) \sim (\mathcal{G}, V)$ if $\mathcal{F}|U \cap V \simeq \mathcal{G}|U \cap V$, and morphisms

$$\text{Hom}_\mathcal{C}((\mathcal{F}, U) \to (\mathcal{G}, V)) = \lim_{\overrightarrow{W \subset U \cap V}} \text{Hom}(\mathcal{F}|W, \mathcal{G}|W),$$

limit taken over nonempty opens W contained in $U \cap V$. \mathcal{C} is equivalent to the category of finite separable extensions of the function field $k(\eta)$ of S and $k(\eta)$-algebra morphisms. By Grothendieck’s Galois theory, this category is in turn equivalent to the category of finite sets with continuous $\text{Gal}(\overline{\eta}/\eta)$ action. Given such an extension L of $k(\eta)$, the normalization X of S in L is étale over a nonempty open $U \subset S$ and represents a l.c.c.
sheaf on U. The maximal $U \subset S$ such that $X \times_S U \to U$ is étale coincides with the open subscheme of S with closed points

$$|U| = \{ s \in S : I_s \text{ acts trivially on } L \}$$

where here I_s acts via $I_s \subset \text{Gal}(\bar{\eta}/\eta_s) \subset \text{Gal}(\bar{\eta}/\eta)$, η_s the generic point of $S_{(s)}$. If \mathcal{F} is the sheaf of local sections for X over this U, the pair (\mathcal{F}, U) is distinguished in its class by the property that U is maximal for the filtered partial order given by inclusion. Given $j : V \hookrightarrow U$ and $(\mathcal{F}, V) \sim (\mathcal{F}, U)$, $\mathcal{F} \xrightarrow{\sim} j_* \mathcal{F}$.

Corollary. Given a lisse $(\mathbb{Z}_l, \mathbb{Q}_l, \mathbb{R}, E_i, \bar{Q}_l)$-sheaf \mathcal{F} on a nonempty open subscheme U of a normal connected curve S with geometric generic point η, the maximal locus $U' \subset S$ over which \mathcal{F} extends to a lisse sheaf \mathcal{F}' is defined by its set of closed points

$$|U'| = \{ s \in S : I_s \text{ acts trivially on } \mathcal{F}_{\bar{\eta}} \}.$$

If $j : U \hookrightarrow U'$ denotes the open immersion, $\mathcal{F}' \xrightarrow{\sim} j_* \mathcal{F}$.

Proof. Disregarding the module structure, the sheaf \mathcal{F} is represented by a projective system of revêtements étales, to each of which the proposition compatibly applies. \square

Corollary. Let \mathcal{F} be a lisse sheaf on a normal connected curve S and $j : U \hookrightarrow S$ an open immersion. The unit of adjunction $\mathcal{F} \to j_* j^* \mathcal{F}$ is an isomorphism.

Corollary. Let $A \in \{ \mathbb{Z}_l, \mathbb{Q}_l, \mathbb{R}, E_i, \bar{Q}_l \}$. The category \mathcal{C} as above with l.c.c. sheaves replaced by lisse A-sheaves on a normal connected curve S is equivalent to the full subcategory of A-modules of finite type with continuous action of $\text{Gal}(\bar{\eta}/\eta)$ generated by those A-modules V with the property that I_s acts trivially on V for all but finitely many $s \in |S|$.

Proof. By SGA 5 Exp. VI (c.f. note to Sommes trig. 1.2), such a sheaf is equivalent the data of its monodromy representation, which is equivalent to a projective system of representations. Each representation in the projective system corresponds to a revêtement étale of some nonempty open $U \subset S$ together with the appropriate module structure on its fiber. By the proposition, each revêtement étale is unramified over an
open set which can be calculated from the action of the local inertia. In order that there exist a nonempty open $U \subset S$ over which all the revêtements étals in the projective system are unramified (so that the corresponding projective system defines a lisse sheaf on U) it is necessary and sufficient that the local inertia at all but finitely many points act trivially on all the revêtements étals in the projective system. This is true for some I_s iff I_s acts trivially on the fiber of the lisse sheaf considered as A-module. \hfill \Box

Corollary. The kernel of the map

$$\text{Gal}(\bar{\eta}/\eta) \rightarrow \pi_1(U, \bar{\eta})$$

is topologically generated by the subgroups $\{I_s : s \in |U|\}$.

Proof. On one hand, the category of l.c.c. sheaves on U is a Galois category with group $\pi_1(U, \bar{\eta})$. On the other, it is equivalent to the category of finite $\text{Gal}(\bar{\eta}/\eta)$-sets on which I_s acts trivially for all $s \in U$. \hfill \Box

Remark. The same argument can be used to extend a lisse sheaf on a normal scheme over the generic point of a divisor. If the scheme is moreover smooth, the sheaf can be extended over the points of codimension > 1 by the purity theorem of Zariski-Nagata (SGAA XVI 3.3).
Bibliography

[Weil II] Deligne, Weil II.
[Sommes trig.] Application de la formule des traces aux sommes trigonométriques dans SGA 4½.
[Th. finitude] Théorèmes de finitude en cohomologie ℓ-adique dans SGA 4½.
7. Théorèmes de finitude en cohomologie ℓ-adique

1.3. Under the hypothesis of 1.1, Rf_* is of finite cohomological dimension. In light of the description of the fiber of f_* (Arcata 3.3), we may assume we are studying the cohomology of a scheme X of finite type over S the spectrum of a separably closed field (which has cohomological dimension 0) or a strictly henselian local DVR. SGAA X 4.2 proves this, but we have to satisfy two conditions. The condition (i) can be deduced from SGAA X 2.1, 2.3, which give bounds on the cohomological dimension of residue fields of points of X depending on which points of S they sit over; the condition (ii) follows from SGAA X 3.2, which gives a bound on the cohomological dimension of the function field of strict localizations of points of X.

1.6. Given a morphism of schemes $f : X \to Y$ and sheaves \mathcal{F}, \mathcal{G} on Y, there is always a morphism

$$f^* \text{Hom}(\mathcal{F}, \mathcal{G}) \to \text{Hom}(f^* \mathcal{F}, f^* \mathcal{G}).$$

When \mathcal{F} is locally constant constructible, this map is a bijection.

If \mathcal{J} is an injective abelian sheaf on X and $j : U \to X$ belongs to the topology on X, then $\mathcal{J}(U)$ is an injective object, since if A is the constant sheaf on U with value A,

$$\text{Hom}(A, \mathcal{J}(U)) = \text{Hom}(j_! A, \mathcal{J}),$$

and $j_!$ is left exact. The restriction \mathcal{J}_U is also an injective sheaf, since for \mathcal{F} on U

$$\text{Hom}(\mathcal{F}, \mathcal{J}_U) = \text{Hom}(j_! \mathcal{F}, \mathcal{J}).$$

Likewise, for any (geometric) point $x \in X$, \mathcal{J}_x is an injective object, by forming constant sheaves on X and taking stalks.

All this to say that $R\text{Hom}(\mathcal{F}, \mathcal{G})|_U = R\text{Hom}(\mathcal{F}|_U, \mathcal{G}|_U)$, and when \mathcal{F} is l.c.c., $R\text{Hom}(\mathcal{F}, \mathcal{G})|_x = R\text{Hom}(\mathcal{F}|_x, \mathcal{G}|_x)$, and $R \text{Hom}(\mathcal{F}, \mathcal{G})$ is constructible (resp. l.c.c.) when \mathcal{G} is. This also shows that for \mathcal{F} constant, one can compute $R\text{Hom}$ by a projective resolution of the constant value of \mathcal{F}.
1.11. $R\text{pr}_2\ast \text{pr}_1^* K = b^* R\Gamma(X, K)$ is base change for Ra_s along b. In the string of equalities, the first one is just Leray, and the second and last are again base change morphisms, discussed at length in SGAA XVII §4. Given

$$
\begin{array}{ccc}
X' & \xrightarrow{g'} & X \\
\downarrow f' & & \downarrow f \\
S' & \xrightarrow{g} & S,
\end{array}
$$

at the level of complexes, the map $L \otimes g^* f_s K \to f'_*(f''L \otimes g''K)$ factors as

$$
L \otimes g^* f_s K \to L \otimes f'_* g''K \to f'_* f''* L \otimes f'_* g''K \to f'_*(f''L \otimes g''K),
$$

where the last arrow comes from the fact that $\mathcal{F}(U) \otimes \mathcal{G}(U)$ are among the sections of $\mathcal{F} \otimes \mathcal{G}$ over U.

2.1. It is claimed that $R\text{Hom}(\mathcal{F}, \mathbb{Z}/m) \leftrightarrow \text{Hom}(\mathcal{F}, \mathbb{Z}/m)$ when \mathcal{F} is a l.c.c. sheaf (c.f. SGAA XVIII 3.2.6). There is evidently an arrow, and by the note to 1.6 (and since \mathbb{Z}/m is an injective \mathbb{Z}/m-module), it is an isomorphism. It holds more generally with \mathbb{Z}/m replaced by any l.c.c. sheaf locally isomorphic to \mathbb{Z}/m, such as one obtained by twisting.
Bibliography

[Th. finitude] *Théorèmes de finitude en cohomologie ℓ-adique* par Deligne, dans SGA 4\(\frac{1}{2}\).