




Bruhatsamhita-chapter 35
(6th century CE)

The multi coloured rays of the Sun, being dispersed

in a cloudy sky, are seen in the form of a bow,

which is called the Rainbow.
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The first laser was fabricated in 1960, and since then there has been a renaissance in the field of optics. From optical
amplifiers to laser physics, fiber optics to optical communications, optical data processing to holography, optical sensors to
DVD technology, ultrashort pulse generation to super continuum generation, optics now finds important applications in
almost all branches of science and engineering. In addition to numerous practical applications of optics, it is said that it was
the quest to understand the “nature of light” that brought about the two revolutions in science: the development of quantum
mechanics started with an attempt to understand the “light quanta,” and the starting point of the special theory of relativity
was Maxwell’s equations which synthesized the laws of electricity and magnetism with those of light. Because of all this, an
undergraduate course in optics has become a “must” not only for students of physics but also for students of engineering.
Although it is impossible to cover all areas in a single book, this book attempts to give a comprehensive account of a large
number of important topics in this exciting field and should meet the requirements of a course on optics meant for
undergraduate students of science and engineering.

Organization of the Book

The book attempts to give a balanced account of traditional optics as well as some of the recent developments in this field. The
plan of the book is as follows:

• Chapter 1 gives a brief history of the development of optics. I have always felt that one must have a perspective of the
evolution of the subject that she or he wants to learn. Optics is such a vast  field that it is extremely difficult to give
a historical perspective of all the areas. My own interests lie in fiber optics, and hence there is a bias toward the
evolution of fiber optics and related areas. In the process, I must have omitted the names of many individuals who
made important contributions to the growth of optics. Fortunately, there is now a wealth of information available
through the Internet; I have also included a number of references to various books and websites.

• Chapter 2 gives a brief historical evolution of different models describing the nature of light. It starts with the
corpuscular model of light and then discusses the evolution of the wave model and the electromagnetic character of
light waves. Next we discuss the early twentieth-century experiments, which could only be explained by assuming a
particle nature of light, and we end with a discussion on “wave-particle duality.”

• Chapters 3 to 6 cover geometrical optics. Chapter 3 starts with Fermat’s principle and discusses ray tracing through graded
index media, explaining in detail the phenomena of mirage and looming, ray propagation through graded index optical
waveguides, and reflection from the ionosphere. Chapter 4 covers ray tracing in lens systems, and Chap. 5 discusses the
matrix method in paraxial optics, which is used in the industry. Chapter 6 gives a brief account of aberrations.

• Chapters 7 to 12 discuss the origin of refractive index and the basic physics of wave propagation including Huygens’
principle. Many interesting experiments (such as the redness of the setting Sun, water waves, etc.) are discussed. The
concept of group velocity and the dispersion of an optical pulse as it propagates through a dispersive medium are
discussed in detail. Self phase modulation, which is one of the phenomena leading to the super continuum generation
(see photograph on the cover), is also explained.

• Chapters 13 to 16 cover the very important and fascinating area of interference and many beautiful experiments
associated with it—the underlying principle is the superposition principle, which is discussed in Chap. 13. Chapter 14
discusses interference by division of the wave front including the famous Young double-hole interference experiment.

PREFACE
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In Chap. 15, interference by division of amplitude is discussed which allows us to understand the colors of thin films
and applications such as antireflection films. The basic working principle of the fiber Bragg gratings (usually
abbreviated as FBG) is discussed along with some of their important applications in the industry. In the same chapter,
the Michelson interferometer is discussed which is perhaps one of the most ingenious and sensational optical
instruments ever, and for which Michelson received the Nobel Prize in Physics in 1907. Chapter 16 discusses the Fabry–
Perot interferometer that is based on multiple-beam interference and is characterized by a high resolving power and
hence finds applications in high-resolution spectroscopy.

• Chapter 17 discusses the basic concept of temporal and spatial coherence. The ingenious experiment of Michelson,
which used the concept of spatial coherence to determine the angular diameter of stars, is discussed in detail. Topics
such as optical beats and Fourier transform spectroscopy are also discussed.

• Chapters 18, 19, and 20 cover the very important area of diffraction and discuss the principle behind topics such as the
diffraction divergence of laser beams, resolving power of telescopes, laser focusing, X-ray diffraction, optical media
technology, Fourier optics, and spatial frequency filtering.

• Chapter 21 discusses the underlying principle of holography and some of its applications. Dennis Gabor received the
1971 Nobel Prize in Physics for discovering the principle of holography.

• Chapters 22 to 24 cover are on the electromagnetic character of light waves. Chapter 22 discusses the polarization
phenomenon and propagation of electromagnetic waves in anisotropic media including first-principle derivations of
wave and ray velocities. Phenomena such as optical activity and Faraday rotation (and its applications to measuring
large currents) are explained from first principles. In Chap. 23, starting with Maxwell’s equations, the wave equation is
derived which led Maxwell to predict the existence of electromagnetic waves and to propound that light is an
electromagnetic wave. Reflection and refraction of electromagnetic waves by a dielectric interface are discussed in
Chap. 24. Results derived in this chapter directly explain phenomena such as Brewster’s law, total internal reflection,
evanescent waves, and Fabry–Perot transmission resonances.

• Chapter 25 covers the particle nature of radiation, for which Einstein received the 1921 Nobel Prize. The chapter also
discusses the Compton effect (for which Compton received the 1927 Nobel Prize in Physics), which established that the
photon has a momentum equal to hn/c.

• Chapter 26 is on lasers—a subject of tremendous technological importance. The basic physics of optical amplifiers and
of lasers along with their special characteristics is also discussed.

• Chapters 27 to 29 discuss waveguide theory and fiber optics, an area that has revolutionized communications and has
found important applications in sensor technology. Chapter 27 discusses the light guidance property of the optical
fiber (using ray optics) with applications in fiber-optic communication systems; the chapter also gives a very brief
account of fiber-optic sensors. Chapter 28 discusses basic waveguide theory and concept of modes with Maxwell’s
equations as the starting point. Chapter 29 discusses the propagation characteristics of single-mode optical fibers,
which are now extensively used in optical communication systems.

• In 1905 Einstein put forward the special theory of relativity which is considered one of the revolutions of the last
century. The starting point of the special theory of relativity was Maxwell’s equations, which synthesized the laws of
electricity and magnetism with those of light. Chapters 30 and 31 describe briefly the important consequences of the
special theory of relativity, i.e., time dilation, length contraction, the mass-energy relation, and Lorentz transformations.

• Very often a good photograph clarifies an important concept and also makes the student interested in the subject. It is
with this intention that we have given a few colored photographs (in the insert at the end of the book) that describe
important concepts in optics.

In summary, the book discusses some of the important topics that have had a tremendous impact in the growth of science
and technology.

Other Important Features of the Book

• A large number of figures correspond to actual numerical calculations which were generated using software such as
GNUPLOT and Mathematica. There are also some diagrams which give a three-dimensional perspective of the
phenomenon.

• Most chapters start with important milestones in the area. This gives a historical perspective of the topic.

Perfacexiv
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• All important formulae have been derived from first principles so that the book can also be used for self-study.
• Numerous worked out examples are scattered throughout the book to help clarify difficult concepts.
• Each chapter ends with a summary of important results derived in the chapter.

Experiments in Fiber Optics

My own research interests are in the general area of fiber optics. I have found that there are many beautiful experiments in
fiber optics, which are not very difficult to set up, that allow us not only to understand difficult concepts but also to find
very important applications. For example,

• Optical fibers with parabolic index variation are used in optical communication systems. Ray paths in such fibers and
their dispersion characteristics are of great importance. This is discussed from first principles in Chaps. 3 and 27.

• Chapter 10 discusses in great detail the dispersion of an optical pulse as it propagates through a dispersive medium.
This is an extremely important concept. The chapter also discusses self phase modulation (usually abbreviated as
SPM) that is probably the simplest nonlinear optical phenomenon which can be easily understood from first principles.
Indeed, when a monochromatic laser pulse propagates through a special optical fiber, SPM (along with other
phenomena) can lead to the awesome super continuum generation; we discuss this in Chap. 10.

• The working of a fiber Bragg grating (usually abbreviated as FBG) is a beautiful application of the interference
phenomenon, and FBGs find very important applications in sensors and other optical devices. In Chap. 15, the basic
physics of an FBG is discussed along with its very important application in temperature sensing at places where no
other device would work.

• The experiment on Faraday rotation in optical fibers (discussed in Chap. 22) allows one to understand the concept of
rotation of plane of polarization in the presence of a longitudinal magnetic field. This experiment finds important
application in the industry for measuring very large currents (about 10,000 A or more). The theory of Faraday rotation
is also given from first principles. In Chap. 22, the change in the state of polarization (usually abbreviated as SOP) of
a light beam as it propagates through an elliptic core single-mode optical fiber has been discussed; the experiment not
only allows one to understand the changing SOP of a beam propagating through a birefringent fiber, but also helps one
to understand the radiation pattern of an oscillating dipole.

• Erbium-doped fiber amplifier (usually abbreviated as EDFA) and fiber lasers are discussed in Chap. 26. The working of
an EDFA  allows one to easily understand the concept of optical amplification.

• Chapters 27 through 29 are on waveguide theory and fiber optics, an area that has revolutionized communications and
finds important applications in sensor technology. Optical fibers are now widely used in endoscopy, display
illumination, and sensors, and of course the most important application is in the field of fiber-optic communication
systems. We discuss all this in Chap. 27.  Chapter 28 discusses basic waveguide theory (and concept of modes) with
Maxwell’s equations as the starting point. The chapter allows one to understand the transition from geometrical optics to
wave optics, which happens to be similar to the transition from classical mechanics to quantum mechanics. Chapter 29
discusses the waveguiding properties of single-mode optical fibers, which are now extensively used in optical
communication systems. The prism film coupling experiment (discussed in Chap. 28) allows one to understand the
concept of quantization, an extremely important concept in physics and electrical engineering.

There are many such examples scattered throughout the book, and each example is unique and not usually found in  other
textbooks.

Online Resources for Instructors

Various resources are available to instructors for this text, including solutions to end-of-chapter problems, lecture PowerPoints
and the text images in PowerPoint form. All these can be found at the text's website: www.mhhe.com/ghatak
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I dedicate this book to my students; my continuous interactions with them have led to a deeper understanding of optics. I
end with the quotation (which I found in a book by G. L. Squires): “ I have learnt much from my teachers, but more from my
pupils.” To all my pupils, I owe a very special debt.
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Optics is the study of light that has always fascinated
humans. In his famous book On The Nature of Light Vasco
Ronchi wrote:

Today we tend to remember only Newton and
Huygens and consider them as the two great men who
laid the foundations of physical optics. This is not
really true and perhaps this tendency is due to the
distance in time which as it increases tends to
strengthen the contrast and to reduce the background.
In reality, the discussion on the nature of light was fully
developed even before these two men were born . . .

It is with this perspective that I thought it would be
appropriate to give a very brief history of the development
of optics. For those who want to know more of the history,
fortunately, there is a wealth of information that is now
available through the Internet.

Archytas (428 – 347 BC) was a Greek philosopher, mathema-
tician, astronomer, and statesman. It is said that he had
propounded the idea that vision arises as the effect of an
invisible “fire” emitted from the eyes so that on encounter-
ing objects it may reveal their shapes and colors.

Euclid, also known as Euclid of Alexandria, was a Greek
mathematician who was born between the years of 320 and
324 BC. In his Optica (about 300 BC) he noted that light
travels in straight lines and described the law of reflection.
He believed that vision involves rays going from the eyes
to the object seen, and he studied the relationship between
the apparent sizes of objects and the angles that they
subtend at the eye. It seems that Euclid’s work on optics
came to the West mainly through medieval Arabic texts.

Hero (or Heron) of Alexandria (c. 10 – 70 AD) lived in
Alexandria, Roman Egypt, and was a teacher of mathematics,

The test of all knowledge is experiment. Experiment is the sole judge of scientific "truth". . . . There are theoretical physicists
who imagine, deduce, and guess at new laws, but do not experiment; and then there are experimental physicists who
experiment, imagine, deduce and guess.

— Richard Feynman, Feynman Lectures on Physics

HISTORY OF OPTICS
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physics, and mechanics at the University of Alexandria. He
wrote Catoptrica, which described the propagation of light,
reflection, and the use of mirrors.

Claudius Ptolemaeus (ca. 90 – ca. 168 AD) known in English
as Ptolemy, was a mathematician and astronomer who lived
in Roman Egypt. Ptolemy’s Optics is a work that survives
only in a poor Arabic translation and in Latin translation of
the Arabic. In it, he wrote about properties of light, includ-
ing reflection, refraction, and color. He also measured the
angle of refraction in water for different angles of incidence
and made a table of it.

A
–
ryabhatta (AD 476 – 550) is the first of the great mathematician-

astronomers of the classical age of Indian mathematics and
Indian astronomy. According to the ancient Greeks, the eye was
assumed to be a source of light; this was also assumed by the
early Indian philosophers. In the fifth century, Aryabhatta reiter-
ated that it was light arriving from an external source at the retina
that illuminated the world around us.

Ibn al-Haytham (965–1039), often called as Alhazen, was
born in Basra, Iraq (Mesopotamia). Alhazen is considered
the father of optics because of the tremendous influence of
his Book of Optics (Arabic: Kitab al-Manazir, Latin: De
Aspectibus or Perspectiva). Robert S. Elliot wrote the
following about the book:

Alhazen was one of the ablest students of optics of
all times and published a seven-volume treatise on
optics which had great celebrity throughout the
medieval period and strongly influenced Western
thought, notably that of Roger Bacon and Kepler.
This treatise discussed concave and convex mirrors
in both cylindrical and spherical geometries,
anticipated Fermat’s law of least time, and
considered refraction and the magnifying power of
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lenses. It contained a remarkably lucid description
of the optical system of the eye, which study led
Alhazen to the belief that light consists of rays
which originate in the object seen, and not in the
eye, a view contrary to that of Euclid and Ptolemy.

Alhazen had also studied the reverse image formed by
a tiny hole and indicated the rectilinear propagation of light.
To quote Nobel Prize–winning physicist Abdus Salam:

Ibn-al-Haitham was one of the greatest physicists of
all time. He made experimental contributions of the
highest order in optics. He enunciated that a ray of
light, in passing through a medium, takes the path
which is easier and ‘quicker.’ In this he was
anticipating Fermat’s Principle of Least Time by
many centuries. . . . Part V of Roger Bacon’s “Opus
Majus” is practically an annotation to Ibn al
Haitham’s Optics.

There are many books written on the work of Alhazen;
some discussion on Alhazen’s work can be found in Ref. 1.

Erazmus Ciolek Witelo (born ca. 1230 and died around 1275)
was a theologian, physicist, natural philosopher, and math-
ematician. Witelo called himself, in Latin, Turingorum et
Polonorum filius, meaning “a son of Poland and Thuringia.”
Witelo wrote an exhaustive 10-volume work on optics en-
titled Perspectiva, which was largely based on the work of
Ibn al-Haytham and served as the standard text on the sub-
ject until the seventeenth century (Refs. 2–4).

Leonardo da Vinci (April 15,
1452 – May 2, 1519), some
people believed, was the first
person to observe diffraction.

Although Alhazen had
studied the reverse image formed
by a tiny hole, the first detailed
description of the pinhole camera
(camera obscura) was given in
the manuscript Codex atlanticus
(c. 1485) by Leonardo da Vinci,
who used it to study perspective.

Johannes Kepler (December 27, 1571 – November 15, 1630)
was a German mathematician, astronomer, and astrologer,
and a key figure in the seventeenth-century astronomical
revolution. In 1604, he published the book Ad Vitellionem
Paralipomena, Quibus Astronomiae pars Optica Traditur.
An English translation (by William H. Donahue) has

recently been published as
Johannes Kepler Optics. The
announcement (see Ref. 5)
says, “Optics was a product
of Kepler’s most creative pe-
riod. It began as an attempt
to give astronomical optics a
solid foundation, but soon
transcended this narrow goal
to become a complete recon-
struction of the theory of light, the physiology of vision, and
the mathematics of refraction. The result is a work of extraor-
dinary breadth whose significance transcends most
categories into which it might be placed.” Reviewing the
book, David Lindberg writes:

In this book Donahue has performed service of
enormous value to Kepler scholars and historians of
early optics. His lucid translation of the difficult Latin
of Kepler’s great optical treatise not only affords
ready access to Kepler’s optical achievement, but
also reveals the clarity, rigor, and persuasive power
of Kepler’s arguments.

Hans Lippershey (1570 – September 1619) was a Dutch
eyeglass maker. Many historians believe that in 1608,
Lippershey saw two children playing with lenses in his
shop and discovered that images were clearer when seen
through two lenses. This inspired Lippershey to the cre-
ation of the first telescope. Some historians credit Galileo
Galilei for the invention of the first telescope. Many histo-
rians believe that Lippershey also invented the compound
microscope; however, there is controversy on that. See
Ref. 6.

Galileo Galilei (February 15,
1564 – January 8, 1642) is
often referred to as the father
of modern physics. In 1609,
Galileo was among the first
to use a refracting telescope
as an instrument to observe
stars and planets. In 1610,
he used a telescope as a
compound microscope, and
he made improved micro-
scopes in 1623 and after. This appears to be the first clearly
documented use of the compound microscope.

Willebrord Snel van Royen (1580–1626) was a Dutch as-
tronomer and mathematician. In 1621, he discovered the law
of refraction that is referred to as Snell’s law.
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Pierre de Fermat (August 17, 1601 – January 12, 1665) was a
French mathematician and never went to college. In a letter
to Cureau de la Chambre (dated January 1, 1662), Fermat
showed that the law of refraction can be deduced by
assuming that the path of a refracted ray of light was that
which takes the least time! Fermat’s principle met with
objections. In May 1662, Clerselier, an expert in optics,
wrote, “The principle you take as a basis for your proof, to
wit, that nature always acts by the shortest and simplest
path, is only a moral principle, not a physical one—it is not
and can not be the cause of any effect in nature.”

René Descartes (March 31, 1596 – February 11, 1650) was
a highly influential French philosopher, mathematician,
scientist, and writer. Descartes, in his book entitled
Dioptrique (1638), gave the fundamental laws of propaga-
tion of light, the laws of reflection and refraction. He also
put forward the corpuscular model, regarding lumen as a
swarm of spherical corpuscles (see Refs. 7–8). In Ref. 8,
it has been shown that “Descartes’ insightful derivation
of Snell’s law is seen to be largely equivalent to the
mechanical-particle or corpuscular derivation often attrib-
uted to Newton (who was seven years old at Descartes’
death).”

Francesco Maria Grimaldi (April 2, 1618 – December 28,
1663). Around 1660, Grimaldi discovered the diffraction of
light and gave it the name diffraction, which means
“breaking up.” He interpreted the phenomenon by stating
that light had to consist of a very fine fluid of some sort in
a state of constant vibration. He laid the groundwork for
the later invention of diffraction grating. He formulated a
geometrical basis for a wave theory of light in his Physico-
mathesis de lumine (1666). It was this treatise which
attracted Isaac Newton to the study of optics. Newton
discussed the diffraction problems of Grimaldi in Part III of
his Opticks (1704); Robert Hooke observed diffraction in
1672. For more details see Ref. 9.

Robert Hooke, FRS (July 18, 1635 – March 3, 1703). In his
1664 book Micrographia, Robert Hooke was the first to de-
scribe “Newton’s rings.” The rings are named after Newton
because Newton explained it (incorrectly) in a communica-
tion to the Royal Society in December 1675 and presented it
in detail in his book Opticks (1704). Hooke had also ob-
served the colors from thin sheets of mica much later were
explained through interference of light.

Rasmus Bartholin (Latinized Erasmus Bartholinus;
August 13, 1625 – November 4, 1698) was a Danish scientist.
In 1669, he discovered double refraction of a light ray by
calcite and wrote a 60-page memoir about the results; the
explanation came later. See Ref. 10.

Christiaan Huygens (April 14,
1629 – July 8, 1695) was a Dutch
mathematician, astronomer, and
physicist. In 1678, in a communi-
cation to the Academie des
Sciences in Paris, he proposed
the wave theory of light and
in particular demonstrated how
waves might interfere to form a
wave front, propagating in a
straight line. In 1672, Huygens gave the theory of double
refraction which was discovered by Bartholinus in 1669. In
1690, he produced his famous book on optics Traite de la
Lumiere; the English translation of the book is now
available as a Dover reprint (Ref. 11), and the entire book
can be read at the website given in Ref. 12.

Ole Christensen Rømer (September 25, 1644 – September 19,
1710) was a Danish astronomer who in 1676 made the first
quantitative measurements of the speed of light.

Sir Isaac Newton (January 4,
1643 – March 31, 1727) is con-
sidered one of the greatest
figures in the history of science.
In addition to his numerous
contributions to science and
mathematics, he made a system-
atic study of light and published
it in the form of a book in 1704.
The fourth edition of the book
is available as a Dover reprint
(Ref. 13) and also in the website
given in Ref. 14.

In this book, Newton describes his experiments, first re-
ported in 1672, on dispersion, or the separation of light into
a spectrum of its component colors. Grimaldi had earlier
observed light entering the shadow of a needle—Newton
explained this by saying that the needle exerts a force that
“pulled” the light from the straight-line path. Hooke had
earlier observed the colors from thin sheets of mica—
Newton explained this by “fits of easy transmission and
reflection” of the light rays.

Thomas Young (June 13, 1773 – May 10, 1829) was an
English scientist. In 1801, Young demonstrated the wave
nature of light through a simple two-hole interference
experiment; this experiment is considered one of 10 most
beautiful experiments in physics (Refs. 15 and 16). Thomas
Young used his wave theory to explain the colors of thin
films (such as soap bubbles); and relating color to
wavelength, he calculated the approximate wavelengths of
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the seven colors recognized by Newton. In 1817, he
proposed that light waves were transverse and thus
explained polarization; for more details see Refs. 17–18.

François Jean Dominique Arago (February 26, 1786 –
October 2, 1853) was a French mathematician, physicist,
astronomer, and politician; he became the twenty-fifth
Prime Minister of France. In 1811, Arago observed the
rotation of the plane of polarization in quartz. In 1818,
Poisson deduced from Fresnel’s theory the necessity of
a bright spot at the center of the shadow of a circular
opaque obstacle. With this result, Poisson had hoped
to disprove the wave theory; however, Arago experi-
mentally verified the prediction. Although this spot is
usually referred to as the Poisson spot, many people
call it Arago’s spot.

Joseph von Fraunhofer (March 6, 1787 – June 7, 1826) was a
German optician. In 1814, Fraunhofer invented the spectro-
scope and discovered 574 dark lines appearing in the solar
spectrum; these lines are referred to as Fraunhofer lines. In
1859, Kirchhoff and Bunsen explained these lines as atomic
absorption lines. In 1823, Fraunhofer published his theory
of diffraction. He also invented the diffraction grating and
demonstrated the accurate measurement of the wavelength.

Augustin-Jean Fresnel (May 10, 1788 – July 14, 1827) was
a French physicist. Fresnel contributed significantly to the
establishment of the wave theory of light. In 1818, he wrote
a memoir on diffraction for which in the following year he
received the prize of the Académie des Sciences at Paris. In

1819, he was nominated
Commissioner of Lighthouses,
for which he was the first
to construct a special type
of lens, now called a Fresnel
lens, as substitutes for mir-
rors. By the year 1821, he
showed that polarization
could be explained only if
light was entirely transverse.

Joseph Nicephore Niepce (March 7, 1765 – July 5, 1833) was
a French inventor and a pioneer in photography.

Michael Faraday (September 22, 1791 – August 25, 1867)
contributed significantly to the fields of electromagnetism
and electrochemistry. Faraday had established that a
changing magnetic field produces an electric field. This
relation subsequently was one of the four equations of
Maxwell and is referred to as Faraday’s law. In 1845,
Faraday discovered the phenomenon that is now called

the Faraday rotation. In
this experiment, the plane
of polarization of linearly
polarized light (propagating
through a material medium)
gets rotated by the applica-
tion of an external magnetic
field aligned in the direction
of propagation. The experi-
ment established that mag-
netic force and light were
related. Faraday wrote in
his notebook, “I have at
last succeeded in . . . magnetising a ray of light.”

Etienne-Louis Malus (July 23, 1775 – February 24, 1812)
was a French engineer, physicist, and mathematician.
David Brewster, FRS (December 11, 1781 – February 10,
1868) was a Scottish scientist.

In 1809, Malus had published his discovery of the
polarization of light by reflection; however, he was unable
to obtain the relationship between the polarizing angle and
refractive index. In 1811, David Brewster repeated the
experiments of Malus for many materials and realized that
when a ray is polarized by reflection, the reflected ray
makes an angle of 90° with the refracted ray; he promptly
called this Brewster’s law! Malus is best known for the law
named after him which states that the intensity of light
transmitted through two polarizers is proportional to the
square of the cosine of the angle between the polarization
axes of the polarizers. In 1810, Malus published his theory
of double refraction of light in crystals.

James Clerk Maxwell (June 13,
1831 – November 5, 1879)
was an outstanding Scottish
mathematician and theoretical
physicist. Around 1865, Max-
well showed that the laws
of electricity of magnetism
can be described by four
partial differential equations;
these equations are known as
Maxwell’s equations and ap-
peared in his book A Treatise on Electricity and
Magnetism, published in 1873. Maxwell also predicted the
existence of electromagnetic waves (which were later ob-
served by Hertz) and showed that the speed of propagation
of electromagnetic waves is approximately equal to the
(then) measured value of the speed of light; this made him
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predict that light must be an electromagnetic wave. In 1864,
he wrote:

This velocity is so nearly that of light that it seems
we have strong reason to conclude that light itself
(including radiant heat and other radiations) is an
electromagnetic disturbance in the form of waves
propagated through the electromagnetic field
according to electromagnetic laws.

This synthesis represents one of the great scientific
achievements of the nineteenth century. In 1931 (during the
birth centenary celebration of Maxwell), Max Planck had
said, “(Maxwell’s theory) . . . remains for all time one of the
greatest triumphs of human intellectual endeavor.” Albert
Einstein had said, “(The work of Maxwell was) . . . the most
profound and the most fruitful that physics has experienced
since the time of Newton.” For more details about Maxwell,
see Ref. 19. Some of the original papers of Maxwell can be
seen in the website in Ref. 20.

John William Strutt usually referred to as Lord Rayleigh
(November 12, 1842 – June 30, 1919) and John Tyndall
(August 2, 1820 – December 4, 1893) was an Irish natural
philosopher. In 1869, John Tyndall had discovered that when
light passes through a transparent liquid with small particles in
suspension (such as a small amount of milk put in water), the
shorter blue wavelengths are scattered more strongly than the
red; thus from the side, the color looks blue and the light
coming out straight appears reddish. Many people call this
Tyndall scattering, but it is more often referred to as Rayleigh
scattering because Rayleigh studied this phenomenon in
great detail and showed (in 1871) that scattering is inversely
proportional to the fourth power of the wavelength (see Ref. 21).
Thus the blue color is scattered 10 times more than the red
color (because the red color has a wavelength which is about
1.75 times the wavelength of blue). This is the reason why the
sky appears blue. Although violet has an even smaller
wavelength, the sky does not appear violet because there is
very little violet in the sunlight! Some of the scientific papers
of Lord Rayleigh can be seen at the website given in Ref. 22.
Lord Rayleigh received the 1904 Nobel Prize in Physics.

In 1854, John Tyndall demonstrated light guidance in
water jets, duplicating but not acknowledging Babinet (see
Ref. 23 for more details).

Heinrich Rudolf Hertz (February 22, 1857 – January 1,
1894) was a German physicist after whom the hertz, the SI
unit of frequency, is named. To quote from Ref. 24:

In 1888, in a corner of his physics classroom at the
Karlsruhe Polytechnic in Berlin, Hertz generated
electric waves using an electric circuit; the circuit

contained a metal rod that had a small gap at its mid-
point, and when sparks crossed this gap violent
oscillations of high frequency were set up in the rod.
Hertz proved that these waves were transmitted
through air by detecting them with another similar cir-
cuit some distance away. He also showed that like
light waves they were reflected and refracted and,
most important, that they traveled at the same speed
as light but had a much longer wavelength. These
waves, originally called Hertzian waves but now
known as radio waves, conclusively confirmed
Maxwell’s prediction on the existence of electromag-
netic waves, both in the form of light and radio waves.

Hertz was a very modest person; after the discovery he
said, “This is just an experiment that proves Maestro
Maxwell was right, we just have these mysterious
electromagnetic waves that we cannot see with the naked
eye. But they are there.” “So, what next?” asked one of his
students at the University of Bonn. “Nothing, I guess.”
Hertz later said, “I do not think that the wireless waves I
have discovered will have any practical application.”

We should mention here that in 1842 (when Maxwell was
only 11 years old) the U.S. physicist Joseph Henry had
magnetized needles at a distance of over 30 ft (with two
floors, each 14 in. thick) from a single spark. Thus, though
Joseph Henry was not aware of it, he had produced and
detected electromagnetic waves; for more details see e.g.,
the book by David Park (Ref. 25) and the original collection
of Henry’s papers referenced in Park’s book.

Hertz was also the first scientist to observe the photoelectric
effect. In 1887, while receiving the electromagnetic waves in a
coil with a spark gap, he found that the maximum spark length
was reduced when the apparatus was put in a black box (this is
so because the box absorbed the ultraviolet radiation which
helped the electrons to jump across the gap). Hertz reported the
observations but did not pursue further and also did not make
any attempt to explain them. In 1897, J. J. Thomson discovered
electrons, and in 1899, he showed that electrons are emitted
when light falls on a metal surface. In 1902, Philip Lenard
observed that (1) the kinetic energy of the emitted electrons was
independent of the intensity of the incident light and (2) the
energy of the emitted electron increased when the frequency of
the incident light was increased.

Alexander Graham Bell (March 3, 1847 – August 2, 1922)
was born and raised in Edinburgh, Scotland he emigrated to
Canada in 1870 and then to the United States in 1871. The
photophone was invented jointly by Alexander Graham Bell
and his assistant Charles Sumner Tainter on February 19,
1880. Bell believed the photophone was his most important
invention.
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Albert Abraham Michelson (December 19, 1852 – May 9,
1931) was born in Strelno, Prussia, and moved to the United
States at the age of 2. Michelson built the famous
interferometer which was later called the Michelson
interferometer. He was awarded the 1907 Nobel Prize in
Physics (the first American to receive the Nobel Prize in
Science) for his optical precision instruments and the
spectroscopic and metrological investigations carried out
with their aid. In the presentation speech, the President of
the Royal Swedish Academy of Sciences said, “. . . Your
interferometer has rendered it possible to obtain a non-
material standard of length, possessed of a degree of
accuracy never hitherto attained. By its means we are
enabled to ensure that the prototype of the meter has
remained unaltered in length, and to restore it with absolute
infallibility, supposing it were to get lost.” In 1887, he and
Edward Morley carried out the famous Michelson–Morley
experiment, which proved that ether did not exist. David
Park (Ref. 25) has written: “He (Michelson) was 34 when he
established that ether cannot be found; he made delicate
optical measurements for 44 more years and to the end of
his days did not believe there could be a wave without
some material substance to do the waving.”

Maurice Paul Auguste Charles Fabry (June 11, 1867 – July 9,
1945) and Jean-Baptiste Alfred Pérot (November 3, 1863 –
November 28, 1925) were French physicists. In 1897, Fabry

and Pérot published their important article on what we now
call the Fabry–Pérot interferometer. For more details about
them see Ref. 26.

Albert Einstein (March 14,
1879 –April 18, 1955) was an  out-
standing theoretical physicist.
Einstein is best known for his
theory of relativity and specifi-
cally mass-energy equivalence
E = mc2. Einstein in 1905 put
forward that light consists of
quanta of energy; this eventually
led to the development of quan-
tum theory. In 1917, in a paper entitled “On the Quantum
Theory of Radiation,” Einstein, while rederiving Planck’s law,
was able to predict the process of stimulated emission, and
almost 40 years later, this prediction led to the development of
the laser. He received the 1921 Nobel Prize in Physics for his
services to Theoretical Physics, and especially for his expla-
nation of the photoelectric effect. Some of Einstein’s early
papers can be found in the website in Ref. 27.

Geoffrey Ingram Taylor (March 7, 1886 – June 27, 1975) in
1909 demonstrated interference fringes by using an

extremely feeble light source; this led the Nobel Prize–
winning physicist P. A. M. Dirac to make the famous
statement, “Each photon then interferes only with itself.”
Taylor has often been described as one of the great
physical scientists of the twentieth century. For more
details, see Ref. 28.

William Henry Bragg (July 2, 1862 – March 10, 1942) and
William Lawrence Bragg (March 31, 1890 – July 1, 1971).
William Lawrence Bragg (the son) discovered the most
famous Bragg’s law, which makes it possible to calculate
the positions of the atoms within a crystal from the way in
which an X-ray beam is diffracted by the crystal lattice. He
made this discovery in 1912, during his first year as a
research student in Cambridge. He discussed his ideas with
his father (William Henry Bragg), who developed the X-ray
spectrometer in Leeds. In 1915, father and son were jointly
awarded the Nobel Prize in Physics for their services in the
analysis of crystal structure by means of X-rays. The
collaboration between father and son led many people to
believe that the father was the inventor of Bragg’s law, a
fact that upset the son!

Arthur Holly Compton (September 10, 1892 – March 15,
1962) in 1922 found that the energy of an X-ray or gamma ray
photon decreases due to scattering by free electrons. This
discovery, known as the Compton effect, demonstrates the
corpuscular nature of light. Compton received the 1927
Nobel Prize in Physics for his discovery of the effect named
after him. The research papers of Compton can be found in
the website given in Ref. 29.

Louis de Broglie (August 15, 1892 – March 19, 1987) was a
French physicist. In 1924, de Broglie (pronounced in French
as de Broy) formulated the de Broglie hypothesis, claiming
that all matter, not just light, has a wavelike nature; he
related wavelength to the momentum. De Broglie’s formula
was confirmed three years later for electrons with the
observation of electron diffraction in two independent
experiments. De Broglie received the 1929 Nobel Prize in
Physics for his discovery of the wave nature of electrons.
In the presentation speech it was mentioned:

Louis de Broglie had the boldness to maintain that . . .
matter is, by its nature, a wave motion. At a time
when no single known fact supported this theory,
Louis de Broglie asserted that a stream of electrons
which passed through a very small hole in an
opaque screen must exhibit the same phenomena as
a light ray under the same conditions.

Paul Adrien Maurice Dirac (August 8, 1902 – October 20,
1984) and Werner Karl Heisenberg (December 5, 1901 –
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February 1, 1976) were both celebrated theoretical
physicists. Heisenberg was one of the founders of quantum
mechanics and is also well known for discovering one of
the central principles of modern physics, the Heisenberg
uncertainty principle, which he developed in an essay
published in 1927. The uncertainty principle (which can be
derived directly from the axioms of quantum mechanics) can
be used to explain the diffraction of a photon (or an
electron). Dirac can be considered as the creator of the
complete theoretical formulation of quantum mechanics.
Albert Einstien said that it was “Dirac to whom in my
opinion we owe the most logically perfect presentation of
quantum mechanics.” Dirac, in his famous book Principles
of Quantum Mechanics, wrote:

Some time before the discovery of quantum
mechanics people realized that the connection
between light waves and photons must be of a
statistical character. What they did not clearly
realize, however, was that the wave function gives
information about the probability of one photon
being in a particular place and not the probable
number of photons in that place. The importance of
the distinction can be made clear in the following
way. Suppose we have a beam of light consisting of
a large number of photons split up into two
components of equal intensity. On the assumption
that the beam is connected with the probable
number of photons in it, we should have half the
total number going into each component. If the two
components are now made to interfere, we should
require a photon in one component to be able to
interfere with one in the other. Sometimes these two
photons would have to annihilate one another and
other times they would have to produce four
photons. This would contradict the conservation of
energy. The new theory, which connects the wave
function with probabilities for one photon gets over
the difficulty by making each photon go partly into
each of the two components. Each photon then
interferes only with itself. Interference between two
different photons never occurs.

Dirac is widely regarded as one of the greatest
physicists of all time.

Chandrasekhara Venkata Raman (November 7, 1888 –
November 21, 1970) and Kariamanikkam Srinivasa
Krishnan (December 4, 1898 – June 13, 1961) on February 28,
1928, observed the Raman effect in several organic vapors
such as pentane, which they called “the new scattered
radiation.” Raman made a newspaper announcement on

February 29, and on  March 8, 1928 he communicated a
paper entitled “A Change of Wavelength in Light
Scattering to Nature,” which was published on April 21,
1928. Although in the paper he acknowledged that
the observations were made by K. S. Krishnan and himself,
the paper had Raman as the author, and therefore the
phenomenon came to be known as the Raman effect
although many scientists (particularly in India) kept on
referring to it as the Raman–Krishnan effect. Subsequently,
there were several papers written by Raman and Krishnan.
Raman got the 1930 Nobel Prize in Physics for “his work on
the scattering of light and for the discovery of the effect
named after him.” At about the same time, Landsberg and
Mandel’shtam (in Russia) were also working on light
scattering, and according to Mandel’shtam, they observed
the Raman lines on February 21, 1928. But the results were
presented in April 1928, and it was only on May 6, 1928,
that Landsberg and Mandel’shtam communicated their
results to the journal Naturwissenschaften. But by then
it was too late! Much later, scientists from Russia
kept calling Raman scattering as Mandel’shtam–Raman
scattering. For a nice historical account of Raman effect, see
Ref. 30. In 1928, the Raman effect was discovered; 70 years
later it has become an important mechanism for signal
amplification in optical communication systems. Today we
routinely talk about Raman amplification in optical fibers.

Dennis Gabor (June 5, 1900, Budapest – February 9, 1979,
London). In 1947, while working in the area of electron
optics at British Thomson-Houston Co. in the United
Kingdom, Dennis Gabor invented holography. He was
awarded the 1971 Nobel Prize in Physics for his invention
and development of the holographic method. However, the
field of holography advanced only after development of the
laser in 1960. The first holograms that recorded 3D objects
were made by Emmett Leith and Juris Upatnieks in
Michigan, United States, in 1963 and Yuri Denisyuk in the
Soviet Union.

Charles Hard Townes July 28, 1915) and (his sister’s
husband) Arthur Leonard Schawlow (May 5, 1921 – April 28,
1999) are both U.S. physicists. Nikolay Gennadiyevich Basov
(December 14, 1922 – July 1, 2001) was a Russian physicist
and educator. Aleksandr Mikhailovich Prokhorov (July 11,
1916–January 8, 2002) was a Russian physicist born in
Australia. Gordon Gould (July 17, 1920 – September 16, 2005),
was a U.S. physicist. The most important concept in the
development of the laser is that of stimulated emission,
which was introduced by Einstein in 1917. It took over 35
years to realize amplification through stimulated emission
primarily because stimulated emission was long regarded as
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a purely theoretical concept which never could be observed,
because under normal conditions absorption would always
dominate over emission. According to Townes, he conceived
the idea of amplification through population inversion in
1951 (see Ref. 31); and in early 1954, Townes, Gordon, and
Zeiger (at the Physics Department of Columbia University)
published a paper on the amplification and generation of
electromagnetic waves by stimulated emission. They coined
the word maser for this device, which is an acronym for
microwave amplification by stimulated emission of radiation.
Around the same time, Basov and Prochorov at the Lebedev
Institute in Moscow independently published papers about
the maser. In 1958, Schawlow and Townes published a paper
entitled “Infrared and Optical Masers” in Physical Review
showing how stimulated emission would work with much
shorter wavelengths and describing the basic principles of
the optical maser (later to be renamed a laser), initiating this
new scientific field. Townes, Basov, and Prokhorov shared
the 1964 Nobel Prize in Physics for their fundamental work in
the field of quantum electronics, which has led to the
construction of oscillators and amplifiers based on the
maser-laser principle. Half of the prize was awarded to
Townes and the other half jointly to Basov and Prokhorov.
Schawlow got the Nobel Prize much later; he shared the 1981
Nobel Prize in Physics with Nicolaas Bloembergen and Kai
Siegbahn for their contributions to the development of laser
spectroscopy. However, many people believe that Gordon
Gould (while a graduate student at Columbia University) is
the inventor of the laser. On the first page of Gould’s laser
notebook (written in November 1957) he coined the acronym
LASER and described the essential elements for constructing
the laser. In fact, the term laser was first introduced to the
public in Gould’s 1959 conference paper “The LASER, Light
Amplification by Stimulated Emission of Radiation.” Gould
for 30 years fought the United States Patent and Trademark
Office for recognition as the inventor of the laser; see, e.g.,
the books by Taylor (Ref. 32) and by Bertolotti (Ref. 33). A
portion of Bertolotti’s book can be read at the website given
in Ref. 34.

Theodore Harold Maiman (July 11, 1927 – May 5, 2007). In  A
Century of Nature: Twenty-One Discoveries that Changed
Science and the World, (Ref. 35), C. H. Townes wrote an article
entitled “The First Laser” (Ref. 36). In this article, Townes wrote:

 Theodore Maiman made the first laser operate on
16 May 1960 at the Hughes Research Laboratory in
California, by shining a high-power flash lamp on a
ruby rod with silver-coated surfaces. He promptly
submitted a short report of the work to the journal
Physical Review Letters, but the editors turned it

down. Some have thought this was because Physical
Review had announced that it was receiving too
many papers on masers—the longer-wavelength
predecessors of the laser—and had announced that
any further papers would be turned down. But
Simon Pasternack, who was an editor of Physical
Review Letters at the time, has said that he turned
down this historic paper because Maiman had just
published, in June 1960, an article on the excitation
of ruby with light, with an examination of the
relaxation times between quantum states, and that
the new work seemed to be simply more of the
same. Pasternack’s reaction perhaps reflects the
limited understanding at the time of the nature of
lasers and their significance. Eager to get his work
quickly into publication, Maiman then turned to
Nature, usually even more selective than Physical
Review Letters, where the paper was better received
and published on 6 August.

On December 12, 1960, Ali Javan, William Bennett, and
Donald Herriott produced, for the first time, a continuous
laser light (at 1.15 mm) from a gas laser. (Refs. 37 and 38).

In 1961, within one year of the development of the first
laser, Elias Snitzer and his coworkers developed the first
fiber-optic laser. Snitzer also invented both neodymium-
and erbium-doped laser glass; see, e.g., Refs. 39 and 40.

C. Kumar N. Patel developed the carbon dioxide laser in
1963; it is now widely used in industry for cutting and
welding and also in surgery. See Ref. 41.

In 1966, in a landmark theoretical paper (published in
Proceedings of IEE), Charles Kuen Kao and George
Hockham of Standard Telecommunications Laboratories in
the United Kingdom pointed out that the loss in glass
fibers was primarily caused by impurities and therefore it
was not a fundamental property of the fiber itself. They said
that if the impurities could be removed, the loss could be
brought down to about few decibels per kilometer—or may
be even less. If this could be achieved, then (to quote from
Ref. 42) “the new form of communication medium . . .
compared with existing co-axial cable and radio systems,
has a larger information capacity and possible advantages
in basic material cost.” After this paper, scientists in the
United States, United Kingdom, France, Japan, and
Germany started working on purifying glass, and the first
breakthrough was reported in 1970.

In 1970, Corning Glass Works scientists Donald Keck,
Robert Maurer, and Peter Schultz successfully prepared the
first batch of optical fiber with sufficiently low loss as to make
fiber-optic communication a reality—this breakthrough was
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the starting point of the fiber-optic revolution; see Ref. 43. In
about 10 more years, as research continued, optical fibers
became so transparent that more than 95% of the signal
power would pass after propagating through 1 km of the
optical fiber.

Semiconductor lasers that operate continuously at room
temperature were first fabricated in May 1970 by Zhorev
Alferov and his group in Leningrad, and in June 1970, by
Izuo Hayashi and Morton Panish at Bell Labs (Ref. 44).
This was a major turning point toward the development of
the fiber-optic communication system. Alferov shared the
2000 Nobel Prize in Physics.

In 1978, the photosensitivity of germanium-doped-core
optical fibers was discovered by Kenneth Hill while work-
ing at the Communications Research Centre in Ottawa,
Canada. He also demonstrated the first in-fiber Bragg grat-
ing (see Ref. 45).

The erbium-doped fiber amplifier (usually abbreviated as
EDFA) was invented in 1987 by a group including David
Payne, R. Mears, and L. Reekie, from the University of
Southampton, and a group from AT&T Bell Laboratories,
including E. Desurvire, P. Becker, and J. Simpson.
The EDFA brought about a revolution in fiber-optic
communication systems.
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2.1 INTRODUCTION

Humans have always been interested to know what light is.
In the early days, a light beam was thought to consist of par-
ticles. Later, the phenomena of interference and diffraction
were demonstrated which could be explained only by assum-
ing a wave model of light. Much later, it was shown that
phenomena such as the photoelectric effect and the Compton
effect could be explained only if we assume a particle model
of light. Now, as we know, the values of the mass and charge
of electrons, protons, alpha particles, etc., are known to a tre-
mendous degree of accuracy—approximately one part in a
billion! Their velocities can also be changed by the applica-
tion of electric and magnetic fields. Thus, we usually tend to
visualize them as tiny particles. However, they also exhibit
diffraction and other effects which can be explained only if
we assume them to be waves. Thus, the answers to the ques-
tions such as “What is an electron” or “What is light?” are
very difficult. Indeed electrons, protons, neutrons, photons,
alpha particles, etc., are neither particles nor waves. The
modern quantum theory describes them in a very abstract
way which cannot be connected with everyday experience.
To quote Feynman (from Ref. 1):

Newton thought that light was made up of particles,
but then it was discovered that it behaves like a
wave. Later, however (in the beginning of the twen-
tieth century), it was found that light did indeed
sometimes behave like a particle. Historically, the
electron, for example, was thought to behave like a
particle, and then in many respects it behaved like a

For the rest of my life, I will reflect on what light is.
—Albert Einstein, Circa 1917

All the fifty years of conscious brooding have brought me no closer to the answer to the question,
‘What are light quanta?’ Of course today every rascal thinks he knows the answer, but he is
deluding himself.

—Albert Einstein, 1951

WHAT IS LIGHT?
Chapter

Two

wave. So it really behaves like neither. Now we have
given up. We say: ‘it is like neither.’ There is one
lucky break, however—electrons behave just like
light. The quantum behaviour of atomic objects
(electrons, protons, neutrons, photons, and so on)
is the same for all, they are all ‘particle–waves,’ or
whatever you want to call them.

In this chapter, we will make a brief historical survey of
the important experiments which led to models regarding the
nature of light. Near the end of the chapter, we will qualita-
tively discuss how the wave and the particle aspects of
radiation can be explained on the basis of the uncertainty
principle and the probabilistic interpretation of matter waves.

2.2 THE CORPUSCULAR MODEL

The corpuscular model is perhaps the simplest model of light.
According to it, a luminous body emits a stream of particles
in all directions. Isaac Newton, in his book Opticks (Ref. 2),
wrote, “Are not the ray of light very small bodies emitted
from shining substance?” The particles are assumed to be
very tiny so that when two light beams overlap, a collision
between the two particles rarely occurs. Using the corpuscu-
lar model, one can explain the laws of reflection and
refraction in the following manner.

The reflection law follows by considering the elastic re-
flection of a particle by a plane surface. To understand
refraction, we consider the incidence of a particle at a plane
surface (y = 0) as shown in Fig. 2.1; we are assuming that the
motion is confined to the xy plane. The trajectory of the
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particle is determined by the conservation of the x compo-
nent of the momentum (= p sin q) where q is the angle that
the direction of propagation makes with the y axis. The con-
servation condition leads to equation

p1 sin q1 = p2 sin q2 (1)

where the angles q1 and q2 are defined in Fig. 2.1. The above
equation directly gives Snell’s law:

1 2 2

2 1 1

sin

sin

p

p

q
= =

q

v
v (2)

To understand the explanation of Snell’s law of refraction
using the corpuscular model, we consider a simple experi-
ment in which a ball moving with a certain speed on a
horizontal surface moves down to a lower horizontal surface
through a slope. Two stroboscopic pictures of the motion of
the ball are shown in Fig. 2.2. The component of the momen-
tum parallel to the edge of the slope does not change;
however, the component perpendicular to the edge increases
in value, resulting in an increased speed of the ball. Con-
versely, if the ball initially moves on the lower surface
approaching the slope, the speed decreases as it goes up the
slope; this is consistent with the reversibility of rays under-
going refraction. The slope can be approximately assumed to
represent the interface between the two media.

Although the simple corpuscular model of light explains
Snell’s law of refraction satisfactorily, it predicts that if the
ray moved toward the normal (i.e., if the refraction occurs at
a denser medium), its speed would become higher which, as
we shall see later, is not consistent with experimental obser-
vations. The wave theory does make the correct prediction of
the ratio of velocities of waves in the two media.

We may mention here that in 140 AD, Claudius Ptolemy
measured the angle of refraction in water for different angles
of incidence in air and made a table of it. Using this table,

Willebrord Snell, in 1621, discovered the law of refraction
which is known as Snell’s law. In 1637, René Descartes derived
Snell’s law; this derivation is equivalent to the corpuscular
derivation which is usually attributed to Newton. Newton
(1642–1727) was only about 8 years old when Descartes
(1596–1650) died, and therefore Descartes did not get the
corpuscular model from Newton! The first edition of Newton’s
Opticks (in which Newton had discussed the corpuscular
model) was published in 1704 (Ref. 2). It is probably because
of the popularity of Newton’s Opticks that the corpuscular
theory is usually attributed to Newton; an English translation

p1

p2

y

x

θ1

θ2

Fig. 2.1 Refraction of a corpuscle.

Fig. 2.2 Stroboscopic pictures of a ball with a certain

speed on a horizontal surface moving down

to a lower horizontal surface through a slope

[Adapted from PSSC, Physics, D.C. Heath & Co.,

Boston, Mass., 1965; used with permission].

gha80482_ch02_011-026.PMD 1/14/2009, 7:18 PM12



What is Light? 13
�

of Descartes’ original paper appears in a paper by Joyce and
Joyce (Ref. 3). Descartes’ theory remained undisputed until
about 1662 when Fermat enunciated the principle of least time.
Using this principle, Fermat derived Snell’s law (see Chap. 3)
and showed that if the velocity of light in the second medium
is less, the ray will bend toward the normal, contrary to what is
predicted by the corpuscular theory.

Finally, according to Newton, corpuscles of different sizes
give rise to the sensation of different colors at the retina of
the eye. He explained the prismatic spectrum by assuming
that particles of different sizes refract at different angles.
Commenting on Isaac Newton’s Opticks, Einstein wrote:

. . . this new edition of his [Newton’s] work on
Optics is nevertheless to be welcomed with warmest
thanks, because it alone can afford us the
enjoyment of a look at the personal activity of this
unique man. . . . in one person he [Newton] combined
the experimenter, the theorist, the mechanic and, not
the least, the artist in exposition. He stands before
us strong, certain and alone: his joy in creation and
his minute precision are evident in every word and
in every figure.

Perhaps the two most important experimental facts which
led to the early belief in the corpuscular model of light were
(1) the rectilinear propagation of light which results in the
formation of sharp shadows and (2) that light could propa-
gate through vacuum. The domain of optics in which light is
assumed to travel in straight lines is known as geometrical
optics, which can easily be explained on the basis of the cor-
puscular model of light. However, as careful experiments
later showed, shadows are not perfectly dark; some light does
enter the geometrical shadow which is due to the phenom-
enon of diffraction. This phenomenon is essentially due to
the wave character of light and cannot be explained on the
basis of the simple corpuscular model. As we shall see in
later chapters, diffraction effects are usually difficult to
observe because the wavelengths associated with light
waves are extremely small. We should mention here that if we
are under the shade of a building, then under the shade we
can always read a book—the light that enters the shadow is
due not to diffraction but to scattering of light by air mol-
ecules. This phenomenon of scattering is also responsible
for the blue color of the sky and the red color of the setting
Sun. If the Earth did not have an atmosphere, then the shad-
ows would have been extremely dark, which is indeed the
case on the surface of the Moon (see Fig. 2.3). Since the
Moon does not have an atmosphere, the shadows would be
extremely dark and we would never be able to read a book in
our own shadow! Also on the surface of the Moon, the sky

appears perfectly dark (see Fig. 2.3). However, even on the
surface of the Moon, a small amount of light does enter the
geometrical shadow because of diffraction.

2.3 THE WAVE MODEL

Although the corpuscular model explains the propagation of
light through free space and can be made to predict the cor-
rect forms of the laws of reflection and refraction, a large

(a)

(b)

Fig. 2.3 Photographs on the Moon. Because the Moon
does not have any atmosphere, the sky and shad-
ows are very dark. In (a) we can also see the
Earth; color photographs appear in the insert at
the back of the book.
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number of experimental observations (such as interference,
diffraction, and polarization) arose which could not be ex-
plained on the basis of the corpuscular model of light.
Historically, Newton’s rings, which are a beautiful manifesta-
tion of the wave character of light, were observed by Hooke
around the middle of the seventeenth century; the rings are
named after Newton because he had given an explanation of
their formation using the corpuscular model, which was later
found to be quite unsatisfactory. The explanation of
Newton’s rings on the basis of the wave model is discussed in
Chap. 15; Newton’s explanation of the rings can be found in
many places (see, e.g., Ref. 4).

Around 1665, Francesco Grimaldi, an Italian physicist, was
probably the first person to observe the phenomenon of dif-
fraction of white light as it passed through small apertures;
Grimaldi concluded that—to quote from the Internet—“light
is a fluid that exhibits wave-like motion.” Later, Hooke also
observed this phenomenon. As will be discussed in later
chapters, a satisfactory explanation of the diffraction phe-
nomenon can be given only if one assumes a wave model of
light. This model was first put forward by Huygens in 1678
(Ref. 5). Using the wave model, Huygens could explain the
laws of reflection and refraction (see Chap. 12), and he could
also interpret the phenomenon of double refraction (see
Chap. 22) discovered in 1669 by the Danish physicist
Erasmus Bartholinus. However, so compelling was Newton’s
authority that it is said that people around Newton had more
faith in his corpuscular theory than Newton himself and no
one believed in Huygens’ wave theory until 1801 when
Thomas Young performed the famous interference experi-
ment which could only be explained on the basis of a wave
model of light (see Chap. 14). In addition, at the time of
Huygens, light was thought to travel in straight lines, and
Huygens tried to invoke unrealistic assumptions to explain
the rectilinear propagation of light using his wave theory.
This drawback was also one of the reasons for the immediate
nonacceptance of the wave model. Young showed that the
wavelength of light waves was about 6 ¥ 10 –5 cm. Because
of the smallness of the wavelength, the diffraction effects are
small and therefore light approximately travels in straight
lines. Indeed, the branch of optics in which one completely
neglects the finiteness of the wavelength is called geometri-
cal optics, and a ray is defined as the path of energy
propagation in the limit of l Æ 0.

In 1802, Young gave a satisfactory explanation of the for-
mation of Newton’s rings. In 1808, Malus observed the
polarization of light, but he did not try to interpret this

phenomenon. In 1816, Fresnel gave a satisfactory explana-
tion of the diffraction phenomenon by means of a wave
theory and calculated the diffraction patterns produced by
various types of apertures and edges. In 1816, Fresnel along
with Arago performed the famous experiment on the super-
position of linearly polarized light waves, which was
explained by Young, by assuming that light waves were
transverse in character.

As mentioned above, both interference and diffraction
phenomena could only be explained by assuming a wave
model of light. It was believed that a wave would always
require a medium and since light could propagate through
vacuum, the presence of an “all pervasive” medium called
the ether was assumed. In 1832 Fresnel derived the expres-
sions for the reflection and transmission coefficients1 by
using models for ether vibrations. Poisson, Navier, Cauchy,
and many other physicists contributed to the development
of the ether theory which also necessitated the development
of the theory of elasticity. There were considerable difficul-
ties in the explanation of the models, and since we now know
that ether does not exist, we will not go into the details of the
various theories.

The nineteenth century also saw the development of elec-
tricity and magnetism. In 1820, Öersted discovered that currents
caused magnetic effects. Soon after, Ampere found that two
parallel wires carrying currents attract each other. Around 1830,
Faraday carried out experiments which showed that a varying
magnetic field induces an electromotive force; similar experi-
ments were also carried out by Henry around the same time,
and the law is also referred to as the Faraday-Henry law.

Soon afterward, Maxwell generalized Ampere’s law by
stating that a changing electric field can also set up a
magnetic field. He summed up all the laws of electricity and
magnetism in the form of equations [which are now referred
to as Maxwell’s equations (see Chap. 23)]. From these
equations, he derived a wave equation and predicted
the existence of electromagnetic waves (see Chap. 23). From
the wave equation so derived, he showed that the velocity
of the electromagnetic waves can be calculated from
experiments in which a certain quantity of electric charge is
measured by two different methods. These measurements
were carried out in 1856 by Kohlrausch and Weber, and from
their data, Maxwell found that the speed of the electromagnetic
waves in air should be about 3.107 ¥ 108 m s–1. He found that
this value was very close to the measured value of the speed
of light, which according to the measurement of Fizeau in 1849
was 3.14858 ¥ 108 m s–1. The sole fact that the two values were

1 The derivation of the Fresnel laws on the basis of electromagnetic theory will be discussed in Chap. 24. A derivation similar to the
original derivation is given in Ref. 6.
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very close to each other led Maxwell to propound (around
1865) his famous electromagnetic theory of light, according to
which

Light waves are electromagnetic waves.

Associated with a light wave are changing electric and
magnetic fields; the changing magnetic field produces a time-
and space-varying electric field; and the changing electric
field produces a time- and space-varying magnetic field, and
this results in the propagation of the electromagnetic wave
even in free space. In 1888, Heinrich Hertz carried out experi-
ments which could produce and detect electromagnetic
waves of frequencies smaller than those of light. These waves
were produced by discharging electrically charged plates
through a spark gap. The frequency of the emitted electro-
magnetic waves depended on the values of the inductance
and capacitance of the circuit. The electromagnetic waves
could be detected by means of a detector, and it was found
that a signal was not received when the detector was placed
parallel to the source2  (see Fig. 2.4).

Hertz also produced standing electromagnetic waves by
getting them reflected by a metal sheet (see Figs. 13.3 and
13.4). He could calculate the wavelength of the waves, and
knowing the frequency, he showed that the speed of the elec-
tromagnetic waves was the same as that of light. Using a
collimated electromagnetic wave and getting it reflected by a
metal sheet, he could demonstrate the laws of reflection.
Hertz’s experimental results provided a dramatic confirmation
of Maxwell’s electromagnetic theory. In addition, there were
so many other experimental results, which were quantita-
tively explained by using Maxwell’s theory, that toward the
end of the nineteenth century, physicists thought that one
had finally understood what light really is.

2.4 THE PARTICLE NATURE OF

RADIATION

In 1887 Heinrich Hertz, while carrying out his experiments on
electromagnetic waves, found that if the light emitted from one
spark gap were blocked, it would reduce the maximum spark
length in the other gap. After carrying out a series of experi-
ments, he concluded that it was the ultraviolet radiation from
the first spark that was helping the electrons to jump across
the gap. Hertz reported the observations but did not pursue
further and also did not make any attempt to explain them. In
1897, J. J. Thomson discovered electrons, and in 1899, he
showed that electrons are emitted when light falls on a metal
surface. In 1902, Philip Lenard observed that (1) the kinetic
energy of the emitted electrons was independent of the inten-
sity of the incident light and (2) that the energy of the emitted
electron increased when the frequency of the incident light was
increased. As will be discussed in Sec. 25.2, this phenomenon

P

P

D

D

(a)

(b)

Fig. 2.4 Schematic of Hertz’s experiment for generation and

detection of electromagnetic waves. Sparks across

the gap P produce electromagnetic waves whose

frequency depends on the inductance and capaci-

tance of the circuit. The electromagnetic waves can

be detected by means of a detector D, which is noth-

ing but a short wire bent in the form of a circle with

a small gap. A signal is detected if the gap in the

detector is parallel to the line joining the knobs of

the spark gap P as shown in (a); if the gap is at right

angles as shown in (b), no signal is received.

2 This follows directly from the dipole radiation pattern—see Sec. 22.4.1; in Fig. 22.4, the dipole is oscillating along the z axis, and the
electric field on the y axis is along the z axis.
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cannot be explained by a theory based on the wave model of
light. In 1905, Einstein interpreted the photoelectric effect by
putting forward his famous photon theory according to which
light consisted of quanta of energy

E hv=
(3)

where ν is the frequency and h (ª 6.626 ¥ 10–34 J s) is
Planck’s constant; and that the emission of a photoelectron
was the result of the interaction of a single quantum (i.e., of
the photon) with an electron. In his 1905 paper (Ref. 7 and
reprinted in Ref. 8), Einstein wrote that

Monocromatic radiation behaves as if it consists of

mutually independent energy quanta of magnitude .hn

In the same paper he also wrote that

According to Maxwell’s theory, energy is consid-
ered to be a continuous spatial function for all
purely electromagnetic phenomena, hence also for
light. . . . The wave theory of light, which operates
with  continuous spatial functions, has proved itself
superbly . . .

In 1909, Einstein wrote (quoted from Ref. 9)

It is undeniable that there is an extensive group of
data concerning radiation which shows that light has
certain fundamental properties that can be under-
stood much more readily from the standpoint of the
Newton emission (particle) theory than from the
standpoint of the wave theory. It is my opinion,
therefore, that the next phase of the development of
theoretical physics will bring us a theory of light that
can be interpreted as a kind of fusion of the wave and
emission theories.

We may note the prediction of Einstein. To quote from
Ref. 10:

Owing to Einstein’s paper of 1905, it was primarily
the photoelectric effect to which physicists referred
as an irrefutable demonstration of the existence of
photons and which thus played an important part in
the conceptual development of quantum mechanics.

It was only in 1926 that Gilbert Lewis, a U.S. chemist, coined
the word photon to describe Einstein’s localized
energy quanta. Einstein received the 1921 Nobel Prize in
Physics for his services to theoretical physics and especially
for his explanation of the photoelectric effect. Einstein’s pho-
ton theory predicted that if the frequency ν of the incident
radiation were greater than the critical frequency nc, then the
kinetic energy of the emitted electron would be h(n – nc),

which was later verified by Millikan for visible light, by de
Broglie for X-rays, and by Thibaud and Ellis for g-rays.
Einstein also showed that the photons, in addition to having
an energy equal to hn , should have a momentum given by

p = 
h

c

ν
 = 

h

l
(4)

which was verified experimentally in 1923 by Compton. This
experiment is known as the Compton effect and will be dis-
cussed in detail in Sec. 26.3. Compton received the 1927 Nobel
Prize in Physics for his discovery of the effect named after him.

In the year 1900, Max Planck put forward his famous
theory of blackbody radiation, the derivation of which pre-
supposed that energy can be absorbed and emitted by an
individual resonator only in quanta of magnitude hn. Ac-
cording to Einstein:

. . . I could nevertheless see to what kind of conse-
quences this law [i.e., Planck’s law] of temperature-
radiation leads for the photoelectric effect and
for other related phenomena of the transformation
of radiation-energy, as well as for the specific heat
of [especially] solid bodies. All my attempts how-
ever, to adapt the theoretical foundation of physics
to this [new type of ] knowledge failed completely. It
was as if the ground had been pulled out from un-
der one, with no firm foundation to be seen
anywhere, upon which one could have built. That
this insecure and contradictory foundation was suf-
ficient to enable a man of Bohr’s unique instinct and
tact to discover the major laws of the spectral lines
and of the electron shells of the atoms together with
their significance for chemistry appeared to me like
a miracle—and appears to me as a miracle even to-
day. This is the highest form of musicality in
the sphere of thought. (Quoted from the autobio-
graphical notes by Einstein in Albert Einstein:
Philosopher, Scientist, edited by P. A. Schilpp,
Tudor Publishing Co., New York, 1951.)

In making this transition from Planck’s quantized oscilla-
tors to quanta of radiation, Einstein made a very important
conceptual transition; namely, he introduced the idea of cor-
puscular behavior of radiation. Although Newton had
described light as a stream of particles, this view had been
completely superseded by the wave picture of light, a picture
that culminated in the electromagnetic theory of Maxwell. The
revival of the particle picture now posed a severe conceptual
problem, one of reconciling wavelike and particlelike behavior
of radiation. It also soon became apparent that matter also ex-
hibited both types of behavior. For example, an electron with
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an accurately measured value of mass and charge could un-
dergo diffraction in a manner similar to that of light waves. We
will now give a brief account of some of the other important
experimental evidence showing wave-particle duality that led
to the development of the quantum theory.

2.5 WAVE NATURE OF MATTER

Experiments by Wilson with his cloud chamber had clearly
shown the particlelike behavior of alpha and beta particles.
These are emitted by radioactive elements, and when they
pass through supersaturated vapor, they form tracks of con-
densed droplets. For alpha particles, these tracks are nearly
straight lines; however, for electrons, the tracks are irregularly
curved. The existence of continuous tracks suggests that the
emissions from the radioactive substance can be regarded as
minute particles moving with high speed. Further, the fact that
electrons could be deflected by electric and magnetic fields
and also the fact that one could accurately determine the ratio
of their charge to mass suggest very strongly that electrons
are particles. This view remained unchallenged for a number of
years; C. T. R. Wilson was awarded the 1927 Nobel Prize in
Physics for his method of making the paths of electrically
charged particles visible by condensation of vapor.

At this stage, one could ask if matter may not show wave-
like behavior also just as light exhibited corpuscular and
wavelike behavior. In 1925, de Broglie proposed just such a
hypothesis and argued that the relation given by Eq. (4) be-
tween wavelength and momentum applied for electrons as
well. In his 1925 paper, he wrote that

The basic idea of quantum theory is, of course, the
impossibility of considering an isolated fragment of
energy without assigning a certain frequency to it . . .

De Broglie was awarded the 1929 Nobel Prize in Physics for
his discovery of the wave nature of electrons. In the presen-
tation speech (on December 12, 1929), the chairman of the
Nobel Committee for Physics said that

Louis de Broglie had the boldness to maintain that
not all the properties of matter can be explained by
the theory that it consists of corpuscles. . . . At a
time when no single known fact supported this
theory, Louis de Broglie asserted that a stream of
electrons which passed through a very small hole in
an opaque screen must exhibit the same phenomena
as a light ray under the same conditions. . . . The
experimental results obtained have fully substanti-
ated Louis de Broglie’s theory. Hence there are not
two worlds, one of light and waves, one of matter
and corpuscles. There is only a single universe.

Later, de Broglie wrote (quoted from p. 58 of Ref. 9):

I was convinced that the wave-particle duality dis-
covered by Einstein in his theory of light quanta
was absolutely general and extended to all of the
physical world, and it seemed certain to me, there-
fore, that the propagation of a wave is associated
with the motion of a particle of any sort—photon,
electron, proton or any other.

In 1927, Davisson and Germer studied the diffraction of elec-
trons from single crystals of nickel and showed that the
diffraction patterns could be explained if the electrons were as-
sumed to have a wavelength given by the de Broglie relation

l = h
p

(5)

where p is the momentum of the electron. Shortly afterward,
in 1928, G. P. Thomson carried out electron diffraction experi-
ments by passing electrons through thin polycrystalline
metal targets (see Sec. 18.10 for more details). The diffraction
pattern consisted of concentric rings similar to the Debye-
Scherrer rings obtained in the X-ray diffraction pattern. By
measuring the diameters of the rings and from the known
structure of the crystals, Thomson calculated the wave-
length associated with the electron beam which was in
agreement with the de Broglie relation [Eq. (5)]. In 1937,
Davisson and Thomson shared the Nobel Prize for their ex-
perimental discovery of the diffraction of electrons by
crystals. Max Jammer (Ref. 10) has written, “Thomson, the fa-
ther, was awarded the Nobel Prize for having shown that the
electron is a particle, and Thomson, the son, for having
shown that the electron is a wave.”

In Fig. 2.5 we have shown Debye-Scherrer rings produced
by scattering of X-rays [see (a)] and by scattering of elec-
trons [see (b)] by an  aluminum foil. The two figures clearly
show the similarity in the wavelike properties of X-rays and
of electrons.

    

(a)

    

(b)

Fig. 2.5 The diffraction pattern of aluminum foil produced
(a) by X-rays  and (b) by electrons; notice the simi-
larity in the diffraction patterns.
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2.6 THE UNCERTAINTY

PRINCIPLE

The reconciliation of the corpuscular nature with the wave
character of light (and also of the electron) has been brought
about through the modern quantum theory; and perhaps the
best known consequence of wave-particle duality is the un-
certainty principle3 of Heisenberg, which can be stated as
follows:

If the x coordinate of the position of a particle is
known to an accuracy Dx, then the x component of
the momentum cannot be determined to an accuracy
better than Dpx ª h/Dx, where h is Planck’s constant.

Alternatively, one can say that if Dx and Dpx represent
the accuracies with which the x coordinate of the position
and the x component of the momentum can be determined,
then the following inequality must be satisfied:

Dx Dpx ≥ h (6)

We do not feel the effect of this inequality in our every-
day experience because of the smallness of the value of
Planck’s constant (ª 6.6 ¥ 10–27 erg s). For example, for a
tiny particle of mass 10–6 g, if the position is determined
within an accuracy of about 10–6 cm, then according to the
uncertainty principle, its velocity cannot be determined
within an accuracy better than Dv ª 6 ¥ 10–16 cm s–1. This
value is much smaller than the accuracies with which one
can determine the velocity of the particle. For a particle of a
greater mass, Dv will be even smaller. Indeed, had the value
of Planck’s constant been much larger, the world would
have been totally different. In a beautifully written book,
Gamow (Ref. 13) has discussed what our world would be
like if the effect of the uncertainty principle were perceiv-
able by our senses.

2.7 THE SINGLE-SLIT

DIFFRACTION EXPERIMENT

We will now show how the diffraction of a light beam (or an
electron beam) can be explained on the basis of the corpus-
cular nature of radiation and the uncertainty principle.
Consider a long narrow slit of width b as shown in Fig. 2.6.
Now, one can always choose the distance between the
source and the slit large enough that px can be assumed to

have an arbitrarily small value. For example, for the source at
a distance d, the maximum value of px of the photons ap-
proaching the slit will be

px ª p b
d

= 
h

c

ν . b

d

which can be made arbitrarily small by choosing a large
enough value of d. Thus we may assume the light source to
be sufficiently far away from the slit that the photons ap-
proaching the slit can be assumed to have momentum in only
the y direction. Now, according to the particle model of radia-
tion, the number of particles reaching the point P (which lies
in the geometrical shadow) will be extremely small; further, if
we decrease the width of the slit, the intensity should de-
crease, which is quite contrary to the experimental results
because we know that the beam undergoes diffraction and
the intensity at a point such as P would normally increase if
the width of the slit were made smaller. Thus, the classical
corpuscular model is quite incapable of explaining the phe-
nomenon of diffraction. However, if we use the uncertainty
principle in conjunction with the corpuscular model, the dif-
fraction phenomenon can be explained in the following
manner: When a photon (or an electron) passes through the
slit, we can say that

Dx ª b

which implies that we can specify the position of the photon
to an accuracy b. If we now use the uncertainty principle, we
have

Dpx ª h
b

(7)

b θ

B

A

P

S

S

S′

d

z

x

y

Fig. 2.6 Diffraction of a photon (or an electron) beam by a

narrow slit of width b.

3 The uncertainty principle can be derived from the Schrödinger equation (see, e.g., Chap. 5 of Ref. 12). And as mentioned by Richard
Feynman, “Where did we get that [the Schrödinger equation] from? Nowhere. It is not possible to derive it from anything you know.
It came out of the mind of Schrödinger.”

gha80482_ch02_011-026.PMD 1/14/2009, 7:18 PM18



What is Light? 19
�

i.e., just by making the photon pass through a slit of width
b, the slit imparts a momentum in the x direction which is
ª h/b. It may be pointed out that before the photon entered
the slit, px (and hence Dpx) can be made arbitrarily small by
putting the source sufficiently far away. Thus we may write
Dpx ª 0. It would, however, be wrong to say that by making
the photon pass through the slit, Dpx Dx is zero; this is so
because of the fact that Dpx ª 0 before the photon entered
the slit. After the photon has entered the slit, it is confined
within a distance b in the x direction, and hence Dpx ª h/b.
Further, since before the photon entered the slit px ª 0, we
will therefore have

|px| ª Dpx ª h
b

But px = p sin q, where q is the angle that the photon com-
ing out of the slit makes with the y axis (see Fig. 2.6). Thus

p sin q ª h
b

or

sin q ª h
pb

(8)

The above equation predicts that the possibility of a pho-
ton traveling at an angle q with the y direction is inversely
proportional to the width of the slit; i.e., the smaller the value
of b, the greater the value of q and the greater the possibility
of the photon to reach deep inside the geometrical shadow.
This is indeed the diffraction phenomenon. Now, the momen-
tum of a photon is given by

p = 
h

l

Thus Eq. (8) becomes

sin q ª 
b

l
(9)

which is the familiar diffraction theory result, as will be dis-
cussed in Sec. 18.3. We can therefore say that the wave-particle
duality is a consequence of the uncertainty principle and the
uncertainty principle is a consequence of the wave-particle
duality. To quote Max Born (Ref. 14),

Physicists of today have learnt that not every ques-
tion about the motion of an electron or a photon can
be answered, but only those questions which are
compatible with the uncertainty principle.

De Broglie suggested that the equation l = h/p is valid
not only for photons but also for all particles such as elec-
trons, protons, and neutrons. Indeed, the de Broglie relation
has been verified by studying the diffraction patterns pro-
duced when electrons, neutrons, etc., pass through a single
crystal; the patterns can be analyzed in a manner similar to

X-ray diffractions (see Sec. 18.10). In Fig. 2.7, we show the
experimental data of Shull (Ref. 15) who studied the
Fraunhofer diffraction of neutrons by a single slit, and his
experimental results agree with the intensity distribution as
predicted by the wave theory with l given by Eq. (5).

2.8 THE PROBABILISTIC

INTERPRETATION OF

MATTER WAVES

In Sec. 2.7 we saw that if a photon passes through a slit of
width b, then the momentum imparted in the x direction
(which is along the width of the slit) is ª h/b. The question
arises whether we can predict the trajectory of an individual
photon. The answer is no. We cannot say where an indi-
vidual photon will land up on the screen; we can only predict
the probabilities of arrival of the photon in a certain region of
the screen. We may, for example, say that the probability for
the arrival of the photon in the region lying between the
points A and B (see Fig. 2.6) is 0.85. This would imply that if
the experiment were carried out with a large number of pho-
tons, about 85% of them would land up in region AB; but the
fate of an individual photon can never be predicted. This is
in contrast to Newtonian mechanics where the trajectories
are always predetermined. Also, if we place a light detector
on the screen, then it will always record one photon or none
and never one-half of a photon. This essentially implies the
corpuscular nature of the radiation. However, the probability
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Fig. 2.7 Angular broadening of a neutron beam by small

slits [After Ref. 15].
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distribution is the same as predicted by the wave theory, and
therefore if one performs an experiment with a large number
of photons (as is indeed the case in most experiments); the
intensity distribution recorded on the screen is the same as
that predicted by the wave theory.

To explicitly show that diffraction is not a many-photon
phenomenon, Taylor in 1909 carried out a beautiful experi-
ment which consisted of a box with a small lamp that casts
the shadow of a needle on a photographic plate (see
Fig. 2.8). The intensity of light was so weak that between the
slit and the photographic plate, it was almost impossible to
find two photons (see Example 2.1). In fact, to get a good
fringe pattern, Taylor made an exposure lasting several
months. The diffraction pattern obtained on the photographic
plate was the same as that predicted by the wave theory.

The corpuscular nature of radiation and the fact that one
cannot predict the trajectory of an individual photon can be
seen from Fig. 2.9, which consists of series of photographs
showing the quality of pictures obtainable from various num-
bers of photons (Ref. 16). The photograph clearly shows that
the picture is built up by the arrival of concentrated packets
of energy, and the point at which a particular photon will ar-
rive is entirely a matter of chance. The figure also shows that
the photograph is featureless when a small number of pho-
tons are involved; and as the number of photons reaching
the photographic plate increases, the intensity distribution
becomes the same as would be predicted by the wave theory.
To quote Feynman:

. . . it would be impossible to predict what would
happen. We can only predict the odds! This would
mean, if it were true, that physics has given up on
the problem of trying to predict exactly what will
happen in a definite circumstance. Yes! physics has
given up. We do not know how to predict what
would happen in a given circumstance, and we be-
lieve now that it is impossible—that the only thing
that can be predicted is the probability of different
events. It must be recognized that this is a retrench-
ment in our earlier idea of understanding nature. It
may be a backward step, but no one has seen a way
to avoid it.

A somewhat similar situation arises in radioactivity. Con-
sider a radioactive nucleus having a half-life of say 1 h. If we
start with 1000 such nuclei, then on an average 500 of them
will undergo radioactive decay in 1 h and about 250 of them
in the next 1 h and so on. Thus, although to start with,
all nuclei are identical, some nuclei would decay in the very
first minute and other nuclei can survive for hours without

Smoked
Glass

Weak
Source Slit

Needle Photographic
Plate

Fig. 2.8 Schematic diagram of the experimental arrange-

ment of Taylor to study the diffraction pattern

produced by a weak source. The whole apparatus

was placed inside a box.

(a)

(c)

(e)

(b)

(d)

(f)

Fig. 2.9 Photographs showing the quality of a picture

obtainable from various numbers of photons:

(a), (b), (c), (d), (e), and (f) correspond to 3 ¥ 10
3

photons, 1.2 ¥ 10
4
 photons, 9.3 ¥ 10

4
 photons, 7.6 ¥

10
5
 photons, 3.6 ¥ 10

6
 photons, and 2.8 ¥ 10

7
 pho-

tons respectively. [From Ref. 16; reprinted with

permission].
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undergoing radioactive decay. Thus, one can never predict
which nucleus will undergo decay in a specified period; one
can predict only the probability of its undergoing decay in a
certain interval of time. This is indeed a manifestation of
quantum mechanics. To quote Feynman again:

A philosopher once said it is necessary for the very
existence of science that the same conditions al-
ways produced the same results. Well they don’t!

2.9 AN UNDERSTANDING OF

INTERFERENCE

EXPERIMENTS

We consider the two-hole interference experiment similar to
that performed by Young (see Secs. 14.4 and 14.5). The ex-
perimental arrangement is shown in Fig. 2.10 where a weak
light source S0 illuminates the hole S and the light emerging
from the holes S1 and S2 produces the interference pattern
on the screen PP¢. The intensity is assumed to be so weak
that in the region between the planes AB and PP¢ there is
almost never more than one photon (see Example 2.1). Indi-
vidual photons are also counted by a detector on the screen
PP¢, and one finds that the intensity distribution has a cos2

pattern similar to that shown in Fig. 14.9. The corpuscular na-
ture of the radiation is evident from its detection in the form
of a single photon and never a fraction of a photon. The
appearance of the interference pattern is due to the fact that
a photon interferes with itself. Quantum theory tells us that a
photon partially passes through the hole S1 and partially
through S2. This is not the splitting of the photon into two
halves, but only implies that if we wish to find out through
which hole the photon passed, then one-half the time it will
be found to have passed through the hole S1 and one-half

B P�

A P

S
S1

S0 S2

Fig. 2.10 Young’s double-hole experimental arrangement

for obtaining the interference pattern. Here S
0

represents a point source.

the time through S2. The photon is in a state which is a su-
perposition of two states, one corresponding to the wave
emanating from hole S1 and the other to the one emanating
from hole S2. The superposed state will give rise to an inten-
sity distribution similar to that obtained by considering the
superposition of two waves. Had we employed a device
(such as a microscope) that determined which hole the pho-
ton had passed through, then the interference pattern on the
screen would have been washed out. This is a consequence
of the fact that a measurement always disturbs the system.
This is very nicely discussed in Ref. 1. Thus we may say that
the photons would arrive as packets of energy, but the prob-
ability distribution (on the screen) will be proportional to the
intensity distribution predicted by using a wave model.

In a recent paper, Tonomura and his co-workers (Ref. 17)
demonstrated the single electron buildup of an interference
pattern. Their results are shown in Fig. 2.11. It may be seen
that when there are very few electrons, they arrive randomly;
however, when a large number of electrons are involved, one
obtains an intensity distribution similar to the one predicted
by wave theory.

We next consider the interference experiment involving
the Michelson interferometer in which a light beam is partially
reflected by a beam splitter and the resulting beams are made
to interfere (see Fig. 2.12); the interference pattern produced
by a Michelson interferometer is discussed in Chap. 15. Accord-
ing to Dirac (Ref.18),

Some time before the discovery of quantum
mechanics people realized that the connection
between light waves and photons must be of a sta-
tistical character. What they did not clearly realize,
however, was that the wave function gives informa-
tion about the probability of one photon being in a
particular place and not the probable number of
photons in that place. The importance of the dis-
tinction can be made clear in the following way.
Suppose we have a beam of light consisting of a
large number of photons split up into two compo-
nents of equal intensity. On the assumption that the
beam is connected with the probable number of
photons in it, we should have half the total number
going into each component. If the two components
are now made to interfere, we should require a pho-
ton in one component to be able to interfere with
one in the other. Sometimes these two photons
would have to annihilate one another and other
times they would have to produce four photons.
This would contradict the conservation of energy.
The new theory, which connects the wave function
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with probabilities for one photon gets over the diffi-
culty by making each photon go partly into each of
the two components. Each photon then interferes
only with itself. Interference between two different
photons never occurs.

In the Michelson interferometer experiment, Dirac argues:

. . . we describe the photon as going partly into each
of the two components into which the incident beam
is split. The photon is then, as we may say, in a
translational state given by the superposition of the
two translational states associated with the two
components. . . . For a photon to be in a definite
translational state it need not be associated with one
single beam of light, but may be associated with two
or more beams of light, which are the components
into which one original beam has been split. In the
accurate mathematical theory each translational
state is associated with one of the wave functions
of ordinary wave optics, which may describe either
a single beam or two or more beams into which one
original beam has been split.

These translational states can be superposed in a manner
similar to the one employed while considering the interfer-
ence of two beams. Thus, each photon goes partly into each
of the two components and interferes only with itself. If we
try to determine the fate of a single photon by measuring the
energy in one of the components, then Dirac argues:

The result of such a determination must be either a
whole photon or nothing at all. Thus the photon must
change suddenly from being partly in one beam and
partly in the other to be entirely in one of the beams.
This sudden change is due to the disturbance in the

G

M2

M1

Fig. 2.12 Schematic of the setup of the Michelson interfer-

ometer. Here G represents a beam splitter and M
1

and M
2
 represent plane mirrors.

Fig. 2.11 Buildup of the electron interference pattern.

Number of electrons in (a), (b), (c), (d), and (e) is

10, 100, 3000, 20,000, and 70,000, respectively.

[Photographs reprinted with permission from A.

Tonomura, J. Endo, T. Matsuda, T. Kawasaki, and H.

Ezawa, “Demonstration of Single-Electron Build up of

an Interference Pattern,” American Journal of Physics,

Vol. 57, No. 2, p. 117, 1989; copyright 1989, American

Association of Physics Teachers.]
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translational state of the photon which the observa-
tion necessarily makes. It is impossible to predict in
which of the two beams the photon will be found.
Only the probability of either result can be calculated. . . .
Our description of the photon allows us to infer
that, after such an energy measurement, it would
not be possible to bring about any interference
effects between the two components. So long as the
photon is partly in one beam and partly in the other,
interference can occur when the two beams are
superposed, but this probability disappears when
the photon is forced entirely into one of the beams
by an observation.

2.10 THE POLARIZATION OF A

PHOTON

Let us consider the incidence of a plane electromagnetic
wave on a polaroid whose pass axis is along the y direction
(see Fig. 2.13); obviously, the electric vector of the transmit-
ted wave would be along the y direction (see Chap. 22). Thus,
if the electric vector associated with the incident wave oscil-
lates along the x axis, the wave will be absorbed by the
polaroid. On the other hand, if the electric vector oscillates
along the y axis, it will just pass through the polaroid. Fur-
ther, if the electric vector makes an angle q with the pass axis,
then the intensity of the transmitted beam will be I0 cos2 

q,
where I0 represents the intensity of the incident beam (this is
known as Malus’ law which will be discussed in Sec. 22.3).

In the photon theory also one can associate a certain state
of polarization with every photon. One can argue that if the

electric vector associated with the photon is along the y (or
the x) axis, then the photon will pass through or get absorbed
by the polaroid. The question now arises as to what will hap-
pen to a single photon if the electric vector makes an angle q
with the pass axis. The answer is that the probability for the
photon to pass through the polaroid is cos2 

q, and if the experi-
ment is conducted with N photons (and if N is very large),
then about N cos2 

q, photons will pass through; one cannot
predict the fate of an individual photon.

Example 2.1 Let a source (with l = 5 ¥ 10–5 cm) of power
1 W be used in the experimental arrangement shown in Fig. 2.10.

(a) Calculate the number of photons emitted by the source per
second.

(b) Assume the radii of the holes S, S1, and S2 to be 0.02 cm and
S0S = SS1 = SS2 = 100 cm and the distance between the
planes AB and PP¢ to be also 100 cm. Show that in the region
between the planes AB and PP¢ one can almost never find
two photons.

Solution:

(a) The energy of each photon will be

hv = 
hc

λ
 = 

34 8 1

7

6.6 10 J s 3 10 m s

5 10 m

− −

−
× × ×

×
ª 4 ¥ 10–19 J

Thus the number of photons emitted per second will be

19

1 W

4 10 J−×
 = 2.5 ¥ 1018

(b) The number of photons passing through the hole S will
be approximately

18 2

2

2.5 10 (0.02)

4 (100)

× × π ×
× π ×

 = 2.5 ¥ 1010 per second

Similarly, the number of photons passing through either S1 or
S2 will be approximately

10 2

2

2.5 10 2 (0.02)

2 (100)

× × × π ×
π ×

 = 1000 per second

where we have assumed that after passing through S, the photons
are evenly distributed in the hemisphere. This is strictly not correct
because the diffraction pattern is actually an Airy pattern (see
Chap. 18); nevertheless, the above calculations are qualitatively cor-
rect. The distance between the planes AB and PP¢ is 100 cm which
will be traversed by a photon in time ª 3 ¥ 10–9 s. Thus, approxi-
mately every thousandth of a second a photon enters the region
and the space is traversed much before the second photon enters.
Therefore, in the region between AB and PP¢ one will (almost) never
find two photons. This is somewhat similar to the case where, on
average, 100 persons pass through a room in 1 yr and the time that
each person takes to cross the room is ª 1 s; thus it will be highly
improbable to have two persons simultaneously in the room.

θ

E

x

y

P
as

s
A

xi
s

Fig. 2.13 The incidence on a polaroid of a linearly polar-

ized light beam whose electric vector makes an

angle q with the y axis; the pass axis of the

polaroid is along the y axis.
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Example 2.2 In this example we will use the uncertainty
principle to determine the size of the hydrogen atom.4 Although
this example is not directly related to optics, it demonstrates the
far-reaching consequences of the uncertainty principle.

We consider the hydrogen atom which consists of a proton and
an electron. Since the proton is very much heavier than the elec-
tron, we consider only the motion of the electron. Let the electron
be confined to a region of linear dimension ª a. Thus according to
the uncertainty principle;

p ª Dp ª 
a

�
(10)

where �  = h/(2p); the reason for using �  rather than h will be men-
tioned later. The kinetic energy KE of the electron will be given by

KE = 
2

2

p

m
 ª 

2

22ma

�
(11)

Now, there exists an electrostatic attraction between the two
particles; the corresponding potential energy PE given by

PE = –
2

04

q

aπε
(12)

where q (ª 1.6 ¥ 10–19 C) represents the magnitude of the charge of
the electron and e0 (ª 8.854 ¥ 10–12 C N–2 m–2) represents the per-
mittivity of free space. Thus the total energy E is given by

E = KE + PE

ª 
2 2

2
042

q

ama

� −
πε

(13)

The system would settle to a state of lowest energy; thus we
must set dE/da equal to zero:

0 = 
dE

da
 = 

2 2

3 2
04

q

ma a

�− +
πε

implying

a = a0 = 
( )
2

2
04m q

�

⎡ ⎤πε⎣ ⎦

(14)

If we substitute the values of � (ª 1.055 ¥ 10–34 J s), m (ª 9.11 ¥
10–31 kg), e0, and q, we obtain

a = a0 ª 0.53 ¥ 10–10 m = 0.53 Å (15)

Thus we get the remarkable result that the size of the hydrogen
atom is a direct consequence of the uncertainty principle. To quote
Feynman:

So we now understand why we do not fall through
the floor. . . . In order to squash the atoms close together,
the electrons would be confined to smaller space and by the
uncertainty principle, their momenta would have to be higher
on the average, and that means high energy; the resistance to
atomic compression is a quantum mechanical effect . . .

We next substitute the value of a from Eq. (13) into Eq. (12) to
obtain

E = 

22 2

2
02 4

m q

m

�

�

⎛ ⎞
⎜ ⎟⎜ ⎟πε⎝ ⎠

2 2

2
0 04 4

q m q

�

Ê ˆ
- Á ˜pe peË ¯

= 

22

2
042

m q

�

⎛ ⎞
− ⎜ ⎟⎜ ⎟πε⎝ ⎠

(16)

Substituting the values of � , m, q, and e0, we get

E ª –2.17 ¥ 10–19 J
ª –13.6 eV (17)

which is nothing but the ground-state energy of the hydrogen atom.
Thus, that the ionization potential of hydrogen atom is ª 13.6 eV
follows from the uncertainty principle. We may point out that the
uncertainty principle can be used to give only an order of magnitude
of the size of the hydrogen atom or its ionization potential; we had
intentionally chosen the constants in such a way that the ground-
state energy comes out to be correct. It is for this reason that we

had chosen �  instead of h in Eqs. (10) and (11).

2.11 THE TIME-ENERGY

UNCERTAINTY RELATION

When an atom makes a transition from an energy state E2 to
an energy state E1 (E2 > E1), a photon of frequency
n = (E2 – E1)/h is emitted. This emission is essentially a pulse
of a duration ª 10 – 9 s; this duration is usually denoted by t.
This leads to a frequency width Dν, and as will be shown in
Chap. 17,

t Dn ≥ 1 (18)

Multiplying both sides by h, we get the time-energy
uncertainty principle:

Dt DE ≥ h (19)

which can be interpreted as follows: If Dt represents the
uncertainty in the time at which a time-dependent process
takes place, then the uncertainty DE in the energy of this
process will be ≥ h/Dt. Assuming Dt ª 10–9 s,

DE ª h
tD

 ª 4 ¥ 10–6 eV

Summary

� The corpuscular model of light is due to Descartes rather
than to Newton. The law of refraction was discovered ex-
perimentally in 1621 by Snell. In 1637, using corpuscular
model, Descartes derived Snell’s law of refraction.

4  The analysis is adapted from Ref. 1.
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� The wave model of light was first propounded by Huygens
in 1678. Using the wave model, Huygens could explain the
laws of reflection and refraction, and he could also interpret
the phenomenon of double refraction.

� Around the middle of the nineteenth century, Maxwell gener-
alized Ampere’s law by stating that a changing electric field
can also produce a magnetic field. He summed up all the laws
of electricity and magnetism in the form of equations which
are now referred to as Maxwell’s equations. From these equa-
tions, he derived a wave equation, predicted the existence of
electromagnetic waves, and showed that the speed of the elec-
tromagnetic waves in air should be about 3.107 ¥ 108 m s–1,
which was very close to the measured value of the speed of
light. The sole fact that the two values were very close to each
other led Maxwell to propound his famous electromagnetic
theory of light, according to which light waves are electro-
magnetic waves.

� In 1905, Einstein interpreted the photoelectric effect by
putting forward his famous photon theory, according to
which the energy in a light beam of frequency v was con-
centrated in corpuscles of energy hn, where h represents
Planck’s constant.

� The consequence of wave-particle duality is the uncertainty
principle of Heisenberg according to which if the x coordi-
nate of the position of a particle is known to an accuracy Dx,
then the x component of the momentum cannot be determined
to an accuracy better than Dpx ª h/Dx, where h is Planck’s
constant.

� The classical corpuscular model is quite incapable of explain-
ing the diffraction of light by a single slit. However, if we use
the uncertainty principle in conjunction with the corpuscular
model, the diffraction phenomenon can be explained.

� In Young’s double-hole interference pattern, the corpuscular
nature of the radiation is evident from its detection in the
form of single photons and never a fraction of a photon. The
appearance of the interference pattern is due to the fact that
a photon interferes with itself. The quantum theory tells us
that a photon partially passes through the two holes. This is
not the splitting of the photon into two halves, but only im-
plies that the photon is in a state which is a superposition of
two states, one corresponding to the wave emanating from
the first hole and the other to the wave emanating from the
second hole. The superposed state will give rise to an inten-
sity distribution similar to that obtained by considering the
superposition of two waves.

Problems

2.1 An electron of energy 200 eV is passed through a
circular hole of radius 10–4 cm. What is the uncertainty intro-
duced in the momentum and also in the angle of emergence?

[Ans: Dp ~ 5 ¥ 10–24 g cm s–1; Dq ª 6 ¥ 10–6 rad]

2.2 In continuation of the previous problem, what would be the
corresponding uncertainty for a 0.1 g lead ball thrown with a
velocity 103 cm s–1 through a hole 1 cm in radius?

[Ans: Dq ª 5 ¥ 10–30 rad]

2.3 A photon of wavelength 6000 Å is passed through a slit of
width 0.2 mm.

(a) Calculate the uncertainty introduced in the angle of
emergence.

(b) The first minimum in the single-slit diffraction pattern
occurs at sin–1(l/b), where b is the width of the slit.
Calculate this angle and compare  with the angle
obtained in part (a).

[Ans: Dq ª 3 ¥ 10–3]
2.4 A 50 W bulb radiates light of wavelength 0.6 mm. Calculate

the number of photons emitted per second.
[Ans: ª 1.5 ¥ 1020 photons/s]

2.5 Calculate the uncertainty in the momentum of a proton
which is confined to a nucleus of radius equal to 10–13 cm.
From this result, estimate the kinetic energy of the proton
inside the nucleus and the strength of the nuclear interaction.
What would be the kinetic energy for an electron, if it had to
be confined within a similar nucleus?

2.6 The lifetime of the 2P state of the hydrogen atom is about
1.6 ¥ 10–9 s. Use the time-energy uncertainty relation to cal-
culate the frequency width Dv.

[Ans: ª 6 ¥ 10 8 s–1]
2.7 A 1 W laser beam (of diameter 2 cm) falls normally on two

circular holes each of diameter 0.05 cm, as shown in
Fig. 2.14. Calculate the average number of photons that will

Laser beam

PA

P�B
30 cm

Fig. 2.14

be found between planes AB and PP¢. Assume l = 6 ¥ 10–5 cm
and the distance between planes AB and PQ is 30 cm.

[Ans: ª 4 ¥ 106 photons]

Solutions

2.5 The proton is confined within a sphere of radius r0 ª
10–13 cm. Thus the uncertainty in the momentum must be at
least of the order of �/r0, or

p ~ 
�

r0
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Therefore, the kinetic energy of the proton will be given by

E = 
2 2

2
0

~
2 2p p

p

m m r

�

where mp is the mass of the proton. On substitution, we get

E ~ 
27 2

24 13 2

(1.05 10 erg s)

2 1.67 10 g (10 cm)

−

− −
×

× × ×

ª 3 ¥ 10–5 erg ª 20 MeV

Since the proton is bound inside the nucleus, the average of
the potential energy ·V Ò must be negative and greater in mag-
nitude than the kinetic energy. Therefore

– ·V Ò ≥ 20 MeV

which indeed gives the correct order of the potential energy.
The uncertainty in momentum for the electron is again —/r0;

however, since the rest mass of the electron is very much
smaller than that of the proton, the velocity of the electron
is very close to c and we have to use the extreme relativistic
formula for the energy

E = cp = 
0

c

r

�

10 27

13 6

(3 10 ) (1.05 10 )
MeV 200MeV

10 1.6 10
∼

−

− −
× ×≈

× ×

Although electrons do emerge from nuclei in b decay, they
seldom have energies exceeding a few million electronvolts.
Thus one does not expect the electron to be a basic constitu-
ent of the nucleus; the rare occasions when b decay occurs
may be attributed to the transformation of a neutron into a
proton and an electron (and the neutrino) so that the electron
is in fact created at the instant the decay occurs.
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Geometrical OpticsGeometrical OpticsGeometrical OpticsGeometrical OpticsGeometrical Optics

This part (consisting of four chapters) is entirely based on geometrical optics and
includes

� Ray tracing through graded-index media, explaining in detail the phenomena of
mirage and looming, and also reflection from the ionosphere.

� Ray tracing through a system of lenses, leading to various concepts used in the
design of optical instruments.

� A detailed description of the matrix method in paraxial optics, which is extensively
used in the industry.

� A study of aberrations of optical systems.

gha80482_ch03_027-052.PMD 1/14/2009, 7:20 PM27



gha80482_ch03_027-052.PMD 1/14/2009, 7:20 PM28



3.1 INTRODUCTION

The study of the propagation of light in the realm of geo-
metrical optics employs the concept of rays. To understand
what a ray is, consider a circular aperture in front of a point
source P as shown in Fig. 3.1. When the diameter of the ap-
erture is quite large (~1 cm), then on the screen SS¢, one can
see a patch of light with well-defined boundaries. When we
start decreasing the size of the aperture, then at first the size
of the patch starts decreasing; but when the size of the aper-
ture becomes very small (<~ 0.1 mm), then the pattern obtained
on SS¢ ceases to have well-defined boundaries. This phe-
nomenon is known as diffraction and is a direct
consequence of the finiteness of the wavelength (which is
denoted by l). In Chaps. 18 and 20 we will discuss the phe-
nomenon of diffraction in great detail and will show that the
diffraction effects become smaller with the decrease in

Now in the further development of science, we want more than just a formula. First we have an
observation, then we have numbers that we measure, then we have a law which summarizes all
the numbers. But the real glory of science is that we can find a way of thinking such that the
law is evident. The first way of thinking that made the law about the behavior of light evident
was discovered by Fermat in about 1650, and it is called the principle of least time, or Fermat's
principle.

—Richard Feynman, Feynman Lectures on Physics, Vol. I

FERMAT’S PRINCIPLE  AND

ITS APPLICATIONS

Chapter

Three

wavelength. Indeed, in the limit of l Æ 0, the diffraction ef-
fects will be absent, and even for extremely small diameters
of the aperture, we will obtain a well-defined shadow on the
screen SS¢; and therefore, in the zero wavelength limit one
can obtain an infinitesimally thin pencil of light—this is
called a ray. Thus, a ray defines the path of propagation of
the energy in the limit of the wavelength going to zero. Since
light has a wavelength of the order of 10–5 cm, which is small
compared to the dimensions of normal optical instruments
such as lenses and mirrors, one can, in many applications,
neglect the finiteness of the wavelength. The field of optics
under such an approximation (i.e., the neglect of the finite-
ness of the wavelength) is called geometrical optics.

The field of geometrical optics can be studied by using
Fermat's principle which determines the path of the rays.
According to this principle the ray will correspond to that
path for which the time taken is an extremum in comparison

Important Milestones
AD 140 Greek physicist Claudius Ptolemy measured the angle of refraction in water for different angles of incidence

in air and made a table of it.

1621 Although the above-mentioned numerical table was made in AD 140, it was only in 1621 that Willebrord Snel,

a Dutch mathematician, discovered the law of refraction which is now known as Snell’s law.

1637 Descartes derived  Snell's law; his derivation assumed the corpuscular model of light.

1657 Pierre de Fermat enunciated his principle of “least time” and derived Snell's law of refraction and showed

that if the velocity of light in the second medium is less, the ray will bend toward the normal, contrary to

what is predicted by the corpuscular theory.
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to nearby paths, i.e., it is either a minimum or a maximum or
stationary1. Let n(x, y, z) represent the position-dependent
refractive index. Then

ds
c n/

= 
n ds

c
will represent the time taken to traverse the geometric path
ds in a medium of refractive index n. Here, c represents the
speed of light in free space. Thus, if t represents the total
time taken by the ray to traverse the path AB along the curve
C (see Fig. 3.2), then

t = 1
c

ni
i
Â dsi = 1

c
n ds

A
C

Bæ Ææ

z (1)

where dsi represents the ith arc length and ni the correspond-
ing refractive index; the symbol A

C
Bæ Ææ  below the integral

represents the fact that the integration is from point A to point
B through curve C. Let t ¢ be the time taken along the nearby
path AC¢B (shown as the dashed curve in Fig. 3.2), and if ACB

indeed represents the path of a ray, then t will be less than,
greater than, or equal to t ¢ for all nearby paths like AC¢B.
Thus according to Fermat's principle, out of the many paths
connecting the two points, the light ray would follow that path
for which the time taken is an extremum. Since c is a constant,
one can alternatively define a ray as the path for which

n ds

A
C

Bæ Ææ

z (2)

is an extremum2. The above integral represents the optical
path from A to B along C; i.e., the ray would follow the path
for which

d n ds
A BÆ

z = 0 (3)

where the left-hand side represents the change in the value
of the integral due to an infinitesimal variation of the ray
path. According to the original statement of Fermat,

The actual path between two points taken by a
beam of light is the one which is traversed in the
least time.

The above statement is incomplete and slightly incorrect.
The correct form is:

The actual ray path between two points is the one
for which the optical path length is stationary with
respect to variations of the path.

This is expressed by Eq. (3), and in this formulation, the ray
paths may correspond to maxima, minima, or stationary.

From the above principle one can immediately see that in
a homogeneous medium (i.e., in a medium whose refractive
index is constant at each point), the rays will be straight lines
because a straight line will correspond to a minimum value of
the optical path connecting two points in the medium. Thus refer-
ring to Fig. 3.3, if A and B are two points in a homogeneous

P

A

B

S

S′

Fig. 3.1 The light emitted by the point source P is allowed

to pass through a circular hole and if the diameter

of the hole is very large compared to the wave-

length of light then the light patch on the screen

SS¢ has well-defined boundaries.

C

ds

B

A

C ′

Fig. 3.2 If path ACB represents the actual ray path, then the

time taken in traversing path ACB will be an ex-

tremum in comparison to any nearby path AC¢B.

1 The entire field of classical optics (both geometrical and physical) can be understood from Maxwell’s equations, and of course,
Fermat’s principle can be derived from Maxwell’s equations (see Refs. 1 and 2).

2 A nice discussion on the extremum principle is given in Chap. 26 of  Ref. 3.

C

D

A

E

B

Fig. 3.3 Since the shortest distance between two points is

along a straight line, light rays in a homogeneous

medium are straight lines; all nearby paths like AEB

or ADB will take longer times.
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medium, then the ray path will be along the straight line ACB
because any nearby path such as ADB or AEB will corre-
spond to a longer time.

3.2 LAWS OF REFLECTION AND

REFRACTION FROM

FERMAT'S PRINCIPLE

We will now obtain the laws of reflection and refraction from
Fermat’s principle. Consider a plane mirror MN as shown in
Fig. 3.4. To obtain the laws of reflection, we have to deter-
mine the path from A to B (via the mirror) which has the
minimum optical path length. Since the path would lie com-
pletely in a homogeneous medium, we need to minimize only
the path length. Thus we have to find that path APB for
which AP + PB is a minimum. To find the position of P on the
mirror, we drop a perpendicular from A on the mirror and let A¢

be a point on the perpendicular such that AR = RA¢; thus AP =
PA¢ and AQ = A¢Q, where AQB is another path adjacent to
APB. Thus we have to minimize the length A¢PB. Clearly, for
A¢PB to be a minimum, P must be on the straight line A¢B.
Thus points A, A¢, P, and B will be in the same plane, and if
we draw a normal PS at P, then this normal will also lie in the
same plane. Simple geometric considerations show that

–APS = –SPB

Thus for minimum optical path length, the angle of incidence
i (= – APS) and the angle of reflection r (= –SPB) must be
equal; and the incident ray, the reflected ray, and the normal
to the surface at the point of incidence on the mirror must be
in the same plane. These form the laws of reflection. Actu-
ally, in the presence of the mirror there will be two ray paths

which will connect points A and B; the two paths will be AB
and APB. Fermat's principle tells us that whenever the optical
path length is an extremum, we will have a ray, and thus, in
general, there may be more than one ray path connecting two
points.

To obtain the laws of refraction, let PQ be a surface sepa-
rating two media of refractive indices n1 and n2, as shown in
Fig. 3.5. Let a ray starting from point A intersect the interface
at R and proceed to B along RB. Clearly, for minimum optical
path length, the incident ray, the refracted ray, and the nor-
mal to the interface must all lie in the same plane. To
determine that point R for which the optical path length from
A to B is a minimum, we drop perpendiculars AM and BN from
A and B, respectively, on the interface PQ. Let AM = h1,
BN = h2, and MR = x. Then since A and B are fixed, RN =
L – x, where MN = L is a fixed quantity. The optical path
length from A to B, by definition, is

Lop = n1AR + n2RB

= n1 x h2
1
2

+  +  n2 ( )L x h- +
2

2
2 (4)

To minimize this, we must have

op 0
dL

dx
=

i.e., 1 2

2 2 2 2

( )
0

( )

n x n L x

x h L x h

-
- =

+ - +

(5)

Further, as can be seen from Fig. 3.5,

sin q1 = 
x

x h2
1
2

+

x

L

M                                           N
R

QP

A

h1

h2

B

n2

n1

θ1

θ1

θ2

θ2

L    x–

Fig. 3.5 Points A and B are two points in the media of

refractive indices n
1
 and n

2
. The ray path connecting

A and B will be such that n
1
 sin q

1
 = n

2
 sin q

2
.

R
M N

QP

S

A

A�

B

Fig. 3.4 The shortest path connecting two points A and B

via the mirror is along path APB, where point P is

such that AP, PS, and PB are in the same plane and

–APS = –SPB, with PS being normal to the plane

of the mirror. The straight-line path AB is also

a ray.
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and sin q2 = 
2 2

2( )

L x

L x h

-

- +

Thus Eq. (5) becomes

n1 sin q1 = n1 sin q2 (6)

which is Snell’s law of refraction.
The laws of reflection and refraction form the basic laws

for tracing light rays through simple optical systems, such as
a system of lenses and mirrors.

Example 3.1 Consider a set of rays, parallel to the axis, in-
cident on a paraboloidal reflector (see Fig. 3.6). Show, by using
Fermat's principle, that all the rays will pass through the focus of the
paraboloid; a paraboloid is obtained by rotating a parabola about its
axis. This is the reason why a paraboloidal reflector is used to
focus parallel rays from a distant source, as in radio astronomy (see
Figs. 3.7 and 3.8).

P
Q

S

A

B

L

L�

C

Q�

Fig. 3.6 All rays parallel to the axis of a paraboloidal re-
flector pass through the focus after reflection (the
line ACB is the directrix). It is for this reason that
antennas (for collecting electromagnetic waves) or
solar collectors are often paraboloidal in shape.

Solution: Consider a ray PQ, parallel to the axis of the parabola,
incident at the point Q (see Fig. 3.6). To find the reflected ray, one
has to draw a normal at the point Q and then draw the reflected
ray. It can be shown from geometric considerations that the re-
flected ray QS will always pass through the focus S. However, this
procedure will be quite cumbersome, and as we will show, the use
of Fermat’s principle leads us to the desired results immediately.

To use Fermat’s principle, we try to find out the ray connecting
the focus S and an arbitrary point P (see Fig. 3.6). Let the ray path
be PQ¢S. According to Fermat's principle, the ray path will corre-
spond to a minimum value of PQ¢ + Q¢S. From the point Q¢ we
drop a perpendicular Q¢L¢ on the directrix AB. From the definition
of the parabola it follows that Q¢L¢ = Q¢S. Thus

PQ¢ + Q¢S = PQ¢ + Q¢L¢

Let L be the foot of the perpendicular drawn from point P on
AB. Then for PQ¢ + Q¢L¢ to be a minimum, point Q should lie on
the straight line PQL; and thus the actual ray which connects the
points P and S will be PQ + QS, where PQ is parallel to the axis.
Therefore, all rays parallel to the axis will pass through S, and con-
versely, all rays emanating from point S will become parallel to the
axis after suffering a reflection.

Example 3.2 Consider an elliptical reflector whose foci are
the points S1 and S2 (see Fig. 3.9). Show that all rays emanating from
point S1 will pass through point S2 after undergoing a reflection.

Fig. 3.7 A paraboloidal satellite dish. A color photograph
appears in the insert at the back of the book.

Fig. 3.8 Fully steerable 45 m paraboloidal dishes of the Gi-
ant Metrewave Radio Telescope (GMRT) in Pune,
India. The GMRT consists of 30 dishes of 45 m di-
ameter with 14 antennas in the central array.
Photograph courtesy: Professor Govind Swarup,
GMRT, Pune. A color photograph appears in the
insert at the back of the book.
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Solution: Consider an arbitrary point P on the ellipse (see
Fig. 3.9). It is well known that S1P + S2P is a constant, and there-
fore, all rays emanating from point S1 will pass through S2. Notice
that here we have an example where the time taken by the ray is
stationary; i.e., it is neither a maximum nor a minimum but has a
constant value for all points lying on the mirror. As a corollary, we
may note the following two points:

1. Excepting the rays along the axis, no other ray (emanating
from either of the foci) will pass through an arbitrary point Q
which lies on the axis.

2. The above considerations will remain valid even for an ellip-
soid of revolution obtained by rotating the ellipse about its
major axis.

Because of the above-mentioned property of elliptical reflectors,
they are often used in laser systems. For example, in a ruby laser
(see Chap. 26) one may have a configuration in which the laser rod
and the flash lamp coincide with the focal lines of a cylindrical reflec-
tor of elliptical cross section [see Fig. 3.9(b)]; such a configuration
leads to an efficient transfer of energy from the lamp to the ruby rod.

Example 3.3 Consider a spherical refracting surface SPM
separating two media of refractive indices n1 and n2 (see Fig. 3.10).
Point C represents the center of the spherical surface SPM.

Consider two points O and Q such that the points O, C, and Q are
in a straight line. Calculate the optical path length OSQ in terms of
the distances x, y, r and the angle q (see Fig. 3.10). Use Fermat’s
principle to find the ray connecting the two points O and Q. Also,
assuming the angle q to be small, determine the paraxial image of
the point O.

[Note: We reserve the symbol R to represent the radius of curva-
ture of a spherical surface which will be positive (or negative)
depending upon whether the center of curvature lies on the right (or
left) of the point P. The quantity r represents the magnitude of the
radius of curvature which, for Fig. 3.10, happens to be R. Similarly,
the quantities x and y are the magnitudes of the distances; the sign
convention is discussed later in this problem.]

Solution: From the triangle SOC we have

OS = [(x + r)2 + r2 – 2(x + r)r cos q ]½

ª 

1
22

2 2 22 2 2( ) 1
2

x rx r xr r
⎡ ⎤⎛ ⎞θ+ + − + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

ª x
1

22
2

2
1

rx r

x

⎛ ⎞++ θ⎜ ⎟⎜ ⎟
⎝ ⎠

 ª 

2 21 1 1

2
x r

r x

⎛ ⎞+ + θ⎜ ⎟
⎝ ⎠

where we have assumed q (measured in radians) to be small so that
we may use the expression

cos q ª 
2

1
2

θ−

and also make a binomial expansion. Similarly, by considering the
triangle SCQ, we would have

SQ ª 

2 21 1 1

2
y r

r y

⎛ ⎞
− − θ⎜ ⎟

⎝ ⎠

Thus the optical path length OSQ is given by

Lop = n1OS + n2SQ

2 21 2 2 1
1 2

1
( )

2

n n n n
n x n y r

x y r

⎛ ⎞−≈ + + + − θ⎜ ⎟
⎝ ⎠

(7)

S1 S2Q

P

(a)

Flash lamp

Elliptical reflector

Ruby rod

Elliptical reflector

(b)

Fig. 3.9 Fig. 3.9 (a) All rays emanating from one of the foci

of an ellipsoidal reflector will pass through the

other focus. (b) In a ruby laser one may have a

configuration in which the laser rod  and the flash

lamp coincide with the focal lines of a cylindrical

reflector with elliptical cross section.

S

M

QO                                      IC

θP

n2n1

x r

y

y0

Fig. 3.10 SPM is a spherical refracting surface separating

two media of refractive indices n1 and n2. And C

represents the center of the spherical surface.
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For the optical path to be an extremum, we must have

opdL

dθ
= 0 = 

2 1 2 2 1n n n n
r

x y r

⎛ ⎞−+ − θ⎜ ⎟
⎝ ⎠

(8)

Thus, unless the quantity inside the parentheses is zero, we
must have q = 0, implying that the only ray connecting points O and
Q will be the straight-line path OPQ, which also follows from
Snell's law because the ray OP hits the spherical surface normally
and should proceed undeviated.

On the other hand, if the value of y was such that the quantity
inside the parentheses were zero, i.e., if y were equal to y0 such that

2 1

0

n n

y x
+ = 2 1n n

r

−
(9)

then dLop/dq would vanish for all values of q; of course, Now q is
assumed to be small—which is the paraxial approximation. Now, if point
I corresponds to PI = y0 (see Fig. 3.10), then all paths such as OSI are
allowed ray paths, implying that all (paraxial) rays emanating from O
will pass through I and I will therefore represent the paraxial image
point. Obviously, all rays like OSI (which start from O and pass
through I) take the same amount of time in reaching point I.

Equation (9) is a particular form of the equation determining the
paraxial image point

2 1n n

u
−

v
= 2 1n n

R

−
(10)

with the sign convention that all distances measured to the right of
point P are positive and those to its left negative. Thus u = –x, v = +y,
and r = +R.

To determine whether the ray path OPQ corresponds to mini-
mum time or maximum time or stationary, we must determine the
sign of d2Lop/dq

2 which is given by

2
op
2

d L

dθ
= 

2 1 2 2 1n n n n
r

x y r

⎛ ⎞−+ −⎜ ⎟
⎝ ⎠

= 2
2

0

1 1
r n

y y

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠

Obviously, if y > y0 (i.e., point Q is on the right of the paraxial
image point I), then d 2Lop/dq

2 is negative and the ray path OPQ
corresponds to maximum time in comparison with nearby paths
and conversely. On the other hand, if y = y0, then d2Lop/dq

2 will
vanish, implying that the extremum corresponds to stationarity.
Thus, in the paraxial approximation, all rays emanating from point
O will take the same amount of time to reach point I.

Alternatively, one can argue that if I is the paraxial image point
of P, then

n1OP + n2PI = n1OS + n2SI

Thus, when Q lies on the right of point I, we have

n1OP + n2PQ = n1OS + n2(SI – PI + PQ)
= n1OS + n2(SI + IQ)
 > n1OS + n2SQ

implying that the ray path OPQ corresponds to a maximum. Simi-
larly, when Q lies on the left of point I, then the ray path OPQ
corresponds to a minimum; and when Q coincides with I, we have
the stationarity condition.

Example 3.4 We again consider refraction at a spherical sur-
face; however, the refracted ray is assumed to diverge away from
the principal axis (see Fig. 3.11). Let us consider paraxial rays, and
let I be a point (on the axis) such that n1OS – n2SI is independent
of point S. Thus, for paraxial rays, the quantity

n1OS – n2SI is independent of q (11)

and is an extremum. Let P be an arbitrary point in the second me-
dium, and we wish to find the ray path connecting points O and P.
For OSP to be an allowed ray path

Lop = n1OS + n2SP should be an extremum

or
Lop = (n1OS – n2SI) + n2(IS + SP) should be an extremum

where we have added and subtracted n2SI. Now, the point I is such that
the first quantity is already an extremum; thus, the quantity SP + SI
should be an extremum, and therefore it should be a straight line.
Thus the refracted ray must appear to come from the point I. We
may therefore say that for a virtual image we must make the quantity

n1OS – n2SI (12)

an extremum.

3.3 RAY PATHS IN AN

INHOMOGENEOUS MEDIUM

In an inhomogeneous medium, the refractive index varies in a
continuous manner and, in general, the ray paths are curved.
For example, on a hot day, the air near the ground has a
higher temperature than the air which is much above the sur-
face. Since the density of air decreases with increase in
temperature, the refractive index increases continuously as
we go above the ground. This leads to the phenomenon
known as mirage. We will use Snell's law (or Fermat's prin-
ciple) to determine the ray paths in an inhomogeneous

P
S

O
θ

I

n2

n1

Fig. 3.11 The refracted ray is assumed to diverge away from

the principal axis.
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medium. We will restrict ourselves to the special case when
the refractive index changes continuously along one direc-
tion only; we assume this direction to be along the x axis.

The inhomogeneous medium can be thought of as a limit-
ing case of a medium consisting of a continuous set of
thin slices of media of different refractive indices; see
Fig. 3.12(a). At each interface, the light ray satisfies Snell's
law, and one obtains [see Fig. 3.12(a)]

n1 sin f1 = n2 sin f2 = n3 sin f3 = . . . (13)

Thus, the product

n(x) cos q(x) = n(x) sin f(x) (14)

is an invariant of the ray path; we will denote this invariant
by b� . The value of this invariant may be determined from
the fact that if the ray initially makes an angle q1 (with the
z axis) at a point where the refractive index is n1, then the
value of b�  is n1 cos q1. Thus, in the limiting case of a
continuous variation of refractive index, the piecewise
straight lines shown in Fig. 3.12(a) form a continuous curve
which is determined from the equation

n(x) cos q(x) = n1 cos q1 = b� (15)

implying that as the refractive index changes, the ray path
bends in such a way that the product n(x) cos q(x) remains
constant [see Fig. 3.12(b)]. Equation (15) can be used to de-
rive the ray equation (see Sec. 3.4).

3.3.1 The Phenomenon of Mirage3

We are now in a position to qualitatively discuss the forma-
tion of a mirage. As mentioned earlier, on a hot day the
refractive index continuously decreases as we go near the
ground. Indeed, the refractive index variation can be approxi-
mately assumed to be of the form

n(x) ª n0 + kx 0 < x < few meters (16)

where n0 is the refractive index of air at x = 0 (i.e., just above
the ground) and k is a constant. The exact ray paths (see
Example 3.8) are shown in Fig. 3.13.

We consider a ray which becomes horizontal at x = 0. At
the eye position E (x = xe), if the refractive index is ne, and if
at that point the ray makes an angle qe with the horizontal,
then

b� = n0 = cose en q (17)

Usually qe << 1 so that

n
ne

0 = 21
cos 1

2e eq ª - q

fi qe ª -

F
HG

I
KJ

2 1 0n
ne

(18)

At constant air pressure

(n0 – 1)T0 ª (ne – 1)Te (19)

From Eq. (19) we get

1
1
1

0
-

-

-

n
ne

= 1
0

-

T
T

e

or

n n
n

e

e

- 0 = 
n

n
T
T

e

e

e-

-

F
HG

I
KJ

1
1

0

so that

qe ª 2 1 1 1
0

-

F
HG

I
KJ
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F
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I
KJn
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Fig. 3.13 Ray paths in a medium characterized by a linear

variation of refractive index [see Eq. (16)]

with k ª 1.234 ¥ 10
–5

 m
–1

. The object point is at a

height of  1.5 m, and the curves correspond to

+ 0.2°, 0°, – 0.2°, –0.28°, –0.3486°, and –0.5° The

shading shows that the refractive index increases

with x.

3 For more details, see Refs. 4–8.

x

n2

n3
φ3 θ3

θ2

θ1
φ1

θ4

n1

n4

z
z

x

ds
dx

dz
θ

(a) (b)

Fig. 3.12 (a) In a layered structure, the ray bends in such a

way that the product n
i
 cos q

i
  remains constant.

(b) For a medium with a continuously varying

refractive index, the ray path bends in such a way

that the product n(x) cos q(x) remains constant.
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On a typical hot day the temperature near road surface
T0 ª 323 K (= 50°C), and, about 1.5 m above the ground,
Te ª 303 K (= 30°C). Now, at 30°C, ne ª 1.00026, giving
qe ª 5.67 ¥ 10–3 rad ª 0.325°. In Fig. 3.13 we have shown rays
emanating (at different angles) from a point P which is 1.5 m
above the ground; thus each ray has a specified value of
the invariant b�  (= n1 cos q1). The figure shows that when
the object point P and the observation point E are close to
the ground, the only ray path connecting points P and E will
be along the curve PME, and that a ray emanating horizon-
tally from the point P will propagate in the upward direction
as PC as shown in figure. Thus, in such a condition, the eye
at E will see the mirage and not see the object directly at P.
We also find that there is a region R2 where none of the rays
(emanating from the point P) reaches; thus, an eye in this
region cannot see neither the object or its image. This is
therefore called the shadow region. Furthermore, there is
also a region R1 where only the object is directly visible and
the virtual image is not seen.

The bending up of the ray after it becomes parallel to the
z axis cannot be directly inferred from Eq. (15) because at
such a point, q = 0 and one may expect the ray to proceed
horizontally beyond the turning point, as shown by a dotted
line in Fig. 3.13; the point at which q = 0 is known as the
turning point. However, from considerations of symmetry
and from the reversibility of ray paths, it immediately follows
that the ray path should be symmetric about the turning
point and hence bend up. Physically, the bending of the ray
can be understood by considering a small portion of a wave
front such as W (see Fig. 3.13); the upper edge will travel with
a smaller speed in comparison with the lower edge, and
this will cause the wave front to tilt (see W ¢), causing the
ray to bend. Furthermore, a straight-line path such as BB¢

does not correspond to an extremum value of the optical path.
We next consider a refractive index variation which satu-

rates to a constant value as x Æ •:

n2(x) = n0
2 + n2

2(1 – e–ax) x > 0 (21)

where n0, n2, and a are constants and once again x repre-
sents the height above the ground. The refractive index at
x = 0 is n0, and for large values of x, it approaches (n0

2 + n2
2)1/2.

The exact ray paths are obtained by solving the ray equation
(see Example 3.10) and are shown in Figs 3.14 and 3.15; they
correspond to the following values of various parameters:

n0 = 1.000233 n2 = 0.45836 a = 2.303 m–1 (22)

The actual values of the refractive index for parameters given
by the above equation are not very realistic—nevertheless,
it allows us to understand qualitatively the ray paths in a
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Fig. 3.15 Ray paths in a medium characterized by

Eqs. (21) and (22). The object point is at a

height of 2.8 m, and the curves correspond

to q
1

 (the initial launch angle) = 0, –p /60,

–p /30, –p /16, –p /11, –p /10, and –p /8.

The shading shows that the refractive index

increases with x.
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Fig. 3.14 Ray paths in a medium characterized by Eqs. (21) and

(22). The object point is at a height of 1/a (ª0.43 m),

and the curves correspond to q
1

 (the initial

launch angle) = +p /10, 0, –p / 60, –p /30, –p/15,

and –p/10. The shading shows that the refractive

index increases with x.

graded index medium. Figures 3.14 and 3.15 show the ray
paths emanating from points that are 0.43 and 2.8 m above
the ground, respectively. In Fig. 3.14, the point P corresponds
to a value of the refractive index equal to 1.06455 (= n1),
and different rays correspond to different values of q1, the
angle that the ray makes with the z axis at the point P. From
Fig. 3.14 we again see that when the object point P and the
observation point E are close to the ground, the only ray
path connecting points P and E will be along the curve PME,
and that a ray emanating horizontally from the point P will
propagate in the upward direction, shown as PC in Fig. 3.14.
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Example 3.5 As an example, for an object shown in
Fig. 3.14, let us calculate the angle at which the ray should be
launched so that it becomes horizontal at x = 0.2 m. Now,

at x = 0.2 m, n(x) = 1.03827

Thus, if q1 represents the angle that the ray makes with
the z axis at the point P (see Fig. 3.14), then

n1 cos q1 = 1.03827 ¥ cos 0

implying

q1 ª 13°

Further, for the ray which becomes horizontal at x = 0.2 m the
value of the invariant is given by

b�  ª 1.03827

Example 3.6 In Fig. 3.15, the object point corresponds to
x = 2.8 m where n(x) ª 1.1. Thus for a ray launched with q1 =
–p/8,

b�  = 1.1  cos q1 = 1.01627

Thus if the ray becomes horizontal at x = x2, then

n (x2) = b�  = 1.01627
and

x2 = 
2 2

2 0
2
2

( )1
ln 1

n x n

n

⎡ ⎤−− −⎢ ⎥α ⎢ ⎥⎣ ⎦

ª 0.073 m

3.3.2 The Phenomenon of Looming
The formation of mirage discussed above occurs due to an
increase in the refractive index of air above the hot surface.
On the other hand, above cold seawater, the air near the
water surface is colder than the air above it, and hence there
is an opposite temperature gradient. A suitable refractive in-
dex variation for such a case can be written as

n2(x) = n0
2 + n2

2e–ax (23)

The equation describing the ray path is discussed in
Prob. 3.13. We assume the values of n0, n2, and a to be
given by Eq. (22). For an object point P at a height of
0.5 m, the ray paths are shown in Fig. 3.18. If the eye
is at E, then it will receive rays appearing to emanate from
P¢. Such a phenomenon in which the object appears to be
above its actual position is known as looming; it is com-
monly observed in viewing ships over cold seawaters (see
Figs. 3.19 and 3.20). Moreover, since no other rays emanat-
ing from P reach A, the object cannot be observed directly.

Fig. 3.16 A typical mirage as seen on a hot road on a
warm day. The photograph was taken by Profes-
sor Piotr Pieranski of Poznan University of
Technology in Poland; used with permission
from Professor Pieranski. A color photograph
appears in the insert at the back of the book.

Fig. 3.17 This is actually not a reflection in the ocean, but the
miraged (inverted) image of the Sun’s lower edge.
A few seconds later (notice the motion of the bird to
the left of the Sun!), the reflection fuses with the erect
image. The photographs were taken by Dr. George
Kaplan of the U.S. Naval Observatory and are on
the website http://mintaka.sdsu.edu/GF/explain/
simulations/infmir/Kaplan_photos.html created
by Dr. A Young; photographs used with permis-
sions from Dr. Kaplan and Dr. A Young. Color
photographs appear in the insert at the back of
the book.

Thus, in such a condition, the eye at E will see the mirage
and not see the object directly at P. However, if points P and
E are much above the ground (see Fig. 3.15), the eye will see
the object almost directly (because of rays like PCE) and will
also receive rays appearing to emanate from such points as
P¢. It may be readily seen that different rays do not appear to
come from the same point, and hence the reflected image
seen will have considerable aberrations. Once again, there is
a shadow region R2 where none of the rays (emanating from
the point P) reaches there; thus, an eye in this region cannot
see either the object or its image. The actual formation of
mirage is shown in Figs. 3.16 and 3.17.
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Fig. 3.18 Ray paths corresponding to the refractive index
distribution given by Eq. (23) for an object at a
height of 0.5 m; the values of n0, n2, and a are
given by Eq. (22).

Warm Air

Cool Air

Superior Mirage

Fig. 3.19 If we are looking at the ocean on a cold day, then
the air near the surface of the water is cold and
gets warmer as we go up. Thus, as we go up, the
refractive index decreases continuously; and be-
cause of curved ray paths, one will observe an
inverted image of the ship as shown in the fig-
ure above. A color photograph appears in the
insert at the back of the book.

Fig. 3.20 A house in the archipelago with a superior mirage.
Figure adapted from http:/virtual.finland.fi/
netcomm/news showarticle.asp?intNWSAID=25722.
The photograph was taken by Dr. Pekka Parviainen
in Turku, Finland; used with permission from Dr.
Parviainen. A color photograph appears in the
insert at the back of the book.

Fig. 3.21 The noncircular shape of the Sun at sunset. A
color photograph appears in the insert at the back
of the book.

EARTH
S

S�

Fig. 3.22 The atmosphere is a graded index medium, and
because of refraction, light from S appears to
come from S9.

3.3.3 The Graded Index Atmosphere
One of the interesting phenomena associated with imaging in
a graded index medium is the noncircular shape of the setting
or the rising Sun (see Fig. 3.21). This can easily be understood
in the following manner. The refractive index of the air gradu-
ally decreases as we move outward. If we approximate the
continuous refractive index gradient by a finite number of lay-
ers (each layer having a specific refractive index), then the ray
will bend in a way similar to that shown in Fig. 3.22. Thus the
Sun (which is actually at S) appears to be in the direction of S¢.
It is for this reason that the setting Sun appears flattened and
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also leads to the fact that the days are usually about 5 min longer
than they would have been in the absence of the atmosphere.
Obviously, if we were on the surface of the Moon, the rising or
the setting Sun would look not only white but also circular!

3.4 THE RAY EQUATION AND

ITS SOLUTIONS

In this section, we will derive the ray equation, the solution
of which will give the precise ray paths in an inhomogeneous
medium. We will restrict ourselves to the special case when
the refractive index changes continuously along only one di-
rection, which we assume to be along the x axis. This medium
can be thought of as the limiting case of a medium compris-
ing a continuous set of thin slices of media of different
refractive indices. As discussed earlier, for a continuously
varying refractive index, the product n(x) cos q(x) is an

invariant of the ray path which we denote by :�b

n(x) cos q(x) = b� (24)

Furthermore, for a continuous variation of refractive index,
the piecewise straight lines shown in Fig. 3.12(a) form a con-
tinuous curve as in Fig. 3.12(b). If ds represents the
infinitesimal arc length along the curve, then

(ds)2 = (dx)2 + (dz)2

or ds
dz
F
H
I
K

2

= dx
dz
F
H
I
K

2

 + 1 (25)

Now, if we refer to Fig. 3.12(b), we find that

dz
ds

= cos q = 
( )n x

b�
(26)

Thus Eq. (25) becomes

dx
dz
F
H
I
K

2

= 
2

2

( )n x

b�
 – 1 (27)

For a given n(x) variation, Eq. (27) can be integrated to
give the ray path x(z); however, it is often more convenient
to put Eq. (27) in a slightly different form by differentiating it
with respect to z:

2

2
2

dx d x

dz dz
 = 

2

2

1 dn dx

dx dzβ�

or
d x

dz

2

2
= 

2

2

1

2

dn

dxb�
(28)

Both Eqs. (27) and (28) represent rigorously correct ray
equations when the refractive index depends only on the
x coordinate.

Example 3.7 As a simple application of Eq. (28), let us con-
sider a homogeneous medium for which n(x) is a constant. In such
a case, the right-hand side of Eq. (28) is zero and one obtains

d x

dz

2

2  = 0

Integrating the above equation twice with respect to z, we obtain

x = Az + B

which is the equation of a straight line, as it ought to be in a homo-
geneous medium.

Example 3.8 We next consider the ray paths in a medium
characterized by the refractive index variation

n(x) = n0 + kx (29)

For the above profile, the ray equation [Eq. (28)] takes the form

2

2

d x

d z
= 

2

2

1

2

dn

dx�β
 = 

2

k
�β

(n0 + kx)

or

2

2

d X

dz
= k2X(z) (30)

where

X ∫ x + 
n
k
0 and k = k

β�
(31)

Thus the ray path is given by

x(z) = – 
n
k
0  + C1ek z + C2e–k z (32)

where the constants C1 and C2 are to be determined from initial
conditions. We assume that at z = 0, the ray is launched at x = x1,
making an angle q1 with the z axis; thus

x(z = 0) = x1

and dx
dz z = 0

 = tan q1

Elementary manipulations would give us

C1 = 1 0 1 1
1 1

( sin )
2

x n n
k

⎡ ⎤+ + θ⎢ ⎥
⎣ ⎦

(33)

and

C2 = 
1 0 1 1

1 1
( sin )

2
x n n

k

⎡ ⎤+ − θ⎢ ⎥
⎣ ⎦

(34)

where n1 = n0 + kx1 represents the refractive index at x = x1 and we
have used the fact that

b� = n1 cos q1 (35)

Figure 3.13 shows the ray paths as given by Eq. (32) with x1 =
1.5 m, n1 = 1.00026, and k ª 1.234 ¥ 10–5 m–1.
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3.4.1 Ray Paths in Parabolic Index Media

We consider a parabolic index medium characterized by the
following refractive index distribution:

n2(x) = n1
2 – g2x2 (36)

We will use Eq. (27) to determine the ray paths. Equation (27)
can be written as

2 2( )

dx

n x - b

Ú
�

=  ±
1

dz
b Ú�

(37)

Substituting for n2(x), we get

dx

x x0
2 2
-

z = dz±Γ∫ (38)

where

x0 = 2 2
1

1
n - b

g

� (39)

and G = 
g

b�
(40)

Writing x = x0 sin q and carrying out the straightforward in-
tegration, we get

x = ±x0 sin [G(z – z0)] (41)

We can always choose the origin such that z0 = 0 so that the
general ray path would be given by

x = ±x0 sin Gz (42)

We could have also used Eq. (28) to obtain the ray path.
Now, in an optical waveguide the refractive index distribution
is usually written in the form4:

2
2
12

2 2
2 1

1 2 | | core
( )

= (1 2 ) | | cladding

x
n x a

n x a

n n x a

Ï È ˘Ê ˆÔ - D <Ô Í ˙Á ˜Ë ¯= Ì Î ˚
Ô

- D <ÔÓ
(43)

The region |x| < a is known as the core of the waveguide, and
the region |x| > a is usually referred to as the cladding. Thus

g = 
n

a
1 2D

(44)

In a typical parabolic index fiber,

n1 = 1.5 D = 0.01 a = 20 mm (45)
giving

n2 ª 1.485
and

g ª 1.0607 ¥ 104 m–1

Typical ray paths for different values of q1 are shown in
Fig. 3.23. Obviously, the rays will be guided in the core if

n2 < b�  < n1. When b�  = n2, the ray path will become horizon-
tal at the core-cladding interface. For b�  < n2, the ray will be
incident at the core-cladding interface at an angle, and the
ray will be refracted away. Thus, we may write

n2 < b�  < n1 fi guided rays

b�  < n2 fi refracting rays
(46)

In Fig. 3.23, the ray paths shown correspond to

z0 = 0 and q1 = 4°, 8.13°, and 20°

the corresponding values of b�  are approximately 1.496 (> n2),

1.485 (= n2), and 1.410 (< n2)—the last ray undergoes ref-
raction at the core-cladding interface. The periodical length zp

of the sinusoidal path is given by

zp = 
2p

G
 = 12 cos

2

aπ θ
Δ

(47)

Thus for the two rays shown in Fig. 3.23 (with q1 = 4° and
8.13°) the values of zp would be 0.8864 and 0.8796 mm, respec-
tively. In the paraxial approximation, cos q1 ª 1 and all rays
have the same periodic length. In Fig. 3.24, we have plotted

4 Ray paths in such media are of tremendous importance as they readily lead to very important results for parabolic index fibers which
are extensively used in fiber-optic communication systems (see Sec. 27.7).

θ1 = 8.13°

θ1 = 20°

θ1 = 4°

10

z(mm)

x
(

m
)

μ

zp
–0.02

0.02

0

Core

Cladding

Fig. 3.23 Typical ray paths in a parabolic index medium for

parameters given by Eq. (45) for q
1 
= 4°, 8.13°, and 20°.
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0 1
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(
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Fig. 3.24 Paraxial ray paths in a parabolic index medium.

Notice the periodic focusing and defocusing of

the beam.
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can be used to transfer collimated light from one end of the
lens to the other.

3.4.2 Transit Time Calculations

in a Parabolic Index Waveguide

In this section we will calculate the time taken by a ray to
traverse a certain length through a parabolic index
waveguide as described by Eq. (36). Such a calculation is of
considerable importance in fiber-optic communication sys-
tems (see Sec. 27.7). As shown in Sec. 3.4.1, the ray path
(inside the core) is given by

x = x0 sin Gz (49)

where x0 and G have been defined through Eqs. (39) and (40).
Let dt represent the time taken by a ray to traverse the arc
length ds [see Fig. 3.12(b)]:

dt = ds
c n x/ ( )

(50)

where c is the speed of light in free space. Since

n x
dz
ds

( ) = b�

[see Eq. (26)], we may write Eq. (50) as

dt = 21
( )n x dz

c �b

= ( )2 2 2
1

1
n x dz

c
- g

b�

or dt = ( )2 2 2 2
1 0

1
sinn x z dz

c�
− γ Γ

β
(51)

where in the last step we have used Eq. (49). Thus if t(z) rep-
resents the time taken by the ray to traverse a distance z

1. In the paraxial approximation b� ª n1, all rays
launched horizontally come to a focus at a particular
point. Thus the medium acts as a converging lens of
focal length given by

f ª 
2 2

ap

D

(48)

2. Rays launched at different angles with the axis (see,
for instance, the rays emerging from point P) get
trapped in the medium, and hence the medium acts as
a “guide.” Indeed such media are referred to as opti-
cal waveguides, and their study forms a subject of
great contemporary interest.

3. Ray paths would be allowed only in the region where

β� is less than or equal to n(x) [see Eq. (26)]. Further,

dx/dz would be zero (i.e., the ray would become

parallel to the z axis) when n(x) equaled β� ; this

immediately follows from Eq. (27).
4. The rays periodically focus and defocus as shown in

Fig. 3.24. In the paraxial approximation, all rays emanating
from P will focus at Q; and if we refer to our discussion in
Example 3.3, all rays must take the same time to go from P
to Q. Physically, although the ray PLQ traverses a larger
path in comparison to PMQ, it does so in a medium of
“lower” average refractive index—thus the greater path
length is compensated for by a greater “average speed”
and hence all rays take the same time to propagate
through a certain distance of the waveguide (see
Sec. 3.4.2 for an exact calculation). It is for this reason that
parabolic index waveguides are extensively used in fiber-
optic communication systems (see Sec. 27.7).

typical paraxial ray paths for rays launched along the z axis.
Different rays (shown in the figure) correspond to different

values of .�b
Four interesting features may be noted:

We may mention here that gradient index (GRIN) lenses,
characterized by parabolic variation of refractive index in the
transverse direction, are now commercially available and find
use in many applications (see Fig. 3.25). For example, a GRIN
lens can be used to couple the output of a laser diode to an
optical fiber; the length of such a GRIN lens would be zP/4
(see Fig. 3.24); typically zP ª few centimeters, and the diameter
of the lens would be few millimeters. Such small size lenses
find many applications. Similarly, a GRIN lens of length zP/2

n

x

Fig. 3.25 A GRIN lens with a near parabolic refractive

index variation will focus a light beam similar

to a conventional lens. Because of this property,

a GRIN lens (with properly chosen length) can

be used to couple light from a laser diode to an

optical fiber or can be used to transfer a colli-

mated light beam from one end of the lens to

the other.
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along the waveguide, then

t (z) = 
2 22

01

0 0

1 cos 2

2

z z
xn z

dz dz
c c

γ − Γ−
β β∫ ∫� �

= 
2 2

2 2 2 0
1 0

1 1 1
sin 2

2 22

x
n x z z

c c� �

γ⎛ ⎞− γ + Γ⎜ ⎟ Γβ β⎝ ⎠

or t (z) = ( )
2 2

2 2 1
1

1
sin 2

42

n
n z z

cc

− β+ β + Γ
γβ

�

�

�

(52)

where we have used Eq. (39). When b�  = n1 (which corre-
sponds to the ray along the z axis),

t (z) = z
c n/ 1

(53)

which is what we should have expected as the ray will
always travel with speed c/n1. For large values of z, the sec-
ond term on the RHS of Eq. (52) would make a negligible
contribution to t (z), and we may write

t (z) ª 
2
11

2

n
z

c

⎛ ⎞
β +⎜ ⎟⎜ ⎟β⎝ ⎠

�

�

(54)

Now, if a pulse of light is incident on one end of the
waveguide, it will in general excite all rays, and since different
rays take different amounts of time, the pulse will get
temporally broadened. Thus, for a parabolic index wave-
guide, this broadening will be given by

Dt = t (b�  = n2) – t(b�  = n1)

or Dt = z
c

n n
n

zn
c2 2

1 2
2

2

2 2( )-
ª D (55)

where in the last step we have assumed

D ∫ 
2 2
1 2 1 2

2
212

n n n n

nn

- -

ª (56)

For the fiber parameters given by Eq. (45), we get

Dt ª 0.25 ns km–1 (57)

We will use this result in Chap. 27.

Example 3.9 We next consider the ray paths in a medium

characterized by the refractive index variation

2
12

2
1

0
( )

0

n x
n x

n gx x

⎧ <⎪= ⎨
− >⎪⎩

(58)

Thus, in the region x > 0, n2(x) decreases linearly with x and
Eq. (28) takes the form

d x

dz

2

2 = 22

g−
β�

the general solution of which is given by

x(z) = 
24

g
-

b�
 z2 + K1z + K2 (59)

Consider a ray incident on the origin (x = 0, z = 0) as shown in
Fig. 3.26. Thus

K2 = 0 and b�  = n1 cos q1 (60)
Further,

dx
dz z = 0

= K1 = tan q1 (61)

Thus the ray path will be given by

1

0 02

0
002

(tan ) 0

( ) 0
( ) 4

( )
4

z z

gz
z z z z

x z

gz
z zz z

Ï q <
Ô
Ô- - < <Ô

= Ì b
Ô
Ô >- -
Ô bÓ

�

�

(62)

where

z0 = 
2 1

2n
g

 sin 2q1

Thus in the region 0 < z < z0, the ray path is a parabola. Typical ray
paths are shown in Fig. 3.26, and the calculations correspond to

n1 = 1.5, g = 0.1 m–1

and different rays correspond to

q1 = , , , and
9 6 4 3

π π π π

3.4.3 Reflections from the Ionosphere

The ultraviolet rays in the solar radiation result in the ionization
of the constituent gases in the atmosphere, resulting in the for-
mation of what is known as the ionosphere. The ionization is
almost negligible below a height of about 60 km. Because of the
presence of the free electrons (in the ionosphere), the refractive
index is given by [see Eq. (76) of Chap. 7].

θ1 = 60°

θ1 = 30°

θ1 = 20°

θ1 = 45°

–2

–2

0

2

0 2 4 6
z m( )

x
m(

)

Fig. 3.26 Parabolic ray paths (corresponding to q
1
 = 20°,

30°, 45°, and 60°) in a medium characterized by

refractive index variation given by Eq. (58). The

ray paths in the region x < 0 are straight lines.
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n2(x) = 1 – 
2

2
0

( )eN x q

mε ω
(63)

where

Ne(x) = number of electrons/unit volume, m–3

x = height above the ground,
w = angular frequency of electromagnetic wave
q ª 1.60 ¥ 10–19 C represents the charge of the electron
m ª 9.11 ¥ 10–31 kg represents the mass of the electron
e0 ª 8.854 ¥ 10–12 

¥ 10–12 C2 N–1 m–2 represents the di-
electric permittivity of vacuum

Thus as the electron density starts increasing from 0 (be-
yond the height of 60 km), the refractive index starts
decreasing and the ray path would be similar to that de-
scribed in Example 3.9.

If n T represents the refractive index at the turning point
(where the ray becomes horizontal), then (see Fig. 3.27)

b� = cos q1 = nT (64)

Thus if an electromagnetic signal sent from the point A (at
an angle q1) is received at the point B, one can determine the
refractive index (and hence the electron density) of the iono-
spheric layer where the beam has undergone the reflection.
This is how the shortwave radio broadcasts (l ª 20 m) sent
at a particular angle from a particular city (say, London)
would reach another city (say, New Delhi) after undergoing
reflection from the ionosphere. Further, for normal incidence,
q = p/2 and nT = 0, implying

Ne(xT) = 
2

0
2

m

q

e w

(65)

In a typical experiment, an electromagnetic pulse (of fre-
quency between 0.5 and 20 MHz) is sent vertically upward,

and if the echo is received after a delay of Dt, then

D t ª 
2h

c
(66)

where h represents the height at which it undergoes reflec-
tion. Thus if electromagnetic pulse is reflected from the E
layer of the ionosphere (which is at a height of about 100 km),
the echo will be received after about 670 ms. Alternatively, by
measuring the delay Dt, one can determine the height (at
which the pulse gets reflected) from the relation

h ª c
2

Dt (67)

In Fig. 3.28 we plotted the frequency dependence of the
equivalent height of reflection (as obtained from the delay
time of echo) from the E and F regions of the ionosphere.

θ1

( ) 2.6 10 mNe max
11 –3�  �

( ) 4 10 mNe max
11 –3� �

100 km

180 km

T

A B

E region

F region

Fig. 3.27 Reflection from the E region of the ionosphere.

The point T represents the turning point. The

shading shows the variation of electron density.
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Fig. 3.28 Frequency dependence of the equivalent height of reflection from the E and F regions of the

ionosphere [Adapted from Ref. 9].
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From the figure we find that at ν = 4.6 ¥ 106 Hz, echoes sud-
denly disappear from the 100 km height. Thus,

Ne(100 km) ª 
2

0
2

(2 )m

q

ε πν

ª 
31 12 6 2

19 2

9.11 10 8.854 10 (2 4.6 10 )

(1.6 10 )

- -

-

¥ ¥ ¥ ¥ p ¥ ¥

¥

ª 2.6 ¥ 1011 electrons/m3

If we further increase the frequency, the echoes appear
from the F region of the ionosphere. For more details of
the studies on the ionosphere, the reader is referred to
one of the most outstanding texts on the subject by
Professor S. K. Mitra (Ref. 9).

Example 3.10 In this example we will obtain the solution
of the ray equation for the refractive index variation given by

n2(x) = n0
2 + n2

2(1 – e–ax) (68)

Substituting in Eq. (27), we obtain

± dz = 
1/ 22 2 2 2

0 2 2( ) x

dx

n n n e−α

β

⎡ ⎤+ −β −⎣ ⎦

�

�

= 

( )
/ 2

1/ 22
2 1

x

x

e dx

n K e

α

α

β

−

�

or ± dz = 2 1/ 2
2

2

( 1)

d

K n

β Φ
α Φ −

�

(69)

where K = 2 2 2 1/ 2
0 2

2

1
( )n n

n
+ − β� (70)

and F(x) = Kea x /2 (71)

The ±  sign in Eq. (69) corresponds to a ray going up and a ray
going down, respectively. Further,

b�  = n1 cos q1 (72)

where q1 is the angle that the ray initially makes with the z axis at
x = x1, z = 0, and n1 = n(x1). Carrying out the elementary integra-
tion, we get

x(z) = 
2 1

ln cosh ( )C z
K

⎡ ⎤γ ±⎢ ⎥α ⎣ ⎦
(73)

where g = 2

2

Knα
β�

(74)

which gives us the ray path. Since x = x1 at z = 0 (the initial point),

C = ( )1 / 211
cosh xKea-

g
(75)

Further,

1

1/ 2
2 2 2
0/ 2
2 2 2
0 1

px

p

n n
Ke

n n n
a

Ê ˆ+ - b
= Á ˜Á ˜+ -Ë ¯

�

(76)

Thus for a ray launched horizontally at x = x1, C = 0. Typically
ray paths (for different values of q1) are shown in Figs. 3.14  and 3.15.

3.5 REFRACTION OF RAYS AT

THE INTERFACE BETWEEN

AN ISOTROPIC MEDIUM

AND AN ANISOTROPIC

MEDIUM

In this section we will use Fermat’s principle to determine the
direction of the refracted ray for a ray incident at the inter-
face of an isotropic and an anisotropic medium.5 We point
out that in an isotropic medium the properties remain the
same in all directions; typical examples are glass, water, and
air. On the other hand, in an anisotropic medium, some of the
properties (such as speed of light) may be different in differ-
ent directions. In Chap. 22, we will consider anisotropic
media in greater detail; we mention here that when a light ray
is incident on a crystal such as calcite, (in general) it splits
into two rays known as ordinary and extraordinary rays. The
velocity of the ordinary ray is the same in all directions. Thus
the ordinary ray obeys Snell’s laws, but the extraordinary ray
does not. We will now use Fermat's principle to study the re-
fraction of a ray when it is incident from an isotropic medium
into an anisotropic medium—both media are assumed to be
homogeneous.

In a uniaxial medium, the refractive index variation for the
extraordinary ray is given by [see Eq. (121) of Chap. 22]

n2(q) = no
2 cos2 q + ne

2 sin2 q (77)

where no and ne are constants of the crystal and q represents
the angle that the ray makes with the optic axis. Obviously,
when the extraordinary ray propagates parallel to the optic axis
(i.e., when q = 0), its speed is c/no and when it propagates
perpendicular to the optic axis (q = p/2), its speed is c/ne.

5 A proof for the applicability of Fermat’s principle in anisotropic media has been given by Newcomb (Ref. 10); the proof, however,
is quite complicated. Ray paths in biaxial media are discussed in Ref. 11.
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3.5.1 Optic Axis Normal to the Surface

We first consider the particularly simple case of the optic axis
being normal to the surface. Referring to Fig. 3.29, the optical
path length from A and B is given by

Lop = n1[h1
2 + (L – x)2]1/2 + n(q) ( )2 2

2  + h x 1/2 (78)

where n1 is the refractive index of medium I and we have as-
sumed the incident ray, the refracted ray, and the optic axis
to lie in the same plane. Since

cos q = 
h

h x
2

2
2 2 1 2( ) /
+

and sin q = 
x

h x( ) /
2
2 2 1 2
+

we have

Lop = n1[h1
2 + (L – x)]1/2 + ( )2 2 2 2

2o en h n x+ 1/2 (79)

For the actual ray path, we must have
dL

dx
op = 0

implying

n L x

h L x
1

1
2 2 1 2

( )

[ ( ) ] /

-

+ -

= 
( )

2

1/ 22 2 2 2
2

e

o e

n x

n h n x+

or

n1 sin i = 
( )

2

1/ 22 2 2

tan

tan

e

o e

n r

n n r+
(80)

where we have used the fact that

Angle of refraction r = q and tan r = x
h2

Simple manipulations give us

tan r = 
n n i

n n n i

o

e e

1

2
1
2 2

sin

sin-

(81)

Using this, we can calculate the angle of refraction for a
given angle of incidence (when the optic axis is normal to the
surface). As a an example, we assume the first medium to be
air so that n1 = 1. Then

tan r = 
n i

n n i

o

e e

sin

sin2 2
-

when n1 = 1 (82)

If we assume the second medium to be calcite, then

no = 1.65836 and ne = 1.48641

Thus for i = 45°, we readily get

r ª 31.1°

If no = ne = n2 (say), then Eq. (80) simplifies to

n1 sin i = n2 sin r (83)

which is nothing but Snell's law.

3.5.2 Optic Axis in the Plane of Incidence6

We next consider a more general case of the optic axis mak-
ing an angle f with the normal; however, the optic axis is
assumed to lie in the plane of incidence as shown in
Fig. 3.30. We may mention here that in general, in an aniso-
tropic medium, the refracted ray does not lie in the plane of
incidence. However, it can be shown that if the optic axis lies
in the plane of incidence, then the refracted ray also lies in

O
pt

ic
ax

is

Ι

ΙΙ

P
x

i

n1

h2

h1

A

B

Q

θ
L    x–

c n/ o

c n/ e

Fig. 3.29 The direction of the refracted extraordinary ray

when the optic axis (of the uniaxial crystal) is

normal to the surface.

S1 S2
P

i

r
θφ

xΙ

ΙΙ

h1

A

Q
B

h2

n1

n( )θ

Optic axis

L    x–

L

Fig. 3.30 The direction of the refracted extraordinary ray

when the optic axis (of the uniaxial crystal) lies

in the plane of incidence, making an angle f with

the normal to the interface.

6 May be skipped in the first reading.
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the plane of incidence. In the present calculation, we are as-
suming this and finding the direction of the refracted ray for
a given angle of incidence. Now, the optical path length from
A to B (see Fig. 3.30) is given by

Lop = n1[h1
2 + (L – x)2]1/2 + n(q) ( )2 2

2h x+ 1/2 (84)

Since q = r – f, we have

n2(q) = no
2 cos2 (r – f) + ne

2 sin2 (r – f)

= no
2 (cos r cos f + sin r sin f)2

+ ne
2(sin r cos f – cos r sin f)2

= no
2 

2

2

2 2 2 2
2 2

cos sin
h x

h x h x

Ê ˆ
Á ˜f + f
Á ˜+ +Ë ¯

+ 

2

2 2

2 2 2 2
2 2

cos sine
hx

n
h x h x

Ê ˆ
Á ˜f - f
Á ˜+ +Ë ¯

Thus

n(q) = 
1

2
2 2h x+

 [no
2 (h2 cos f + x sin f)2

+ ne
2(x cos f – h2 sin f)2]1/2 (85)

and

Lop = n1[h1
2 + (L – x)2]1/2

+ [no
2(h2 cos f + x sin f)2 + ne

2(x cos f – h2 sinf)2]1/2

(86)

For the actual ray path, we must have

opdL

dx
= 0

implying

1
2 2 1/ 2
1

( )

[ ( ) ]

n L x

h L x

-

+ -

 =

2 2
2 2
2 2 2 2 1/ 2

2 2

( cos sin ) sin ( cos sin ) cos

[ ( cos sin ) ( cos sin ) ]
o e

o e

n h x n x h

n h x n x h

φ + φ φ + φ − φ φ
φ + φ + φ − φ

or n1 sin i = 
( )

2 2

1/ 22 2 2 2

cos sin sin cos

cos sin

o e

o e

n n

n n

q f + q f

q + q
(87)

For given values of the angles i and f, the above equa-
tion can be solved to give the values of q and hence the
angle of refraction r (= q + f).

1. When no = ne = n2, the anisotropic medium becomes
isotropic and Eq. (87) simplifies to

n1 sin i = n2 sin (q + f) = n2 sin r

which is nothing but Snell's law.

2. When f = 0, i.e., the optic axis is normal to the sur-
face, Eq. (87) becomes

n1 sin i = 
( )

2

1/ 22 2 2 2

sin

cos sin

e

o e

n

n n

q

q + q

= 
( )

2

1/ 22 2 2 2

sin

cos sin

e

o e

n r

n r n r+

(88)

where we have used the fact that r = q. The above
equation is identical to Eq. (80).

3. Finally, we consider normal incidence, i.e., i = 0. Thus,
Eq. (87) gives us

no
2 cos q sin f + ne

2 sin q cos f = 0

or

no
2 cos (r – f) sin f + ne

2 sin (r – f) cos f = 0

or

cos r (no
2 cos f sin f – ne

2 sin f cos f)

+ sin r [no
2 sin2 f + ne

2 cos2 f) = 0

or

tan r = 
2 2

2 2 2 2

( ) sin cos

sin cos
e o

o e

n n

n n

- f f

f + f

(89)

Equation (89) shows that in general r π 0 (see Fig. 3.31).
For normal incidence, the above analysis is valid for an
arbitrary orientation of the optic axis; the refracted (extra-
ordinary) ray lies in the plane containing the normal and the
optic axis. Furthermore, for normal incidence, when the
crystal is rotated about the normal, the refracted ray also
rotates on the surface of a cone [see Fig. 22.18(b)].

Returning to Eq. (89), we note that when the optic axis is
normal to the surface (f = 0) or when the optic axis is parallel
to the surface but lying in the plane of incidence (f = p/2),
r = 0 and the ray goes undeviated.

Some interesting particular cases may be noted.
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Summary

� The slightly modified version of Fermat's principle is that
the actual ray path between two points is the one for which
the optical path length is stationary with respect to variations
of the path.

� Laws of reflections and Snell's law of refraction (n1 sin f1 =
n2 sin f2, where f1 and f2 represent the angles of incidence
and refraction) can be derived from Fermat's principle.

� For an inhomogeneous medium characterized by the refrac-
tive index variation n(x), the ray paths x(z) are such that the
product n(x) cos q(x) remains constant, and here q(x) is the
angle that the ray makes with the z axis; this constant is

denoted by �β which is known as the ray invariant. The exact
ray paths are determined by solving either of the equations

dx
dz

= 
2 2( )n x �

�

- b
±

b

or
d x

dz

2

2 =
2

2

1 ( )

2

dn x

dx�b

where the invariant �b  is determined from the initial launch-
ing condition of the ray.

� Ray paths obtained by solving the ray equation can be used to
study mirage, looming, and reflections from the ionosphere.

� In a parabolic index medium n2(x) = n 1
2 – g2x2, the ray paths

are sinusoidal:

x(z) = ± x0 sin Gz

where G = 1 β� , x0 = 2 2
11 nγ − β� , and we have assumed

z = 0 where x = 0. Rays launched at different angles take
approximately the same time in propagating through a large
length of the medium.

� Fermat's principle can be used to study refraction of rays at
the interface of an isotropic medium and an anisotropic
medium.

Problems

3.1 In this and the following two problems we will use
Fermat’s principle to derive laws governing paraxial image
formation by spherical mirrors.

Consider an object point O in front of a concave mirror
whose center of curvature is at the point C. Consider an
arbitrary point Q on the axis of the system, and using a
method similar to that used in Example 3.3, show that the
optical path length Lop (= OS + SQ) is approximately given
by

Lop ª 2 21 1 1 2

2
x y r

x y r

Ê ˆ
+ + + - qÁ ˜Ë ¯

(90)

where the distances x, y, and r and the angle q are defined in
Fig. 3.32; q is assumed to be small. Determine the paraxial
image point, and show that the result is consistent with the
mirror equation

1 1

u
+

v
= 2

R
(91)

where u and v are the object and image distance and R is the
radius of curvature with the sign convention that all dis-
tances to the right of P are positive and to its left negative.

φ

I

II

Optic axis

Fig. 3.31 For normal incidence, in general, the refracted

extraordinary ray undergoes finite deviation.

However, the ray proceeds undeviated when the

optic axis is parallel  or normal to the surface.

3.2 Fermat's principle can also be used to determine the
paraxial image points when the object forms a virtual im-
age. Consider an object point O in front of the convex
mirror SPM (see Fig. 3.33). One should now assume the
optical path length Lop to be OS – SQ; the minus sign oc-
curs because the rays at S point away from Q (see Example
3.4). Show that

Lop ª 2 21 1 1 2

2
OS S Q x y r

x y r

Ê ˆ
- ª - + - + qÁ ˜Ë ¯

 (92)

where the distances x, y, and r and the angle q are defined in
Fig. 3.33. Show that the paraxial image is formed at y = y0

which is given by

1 1

0x y
− = − 2

r
(93)

M

θQ C O

S

y
r

xP

Fig. 3.32 Paraxial image formation by a concave mirror.
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which is consistent with Eq. (91) because whereas the ob-
ject distance u is positive, the image distance v and the
radius of curvature R are negative since the image point and
the center of curvature lie on the left of the point P.

3.3 Proceeding as in Prob. 3.2, use Fermat's principle to deter-
mine the mirror equation for an object point at a distance
less than R/2 from a concave mirror of radius of curvature R.

3.4 We next consider a point object O in front of a concave
refracting surface SPM separating two media of refracting
indices n1 and n2 (see Fig. 3.34); C represents the center of
curvature. In this case also one obtains a virtual image. Let
Q represent an arbitrary point on the axis. We now have to
consider the optical path length Lop = n1OS – n2SQ; show
that it is given by

Lop = n1OS – n2SQ

   ª n1x – n2 y – 
1

2
r2 22 1 2 1n n n n

y x r

⎛ ⎞−− − θ⎜ ⎟
⎝ ⎠

(94)

Also show that the above expression leads to the paraxial
image point which is consistent with Eq. (10); we note that
u, v, and R are all negative quantities because they are on
the left of the refracting surface.

θ

P1 P2C

R

O

Fig. 3.36 A spherical reflector.

QO C

M

P

S

θ

n1 n2

x
y

r

Fig. 3.34 Paraxial image formation by a concave refract-

ing surface SPM.

O

S

M

C Q P

r

y x

Fig. 3.33 Paraxial image formation by a convex mirror.

3.7 SPM is a spherical refracting surface separating two media
of refractive indices n1 and n2 (see Fig. 3.37). Consider an

n2

n1

O C�CA

Q B

Fig. 3.35 All rays parallel to the major axis of the ellip-

soid of revolution will focus to one of the focal

points of the ellipse provided the eccentricity =

n
1
/n

2
.

3.5 If we rotate an ellipse about its major axis, we obtain what
is known as an ellipsoid of revolution. Show by using
Fermat's principle that all rays parallel to the major axis of
the ellipse will focus to one of the focal points of the
ellipse (see Fig. 3.35), provided the eccentricity of the
ellipse equals n1/n2.
[Hint: Start with the condition that

n2AC¢ = n1QB + n2BC

and show that the point B (whose coordinates are x and y)
lies on the periphery of an ellipse.]

3.6 Point C is the center of the reflecting sphere of radius R
(see Fig. 3.36). Points P1 and P2 are two points on a diam-
eter equidistant from the center. (a) Obtain the optical path
length P1O + OP2 as a function of q, and (b) find the values
of q for which P1OP2 is a ray path from reflection at the
sphere.
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object point O forming a virtual image at the point I. We
assume that all rays emanating from O appear to emanate
from I so as to form a perfect image. Thus according to
Fermat's principle, we must have

n1OS – n2SI = n1OP – n2PI

where S is an arbitrary point on the refracting surface. As-
suming the right-hand side to be zero, show that the
refracting surface is spherical, with the radius given by

r = 
n

n n
1

1 2+
 OP (95)

Thus show that

n1
2d1 = n2

2 d2 = n1n2r (96)

where d1 and d2 are defined in Fig. 3.37 (see also Fig. 4.12
and Sec. 4.10).

d2

d1 r

PCOI

Sn1

n2

Fig. 3.37 All rays emanating from O and getting refracted

by the spherical  surface SPM appear to come

from I.

[Hint: We consider a point C which is at a distance d1 from
the point O and d2 from the point I. Assume the origin to
be at O, and let (x, y, z) represent the coordinates of the
point S. Thus

n1(x
2 + y2 + z2)1/2 – n2(x

2 + y2 + D2)1/2

= n1(r + d1) – n2(r + d2) = 0

where D = d2 – d1. The above equation would give the equa-
tion of a sphere whose center is at a distance of n2r/n1 (= d1)
from O.]

3.8 Referring to Fig. 3.38, if I represents a perfect image of the
point O, show that the equation of the refracting surface
(separating two media of refractive indices n1 and n2) is
given by

n1(x
2 + y2 + z2)1/2 + n2[x2 + y2 + (z2 – z)2]1/2

= n1z1 – n2(z2 – z1) (97)

where the origin is assumed to be at the point O and the
coordinates of P and I are assumed to be (0, 0, z1), and

(0, 0, z2), respectively. The surface corresponding to
Eq. (97) is known as a Cartesian oval.

PO I

M

S

Fig. 3.38 The Cartesian oval. All rays emanating from O

and getting refracted by SPM pass through I.

3.9 For the refractive index variation given by Eqs. (21) and
(22), a ray is launched at x = 0.43 m, making an angle –p/
60 with the z axis (see Fig. 3.14). Calculate the value of x at
which it will become horizontal. [Ans: x ª 0.41m]

3.10 For the refractive index variation given by Eqs. (21) and
(22), a ray is launched at x = 2.8 m such that it becomes
horizontal at x = 0.2 m (see Fig. 3.15). Calculate the angle
that the ray will make with the z axis at the launching
point. [Ans: q1 ª 19°]

3.11 Consider a parabolic index medium characterized by the fol-
lowing refractive index variation:

2
2
12

2 2
1 2

1 2
( )

(1 2 )

x
n x a

an x

n n x a

⎧ ⎡ ⎤⎛ ⎞⎪ ⎢ ⎥− Δ <⎜ ⎟⎪= ⎢ ⎥⎝ ⎠⎨ ⎣ ⎦
⎪

− Δ = >⎪⎩

Assume n1 = 1.50, n2 = 1.48, and  a = 50 mm. Calculate the
value of D.

(a) Assume rays launched on the axis at z = 0 (i.e., x = 0
when z = 0) with

β�  =1.495, 1.490, 1.485, 1.480, 1.475, and 1.470

In each case calculate the angle that the ray initially
makes with the z axis (q1) and plot the ray paths. In
each case find the height at which the ray becomes
horizontal.

(b) Assume rays incident normally on the plane z = 0 at
x = 0, ±10 mm, ±20 mm, ±30 mm, ±40 mm. Find the
corresponding values of b� , calculate the focal length for
each ray, and qualitatively plot the ray paths.

3.12 In an inhomogeneous medium the refractive index is given by

2 1 for 0
( )

1 for 0

x
x

n x L
x

⎧ + >⎪= ⎨
⎪ <⎩

Write down the equation of a ray (in the x/z plane) passing
through the point (0, 0, 0) where its orientation with respect
to x axis is 45°.

2

2
( )

4

z
x z z

L
Ans:

�

⎡ ⎤
= +⎢ ⎥

β⎢ ⎥⎣ ⎦
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3.13 For the refractive index profile given by Eq. (23), show that
Eq. (27) can be written in the form

± 1 2

2

K na

b�
 dz = dG

G1 2−
(98)

where

K1 = 
2 2

0

2

n

n

β −�

and G(x) = K1e
ax/2 (99)

Integrate Eq. (98) to determine the ray paths.

( )2 1
0

1

2 1
 ( ) ln sin

2

n K
x z z z

K

È ˘Ï ¸È ˘aÔ ÔÍ ˙= +Í ˙Ì ˝
aÍ ˙bÍ ˙Ô ÔÎ ˚Ó ˛Î ˚

Ans:
�

3.14 Consider a graded index medium characterized by the
refractive index distribution

n2(x) = n1
2 sech2 gx (100)

Substitute in Eq. (27) and integrate to obtain

x(z) = 
1
g

 sinh–1 
2 2
1 sin

n
gz

⎛ ⎞− β
⎜ ⎟
⎜ ⎟β
⎝ ⎠

�

�

(101)

Notice that the periodic length

zp = 
2

g

π

is independent of the launching angle (see Fig. 3.39), and
all rays rigorously take the same amount of time in propa-
gating through a distance zp in the z direction.
[Hint: While carrying out the integration, make the substi-

tution: z = 
2 2
1n

β

−β

�

�

 sinh gx.]

0
–3

–2

–1

0

1

2

3

2 4 6 8 10 12

x
(m

m
)

z (mm)

Fig. 3.39 Ray paths in a graded index medium character-

ized by Eq. (100).

3.15 For z < 0, n = 1
For z > 0,

( )2
12

2
1

1 /
( )

1 ;

n x a x a
n x

n x a

⎧ − α <⎪= ⎨
− α <⎡ ⎤⎪ ⎣ ⎦⎩

 n1 = 2.0; a = 15/16; a = 30 mm.

A ray is incident at the point A (x = x0 = 14 mm,  z = 0) as
shown in Fig. 3.40. (a) Calculate b� for the ray inside the
graded index medium. (b) Calculate the maximum height h
of the ray. (c) Calculate the angle q that the ray makes with
the z axis at C. (d) Derive the equation of the ray path.
(e) Calculate the time taken for the ray to traverse from B to C.

x

z

A

O

B

C
30°

h
x0 θ

Fig. 3.40

3.16

2
2

2

4 for  0

( ) 4 1 for 0 3 mm

1 for 3mm

x

x
n x x

a

x

⎧ <
⎪

⎛ ⎞⎪
= − < <⎜ ⎟⎨ ⎜ ⎟
⎪ ⎝ ⎠
⎪ >⎩

where a = 2 mm. A ray is launched at 45°  as shown in
Fig. 3.41.
(a) Determine the ray path.

x

z
BA

45°

Fig. 3.41

(b) What is the time taken by the ray from A to B?

2 3
sin ;   

22

a z a
x

a c

È ˘Ê ˆ p
=Í ˙Á ˜Ë ¯Í ˙Î ˚

Ans: (a) (b)
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4.1 INTRODUCTION

In this chapter we will study the formation of an image by
simple optical systems. We will assume the optical system to
be made up of a number of refracting surfaces such as a com-
bination of lenses.1 To trace a ray through such an optical
system, it is necessary only to apply Snell’s laws at each re-
fracting surface which are as follows:

1. The incident ray, the refracted ray, and the normal (to
the surface) lie in the same plane.

2. If f1 and f2 represent the angles of incidence and re-
fraction, respectively, then

The use of plane and curved mirrors and of convex and concave lenses were discovered indepen-
dently in China and in Greece. References to burning mirrors go back almost to the start of
history, and it is possible that Chinese and Greek knowledge were both derived from a common
source in Mesopotamia, India or Egypt . . . Pythagoras, Greek philosopher and mathematician
(6th century BC), suggested that light consists of rays that, acting like feelers, travel in straight
lines from the eye to the object and that the sensation of sight is obtained when these rays touch
the object. In this way, the more mysterious sense of sight is explained in terms of the intuitively
accepted sense of touch. It is only necessary to reverse the direction of these rays to obtain the
basic scheme of modern geometrical optics. The Greek mathematician Euclid (300 BC), who
accepted the Pythagorean idea, knew that the angle of reflected light rays from a mirror equals
the angle of incident light rays from the object to the mirror. The idea that light is emitted by
a source and reflected by an object and then enters the eye to produce the sensation of sight was
known to Epicurus, another Greek philosopher (300 BC). The Pythagorean hypothesis was
eventually abandoned and the concept of rays traveling from the object to the eye was finally
accepted about AD 1000 under the influence of an Arabian mathematician and physicist named
Alhazen.

—The New Encyclopedia Britannica, Vol. 23

Alhazen had used spherical and parabolic mirrors and was aware of spherical aberration. He
also investigated the magnification produced by lenses and atmospheric refraction. His work was
translated into Latin and became accessible to later European scholars.

—From the Internet

REFRACTION AND REFLECTION

BY SPHERICAL SURFACES

Chapter

Four

1 2

2 1

sin

sin

n

n

f
=

f
(1)

where n1 and n2 are the refractive indices of the two media
(see Fig. 4.1). Although there is no additional physics in-
volved (other than the Snell’s laws) in the tracing of rays, the
design of even a simple optical system involves tracing many
rays and therefore considerable numerical computations.
Nowadays, such numerical computations are usually done on
a high-speed computer. In fact, optical designers were among
the first to make use of electronic computers when they were
introduced in the early 1950s.

1 The optical system may also consist of mirrors, in which case the reflection of rays should also be taken into account (see Sec. 4.3).
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4.2 REFRACTION AT A SINGLE

SPHERICAL SURFACE

We will first consider refraction at a spherical surface SPM
separating two media of refractive indices n1 and n2 [see
Fig. 4.1(a)]. Let C represent the center of curvature of the
spherical surface. We will consider a point object O emitting
rays in all directions. We will use Snell’s laws of refraction to
determine the image of the point O. We mention that not all
rays emanating from O converge to a single point; however,
if we consider only those rays which make small angles
with the line joining the points O and C, then all rays do
converge to a single point I [see Fig. 4.1(a)]. This is
known as the paraxial approximation, and according to
Fermat’s principle all paraxial rays take the same amount
of time to travel from O to I (see Example 3.3).

Now, in terms of the angles defined in Fig. 4.1(a), we have

f1 = b + a1 and f2 = b – a2

We next make use of the paraxial approximation, viz., all
angles f1, f2, a1, a2, and b are small, so we may write

sin f1 ª tan f1 ª f1 etc.

where the angles are obviously measured in radians. Thus,
we have

sin f1 ª f1 = b + a1 ª tan b + tan a1 ª 
h
r

h
x

+ (2)

and

sin f2 ª f2 = b – a2 ª tan b – tan a2 ª 
h
r

h
y

- (3)

where the distances h, x, y, and r are defined in Fig. 4.1(a)
and we have assumed that the foot of the perpendicular D is
very close to the point P so that OD ª OP = x,
ID ª IP = y, etc. We now use Eqs. (1) – (3) to obtain (in the
paraxial approximation)

n1
h
r

h
x

+
F
H

I
K = n2

h
r

h
y

-

F
HG

I
KJ

or

n
y

n
x

2 1
+ = 

n n
r

2 1-

(4)

4.2.1 The Sign Convention

Before we proceed further, we should state the sign conven-
tion which we will be using throughout in the book. We refer
to Fig. 4.1(a) and consider the point P as the origin of the
coordinate system. The sign convention is as follows:

1. The rays are always incident from the left on the
refracting (or reflecting) surface.

2. All distances to the right of the point P are positive,
and distances to the left of the point P are negative.
Thus in Fig. 4.1(a), the object distance u is a negative
quantity, and the image distance v and the radius of
curvature R are positive quantities. For u to be posi-
tive, we must have a situation like the one shown in
Fig. 4.1(b); in the absence of a refracting surface, the
rays converge to a point to the right of  P.

3. The angle that the ray makes with the axis is positive if
the axis has to be rotated in the counterclockwise di-
rection (through the acute angle) to coincide with the
ray. Conversely, if the axis has to be rotated in the
clockwise direction (through the acute angle) to coin-
cide with the ray, then the slope angle is negative.
Thus in Fig. 4.1(a) if q1 and q2 are the angles that the
rays OS and SI make with the axis, then q1 = a1 and
q2 = –a2; a1, a2, and b represent the magnitudes of the

n1 S

D

M

C IP

P

O

h

φ1
φ2

α θ1 1(= )
α θ2 2(= – )

α θ2 2(= – )

α θ1 1(= – )

β

n2

y

r

x

u v R
n n

< 0,    > 0, > 0
sin = sin1 1 2 2φ φ

u v R
n n

> 0,    > 0, < 0
sin = sin1 1 2 2φ φ

(a)

(b)

φ1

φ2

C O I

n1 n2

Fig. 4.1 (a) Paraxial image formation by a spherical
refracting surface separating media of refractive
indices n

1
 and n

2
. Point O represents the object

point and I the paraxial image point. (b) Corre-
sponds to positive u.
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angles. (If the final result does not depend on the
angles, then it is more convenient to use the magnitude
of the angles, as has indeed been done in Sec. 4.2.) In
Fig. 4.1(b) both q1 and q2 are negative quantities.

4. The angle that a ray makes with the normal to the sur-
face is positive if the normal has to be rotated in the
counterclockwise direction (through the acute angle)
to coincide with the ray, and conversely. Thus, in
Fig. 4.1(a), f1 and f2 are positive quantities.

5. All distances measured upward from the axis (along a
perpendicular to the axis) are positive, and all distances
measured in the downward direction are negative.

4.2.2 The Gaussian Formula for a

Single Spherical Surface

If we now use the sign convention discussed above, then for
the ray diagram shown in Fig. 4.1(a), u = –x, v = y and R = r.
Thus Eq. (4) becomes

n n
u

2 1

v
- = 

n n
R

2 1-

(5)

which gives the image point due to refraction at a spherical
surface [see also Eq. (10) of Chapter 3]. Equation (5) is known
as the Gaussian formula for a single spherical surface. Note
that corresponding to Fig. 4.1(a), u is negative and v posi-
tive, whereas for Fig. 4.1(b), u and v are both positive.

Example 4.1 Consider a medium of refractive index 1.5
bounded by two spherical surfaces S1P1M1 and S2P2M2 as shown in
Fig. 4.2. The radii of curvature of the two surfaces are 15 and 25 cm
with their centers at C1 and C2, respectively. There is an object at
a distance of 40 cm (from P1) on the line joining C1 and C2. Deter-
mine the position of the paraxial image.

Solution: We first consider refraction by S1P1M1. Obviously

u = –40 cm, R = +15 cm, n1 = 1.0, and n2 = 1.5. Thus

1 5 1
40

.
v

+ = 0 5
15
.

fi v = +180 cm

In the absence of the second surface, the image is formed at O¢

at a distance of 150 cm from P2. Now O¢ acts as a virtual object,
and since it is to the right of S2P2M2, we have, while considering
refraction by the second surface, u = +150 cm, R = –25 cm, n1 = 1.5,
and n2 = 1.0. Thus

1 0 1 5
150

. .
v

− = + 0 5
25
.

giving

v = +33 1
3  cm

and a real image is formed on the right of P2 at a distance of

33 1
3 cm.

While we consider refraction by a single surface (as in
Fig. 4.1), the axis of the system is defined by the line join-
ing the object point O and the center of curvature C. Thus
any ray from the point O (like OS) will be in the plane
containing the axis and the normal at the point S, and
consequently, the refracted ray will always intersect the
axis. On the other hand, if there is second refracting sur-
face (as in Fig. 4.2 or as in a lens), then the line joining
the two centers of curvature is defined as the axis. In the
latter case, as can be readily seen, not all rays from an
off-axis point will intersect the axis and after refraction at
the second surface will, in general, not remain confined to
a single plane; these rays are known as skew rays. Rays
which remain confined to a plane (containing the axis) are
known as meridional rays; obviously, all rays emanating
from a point on the axis are meridional rays.

4.3 REFLECTION BY A SINGLE

SPHERICAL SURFACE

We next consider the imaging of a point object O by a spheri-
cal mirro r SPM (see Fig. 4.3) in the paraxial approximation;
the point C represents the center of curvature. We proceed
in a manner exactly similar to that in Sec. 4.2, and we refer to

1
333

180
30

25

15
40

O

P1 P2

S2
S1

M2M1

C2 C1 I

n = 1.0 1.5 1.0

O�

Fig. 4.2 Paraxial image formation by a medium of refractive index 1.5 bounded by two spherical
surfaces S1P1M1 and S2P2M2. All distances are measured in centimeters.
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Fig. 4.3 to obtain

f1 = b – a1 ª 
h
r

h
x

-

and

f2 = a2 – b ª 
h
y

h
r

-

where the distances x, y, h, and r are defined in Fig. 4.3. Since
f1 = f2 (the law of reflection), we get

1 1
x y
+ = 2

r
(6)

If we again use the sign convention that all the distances
to the right of P are positive and those to its left negative,
then u = –x, v = –y, and R = –r; thus we obtain the mirror
equation

1 1
u
+

v
= 2

R
(7)

which is the same as was derived by using Fermat’s principle
(see Prob. 3.1). If we set n2 = – n1 in Eq. (5), we get Eq. (7).
This follows from the fact that Snell’s law of refraction,
Eq. (1), becomes the law of reflection if we have n2 = –n1.

We illustrate the use of Eq. (7) through an example.

Example 4.2 Consider an optical system consisting of a
concave mirror S1P1M1 and convex mirror S2P2M2 of radii of curva-
tures 60 and 20 cm, respectively (see Fig. 4.4). We would like to
determine the final image position of the object point O which is at
a distance of 80 cm from the point P1, the two mirrors being sepa-
rated by a distance of 40 cm.

We first consider the imaging by S1P1M1; since u = –80 cm and
R = –60 cm (because both O and C are on the left of P1), we have

− +1
80

1
v

= – 2
60

fi v = –48 cm

In the absence of the mirror S2P2M2, a real image will be formed
at I1 which now acts as a virtual object for S2P2M2. Since I1 is to the
left of P2, we have (considering imaging by S2P2M2) u = –8 cm and
R = –20 cm, giving

1 1
8v

− = – 2
20

fi v = +40 cm

Thus the final image is formed on the right of S2P2M2 at a dis-
tance of 40 cm, which happens to be the point P1.

4.4 THE THIN LENS

A medium bounded by two spherical refracting surfaces is
referred to as a spherical lens. If the thickness of such a lens
(shown as t in Fig. 4.5) is very small compared to the object
and image distances and to the radii of curvature of the
refracting surfaces, then the lens is referred to as a thin
spherical lens. In general, a lens may have nonspherical
refracting surfaces (e.g., it may have cylindrical surfaces).
However, most lenses employed in optical systems have
spherical refracting surfaces. Therefore, we will simply use
the term lens to imply a spherical lens. Different types of
lenses are shown in Fig. 4.6. The line joining the centers of
curvature of the spherical refracting surfaces is referred to as
the axis of the lens.

In this section, we will consider the paraxial image forma-
tion by a thin lens. The corresponding considerations for a
thick lens will be discussed in Prob. 4.6.

S

h

D

M

ICO

α1
α2β

φ2

φ1

x

r

y

φ φ1 2=

P

Fig. 4.3 Paraxial image formation by a spherical reflecting
surface SPM.

P2I2 P1

S2

S1

80
60

40

40
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M2
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Fig. 4.4 Paraxial image formation by an optical system
comprising a concave mirror S

1
P
1
M
1
 and a convex

mirror S
2
P
2
M
2
.
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We consider a point object O on the axis of a (thin) lens
as shown in Fig. 4.5. The lens is placed in a medium of refrac-
tive index n1, and the refractive index of the material of the
lens is n2. Let R1 and R2 be the radii of curvature of the left
and right surfaces of the lens, respectively; for the lens
shown in Fig. 4.5, R1 is positive and R2 is negative. To deter-
mine the position of the image, we will consider successive
refractions at the two surfaces; the image formed by the first
surface is considered the object (which may be real or vir-
tual) for the second surface. Thus, if the second refracting
surface had not been there, the image of the point O would
have been formed at Q whose position (given by v¢) is deter-
mined from the following equation [see Eq. (5)]

n n
u

2 1

¢

-

v
 = 

n n
R

2 1

1

-

(8)

where u is the object distance which is negative for the ob-
ject point  O shown in the figure. Obviously if v¢ is positive,
then the point Q lies to the right of the surface; and if v¢ is
negative, then Q lies to the left of the surface. The point Q
now acts as the (virtual) object for the second refracting sur-
face, and the final image is formed at I whose position is
determined from the equation

n1

v
 – 

n2

v¢
 = 

n n
R

1 2

2

-

(9)

In Eqs. (8) and (9) the distances are measured from the
center of the lens P; this is justified because the lens has
been assumed to be thin. Adding Eqs. (8) and (9), we get

1 1
v
-

u
= (n – 1) 1 1

1 2R R
-

F
HG

I
KJ

(10)

where

n ∫

n
n

2

1

Equation (10) is known as the thin lens formula and is
usually written in the form

1 1
v
-

u
 = 

1
f

(11)

where f, known as the focal length of the lens, is given by

1
f

 = (n – 1) 1 1

1 2R R
-

F
HG

I
KJ

(12)

For a lens placed in air (which is usually the case),
n > 1 and if 1/R1 – 1/R2 is a positive quantity, then the focal
length is positive and the lens acts as a converging lens [see
Fig. 4.7(a)]. Similarly, if 1/R1 – 1/R2 is a negative quantity,
then the lens acts as a diverging lens [see Fig. 4.7(b)]. How-
ever, if the double convex lens is placed in a medium whose
refractive index is greater than that of the material of the lens,
then the focal length becomes negative and the lens acts as
a diverging lens [see Fig. 4.7(c)]; similarly for the double
concave lens [see Fig. 4.7(d)].

4.5 THE PRINCIPAL FOCI AND

FOCAL LENGTHS OF A LENS

For a converging lens, the first principal focus is defined as
the point (on the axis) such that a ray passing through that
point will, after refraction through the lens, emerge parallel to
the axis—see ray 1 in Fig. 4.8(a); the point F1 is the first princi-
pal focus. For a diverging lens, the ray which (in the absence of

t

y�

y
x

O C2 C1 I Q

n1n1

n2

Fig. 4.5 Image formation by a thin lens. The line joining the two centers of curvature is known as the
axis of the lens (u = –x, v ¢ = y ¢, v = y).

(a)

> 0
< 0

R
R
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2

(b)

< 0
> 0

R
R
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2

(c)

< 0
< 0

R
R

1

2

(d)

> 0
> 0

R
R

1

2

Fig. 4.6 Signs of R
1
 and R

2
 for different lens types.
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the lens) would have passed through the first principal focus
emerges, after refraction by the lens, as a ray parallel to the
axis—see ray 1 in Fig. 4.8(b). Point F1 is the first principal
focus, and its distance from the lens (denoted by f1) is known
as the first focal length of the lens. Obviously, f1 is negative for
a converging lens and positive for a diverging lens.

We next consider a ray which travels parallel to the axis
[see ray 2 in Fig. 4.8(a) and (b)]. For a converging lens the
point at which the ray will intersect the axis [shown as F2 in
Fig. 4.8(a)] is known as the second principal focus of the
lens. Similarly, for a diverging lens, the point at which the ray
would have intersected the axis (if produced backward) is the
second principal focus [see the point F2 in Fig. 4.8(b)]. The
distance of the second principal focus from the lens is known
as the second focal length and is denoted by f2. As can be
seen from Fig. 4.8, f2 is positive for a converging lens and
negative for a diverging lens.

For a thin lens placed in a medium such that the refractive
indices on both sides of the lens are the same (n3 = n1 in
Fig. 4.8), the values of  f1 and f2 can be readily obtained by
considering the thin lens formula [see Eq. (10)] and one gets

1

2f
 = – 1

1f
 = 

1 2

1 1
( 1)n

R R

⎛ ⎞
− −⎜ ⎟

⎝ ⎠
 = 

1
f

(13)

However, if n3 π n1, then the thin lens formula assumes the
following form (see Prob. 4.2):

n n
u

3 1

v
-  = 

n n
R

n n
R

2 1

1

3 2

2

-
+

-
(14)

Now, when v = •, u = f1 (ray 1 in Fig. 4.8) and we have

3 22 1

1 1 1 2

1 1 n nn n

f n R R

⎛ ⎞−−
= − +⎜ ⎟

⎝ ⎠
(15)

f2

F2

n2

n1 n3

yy

F1

A K

P

–f1

–x1

–u

x2

v

L B

(a)

1
0

3

2

I

 –y�

(b)

y
P

B

A

y

2

3

0

1

F2 F1I

n1 n2 n3K

L

–x1

–x2

–f2 f1
–u

–v

Fig. 4.8 (a) Paraxial imaging by a converging lens; x1, f1, and u are negative quantities and x2, f2, and v
are positive quantities. (b) Paraxial imaging by a diverging lens; here x1, f2, u, and v are nega-
tive quantities and x2 and f1 are positive quantities.

n1

n1

n1

n1

n1

n1

n1

n1

n2

n2

n2

n2

(a)

(c)

(b)

(d)

n n2 1>

n n2 1<

Fig. 4.7 (a) and (b) correspond to the situation when the
refractive index of the material of the lens is
greater than that of the surroundings, and there-
fore a biconvex lens acts as a converging lens and
a biconcave lens acts as a diverging lens. (c) and
(d) correspond to the situation when the refractive
index of the material of the lens is smaller than
that of the surrounding medium, and therefore a
biconvex lens acts as a diverging lens and a bicon-
cave lens as a converging lens.
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Similarly, when u = –•, v = f2 (ray 2 in Fig. 4.8), and we have

3 22 1

2 3 1 2

1 1 n nn n

f n R R

⎛ ⎞−−
= +⎜ ⎟

⎝ ⎠
(16)

Once we know f1 and f2 (and therefore the positions of the
first and second principal foci), the (paraxial) image can be
graphically constructed from the following rules:

1. A ray passing through the first principal focus will,
after refraction, emerge parallel to the axis [see ray 1
in Fig. 4.8(a) and (b)].

2. A ray parallel to the axis will, after refraction, either
pass through or appear to come from (depending on
the sign of f2) the second principal focus [see ray 2 in
Fig. 4.8(a) and (b)].

3. A ray passing through the center of the lens P will pass
through undeviated2 [see ray 3 in Fig. 4.8(a) and (b)].

4.6 THE NEWTON FORMULA

Let x1 be the distance of the object from the first principal
focus F1 (x1 will be positive if the object point is on the right
of F1 and conversely), and let x2 be the distance of the image
from the second principal focus F2 as shown in Fig. 4.8(a)
and (b). Considering similar triangles in Fig. 4.8(a), we have

- ¢y
y

= 
-

-

f
x

1

1
(17)

and

- ¢y
y

= 
x
f
2

2
(18)

where the vertical distances are positive if measured above
the line and negative if measured below the line (see
Sec. 4.2.1). Equations (17) and (18) give

f1 f2 = x1x2 (19)

which is known as the Newtonian lens formula. It may be
noted that for a diverging lens [see Fig. 4.8(b)], Eqs. (17) and
(18) would be

¢y
y

= 
f
x
1

1-
 = 

x
f
2

2-

which are identical to Eqs. (17) and (18).
When the thin lens has the same medium on the two

sides, then using Eq. (13), we have

x1x2 = – f 2  (20)

showing that x1 and x2 must be of opposite sign. Thus if the
object lies on the left of the first principal focus, then the
image will lie on the right of the second principal focus, and
vice versa.

4.7 LATERAL MAGNIFICATION

The lateral magnification m is the ratio of the height of the
image to that of the object. Considering either Fig. 4.8(a) or
Fig. 4.8(b), we readily get

m = 
¢y

y
 = v

u
 = 

f x
f x
2 2

1 1

+

+
 = – 

f
x

1

1
 = – 

x
f
2

2
(21)

where we have made use of Eqs. (17) and (18). Obviously,
if m is positive, the image is erect [as in Fig. 4.8(b)], and
conversely if m is negative, the image is inverted [as in
Fig. 4.8(a)].

The magnification can also be calculated as the product of
the individual magnifications produced by each of the refract-
ing surfaces; referring to Fig. 4.9, the magnification produced
by a single refracting surface is given by

m = 
¢y

y

and considering triangles AOC and ICB, we get

- ¢y
y

= 
v -

- +

R
u R

 = 
1

1

R

u R

−
− +
v

(22)

Now, Eq. (5) gives us

n
n u

2

1
-

v = 
n n

n R
2 1

1

- v

and

u n
nv

-

1

2
= 

n n
n

u
R

2 1

2

-

2 This follows from the fact that, for a thin lens, when u = 0, also v is equal to zero [see Eqs. (10) and (14)].

B
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(– )y�

–u
R

P

v

0

y

A

Fig. 4.9 Imaging of an object of height y by a spherical re-
fracting surface.
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Substituting for v/R and u/R in Eq. (22), we get

m = 
¢y

y
 = 

n
n u

1

2

v
(23)

Thus, if m1 and m2 represent the magnifications produced
by the two refracting surfaces in Fig. 4.8, then

m = 
n
n u

1

2

¢v

and

m2 = 
n
n

2

1

v
v¢

where v¢ represents the distance of the image formed by the
first refracting surface. Thus

m = m1m2 = v
u

(24)

consistent with Eq. (21).

Example 4.3 Consider a system of two thin lenses as shown
in Fig. 4.10. The convex lens has a focal length of +20 cm, and the
concave lens has a focal length of –10 cm. The two lenses are sepa-
rated by 8 cm. For an object of height 1 cm (at a distance of 40 cm
from the convex lens), calculate the position and size of the image.
(The same problem will be solved again in Chap. 5 by using the
matrix method.)

Solution: Let us first calculate the position and size of the image
formed by the first lens:

u = –40 cm  f = +20 cm

Therefore, using Eq. (11), we get

1
v

= 1 1
u f

+  = – 1
40

1
20

+  = + 1
40

Thus, v = +40 cm and m1 = –1; the image is of the same size but
inverted. This image acts as a virtual object for the concave lens
with u = +32 cm and f = –10 cm. Thus

1
v

= 1
32

1
10

−  = – 22
320

giving

v ~
-  –14.5 cm

Further,

m2 = –
320 22

32
/

 = – 
1

2 2.
Thus

m = m1m2 = +
1

2 2.
The final image is formed at a distance of 14.5 cm on the left of

the concave lens. The image is virtual, erect, and smaller by a factor
of 2.2.

4.8 APLANATIC POINTS

OF A SPHERE

In Sec. 4.2, while discussing image formation by a single re-
fracting surface, we made use of the paraxial approximation;
i.e., we considered rays which made small angles with the
axis. In this approximation, it was found that the images of
point objects are perfect; i.e., all rays emanating from a given
object point were found to intersect at one point which is the
image point. If we had considered rays which make large
angles with the axis, then we would have observed that in
general (after refraction) they do not pass through the same
point on the axis (see Fig. 4.11) and a perfect image is not
formed. The image is said to be afflicted with aberrations.
However, for a given spherical surface, there exist two points
for which all rays emanating from one point intersect each
other at the other point. This point is at a distance equal to
n2 |R|/n1 from the center of the spherical surface and a virtual
image is formed at a distance of n1|R|/n2 from the center [see

F2 F1F1

+20 –10

40

20

20

14.5

8

Fig. 4.10 Paraxial imaging by an optical system consisting of a converging lens of focal length 20 cm
and a diverging lens of focal length –10 cm separated by 8 cm. All distances in the figure are
in centimeters.
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Fig. 4.12(a) and (b)]. This can be easily proved by using
Fermat’s principle (see Prob. 3.7) or by using geometric methods
(see Sec. 4.10). The two points are said to be the aplanatic
points of the sphere and are utilized in the construction of
aplanatic lenses (see Fig. 4.13) which are used in wide-aperture
oil immersion microscope objectives. The points O and I are
the aplanatic points of the spherical surface of radius R2 (see
Fig. 4.13). Thus

OP2 = |R2| 
1

2

1
n

n

⎛ ⎞
+⎜ ⎟

⎝ ⎠
(25)

and

IP2 = |R2| 
2

1

1
n

n

⎛ ⎞
+⎜ ⎟

⎝ ⎠
(26)

Now, the radius of curvature of the first surface (= R1)
is such that the point O coincides with its center of curvature.
Hence all rays emanating from O hit the first surface normally
and move on undeviated. Therefore, for all practical purposes,
we may assume O to be embedded in a medium of refractive
index n2. A perfect (virtual) image of O is formed at I.

4.8.1 The Oil Immersion Objective

The principle of aplanatism has a very important application
in microscope objectives where one is interested in having
as wide a pencil of light as possible without causing any ab-
errations. We refer to the optical system shown in Fig. 4.14.
The hemispherical lens L1 is placed in contact with a drop of
oil whose refractive index is the same as that of the lens. The
object O is immersed in the oil, and the distance OC is made
equal to n3|R1|/n2 so that the point O is the aplanatic point
with respect to the hemispherical surface, which is why a
perfect (virtual) image is formed at I1. Now L2 is an aplanatic
lens with respect to the object point at I1, and therefore a per-
fect image of I1 is formed at I. The lateral magnifications
caused by the refracting surface R1 and lens L2 are

m1 = 
n I P
n OP

2 1 1

3 1

( )
( )

(27)

and

m2 = 
n IP
n I P

4 3

5 1 3

( )
( )

(28)

Thus the oil immersion objective reduces considerably the
angular divergence of the rays and results in an increase in
lateral magnification without introducing spherical aberration.
We should, however, mention that a perfect image is formed

n2

O P C II�

S2

S1
n1 S

Fig. 4.11 The point I represents the paraxial image point of
the object point O formed by a spherical refract-
ing surface SPM. However, if we consider
nonparaxial rays such as OS

1
 (which make large

angles with the axis), then the refracted ray, in
general, will not pass through the point I —this
leads to aberrations in the image.

I CO

n1 n2

n n2       1<

r

r
n
n

2

1

r
n
n

1

2

(a)

I CO

n1 n2

n n2       1>

r

r
n
n

2

1

r
n
n

1

2

(b)

Fig. 4.12 Points O and I represent the aplanatic points of a spherical surface; i.e., all rays emanating
from O appear to come from I; (a) and (b) correspond to n

2
 < n

1
 and n

2
 > n

1
, respectively.
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only of one point, and therefore nearby points have some ab-
errations. Moreover, oil immersion objectives have a certain
degree of chromatic aberration.

4.9 THE CARTESIAN OVAL

In general, for two points to form perfect images of
each other, the refracting surface should not be spherical.
Figure 4.15 shows the two points O and I such that all rays
emanating from O (and allowed by the system) intersect
each other at the other point I. Thus the curve SPM shown
in Fig. 4.15 is the locus of the point S such that

n1OS + n2SI = constant (29)

The refracting surface is obtained by revolving the curve
shown in the figure about the z axis (see also Prob. 2.8). The
refracting surface is known as a Cartesian oval. When the
object point is at infinity, the surface becomes an ellipsoid of
revolution (see Prob. 3.5), and under certain circumstances

the surface is spherical; however, the image is then virtual
[see Fig. 4.12(a) and (b)].

4.10 GEOMETRICAL PROOF FOR

THE EXISTENCE OF

APLANATIC POINTS

In this section we will show the existence of aplanatic points
using geometric considerations. We consider a spherical

R1

R2

n2 n1

S1

P1

M1 M2

OI P2

S2

n n
n

2       1

2

+
⏐ ⏐R2

⏐R ⏐1

Fig. 4.13 The aplanatic lens. The object point O is at the center of curvature of the first surface S
1
P
1
M
1
.

The points O and I are the aplanatic points of the spherical surface S
2
P
2
M
2
—thus a perfect

(virtual) image is formed at I.

Aplanatic
lens L2

R3

R2
R1

P3P2

n4n3

n2n2

n1 n5

P1COI1I

Fig. 4.14 The oil immersion objective. The points O and I1 are the aplanatic points corresponding to the
hemispherical surface of radius R1; the lens L2 acts as an aplanatic lens for the (virtual) object at I1.

Z
O P I

M

Sn1 n2

Fig. 4.15 The refracting surface (known as the Cartesian
oval) is such that all rays emanating from the
point O intersect at I.
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refracting surface SPM of radius r separating two media of
refractive indices n1 and n2 (see Fig. 4.16). We will assume
n2 < n1 and define

m = 
n
n

1

2
(30)

where m > 1. The point C represents the center of the spheri-
cal surface SPM. With C as center, we draw two spheres of
radii mr and r/m, as shown in Fig. 4.16. Let IOCP represent
any common diameter of the three spheres intersecting the
outer and inner spheres at I and O, respectively. From the
point O, we draw an arbitrary line hitting the refracting sur-
face at the point S. We join I and S and extend the line farther
as SQ. If we can show that

sin

sin

a

b
= 

1

m
(31)

for all values of q1, then all rays emanating from the point O
will appear to come from I, and O and I will be the aplanatic
points for the spherical refracting surface SPM. Now,

IC
CS

= 
r

r

m
 = m (32)

and

CS
OC

= 
/

r

r m
 = m = IC

CS
(33)

Thus the two triangles SOC and SIC are similar, and therefore

a = q2 and b = – ISC = q1 (34)

Now, considering the triangle SOC, we have

1

sin

sin

α
θ = 

/r

r

μ
 = 

1

m
(35)

and using Eq. (34), we get

sin

sin

α
β

= 
1

μ
 = 

n
n

2

1
(36)

proving that O and I are aplanatic points. We also have

1

2

sin

sin

θ
θ

= 
sin

sin

β
α

 = 
n
n

1

2
(37)

It is obvious that the points O¢ and I¢ will also be
aplanatic and therefore the image formed by a small planar
object at O will be sharp even for the off-axis points. The
system is said to be free not only from spherical aberration
but also from coma. Furthermore, the linear magnification is
given by

m ª 
¢

¢

I I
O O

 ª /

r

r

μ
μ  = m2 = 

n
n

1

2

2
F
HG
I
KJ

(38)

4.11 THE SINE CONDITION

We consider a general optical system as shown in Fig. 4.17.
We assume that the point O (on the axis of the system) is

S
Qβ

α
n1

n2

θ1θ2
O C P

M

r
I

O�

I�

r/μ

μr

Fig. 4.16 Geometric construction for the derivation of aplanatic points. SPM is the refracting the surface
of radius r. The inner and outer spheres are of radii r/m and mr, respectively. Points O and I are
the aplanatic points.
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perfectly imaged at I; i.e. all rays emanating from O intersect
each other at I. This implies that the optical system has no
spherical aberration corresponding to O. We next consider a
slightly off-axis point O¢ (directly above O), and according to
the sine condition, for O¢ to be sharply imaged at I we must have3

1 1

2 2

sin

sin

n

n

q

q
= 2

1

y

y
 = linear magnification (39)

where q1 and q2 are defined in Fig. 4.17. Thus the linear mag-
nification will be constant if the ratio sin q1/sin q2 is constant
for all points on the refracting surface and the image will be
free from the aberration known as coma. It is of interest to
note that according to Eq. (39) perfect imaging of (nearby)
off-axis points requires a condition to be satisfied by rays
from an on-axis point.

4.11.1 Proof of the Sine Condition4

We refer to Fig. 4.17. We will assume that the axial point O is
perfectly imaged at I and will use Fermat’s principle to deter-
mine the condition for perfect imaging of the nearby off-axis
point O¢. The ray O¢B1 is parallel to the ray OA1 and the ray
O¢D1 is parallel to OC1. Now, since I is the image of the point
O, we have

OPL(OA1A2I) = OPL(OC1C2I) (40)

where OPL stands for the optical path length. Further

OPL(O¢B1B2I¢) = OPL(O¢D1D2I¢) (41)

Now, the rays O¢B1 and OA1 meet at infinity and therefore

OPL(O¢B1B2F) = OPL(OA1A2F) (42)

We next consider the triangle FII¢.

FI¢ = (FI2 + |y2|2)1/2 = FI
2

2
2

| |1
1

2

y

FI

Ê ˆ
+Á ˜Ë ¯

Thus
 FI¢ ª FI (43)

where we are assuming that |y2| is small enough that terms
proportional to |y2|

2 can be neglected. If we add Eqs. (42) and
(43), we get

OPL(O ¢B1B2I ¢) = OPL(OA1A2I )
= OPL(OC1C2I ) (44)

Since the left hand side of the above equation is
OPL (O ¢D1D2I ¢), we get

OPL(O¢D1D2I¢) = OPL(OC1C2I) (45)
Now the rays 3 and 4 meet at infinity and intersect at F ¢,

so that

OPL(GD1D2F ¢) = OPL (OC1CF ¢) (46)

where the point G is the foot of the perpendicular drawn from
the point O on ray 4. We subtract Eq. (45) from Eq. (46) to obtain

OPL(F ¢I ¢) – OPL(GO¢) =  OPL(F¢ I) (47)

3 If we use Eqs. (37) and (38), we get

m = 
y
y
2

1
 = 

n
n

1

2

2F
HG
I
KJ

 = 1 1

2 2

sin

sin

n

n

q

q

consistent with Eq. (39).
4 For a rigorous proof of the sine condition, see Ref. 3.

y1

H

I

F

I�

F�

–θ2

–y2

θ1

θ1

1

1

2
2

3

3

44

n2n1
D2D1

C2C1
B2B1

A1O1 O

G O�

A2

OPTICAL
SYSTEM

Fig. 4.17 The optical system images perfectly the points O and O¢ at I and I, respectively.
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or

n2(F ¢I ¢) – n1(GO ¢) = n2(F ¢I)

or

n1(GO¢) = n2(F ¢I ¢ – F ¢I) (48)

But

GO¢ = y1sinq1 (49)

and

F ¢I ¢ – F ¢I ª HI ¢ ª –y2 sin (–q2) (50)

where H is the foot of the perpendicular from the point I on
ray 4. Substituting the above two equations in Eq. (48), we
get

1 1

2 2

sin

sin

n

n

q

q
= 

y
y

2

1
 = linear magnification (51)

showing that the linear magnification is constant if the ratio
sin q1/sin q2 is constant for all points on the refracting sur-
face. The sine condition is of extensive use in the design of
optical systems.

Summary

� Consider refraction at a spherical surface separating two
media of refractive indices n1 and n2. For a point object at a
distance |u | on the left, the paraxial image is formed at a dis-
tance v where

n n
u

2 1
v

−  = 
n n

R
2 1−

The sign convention is as follows:

1. The rays are always incident from the left on the re-
fracting surface.

2. All distances to the right of the refracting surface are
positive, and distances to the left of the refracting sur-
face are negative.

� For a thin lens of refractive index n (placed in air), let R1 and
R2 be the radii of curvature of the left and right surface re-
spectively of the lens; then the image distance is given by

1 1
v

−
u

 = (n – 1) 
1 1

1 2R R
−F

HG
I
KJ

which is usually referred to as the thin lens formula; the
quantity f is known as the focal length of the lens.

� For a given spherical surface, there are two points for which
all rays emanating from one point intersect each other at the
other point. This point is at a distance equal to n2| R | /n1 from
the center of the spherical surface, and a virtual image is
formed at a distance of n1| R | /n2 from the center. The two
points are said to be the aplanatic points of the sphere and
are utilized in the construction of aplanatic lenses.

� For two points to form perfect images of each other, the re-
fracting surface is a Cartesian oval.

Problems

4.1 (a) Consider a thin biconvex lens (as shown in Fig. 4.18)
made of a material whose refractive index is 1.5. The radii
of curvature of the first and second surfaces (R1 and R2)
are +100 and –60 cm, respectively. The lens is placed
in air (i.e., n1 = n3 = 1). For an object at a distance of
100 cm from the lens, determine the position and linear
magnification of the (paraxial) image. Also calculate
x1 and x2 and verify Newton’s formula [Eq. (20)].

[Ans: x1 = –25 cm and x2 = +225 cm]

(b) Repeat the calculations of part(a) when the object is
at a distance of 50 cm.

4.2 Consider a thin lens (made of a material of refractive index
n2) having different media on the two sides; let n1 and n3 be
the refractive indices of the media on the left and on the
right of the lens, respectively. Using Eq. (5) and considering
successive refractions at the two surfaces, derive Eq. (14).

4.3 Referring again to Fig. 4.18, assume a biconvex lens with
|R1| = 100 cm, |R2| = 60 cm with n1 = 1.0 but n3 = 1.6. For
u = –50 cm determine the position of the (paraxial) image.
Also determine the first and second principal foci, and
verify Newton’s formula. Draw the ray diagram.

[Ans: x1 = 250 cm, x2 = 576 cm]

4.4 (a) In Fig. 4.18, assume the convex lens to be replaced by
a (thin) biconcave lens with |R1| = 100 cm and |R2| =
60 cm. Assume n1 = n3 = 1 and n2 = 1.5. Determine the
position of the image and draw an approximate ray
diagram for u = –100 cm.

(b) In (a), assume n1 = n3 = 1.5 and n2 = 1.3. Repeat the
calculations and draw the ray diagram. What is the quali-
tative difference between the systems in (a) and (b)?

n2n1 n3

R1

R2

Fig. 4.18

4.5 Consider an object of height 1 cm placed at a distance of 24 cm
from a convex lens of focal length 15 cm (see Fig. 4.19). A
concave lens of focal length –20 cm is placed beyond the
convex lens at a distance of 25 cm. Draw the ray diagram
and determine the position and size of the final image.

[Ans: Real image at a distance of 60 cm from the
concave lens.]
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24 25

+15 –20

Fig. 4.19 An optical system consisting of a thin convex and
a thin concave lens. All distances are measured

in centimeters.

4.10 Consider a lens of thickness 1 cm, made of a material of
refractive index 1.5, placed in air. The radii of curvature of
the first and second surfaces are +4 and –4 cm,
respectively. Determine the point at which parallel rays
will focus.

[Ans: At a distance of about 4.55 cm from the
second surface]

20

n = 1.6 n = 1.0

P2

Fig. 4.20

1.5

20

40

P2

Fig. 4.21
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4.6 Consider a thick biconvex lens whose magnitudes of the ra-
dii of curvature of the first and second surfaces are 45 and
30 cm, respectively. The thickness of the lens is 5 cm, and
the refractive index of the material that it is made of is 1.5.
For an object of height 1 cm at  distance of 90 cm from the
first surface, determine the position and size of the image.
Draw the ray diagram for the axial point of the object.

[Ans: Real image at a distance of 60 cm
from the second surface.]

4.7 In Prob. 4.6 assume that the second surface is silvered so
that it acts as a concave mirror. For an object of height 1 cm
at a distance of 90 cm from the first surface, determine the
position and size of the image and draw the ray diagram.

[Ans: Real image at a distance of about 6.2 cm from the
first surface. (Remember the sign convention.)]

4.8 Consider a sphere of radius 20 cm of refractive index 1.6
(see Fig. 4.20). Show that the paraxial focal point is at a dis-
tance of 6.7 cm from the point P2.

4.9 Consider a hemisphere of radius 20 cm and refractive index
1.5. Show that parallel rays will focus at a point 40 cm
from P2 (see Fig. 4.21).
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5.1 INTRODUCTION1

Let us consider a ray PQ incident on a refracting surface SQS¢
separating two media of refractive indices n1 and n2 (see
Fig. 5.1). Let NQN ¢ denote the normal to the surface. The
direction of the refracted ray is completely determined from
the following conditions:

1. The incident ray, the refracted ray and the normal lie in
the same plane,

2. If q1 and q2 represent the angles of incidence and re-
fraction, respectively, then

1 2

2 1

sin

sin

n

n

q
=

q
(1)

Optical systems, in general, are made up of a large number of
refracting surfaces (as in a combination of lenses), and any

In dealing with a system of lenses we simply chase the ray through the succession of lenses. That
is all there is to it.

—Richard Feynman, Feynman Lectures on Physics

ray can be traced through the system by using the above
conditions. To obtain the position of the final image due to
such a system, one has to calculate step by step the position
of the image due to each surface, and this image will act as
an object for the next surface. Such a step-by-step analysis
becomes complicated as the number of elements of an optical
system increases. In this chapter, we develop the matrix
method which can be applied with ease under such situations.
This method indeed lends itself to direct use in computers for
tracing rays through complicated optical systems.

Before we describe the matrix formulation of geometric
optics, it is necessary to mention the rule of matrix multiplica-
tion and the use of matrices for solving linear equations. An
m ¥ n matrix has m rows and n columns and has m ¥ n
elements; thus the matrix

A = 
a b c

d e f

Ê ˆ
Á ˜Ë ¯

(2)

has 2 rows and 3 columns and has 2 ¥ 3 = 6 elements. A m ¥ n
matrix can be multiplied only by an n ¥ p matrix to obtain an
m ¥ p matrix. Let

B = 

g

h

i

F

H

G
G

I

K

J
J

(3)

represent a 2 ¥ 1 matrix. Then the product

AB = 
a b c

d e f

g

h

i

F
HG

I
KJ

F

H

G
G

I

K

J
J

 = 
( )

( )

ag bh ci

dg eh fi

+ +

+ +

F
HG

I
KJ

(4)

will be a 2 ¥ 1 matrix, and the product BA has no meaning.

1 The author thanks Prof. K. Thyagarajan for his help in writing this chapter.

Q
SN

N�

S�

P

C

θ1
θ2

n2
n1

Fig. 5.1 Refraction of a ray by a surface SQS ¢ which sepa-

rates two media of refractive indices n
1
 and n

2
;

NQN¢ denotes the normal at the point Q. If the re-

fracting surface is spherical, then the normal

NQN¢ will pass through the center of curvature C.

THE MATRIX METHOD

IN PARAXIAL OPTICS

Chapter

Five
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If we define a 2 ¥ 3 matrix

A¢ = 
¢ ¢ ¢

¢ ¢ ¢

F
HG

I
KJ

a b c

d e f

then A¢ = A

if and only if a¢ = a, b¢ = b, c¢ = c, d¢ = d, e¢ = e, and  f ¢ = f,
i.e., all the elements must be equal. The set of two equations

1 1 2

2 1 2

=

=

x ay by

x cy dy

+

+
(5)

can be written in the following form:

x

x
1

2

F
HG
I
KJ

= 
( )

( )

ay by

cy dy
1 2

1 2

+

+

F
HG

I
KJ

 = 
a b

c d

y

y

F
HG

I
KJ
F
HG
I
KJ

1

2
(6)

the last step follows from the rule of matrix multiplication.
Further, if we have

and 1 1 2

2 1 2

=

=

y ez fz

y gz hz

+

+

(7)

then

y

y
1

2

F
HG
I
KJ

= 
e f

g h

z

z
F
HG

I
KJ
F
HG
I
KJ

1

2
(8)

Consequently,

x

x
1

2

F
HG
I
KJ

= 
a b

c d

e f

g h

z

z

F
HG

I
KJ
F
HG

I
KJ
F
HG
I
KJ

1

2
(9)

or X = FZ, (10)

where X and Z represent 2 ¥ 1 matrices:

X ∫ 
x

x
1

2

F
HG
I
KJ

 Z ∫ 
z

z
1

2

F
HG
I
KJ

(11)

and F represents a 2 ¥ 2 square matrix

F = 
a b

c d

e f

g h

F
HG

I
KJ
F
HG

I
KJ

= 
( ) ( )

( ) ( )

ae bg af bh

ce dg cf dh

+ +Ê ˆ
Á ˜+ +Ë ¯

(12)

Equations (9) and (12) tell us that

and 1 1 2

2 1 2

= ( ) ( )

= ( ) ( )

x ae bg z af bh z

x ce dg z df dh z

+ + +

+ + +

(13)

which can be verified by direct substitution. We will now use
the matrix method to trace paraxial rays through a cylindri-
cally symmetric optical system.

5.2 THE MATRIX METHOD

We will consider a cylindrically symmetric optical system
similar to the one shown in Fig. 5.2. The axis of symmetry is
chosen as the z axis. We will be considering only paraxial
rays in this chapter; nonparaxial rays lead to what are known
as aberrations, which will be discussed in Chap.6.

In the paraxial approximation, rays remain close to the opti-
cal axis, thus making small angles. Such a ray can be specified
by its distance from the axis of the system and the angle made
by the ray with the axis; for example, in Fig. 5.2,  point P on
the ray is at a distance x1 from the axis and makes an angle a1
with the axis. The quantities (x1, a1) represent the coordinates
of the ray. However, instead of specifying the angle made by
the ray with the z axis, we will specify the quantity.

l = n cos y (= n sin a)

which represents the product of the refractive index and the
sine of the angle that the ray makes with the z axis, this quan-
tity is known as the optical direction cosine.

Now, when a ray propagates through an optical system, it
undergoes only two operations: translation and refraction.
The rays undergo translation when they propagate through
a homogeneous medium as in the region PQ (see Fig. 5.2).
However, when a ray strikes an interface of two media, it un-
dergoes refraction. We will now study the effect of
translation and of refraction on the coordinates of the ray.

(a) Effect of Translation

Consider a ray traveling in a homogeneous medium of
refractive index n1 which is initially at a distance x1 from the

z

x2x1

P

P� M�

M
QY

a1

a2

D

Fig. 5.2 In a homogeneous medium the ray travels in a straight line.
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z axis and makes an angle a1 with the axis (see point P in
Fig. 5.2). Let (x2, a2) represent the coordinates of the ray at
the point M (see Fig. 5.2). Since the medium is homoge-
neous, the ray travels in a straight line and, therefore,

a2 = a1 (14)

Further, if PP¢ and MM¢ are perpendiculars on the axis and if
P¢M¢ = D, then

x2 = x1 + D tan a1 (15)

Since we are interested only in paraxial rays, a1 is very small
and hence we can make use of the approximation
tan a1 ~

-

a1, where a1 is measured in radians. Thus, Eq. (15)
reduces to

x2 ~
-

x1 + a1D (16)

If l1 = n1a1 (17)

and l2 = n2a2 (18)

then, using Eqs. (15) and (17), we get

and
2 1

2 1 1
1

=

=
D

x x
n

l l

+ l
(19)

which may be combined into the following matrix equation:

2

2x

lÊ ˆ
Á ˜Ë ¯

= 1

1 1

1 0

/ 1D n x

lÊ ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

(20)

Thus, if a ray is initially specified by a 2 ¥ 1 matrix with ele-
ments l1 and x1, then the effect of translation through a
distance D in a homogeneous medium of refractive index n1
is completely given by the 2 ¥ 2 matrix

T = 
1 0

11D n/

F
HG

I
KJ

(21)

and the final ray is given by Eq. (20). The matrix T is known
as the translation matrix. Notice that

det T = 
1 0

11D n/
 = 1 (22)

(b) Effect of Refraction

We will now determine the matrix which would represent the
effect of refraction through a spherical surface of radius of
curvature R. Consider the ray AP intersecting a spherical sur-
face (separating two media of refractive indices n1 and n2,
respectively) at point P and getting refracted along PB (see
Fig. 5.3). If q1 and q2 are the angles made by the incident and
the refracted ray with the normal to the surface at P (i.e., with
the line joining P to the center of curvature C), then accord-
ing to Snell’s law

n1 sin q1 = n2 sin q2 (23)

α2
α1 θ2

φ1

φ1

θ1 P

C

B

N

A
x

R

n1 n2

Fig. 5.3   The refraction of a ray at a spherical surface.

Since we are dealing with paraxial rays, we can use the ap-
proximation sin q ~

-  q. Thus Eq. (23) reduces to

n1q1
~
-  n2q2 (24)

From Fig. 5.3 it follows that

q1 = f1 + a1 and q2 = f1 + a2 (25)

where a1, a2, and f1 are, respectively, the angles that the in-
cident ray, the refracted ray, and the normal to the surface
make with the z axis. Also since f1 is small, we may write

f1 = x
R

(26)

Now, from Eqs. (24) and (25), we get

n1(f1 + a1) ~
-  n2(f1 + a2)

or

n2a2
~
-  n1a1 – 

n n
R

x2 1-

(27)

where we have used Eq. (26). Thus

l2 = l1 – Px (28)
where

P = 
n n

R
2 1-

(29)

is known as the power of the refracting surface. Also since
the height of the ray at P before and after refraction  is the
same (i.e., x2 = x1), we obtain for the refracted ray

2

2x

lÊ ˆ
Á ˜Ë ¯

= 1

1

1

0 1

P

x

l- Ê ˆÊ ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

(30)

Thus, refraction through a spherical surface can be charac-
terized by a 2 ¥ 2 matrix:

R = 
1

0 1

-F
HG

I
KJ

P
(31)
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Note that

det R = 
1

0 1

-P
 = 1 (32)

In general, an optical system made up of a series of lenses
can be characterized by the refraction and translation
matrices.

If a ray is specified by 1

1x

lÊ ˆ
Á ˜Ë ¯

 when it enters an optical

system and is specified by 2

2x

lÊ ˆ
Á ˜Ë ¯

 when it leaves the system,

then we can, in general, write

2

2x

lÊ ˆ
Á ˜Ë ¯

= 1

1

b a

xd c

l- Ê ˆÊ ˆ
Á ˜ Á ˜-Ë ¯ Ë ¯

(33)

where the matrix

S = 
b a

d c

-

-

F
HG

I
KJ

(34)

is called the system matrix and is determined solely by the
optical system. The negative signs in some of the elements
of S have been chosen for convenience. Since the only two
operations a ray undergoes in traversing an optical system
are refraction and translation, the system matrix is, in general,
a product of refraction and translation matrices. Also, using
the property that the determinant of the product of matri-
ces is the product of the determinant of the matrices, we
obtain

det S = 1 (35)
i.e.,

bc – ad = 1 (36)

The quantities b and c are dimensionless. The quantities
a and P have the dimension of inverse length, and the quan-
tity d has the dimension of length. In general, the units will
not be given; however, it will be implied that a and P are in
cm–1 and d is in cm.

5.2.1 Imaging by a Spherical
Refracting Surface

As a simple illustration of the use of the matrix method,
we consider imaging by a spherical surface separating
two media of refractive indices n1 and n2 (see Fig. 5.4);
the same problem was discussed in Chap. 4 using the
standard geometrical method. Let (l1, x1), (l¢, x¢), (l≤, x≤),
and (l2, x2) represent the coordinates of the ray at O, A¢
(just before refraction), A≤ (just after refraction), and I
respectively.

We will be using the analytical geometry sign convention
so that the coordinates on the left of the point P are negative
and coordinates on the right of P are positive (see Sec. 4.2.1).
Thus

x

l¢Ê ˆ
Á ˜¢Ë ¯

= 1

1 1

1 0

/ 1u n x

lÊ ˆ Ê ˆ
Á ˜ Á ˜-Ë ¯ Ë ¯

x

l¢¢Ê ˆ
Á ˜¢¢Ë ¯

= 
1

0 1

P

x

- l¢Ê ˆ Ê ˆ
Á ˜ Á ˜¢Ë ¯ Ë ¯

2

2x

lÊ ˆ
Á ˜Ë ¯

= 
2

1 0

/ 1n x

l¢¢Ê ˆ Ê ˆ
Á ˜Á ˜ ¢¢Ë ¯Ë ¯v

or

2

2x

lÊ ˆ
Á ˜Ë ¯

= 1

2 1 1

1 0 1 01

/ 1 / 10 1

P

n u n x

l-Ê ˆ Ê ˆ Ê ˆÊ ˆ
Á ˜Á ˜ Á ˜ Á ˜-Ë ¯Ë ¯ Ë ¯ Ë ¯v

Simple manipulations give

2

2x

lÊ ˆ
Á ˜Ë ¯

= 
1 1

1

2 1 1 2

1

1 1

PPu

n

xPu u P

n n n n

-Ê ˆ
+Á ˜ lÊ ˆÁ ˜

Á ˜Á ˜Ê ˆ Ê ˆ Ë ¯
+ - -Á ˜Á ˜ Á ˜Ë ¯ Ë ¯Ë ¯

v v
(37)

from which we obtain

x2 = 1 1
2 1 1 2

1 1
Pu u P

x
n n n n

È ˘Ê ˆ Ê ˆ
+ - l + -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

v v
(38)

For a ray emanating from an axial object point (i.e., for x1 = 0)
the image plane is determined by the condition x2 = 0. Thus
in the above equation, the coefficient of l1 should vanish
and therefore

u
n1

= v
n

Pu
n2 1

1 +
F
HG

I
KJ

or

n n
u

2 1

v
- = P = 

n n
R

2 1-

(39)

–u v

A�

P

A��

O x( , )λ1 1 I( , )λ2 2x

Fig. 5.4 Imaging by a spherical refracting surface separat-

ing two media of refractive indices n
1
 and n

2
.
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which is the same as derived Chap. 4. Hence, on the image plane

2

2x

lÊ ˆ
Á ˜Ë ¯

= 
1 1

1

2

1

0 1

Pu
P

n

xP

n

Ê ˆ+ -Á ˜ lÊ ˆ
Á ˜ Á ˜Ë ¯Á ˜-Á ˜Ë ¯

v
(40)

giving

x2 = 1
2

-

F
HG

I
KJ

vP
n

 x1

Thus the magnification is given by

m = 
x
x

2

1
 = 1 – vP

n2

which on using Eq. (39) gives

m = 
n
n u

1

2

v

consistent with Eq. (23) of Chap. 4.

5.2.2 Imaging by a Coaxial Optical System

We will next derive the position of the image plane for an
object plane, which is at distance –D1 from the first refract-
ing surface of the optical system (see Fig. 5.5). Let the image
be formed at a distance D2 from the last refracting surface.
Now, according to our sign convention, for points on the left
of a refracting surface, the distances will be negative, and for
points on the right of the refracting surface the distances will
be positive; thus D1 is an intrinsically negative quantity. Fur-
ther, if D2 is found to be positive, the image is real and is
formed on the right of the refracting surface; on the other
hand, if D2 is found to be negative, the image will be virtual
and will be formed on the left of the last refracting surface.

Let us consider a ray O¢P starting from point O¢ which lies
in the object plane. Let QI ¢ be the ray emerging from the last

surface; point I ¢ is assumed to lie on the image plane—see
Fig. 5.5 (point I is the paraxial image of point O, and image
plane is defined to be the plane which contains point I and is
normal to the axis). Let (l1, x1), (l¢, x ¢), (l≤, x≤), and (l2, x2)
represent the coordinates of the ray at O¢, P, Q, and I ¢ respec-
tively. Then

1

1 1

2

2 2

1 0
=

1

=

1 0
=

1

D xx

b a

x d c x

x D x

ll¢ Ê ˆ Ê ˆÊ ˆ
Á ˜ Á ˜ Á ˜-¢Ë ¯ Ë ¯ Ë ¯

l - l¢¢ ¢Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜-¢¢ ¢Ë ¯ Ë ¯ Ë ¯

l l¢¢Ê ˆ Ê ˆ Ê ˆ
Á ˜Á ˜ Á ˜ ¢¢Ë ¯Ë ¯ Ë ¯

Thus

2

2x

lÊ ˆ
Á ˜Ë ¯

 = 1

2 1 1

1 0 1 0

1 1

b a

D D xd c

l-Ê ˆ Ê ˆ Ê ˆÊ ˆ
Á ˜Á ˜ Á ˜ Á ˜--Ë ¯Ë ¯ Ë ¯ Ë ¯

(41)

where the first and the third matrices on the right-hand
side correspond to translations by distances D2 and –D1,
respectively (in a medium of refractive index unity); the
second matrix corresponds to the system matrix of the
optical system. Carrying out the matrix multiplications, we
obtain

2

2x

lÊ ˆ
Á ˜Ë ¯

= 1 1

2 1 2 1 2 1

b aD a

bD aD D cD d c aD x

+ - lÊ ˆ Ê ˆ
Á ˜ Á ˜+ - - -Ë ¯ Ë ¯

(42)
Thus

x2 = (bD2 + aD1D2 – cD1 – d)l1 + (c – aD2)x1

For a ray emanating from the axial object point (i.e., for x1 = 0)
the image plane is determined by the condition x2 = 0. Thus,
for the image plane we must have

bD2 + aD1D2 – cD1 – d = 0 (43)

x2

I

I�
O�

D2–D1
O

x1

x�
x��

Q

P

Fig. 5.5 The object point O is at a distance (–D
1
) from the first refracting surface. The paraxial image is

assumed to be formed at a distance D
2
 from the last refracting surface.
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which would give us the relationship between the distances
D1 and D2. Thus, corresponding to the image plane, we have

2

2x

lÊ ˆ
Á ˜Ë ¯

 = 1 1

2 10

b aD a

c aD x

+ - lÊ ˆ Ê ˆ
Á ˜ Á ˜-Ë ¯ Ë ¯

(44)

For x2 π 0, we obtain

x2 = (c – aD2)x1

Consequently, the magnification of the system M ( )2 1= x x
would be given by

M = 
x
x

2

1
 = c – aD2 (45)

Further, since

b aD a

c aD

+ -

-

1

20
= 1

we obtain

b + aD1 = 1

2c aD-

 = 1
M

(46)

Hence, if x1 and x2 correspond to object and image planes,
then for a general optical system we may write

2

2x

lÊ ˆ
Á ˜Ë ¯

= 1

1

1/

0

M a

xM

l- Ê ˆÊ ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

(47)

Example 5.1 Obtain the system matrix for a thick lens, and
derive the thin lens and thick lens formulas.

Solution: Let us consider a lens of thickness t and made of a
material of relative refractive index n (see Fig. 5.6). Let R1 and R2

be the radii of curvature of the two surfaces. The ray is assumed to
strike the first surface of the lens at P and emerge from point Q; let
the coordinates of the ray at P and Q be

1

1x

λ⎛ ⎞
⎜ ⎟
⎝ ⎠

and
λ2

2x

F
HG
I
KJ

(48)

where l1 and l2 are the optical direction cosines of the ray at P and
Q; x1 and x2 are the distances of points P and Q from the axis (see
Fig. 5.6). The ray, in propagating from P to Q, undergoes two re-
fractions [one at the first surface (whose radius of curvature is R1)
and the other at the second surface (whose radius of curature is R2)]
and a translation through a distance2 t in a medium of refractive
index n. Thus

λ2

2x

F
HG
I
KJ

= 
1

0 1

1 0

1

1

0 1
2 1 1

1

−F
HG

I
KJ
F
HG

I
KJ

−F
HG

I
KJ
F
HG
I
KJ

P

t n

P

x/

λ
(49)

where

P1 = 
n

R
− 1

1
and P2 = 

1

2

− n
R

 = –
n
R
− 1

2
(50)

represent the powers of the two refracting surfaces. Thus our sys-
tem matrix is given by

S = 
b a

d c

−
−
F
HG

I
KJ

 = 
1

0 1

1 0

1

1

0 1
2 1−F

HG
I
KJ
F
HG

I
KJ

−F
HG

I
KJ

P

t n

P

/

= 
1 1

1

2
1 2 1

1

− − − −FH
I
K

−

F

H

G
GG

I

K

J
JJ

P t
n

t
n

P P t
n

P

t
n

P
(51)

For a thin lens, t Æ 0 and the system matrix takes the following
form:

S = 
1

0 1
1 2− −F

HG
I
KJ

P P
(52)

Thus for a thin lens,

a = P1 + P2 b = 1 c = 1 d = 0 (53)

Substituting the above values of a, b, c, and d in Eq. (43), we obtain

D2 + (P1 + P2) D1D2 – D1 = 0
or

1 1

2 1D D
− = P1 + P2

= (n – 1) 
1 1

1 2R R
−F

HG
I
KJ

(54)

or
1 1

2 1D D
− = 1

f
(55)

where

f = 
1

1 2P P+
= ( )n

R R
− −F
HG

I
KJ

L

N
M

O

Q
P

−

1 1 1

1 2

1

(56)

represents the focal length of the lens. Equation (55) is the well-
known thin lens formula. (The signs of R1 and R2 for different kinds
of lenses are shown in Fig. 5.7). Thus the system matrix for a thin
lens is given by

S = 
1 1

0 1

−F

H
GG

I

K
JJf (57)

2 Notice that since we are dealing with paraxial rays, the distance between P and Q is approximately t.

R1 R2

–D1 D2

O

P
Q

It

n

x1 x2

Fig. 5.6 A paraxial ray passing through a thick lens of

thickness t.
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For a thick lens, we have from Eq. (51)

2
1 2 1

1

= 1 = 1

= 1 =

t P t
a P P P b

n n

t t
c P d

n n

⎛ ⎞+ − −⎜ ⎟
⎝ ⎠

− −
(58)

If we substitute the above values for a, b, c, and d in Eq. (43), we
get the required relation between D1 and D2; however, for thick
lenses it is more convenient to define the unit and the nodal planes
which we shall do in the following sections.

5.3 UNIT PLANES

The unit planes are two planes, one each in the object and
the image space, between which the magnification M is
unity; i.e., any paraxial ray emanating from the unit plane in
the object space will emerge at the same height from the unit
plane in the image space. Thus, if du1 and du2 represent the

distances of the unit planes from the refracting surfaces (see
Fig. 5.8)3 we obtain from Eq. (46)

b + adu1 = 
2

1

uc ad-

 = 1 (59)

or du1 = 
1 b

a

-

(60)

du2 = 
c

a
- 1

(61)

Hence the unit planes are determined completely by the ele-
ments of the system matrix S.

It will be convenient to measure distances from the unit
planes. Thus if u is the distance of the object plane from the
first unit plane and v is the distance of the corresponding
image plane from the second unit plane (see Fig. 5.8), we
obtain

D1 = u + du1 = u + 
1- b

a
(62)

and

D2 = v + du2 = v + 
c

a
- 1

(63)

Now, from Eq. (43) we have

D2 = 
d cD
b aD
+

+

1

1
(64)

Substituting for D1 and D2 from Eqs. (62) and (63), we get

v + 
c

a
- 1

= 
(1 )

(1 )

d cu c b a

b au b

+ + -

+ + -

or v = 
( 1) ( 1)(1 )

(1 )

ad bc c au c au

a au

- + + - - +

+

= au
a au( )1+

(65)

3 Obviously, if we consider U1 as an object plane, then U2 is the corresponding image plane.

(a)

>
<

R O
R O

1

2

(b)

<
>

R O
R O

1

2

(c)

<
<

R O
R O

1

2

(d)

>
>

R O
R O

1

2

Fig. 5.7 Signs of R
1
 and R

2
 for different lens types.

– = –du1
1 – b

a du2 = c – 1
a

–D1 D2

U1 U2

–u v

Object
plane

First unit
plane

Second unit
plane

Image
plane

Fig. 5.8 Planes U
1
 and U

2
 are the two unit planes. A ray emanating at any height from the first unit

plane will cross the second unit plane at the same height.
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where we have used the condition that

det S = bc – ad = 1 (66)

On simplification, we obtain

1 1
v
-

u
 = a (67)

Thus 1/a represents the focal length of the system if the dis-
tances are measured from the two unit planes. For example,
for a thick lens one obtains [using Eqs. (58), (60). and (61)]

[ ]
2

1
1 2 1

1

1 ( )u
P t

d
n P P t n P

=

+ -

(68)

and

1
2

1 2 11 ( )u
Pt

d
n P P t n P

= -
+ -È ˘Î ˚ (69)

For a thick double convex lens with |R1| = |R2|

P1 = P2 = 
n

R
- 1

(70)

where R = |R1| = |R2|. Thus

1
1

1 22
u

t t
d

t nn n
n R

�= −−
(71)

and

2
1

1 22
u

t t
d

t nn n
n R

�= − −
−−

(72)

where we have assumed t << R which is indeed the case for
most thick lenses. The positions of the unit planes are
shown in Fig. 5.9. To calculate the focal length, we note
from Eq. (67) that

1
f

= a = P1 + P2 1 1-

F
H

I
K

t
n

P (73)

where we have used Eq. (58). Thus

1
f

= (n – 1) 1 1 1

1 2

2

1 2R R
n t
nR R

-
F
HG

I
KJ
+

-( )
(74)

5.4 NODAL PLANES

Nodal points are two points on the axis which have a relative
angular magnification of unity; i.e., a ray striking the first point
at an angle a emerges from the second point at the same angle
(see Fig. 5.10). The planes which pass through these points
and are normal to the axis are known as nodal planes.

To determine the position of the nodal points, we con-
sider two axial points N1 and N2 at distances dn1 and dn2 from
the two refracting surfaces, respectively (see Fig. 5.10). From
the definition of nodal points, we require that a ray incident
at an angle a1 on the point N1 emerge from the optical sys-
tem at the same angle a1 from the other point N2. Since we
have assumed the media on either side of the system to have
the same refractive index, this condition requires the equality
of l1 and l2. Also, since we are considering an axial object
point x1 = 0, we get from Eq. (44)

l2 = (b + adn1)l1 = l1 (75)

Thus

b + adn1 = 1 (76)

or dn1 = 
1- b

a
(77)

Comparing this with Eq. (60), we find that dn1 = du1. This has
arisen because of the equality of the indices of refraction on
either side of the optical system. Similarly we can get

dn2 = 
c

a
- 1

(78)

t
2n 2n

t

Fig. 5.9 Unit planes of a thick biconvex lens.

α

α

α

αN1

N2–dn1

dn2

Optical

system

(a)

(b)

N1

N2

Fig. 5.10 Points N
1
 and N

2
 denote the two nodal points of

an optical system. The nodal points can also lie

inside the optical system, as shown in (b).
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Thus, when the media on either side of an optical system
have the same refractive index (which is indeed the case for
most optical systems), the nodal planes coincide with the
unit planes. In general, if we know the elements of the sys-
tem matrix S (i.e., if we know a, b, c, and d which are also
called the Gaussian constants of the system), we can obtain
all the properties of the system.

Example 5.2 Consider a thick equiconvex lens (made of a
material of refractive index 1.5) of the type shown in Fig. 5.9. The
magnitudes of the radii of curvature of the two surfaces are 4 cm.
The thickness of the lens is 1 cm, and the lens is placed in air. Ob-
tain the system matrix, and determine the focal length and the
positions of unit planes.

Solution:

R1 = +4 cm R2 = –4 cm t = 1 cm

Both surfaces have equal power

P1 = P2 = 
1

1n

R

−
 = 0 5

4
.  = 0.125 cm–1

Thus the system matrix is, from Eq. (51),

0.125 1 1
1 0.125 0.125 1 0.125

1.5 1.5

1 0.125
1

1.5 1.5

⎛ ⎞⎛ ⎞×− − − − ×⎜ ⎟⎜ ⎟
⎜ ⎟⎝ ⎠
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

= 
0.9167 0.240

0.6667 0.9167

−⎛ ⎞
⎜ ⎟
⎝ ⎠

Thus

a = 1
f

 = 0.24 fi f ~
-  4.2 cm

b = 0.9167 = c d = –0.6667

Using Eqs. (60) and (61), we get the positions of the unit planes

dul = 
1

0 35
− −b
a

~ . cm

du2 = 
c

a
− − −1

0 35~ . cm

Thus the unit planes are as shown in Fig. 5.9. The nodal planes
coincide with the unit planes because the lens is immersed in air.

Example 5.3 Consider a sphere of radius 20 cm of refractive
index 1.6 (see Fig. 5.11). Find the positions of the paraxial focal
point and the unit planes.

Solution: The matrices from the first refracting surface to the
image plane are given by

Second Refraction Transmission Refraction
surface at second through  at the

to image surface glass first surface

1 0

1

⎛ ⎞
⎜ ⎟
⎝ ⎠v

1 (1 1.6)/20

0 1

−⎛ ⎞
⎜ ⎟
⎝ ⎠

1 0

40/1.6 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

1 (1.6 1)/20

0 1

− −⎛ ⎞
⎜ ⎟
⎝ ⎠

= 
1 0 0.25 0.0375

1 25 0.25

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠v

= 
0.25 0.0375

25 0.25 0.25 0.0375

−⎛ ⎞
⎜ ⎟+ −⎝ ⎠v v

Thus at the image plane, the ray coordinates are

2

2x

λ⎛ ⎞
⎜ ⎟
⎝ ⎠

= 1

1

0.25 0.0375

25 0.25 0.25 0.0375 x

λ− ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟+ −⎝ ⎠ ⎝ ⎠v v

This gives us

x2 = (25 + 0.25v)l1 + (0.25 – 0.0375v) x1

To determine the focal distance v, consider a ray incident parallel to
the axis for which l1 = 0. The focal plane would be that plane for
which x2 is also zero. This gives us

0.0375v = 0.25 or v = 6.7 cm

The system matrix elements are

a = 1
f

 = 0.0375 cm–1
fi f ~ .− 26 7 cm

b = 0.25 c = 0.25 d = –25 cm

The unit planes are given by

du1 = 
1 − b

a
 = 20 cm

and du2 = 
c

a
− 1

 = –20 cm

Thus both the unit planes pass through the center of the sphere.
In this example, we cannot use the approximation t << R.

5.5 A SYSTEM OF TWO THIN

LENSES

We finally use the matrix formulation for the analysis of a com-
bination of two thin lenses of focal lengths f1 and f2 separated
by a distance t. The system matrix for the combination of the

40 cm

v = 6.7 cm

F

Fig. 5.11 Imaging by a sphere of radius 20 cm and refrac-

tive index 1.6.
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two lenses can be obtained by noting that the matrices of the
two lenses are [see Eq. (57)]

1

1
1

0 1

f
Ê ˆ-Á ˜
Á ˜
Ë ¯

and 2

1
1

0 1

f
Ê ˆ-Á ˜
Á ˜
Ë ¯

(79)

and the matrix for translation through a distance t (in air is) is

1 0

1t

Ê ˆ
Á ˜Ë ¯

(80)

Thus the system matrix S is given by

S = 2 1

1 1
1 11 0

1
0 1 0 1

f f
t

Ê ˆ Ê ˆ- -Ê ˆÁ ˜ Á ˜
Á ˜Á ˜ Á ˜Ë ¯

Ë ¯ Ë ¯

= 2 1 2 1 2

1

1 1
1

1

t t

f f f f f

t
t

f

Ê ˆÊ ˆ Ê ˆ
- - + -Á ˜Á ˜ Á ˜Ë ¯ Ë ¯Á ˜

Á ˜Ê ˆÁ ˜-Á ˜Á ˜Ë ¯Ë ¯

(81)

Thus

1 2 1 2 2

1

1 1
= = 1

= 1 =

t t
a b

f f f f f

t
c d t

f

+ - -

- -

(82)

As already noted, the element a in the system matrix repre-
sents the inverse of the focal length of the system. Thus, the
focal length of the combination is

1

f
= 1 1

1 2 1 2f f
t

f f
+ -  = a (83)

The positions of the unit planes are given by [see Eqs. (60)
and (61)]

du1 = 
1 b

a

-

 = 
t f
f2

du2 = 
c

a
- 1

 = –
t f
f1

(84)

It is easy to see that if we have a system of four thin lenses,
we simply have to multiply seven matrices [four of them
being of the type given by Eq. (79) and three of them of the
type given by Eq. (80)].

Example 5.4 Consider a lens combination consisting of a con-
vex lens (of focal length +15 cm) and a concave lens (of focal length
–20 cm) separated by 25 cm (see Fig. 5.12 and Prob. 4.5). Determine
the system matrix elements and the positions of the unit planes. For
an object (of height 1 cm) placed at a distance of 27.5 cm from the
convex lens, determine the size and position of the image.

40/3
25

1015

27.5

+15 –20

Fig. 5.12

Solution:

f1 = +15 cm f2 = –20 cm t = 25 cm

Thus, using Eq. (82), we readily get

a = 
1

10
 = 1

f
b = 45

20
c = – 2

3
d = –25

and

du1 = 
1 − b

a
 = –12.5 cm du2 = 

c
a
− 1

 = – 50
3

 cm

Thus the distance of the object from the first unit plane is given by

u = –27.5 – (–12.5) = –15 cm

Since f = +10 cm, we get [using Eq. (67)]

v = 30 cm

which represents the distance of the image plane from the second
unit plane. Thus the image is at a distance of 30 –50/3 = 40/3 cm
from the concave lens. The magnification is given by

M = 
u

v
 = –2

Example 5.5 Consider a system of two thin lenses as shown
in Fig. 4.10. For a 1 cm tall object at a distance of 40 cm from the
convex lens, calculate the position and size of the image.

Solution: Let v be the distance of the image plane from the con-
cave lens. Thus the matrix, which when operated on the object
column matrix gives the image column matrix, is given by

Concave Concave Convex Convex Object
lens to lens lens to lens to convex
image concave lens  lens

1 0

1v
⎛ ⎞
⎜ ⎟
⎝ ⎠

1 1/10

0 1

+⎛ ⎞
⎜ ⎟
⎝ ⎠

1 0

8 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

1 1/20

0 1

−⎛ ⎞
⎜ ⎟
⎝ ⎠

1 0

40 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

= 
1 0 2.2 0.01

1 32 0.6

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠v

= 
2.2 0.01

2.2 32 0.6 0.01

⎛ ⎞
⎜ ⎟+ +⎝ ⎠v v

The image plane would correspond to

32 + 2.2v = 0

or 14.5 cm
�
− −v
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i.e., it is at a distance of 14.5 cm to the left of the concave lens. If
we compare this with Eq. (45), we obtain

M = 0.6 + 0.01v = 0.6 – 0.01 
32

2.2

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = +
1

2 2.

Example 5.6 In Example 5.5, determine the system matrix
and hence the positions of the unit planes. Finally, use Eq. (67) to
determine the position of the image.

Solution: The system matrix is given by

S = 
1 1/10 1 0 1 1/20

0 1 8 1 0 1

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= 
9/5 1/100

8 3/5

⎛ ⎞
⎜ ⎟
⎝ ⎠

Thus

a = –
1

100
fi f = –100 cm

b = 9
5

c = 3
5

d = –8

If we now use Eqs. (60 and (61), we have

du1 = 
1 − b

a
 = 80 cm

and du2 = 
c

a
− 1

 = 40 cm

Thus the first unit plane is at a distance of 80 cm to the right of the
convex lens, and the second unit plane is at 40 cm to the right of
the concave lens. The object distance from the first unit plane is
therefore given by

u = – (80 + 40) = –120 cm

We now use Eq. (67) to obtain

  1

v
= a + 1

u
 = – 1

100
 – 1

120
 = – 22

1200

fi v = – 600
11

 cm

Thus the image is at 54.5 cm to the left of the second unit plane or
at 14.5 cm to the left of the concave lens, as shown in Fig. 4.10.
The magnification is

M = 
u

v
 = + 1

2 2.

Summary

� In the paraxial approximation we may confine ourselves to
rays which pass through the axis of the system; these rays
remain confined to a single plane. Such a ray can be specified
by its distance from the axis of the system x and the quan-
tity l = n sin a, which represents the product of the
refractive index with the sine of the angle that the ray makes
with z axis.

� If a ray is initially specified by a 2 ¥ 1 matrix with elements
l1 and x1, then the effect of translation through a distance D
in a homogeneous medium of refractive index n1 is given by

2

2x

λ⎛ ⎞
⎜ ⎟
⎝ ⎠

= T
1

1x

λ⎛ ⎞
⎜ ⎟
⎝ ⎠

where the translation matrix T is given by

T = 
1

1 0

/ 1D n

⎛ ⎞
⎜ ⎟
⎝ ⎠

� The effect of refraction through a spherical refracting surface
(separating media of refractive indices n1 and n2) is given by

 
λ2

2x

F
HG
I
KJ

= R 
λ1

1x

F
HG
I
KJ

where the refraction matrix is given by

R = 
1

0 1

−F
HG

I
KJ

P

with

P = 
n n

R
2 1−

� By successive application of the above matrices one can
study paraxial imaging by a coaxial optical system.

� In an optical system, unit planes are two planes, one each in
the object and the image space, between which the magnifi-
cation M is unity; i.e., any paraxial ray emanating from the
unit plane in the object space will emerge at the same height
from the unit plane in the image space.

� Nodal points are two points on the axis which have a relative
angular magnification of unity; i.e., a ray striking the first
point at an angle a emerges from the second point at the same
angle. The planes which pass through these points and are
normal to the axis are known as nodal planes.

Problems

5.1 Consider a system of two thin convex lenses of focal
lengths 10 and 30 cm separated by a distance of 20 cm
in air.

(a) Determine the system matrix elements and the posi-
tions of the unit planes.

(b) Assume a parallel beam of light incident from the left.
Use Eq. (67) and the positions of the unit planes to
determine the image point. Using the unit planes, draw
the ray diagram.

[Ans: (a) a = 1/15, b = 1/3, c = –1, d = –20; the first convex
lens is in the middle of the two unit planes. (b) The final
image is virtual and is 15 cm away (on the left) from the
second lens.]

5.2 Consider a thick biconvex lens whose magnitudes of the
radii of curvature of the first and second surfaces are 45
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and 30 cm, respectively. The thickness of the lens is 5 cm,
and the refractive index of the material of the lens is 1.5.
Determine the elements of the system matrix and posi-
tions of the unit planes, and use Eq. (67) to determine the
image point of an object at a distance of 90 cm from the
first surface.
[Ans: a = 0.02716, b = 0.9444, c = 0.9630, d = –3.3333,
du1 = 2.0455, du2 = –1.3636. Final image at a distance of
60 cm from the second surface.]

5.3 Consider a hemisphere of radius 20 cm and refractive index
1.5. If H1 and H2 denote the positions of the first and sec-
ond principal points, respectively, then show that AH1 =
13.3 cm and that H2 lies on the second surface, as shown in
Fig. 5.13. Further, show that the focal length is 40 cm.

H1A H2 F2

Fig. 5.13

5.4 Consider a thick lens of the form shown in Fig. 5.14; the
radii of curvature of the first and second surfaces are

–10 and +20 cm, respectively, and the thickness of the lens
is 1.0 cm. The refractive index of the material of the lens is
1.5. Determine the positions of the principal planes.

[Ans: du1 = 20/91 cm, du2 = 40/91 cm]

5.5 Consider a combination of two thin lenses of focal lengths
f1 and f2 separated by a distance f1 + f2. Show that the an-
gular magnification of the lens combinations (which is just
l
2
/l

1
 = a

2
/a

1
) is given by – f1/f2. Interpret the negative sign

in the expression for magnification.
5.6 Consider a spherical refracting surface as shown in

Fig. 4.12. Using the matrix method, show that for an object
at a distance of (1 + n2/n1) r from the surface, the image is
virtual and at a distance of (1 + n1/n2) r from the surface.

U1 U2

Fig. 5.14
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6.1 INTRODUCTION

In Chap. 4, while studying the formation of images by refract-
ing surfaces and thin lenses, we made the assumption that
the object point does not lie far away from the axis of the
optical system and that the rays taking part in image forma-
tion are essentially those which make small angles with the
axis of the system. In practice, neither of the above assump-
tions is true; one in fact has to deal with rays making large
angles with the axis. The domain of optics dealing with rays
lying close to the optical axis and making small angles with it
is called paraxial optics. We found that in the realm of
paraxial optics, the images of objects were perfect; i.e., all
rays emanating from a single object point converged to a
single image point, and the magnification of the system was
a constant of the optical system, independent of the particu-
lar ray under consideration. Since in real optical systems,
nonparaxial rays also take part in image formation, the actual
images depart from the ideal images. This departure leads to
what are known as aberrations.

It can be shown that the primary aberrations of any
rotationally symmetric system can be specified by five coef-
ficients. The five coefficients represent the spherical
aberration, coma, astigmatism, curvature of field, and distor-
tion. These are called the Seidel aberrations. Since these
aberrations are present even for light of a single wavelength,
they are also called monochromatic aberrations. In this chap-
ter, we will consider the five kinds of aberrations separately

Geometrical optics is either very simple or else it is very complicated. . . . If one has an actual,
detailed problem in lens design, including analysis of aberrations, then he has to simply trace
the rays through the various surfaces using the law of refraction and find out where they come
out and see if they form a satisfactory image. People have said that this is too tedious, but today,
with computing machines, it is the right way to do it. One can set up the problem and make the
calculation one ray after another very easily. So the subject is really ultimately quite simple, and
involves no new principles.

—Richard Feynman, Feynman Lectures on Physics, Vol. I

ABERRATIONS
Chapter

Six

and discuss the effect on the image when each one of them
is present separately.

Note that if a polychromatic source (such as white light)
is used for image formation (which is indeed the case for
many optical instruments), then, in general, the images will
be colored; this is known as chromatic aberration. Physically,
chromatic aberration is due to the dependence of the refrac-
tive index of the material of the lens on the wavelength of the
radiation under consideration. Since image formation is ac-
companied by refraction at refractive index discontinuities, the
wavelength dependence of the refractive index results in the
colored image. For a polychromatic source, different wave-
length components (after refraction) proceed along different
directions and form images at different points; this leads to
colored images. Since chromatic aberration is the easiest to
understand, we discuss this first. This is followed by a dis-
cussion of monochromatic aberrations.

6.2 CHROMATIC ABERRATION

Let us consider a parallel beam of white light incident on a
thin convex lens, as shown in Fig. 6.1. Since blue light gets
refracted more than red light, the point at which the blue light
will focus is nearer the lens than the point at which the red
light will focus. Thus, the image will appear to be colored;
note that this aberration is independent of the five Seidel ab-
errations discussed in later sections.
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For the case of a thin lens, the expression for chromatic
aberration can be easily derived. The focal length of a thin
lens is given by

1
f

 = (n – 1) 1 1

1 2R R
-

F
HG

I
KJ

(1)

If a change of n by d n (the change of n is due to the
change in the wavelength of the light) results in a change of
f by d f, then we obtain, by differentiating Eq. (1),

– 2

f

f

d
= d n 1 1

1 2R R
-

F
HG

I
KJ

 = 
1

1

n

n f

d

-

i.e., df = –f 
1

n

n

d

-
(2)

which represents the chromatic aberration of a thin lens. If nb

and nr represent the refractive indices for the blue and red
colors respectively, then

fr – fb = f 
n n

n
b r-

-

F
HG

I
KJ1

(3)

represents the chromatic aberration.

6.2.1 The Achromatic Doublet

We first consider an optical system of two thin lenses made
of different materials placed in contact with each other. For
example, one of the lenses may be made of crown glass and
the other of flint glass. We will find the condition for this lens
combination to have the same focal length for the blue and
red colors. Let nb, ny, and nr represent the refractive indices
for the material of the first lens corresponding to the blue,
yellow, and red colors, respectively. Similarly, nb¢, ny¢, and nr¢

represent the corresponding refractive indices for the second
lens. If fb and fb¢ represent the focal lengths for the first and
second lenses corresponding to the blue color, and if Fb

represents the focal length of the combination of the two
lenses (placed in contact), then

1
Fb

 = 1 1
f fb b

+
¢

 = (nb – 1) 1 1

1 2R R
-

F
HG

I
KJ

+ (nb¢ – 1) 1 1

1 2¢

-

¢

F
HG

I
KJR R

(4)

where R1 and R2 represent the radii of curvature of the first
and second surfaces for the first lens and, as before, the
primed quantities refer to the second lens. Thus, we may write

1
Fb

= 
n
n f

n
n f

b b-

-
+

¢ -

¢ - ¢

1
1

1 1
1

1 (5)

where

1
f

∫ (n – 1) 1 1

1 2R R
-

F
HG

I
KJ

1
f ¢

∫ (n¢ – 1) 1 1

1 2¢

-

¢

F
HG

I
KJR R

(6)

n ∫ 
n nb r+

2
 ª ny n¢ ∫ 

¢ + ¢
ª ¢

n n
nb r

y2
(7)

and f and f ¢ represent the focal lengths of the first and sec-
ond lenses corresponding to a mean color which is around
the yellow region. Similarly, the focal length of the combina-
tion corresponding to the red color is given by

1
Fr

= 
n
n f

n
n f

r r-

-
+

¢ -

¢ - ¢

1
1

1 1
1

1 (8)

For the focal length of the combination to be equal for
blue and red colors, we must have

n
n f

n
n f

b b-

-
+

¢ -

¢ - ¢

1
1

1 1
1

1
= 

n
n f

n
n f

r r-

-
+

¢ -

¢ - ¢

1
1

1 1
1

1

or
f f

w w¢
+

¢

= 0 (9)

where w = 
n n

n
b r-

- 1
and w¢ = 

¢ - ¢

¢ -

n n
n
b r

1
(10)

are known as the dispersive powers. Since w and w¢ are both
positive, f and f ¢ must have opposite signs for the validity of
Eq. (9). A lens combination which satisfies Eq. (9) is known
as an achromatic doublet (see Fig. 6.2). If the two lenses are
made of the same material, then w = w¢ and Eq. (9) would
imply f = – f ¢; such a combination will have an infinite focal
length. Thus, for an achromatic doublet the two lenses must
be of different materials.

V
R

Fig. 6.1 When white light consisting of a continuous

range of wavelengths is incident on a lens, each

wavelength refracts by a different amount; this

leads to chromatic aberration. This aberration is

independent of the five Seidel aberrations.
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Example 6.1 An achromatic doublet of focal length 20 cm is
to be made by placing a convex lens of borosilicate crown glass in
contact with a diverging lens of dense flint glass. Assuming nr =
1.51462, nb = 1.52264, n¢r = 1.61216, and n¢b = 1.62901, calculate
the focal length of each lens; here the unprimed and the primed
quantities refer to the borosilicate crown glass and dense flint glass,
respectively.

Solution:

n ª 

n nb r+
2

 = 
1 52264 1 51462

2
. .+

 = 1.51863

n¢ ª 

′ + ′n nb r
2

 = 

1 62901 1 61216
2

. .+
 = 1.62058

Thus,

w = 
1 52264 1 51462

1 51863 1
. .

.
−

−
 = 0.01546

and

w¢ = 
162901 161216

162058 1
. .

.
−

−
 = 0.02715

Substituting in Eq. (9), we obtain

0 01546 0 02715. .
f f

+
′

= 0

or
f
f ′

= –0.56942

Now, for the lens combination to be of focal length 20 cm, we
must have

1 1
f f

+
′

= 1
20

or 1
f

(1 – 0.56942) = 
1

20

or f = 20 ¥ 0.43058 = 8.61 cm

and f ¢ = –
f

0 56942.
 ~
-  –15.1 cm

6.2.2 Removal of Chromatic Aberration

of a Separated Doublet

Let us consider two thin lenses of focal lengths f and f ¢ and
separated by a distance t (see Fig. 6.3). The focal length of

the combination F is

1
F

= 
1 1
f f

t
f f

+
¢
-

¢
(11)

The focal length of the first lens is given by

1
f

= (n – 1) 1 1

1 2R R
-

F
HG

I
KJ

(12)

with a similar expression for 1/f ¢. If D f and D n represent the
changes in the focal length and in the refractive index due to
a change D l in the wavelength, then by differentiating
Eq. (12) we obtain

-
D f

f 2
= Dn 1 1

1 2R R
-

F
HG

I
KJ

 = 
Dn

n f( )- 1

Thus, differentiating Eq. (11), we obtain

-
DF

F 2
= – 2 2 2 2

D D D Df f t f t f

f ff f f f

¢ ¢
- + +

¢¢ ¢

= 
( 1) ( 1) ( 1) ( 1)

n n t n t n

n f n f f n f f n f

D D ¢ D ¢ D
+ - -

- ¢- ¢ ¢ - ¢ ¢ -

= 
t

f f f f

w w¢
+ -

¢ ¢

(w + w¢) (13)

where, as before, w and w ¢ represent the dispersive powers.
Consequently, for the combination to have the same focal
length for blue and red colors we should have

( )t

f f

w + w¢

¢

= 
f f

w w¢
+

¢

or t = 
f fw ¢ + w¢

w + w¢
(14)

If both the lenses are made of the same material, then w = w¢

and the above equation simplifies to

t = 
f f+ ¢

2
(15)

implying that the chromatic aberration is very small if the dis-
tance between the two lenses is equal to the mean of the focal
lengths. This is indeed the case for the Huygens eyepiece.

Crown Flint

Fig. 6.2 An achromatic doublet.

f f�

t

Fig. 6.3 The separated doublet.
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6.3 MONOCHROMATIC

ABERRATIONS

6.3.1 Spherical Aberration

Let a beam of light parallel to the axis be incident on a thin
lens (see Fig. 6.4). The light rays after passing the lens
bend toward the axis and cross the axis at some point. If we
restrict ourselves to the paraxial region, then we can see
that all rays cross the z axis at the same point, which is at a
distance fp from the lens; fp represents the paraxial focal
length of the lens. If one does not restrict to the paraxial
region, then in general, rays which are incident at different

heights on the lens hit the axis at different points. For ex-
ample, for a convex lens, the marginal rays (which are
incident near the periphery of the lens) focus at a point
closer than the focal point of paraxial rays [see Fig. 6.4(a)].
Similarly, for a concave lens, rays which are incident farther
from the axis appear to be emerging from a point which is
nearer to the lens [see Fig. 6.4(b)]. The point FP at which
the paraxial rays strike the axis is called the paraxial focus,
and the point FM at which the rays near the periphery strike
is called the marginal focus. The distance between the two
foci is a measure of spherical aberration in the lens. Thus if
O represents an axial object, then different rays emerging
from the object converge to different points; consequently,
the image of a point object will not be a point. The distance
along the axis between the paraxial image point and the im-
age corresponding to marginal rays (i.e., rays striking the
edge of the lens) is termed longitudinal spherical aberra-
tion. Similarly, the distance between the paraxial image
point and the point at which the marginal ray strikes the
paraxial image plane is called the lateral spherical aberra-
tion [see Fig. 6.4(a)]. The image on any plane (normal to the
z axis) is a circular patch of light; however, as can be seen
from Fig. 6.4(a), on a plane AB the circular patch has the
least diameter. This is called the circle of least confusion
(see Fig. 6.5). For an object lying on the axis of a cylindri-
cally symmetric system (such as system of coaxial lenses),
the image will suffer only from spherical aberration. All
other off-axis aberrations such as coma and astigmatism will
be absent.

To see how the rays hitting the refracting surface at differ-
ent heights could focus to different points on the axis, let us
consider the simple case of a plane refracting surface as shown

A

B
FM

FP

f fP M–

Longitudinal
spherical
aberration

Lateral
spherical
aberration

FMFP

(a)

(b)

Fig. 6.4 (a) For a converging lens, the focal point for mar-

ginal rays lies closer to the lens than the focal

point for paraxial rays. The distance between the

paraxial focal point and the marginal focal point

is known as the longitudinal spherical aberration,

and the radius of the image at the paraxial focal

plane is known as the lateral spherical aberration.

The combined effect of defocusing and spherical

aberration leads to the formation of a circle of

least confusion, where the image has the mini-

mum diameter. (b) The spherical aberration of a

diverging lens.

Fig. 6.5 The spherical aberration of a convex lens (photo-

graph courtesy Dr. K. K. Gupta).
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in Fig. 6.6. Let the plane of the refracting surface be chosen as
the plane z = 0. Let P be the object point. The z axis is chosen
to be along the normal (PO) from point P to the surface. The
plane z = 0 separates two media of refractive indices n1 and n2
(see Fig. 6.6); in the figure we have assumed n2 > n1. Consider
a ray PM incident on the refracting surface (from the object) at
a height h as shown in Fig. 6.6. The refracted ray appears to
emerge from the point Q. We assume the origin to be at the
point O. Let the z coordinates of the points P and Q be z0 and
z1, respectively. Obviously, both z0 and z1 will be negative
quantities, and the distances OP and OQ will be –z0 and –z1,
respectively (see Fig. 6.6). We have to determine z1 in terms of
z0. From Snell’s law we know that

sin a = n sin b (16)

where a and b are the angles that the incident and refracted
rays make with the z axis and

n = 
n
n

2

1
(17)

Now, from Fig. 6.6 we have

–z1 = h cot b = 21 sin
sin

h
- b

b

or

z1 = –
1/ 2

2
2

1
1 sin

sin

nh

n

Ê ˆ- aÁ ˜Ë ¯a
(18)

where we have used Eq. (16). Since

sin a = 
h

h z2
0
2

+

(19)

we obtain

z1 = –

1/ 22
2 2 1/ 2

0 2 2 2
0

1
( ) 1

nh h
h z

h n h z

Ê ˆ
+ -Á ˜+Ë ¯

(20)

or

z1 = –n|z0| 

1/ 22

2
0

1
h

z

Ê ˆ
+Á ˜

Ë ¯
1 1

2

2
0
2

2

0
2

1 1 2

- +

F

HG
I

KJ

L

N

M
M

O

Q

P
P

-

h

n z

h

z

/

(21)

The value of z1 given in Eq. (21) is an exact expression in
terms of z0. At once it can be seen that the image distance z1
is a complicated function of the height h at which the ray
strikes the refracting surface. In the limit of h Æ 0, i.e., for
paraxial rays, we get

z1 = –n|z0| (22)

which is the expression for the image distance in the paraxial
region. To the next order of approximation, assuming
|h/z0| << 1, we get

z ~
-  –n|z0|

2 2

2 2 2
0 0

1 1
2 2

h h

z n z

Ê ˆ Ê ˆ
+ -Á ˜ Á ˜

Ë ¯ Ë ¯

~
-  –n|z0| 1

2
1

2

0
2 2

2
+ -

L

N
M

O

Q
P

h
z n

n( ) (23)

Thus the aberration is given by

D z = – h
n z

2

02 | |
 (n2 – 1) (24)

Equation (24) gives the longitudinal spherical aberration.
The negative sign implies that the nonparaxial rays appear to
emanate from a point which is farther away from the paraxial
image point.

From the above example, it can be seen that even a single
plane refracting surface suffers from spherical aberration.
Thus, spherical refracting surfaces and thin lenses must also
suffer from spherical aberration.

The calculation of the spherical aberration even for a
single spherical refracting surface is quite cumbersome (see,
e.g., Ref. 5); we just give the final results:

Dz = –
2

2 1
2

02 1
2

0 1

1 1

1
2

n n

R zn n
n

z n R

Ê ˆ-
+Á ˜Ë ¯Ê ˆ-

+Á ˜Ë ¯

× -
+

+
F
HG

I
KJ

n n
n z R
2 1

1 0

1 h2 (25)

where R represents the radius of curvature of the surface,
and n1 and n2 represent the refractive indices of the media
on the left and right, respectively, of the spherical surface
(see Fig. 6.7). For a plane surface R = •, Eq. (25) reduces to
Eq. (24) with n = n2/n1.

h

M

OP z
β

β

α
Q

–z1

–z0

n1 n2

z = 0

Fig. 6.6 Refraction at a plane surface.
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Example 6.2   Consider a spherical refracting surface of radius
R. Show that for a point A [see Fig. 6.7(b)] such that

z0 = 1 2

1

n n

n

+
R (26)

the spherical aberration is zero. Notice that both R and z0 are nega-
tive quantities. The corresponding image point B is at a distance
[(n2–n1)/n2] z0. Points A and B are known as the aplanatic points
and are utilized in microscope objectives.

Solution: For z0 = [(n1+n2)/n1] R, one of the factors in Eq. (25)
vanishes and the spherical aberration is zero. Indeed, it can be rig-
orously shown that all rays emanating from point A appear to
diverge from point B (see also Sec. 4.8).

Example 6.3   Consider a refracting surface obtained by re-
volving an ellipse about its major axis (see Fig. 6.8). Show that all
the rays parallel to the major axis will focus at one of the foci if the
eccentricity of the ellipse is equal to n1/n2.

[Hint: The eccentricity of the ellipse is given by

e = OF
a

 = 
1/ 22

2
1

b

a

Ê ˆ
-Á ˜Ë ¯

where a and b are the semimajor and semiminor axes, respectively.
If we assume n1(QP) + n2(PF) = n2(BF), then one can easily show
that the coordinates of the point P(x, y) will satisfy the equation of
the ellipse.]

In a similar manner, for a set of rays incident parallel to the
axis, one can show that the coefficient of spherical aberra-
tion of a thin lens made of a material of refractive index n and
placed in air, with the surfaces having radii of curvature R1
and R2, is given by

A = –
f n

n

( )- 1

2 2

× 

2

3
2 2 1

1 1 1
( 1)P P n

R R R

Ï ¸Ê ˆ È ˘Ô Ô- - - + +Ì ˝Í ˙Á ˜Ë ¯ Î ˚Ô ÔÓ ˛
(27)

where

P =
1
f

 = 
1 2

1 1
( 1)n

R R

Ê ˆ
- -Á ˜Ë ¯

(28)

represents the power of the lens. The coefficient A is such
that when it is multiplied by the cube of the height of the ray
at the lens, one obtains the lateral spherical aberration. Thus
the lateral spherical aberration for rays hitting the lens at a
height h is

Slat = Ah3 = –
f n h

n

( )- 1

2

3

2

¥ 

2

3
2 2 1

1 1 1
( 1)P P n

R R R

Ï ¸Ê ˆ È ˘Ô Ô- - - + +Ì ˝Í ˙Á ˜Ë ¯ Î ˚Ô ÔÓ ˛
(29)

The longitudinal spherical aberration which corresponds
to the difference between the marginal focal length and the
paraxial focal length is given by

Slong = Ah2f

= –
( )n f h

n

- 1

2

2 2

2

¥ 
1 1 1 1 1

1
3

2 2

2

R R
n

f R f
- -

+F
HG

I
KJ

-
F
HG

I
KJ

L

N
M
M

O

Q
P
P

(30)

For a converging lens, Slong will always be negative, im-
plying that the marginal rays focus closer to the lens.

For a thin lens of given power (i.e., of a given focal
length), one can define a quantity q, called the shape factor,
by the relation

q = 
R R
R R

2 1

2 1

+

-
(31)

Q

BOFA

P x  y( , )n1

n2

Fig. 6.8 For Example 6.3.

A B C

n1 n (> )n2 1

– Z0

– R

Normal

Fig. 6.7 The aplanatic points of a spherical refracting surface.
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where R1 and R2 are the radii of curvature of the two sur-
faces. For a given focal length of the lens, one can control
the spherical aberration by changing the value of q. This pro-
cedure is called bending of the lens. Figure 6.9 shows the
variation of spherical aberration with q for n = 1.5, f = 40 cm
(i.e.; P = 0.025 cm–1), and h = 1 cm. For values of q lying near
q ~
-  +0.7, the (magnitude of the) spherical aberration is mini-

mum (but not zero). Thus, by choosing proper values of the
radii, the spherical aberration can be minimized. The value
q = +1 implies R2 = • and hence it corresponds to a
planoconvex lens with the convex side facing the incident
light. On the other hand, for a planoconvex lens with the
plane side facing the incident light, R1 = • and q = –1. Thus
the spherical aberration is dependent on how the deviation
is divided between the surfaces.

The physical reason for the minimum of |Slong| to occur
at q ~

-  0.7 is as follows: It has already been mentioned before
that (for a converging lens) the marginal rays undergo a large
deviation which results in the spherical aberration [see
Fig. 6.4(a)]. As such we should expect the spherical aberration
to be minimum when the angle of deviation d [see Fig. 6.10(a)]
is minimum. As in the case of the prism [see Fig. 6.10(b)], this
would occur when the deviations suffered at each of the re-
fracting surfaces were exactly equal, i.e.,

d1 = d2 (d = d1 + d2) (32)

Indeed for q = 0.7, the deviations suffered at each of the sur-
faces are equal, and one obtains minimum spherical aberration.

–2.0 –1.0 1.0 2.00

Coma

q

0.10

–0.10

–0.20

–0.30

Sp
he

ric
al

 a
be

rra
tio

n

Fig. 6.9 Variation of spherical aberration and coma with the

shape factor of a thin lens with n = 1.5, f = 40 cm,

and h = 1 cm. For calculating the coma we have

assumed tan q = 1; i.e., rays make an angle of 45°

with the axis.

δ1

δ2

δ

(a)

(b)

δ1

δ2

δ

A

B C

Fig. 6.10 (a) Refraction at the two refracting surfaces of a

thin lens; the diagram is exaggerated to show

clearly the angles. (b) For a prism, the minimum

deviation position corresponds to d
1
 = d

2
.

L2L1

C2 C DC1

h2h1

B

A

x

θ1

θ2

f x1 –

f1

Fig. 6.11 Condition for minimum spherical aberration

for a combination of two thin lenses.

Using the criterion of equal deviation discussed above,
we will determine the separation between two thin lenses
which would lead to minimum spherical aberration. Let L1
and L2 be two lenses of focal lengths f1 and f2, respectively,
separated by a distance x (see Fig. 6.11). If q1 and q2 repre-
sent the deviations of the ray at the two lenses, then for
minimum spherical aberration we get

q1 = q2 (33)
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To obtain an expression for the deviation suffered by a
ray when it encounters a lens, we refer to Fig. 6.12 where a
ray PA gets refracted along AQ after suffering a deviation
through an angle q. From triangle PAQ, we can see that

q = 1 2
h h

u
q + q - +

-
�

v

= h 1 1
v
-

F
H

I
Ku

 = 
h
f

(34)

where we have used the paraxial relation

1 1
v
-

u
= 

1
f

(35)

The quantity u is an intrinsically negative quantity. Thus
Eq. (33) becomes

h
f
1

1
= 

h
f
2

2
(36)

From similar triangles AC1D and BC2D (see Fig. 6.11), we can
write

h
f
1

1
= 

h
f x

2

1 -
(37)

If we use Eqs. (36) and (37), we obtain

x = f1 – f2 (38)

Thus the spherical aberration of a combination of two thin
lenses is a minimum when their separation is equal to the

difference in their focal lengths. Indeed, in the Huygens eye-
piece (see Fig. 6.13), the focal length of the field lens is 3f,
where f represents the focal length of the eye lens. The dis-
tance between the two lenses is 2f. We can immediately see
that the conditions for achromatism [see Eq. (15)] and minimum
spherical aberration [see Eq. (38)] are simultaneously satisfied.
Since the eyepiece as a whole is corrected and the individual
lenses are not, the image of the cross wires (which are placed
in plane PQ) will show aberrations. A discussion of the proce-
dure for reducing the aberrations in various optical instruments
requires a very detailed analysis involving the tracing of the
rays, which is beyond the scope of this book.

Note that even when the system is free from all aberrations,
the image of a point object will still not be a point because of
diffraction effects (see Sec. 18.3). For example, if a perfectly
spherical wave is emanating from a lens, the ray theory predicts
a point image whereas the diffraction theory (which takes into
account the finiteness of the wavelength) predicts that the im-
age formed in the image plane will be an Airy pattern [see
Fig. 18.8(c)], and the first dark ring will occur at a distance of
1.22lf/D from the paraxial image point (see Fig. 6.14) where D is
the diameter of the exit pupil. The Airy pattern shown in Fig. 6.14
is highly magnified. For example, for l = 5000 Å, D = 5 cm, and
f = 10 cm, the radii of the first and second dark rings in the Airy

θ

h

A

P Qθ1 θ2

(–  )u
v

Fig. 6.12 Calculation of the angle of deviation.

D

Incident
plane wave

(a)
(b)

F�

F

Fig. 6.14 A perfectly spherical wave (converging on the plane FF¢ ) will produce an Airy pattern on the image plane.

3f
f

P

Q

2f

f

Fig. 6.13 The Huygens eyepiece.
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1 It must be mentioned that a proper understanding of the aberrations can only be achieved by a careful and thorough mathematical
analysis. This, however, is beyond the scope of this book; interested readers may look up Refs. 1 and 3.

Image

Object

(a)

(b)

h

30°

(c)

Fig. 6.15 The image formation in the presence of coma. In

(a) we have shown only those rays which lie in

the meridional plane. (b) A three-dimensional

perspective is shown. (c) The composite image.

pattern will be about 0.00012 and 0.00022 mm, respectively
(see Sec. 18.3). The spatial extent of the Airy pattern will be-
come larger with a decrease in the value of D. Often one uses
a “stop” to restrict to the paraxial region; however, if the di-
ameter of the stop is made very small, then the diffraction
effects will dominate. Indeed, a camera gives the best image
when f/D ª 5.6; at high apertures aberrations degrade the
image, and at low apertures diffraction degrades the image.

6.3.2 Coma

As mentioned earlier, for a point object lying on the axis the image
will suffer only from spherical aberration. For off-axis points, the
image will also suffer from coma, astigmatism, curvature of field,
and distortion. The first off-axis aberration is coma; i.e., for points
lying very close to the axis, the image will suffer from spherical
aberration and coma only. In this section we will briefly discuss
the effect of coma, assuming that all other aberrations are absent.

The effect of coma is schematically shown in Fig. 6.15(a). The
rays which proceed near the axis of the lens focus at a point
different from that of the marginal rays. Thus, it appears that the
magnification is different for different parts of the lens. If we
consider the image formation by different zones of a lens, then
the spherical aberration arises because different zones have
different powers and coma arises because different zones have
different magnifications. In Fig. 6.15(a) we have shown only those
rays which lie in the meridional plane, i.e., that plane containing
the optical axis and the object point. To see the shape of the image,
one has to consider the complete set of rays.1 In Fig. 6.15(b)
we have shown a three-dimensional perspective in which we have
considered a set of rays that hit the lens at the same distance
from the center. Rays which intersect the lens at diametrically
opposite points focus to a single point on the paraxial image
plane. These different pairs of rays focus to different points in the
image plane such that these foci lie on a circle. The radius of the
circle and the distance at which the center lies from the ideal
image point measure the coma. As the radius of the zone [shown
as h in Fig. 6.15(b)] increases, the center of the circle also shifts
away from the ideal image. Thus the composite image will
have a form shown in Fig. 6.15(c). The image of a point object
thus has a cometlike appearance and hence the name coma (see
Fig. 6.16).

For a parallel bundle of rays incident on a lens and inclined
at an angle q with the z axis (see Fig. 6.17), one can show that
the coma in the image is given by (see, e.g., Ref. 1)

Coma =
3 1

2
( )n -

 f h2 tan2
q

¥

2

2 2 2
1 2 1 2

( 1) (2 1) 1n n n n n

nR R n R R

È ˘- + - -
- -Í ˙

Í ˙Î ˚
(39)

In Fig. 6.9 we plotted the variation of coma with the shape
factor q. It can immediately be seen that for a lens with
q = +0.8, coma is zero. It can also be seen that both spherical
aberration and coma are close to a minimum for a
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planoconvex lens (with the convex side facing the incident
light) for which q = 1.0, and as such planoconvex lenses are
extensively used in eyepieces.

Note that in Sec. 4.11 we derived the Abbe sine condition;
when it is satisfied, the optical system is free from spherical
aberration and coma.

6.3.3 Astigmatism and Curvature

of Field

When an optical system is free from spherical aberration and
coma, then the system will image sharply those object points
lying on or near the axis. But for points far away from the
axis, the image of a point will not be a point and then the
optical system is said to be afflicted with astigmatism.

Consider an object point P far away from the axis. The
plane containing the axis and the object point is called the
meridional plane, and the plane perpendicular to the meridi-
onal plane (containing the axis) is called the sagittal plane.
Figure 6.18 shows the image formation when the optical sys-
tem suffers from astigmatism only. The rays in the meridional
plane converge at a different point compared to those in the
sagittal plane. For example, rays PA and PB focus at point T,
and rays PC and PD focus at a point S which is different

C

S

T

P

B

D

A

Fig. 6.18 Image formation in the presence of astigmatism.

Fig. 6.16 Image of a point source showing coma. [After

H. F. Meiners, Physics Demonstration Experiments,

Vol. ll, The Ronald Press Co., New York, 1970;

used with permission.]

θ

Fig. 6.17 Parallel rays (inclined at an angle q with the

axis) incident on a thin lens.

gha80482_ch06_079-092.PMD 1/14/2009, 9:36 PM88



Aberrations 89
�

from T. Since at point T the rays in the sagittal plane have not
still focused, one in fact has a focal line that is normal to the
meridional plane. This focal line T is called the tangential
focus. Similarly, since at S the rays in the meridional plane
have defocused, one obtains a focal line lying in the tangen-
tial plane; this is called the sagittal focal line. The distance
between S and T is a measure of astigmatism.

To see the origin of astigmatism, one observes that for a
point on the axis (when the lens is free from other aberrations)
the wave front emerging from the lens is spherical; and thus
as the wave front progresses, it converges to a single point.
But when the object point is nonaxial, then the emerging wave
front is not spherical; and thus as the wave front converges, it
focuses not to a point but to two lines, which are normal to
each other and called the tangential and the sagittal focal lines.
Somewhere between the two focal lines, the image is circular
and is called the circle of least confusion.

The distance between the tangential and sagittal foci in-
creases as the object point moves away from the axis. Thus the
tangential foci and the sagittal foci of points at different dis-
tances from the axis lie on two surfaces, as shown in
Fig. 6.19. The optical system is said to be free from astigmatism
when the two surfaces coincide. But even when they coincide,
it can be shown that the resultant image surface will be curved.
This defect of the image is termed curvature of the field.

As an example of image formation in the presence of astig-
matism, consider a spoked wheel coaxial with the lens axis,
as shown in Fig. 6.20(a). Since on the T surface the image of
a point source is a line perpendicular to the meridional plane,
on the T surface, the complete rim of the wheel will be in
focus while the spokes will be out of focus, as shown in
Fig. 6.20(b). Similarly, since on the S surface the image of a
point is a line in the meridional plane, the spokes will be in
focus, and the rim will not be in focus, as shown in Fig. 6.20(c).

6.3.4 Distortion

The last of the Seidel aberrations is called distortion and is
caused by nonuniform magnification of the system. When
we discussed spherical aberration, we mentioned that for a
point object on the axis of the optical system, the images will
suffer only from spherical aberration. Similarly, if we have a
pinhole on the axis at any plane of the optical system (see
Fig. 6.21), then the image will suffer only from distortion.
This is so because corresponding to any point in the object
plane, only one of the rays emanating from this point will
pass through the pinhole; consequently, all other aberra-
tions will be absent. Obviously, for such a configuration,
each point will be imaged as a point; but if the system suffers
from nonuniform magnification, the image will be distorted.
This can be illustrated if we consider the imaging of four
equally spaced points A, B, C, and D, which are imaged as A¢,
B¢, C¢, and D¢, respectively. Mathematical analysis shows
that  (Ref. 3)

Xd = Mx0 + E(x0
2 + y0

2)x0 (40)

and Yd = My0 + E(x0
2 + y0

2)y0 (41)

where (x0, y0) and (Xd, Yd) represent the coordinates of the
object and the image point, respectively; M represents the
magnification of the system; and E represents the coefficient

A
B
C
D

A�
B�
C�
D�

Fig. 6.21 In the presence of a pinhole on the axis, the image

suffers only from distortion.

T surface S surface

(a) (b) (c)

Fig. 6.20 (a) Spoked object coaxial with the axis of the lens;

(b), (c) Images on the T surface and S surface,

respectively.
T

S
Paraxial

image plane

Fig. 6.19 Tangential and sagittal foci.
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of distortion. Figure 6.22(b) corresponds to a negative value
of E and is known as barrel distortion. The distortion of the
image can be easily understood if we consider the imaging of
a square grid, as shown in Fig. 6.22. Assuming unit magnifi-
cation (i.e., M = 1), the points having coordinates (0, 0),
(h, 0), (2h, 0), (3h, 0), (0, h), (0, 2h), (0, 3h), (h, h), (h, 2h),
(2h, h),  . . . are imaged at (0, 0), (h + Eh3, 0), (2h + 8Eh3, 0),
(3h + 27Eh3, 0), (0, h + Eh3), (0, 2h + 8Eh3), (0, 3h + 27Eh3),
(h + Eh3, h + Eh3), (h + Eh3, 2h + 8Eh3), (2h + 8Eh3, h + Eh3),
. . . , respectively. If you actually plot these points,
then for E < 0, you obtain a figure like the one shown in
Fig. 6.22(b). Similarly for E > 0, you obtain Fig. 6.22(c). Notice
that each point is imaged at a point, but the image is distorted
because of nonuniform magnification.

Summary

� For a polychromatic source, different wavelength components
(after refraction) proceed along different directions and form
images at different points; this leads to chromatic aberrations.
If we consider two thin lenses made of different materials
placed in contact with each other, the focal length of the com-
bination will be the same for blue and red colors if

f f

′ω ω+
′ = 0

where

w = 
n n

n
b r−

− 1
and w¢ = 

′ − ′
′ −

n n
n
b r

1

are known as the dispersive powers. Further,

n ∫ 
n nb r+

2
 ª ny n¢ ∫ 

′ + ′n nb r
2

 ª n¢y

where nb, ny, and nr  represent the refractive indices for the
material of the first lens corresponding to the blue, yellow,
and red colors respectively. Similarly,  nb¢, ny¢, and nr¢  rep-

resent the refractive indices for the second lens. Since w and
w¢ are both positive, f and f ¢ must have opposite signs.

� For a lens, the marginal rays (which are incident near the
periphery of the lens) focus at a point which is different
from the focal point of paraxial rays. The distance along
the axis between the paraxial image point and the image
corresponding to marginal rays (i.e., rays striking the edge
of the lens) is termed longitudinal spherical aberration.

� The spherical aberration of a combination of two thin
lenses is a minimum when their separation is equal to the
difference in their focal lengths.

Problems

6.1 Consider a plane glass slab of thickness d made of a mate-
rial of refractive index n, placed in air. By simple application
of Snell’s law, obtain an expression for the spherical aberra-
tion of the slab. What are other kinds of aberrations that the
image will suffer from?

[Ans: Spherical aberration = –
( )n dh

n u

2 2

3 2
1

2

−
, where h is the

height at which the ray strikes the slab and u is the dis-
tance of the object point from the front surface of the slab.]

6.2 Why can’t you obtain an expression for the spherical
aberration of a plane glass slab from Eq. (27) by tending R1,
and R2 to •?

6.3 Obtain an expression for the chromatic aberration in the
image formed by a plane glass slab.

1 1

r b

d
n n

Ans :
⎡ ⎤⎛ ⎞

≈ −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

6.4 Does the image formed by a plane mirror suffer from any
aberration?

6.5 Calculate the longitudinal spherical aberration of a thin
planoconvex lens made of a material of refractive index 1.5
and whose curved surface has a radius of curvature of 10 cm,
for rays incident at a height of 1 cm. Compare the values of

(0,0)

E < 0 E > 0

(b)(a) (c)

Fig. 6.22 (a) shows the object, (b) represents the image when E < 0 and (c) when E > 0.
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the aberration when (a) the convex side and (b) the plane
side face the incident light.

[Ans: (a) ª –0.058 cm; (b) ª –0.225 cm]

6.6 Consider a lens made up of a material of refractive index
1.5 with a focal length 25 cm. Assuming h = 0.5 cm and
q = 45°, obtain the spherical aberration and coma for the
lens for various values of the shape factor q, and plot the
variation in a manner similar to that shown in Fig. 6.9.

6.7 An achromatic cemented doublet of focal length 25 cm is to
be made from a combination of an equiconvex flint glass lens
(nb = 1.50529, nr = 1.49776) and a crown glass lens (nb =
1.66270, nr = 1.64357). Calculate the radii of curvature of
the different surfaces and the focal lengths of each of the
two lenses.

[Ans: R1 = 14.2 cm = –R2 = 1 2;R R′ ′− = –42 cm]
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PART  2
Vibrations and WVibrations and WVibrations and WVibrations and WVibrations and Wavesavesavesavesaves

This part (consisting of six chapters) discusses many interesting experiments such as
the physics behind ionospheric reflection, redness of the setting Sun, water waves, and
pulse dispersion. Chapter 7  starts with simple harmonic motion (which is the most
fundamental vibration associated with wave motion) and is followed by a derivation of
the refractive index variation with frequency. Chapters 8 and 9 discuss Fourier series
and Fourier transforms which are extensively used in studying the distortion of optical
pulses as they propagate through dispersive media (Chap. 10). The derivation and
solutions of the wave equation represent the basic physics of wave propagation which
are discussed in Chap. 11. Chapter 12 discusses Huygens’ principle which is used to
derive the laws of reflection and Snell’s law of refraction.
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7.1 INTRODUCTION

The most fundamental vibration associated with wave motion
is the simple harmonic motion; in Sec. 7.2 we will discuss
simple harmonic motion, and in Sec. 7.3 we will discuss the
effects (on the vibratory motion) due to damping. If a peri-
odic force acts on a vibrating system, the system undergoes
what are known as forced vibrations; in Sec. 7.4 we will study
such vibrations which will allow us to understand the origin
of refractive index (see Sec. 7.5) and even Rayleigh scatter-
ing (see Sec. 7.6), which is responsible for the red color of the
setting (or rising) Sun and blue color of the sky (see Fig. 3.21
and the color photograph in the insert at the end of the book).

7.2 SIMPLE HARMONIC

MOTION

A periodic motion is a motion which repeats itself after regu-
lar intervals of time, and the simplest kind of periodic motion
is a simple harmonic motion in which the displacement varies
sinusoidally with time. To understand simple harmonic mo-
tion, we consider a point P rotating on the circumference of
a circle of radius a with an angular velocity w (see Fig. 7.1).

The correct picture of an atom, which is given by the theory of wave mechanics, says that, so
far as problems involving light are concerned, the electrons behave as though they were held
by springs. So we shall suppose that the electrons have a linear restoring force which, together
with their mass m, makes them behave like little oscillators, with a resonant frequency
w0 . . . . The electric field of the light wave polarizes the molecules of the gas, producing oscil-
lating dipole moments. The acceleration of the oscillating charges radiates new waves of the field.
This new field, interfering with the old field, produces a changed field which is equivalent to a
phase shift of the original wave. Because this phase shift is proportional to the thickness of the
material, the effect is equivalent to having a different phase velocity in the material.

—Richard Feynman, Feynman Lectures on Physics, Vol. I

SIMPLE HARMONIC MOTION,

FORCED VIBRATIONS, AND

ORIGIN OF REFRACTIVE INDEX

Chapter

Seven

We choose the center of the circle as our origin, and we as-
sume that at t = 0 the point P lies on the x axis (i.e., at point
P0). At an arbitrary time t the point will be at position P where
–POP0 = wt.

P0P2

B

O

a

A
x

P1

P3

y

P

ωt

Fig. 7.1 The point P is rotating in the counterclockwise

direction on the circumference of a circle of radius

a, with uniform angular velocity w. The foot of the

perpendicular on any one of the diameters

executes simple harmonic motion. Point P
0
 is the

position of the point at t = 0.
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Let A be the foot of the perpendicular from the point P on
the x axis. Clearly, the distance

OA = a cos wt (1)

and as point P rotates on the circumference of the circle,
point A moves to and fro about the origin on the diameter.
When point P is at P1, then the foot of the perpendicular is at
O. This can also be seen from Eq. (1) because when P coin-
cides with P1, wt = p/2 and hence a cos wt = a cos p/2 = 0. As
the point still moves farther, the foot of the perpendicular will
lie on the other side of the origin and thus OA will be nega-
tive, as is also evident from Eq. (1) because wt then greater
than p/2. When P coincides with P2, then OA = OP2 = –a.
When point P moves from P2 to P3, OA starts decreasing and
it finally goes to zero when P coincides with P2. After P
crosses P3, OA starts increasing again and finally acquires
the value a when P coincides with P0. After crossing the
point P0, the motion repeats itself.

A motion in which the displacement varies sinusoidally with
time [as in Eq. (1)] is known as a simple harmonic motion.
Thus, when a point rotates on the circumference of a circle
with a uniform angular velocity, the foot of the perpendicular
on any one of its diameters will execute simple harmonic
motion. The quantity a is called the amplitude of the motion,
and the period of the motion T will be the time required to
complete one revolution. Since the angular velocity is w, the
time taken for one complete revolution will be 2p/w. Thus,

T = 
2π
ω (2)

The inverse of the time period is known as the frequency:

n = 1
T

 = 
2

w

p

or w = 2pn (3)

We could as well have studied the motion of the point B,
which is the foot of the perpendicular from point P on the y
axis. The distance OB is given by (see Fig. 7.1)

OB = y = a sin wt (4)

We had conveniently chosen t = 0 as the time when P was
on the x axis. The choice of the time t = 0 is arbitrary, and we
could have chosen time t = 0 to be the instant when P was at
P¢ (see Fig. 7.2). If the angle –P¢OX = q, then the projection
on the x axis at any time t is given by

OA = x = a cos (wt + q) (5)

The quantity wt + q is known as the phase of the motion,
and q represents the initial phase. It is obvious from the
above discussion that the value of q is quite arbitrary and
depends on the instant from which we start measuring time.

We next consider two points P and Q rotating on the
circle with the same angular velocity, and we let P¢ and Q¢ be
their respective positions at t = 0. Let the angles –P¢OX and
–Q¢OX be q and f, respectively (see Fig. 7.3). Clearly at an
arbitrary time t, the distance of the foot of the perpendiculars
from the origin would be

xP = a cos (wt + q) (6a)
xQ = a cos (wt + f) (6b)

The quantity

(wt + q) – (wt + f) = q – f (7)

represents the phase difference between the two simple har-
monic motions; and if q – f = 0 (or an even multiple of p), the

O A
x

y

P�

P

θ
ωt

Fig. 7.2 At t = 0, point P is at P ¢, and therefore the initial

phase is q.

O BA
x

y

P�

Q�

Q
P

θ
φ

Fig. 7.3 Points A and B execute simple harmonic motions

with the same frequency w. The initial phases of A

and B are q and f, respectively.
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motions are said to be in phase, and if q – f = p (or an odd
multiple of p), the motions are said to be out of phase. If we
choose a different origin of time, the quantities q and f will
change by the same additive constant; consequently, the
phase difference q – f is independent of the choice of the
instant t = 0.

Thus the displacement of a particle, which executes simple
harmonic motion, can be written as

x = a sin (wt + q) (8)

Therefore, the velocity and the acceleration of the particle are
given by the following equations:

n = dx
dt

= aw cos (wt + q) (9)

and

f = 
d x

dt

2

2
= –aw

2sin(wt + q)

or,

f = 
d x

dt

2

2
= –w

2 x (10)

Equation (10) shows that the acceleration of the particle
is proportional to the displacement, and the negative sign
indicates that the acceleration is always directed toward
the origin. Equation (10) can be used to define the simple
harmonic motion as the motion of a particle in a straight
line in which the acceleration is proportional to the dis-
placement from a fixed point (on the straight line) and
always directed toward the fixed point. (Here the point
x = 0 is the fixed point and is usually referred to as the
equilibrium position.) If we multiply Eq. (10) by the mass
of the particle, then we obtain the following expression
for the force acting on the particle:

F = mf = –mw
2x

or F = –k x (11)

where k (= mw
2) is known as the force constant. We could

have equally well started from Eq. (11) and obtained simple
harmonic motion. This can be easily seen by noting that
since the force is acting in the x direction, the equation of
motion will be

m d x

dt

2

2
= F = –kx

or
d x

dt

2

2
 + k

m
 x = 0

or

d x

dt

2

2
 + w2x = 0 (12)

where w2 = k/m. The general solution of Eq. (12) can be writ-
ten in the form

x = A sin wt + B cos wt (13)

which can be rewritten in either of the following forms:

x = a sin (wt + q) (14)
or

x = a cos (wt + q) (15)

which describes a simple harmonic motion.

7.2.1 Examples of Simple

Harmonic Motion

In this section we discuss three simple examples of simple
harmonic motion.

(a) The simple pendulum The simplest example of
simple harmonic motion is the motion of the bob of a simple
pendulum in the gravitational field. If the bob of the pendu-
lum is displaced slightly from the equilibrium position (see
Fig. 7.4), then the forces acting on the bob are the gravita-
tional force mg acting vertically downward and the tension T, in
the direction B¢A. In the equilibrium position (AB) the tension is
equal and opposite to the gravitational force. However, in
the displaced position the tension T is not in the direction of
the gravitational force; and if we resolve the gravitational
force along the direction of the string and perpendicular
to it, we see that the component mg cos q balances the ten-
sion in the string and the component mg sin q is the restoring

θ
θ

A

B
B

h
B�

B�

mg

Fs x

l
l

A

T

(a) (b)

Fig. 7.4 (a) The forces on the bob of the pendulum when it

is displaced from its equilibrium position. The

restoring force is F
s
 which is equal to mg sin q. (b) If

the angle q is small, the motion of the bob can be

approximately assumed to be in a straight line.
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force. The motion of the bob is along the arc of a circle but if
the length of the pendulum is large and the angle q is small,
the motion can be assumed to be approximately in a straight
line [see Fig. 7.4(b)]. Under such an approximation we may
assume that this force is always directed toward point B and
the magnitude of this force will be1

mg sin q ª mg
x
l

(16)

Thus the equation of motion will be

F = m
d x

dt

2

2
 = –mg

x
l

(17)

or
d x

dt

2

2
 + w2x = 0 (18)

where w
2 = g/l. Equation (18) is of the same form as

Eq. (12); thus the motion of the bob is simple harmonic with
its time period given by

T = 
2π
ω

 = 2p

l
g

(19)

The expression for the time period is fairly accurate
(i.e., the motion is approximately simple harmonic) as long
as q <

~
 4°.

We next consider the motion of two identical simple
pendulums vibrating with the same amplitude a (see Fig. 7.5).
Let, at t = 0, the bob of one of the pendulums be at its ex-
treme right position, moving toward the right [Fig. 7.5(b)]. If
we measure the displacement from the equilibrium positions
of the pendulums, then the displacements are given by

x1 = a cos wt

x2 = a sin wt = a cos 
2

t
π⎛ ⎞ω −⎜ ⎟

⎝ ⎠
(20)

Thus the two bobs execute simple harmonic motion with a
phase difference of p/2, and in fact the first pendulum is
ahead in phase by p/2. In Fig. 7.5(b), if the bob were moving
toward the left, then the equation of motion would have been

x2 = –a sin wt = a cos 
2

t
pÊ ˆw +Á ˜Ë ¯

and then the second pendulum would have been ahead of
phase by p/2. Since, in general, the displacement of the bob
of the pendulum can be written as

x = a cos (wt + f) (21)

the velocity of the particle is given by

dx
dt

= –aw sin (wt + f) (22)

Thus the kinetic energy of the mass is

T = 1
2

2

m dx
dt
F
H
I
K

= 1
2

ma2
w

2 sin2 (wt + f) (23)

Comparing Eqs. (21) and (23), we see that when the par-
ticle is at its extreme positions, the kinetic energy is zero; and
when the particle passes through the equilibrium position,
the kinetic energy is maximum. At the extreme positions, the
kinetic energy gets transformed to potential energy. From
Fig. 7.4(a) it can immediately be seen that

Potential energy V = mgh = mgl (1 – cos q)

2= 2sin
2

mgl
θ⎛ ⎞

⎜ ⎟
⎝ ⎠

ª 2 mgl
2

2

qÊ ˆ
Á ˜Ë ¯

(q measured in radians)

ª 1
2

mgl x
l
F
H
I
K

2

 = 
1

2

g
m

l
Ê ˆ
Á ˜Ë ¯

x2

= 1
2

mw
2x2 (24)

or

V = 1
2

m w
2 a2 cos2(wt + f) (25)

where we have used the fact that w2 = g/l. The expression for
potential energy could have been directly written down by
noting that if the potential energies at x and at x + dx are V
and V + dV, then

dV = –F dx = +kx dx (26)

(a) (b)

Fig. 7.5 (a) and (b) show the motion of two identical pen-

dulums which are vibrating with the same

amplitude but having a phase difference of p/2.

The small circles denote the position of the bobs

at t = 0.

1 We will be assuming that q is small so that sin q ª q, where q is in radians. The above approximation is valid for q <~  0.07 rad (ª 4°).
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Thus

V = kx dx
x

0
z  = 1

2
k x2 (27)

where we have assumed the zero of the potential energy to
be at x = 0. Thus the total energy E is given by

E = T + V = 1
2

mw
2a2 (28)

which, as expected, is independent of time. We can also see
from Eq. (26) that the energy associated with the simple har-
monic motion is proportional to the square of the amplitude
and the square of the frequency.

(b) Vibrations of a mass held by two stretched springs

Another simple example is the motion of a mass m, held by
two stretched springs on a smooth table, as shown in Fig. 7.6.
The two springs are of natural length l0 [Fig. 7.6(a)], and cor-
responding to the equilibrium position of the mass, the
lengths of the stretched springs are l. If the mass is displaced
slightly from the equilibrium position, then the resultant force
acting on the mass will be

F = k[(l – x) – l0] – k[(l + x) – l0]

= –2kx (29)

where k represents the force constant of the spring. Once
again we get a force which is proportional to the displace-
ment and directed toward the equilibrium position, and
consequently, the motion of the mass on the frictionless table
will be simple harmonic.

(c) Vibrations of a stretched string When a stretched
string (as in a sonometer) is made to vibrate in its fundamen-
tal mode (see Fig. 7.7), then each point on the string executes
simple harmonic motion with different amplitudes but having
the same initial phase. The displacement can be written in the
form

y = asin x
L

pÊ ˆ
Á ˜Ë ¯

cos wt (30)

The amplitude is therefore zero at x = 0 and at x = L and is
maximum at x = L/2. On the other hand, if the string is
vibrating in its first harmonic, then each point on the first
half of the string vibrates out of phase with each point on
the other half.

7.3 DAMPED SIMPLE

HARMONIC MOTION

In Sec. 7.2, we showed that for a particle executing simple
harmonic motion (SHM), the equation of motion will be of
the form

d x

dt

2

2
 + w0

2 x(t) = 0 (31)

the solution of which is given by

x(t) = A cos (w0t + q) (32)

where A represents amplitude and w0 the angular frequency
of motion. Equation (32) tells us that the motion will con-
tinue forever. However, we know that in actual practice the
amplitude of any vibrating system (like that of a tuning fork)
keeps on decreasing, and eventually the system stops vibrat-
ing. Similarly, the bob of a pendulum comes to rest after a
certain time. This phenomenon is due to the presence of
damping forces which come into play when the particle is in
motion. For a vibrating pendulum, the damping forces are
primarily due to the viscosity of the surrounding medium.
Consequently, the damping forces will be much larger in
liquids than in gases. In general, the exact dependence of

(a)

(c)

(b)

l0

l

l0

l

x

Fig. 7.6 Two springs of natural length l
0
 [see (a)] are

stretched to a length l [see (b)] to hold the mass. If

the mass is displaced by a small distance x from

its equilibrium position [see (c)], the mass will ex-

ecute simple harmonic motion.

L

Fig. 7.7 When a string clamped at both the ends is made

to vibrate in its fundamental mode, all particles

execute simple harmonic motions with the same

frequency and same initial phase but having dif-

ferent amplitudes.
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the damping force on the velocity of the particle is quite
complicated; however, as a first approximation we may
assume it to be proportional to the velocity of the par-
ticle. This is also consistent with the fact that there are
no damping forces acting on the particle when it is at rest.
In this model, the equation of motion will be given by

m
2

2

d x

dt
= –G

dx
dt

 – k0x (33)

where the constant G determines the strength of the damping
force; the force constant is now denoted by k0 to avoid con-
fusion with the wave vector k. Equation (33) can be rewritten
in the form

2

2

d x

dt
 + 2K

dx
dt

 + w0
2 x(t) = 0 (34)

where

2K = G
m

and w0 = 
k
m

0 (35)

To solve Eq. (34), we introduce a new variable x(t) which
is defined by the

x(t) = x(t)e–Kt (36)
Thus,

dx

dt
= ( ) Ktd

K t e
dt

-

xÈ ˘
- xÍ ˙Î ˚

and
d x

dt

2

2 = 
2

2
2

2 ( ) Ktd d
K K t e

dtdt
−⎡ ⎤ξ ξ− + ξ⎢ ⎥

⎢ ⎥⎣ ⎦

On substitution in Eq. (34) we get

2

2

d

dt

x
+ (w0

2 – K2)x(t) = 0 (37)

Equation (37) is similar to Eq. (31); however, depending on
the strength of the damping force, the quantity w0

2 – K2 can
be positive, negative, or zero. Consequently, we must con-
sider three cases.

Case 1: w0
2 > K2

If the damping is small, w0
2 is greater than K2, and the solu-

tion of Eq. (37) is of the form

x(t) = A cos ( )2 2
0 K tω − + θ (38)

or x(t) = Ae–Kt cos ( )2 2
0 K tω − + θ (39)

where A and q are constants which are determined from the
amplitude and phase of the motion at t = 0. Equation (39) rep-
resents a damped simple harmonic motion (see Fig. 7.8).
Notice that the amplitude decreases exponentially with time

and the time period of vibration ( )2 2
02 K= π ω −  is greater

than in the absence of damping.

Case 2:  K2 > w0
2

If the damping is too large, K2 is greater than w0
2, and

Eq. (37) should be written in the form

2

2

d

dt

x
 – (K2 – w0

2)x(t) = 0 (40)

the solution of which is given by

x(t) = A exp ( )2 2
0K t- w  + B exp ( )2 2

0K t- - w (41)

Thus,

x(t) = A exp ( )2 2
0K K tÈ ˘- + - wÍ ˙Î ˚

+ B exp ( )2 2
0K K tÈ ˘- - - wÍ ˙Î ˚

(42)

and we can have two kinds of motion; one in which the dis-
placement decreases uniformly to zero or the other in which
the displacement first increases, reaches a maximum, and
then decreases to zero (see Fig. 7.9). In either case there are
no oscillations, and the motion is said to be overdamped or
dead beat. A typical example is the motion of a simple pen-
dulum in a highly viscous liquid (such as glycerine) where
the pendulum can hardly complete a fraction of the vibration
before coming to rest.

Case 3: K2 = w0
2

When K2 = w0
2, Eq. (37) becomes

2

2

d

dt

x
= 0 (43)

654321

–0.5

0.5

1

0

–1

t s( )

x
t(
)

Fig. 7.8 The exponential decrease of amplitude in a

damped simple harmonic motion. The figure cor-

responds to 
π

ω −2 2

0

2

K

 = 1 s and K = 0.5 s
–1

.

gha80482_ch07_093-110.PMD 1/14/2009, 7:59 PM100



Simple Harmonic Motion, Forced Vibrations, and Origin of Refractive Index 101
�

the solution of which is given by

x = At + B (44)

Thus
x(t) = (At + B)e–Kt (45)

The motion is again nonoscillatory and is said to corre-
spond to critical damping.

7.4 FORCED VIBRATIONS

We consider the effect of a periodic sinusoidal force (see
also Sec. 8.3) on the motion of a vibrating system. If the fre-
quency of the external force is w, then the equation of motion
is [cf. Eq. (33)]:

m
d x

dt

2

2
= F cos wt – G

dx
dt

 – k0x (46)

where the first term on the RHS represents the external force;
the other terms are the same as in Eq. (33). Equation (46) is
rewritten in the form2

d x

dt

2

2
 + 2K

dx
dt

 + w0
2 x(t) = G cos wt (47)

where G = F/m and the other symbols were defined in
Sec. 7.3. For the particular solution of Eq. (47) we try

x(t) = a cos (wt – f) (48)

Thus,

dx
dt

= –aw sin (wt – f)

and
d x

dt

2

2
= –aw

2 cos (wt – f)

Substituting the above forms for x(t), dx/dt, and d2x/dt2 in
Eq. (47), we obtain

–aw
2 cos (wt – f) – 2Kaw sin (wt – f) + aw0

2 cos (wt – f)

= G cos [(wt – f) + f] (49)

where we have written G cos wt as G cos [(wt – f) + f].
Thus,

a (w0
2 – w2) cos (wt – f) – 2Kaw sin (wt – f)

= G cos (wt – f) cos f – G sin (wt – f) sin f (50)

For Eq. (50) to be valid for all values of time, we must have

a (w0
2 – w2) = G cos f (51)
2Kaw = G sin f (52)

If we square and add, we get

a = 
1/ 22 2 2 2 2

0( ) 4

G

KÈ ˘w - w + wÎ ˚

(53)

Further

tan f = 
2 2
0

2Kw

w - w

(54)

Since K, w, and a are positive, f is uniquely determined by
noting that sin f should be positive; i.e., f must be in either
the first or the second quadrant.

To the solution given by Eq. (48), we must add the solu-
tion of the homogeneous equation, Eq. (34). Thus, assuming
w0

2 to be greater than K2 (i.e., weak damping), the general
solution of Eq. (47) will be of the form

x(t) = Ae–Kt ( )2 2
0cos K tw - - q  + a cos (wt – f) (55)

The first term on the RHS represents the transient solu-
tion corresponding to the natural vibrations of the system
which eventually die out. The second term represents the
steady-state solution which corresponds to the forced vibra-
tions imposed by the external force. Notice that the
frequency of the forced vibrations is the same as that of the
external force.

2 Notice that the RHS of Eq. (47) is independent of x; such an equation is said to be an inhomogeneous equation. An equation of the
type given by Eq. (34) is said to be homogeneous.

20
0

0.5

1

4
t s( )

x
t(
)

Fig. 7.9 The variation of displacement with time in an

overdamped motion. The solid and the dashed

curves correspond to B = 0 and B = –A/2, re-

spectively [see Eq. (42)]. In carrying out the

calculations we have assumed K = 2 s
–1

 and

- wK
2 2

0  = 1 s
–1

.
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7.4.1 Resonance

The amplitude of the forced vibration

a = 
1/ 22 2 2 2 2

0( ) 4

G

KÈ ˘w - w + wÎ ˚

(56)

depends on the frequency of the driving force and is a maxi-
mum when (w0

2 – w2)2 + 4K2
w

2 is a minimum, i.e., when

d

dw
[(w0

2 – w2)2 + 4K2
w

2] = 0

or 2(w0
2 – w2) (–2w) + 8K2

w = 0

or w = w0 

1/ 22

2
0

2
1

KÊ ˆ
-Á ˜wË ¯

(57)

Thus the amplitude is maximum3 when w is given by
Eq. (57). This is known as amplitude resonance. When damp-
ing is extremely small, the resonance occurs at a frequency

very close to the natural frequency of the system. The varia-
tion of the amplitude with w is shown in Fig. 7.10. Notice that
as the damping decreases, the maximum becomes very sharp
and the amplitude falls off rapidly as we go away from the
resonance. The maximum value of a is given by

( )
max 1/ 2

2 2 2 2 2 2
0 0(2 ) 4 1 2

G
a

K K K
=

È ˘+ w - w
Î ˚

( )
1/ 22 2

02

G

K K
=

w -

 
( )2 2 1/ 22

G

K K
=

w +

(58)

Thus, with increase in damping, the maximum occurs at
lower values of w and the resonance becomes less sharp.

To discuss the phase of the forced vibrations, we refer to
Eq. (54) from where we find that for small damping the phase
angle is small unless it is near resonance. For w = w0, tan f =
• and f is p/2; i.e., the phase of forced vibrations is p/2
ahead of the phase of the driving force. As the frequency of
the driving force is increased beyond w0, the phase also in-
creases and approaches p (see Fig. 7.11).

All the salient features of forced vibrations can be easily
demonstrated by means of an arrangement shown in
Fig. 7.12. In the figure, AC is a metal rod with a movable bob
B, and LM is a simple pendulum with a bob at M. The metal
rod and the simple pendulum are suspended from a string
PQ, as shown in Fig. 7.12. With B at the bottom, when the
rod AC is set in motion, the pendulum LM also vibrates. As
the bob B is moved upward, the time period decreases, the
frequency of the rod becomes closer to the natural frequency

3 There is no resonance condition when  K2 ≥ 1
2

w0
2.

4
0

0.2

0.4

0.6

5 6 7

K = 0

K = 0.2

K = 0.5

K = 1

K = 2

ω0
–1= 5.0 s

ω (s )–1

a
/ G

Fig. 7.10 The variation of amplitude with the frequency of

the external driving force for various values of K.

The calculations correspond to w
0
 = 5 s

–1
, and the

values of K are in s
–1

. Notice that with an increase

in damping the resonance occurs at a smaller

value of w.

π
2

θ

0
0.0 2.5 5.0 7.5 10.0

π

ω0
–1= 5.0 s

3 s–1
2 s–1

K = 1 s–1

ω (s )–1

Fig. 7.11 The dependence of the phase of the forced vibra-

tion on the frequency of the driving force.
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of the simple pendulum, and eventually the resonance condi-
tion is satisfied. At resonance, the amplitude of vibration of
the simple pendulum is maximum, and the phase difference
between the vibrations is nearly p/2; i.e., when the metal rod
is at its lowest position and moving toward the right, the
simple pendulum is at the extreme left position. If the bob B
is further moved upward, the frequency increases and the
amplitude of the forced vibrations decreases.

7.5 ORIGIN OF REFRACTIVE

INDEX

In this section we study the origin of the refractive index. We
know that an atom consists of a heavy positively charged
nucleus surrounded by electrons. In the simplest model of the
atom, the electrons are assumed to be bound elastically to
their rest positions; thus, when these electrons are displaced
by an electric field, a restoring force (proportional to the dis-
placement) will act on the electrons that will tend to return
the electrons to their rest positions. In this model, the equa-
tion of motion for the electron, in the presence of an external
electric field E, would be

m
d

dt

2

2
x

 + k0x = –qE (59)

or
d

dt

2

2
x

 + w0
2x = –

q
m

E (60)

where x represents the position of the electron, m and –q
represent the mass and charge, respectively, of the
electron (q ª +1.6 ¥ 10–19 C), k0 is the force constant, and

w0 = k m0 /e j  represents the frequency of the oscillator. We
assume

E = �x E0 cos (kz – wt) (61)

i.e., the field is in the x direction having an amplitude E0 and

propagating in the +z direction; �x  represents the unit vector
in the x direction; and k = 2p/l, with l representing the wave-
length. Thus

d x

dt

2

2
 + w0

2 x = –
qE
m

0 cos (kz – wt) (62)

where we have replaced the vectors by the corresponding
scalar quantities because the displacement and the electric
field are in the same direction. Except for the damping term,
Eq. (62) is similar to Eq. (46), and therefore the solution cor-
responding to the forced vibrations will be given by4

x = – 0
2 2
0( )

qE

m w - w

 cos (kz – wt) (63)

In the simplest model of the atom, the center of the nega-
tive charge (due to the electrons) is assumed to be at the
center of the nucleus. In the presence of an electric field,
the center of the negative charge gets displaced from the
nucleus which results in a finite value of the dipole moment
of the atom. In particular, if we have a positive charge +q at
the origin and a negative charge –q at a distance x, then the
dipole moment is –qx; thus, if there are N dispersion elec-
trons5 per unit volume, then the polarization (i.e., dipole
moment per unit volume) is given by

P = –Nqx = 
2

2 2
0( )

Nq

m w - w

 E

= cE (64)

where c = 
2

2 2
0( )

Nq

m w - w

(65)

is known as the electric susceptibility of the material. The
dielectric permittivity is therefore given by (see Sec. 23.9)

e = e0 + c (66)

or
2

2 2
0 0 0

1
( )

Nq

m

e
= +

e e w - w
(67)

Now, e/e0 is the dielectric constant, which is equal to the
square of the refractive index (see Chap. 23). Thus

n2 = 1 + 

12 2

2 2
0 0 0

1
Nq

m

-

Ê ˆw
-Á ˜e w wË ¯

(68)

B M

A

C

P L
Q

Fig. 7.12 An arrangement for demonstration of forced

vibrations.

4 Notice that in the absence of damping (i.e., when G = 0), f = 0; see Eq. (54).
 5 The number of dispersion electrons in a molecule of an ideal gas is the valence number of the molecules. This number is 2 for

H2, 6 for N2, etc.
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showing that the refractive index depends on the frequency;
this is known as dispersion. Assuming that the characteristic
frequency w0 lies in the far ultraviolet [see Eq. (74)],6 the

quantity ( )
12 2

01
-

-w w  is positive in the entire visible re-

gion. Further, as w increases, n2 also increases, i.e., the
refractive index increases with frequency; this is known as
normal dispersion. If we further assume w/w0 << 1, then

12 2

2 2
0 0

1 1

-

Ê ˆw w
- ª +Á ˜w wË ¯

and

n2
ª 1 + 

2 2

2 2
0 0 0

1
Nq

m

Ê ˆw
+Á ˜e w wË ¯

ª 1 + 
2 2 2 2

2 4 2
0 0 0 0 0

4 1Nq c Nq

m m

p
+

e w e w l
(69)

where l0 = 2p c/w is the free space wavelength. Equation (69)
can be written in the form

n2 = A + 
2
0

B

l
(70)

which is the well-known Cauchy relation. For hydrogen,
the experimental variation of n2 with l0 is approximately
given by

n2 = 1 + 2.721 ¥ 10–4 + 
18

2
0

2.11 10-¥

l
(71)

where the wavelength is measured in meters; the above
numbers correspond to 0°C and 76 cm Hg (see Ref. 9).
Thus,

2

2
0 0

Nq

me w

= 2.721 ¥ 10–4 (72)

and
2 2 2

4
0 0

4 c Nq

m

p

e w

= 2.11 ¥ 10–18 m2 (73)

If we divide Eq. (73) by Eq. (72), we would get

2 2

2
0

4 cp

w

= 
211 10

2 721 10

18

4

.

.

¥

¥

-

-

or n0 = 0

2

w

p

 ª 3 ¥ 1015 s–1 (74)

which is indeed in the ultraviolet region. We can eliminate w0

from Eqs. (72) and (73) to obtain

2

2 2
04

Nq

c mp e

ª 3 ¥ 1010 m–2 (75)

Now at NTP, 22,400 cm3 of H2 contains 6 ¥ 1023 molecules;
thus,

N = 2 ¥ 
23

5

6 10

22,400 10-

¥

¥
 m–3 ª 5 ¥ 1025 m–3

where the factor 2 arises from the fact that a hydrogen
molecule consists of two electrons. Hence,

2

2 2
04

Nq

c mp e

ª 
25 19 2

2 16 12 31

5 10 (1.6 10 )

4 9 10 8.85 10 9.1 10

-

- -

¥ ¥ ¥

¥ p ¥ ¥ ¥ ¥ ¥ ¥

ª 4 ¥ 1010 m–2

which qualitatively agrees with Eq. (75).
We note that for a gas of free electrons (as we have in the

upper atmosphere), there is no restoring force and we must
set w0 = 0. Thus the expression for the refractive index be-
comes [see Eq. (67)]

n2 = 1 – 
2

2
0

Nq

m e w

(76)

where N represents the density of free electrons. Equation (75)
shows that the refractive index is less than unity; however, this
does not imply that one can send signals faster than the speed
of light in free space (see Chap. 10). To quote Feynman:

For free electrons, w0 = 0 (there is no elastic
restoring force). Setting w0 = 0 in our dispersion
equation yields the correct formula for the index of
refraction for radiowaves in the stratosphere, where
N is now to represent the density of free electrons
(number per unit volume) in the stratosphere. But
let us look again at the equation, if we beam
X-rays on the matter, or radiowaves (or any electric
waves) on free electrons, the term (w0

2 – w2) become
negative, and we obtain the result that n is less than
one. That means that the effective speed of the
waves in the substance is faster than c! Can that be
correct? It is correct. In spite of the fact that it is

6 This also follows from the fact that according to classical electrodynamics, an oscillating dipole vibrating with frequency w0 will
radiate electromagnetic waves with frequency w0; and as an example, if we consider hydrogen, then �w0 ª 13.6 eV from which we
obtain w0 ª 2 ¥ 1016 s–1. This frequency corresponds to the far ultraviolet.
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said that you cannot send signals any faster than
the speed of light, it is nevertheless true that the
index of refraction of materials at a particular fre-
quency can be either greater or less than 1.

Equation (76) is usually written in the form

n2 = 1 – 

2
pwÊ ˆ

Á ˜wË ¯
(77)

where wp = 

1/ 22

0

Nq

m

Ê ˆ
Á ˜eË ¯

(78)

is known as the plasma frequency. For w < wp, the refractive
index is purely imaginary which gives rise to attenuation, and
for w > wp, the refractive index is real. Indeed in 1933, Wood
discovered that alkali metals are transparent to ultraviolet
light. For example, for sodium if we assume that the refractive
index is primarily due to the free electrons and that there is
one free electron per atom, then

N = 
6 10 0 9712

22 99

23
¥ ¥ .

.
 ª 2.535 ¥ 1022 cm–3

where we have assumed that the atomic weight of Na is 22.99
and its density is 0.9712 g/cm3. Substituting the values of
m ª 9.109 ¥ 10–31 kg, q ª 1.602 ¥ 10–19 C, and e0 ª 8.854 ¥
10–12 C/N–1/m–2, we get

lp 
2

=
p

cÊ ˆp
Á ˜wË ¯

 ª 2098 Å

Thus for l < 2098 Å, the refractive index of Na becomes
real and the metal would become transparent; the corre-
sponding experimental value is 2100 Å. The theoretical and
experimental values of lp for Li, K, and Rb are discussed in
Prob. 7.7.

As mentioned above, Eq. (76) gives the correct depen-
dence of the refractive index of the stratosphere for radio
waves; in Sec. 3.4.3 we used Eq. (76) to study the reflection of
electromagnetic waves by the ionosphere.

Returning to Eq. (68), we note that as w Æ w0, the refrac-
tive index tends to •. This is so because we have neglected
the presence of damping forces in our treatment. If we do
take into account the damping forces, Eq. (62) becomes [see
Eq. (46)]

m
d x

dt

2

2
 + G

dx
dt

 + k0 x = qE0 cos (kz – wt) (79)

To derive an expression for the refractive index, it is more
convenient to rewrite the above equation in the form

d x

dt

2

2
 + 2K 

dx
dt

 + w0
2 x = 

q E
m

0 ei(kz – wt) (80)

where the solution of Eq. (79) will be the real part of the
solution of Eq. (80). The solution of the homogeneous
equation will give the transient behavior which will die out
as t Æ • (see Sec. 7.4); the steady-state solution will corre-
spond to frequency w. Thus, if we substitute a solution of
the type

x(t) = Aei(kz – wt) (81)

in Eq. (80), we obtain

(–w
2 – 2 iKw + w0

2) A = 0qE

m

or7 A = 0
2 2
0( 2 )

qE

m iKw - w - w

(82)

Thus we get

P = 
2

2 2
0[ 2 ]

Nq

m iKw - w - w

 E (83)

The electric susceptibility is therefore given by

c = 
2

2 2
0( 2 )

Nq

m iKw - w - w

Thus n2 = 
0

e

e
 = 1 + 

0

c

e

= 1 + 
2

2 2
0 0( 2 )

Nq

m iKe w - w - w
(84)

Notice that the refractive index is complex, which implies
absorption of the propagating electromagnetic wave. Indeed,
if we write

n = h + ik (85)

where h and k are real numbers, then the wave number k,
which equals nw/c, is given by

k = (h + ik) 
c

w (86)

7 Notice that A is complex; however, if we substitute the expression for A from Eq. (82) in Eq. (81) and take the real part, we get the
same expression for x(t) as we obtained in Sec. 7.4.
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If we consider a plane electromagnetic wave propagating
in the +z direction, then its z and t dependence will be of the
form exp [i(kz – wt)]; consequently

E = E0ei(kz – wt)

= E0 exp ( )i i z t
c

Ï ¸wÈ ˘h + k - wÌ ˝Í ˙Î ˚Ó ˛

= E0 exp
z

i t z
c c

È ˘h kwÊ ˆ- w - -Í ˙Á ˜Ë ¯Î ˚
(87)

which shows an exponential attenuation of the amplitude.
This should not be unexpected because damping causes a
loss of energy.

To obtain expressions for h and k, we substitute the ex-
pression for n from Eq. (85) into Eq. (84) to obtain
    

2 2 2
2 0

2 2 2 2
0 0 0

( 2 )
(  + ) = 1 +

( 2 ) ( 2 )

Nq iK
i

m i K i K

w - w + w
h k

e w - w - w w - w + w

or

h
2 – k2 = 1 + 

2 2 2
0

2 2 2 2 2
0 0

( )

[( ) 4 ]

Nq

m K

w - w

e w - w + w
(88)

and 2hk = 
2

0

Nq

me
2 2 2 2 2
0

2

( ) 4

K

K

w

w - w + w

(89)

The above equations can be rewritten in the form

h
2 – k2 = 1 – 

2 2 ( 1)

aW

W + b W +
(90)

and 2hk = 
2 2

1

( 1)

ab + W

W + b W +

(91)

where we have introduced the following dimensionless
parameters:

a = 
2

2
0 0

Nq

m e w

; W = 
2 2

0
2
0

w - w

w

and b = 
0

2K

w

 The qualitative variations of h2 – k2 and 2hk with W are
shown in Fig. 7.13. It can be easily shown that at W = –b and
at W = +b, the function h2 – k2 attains its maximum and mini-
mum values, respectively.

In general, an atom can execute oscillations corresponding
to different resonant frequencies, and we have to take into
account the various contributions. If w0, w1, . . . represent the
resonant frequencies and if f j represents the fractional num-
ber of electrons per unit volume whose resonant frequency
is w j, Eq. (84) is modified to:8

n2 = 1 + 
2

2 2
0 2

j

j jj

fNq

m iKe w - w - w
Â (92)

where Kj represents the damping constant corresponding
to the resonant frequency wj. Indeed, Eq. (92) describes
correctly the variation of refractive index for most gases.
Figure 7.14 shows the dependence of the refractive index of
sodium vapor around l0 = 5800 Å. Since D1 and D2 lines
occur at 5890 and 5896 Å, respectively one should expect

8 Quantum mechanics also gives a similar result (see, for example, Ref. 6).

0 2.0–2.0

η κ2 2– 2 ηκ

Ω =
−ω ω

ω

2
0
2

0
2

Fig. 7.13 Qualitative variation of (h
2
 – k

2
) and 2hk with W.

–10
–5

5
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15
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–15
–20
–25

(   – 1) 10n 5

ν.1012

509.5509.0508.5

D1 D2

Fig. 7.14 The measured variation of refractive index of so-

dium with frequency around the D1 and D2 lines.

The measurements are of Roschdestwensky; the

figure has been adapted from Ref. 1.
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resonant oscillations around these frequencies. This is in-
deed borne out by the data shown in Fig. 7.14. The variation
of the refractive index can be accurately fitted with the
formula

n2 = 1 + 2 2 2 2
1 2

A B
+

n - n n - n

(93)

where we have neglected the presence of damping forces, which
is justified except when one is very close to the resonance.

In a liquid, the molecules are very close to one another,
and the dipoles interact between themselves. If we take this
interaction into account, we get9

n

n

2

2

1

2

-

+

= 
2

2 2
03

j

jj

fNq

m e w - w
Â (94)

where we have neglected the presence of damping. For liq-
uids, whose molecules do not have a permanent dipole
moment (e.g., H2, O2, etc.), Eq. (94) gives a fairly accurate
description. However, for liquids whose moleculess possess
permanent dipole moments (e.g., H2O) one has to carry out a
different analysis.

7.6 RAYLEIGH SCATTERING

We end this chapter by giving a brief account of Rayleigh
scattering. Throughout our analysis we assume that each
scattering center behaves independently—an assumption
which will be valid for a gas where the average interatomic
spacing is greater than the wavelength.

As discussed in Sec. 7.5, the incident electric field E pro-
duces a dipole moment given by [see Eqs. (64) and (65)]

p = 
2

2 2
0( )

q

m w - w

 E (95)

where w0 represents the natural frequency of the atom. To
keep the analysis simple, we are neglecting the effect of
damping although it can be taken into account without much
difficulty. Now, an oscillating dipole given by

p = p0 e–iw t (96)

radiates energy at a rate (see Sec. 23.4.1)

P = 
4 2

0
3

012

p

c

w

pe

(97)

or P = 
4 4

2
03 2 2 2 2

0 012 ( )

q
E

c m

w

pe w - w

(98)

Thus if N represents the number of atoms per unit volume,
then the total energy radiated away (per unit volume) is be NP .

We assume the electromagnetic wave to be propagating
along the x direction. The intensity of the wave is given by
[see Eq. (78) of Chap. 23]

I = 1
2

e0cE0
2 (99)

Thus the change in the intensity of the electromagnetic wave
as it propagates through a distance dx is given by

dI = –N Pdx

or dI
I

= –gdx (100)

where g = 
4 4

2 4 2 2 2 2
0 06 ( )

N q

c m

w

pe w - w

(101)

The integration of Eq. (100) is simply

I = I0e–gx (102)

implying that g represents the attenuation coefficient. For
most atoms w0 lies in the ultraviolet region; for example, for
the hydrogen atom �w0 ª few electronvolts. Thus if we as-
sume w << w0, then g becomes proportional to w4, or

g μ 
4

1

l
(103)

which represents the famous 1/l4 Rayleigh scattering law and is
responsible for the blue color of the sky (because it is the blue
component which is predominantly scattered). Similarly, the blue
component of the light coming from the setting Sun is predomi-
nantly scattered out, resulting in the red color of the setting
Sun. Indeed, if the color of the setting (or rising) Sun is deep
red, one can infer that the pollution level is high. Now, for a gas,

n2 – 1 = 
2

2 2
0 0( )

Nq

m e w - w

(104)

[see Eq. (68)]. For air, since the refractive index is very close
to unity, we may write

n – 1 ª 
2

2 2
0 02 ( )

Nq

m e w - w

(105)

By using Eq. (105), Eq. (101) can be written in the convenient form

g = 
4

2

3 N c

wÊ ˆ
Á ˜Ë ¯p

(n – 1)2

= 
42

3

k

Np

(n – 1)2 k = 
c

w

(106)

9 See, for example, Ref. 1. Notice that when n is very close to unity (i.e., for a dilute fluid), Eq. (94) reduces to Eq. (92).
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For air at NTP, the quantity n – 1 ª 2.78 ¥ 10–4 in the entire
region of the visible spectrum. With N ª 2.7 ¥ 1019 molecules/
cm3 we obtain

L = 
1

g
 = 27, 128, and 188 km

for l = 4000 Å (violet), 5900 Å (yellow), and 6500 Å (red),
respectively. The quantity L represents the distance in which
the intensity decreases by a factor of e.

Rayleigh scattering discussed above is caused by par-
ticles whose dimensions are small compared to wavelength
(like oxygen and nitrogen molecules in the atmosphere); this
is why the sky is blue. Scattering of light by larger size par-
ticles (whose size are large compared to the wavelength like
in a colloidal suspension) is known as Tyndall scattering and
all wavelengths are scattered equally. This is the reason why
the clouds (which contain water droplets) appear white
against the background of the blue sky.

We conclude this chapter by mentioning that in the 1929
edition of Encyclopaedia Britannica, Lord Rayleigh wrote in
an article on SKY:

SKY: The apparent covering of the atmosphere,
the overarching heaven. . . It is a matter of common
observation that the blue of the sky is highly vari-
able, even on days that are free from clouds. The
color usually deepens toward the zenith and also
with the elevation of the observer. . . Closely associ-
ated with the color is the polarization of light from
the sky. This takes place in a plane passing through
the Sun, and attains a maximum about 90º therefrom.

Summary

� The most fundamental vibration associated with wave mo-
tion is the simple harmonic motion.

� When a point rotates on the circumference of a circle with a
uniform angular velocity, the foot of the perpendicular on any
one of its diameters will execute simple harmonic motion.

� When an external sinusoidal force is applied to a vibrating
system, we have forced vibrations. In steady state, the fre-
quency of the forced vibrations is the same as that of the
external force.

� When a light wave interacts with an atom, we may assume
the electrons to behave as oscillators with resonant fre-
quency w0. The electric field of the light wave polarizes the
molecules of the gas, producing oscillating dipole moments
from which we can make a first principle calculation of the
refractive index to obtain

n2(w) ª 1 + 
2

2 2
0 0( 2 )

Nq

m iKε ω − ω − ω

where m is the mass of the electron, q the magnitude of the
charge of the electron, N is the number of electrons per unit
volume, and K is the damping constant. Because of the fact
that an oscillating dipole radiates energy, the light wave gets

attenuated; this leads to the famous 41 λ  Rayleigh scatter-

ing law which is responsible for the red color of the rising
Sun and blue color of the sky.

Problems

7.1 The displacement in a string is given by

y(x, t) = a cos
2

2x t
π⎛ ⎞− πν⎜ ⎟λ⎝ ⎠

where a, l, and v represent the amplitude, wavelength, and
the frequency, respectively, of the wave. Assume a = 0.1 cm,
l = 4 cm, and n = 1 s–1. Plot the time dependence of the
displacement at x = 0, 0.5, 1.0, 1.5, 2, 3, and 4 cm. Inter-
pret the plots physically.

[Ans: y(x = 3.0, t) = – y(x = 1.0, t) because the two

points are 
2

λ
 apart; etc.]

7.2 The displacement associated with a standing wave on a
sonometer is given by

y(x, t) = 2a sin
2

x
π⎛ ⎞

⎜ ⎟λ⎝ ⎠
cos 2pnt

If the length of the string is L, then the allowed values of l
are 2L, 2L/2, 2L/3, . . . (see Sec. 13.2). Consider the case
when l = 2L/5; study the time variation of displacement in
each loop, and show that alternate loops vibrate in phase
(with different points in a loop having different ampli-
tudes) and adjacent loops vibrate out of phase.

7.3 A tunnel is dug through the Earth as shown in Fig. 7.15. A
mass is dropped at point A along the tunnel. Show that it
will execute simple harmonic motion. What will the time
period be?

 The time period will be  = 2 .
R

T
g

Ans. :
⎡ ⎤

π⎢ ⎥
⎢ ⎥⎣ ⎦

A B

R

O

x

Fig. 7.15 For Prob. 7.3.

gha80482_ch07_093-110.PMD 1/14/2009, 7:59 PM108



Simple Harmonic Motion, Forced Vibrations, and Origin of Refractive Index 109
�

7.4 A 1 g mass is suspended from a vertical spring. It executes
simple harmonic motion with period 0.1 s. By how much dis-
tance had the spring stretched when the mass was attached?

[Ans: Dx ª 0.25 cm]

7.5 A stretched string is given simultaneous displacement in the
x and y directions such that

x(z, t) = a cos
2

2z t
π⎛ ⎞− πν⎜ ⎟λ⎝ ⎠

and y(z, t) = a cos
2

2z t
π⎛ ⎞− πν⎜ ⎟λ⎝ ⎠

Show that the string will vibrate along a direction making
an angle p/4 with the x and y axes.

7.6 In Prob. 7.5, if

x(z, t) = a cos
2

2z t
π⎛ ⎞− πν⎜ ⎟λ⎝ ⎠

and y(z, t) = a sin
2

2z t
π⎛ ⎞− πν⎜ ⎟λ⎝ ⎠

what will be the resultant displacement?
7.7 As mentioned in Sec. 7.5, alkali metals are transparent to

ultraviolet light. Assuming that the refractive index is pri-
marily due to the free electrons and that there is one free

electron per atom, calculate lp ( )2 pc= π ω  for Li, K, and

Rb. You may assume that the atomic weights of Li, K, and
Rb are 6.94, 39.10, and 85.48, respectively, and that the
corresponding densities are 0.534, 0.870, and 1.532 g/cm3.
Also, the values of various physical constants are m =
9.109 ¥ 10–31 kg, q = 1.602 ¥ 10–19 C, and e0 = 8.854 ¥

10–12/N–1/ m–2.

[Ans: 1550, 2890, and 3220 Å; the corresponding
experimental values are 1551, 3150, and 3400 Å,

respectively].

7.8 (a) In a metal, the electrons can be assumed to be essen-
tially free. The drift velocity of the electron satisfies
the equation

m
d

dt

v
 + mvn = F = –qE0e–iwt

where n represents the collision frequency. Calculate
the steady-state current density (J = –Nqv) and show
that the conductivity is given by

s (w) = 
2 1Nq

m iν − ω

(b) If r represents the displacement of the electron, show that

P = –Nqr = –
2

2( )

Nq

m iω + ων
 E

which represents the polarization. Using the above
equation, show that

k (w) = 1 – 
2

2
0( )

Nq

m iε ω + ων

which represents the dielectric constant variation for a
free-electron gas.

7.9 Assuming that each atom of copper contributes one free elec-
tron and that the low-frequency conductivity s is about 6 ¥
107 mho/m, show that n ª 4 ¥ 1013 s–1. Using this value of n,
show that the conductivity is almost real for w < 1011 s–1.
For w = 108 s–1 calculate the complex dielectric constant,
and compare its value with the one obtained for infrared
frequencies.

Note that for small frequencies, only one of the elec-
trons of a copper atom can be considered to be free. On the
other hand, for X-ray frequencies all the electrons may be
assumed to be free (see Probs. 7.10, 7.11, and 7.12). Dis-
cuss the validity of the above argument.

7.10 Show that for high frequencies (w >> n) the dielectric con-
stant (as derived in Prob. 7.8) is essentially real with
frequency dependence of the form

k = 1 – 
2

2
pω

ω

where wp = ( )1/ 22
0Nq mε  is known as the plasma fre-

quency. The above dielectric constant variation is indeed
valid for X-ray wavelengths in many metals. Given that at
such frequencies all the electrons can be assumed to be
free, calculate wp for copper for which the atomic number
is 29, mass number is 63, and density is 9 g cm–3.

[Ans: ~ 9 ¥ 1016 s–1]

7.11 For sodium, at l = 1 Å, all the electrons can be assumed to
be free; under this assumption show that wp ª 3 ¥ 1016 s–1

and n2 ª 1 and the metal will be completely transparent.

7.12 In an ionic crystal (such as NaCl, and CaF2), one has to
take into account infrared resonance oscillations of the ions,
and Eq. (68) modifies to

n2 = 1 + 
2 2

2 2 2 2
0 1 0 2( ) ( )

Nq pNq

m M
+

ε ω − ω ε ω − ω

where M represents the reduced mass of the two ions and
p represents the valency of the ion (p = 1 for Na+, Cl–;
p = 2 for Ca2+, F2

2–). Show that the above equation can be
written in the form10.

n2 = n
•

2 + 1 2
2 2 2 2

1 2

A A+
λ − λ λ − λ

10 Quoted from Ref. 9; measurements are of Paschen.
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where

l1 = 
1

2 cπ
ω

l2 = 
2

2 cπ
ω

A1 = 
2

2 2
04

Nq

c mπ ε
l1

4 A2 = 
2

2 2
04

pNq

c Mπ ε
l2

4

and 2 1 2
2 2
1 2

1
A A

n∞ = + +
λ λ

7.13 The refractive index variation for CaF2 (in the visible region
of the spectrum) can be written in the form10

n2 = 6.09 + 
15 9

2 15 2 9

6.12 10 5.10 10

8.88 10 1.26 10

− −

− −
× ×+

λ − × λ − ×

where l is in meters.

(a) Plot the variation of n2 with l in the visible region.
(b) From the values of A1 and A2 show that m/M ª 2.07 ¥

10–5 and compare this with the exact value.
(c) Show that using the constants A1, A2, l1, and l2, we

obtain n
•

2 ª 5.73, which agrees reasonably well with
the experimental value given above.

7.14 (a) The refractive index of a plasma (neglecting collisions)
is approximately given by (see Sec. 7.6)

n2 = 1 – 
2

2
pω

ω
where

wp = 

1/ 22

0

Nq

m

Ê ˆ
Á ˜eË ¯

 ª 56.414 N1/2 s–1

is known as the plasma frequency. In the ionosphere,
the maximum value of N0 is ª 1010 to 1012 electrons/
m3. Calculate the plasma frequency. Notice that at high
frequencies n2 ª 1; thus high-frequency waves (such
as the ones used in TV) are not reflected by the
ionosphere. On the other hand, for low frequencies,
the refractive index is imaginary (as in a conductor—
see Sec. 24.3) and the beam gets reflected. This fact
is used in long-distance radio communications (see
Fig. 3.20).

(b) Assume that for x ª 200 km, N = 1012 electrons/m3 and
that the electron density increases to 2 ¥ 1012 electrons/
m3 at x ª 300 km. For x < 300 km, the electron density
decreases. Assuming a parabolic variation of N, plot
the corresponding refractive index variation.

[Ans: For 2 ¥ 105 m < x < 4 ¥ 105 m,

n2(x) ª 1 – 
15

2

6.4 10×
ω

[1 – 5 ¥ 10–11(x – 3 ¥ 105)2]

where w is measured in s–1 and x in m.]
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8.1 INTRODUCTION

Fourier series and Fourier integrals are extensively used in
the theory of vibrations and waves. As such, we devote this
chapter to the study of Fourier series and Fourier integrals.
The results obtained will be used in subsequent chapters.
Now, according to Fourier’s theorem, any periodic vibration
can be expressed as a sum of the sine and cosine functions
whose frequencies increase in the ratio of natural numbers.
Thus, a periodic function with period T, i.e.,

f(t + nT) = f(t) n = 0, ±1, ±2, . . . (1)

can be expanded in the form

f(t) = 
0

1 1

1 2 2
cos sin

2 n n
n n

n n
a a t b t

T T

• •

= =

p pÊ ˆ Ê ˆ+ +Á ˜ Á ˜Ë ¯ Ë ¯Â Â

= 0
1 1

1
cos sin

2 n n
n n

a a n t b n t
• •

= =

+ w + wÂ Â (2)

where

w = 
2

T

p

(3)

represents the fundamental frequency. Actually, for the ex-
pansion to be possible, the function f(t) must satisfy certain
conditions. The conditions are that the function f(t) in one
period (i.e., in the interval t0 < t < t0 + T) must be
(1) single-valued, (2) must be piecewise continuous (i.e., it
can have at most a finite number of finite discontinuities),
and (3) can have only a finite number of maxima and minima.
These conditions are known as Dirichlet's conditions and

. . . Reimann (in one of his publications in 1867) asserts that when Fourier, in his first paper to
the Paris Academy in 1807, stated that a completely arbitrary function could be expressed in
such a series, his statement so surprised Lagrange that he denied possibility in the most definite
terms. It should also be noted that he (Fourier) was the first to allow that the arbitrary function
might be given by different analytical expressions in different parts of the interval.

—H. A. Carslaw (1930)

FOURIER SERIES AND

APPLICATIONS

Chapter

Eight

are almost always satisfied in all problems that one encoun-
ters in physics.

The coefficients an and bn can be easily determined by
using the following properties of the trigonometric functions:

0

0

cos cos
t T

t

n t m t dt
+

w wÚ = {0 if 
/2 if 

m n
T m n

π

=
(4)

0

0

sin sin
t T

t

n t m t dt
+

w wÚ = {0 if
/2 if

m n
T m n

π

=
(5)

0

0

sin cos
t T

t

n t m t dt
+

w wÚ = 0 (6)

The above equations can easily be derived. For example,
for m = n,

0

0

cos cos
t T

t

n t m t dt
+

w wÚ = 
0

0

2cos
t T

t

n t dt
+

wÚ

= ( )
0

0

1
1 cos 2

2

t T

t

n t dt
+

+ wÚ  = T
2

Similarly, for m π n

0

0

cos cos
t T

t

n t m t dt
+

w wÚ

= 
0

0

1
[cos ( ) cos ( ) ]

2

t T

t

n m t n m t dt
+

- w + + wÚ
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= 
1 1

sin ( )
2 ( )

n m t
n m

È
- wÍ

- wÎ

0

0

1
sin ( )

( )

t T

t

n m t
n m

+

˘
+ + w ˙

+ w ˚
 = 0

To determine the coefficients an and bn, we first multiply
Eq. (2) by dt and integrate from t0 to t0 + T :

0

0

( )

t T

t

f t dt

+

Ú  =
0

0

0
1

2

t T

t

a dt
+

Ú
0

0
1

cos
t T

n
n t

a n t dt
+

•

=

+ wÂ Ú

0

0
1

sin
t T

n
n t

b n t dt
+

•

=

+ wÂ Ú  = 
2

T
a0

where we have used Eqs. (4) and (6) for m = 0. Thus

a0 = 

0

0

2
( )

t T

t

f t dt
T

+

Ú (7)

Next, if we multiply Eq. (2) by cos (mwt) dt and integrate
from t0 to t0 + T, we obtain

0

0

( ) cos
t T

t

f t m t dt
+

wÚ  = 
0

0

0
1

cos
2

t T

t

a m t dt
+

wÚ

+ 
0

0
1

cos cos
t T

n
n t

a m t n t dt
+

•

=

w wÂ Ú

+ 

0

0
1

cos sin

t T

n
n t

b m t n t dt

+
•

=

w wÂ Ú

 = 
2

T
 am

where we have used Eqs. (4) and (6). We may combine the
above equation with Eq. (7) to write

an = 
0

0

2
( ) cos

t T

t

f t n t dt
T

+

wÚ n = 0, 1, 2, 3, . . . (8)

Similarly,

bn = 
0

0

2
( ) sin

t T

t

f t n t dt
T

+

wÚ n = 1, 2, 3, . . . (9)

Note that the value of t0 is quite arbitrary. In some prob-
lems it is convenient to choose

t0 = –T/2
then

an = 

/2

/2

2
( ) cos

T

T

f t n t dt
T

+

-

wÚ n = 0, 1, 2, . . .

and

bn = 
/2

/2

2
( ) sin

T

T

f t n t dt
T

+

-

wÚ n = 0, 1, 2, . . .

Such a choice is particularly convenient when the func-
tion is even [i.e., f(t) = f(–t)] or odd [i.e., f(t) = –f (– t)]. In the
former case bn = 0 whereas in the latter case an = 0. In some
problems, it is convenient to choose t0 = 0.

Example 8.1 Consider a periodic function of the form

( ) = for

( 2 ) = ( )

f t t t

f t n f t

−τ < < + τ
+ τ

(10)

(see Fig. 8.1). Such a function is referred to as a sawtooth function.
In this example, we expand the above function in a Fourier series.
Now, since f(t) is an odd function of t, an = 0 and

bn = 
2

( ) sinf t n t dt
T

+ τ

−τ

ω∫

= 

0

1
2 sint n t dt

τ

ω
τ ∫

Notice that the periodicity is 2t and, therefore, w = p/t. Carry-
ing out the integration, we obtain

bn = 
0

2 1 1
cos sin

t
n t n t

n n n

τ
⎡ ⎤⎛ ⎞− ω + ω⎢ ⎥⎜ ⎟τ ω ω ω⎝ ⎠⎣ ⎦

= 
2

cos n
n

τ− π
π

 = 1 2
( 1)n

n
+ τ−

π
(11)

Thus

f(t) = 
1

1, 2, . . .

2 ( 1)
sin

n

n

n t
n

+

=

τ − ω
π ∑

= 
2 1 1 . . .sin sin 2 sin 3

2 3
t t t

t Ê ˆw - w + w -Á ˜Ë ¯p
(12)

–3 –2 –1 0 1 2 3

f
t(
) S2

S1S3 t
τ

Fig. 8.1 The sawtooth function; S
1
, S

2
, and S

3
 represent the

partial sums corresponding to the sawtooth function.
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In Fig. 8.1 we have also plotted the partial sums which are given by

S1 = 2
2

sin t S
t

w

p

 = 
2 1

sin sin 2
2

t t
t Ê ˆw - wÁ ˜Ë ¯p

S3 = 
2 1 1

sin sin 2 sin 3
2 3

t t t
t Ê ˆw - w + wÁ ˜Ë ¯p

It can be seen from the figure that as n increases, the sum Sn

approaches the function f(t).

Example 8.2 In this example, we will use the Fourier series
to expand the function defined by the following equations:

f(t) = 
for 0

2

for 0
2

TA t

T
tA

−⎧ − < <
⎪
⎨
⎪ < <+⎩

(13)

and

f(t + T) = f (t)

The function is plotted in Fig. 8.2. Once again the function is an
odd function; consequently an = 0 and

bn = 

/2

0

2
2 sin

T

A n t dt
T

wÚ  = ( )
/ 2

0

4 1
cos

TA
n t

T n
- w

w

= ( )
2

1 cos
A

n
n

- p

p

 = 
2

[1 ( 1) ]nA

n
- -

p

Thus

f(t) = 
1,2,3, . . .

2 1
1 ( 1) sinn

n

A
n t

n
=

È ˘- - wÎ ˚p
Â

= 
4 1 1

sin sin 3 sin 5 . . .
3 5

A
t t t

Ê ˆw + w + w +Á ˜Ë ¯p

The partial sums

S1 = 
4

sin
A

tw

p

S2 = 
4 1

sin sin 3
3

A
t t

Ê ˆw + wÁ ˜Ë ¯p

S3 = 
4 1 1

sin sin 3 sin 5
3 5

A
t t t

Ê ˆw + w + wÁ ˜Ë ¯p

are also plotted in Fig. 8.2.

8.2 TRANSVERSE VIBRATIONS

OF A PLUCKED STRING

An interesting application of the Fourier series lies in
studying the transverse vibrations of a plucked string.

Let us consider a stretched string, fixed at the two ends A
and B. One of the ends (A) is chosen as the origin. In the equi-
librium position of the string, it is assumed to lie along the x
axis (see Fig. 8.3). A point of the string is moved upward by a
distance d; the corresponding shape of the string is shown as
dashed line in Fig. 8.3. If the displacement occurs at a distance
a from the origin, the equation of the string (in its displaced
position) is given by

y

d
x

a
d

L a

Ï
ÔÔ

= Ì
Ô
Ô -Ó

 
(L – x)

for 0

for

x a

a x L

< <

< <

(14)

where L represents the length of the string. Now, if the
string is released from this position at t = 0, we want
to determine the shape of the string at any subsequent time.

We will show in Sec. 11.6 that the displacement y(x, t)
satisfies the wave equation

2

2

y

x

∂

∂

= 
2

2 2

1 y

t

∂

∂v
(15)

where v ( )= /T r  represents the speed of the transverse

waves, T being the tension in the string and r the mass per
unit length. We want to solve Eq. (15) subject to the follow-
ing boundary conditions:

1. y = 0 at x = 0 and x = L for all values of t (16)

B x

y

L
a

d
A

Fig. 8.3 The plucked string; AB represents the equilibrium

position. The dashed lines show the displaced

position at t = 0.

–1.5 –0.5 0 0.5 1–1 1.5

f
t(
)

S1

S2

S3
t
T

Fig. 8.2 A plot of the periodic step function defined by

Eq. (13). S
1
, S

2
, and S

3
 represent the corresponding

partial sums.
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2. At t = 0

y

t

∂

∂
 = 0 for all values of x (17)

y(x, t = 0) = 

d
x

a
d

L a

Ï
ÔÔ
Ì
Ô

-ÔÓ
(L – x)

for 0

for

x a

a x L

< <

< <

(18)

Assuming a time dependence of the form cos wt (or sin wt):

y(X, t) = X(x) cos wt

we obtain
2

2

d X

dx
= –

2

2
( )X x

w

v
or

2

2

d X

dx
 + k2X(x) = 0 (19)

where

k = 
w

v
(20)

The solution of Eq. (19) is simple1.

X(x) = A sin kx + B cos kx (21)
Thus

 y(x, t) = (A sin kx + B cos kx)(C cos w t + D sin w t)

Now

0
( , )

x
y x t

=

= 0 for all values of t

Thus B = 0 and we obtain

y(x, t) = sin kx (C cos wt + D sin wt)

where we have absorbed A in C and D. Since

( , )
x L

y x t
=

= 0 for all values of t

we must have

sin kL = 0

or k L = np n = 1, 2, 3, . . . (22)

Thus, only discrete values of k (and hence of w) are per-
missible; these are given by

k n = 
n

L

p

n = 1, 2, . . . (23)

giving

wn = 
n

L

pv
n = 1, 2, . . . (24)

Equation (24) gives the frequencies of the various modes
of the string. The mode corresponding to the lowest fre-
quency (n = 1) is known as the fundamental mode.

Thus the solution of Eq. (15) satisfying the boundary con-
dition given by Eq. (16) is given by

y(x, t) = 
1,2,3, . . .

(sin ) ( cos sin )n n n n n
n

k x C t D t
=

w + wÂ (25)

Differentiating partially with respect to t, we get

0t

y

t
=

∂

∂
 = sin ( sinn n n n

n

k x C t-w wÂ

 + 
0

cos )n n n
t

D t
=

w w

= sinn n n
n

D k xwÂ (26)

1 Rigorously we should proceed by using the method of separation of variables; thus we assume

y(x, t) = X(x)T(t)

where X(x) is a function of x alone and T(t) is a function of t alone. Substituting in Eq. (15), we get

2

2

1

( )

d X

X x dx
= 

2

2 2

1 1

( )

d T

T t dtv
 = –k2

Since the term 
2

2

1 d X

X d x
 is a function of x alone and the term 

2

2 2

1 1 d T

T dtv
 is a function of t alone, each term must be equal to a constant

which we have set equal to –k2. Thus
2

2

d T

dt
 + w2T(t) = 0

and
2

2

d X

dx
 + k2X(x) = 0

where w = kv
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Since

0t

y

t
=

∂

∂
= 0 for all values of x

we must have

Dn = 0 for all n
Thus

y(x, t) = 
1,2,3, . . .

sin cosn n n
n

C k x t
=

wÂ (27)

or y(x, 0) = sinn
n

n
C x

L

pÊ ˆ
Á ˜Ë ¯Â (28)

The above equation is essentially a Fourier series, and to
determine Cn, we multiply both sides of Eq. (28) by

sin
m

x
L

pÊ ˆ
Á ˜Ë ¯

dx and integrate from 0 to L to obtain

Cm = 
0

2
( , 0) sin

L
m

y x x dx
L L

pÊ ˆ
Á ˜Ë ¯Ú (29)

where we have used the relation

0

sin sin
L

n x m x
dx

L L

p p

Ú  = 
0 if

/2 if

m n

L m n

πÏ
Ì

=Ó
(30)

[cf. Eq. (5)]. Substituting the expression for y(x, 0) from
Eq. (18), we obtain

Cn =
0

2
sin

a
d n

x x dx
L a L

È pÊ ˆ
Í Á ˜Ë ¯ÍÎ
Ú

+ 
d

L a-

( ) sin
L

a

n
L x x dx

L

˘pÊ ˆ- ˙Á ˜Ë ¯ ˙̊
Ú

=
2

2 2

2
sin

( )

dL n
a

La L a n

pÊ ˆ
Á ˜Ë ¯- p

On substituting in Eq. (27), we finally obtain

y(x, t) =
2

2

2

( )

dL

a L a- p

 
2

1,2,3, . . .

1
sin

n

n
a

Ln
=

pÊ ˆ
Á ˜Ë ¯Â

¥ sin cos
n n

x t
L L

p pÊ ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

v
(31)

Equation (31) can be used to determine the shape of the
string at an arbitrary time t. If the string is plucked at the
center (i.e., a = L/2), terms corresponding to n = 2, 4, 6, . . .

are absent (i.e., the even harmonics are absent) and Eq. (31)
simplifies to

y(x, t) = 1
2 2

8 1
( 1)

(2 1)
m

m

d

m
+

-

p -

Â  
(2 1)

sin
m x

L

- p

¥ 

(2 1) ( )
cos

m t

L

- pv
(32)

8.3 APPLICATION OF FOURIER

SERIES IN FORCED

VIBRATIONS

Let us consider the forced vibrations of a damped oscillator.
The equation of motion is

2

02

d y dy
m k y

dtdt
+ G + = F(t) (33)

where G represents the damping constant (see Sec. 7.3) and
F represents the external force. It has been shown in Sec. 7.4
that if G > 0 and

F(t) = F0 cos (pt + q) (34)

then the steady-state solution of Eq. (33) is a simple harmonic
motion with the frequency of the external force. If F(t) is not
a sine or cosine function, a general solution of Eq. (33) is
difficult to obtain; however, if F(t) is periodic, then we can
apply Fourier's theorem to obtain a solution of Eq. (33). For
example, let

F(t) = at for –t < t < t
(35)and F(t + 2nt) = F(t) n = 1, 2, . . .

The Fourier expansion of such a function was discussed in
Example 8.1 and is of the form

F(t) = sinn
n

F n twÂ

= 
2at

p
 

1

1,2, . . .

( 1)
sin

n

n

n t
n

+

=

-
wÂ (36)

We next consider the solution of the differential equation

2

02
n n

n
d y dy

m k y
dtdt

+ G + = Fn sin nwt

or
2

2
02

n n
n

d y dy
K y

dtdt
+ + w = An sin nwt (37)

where K 2 0
0

k

m m

G
∫ w ∫
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and

An = nF

m
 = 

1( 1) 2n

n m

+
- at

p

(38)

The steady-state solution of Eq. (37) will be of the form

yn = Cn sin nwt + Dn cos nwt

and the solution of Eq. (33) will be of the form

y = n
n

yÂ (39)

To determine Cn and Dn, we substitute the above solution
in Eq. (37) to obtain

–n2
w

2(Cn sin nwt + Dn cos nwt)

+ nwK(Cn cos nwt – Dn sin nwt)

+  w0
2 (Cn sin nwt + Dn cos nwt) = An sin nwt

Thus

2 2 2
0

2 2 2
0

( ) =

( ) = 0

n n n

n n

n C n KD A

n D n KC

w - w - w

w - w + w

(40)

Solving the above equations, we get

Dn = –
2 2 2 2 2 2 2
0( )

n
n K

A
n n K

w

w - w + w

and

Cn= 
2 2 2
0

2 2 2 2 2 2 2
0( )

n
n

A
n n K

w - w

w - w + w

Thus the steady-state solution can be written in the form

y = sin ( )n n
n

G n tw + qÂ (41)

where the amplitude Gn is given by

Gn = 2 2 1/ 2( )n nC D+

= 2 2 2 2 2 2 2 1/ 2
0[( ) ]

nA

n n Kw - w + w

(42)

8.4 THE FOURIER INTEGRAL

In Sec. 8.1 we showed that a periodic function can be ex-
panded in the form

f(t) = 0
1

1
( cos sin )

2 n n
n

a a n t b n t
•

=

+ w + wÂ (43)

where

an = 
0

2
( ) cos

ot T

t

f t n t dt
T

+

wÚ (44)

bn = 
0

2
( ) sin

ot T

t

f t n t dt
T

+

wÚ (45)

and

T = 
2p

w

(46)

On substituting the above expressions for an and bn into
Eq. (43), we get [we must replace t by t ¢ in Eqs. (44) and (45)].

f (t) =

/2

/2

1
( )

T

T

f t dt
T

+

-

¢ ¢Ú

+ 
1

2
cos

n

n t
T

•

=

È
Í w
Í
ÍÎ

Â  
/2

/2

( ) cos
T

T

f t n t dt
+

-

w¢ ¢ ¢Ú

 
/ 2

/ 2

2
sin ( ) sin

T

T

n t f t n t dt
T

+

-

˘
˙+ w w¢ ¢ ¢
˙
˚

Ú (47)

or

f(t) =

/

/

1
( )

2

s

s

s f t dt
+p D

-p D

D ¢ ¢
p

Ú

+ 
/

1 /

( ) cos [ ( )]
s

n s

s
f t n s t t d t

+p D•

= -p D

D
D -¢ ¢ ¢

p
Â Ú (48)

where

Ds
2

T

p

∫  = w

We let T Æ • so that Ds Æ 0; notice that when T Æ •, the
function is no longer periodic. Thus if the integral

( )f t dt

+•

-•

¢ ¢Ú

exists (i.e., if it has a finite value) then the first term on the
RHS of Eq. (48) will go to zero. Further, since

0

( )F s ds
•

Ú = 
0 1

lim ( )
s n

F n s s
•

D Æ
=

D DÂ (49)
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we have

f(t) = 
0

1
( ) cos [ ( )]f t s t t dt ds

+∞∞

−∞

⎡ ⎤
′ ′ ′−⎢ ⎥

π ⎢ ⎥⎣ ⎦
∫ ∫ (50)

Equation (50) is known as the Fourier integral. Since the cosine
function inside the integral is an even function of s, we may write

1
( ) ( ) cos [ ( )]

2
f t f t s t t dt ds

+• +•

-• -•

È ˘
Í ˙= -¢ ¢ ¢

p Í ˙
Î ˚

Ú Ú (51)

Further, since sin [s(t – t¢)] is an odd function of s,

( ) sin [ ( )]
2

i
f t s t t dt ds

+• +•

-• -•

È ˘
Í ˙-¢ ¢ ¢

p Í ˙
Î ˚

Ú Ú  = 0 (52)

If we add (or subtract) the above two equations, we get

f(t) = 
( )1

( )
2

i t tf t e dt d
+• +•

± w - ¢

-• -•

w¢ ¢
p
Ú Ú (53)

where we have replaced s by w. Equation (53) is usually re-
ferred to as the Fourier integral theorem. Thus, if

F(w)
1

( )
2

i tf t e dt
+•

± w

-•

∫

p
Ú (54)

then

f(t)
1

( )
2

i tF e d
+•

w

-•

∫ w w

p
Ú

∓ (55)

The function F(w) is known as the Fourier transform of f (t).
For a time-dependent function f(t), F(w) is usually referred to
as its frequency spectrum. Equations (54) and (55) are also
written in the form

F(w) = 
1

( )
2

i tf t e dt
+•

- w

-•
p
Ú (56)

with

f(t) = ( ) i tF e d
+•

w

-•

w wÚ (57)

We can also write

G(k) = 
1

( )
2

i k xf x e dx
+•

-

-•
p
Ú (58)

with

f(x) = ( ) i k xG k e dk
+•

+

-•

Ú (59)

where k is often referred to as spatial frequency—a concept
that is extensively used in Fourier optics (see Chap. 19).

In Chap. 9 we will introduce the Dirac delta function, rederive
Eqs. (54) to (59), and work out a few examples to illustrate the
physics and applications of the Fourier transform. In Chap. 10,
we will use Fourier transforms to study the propagation of
optical pulse in dispersive and nonlinear media.

Summary

� A periodic function with period T, i.e.,

f (t + nT) = f(t) n = 0, ±1, ±2, . . .

can be expanded in the form

f(t) = 
1

2
a0 + 

1 1

2 2
cos sinn n

n n

n n
a t b t

T T

• •

= =

p pÊ ˆ Ê ˆ+Á ˜ Á ˜Ë ¯ Ë ¯Â Â

= 
1

2
a0 + 

1 1

cos sinn n

n n

a n t b n t
∞ ∞

= =

ω + ω∑ ∑

where

w = 
2

T

p

represents the fundamental frequency. The above infinite
series is known as the Fourier series, and the coefficients an

and bn are given by

an = 
0

0

2
( ) cos

t T

t

f t n t
T

+

wÚ n = 0, 1, 2, 3, . . .

and

bn = 
0

0

2
( ) sin

t T

t

f t n t
T

+

wÚ n = 0, 1, 2, 3, . . .

� Transverse vibrations of a plucked string and forced vibra-
tions can be studied by using Fourier series.

� For a time-dependent function f(t), its Fourier transform is
defined by the equation

F(w) ∫ 
1

( )
2

i tf t e dt
+•

± w

-•
p
Ú

Then

F(t) ∫ ( ) i tf e d
+•

w

-•

w wÚ
∓

Problems

8.1 Consider a periodic force of the form

0 sin for 0 /2
( )

0 for / 2

F t t T
F t

T t T

w < <Ï
= Ì

< <Ó

and

F(t + T) = F(t)
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where

w = 
2

T

p

Show that

F(t) = 0 0
1 1

sin
2

F F t+ w

p

2
-

p
0

1 1 . . .cos 2 cos 4
3 15

F t t
Ê ˆw + w +Á ˜Ë ¯

One obtains a periodic voltage of the above form
in a half wave rectifier. What will be the Fourier expansion
corresponding to full wave rectification?

8.2 In quantum mechanics, the solution of the one-dimensional
Schrödinger equation for a free particle is given by

Y(x, t) = 

2

21
( )

2

i p
p x t

m
a p e dp

Ê ˆ
+• -Á ˜

Ë ¯

-•p
Ú

�

�

where p is the momentum of the particle of mass m. Show
that

a(p) = 
1

( , 0)
2

i
px

x e dx
+•

-

-•

Y
p

Ú �

�

8.3 In continuation of Prob. 8.2, if we assume

Y(x, 0) = 
2

02 1/ 4 2

1
exp exp

( ) 2

x i
p x

�

Ê ˆ Ê ˆ- Á ˜Á ˜ Ë ¯ps sË ¯

then show that

a(p) = 
1/ 42 2

2
02 2exp ( )

2
p p

� �

Ê ˆ È ˘s s
- -Í ˙Á ˜pË ¯ Î ˚

Also show that

2
( , 0)x dx

+•

-•

YÚ  = 1 = 2
( )a p dp

+•

-•

Ú

Indeed |Y(x, 0) |2 dx represents the probability of finding the
particle between x and x + dx, and |a(p)|2 dp represents the
probability of finding the momentum between p and p + dp,
and we would have the uncertainty relation

Dx Dp ~ �
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9.1 INTRODUCTION

The Dirac delta function is defined through the equations

d (x – a) = 0 x π a (1)

a

a

+β

−α
∫ d (x – a) dx = 1 (2)

where a, b > 0. Thus the delta function has an infinite value
at x = a such that the area under the curve is unity. For an
arbitrary function that is continuous at x = a, we have

a

a

+b

-a

Ú f(x)d (x – a)dx = f(a)
a

a

+b

-a

Ú d (x – a)dx [using Eq. (1)]

= f (a) (3)

It is readily seen that if x has the dimension of length,
d (x – a) will have the dimension of inverse length. Similarly,
if x has the dimension of time, then d (x – a) will have the
dimension of (time)–1.

9.2 REPRESENTATIONS OF THE

DIRAC DELTA FUNCTION

There are many representations of the Dirac delta function.
Perhaps the simplest representation is the limiting form of
the rectangle function R

s
(x) defined through the following

equation:

Strictly of course, d(x) is not a proper function of x, but can be regarded only as a limit of a
certain sequence of functions. All the same one can use d(x) as though it were a proper function
for practically all the purposes of quantum mechanics without getting incorrect results. One can
also use the differential coefficients of d(x), namely, d ¢(x), d ≤(x), . . . which are even more
discontinuous and less ‘proper’ than d(x) itself.

—P. A. M. Dirac, “The Physical Interpretation of Quantum
Dynamics,” Proceedings of the Royal Society of London, A113, pp. 621–641, 1926.

THE DIRAC DELTA FUNCTION

AND FOURIER TRANSFORMS

Chapter

Nine

The function R
s

(x) is plotted in Fig. 9.1 for various values
of s. Now,

+ ∞

− ∞
∫ R

s
(x)dx = 1

2

a

a

+s

-s
s
Ú dx = 1 (irrespective of value of s)

For s Æ 0, the function R
s

(x) becomes more and more
sharply peaked, but the area under the curve remains unity.
In the limit of s Æ 0, the function R

s
(x) has all the properties

of the delta function, and we may write

d(x – a) = 
0

lim
sÆ

 R
s

(x)

R
s
(x) =

 1

2

0

Ï
Ô

sÌ
Ô
Ó

for a – s < x < a + s

for |x – a| > s
(4)

0 1 2 3 4
x

0

2

4

6

8

10

12

14

σ = 0.04

σ = 0.1

σ = 0.4

Rectangle function

R
x

σ(
)

Fig. 9.1 Plots of R
s

(x) for a = 2 and s = 0.4, 0.1, and 0.04. In

each case the area under the curve is unity. For

s Æ 0, the function R
s

(x) has all the properties of

the Dirac delta function.
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Now

+•

-•

Ú f(x) R
s
(x)dx = 

1

2

a

a

+ σ

− σσ ∫ f(x)dx (5)

We assume the function f(x) to be continuous at x = a. Thus
when s Æ 0, in the infinitesimal interval a – s < x < a + s, f(x)
may be assumed to be a constant [= f(a)] and taken out of the
integral. Thus

+•

-•

Ú f(x)d (x – a)dx = 
0

lim
+•

sÆ

-•

Ú f (x)R
s
(x)dx

0

1
lim ( )

2

( )

a

a

f a dx

f a

+s

sÆ

-s

=

s

=

Ú

9.3 INTEGRAL REPRESENTATION

OF THE DELTA FUNCTION

An extremely important representation of the Dirac delta
function is through the following integral:

d(x – a) = 1

2

+•

-•
p
Ú e± ik(x–a)dk (6)

To prove Eq. (6), we first note that

1

2

+•

-•
p
Ú e± ik(x–a)dk = 

sin ( )

( )

g x a

x a

-

p -

(7)

In App. B, we have shown that

sin gx

x

+•

-•
p

Ú dx = 1 g > 0 (8)

irrespective of the value of g, which is assumed to be greater
than zero. Further,

0

sin
lim
x

gx

xÆ

= g

Thus for a large value of g, the function

sin ( )

( )

g x a

x a

-

p -

is very sharply peaked around x = a (see Fig. 9.2) and has a
unit area under the curve irrespective of the value of g; thus

in the limit of g Æ •, it has all the properties of the delta
function, and we may write

d (x – a) = 
sin ( )

lim
( )g

g x a

x aÆ•

-

p -
 = 1

lim
2

g

g
g

+

Æ•

-
p
Ú  e± ik(x–a) dk (9)

from which Eq. (6) readily follows.

9.4 DELTA FUNCTION AS A

DISTRIBUTION

The delta function is actually a distribution. To understand
this, let us consider the Maxwellian distribution

N(E) dE = N0 3/ 2

2 1

( )kTp
E1/2 

/E kTe−
dE (10)

where k represents Boltzmann’s constant, T is the absolute
temperature, and m is the mass of each molecule. In Eq. (10),
N(E) dE represents the number of molecules whose energies
lie between E and E + dE. The total number of molecules is
given by N0

0

∞

z N(E)dE = N0 3/ 2
0

2 1

( )kT

•

p
Ú E1/2e–E/kT dE

= N0 
1/ 2

0

2
x

•

p
Ú e–x dx

where x = E/kT. The integral is G ( )3/2  = 
1

2
p  (see Appen-

dix A). Thus

0

•

Ú N(E) dE = N0

–2

0

2

4

6

4321

g = 5

g = 20

sin [ ( – 2)/ ( – 2)]g x xπ

x

Fig. 9.2 Plots of the function 
-

p -

sin ( )

( )

g x a

x a
 for a = 2 and g =

5, 20. In each case the area under the curve is unity.

For g Æ •, the function is very sharply peaked at

x = a and has all the properties of Dirac delta

function.
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Whereas N0 is just a number, the quantity N(E) has dimen-
sions of (energy)–1. Obviously, if we ask ourselves how
many molecules have the precise speed E1, the answer is
zero. This is a characteristic of a distribution. On the other
hand, in addition to the distribution given by Eq. (10), if we
do have N1 molecules, all of them having the same energy
E1, the corresponding distribution function is given by

N(E) = N0 3/ 2

2 1

( )kTp

E1/2 /E kTe−
 + N1d (E – E1) (11)

where d (E – E1) represents the Dirac delta function and has
the dimensions of inverse energy.

9.5 FOURIER INTEGRAL

THEOREM

In Sec. 9.4, we showed the following integral representation
of the Dirac delta function:

d (x – x¢) = 
1

2

+•

-•
p
Ú e±ik(x–x¢) dk (12)

Since

f(x) = 
+•

-•

Ú d (x – x¢) f(x¢)dx¢ (13)

we may write

f(x) = 1

2

+• +•

-• -•
p
Ú Ú e± ik(x–x¢)f(x¢)dx¢dk (14)

Thus if we define

F(k) = 1

2

+•

-•
p
Ú f(x)e–ikx dx (15)

then

f(x) = 1

2

+•

-•
p
Ú F(k)e+ ikx dk (16)

The function F(k) is known as the Fourier transform of the
function f(x), and Eq. (16) enables us to calculate the original
function from the Fourier transform. Equation (14) consti-
tutes what is known as the Fourier integral theorem that is
valid when the following conditions are satisfied (see, e.g.,
Refs. 4 and 5 of Chap. 8):

1. The function f (x) must be a single-valued function of the
real variable x throughout the range –• < x < •. It may,
however, have a finite number of finite discontinuities.

2. The integral 
+•

-•

Ú |
-
f(x)|

-
dx must exist.

From Eq.(14) it is obvious that in Eqs. (15) and (16) there
is no reason why the factors eikx and e–ikx cannot be inter-
changed; i.e., we could have defined

F(k) = 
1

2

+•

-•
p
Ú f(x)e+ ikx dx (17)

then

f(k) = 
1

2

+•

-•
p
Ú F(x)e–ikx dx (18)

However, in all that follows we will use the definitions
given by Eqs. (15) and (16).

Example 9.1 As an example we consider a Gaussian function
given by

f(x) = A 
2

2
exp

2

xÊ ˆ
-Á ˜sË ¯

(19)

Its Fourier transform is given by

F(k) = 
2

A
+•

-•
p
Ú e–x2/2s 2

e–ikx dx

or F(k) = As exp 2 21

2
k

Ê ˆ- sÁ ˜Ë ¯ (20)

where we have made use of the following integral (see App. A):

+•

-•

Ú e–ax2+b x dx = 
p

a

exp
2

;
4

È ˘b
Í ˙

aÎ ˚
 Re a > 0 (21)

As can be seen from Eq. (20), the function F(k) is also
Gaussian; thus the Fourier transform of a Gaussian is a Gaussian.
Note that the Gaussian function given by Eq. (19) has a spatial
width given by [see Fig. 9.3(a)]

Dx ~ s

f x( )

x
(a)

Dx ~ s

F k( )

k
(b)

Dk ~
1
s

Fig. 9.3 (a) The Gaussian function f (x) as given by Eq. (19).

(b) The Fourier transform of the Gaussian function

is also a Gaussian in the k-space [see Eq. (20)].
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Its Fourier transform F(k) has a width given by [see Fig. 9.3(b)]

Dk ~ 
1

s

(22)

Thus
Dx Dk ~ 1 (23)

which is a general characteristic of the Fourier transform pair.

Example 9.2 As another example, we calculate the Fourier
transform of the rectangle function

f(x) = rect
x

a
Ê ˆ
Á ˜Ë ¯  = 

1
1 | |

2
1

0 | |
2

x a

x a

Ï
<ÔÔ

Ì
Ô >
ÔÓ

(24)

Its Fourier transform will be given by (see Fig. 9.4)

F(k) = 
/ 2

/ 2

1

2

a

a

+

-
p
Ú e–ikx dx

= 
2 sin ( /2)ka

kp

(25)

Once again, the rectangle function has a width Dx = a, and its Fou-
rier transform has a width

Dk ~ 
a

p

giving Dx Dk ~ 1. Equation (25) can be written in the form

F(k) = 
2

a

p

sinc x (26)

where

x ∫ 
2

k a
(27)

and

sinc x ∫ 
sin x

x
(28)

is known as the sinc function. Using Eq. (16), we can write

rect
x

a
Ê ˆ
Á ˜Ë ¯

= 
1

2 2

a
+•

-•
p p
Ú sin x eikx dk

or

rect
2

XÊ ˆ
Á ˜Ë ¯

= 
2 1

sinc
2

i Xe d
+•

x

-•

Ê ˆ
x xÁ ˜Á ˜p pË ¯

Ú (29)

where

X ∫ 
/2

x

a
(30)

Thus, the Fourier transform of the sinc function is /2p  times

the rectangle function:

F
sin x

x
Ê ˆ
Á ˜Ë ¯ = 

2

p
rect

2

kÊ ˆ
Á ˜Ë ¯ (31)

For a time-dependent function we can write the Fourier transform
in the following form (see also Sec. 8.4):

F[ f(t)] = F(w) = 
1

2

+•

-•
p
Ú f(t)e± iw t dt (32)

The inverse Fourier transform will then be given by

f(t) = 
1

2

+•

-•
p
Ú F(w) i te ω∓ dw (33)

The above equations are nothing but Eqs. (15) and (16) with x
and k replaced by t and w, respectively. The function F(w) is usu-
ally referred to as the frequency spectrum of the time-dependent
function f (t).

Example 9.3 As an example, we consider the Fourier trans-

form of the Gaussian function (see Fig. 9.5)

f(t) = A exp
2

2
0

t

t

Ê ˆ
-Á ˜Ë ¯

(34)

Thus, the Fourier transform is given by [using Eq. (32)]

F(w) = 
2

A
+•

-•
p
Ú exp

2

2
0

t

t

Ê ˆ
-Á ˜Ë ¯

e– iw tdt

2 2
0 0exp

42

At tÊ ˆw
= -Á ˜Ë ¯

 (35)

– /2a a/2x

f x( )

(a)

2π
a– 2π

a

k
(b)

F k( )

Fig. 9.4 (a) The rectangle function. (b) The Fourier trans-

form of the rectangle function.
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where we have used the integral given by Eq. (21). The function
F(w) [as given by Eq. (35)] is also plotted in Fig. 9.5. We denote
the full width at half maximum (usually abbreviated as FWHM) of

f(t) by Dt; thus at t = ± 1
2
Dt, the function f(t) attains one-half of its

maximum value:

1
2

A = A exp
2

2
0

( )

4

t

t

È ˘D
-Í ˙
Î ˚

Thus

Dt = 2 ln 2 t0 ª 1.67t0

Similarly, if Dw denotes the FWHM of F(w), then (see Fig. 9.5)

Dw = 
4 2

0

ln
t

 ª 
3 34

0

.
t

(36)

Thus if a time-dependent function f(t) has a temporal width Dt,
then its Fourier transform F(w) will have a spectral width

Dw ~ 
1

tD
(37)

giving the uncertainty relation (see also Example 10.4 and Sec. 17.6)

Dw Dt ~ 1 (38)

The above equation may be compared with the relation
Dx Dk ~ 1 derived above.

9.6 THE TWO- AND THREE-

DIMENSIONAL FOURIER

TRANSFORM

One can generalize the analysis of Sec. 9.4 to two or three
dimensions. For example, the two-dimensional Fourier trans-
form of a function f(x,y) is defined through the equation

F(u,v) = 
1

2

+• +•

-• -•
p
Ú Ú  f(x,y)e±i(ux+vy) dxdy (39)

where u and v are referred to as spatial frequencies. The in-
verse transform is given by

f(x,y) = 
1

2

+• +•

-• -•
p
Ú Ú F(u,v)e∓ i(ux + vy) dudv (40)

We will use Eqs. (29) and (30) in Sec. 19.6. Similarly, we
can define the three-dimensional Fourier transform

F(u, v, w) = 
3/ 2

1

(2 )

+• +• +•

-• -• -•
p

Ú Ú Ú  f(x,y,z)e±i(ux+vy+wz)dxdydz

(41)with its inverse Fourier transform given by

f(x, y, z) = 
3/ 2

1

(2 )

+• +• +•

-• -• -•
p

Ú Ú Ú  F(u, v, w)e±i(ux+vy+wz)dudvdw

(42)

9.6.1 The Convolution Theorem

The convolution of two functions f(x) and g(x) is defined by
the relation

f(x)* g(x) = 
+•

-•

Ú f(x¢)g(x – x¢)dx¢ = g(x)* f(x) (43)

The convolution has this important property: The Fourier
transform of the convolution of two functions is 2p  times
the product of their Fourier transforms. The proof is as follows:

F(f(x)* g(x)) = 
1

2

+•

-•
p
Ú dxe–ikx ( ) ( )dx f x g x x

+•

-•

È ˘
Í ˙-¢ ¢ ¢
Í ˙
Î ˚
Ú

= ( )
1

2
2

ikxdx f x e
+•

- ¢

-•

È ˘
Í ˙p ¢ ¢

pÍ ˙
Î ˚

Ú

¥  ( ) ( )1

2
ik x xdxg x x e

+•

- - ¢

-•

È ˘
Í ˙- ¢

pÍ ˙
Î ˚

Ú

In the second equation, we substitute x – x¢ by x to obtain

F( f(x)* g(x)) = 2p F(k)G(k)

where F(k) and G(k) are Fourier transforms of f (x) and g(x),
respectively. The convolution can be used to obtain the Fou-
rier transforms of the product of two functions:

F(f(x)g(x)) = 
1

2

+•

-•
p
Ú f(x)g(x)e–ikxdx

= 
1

2

+•

-•
p
Ú dxg(x)e–ikx 1

( )
2

ik xF k e dk
+•

¢

-•

È ˘
Í ¢ ¢˙

pÍ ˙Î ˚
Ú

Dt

t

f t( )

ω

F( )ω

Dω ~
1
Dt

Fig  9.5 The Fourier transform of a Gaussian temporal func-

tion is a Gaussian function in the frequency space.
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= 
1

2

+•

-•
p
Ú dk¢F(k¢) ( )1

( )
2

i k k xdxg x e
+•

- - ¢

-•

È ˘
Í ˙

pÍ ˙Î ˚
Ú

= 
1

2

+•

-•
p
Ú F(k¢)G(k – k¢)dk¢

Thus,

F(f(x)g(x)) = 
1

2p
F(k)* G(k)

The above result tells us that the Fourier transform of the

product of two functions is 
1

2p
 times the convolution of

their Fourier transforms.

Summary

� The Dirac delta function is defined through the equations

d (x – a) = 0 x π a

and for a well-behaved function f(x), which is continuous at
x = a,

−∞

+∞

z f(x)d (x – a) dx = f(a)

� For a time-dependent function f(t), its Fourier transform is
defined by the equation

F(w) = 
1

2

+•

-•
p
Ú f(t)e± iw tdt

Then

F(t) = 
+•

-•

Ú f(w) i te∓ w dt

� The Fourier transform of the Gaussian function

f(t) = A exp
2

2
0

t

t

Ê ˆ
-Á ˜Ë ¯

is given by

F(w) = 
2 2

0 / 40

2
tAt

e-w
p

� In general, if a function has a temporal spread of Dt, then its
Fourier transform F(w) will have a spectral spread Dw ª 1/Dt.

� The two-dimensional Fourier transform of a function f(x,y)
is defined through the equation

F(u, v) = 
1

2

+• +•

-• -•
p
Ú Ú f(x,y)e±i(ux+vy)dxdy

where u and n are referred to as spatial frequencies. The
inverse transform would be given by

f(x,y) = 
1

2

+• +•

-• -•
p
Ú Ú F(u,v)e±i(ux+vy)dudv

� The convolution of two functions f(x) and g(x) is defined by
the relation

f(x)* g(x) = 
+•

-•

Ú f(x¢)g(x – x¢)dx¢ = g(x)* f(x)

The Fourier transform of the convolution of two functions is

2p  times the product of their Fourier transforms.

Problems

9.1 Consider the Gaussian function

G
s
(x) ∫ 

1

2s p

exp
2

2

( )

2

x aÈ ˘-
-Í ˙

sÎ ˚
s > 0

Using Eq. (21), show that 
+•

-•

Ú G
s

(x)dx = 1. Plot G
s

(x) for

a = 2 and s = 1.0, 5.0, and 10.0. Hence show that

d (x – a) = 
0

1
lim

2sÆ s p

exp
2

2

( )

2

x aÈ ˘-
-Í ˙

sÎ ˚
(44)

which is the Gaussian representation of the delta function.
9.2 Consider the ramp function defined by the following equation:

F
s
(x) = 

0 for

1
( ) for | |

2

1 for

x a

x a x a

x a

Ï < - s
Ô
Ô

- + s - < sÌ
sÔ

Ô > + sÓ

(45)

Show that /dF dx
s

= R
s

(x), where R
s

(x) is the rectangle func-

tion defined by Eq. (4). Taking the limit s Æ 0, show that

d (x – a) = 
d

dx
H(x – a) where H(x – a) is the unit step func-

tion. Thus we get the following important result:

If a function has a discontinuity of a at x = a, then its de-
rivative (at x = a) is ad (x – a).

9.3 Consider the symmetric function

y (x) = A exp (–K|x |)

Show that

y≤(x) = K2
y (x) – 2AKd (x)
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9.4 Consider the function f(t) = Ae–t2/2t 2
eiw0t. Calculate its Fourier

spectrum F(w) = 
1

2

+•

-•p
Ú f(t)e–iw tdt

and evaluate approximately DwDt. Evaluate f(t), using the
expression for F(w).

9.5 Calculate the Fourier transform of the following functions

(a)
0 2

( )
0 2

ik xAe x L
f x

x L

Ï <Ô
= Ì

<ÔÓ

(b) f(x) = A
| |

exp
x

L
Ê ˆ-Á ˜Ë ¯

In each case make an estimate of Dx and Dk and interpret
physically.

9.6 Show that the convolution of two Gaussian functions is an-
other Gaussian function:

2

2exp
x

a

Ê ˆ
-Á ˜Ë ¯

*
2

2exp
x

b

Ê ˆ
-Á ˜Ë ¯

 = ab
1/ 2

2 2a b

Ê ˆp
Á ˜+Ë ¯

exp −
+

F

HG
I

KJ
x

a b

2

2 2
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10.1 INTRODUCTION

When we switch a light source on and off, we produce a
pulse. This pulse propagates through a medium with what
is known as the group velocity, which will be discussed in
this chapter. In addition, as the pulse propagates, it under-
goes distortion which will also be discussed.1 A study of this
distortion of optical pulses is a subject of great importance
in many areas; in particular, it has very important significance
in fiber-optic communication systems, which will be briefly
discussed in Chap. 27 and 29.

10.2 GROUP VELOCITY

Let us consider two plane waves (having the same amplitude
A) with slightly different frequencies w + Dw and w – Dw

propagating along the +z direction:

Y1(z, t) = [ ]cos ( ) ( )A t k k zw + Dw - + D (1)

Y2(z, t) = [ ]cos ( ) ( )A t k k zw - Dw - - D (2)

In a perfect wave, you cannot say when it starts, so you cannot use it for a timing signal. In order
to send a signal you have to change the wave somehow, make a notch in it, make it a little bit
fatter or thinner. That means that you have to have more than one frequency in the wave, and
it can be shown that the speed at which signals travel is not dependent upon the index alone, but
upon the way that the index changes with the frequency.

—Richard Feynman, Feynman Lectures on Physics, Vol. I

GROUP VELOCITY AND

PULSE DISPERSION

Chapter

Ten

where k + Dk and k – Dk are the wave numbers correspond-
ing to the frequencies w + Dw and w – Dw, respectively. The
superposition of the two waves is given by

Y(z, t) = cos [( ) ( ) ]A t k k zw + Dw - + D

cos [( ) ( ) ]A t k k z+ w - Dw - - D

or

Y(z, t) = 2 cos (ω ) cos [( ω) ( ) ]A t k z t k z- D - D (3)

In Fig. 10.1(a) we have shown the variation of the rapidly
varying cos(wt – kz) term at t = 0; the distance between two
consecutive peaks is 2p/k. In Fig. 10.1(b) we have shown the
variation of the slowly varying envelope term, represented
by cos [(Dw)t – (Dk)z] at t = 0; the distance between two
consecutive peaks is 2p/Dk. In Fig. 10.2(a) and (b) we plotted
Y(z, t) at

t = 0 and t = Dt

Obviously the rapidly varying first term moves with
velocity

vp = 
ω

k
(4)

1 This chapter assumes a knowledge of waves, which will be discussed in Chap. 11. The reader might prefer to go through Chap. 11
first, before going through this chapter.

Important Milestone
1672 Isaac Newton reported to the Royal Society his observations on the dispersion of sunlight as it passed

through a prism. From this experiment, Newton concluded that sunlight is composed of light of different

colors which are refracted by glass to different extents.

gha80482_ch10_127-141.PMD 1/14/2009, 9:42 PM127



Optics128
�

cos kz

cos ( )Δk z

z

(a)

(b)

Fig. 10.1 (a) Variation of the rapidly varying cos (wt – kz) term at t = 0; the distance between two
consecutive peaks is 2p/k. (b) Variation of the slowly varying envelope term, represented by
cos [(Dw)t – (Dk)z], at t = 0. The distance between two consecutive peaks is 2p/Dk.

Ψ( ,   = 0)z  t

Ψ Δ( ,   = )z  t t

z

(a)

(b)

Fig. 10.2 (a) and (b) Variation of Y(z, t) at t = 0 and at t = Dt ; the envelope moves with the group velocity
Dw/Dk.

and the slowly varying envelope [which is represented by
the second term in Eq. (3)] moves with velocity

vg = 
k

Dw

D
(5)

The quantities vp and vg are known as the phase velocity
and the group velocity, respectively. The group velocity is a
concept of great importance; indeed in the next section we
will rigorously show that a temporal pulse travels with the
group velocity given by

vg = 
1

/dk dw
(6)

Now, in a medium characterized by the refractive index
variation n(w),

k(w) = 
c

w
n(w) (7)

Thus

1

gv
= 

dk

dw
 = 

1
( )

dn
n

c d
Ê ˆw + wÁ ˜Ë ¯w

(8)

In free space n(w) = 1 at all frequencies; hence

vg = vp = c (9)
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Returning to Eq. (8), we note that it is customary to express
in terms of the free space wavelength l0 which is related to w
through

w = 
0

2 cp

l
(10)

Thus

dn

dw
= 0

0

ddn

d d

l

l w
 = 

2
0

02

dn

c d

l
-

p l
(11)

or 1
vg

= 0 0
0

1
( )

dn
n

c d

È ˘
l - lÍ ˙

lÎ ˚
(12)

The group index ng is defined as

ng = c

gv
 = 0 0

0

( )
dn

n
d

l - l
l

(13)

In Table 10.1 we tabulated n(l0), dn/dl0, and ng(l0) for
pure silica as a function of the free space wavelength l0. In
Fig. 10.3 we have plotted (for pure silica) the wavelength
variations of the group velocity vg; note that the group ve-
locity attains a maximum value at l0 ª 1.27 mm. As we will
show later in this chapter (and in Chap. 27), this wave-
length is of great significance in optical communication
systems.

Example 10.1 For pure silica the refractive index variation
in the wavelength domain 0.5 mm < l0 < 1.6 mm can be assumed to
be given by the approximate empirical formula

n(l0) ª 2
0 0 2

0

a
C a- l +

l

(14)

where C0 ª 1.451, a ª 0.003, and l0 is measured in mm. [A more
accurate expression for n(l0) is given in Prob. 10.6.] Simple algebra
shows

ng(l0) = 2
0 0 2

0

3a
C a+ l +

l

(15)

Thus at l0 = 1 mm,

n(l0) ª 1.451

and ng(l0) ª 1.463

indicating that the difference between group and phase velocities
is about 0.8%. More accurate values of n(l0) and ng(l0) (as ob-
tained by using the expression given in Prob. 10.6) are given in
Table 10.1.

Using Table 10.1 we find that in pure silica, for

l0 = 0.80 mm vg = c/ng = 2.0444 ¥ 108 m s−1

and for

l0 = 0.85 mm vg = c/ng = 2.0464 ¥ 108 m s−1

implying that (for l0 < 1.27 mm) higher-wavelength components
travel faster; similarly for l0 > 1.27 mm, lower- wavelength com-
ponents travel faster. Now, every source of light has a certain
wavelength spread, which is usually referred to as the spectral
width of the source. Thus a white light source (such as coming
from the Sun) has a spectral width of about 3000 Å; on the other
hand, a light-emitting diode (usually abbreviated as LED) has a
spectral width of about 25 nm, and a typical laser diode (usually
abbreviated as LD) operating around 1.3 mm has a spectral
width of about 2 nm; this spectral width is usually denoted by
Dl0. Since each wavelength component (of a pulse) will travel
with a slightly different group velocity, it will, in general, result
in the broadening of the pulse. To calculate this broadening, we
note that the time taken by a pulse to traverse a length L of the
dispersive medium is

t = 
g

L

v
 = 0 0

0

( )
L dn

n
c d

È ˘
l - lÍ ˙

lÎ ˚
(16)

Since the RHS depends on l0, the above equation implies
that different wavelengths will travel with different group
velocities in propagating through a certain length of the dis-
persive medium. Thus the pulse broadening is given by

Dtm = ( ) ( )0 0 0t l + Dl - t l

= 0
0

d

d

t
Dl

l

= 
2

20
0 2

0 0

L d n

c d

Ê ˆDl
- lÁ ˜l lË ¯

(17)

The quantity Dtm is usually referred as material dispersion
because it is due to the material properties of the medium—
hence the subscript m. In Eq. (17), the quantity inside the

2.02

2.04

2.06

2

� g
(

10
m

/s
)

¥
8

0.75 1 1.25 1.50.5

Negative
dispersion

Positive
dispersion

λ0 ( m)m

Fig. 10.3 Variation of the group velocity vg with wavelength
for pure silica.
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parentheses is dimensionless. Indeed, after propagating
through a length L of the dispersive medium, a pulse of
temporal width t0 will get broadened to tf where

tf
2

ª ( )
22

0 mt + Dt (18)

In the next section we will explicitly show this for a Gaussian
pulse. From Eq. (17) we see that the broadening of the pulse is
proportional to the length L traversed in the medium and also to
the spectral width of the source Dl0. We assume

Dl0 = 1 nm = 10–9m and L = 1 km = 1000 m

Thus
2

20
0 2

0 0

λ

m
L d n

c d

Ê ˆD
Dt = - lÁ ˜l lË ¯

=
( )

9 2
2
0 26 8 –1

00

(1000 m) (10 m)
s

(µm) (10 ) 3 10 m s

d n

d

-

-

Ê ˆ¥
- lÁ ˜È ˘ lË ¯l ¥ ¥Î ˚

=
2

2 8
0 2

0 0

1
10

3 (µm)

d n

d
-

Ê ˆ
- l ¥Á ˜l lË ¯

s

  
= 

  

2
2 4
0 2

0 0

1
10

3 (µm)

d n

d

Ê ˆ
l ¥Á ˜l lË ¯

 ps

where l0 is measured in μm and we have assumed 8 –13 10 m sc ª ¥ .
We define the dispersion coefficient as

2
2 4 –1 –1
0 2

0 0 0

1
10 ps km nm

3
m

m
d n

D
L d

Ê ˆDt
= ª - l ¥Á ˜Dl l lË ¯

(19)

The quantity D
m
 is usually referred to as the material dispersion

coefficient (because it is due to the material properties of the
medium), hence the subscript m on D. Thus D

m
 = 15 ps km

–1 
nm

–1

implies that the pulse will broaden by 15 ps per kilometer length
of the fiber per nanometer spectral width of the source. A me-
dium is said to be characterized by positive dispersion when D

m

is positive, and it is said to be characterized by negative disper-
sion when D

m
 is negative.

The spectral width of a pulse is usually due to the intrin-
sic spectral width of the source—which for a typical LED is
about 25 nm and for a commercially available laser diode is
about 1 to 2 nm. On the other hand, for a nearly monochro-
matic source, the intrinsic spectral width could be extremely
small, and the actual spectral width of a pulse is determined
from its finite duration (such a pulse is often referred to as a
Fourier transformed pulse). Thus a 20 ps (Fourier transformed)
pulse will have a spectral width

Dn ª 11
12

1
5 10 Hz

20 10-

ª ¥

¥

Table 10.1 Values of n, ng, and Dm for pure silica. The numerical values in the table have been calculated using the
refractive index variation as given in Ref. 2 (see Prob. 10.6).

l0 (mm) n(l0)
λ

dn
d 0

 (mm–1) ng (l0)
l

d n

d

2

2
0

 (mm–2) Dm (ps nm−1 km−1)

0.70 1.45561 –0.02276 1.47154 0.0741 –172.9
0.75 1.45456 –0.01958 1.46924 0.0541 –135.3
0.80 1.45364 –0.01725159 1.46744 0.0400 –106.6
0.85 1.45282 –0.01552236 1.46601 0.0297 –84.2
0.90 1.45208 –0.01423535 1.46489 0.0221 –66.4
0.95 1.45139 –0.01327862 1.46401 0.0164 –51.9
1.00 1.45075 –0.01257282 1.46332 0.0120 –40.1
1.05 1.45013 –0.01206070 1.46279 0.0086 –30.1
1.10 1.44954 –0.01170022 1.46241 0.0059 –21.7
1.15 1.44896 –0.01146001 1.46214 0.0037 –14.5
1.20 1.44839 –0.01131637 1.46197 0.0020 –8.14
1.25 1.44783 –0.01125123 1.46189 0.00062 –2.58
1.30 1.44726 –0.01125037 1.46189 –0.00055 2.39
1.35 1.44670 –0.01130300 1.46196 –0.00153 6.87
1.40 1.44613 –0.01140040 1.46209 –0.00235 10.95
1.45 1.44556 –0.01153568 1.46229 –0.00305 14.72
1.50 1.44498 –0.01170333 1.46253 –0.00365 18.23
1.55 1.44439 –0.01189888 1.46283 –0.00416 21.52
1.60 1.44379 –0.01211873 1.46318 –0.00462 24.64
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implying

Dl0 ª 
2
0 0.4 nm
c

l Dn
ª

We may see that

2

2
0

d n

dl
ª 0

around l0 ª 1.27 mm. Indeed the wavelength l0 ª 1270 nm is
usually referred to as the zero material dispersion wave-
length, and it is because of low material dispersion; the
second- and third-generation optical communication systems
operated around l0 ª 1300 nm; more details will be given in
Chap. 27.

Example 10.2 In first-generation optical communication
system, one used LEDs with l0 ª 0.85 mm and Dl0 ª 25 nm. Now
at l0 ª 0.85 mm

2

2
0

d n

dl
ª 0.030 (mm)–2

giving

Dm ª –85 ps km–1nm–1

the negative sign indicating that higher wavelengths travel faster
than lower wavelengths. Thus for Dl0 ª 25 nm, the actual broaden-
ing of the pulse will be

Dtm ª 2.1 ns km–1

implying that the pulse will broaden by 2.1 ns after traversing
through 1 km of the silica fiber.

Example 10.3 In the fourth-generation optical communication
systems, one uses laser diodes with l0 = 1.55 mm and Dl0 ª 2 nm.
Now at l0 ª 1.55 mm

2

2
0λ

d n

d
ª 0.0042 (mm)–2

giving

Dm ª +21.7 ps km–1nm–1

the positive sign indicating that higher wavelengths travel slower
than lower wavelengths. (Notice from Table 10.1 that for l0 ≥

1.27 mm, ng increases with l0.) Thus for Dl0 ª 2 nm, the actual
broadening of the pulse will be

Dtm ª 43 ps km–1

implying that the pulse will broaden by about 43 ps after travers-
ing through 1 km of the silica fiber.

10.3 GROUP VELOCITY OF A

WAVE PACKET

The displacement corresponding to a one-dimensional plane
wave propagating in the +z direction can be written in the
form

E(z, t) = Aei(w t – kz) (20)

where A represents the amplitude of the wave and

k(w) = 
c

w
n(w) (21)

with n being the refractive index of the medium. The wave
described by Eq. (20) is said to describe a monochromatic
wave which propagates with the phase velocity given by

vp = 
k

w

 = 
c

n
(22)

We note here that, in general, A may be complex and if we
write

A = | A |eif

then Eq. (20) becomes

E = | A |ei(wt – kz + f)

The actual displacement is the real part of E and is, therefore,
given by

Actual electric field = Re(E)

= | A | cos(wt – kz + f) (23)

The plane wave represented by Eq. (20) is a practical
impossibility because at an arbitrary value of z, the displace-
ment is finite for all values of t; for example,

E(z = 0, t) = Ae+iwt; –• < t < • (24)

which corresponds to a sinusoidal variation for all values of
time. In practice, the displacement is finite only over a certain
domain of time, and we have what is known as a wave packet.
A wave packet can always be expressed as a superposition
of plane waves of different frequencies:

E(z, t) = ( )( ) i t k zA e d
+•

w -

-•

w wÚ (25)

Obviously

E(z = 0, t) = ( ) i tA e d
+•

+ w

-•

w wÚ (26)

Thus, E(z = 0, t) is the Fourier transform of A(w), and using
the results of Chap. 9, we obtain

A(w) = 
1

2
E

+•

-•
p
Ú (z = 0, t)e–iwt dt (27)
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Thus given E(z = 0, t), we know we can determine E(z, t) using
the following recipe:

We determine A(w) from Eq. (27), substitute it in Eq. (25),
and carry out the resulting integration.

Example 10.4 Gaussian pulse: As an example, we consider
a Gaussian pulse for which we may write

E(z = 0, t) = 
2 2

0 0– /
0

t i tE e et + w (28)

If we substitute Eq. (28), in Eq. (27), we obtain

A(w) = ( )2 2
00/0 –

2
i ttE

e e dt- w - wt

p
Ú

= 2 20 0
0 0

1
exp ( )

42

E t È ˘
- w - w tÍ ˙p Î ˚

(29)

where we have used

2x xe dx
+• -a +b

-•Ú = 
2/ 4eb ap

a

(30)

(see App. A). In general, A(w) can be complex, and as such one
defines the power spectral density

S(w) = | A(w) |2 (31)

For the Gaussian pulse

S (w) = 
2 2

2 20 0
0 0

1
exp ( )

4 2

E t È ˘
- w - w tÍ ˙p Î ˚

(32)

In Fig. 10.4(a) we have plotted the function

( )
2 2

0/
0 0costE e tt-

w

[which is the real part of Eq. (28)] for a 20 fs pulse (t0 =
20 ¥ 10–15s) corresponding to l0 = 1 mm (w0 ª 6p ¥ 1014 Hz); the
corresponding spectral density function S(w) is plotted in
Fig. 10.4(b). As can be seen, S(w) is a very sharply peaked function
of w around w = w0. The full width at half maximum of S(w) (usu-
ally abbreviated as FWHM) is denoted by Dw ; thus at

w = 0
1

2
w ± Dw

S(w) attains one-half of its maximum value; the value of Dw is obtained
from the following equation

1
2

= 
2 2

0( )
exp

8

È ˘Dw t
-Í ˙
Î ˚

or

FWHM = Dw = 
0 0

2 2 ln 2 2.35
ª

t t

(33)

Thus the Gaussian pulse of temporal width 20 fs has a frequency
spread Dw given by

Dw ª 1.18 ¥ 1014 Hz (34)
So

0

Dw

w

ª 0.06

Note that to have clarity in the figure we have chosen a
very small value of t0; usually t0 has a much larger value. A
larger value of t0 will imply a much smaller value of Dw (result-
ing in greater monochromaticity of the pulse), and obviously
Fig. 10.4(b) will be much more sharply peaked; we will discuss
this in greater detail in the chapter on coherence (Chap. 17).

Returning to Eq. (25), we consider the following cases:

10.3.1 Propagation in a Nondispersive

Medium

For electromagnetic waves, the free space is a nondispersive
medium in which all frequencies propagate with the sam ve-
locity c; thus

k(w) = 
ω

c
and Eq. (25) can be written in the form

E (z, t) = ( )( ) ci z ctA e d
w

+•

-•

- -

w wÚ (35)

The right-hand side is a function of z – ct, and thus
any pulse will propagate with velocity c without undergoing
any distortion. Thus, for the Gaussian pulse given by Eq. (28),

E(z, t) = 
0

0

0

2( )
exp exp ( )

2 2

z ct
E i z ct

cc

È ˘
w- È ˘Í ˙

- - -Í ˙Í ˙
Î ˚tÍ ˙Î ˚

(36)

which represents a distortionless propagation of a Gaussian
pulse in a nondispersive medium2.  In 10.5 we have shown
Fig. 10.5 the distortionless propagation of a 20 fs pulse.

10.3.2 Propagation in a Dispersive Medium

For a wave propagating in a medium characterized by the
refractive index variation n(w), we will have

k(w) = 
c

w n(w)

Now, in most problems, A(w) is a very sharply peaked function
[see, e.g., Fig. 10.4(b)] so that we may write

E(z, t) ª 
0

0

[ ( ) ]( ) i t k zA e d
w +Dw

w - w

w -Dw

w wÚ (37)

2 Whereas Eq. (36) follows directly from Eq. (35), it is left as an exercise to the reader to show that if we substitute A(w) from
Eq. (29) into Eq. (35), we readily get Eq. (36).
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because for w > w0 + Dw and for w < w0 – Dw, the function
A(w) is negligibly small. In this tiny domain of integration,
we may make a Taylor series expansion of k(w)

k(w) = 
0

0 0( ) ( )
dk

k
d

w=w

w + w - w

w

+ 

0

2
2

0 2

1 . . .( )
2

d k

d
w=w

w - w +

w

(38)

or k(w) = 2
0 0 0

1 1
( ) ( )

2g

k + w - w + w - w g

v
(39)

where k0 ∫ k(w0) (40)

1
vg

∫ 
0

dk

d
w=w

w

(41)

and g ∫ 

0

2

2

d k

d
w=w

w

(42)

We have defined vg through Eq. (41)—we will show below
that the envelope of the pulse moves with velocity vg which

–50 –25 0 25 50

ω0

ω
0

Dω

t (fs)

E
t

(0
,

)
S

(
)

ω

(a)

(b)

Fig. 10.4 (a) A 20 fs (= 20 ¥ 10–15 s) Gaussian pulse corresponding to l
0

 = 1 mm; (b) the corresponding frequency
spectrum, which is usually a very sharply peaked function around w = w

0

.
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is the group velocity. Now, if we retain only the first two
terms on the RHS of Eq. (39), then Eq. (37) gives

E(z, t) ª ( )0

0( )exp
g

A i k z z t d
+•

w-w

-•

È ˘w - + -w w
Í ˙Î ˚Ú v (43)

where we have replaced the limits from –• to +• because, in
any case, the contribution from the region |w – w0| > Dw is
going to be extremely small. By writing

wt = (w – w0)t + w0t (44)
Eq. (43) can be rewritten in the form

E(z, t) ª 0 0

Phase term

Envelope term

( )( )
( )

i
gg

z ti t k z
e A e d

W
+•

- -w -

-•

W WÚ
�����

�����������

v v
(45)

where W ∫  w – w0 (46)

We see that in the envelope term, z and t do not appear
independently but only as z – vgt ; thus, the envelope of the
pulse moves undistorted with the group velocity

vg = 
0

1

( / )dk d
w

w

(47)

Thus if we neglect g [and other higher-order terms in
Eq. (39)], the pulse moves undistorted with group velocity vg.

Next, if we take into account all three terms in Eq. (39), we
obtain

E(z, t) ª

0 0 2( )

tPhase erm

tEnvelope erm

( ) exp
2g

i t k z z i
A i t z de

+•

w -

-•

È ˘Ê ˆ
W W - - W g WÍ ˙Á ˜

Ë ¯Í ˙Î ˚
Ú�����

�������������������

v
(48)

For the Gaussian pulse [see Eq. (28)], A (w) is given by
Eq. (29); if we now substitute A (w) in the above equation

and use Eq. (30) to carry out the integration, we readily obtain

E(z, t) = 
( )

0 0

2

( )0
2
0

/
exp

1 (1 )

gi t k z
t zE

e
ip ip

w -

È ˘-Í ˙-
Í ˙+ t +Î ˚

v
(49)

where

p
2
0

2 zg
∫

t
(50)

The corresponding intensity distribution is given by

I(z, t) = 
( )

2

0
2

0

2 /
exp

( )/ ( )

gt zI

z z

È ˘-
Í ˙-
Í ˙t t tÎ ˚

v
(51)

where
t

2(z) ∫  t0
2(1 + p2) (52)

In Fig. 10.6 we have plotted the time variation of the in-
tensity at different values of z. From Eq. (52) we find that as
the pulse propagates, it undergoes temporal broadening. We
define the pulse broadening Dt as

Dt = 2 2
0( )zt - t

= | p |t0 = 
0

2| | zg
t

(53)

Now

g = 
2

2

d k

dw
 = 0

0

1d dn
n

d c d

È ˘Ê ˆ
- lÍ ˙Á ˜w lË ¯Í ˙Î ˚

= 0
0 0

0 0

1
( )

dd dn
n

c d d d

È ˘ l
l - lÍ ˙

l l wÎ ˚

= 
2

20
02 2

02

d n

c d

È ˘l
lÍ ˙

p lÍ ˙Î ˚
(54)

–25 0 25

z = 0 z z= 0

t fs( )

Fig. 10.5 Distortionless propagation of a Gaussian pulse in a nondispersive medium.
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where the quantity inside the square brackets is dimension-
less. Further, since the spectral width of the Gaussian pulse
is given by [see Eq. (33)]

Dw ª 
0

2

t
(55)

we may write

0

1

t
ª 02

0

1 1 2

2 2

cp
Dw ª Dl

l
(56)

Substituting for t0 from Eq. (56) and for g from Eq. (54) in
Eq. (53), we get

Dt = 
2

2
0 02

0 0

z d n

c d
l Dl

l l
(57)

which is identical to the result obtained earlier section [see
Eq. (17)].

Example 10.5 As an example, we assume l0 = 1.55 mm. For
pure silica, at this wavelength (see Table 10.1)

2

2
0

d n

dl
ª –0.004165 (mm)–2

Thus

g ª 
6

16

1.55 10
(1.55 1.55 0.004165)

2 9 10

-

¥
- ¥ ¥

p ¥ ¥

ª –2.743 ¥ 10–26 m–1s2

For a 100 ps pulse propagating through a 2 km long fiber

Dt ª 
26 3

10

2 2.743 10 2 10

10

-

-

¥ ¥ ¥ ¥  ª 1.1 ps

On the other hand, for a 10 fs pulse, at z = 2z0 = 4 mm we will have

Dt ª 22 fs

implying

tf ª [t0
2 + (Dt)2]1/2 ª 25 ps

showing that a 10 fs pulse doubles its temporal width after propa-
gating through a very small distance (see Figs. 10.7 and 10.8).

10.3.3 The Chirping of the Dispersed

Pulse

If we carry out simple manipulations, Eq. (49) can be written
in the form

E(z, t) = 0
1/ 2

0[ ( )/ ]

E

zt t

 
( )

2

2

/
exp

( )

gt z

z

È ˘-Í ˙-Í ˙tÎ ˚

v

¥ exp [i (F (z, t) – k0z] (58)

where the phase term is given by

F(z, t) = 

2

1
0

1
tan

2g

z
t t p-

Ê ˆ
w + k - -Á ˜

Ë ¯v
(59)

and

k (z) = 
2 2
0 (1 )

p

pt +

(60)

Equation (59) represents the phase term, and the instanta-
neous frequency is given by

–25 0 25 9752.21 19,504.4
50 fs 50 fs 50 fs

t (fs)

0.5

1

I
(

,
)

z
t

z = 0

z z= 0

z z= 2 0

Fig. 10.6 The time variation of the intensity at different values of z; notice the temporal broadening of the pulse.
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w (t) = 
t

∂F

∂
 = 0 2

g

z
t
Ê ˆ

w + k -Á ˜
Ë ¯v

(61)

showing that w(t) changes within the pulse. The frequency
chirp is therefore given by

Dw = w(t) – w0 = 2
g

z
t
Ê ˆ

k -Á ˜
Ë ¯v

(62)

Example 10.6 In continuation of Example 10.5, we assume
l0 = 1.55 mm and consider the chirping produced in a 100 ps pulse
propagating in pure silica at z = 2 km. Now

p = 2
0

2 zg

t
 = − × × × ×

×

−

−
2 2 743 10 2 10

100 10

26 3

12 2
.

( )

ª –0.011

–25 250

50 fs

9752

50 fs

19,504

50 fs

t (fs)

0

0.5

1

R
e

(
,

)
E

z
t

z z= 2 0z z= 0

z = 0

Fig. 10.7 The temporal broadening of a 10 fs unchirped Gaussian pulse (l
0

 = 1.55 mm) propagating
through silica. Notice that since dispersion is positive, the pulse gets down-chirped.

z z= 0

z = 0 z z= 2 0

0 25–25
t (fs)

Fig. 10.8 If a down-chirped pulse is passed through a medium characterized by negative dispersion, it will
get compressed until it becomes unchirped, and then it will broaden again with opposite chirp.
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At

g

z
t -

v
= –50 ps

(i.e., at the front end of the pulse)

Dw ª 12
2 2
0

2
( 50 10 )

(1 )
p

p
-

- ¥

t +

ª 
12

12 2

2 0.011 50 10
(100 10 )

-

-

¥ ¥ ¥
+

¥

= +1.1 ¥ 108 Hz

Thus at the leading edge of the pulse, the frequencies are slightly
higher which is usually referred to as blue-shifted. Notice

0

Dw

w
ª 9 ¥ 10–8

At

t = 
g

z

v
, Dw = 0

and at

g

z
t -

v
= +50 ps

(i.e., at the trailing edge of the pulse)

Dw ª –1.1 ¥ 108 Hz

Thus, at the trailing edge of the pulse, the frequencies are
slightly lower which is usually referred to as red-shifted.

From Example 10.6, we can conclude the following:
For positive dispersion (i.e., negative value of g), p and k

will also be negative, implying that the instantaneous fre-
quency (within the pulse) decreases with time (we are of
course assuming z > 0); this is known as a down-chirped
pulse in which the leading edge of the pulse (t < z/vg) is
blue-shifted (i.e., it has frequency higher than w0 ) and the
trailing edge of the pulse (t > z/vg) is red-shifted (i.e., it has
frequency lower than w0).

This is shown in Fig. 10.7 where at t = 0 we have an
unchirped pulse. As the pulse propagates farther, it will get
further broadened and also get further down-chirped.

From Eq. (61) it can be readily seen that at negative values of
z,  p (and therefore k) will be positive and the leading edge of
the pulse (t < z/vg) will be red-shifted (i.e., it will have frequency
lower than w0) and the trailing edge of the pulse (t > z/vg) will
be blue-shifted (i.e., it will have frequency higher than w0).

This implies that we will have an up-chirped pulse. Thus
if an up-chirped pulse is passed through a medium charac-
terized by positive dispersion, it will get compressed until

it becomes unchirped, and then it will broaden again with
opposite chirp.

Similarly we can discuss the case of negative dispersion
(implying a positive value of g ). If a down-chirped pulse is
passed through a medium characterized by negative disper-
sion, it will get compressed until it becomes unchirped, and
then it will broaden again with opposite chirp (see Fig. 10.8).

10.4 SELF PHASE MODULATION

As a pulse propagates through a dispersive medium, the fre-
quency spectrum remains the same—i.e., no new frequencies are
generated. Different frequencies superpose with different phases
to distort the temporal shape of the pulse (see Prob. 10.10). New
frequencies are generated when the medium is nonlinear —
we briefly discuss this here.

The refractive index of any material is a constant only for
small intensities of the propagating laser beam. If the inten-
sities are large, the refractive index variation is approximately
given by

n ~  n0 + n2I (63)

where n2 is a constant and I represents the intensity of
the beam. For example, for fused silica, n0 ~  1.47 and n2 ~
3.2 ¥ 10–20 m2 W–1. Further, if the effective area of the light
beam is Aeff, then the intensity is given by

I = 
eff

P

A
(64)

where P is the power associated with the light beam. Now in
a single mode fiber, the spot size w0 of the beam is about
5 mm (see Examples 29.8 and 29.9). Thus the effective3 cross-
sectional area of the beam, Aeff  ª pw0

2 ª 50 mm2. For a 5 mW
laser beam  propagating through such a fiber, the resultant
intensity is given by

I = 
eff

P

A
 ª 

3

12 2

5 10 W

50 10 m

-

-

¥

¥

 = 108 W m–2 (65)

Thus the change in refractive index is given by

Dn = n2I ~  3.2 ¥ 10–12 (66)

Although this is very small, but when the beam propa-
gates over an optical fiber over long distances (a few
hundred to a few thousand kilometers), the accumulated non-
linear effects can be significant. That is the great advantage
of the optical fiber—the beam remains confined to a very
small area for long distances!

We consider a laser pulse (of frequency w0) propagating
through an optical fiber; the effective propagation constant

3 Values adapted from Ref. 2.
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is given by

k = ( )0
0 2n n I

c

w
+

 = 0
0 2

eff

( )P t
n n

c A

È ˘w
+Í ˙

Î ˚
(67)

Thus, for such a propagating beam, the phase term is ap-
proximately given by

e+i(w0t–kz) = 0
0 0 2

eff

( )
exp

P t
i t n n z

c A

Ï ¸È ˘Ê ˆwÔ Ô+ w - +Í ˙Ì ˝Á ˜Ë ¯Í ˙Ô ÔÎ ˚Ó ˛
 = e+iF

where the phase F is defined as

 F (z, t) ∫ w0t – 0

c

w

0 2
eff

( )P t
n n

A

Ê ˆ
+Á ˜Ë ¯

z (68)

We can define an instantaneous frequency as cf. [Eq. (61)]

w (t) ∫ 
t

∂F

∂
 = w0 – g

( )dP t

dt
z

where

 g = 2 0

eff

n

c A

w
 = 2

0 eff

2 n

A

p

l
(69)

For Aeff ª 50 mm2, l0 ª 1.55 mm and  n2 ª 3.2 ¥ 10–20 m2 W–1,
g ª 2.6 ¥ 10–3 W–1 m–1.

Now, for a Gaussian pulse propagating with group velocity
vg [see Eq. (51)]

P(z,t) = P0 
( )

2

2
0

2 /
exp

gt zÈ ˘-
Í ˙-
Í ˙tÎ ˚

v

where we have neglected dispersion [i.e., p = 0 in Eqs. (49)
and (52)]. Thus

w (t) = w0

( )
2

02 2
0 0 0

2 /2
1 exp

g

g

t zgz z
P t

È ˘È ˘-Ê ˆÍ ˙Í ˙+ - -Á ˜Í ˙Í ˙w t tË ¯ Î ˚Î ˚

v

v

For l0 = 1.55 mm

w0 = 
0

2 cp

l
 = 

8

6

2 3 10

1.55 10-

p ¥ ¥

¥

ª 1.22 ¥ 1015 s–1

Further, for P0 = 15 mW, t0 = 20 fs, and z = 200 km,

0
2

0 0

2

g

gzP z
t
Ê ˆ

-Á ˜w t Ë ¯v

= 
2 2 6 10 2 10 15 10

122 10 20 10

3 5 3

15 15 2

¥ ¥ ¥ ¥ ¥ ¥

¥ ¥ ¥

- -

-

.

. ( ) g

z
t
Ê ˆ

-Á ˜
Ë ¯v

ª 3.2 ¥ 1013

g

z
t
Ê ˆ

-Á ˜
Ë ¯v

+0.64    for –  20 fs (trailing edge of pulse)

 – 0.64    for –  – 20 fs (front end of pulse)

g

g

z
t

z
t

Ï
ªÔ

Ô
= Ì
Ô ª
ÔÓ

v

v

Thus the instantaneous frequency within the pulse
changes with time leading to chirping of the pulse, as shown
in Fig. 10.9; this is known as self phase modulation (usually
abbreviated as SPM). Note that since the pulse width has not
changed, but the pulse is chirped, the frequency content of
the pulse has increased. Thus SPM leads to generation of

–50 0 50

100 fs100 fs

z = 0 z = 200 km

Fig. 10.9 Due to self phase modulation, the instantaneous frequency within the pulse changes with time
leading to chirping of the pulse. Calculations correspond to P

0

  = 15 mW, l
0

 = 1550 nm, t
0

 = 20 fs,
A
eff

  = 5 mm2, and vg = 2 ¥ 108 m/s.
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Fig. 10.10 Laser pulses of 80 fs duration having a wavelength 800 nm (and total energy of 1.6 nJ) are inci-
dent on a special optical fiber known as a holey fiber, in which a silica core is surrounded by a
periodic lattice of air holes; holey fibers are characterized by very small mode field diameters,
which leads to very high intensities. Because of the high intensities, SPM (self phase modulation)
and other nonlinear effects can be observed; these nonlinear effects result in the generation of
new frequencies. In this experiment, the entire visible spectrum gets generated which can be
observed by passing the light coming out of the optical fiber through a prism. The repetition rate
of the laser pulses is 82 MHz. The special fibers  were fabricated by Dr. Shyamal Bhadra and
Dr. Kamal Dasgupta  and their group at CGCRI, Kolkata, and the supercontinuum generation
was observed by Prof. Ajoy Kar and Dr. Henry Bookey at Heriot Watt University, Edinburgh. A
color photograph appears on the cover of the book. Photograph courtesy Prof. Ajoy Kar.

new frequencies. Indeed by passing a pulse through a fiber
characterized by very small cross-sectional area (so that the
value of g is large), it is possible to generate the entire visible
spectrum (see Fig. 10.10).

Summary

� When we switch a light source on and off, we produce a
pulse. This pulse propagates through a medium with what is
known as the group velocity, which is given by

vg = 
1

/dk dw

For a medium characterized by the refractive index variation
n(w)

k (w) = 
c

w

n(w)

the group velocity is given by

1

gv
= 1

c 0 0
0

( )
dn

n
d

È ˘
l - lÍ ˙

lÎ ˚

where l0 is the wavelength in free space and c ª 3 ¥ 108 m/s
is the speed of light in free space.

� After traversing through a distance L in a dispersive medium,
a pulse will broaden by an amount

Dtm = 0

0

L

c

Dl
-

l

2
2
0 2

0

d n

d

Ê ˆ
lÁ ˜lË ¯

where Dl0 is the spectral width of the source; the subscript m
denotes that the fact we are considering material dispersion.
The dispersion coefficient is given by

Dm = 
2

2
0 2

0 0 0

1

3
mt d n

L d

Ê ˆD
ª - lÁ ˜D l l lË ¯

 ¥ 104 ps km–1nm–1

where l0 is measured in mm and we have assumed c ª 3 ¥
108 m/s. For example, for silica, at l0 = 1.55 mm, d2n/dl0

2 ª
–0.00416 (mm–2) and Dm ª +22 ps per kilometer (length of
the medium) per nanometer (spectral width of the source).

On the other hand, for silica 2 2
0/d n dl  ª 0 around l0 ª 1.27 mm.

Indeed the wavelength l0 ª 1.27 mm is usually referred to as
the zero material dispersion wavelength, and it is because of
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low material dispersion; the second- and third- generation optical
communication systems operated around l0 ª 1.3 mm.

� For a Gaussian pulse

E(z = 0, t) = E0 
2

2
0

exp
tÊ ˆ

-Á ˜tË ¯
 e+ iw0t

the temporal width after propagating through a distance z is

given by t (z) = t0
21 p+ ; thus the temporal broadening is

given by

Dt = 2 2
0( )zt - t  = |p |t0

where

p = 
2

20
02 2 2

0 0

2

2

d n
z

c d

Ê ˆl
◊ lÁ ˜t p lË ¯

Thus at l0 ª 1.55 mm, for a t0 ª 100 ps pulse (propagating
in pure silica), Dt ª 0.55 ps km–1.

Problems

10.1 Using the empirical formula given by Eq. (14) calculate the phase
and group velocities in silica at l0 = 0.7, 0.8, 1.0, 1.2, and 1.4 mm.
Compare with the (more accurate) values given in Table 10.1.
[Ans: n(l0) ª 1.456, 1.454, 1.451, 1.449, 1.455;

    ng(l0) ª 1.4708, 1.4670, 1.4630, 1.4616, 1.4615].

10.2 For pure silica we may assume the empirical formula

n(l0) ª 1.451 – 0.003 2
0 2

0

1Ê ˆ
l -Á ˜lË ¯

where l0 is measured in mm.
(a) Calculate the zero dispersion wavelength.
(b) Calculate the material dispersion at 800 nm in ps km–1 nm–1.

[Ans: 1.32 mm; –101 ps km–1 nm–1]

10.3 Let

n(l0) = n0 + Al0

where l0 is the free space wavelength. Derive expressions
for phase and group velocities.

[Ans: vg = c/n0]
10.4 Consider a LED source emitting light of wavelength 850 nm

and having a spectral width of 50 nm. Using Table 10.1, cal-
culate the broadening of a pulse propagating in pure silica.

[Ans: 4.2 ns km–1]

10.5 In 1836 Cauchy gave the following approximate formula to
describe the wavelength dependence of refractive index in
glass in the visible region of the spectrum:

n(l) = A + 
2
0

B

l

Now (see also Table 12.2)

1

2

( ) =1.50883
for borosilicate glass

( ) =1.51690

n

n

l ¸
˝

l ˛

1

2

( ) = 1.45640
for vitreous quartz

( ) =1.46318

n

n

l ¸
˝

l ˛

where l1 = 0.6563 mm and l2 = 0.4861 mm.
(a) Calculate the values of A and B.
(b) Using the Cauchy formula, calculate the refractive index

at 0.5890 and 0.3988 mm and compare with the corre-
sponding experimental values:

(i) 1.51124 and 1.52546 for borosilicate glass
(ii) 1.45845 and 1.47030 for vitreous quartz

[Ans: (a) For borosilicate glass A = 1.499,
B ª 4.22 ¥ 10–15 m2 giving n = 1.51120 at l = 0.5890 mm,
and n = 1.52557 at l = 0.3988 mm; (b) for vitreous quartz

A = 1.44817, B ª 3.546 ¥ 10–15 m2]

10.6 The refractive index variation for pure silica in the wavelength
region 0.5 mm < l0 < 1.6 mm is accurately described by the
empirical formula

n(l0) = C0 + C1l0
2 + C2l0

4 + 3
2
0

C

ll -

+ 54
2 2 2 3
0 0( ) ( )

CC

l l
+

l - l -

where C0 = 1.4508554, C1 = –0.0031268, C2 = –0.0000381,
C3 = 0.0030270, C4 = –0.0000779, C5 = 0.0000018, l = 0.035,
and l0 is measured in mm. Develop a simple program to calcu-
late and plot n(l0) and d2n/dl0

2 in the wavelength domain 0.5 <
l0 < 1.6 mm, and compare with the results given in Table 10.1.

10.7 (a) For a Gaussian pulse given by

E = E0

2 2
0/te- t eiw0t

the spectral width is approximately given by

Dw ª 
0

1

t

Assume l0 = 8000 Å.

Calculate 0/Dw w for t0 = 1 ns and for t0 = 1 ps.

(b) For such a Gaussian pulse, the pulse broadening is given

by Dt = 02 /z t |g|, where g = 2 2/d k dw . Using Table 10.1,

calculate Dt and interpret the result physically.

[Ans: (a) 
0

Dw

w
 ª 4 ¥ 10–7 and 4 ¥ 10–4;

(b) g ª 3.62 ¥ 10–26 m–1 s2; Dt ª 0.072 and ª 72 ps km–1 for
t0 = 1 ns and 1 ps, respectively]

10.8 As a Gaussian pulse propagates, the frequency chirp is given by

Dw = 2 2
0

2

(1 ) g

p z
t

p

Ê ˆ
-Á ˜t + Ë ¯v
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where p is defined in Eq. (50). Assume a 100 ps (= t0) pulse

at l0 = 1 mm. Calculate the frequency chirp 0/Dw w at t – z/

vg = –100, –50, +50, and +100 ps. Assume z = 1 km and other
values from Table 10.1.

[Ans: 
0

Dw

w
 ª –4.5 ¥ 10–8, –2.25 ¥ 10–8, +2.25 ¥ 10–8,

and +4.5 ¥ 10–8 at t – z/vg = –100, –50, +50 and +100 ps,
respectively.

10.9 Repeat Prob. 10.8 for l0 = 1.5 mm; the values of t0 and z
remain the same. Show that the qualitative difference in the
results obtained in the previous and in the present problem
is the fact that at l = 1 mm we have negative dispersion and
the front end is red-shifted (Dw is negative) and the trailing
end is blue-shifted. The converse is true at l = 1.5 mm where
we have positive dispersion.

10.10 The frequency spectrum of E(0, t) is given by the function
A(w). Show that the frequency spectrum of E(z, t) is simply

A(w)e–ik(w)z

implying that no new frequencies are generated—different
frequencies superpose with different phases at different
values of z.

10.11 The time evolution of a Gaussian pulse in a dispersive
medium is given by

E(z, t) = 0

1

E

ip+

ei(w0t–k0z) exp
( )

2

2
0

/

(1 )

gt z

ip

È ˘-Í ˙-
Í ˙t +Î ˚

v

where p ∫ 2
02 /zg t . Calculate explicitly the frequency spec-

trum of E(0, t) and E(z, t), and show that the results agree
with those of Prob. 10.10.
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11.1 INTRODUCTION

In this chapter we will discuss the phenomenon of waves. A
wave is propagation of a disturbance. For example, when we
drop a small stone in a calm pool of water, a circular pattern
spreads out from the point of impact. The impact of the stone
creates a disturbance which propagates outward. In this
propagation, the water molecules do not move outward with
the wave; instead they move in nearly circular orbits about an
equilibrium position. Once the disturbance has passed a cer-
tain region, every drop of water is left at its original position.
This fact can easily be verified by placing a small piece of
wood on the surface of water. As the wave passes, the piece
of wood makes oscillations, and once the disturbance has
passed, the wood comes back to its original position. Further,
with time the circular ripples spread out; i.e., the disturbance
(which is confined to a particular region at a given time)
produces a similar disturbance at a neighboring point at a
slightly later time with the pattern of disturbance roughly
remaining the same. Such propagation of disturbances (with-
out any translation of the medium in the direction of
propagation) is termed a wave. It is also seen that the wave
carries energy; in this case the energy is in the form of kinetic
energy of water molecules.

We will first consider the simplest example of wave propa-
gation, i.e., the propagation of a transverse wave on a string.
Consider yourself holding one end of a string, with the other
end being held tightly by another person so that the string
does not sag. If you move the end of the string up and down

If you are dropping pebbles into a pond and do not watch the spreading rings, your occupation
should be considered as useless’, said the fictional Russian philosopher, Kuzma Prutkoff. And,
indeed we can learn much by observing these graceful circles spreading out from the punctured
surface of calm water.

—Gamow and Cleveland

WAVE PROPAGATION AND

THE WAVE EQUATION

Chapter

Eleven

a few times, then a disturbance is created which propagates
toward the other end of the string. Thus, if we take a snap-
shot of the string at t = 0 and at a slightly later time Dt, then
the snapshots will roughly1 look like the ones shown in
Fig. 11.1(a) and (b). The figure shows that the disturbances
have identical shapes except for the fact that one is displaced
from the other by distance vDt, where v represents the speed
of the disturbance. Such a propagation of a disturbance with-
out its change in form is a characteristic of a wave. The
following points may, however, be noted:

1. A certain amount of work is done when the wave is
generated, and as the wave propagates through the
string, it carries with it a certain amount of energy which
is felt by the person holding the other end of the string.

2. The wave is transverse; i.e., the displacement of the
particles of the string is at right angles to the direction
of propagation of the wave.

Referring to Fig. 11.1(a) and (b), we note that the shape of
the string at the instant Dt is similar to its shape at t = 0,
except for the fact that the whole disturbance has traveled
through a certain distance. If v represents the speed of the
wave, then this distance is simply vDt. Consequently, if the
equation describing the rope at t = 0 is y(x), then at a later
instant t, the equation of the curve is y(x – vt), which simply
implies a shift of the origin by a distance vt. Similarly, for a
disturbance propagating in the –x direction, if the equation
describing the rope at t = 0 is y(x), then at a later instant t the
equation of the curve is y(x + vt).

1 We are assuming here that as the disturbance propagates through the string, there is negligible attenuation and also no change in the
shape of the disturbance.
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Example 11.1 Study the propagation of a semicircular
pulse in the +x direction whose displacement at t = 0 is given by
the following equations:

2 2 1/2( )
( , 0 )

0

R x x R
y x t

x R

Ï - £Ô
= = Ì

≥ÔÓ
(1)

Solution: For a wave propagating in the +x direction the depen-
dence of y(x, t) on x and t should be through the function x – vt.
Consequently,

2 2 1/ 2[ ( ) ] | |
( , )

0 | |

R x t x t R
y x t

x t R

Ï - - - £Ô
= Ì

- ≥ÔÓ

v v

v (2)

The shape of the pulse at t = 0 and at a later time t0 is shown in
Fig. 11.2. Equation (2) immediately follows from the fact that
y(x, t) has to be of the form y(x – vt) and at t = 0, y(x, t) must be
given by Eq. (1).

Example 11.2 Consider a pulse propagating in the –x direc-
tion with speed v. The shape of the pulse at t = t0 is given by

y(x, t = t0) = 
2

2 2
0( )

b

a x x+ −
(3)

(Such a pulse is known as a Lorentzian pulse.) Determine the shape
of the pulse at an arbitrary time t.

Solution: The shape of the pulse at t = t0 is shown in Fig. 11.3(a).
The maximum of the displacement occurs at x = x0. Since the pulse
is propagating in the –x direction, at a later time t, the maximum will

v

x

x

t = 0

t t= Δ

y x t( ,  )

(a)

(b)

Fig. 11.1 A transverse wave is propagating along the +x axis on a string. (a) and (b) Displacements at t = 0 and

t = Dt, respectively.

R

R

v

y

y

x

x

t = 0

t t= 0

(a)

(b)

v t0

Fig. 11.2 The propagation of a semicircular pulse along

the +x axis. (a) and (b) Shape of the pulse at t = 0

and at a later time t
0
, respectively.
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occur at x0 –  v(t – t0). Consequently, the shape of the pulse at an
arbitrary time t is given by

y(x, t) = 
2

2 2
0 0[ ( )]

b

a x x t t+ - + -v
(4)

Equation (4) could have been written directly from Eq. (3) by
replacing x by x + v(t – t0).

11.2 SINUSOIDAL WAVES:

CONCEPT OF FREQUENCY

AND WAVELENGTH

Until now we have been considering the propagation of a
pulse which lasts for a finite amount of time. We now con-
sider a periodic wave in which the displacement y(x, t) has
the form

y(x, t) = a cos [k(x ∓  vt) + f] (5)

where the upper and lower signs correspond to waves propa-
gating in the +x and –x directions, respectively. Such
a displacement is indeed produced in a long stretched string
at the end of which a continuously vibrating tuning fork is
placed. The quantity f is known as the phase of the wave
(see Chap. 7). We may, without loss of generality, assume f = 0.
Thus for a wave propagating in the +x direction,

y(x, t) = a cos k(x – vt) (6)

In Fig. 11.4 we have plotted the dependence of the displace-
ment y on x at t = 0 and at t = Dt. These are given by

y(x) = a cos kx at t = 0 (7a)

and (7b)
y(x) = acosk(x – vDt) at t = Dt

The two curves are the snapshots of the string at the two
instants. It can be seen from the figure that, at a particular
instant, any two points separated by a distance

l = 
2

k

p

(8)

have identical displacements. This distance is known as the
wavelength. Further, the displaced curve (which corresponds
to the instant t = Dt) can be obtained by displacing the curve
corresponding to t = 0 by a distance vD t; this shows that the
wave is propagating in the +x direction with speed v. It can
also be seen that the maximum displacement of the particle
(from its equilibrium position) is a, which is known as the
amplitude of the wave.

In Fig. 11.5 we have plotted the time dependence of the
displacement of the points characterized by x = 0 and x = Dx.
These are given by

( ) = cos at = 0

( ) = cos ( ) at =

y t a t x

y t a t k x x x

w

w - D D
(9)

where

w = kv (10)

The curves correspond to the time variation of the displace-
ment of the two points. Corresponding to a particular point,
the displacement repeats itself after a time

T = 2p /w (11)

which is known as the time period of the wave. The quantity

n = 
1

T
(12)

is known as the frequency of the wave and represents the
number of oscillations that a particle carries out in 1 s. It can

y

y

x

x

t t= 0

v

v
v (  – )t    t0

(a)

(b)

Fig. 11.3 The propagation of a Lorentzian pulse along the

minus x axis; (a) and (b) show the shape of the

pulse at t = t
0
 and at a later instant t respectively.

Displacement at t = 0

D
is

pl
ac

em
en

t y
(x

, t
)

Displacement at t = Δt

0

vΔt

x

λ

Fig. 11.4 The curves represent the displacement of a string

at t = 0 and t = Dt, respectively, when a sinusoi-

dal wave is propagating in the +x direction.
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be seen from the two curves in Fig. 11.5 that the two points
x = 0 and x = Dx execute exactly similar vibrations except for
a phase difference of kDx. In fact any two points on the
string execute simple harmonic motions with the same ampli-
tude and same frequency but with a phase difference of kx0,
where x0 represents the distance between the two points.
Clearly if this distance is a multiple of the wavelength, i.e.,

x0 = ml m = 1, 2, . . .
then

kx0 = 
2p

l
ml = 2mp

which implies that two points separated by a distance that is
a multiple of the wavelength vibrate with the same phase.

Similarly, two points separated by a distance 31
2 2,l l, . . .

vibrate in opposite phase. In general, a path difference of x0

corresponds to a phase difference of (2p/l)x0.
Using Eqs. (10) to (12), we get

n = 
1

T
 = 

2

w

p
 = 

2

k

p

v
 = 

l

v

or v = nl (13)

Notice the similarity in the variation of the displacement with
respect to x (at a given value of time) and with respect to t (at
a given value of x); see Figs. 11.4 and 11.5. The similarity can
be expressed by writing Eq. (6) in the form

y(x, t) = a cos 
2 2

x t
T

p pÊ ˆ-Á ˜Ë ¯l
(14)

which shows that the wavelength l in Fig. 11.4 plays the
same role as the time period T in Fig. 11.5. Equation (14) is
often written in the form

y(x,t) = acos(kx – wt) (15)

Note that the entire discussion given above would remain
valid for an arbitrary value of the phase factor f.

11.3 TYPES OF WAVES

As mentioned earlier, when a wave is propagating through a
string, the displacement is at right angles to the direction of
propagation. Such a wave is known as a transverse wave.2

Similarly, when a sound wave propagates through air, the dis-
placement of the air molecules is along the direction of
propagation of the wave; such waves are known as longi-
tudinal waves. However, there are waves which are neither
longitudinal nor transverse in character; for example, when a
wave propagates through the surface of water, the water mol-
ecules move approximately in circular orbits.

11.4 ENERGY TRANSPORT IN

WAVE MOTION

A wave carries energy; for example, when a transverse wave
propagates through a string, the particles execute simple har-
monic motions about their equilibrium positions, and
associated with this motion is a certain amount of energy. As
the wave propagates through, the energy gets transported
from one end of the string to the other. We consider the time
variation of the displacement of a particle, which can be
written as

y = a cos (w t + f) (16)

The instantaneous velocity of the particle is

v = 
dy
dt

 = –aw sin (w t + f) (17)

Thus, the kinetic energy T is given by

T = 
2

1

2

dy
m

dt
Ê ˆ
Á ˜Ë ¯

= 1
2

ma2
w

2 sin2 (wt + f) (18)

The total energy E is the maximum value of T

E = (T)max

= 1
2

ma2
w

2 [sin2 (wt + f)]max

= 1
2

ma2
w

2 (19)

Displacement at x = 0

D
is

p
la

ce
m

e
n

t 
y

(x
, 

t)

Displacement at x = Dx

0 t

T = 2π/ω

Fig. 11.5 The curves represent the time variation of the dis-

placement of a string at x = 0 and x = Dx,

respectively, when a sinusoidal wave is propagat-

ing in the +x direction.

2 Electromagnetic waves are also transverse in character. However, the electromagnetic waves have also a longitudinal component near
the source which dies off rapidly at large distances (see Sec. 23.4).
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For a sound wave propagating through a gas, the energy per
unit volume e is given by

e = 1
2

mna2
w

2

= 1
2
ra2

w
2

= 2p2
ra2

n
2 (20)

where m represents the mass of gas molecules, n represents
the number of molecules per unit volume, and r (= nm) is the
density of the gas. With such a wave, we can associate the
intensity which is defined as the energy flow per unit time
across a unit area perpendicular to the direction of propaga-
tion. Since the speed of propagation of the wave is v, the
intensity I is given by3

I = 2p2
rva2

n
2 (21)

Thus the intensity is proportional to the square of the ampli-
tude and square of the frequency.

Let us consider a wave emanating from a point source in a
uniform isotropic4 medium. Let W represent the power of the
source and we assume that there is no absorption. We con-
sider a sphere of radius r whose center is at the point source.
Clearly, W (measured in Joules per second) will cross the
spherical surface whose area is 4pr2. Thus, the intensity I will
be given by

I = 24

W

rp
(22)

which is nothing but the inverse square law. Using Eqs. (21)
and (22), we obtain

24

W

rp
= 2p2

rva2
n

2

or

a = 
1/ 2

3 2

1

8

W

r

Ê ˆ
Á ˜p r nË ¯v

(23)

showing that the amplitude falls off as 1/r. Indeed, for a
spherical wave5 emanating from a point source, the displace-
ment is given by

f = 
a
r
0 sin(kr – wt)

where a0 represents the amplitude of the wave at unit
distance from the source.

Example 11.3 A source of sound is vibrating with a fre-
quency of 256 vibrations per second in air and propagating energy
uniformly in all directions at the rate of 5 J s–1. Calculate the inten-
sity and the amplitude of the wave at a distance of 25 m from the
source. Assume that there is no absorption (speed of sound waves
in air = 330 m s–1; density of air = 1.29 kg m–3).

Solution:

Intensity I = 
2 2

5 J/s

4 (25) mp ¥

ª 6.4 ¥ 10–4 J s–1 m–2

Thus a = 

1/2

3

5 1

258 1.29 330 256 256

Ê ˆ
Á ˜p ¥ ¥ ¥ ¥Ë ¯

ª 1.0 ¥ 10–6 m

Example 11.4 Show that when a transverse wave propa-
gates through a string, the energy transmitted per unit time is
1
2 rw

2a2v, where r is the mass per unit length, a the amplitude of

the wave, and v is the speed of propagation of the wave.

Solution: The energy associated per unit length of the string is
1
2 rw

2a2; since the speed of the wave is v, the result follows.

11.5 THE ONE-DIMENSIONAL

WAVE EQUATION

In Sec. 11.1 we showed that the displacement y of a one-
dimensional wave is always of the form

y = f(x – vt) + g(x + vt) (24)

where the first term on the RHS of the above equation repre-
sents a disturbance propagating in the +x direction with speed
v and similarly the second term represents a disturbance
propagating in the –x direction with speed v. The questions
now arise as to how we can predict the existence of waves and
what would be the velocity of propagation of these waves. The
answer is as follows: If we can derive an equation of the form

2

2x

∂ y

∂
= 

2

2 2

1

t

∂ y

∂v
(25)

3 This can be easily understood from the fact that if we have N particles per unit volume, each moving with the same velocity v, then
the number of particles crossing a unit area (normal to v) per unit time is Nv.

4 Isotropic media are the ones in which physical properties (such as velocity of propagation of a particular wave) are the same in all
directions. In Chap. 22 we will consider anisotropic media.

5 When waves emanate from a point source in an isotropic medium, all the points on the surface of a sphere (whose center is at the
point source) have the same amplitude and the same phase; in other words, the locus of points which have the same amplitude and
the same phase is a sphere. Such waves are known as spherical waves. Far away from the source, over a small area, the spherical
waves are essentially plane waves.
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from physical considerations, then we can be sure that
waves will result and y will represent the displacement asso-
ciated with the wave. This follows from the fact that the
general solution of Eq. (25) is of the form

y = f(x – vt) + g(x + vt) (26)

where f and g are arbitrary functions of their argument (see
Sec. 11.9). Consequently, if we ever obtain an equation of
the form of Eq. (25) from physical considerations, we can
predict the existence of waves, the speed of which would
be v.

The simplest particular solutions of the wave equation
correspond to sinusoidal variation:

y = A sin [k(x ± vt) + f] (27)
or

y = A cos [k(x ± vt) + f] (28)

As shown in Sec. 11.2,

k = 
2p

l
and kv = w = 2pn (29)

where l is the wavelength and n the frequency of the wave.
Instead of sinusoidal variation it is often more convenient to
write the solution in the form

y = A exp [i(kx ± wt + f)] (30)

where, as before, A and f represent the amplitude and initial
phase of the wave, respectively. In writing Eq. (30), it is
implied that the actual displacement is just the real part of y
which is

A cos (kx ± wt + f)

In the next three sections we will derive the wave equa-
tion for some simple cases.6 In Sec. 11.9 we will discuss the
general solution of the wave equation.

11.6 TRANSVERSE VIBRATIONS

OF A STRETCHED STRING

Let us consider a stretched string having a tension T. In its
equilibrium position the string is assumed to lie on the
x axis. If the string is pulled in the y direction, then forces will
act on the string which will tend to bring it back to its equi-
librium position. Let us consider a small length AB of the
string and calculate the net force acting on it in the
y direction. Due to the tension T, the endpoints A and B

experience force in the direction of the arrows shown in
Fig. 11.6. The force at A in the upward direction is

–T sin q1 ª –T tan q1 = –
x

y
T

x

∂
∂

(31)

Similarly, the force at B in the upward direction is

T sin q2 ª T tan q2 = 
x dx

y
T

x
+

∂
∂

(32)

where we have assumed q1 and q2 to be small. Thus the net
force acting on AB in the y direction is

T
x dx x

y y

x x
+

È ˘Ê ˆ Ê ˆ∂ ∂Í ˙-Á ˜ Á ˜∂ ∂Ë ¯ Ë ¯Í ˙Î ˚
 = T

2

2

y
dx

x

∂

∂
(33)

where we have used the Taylor series expansion of
( )/

x dx
y x

+
∂ ∂  about the point x

x dx

y

x
+

Ê ˆ∂
Á ˜∂Ë ¯

= 
x x

y y
dx

x x x

Ê ˆ Ê ˆ∂ ∂ ∂
+Á ˜ Á ˜∂ ∂ ∂Ë ¯ Ë ¯

and have neglected higher-order terms because dx is infini-
tesimal. The equation of motion is therefore

Dm
2

2

y

t

∂

∂
= 

2

2

y
T dx

x

∂

∂
(34)

where Dm is the mass of element AB. If r is the mass per unit
length, then

Dm = rdx

and we get

∂

∂

2

2

y

x
= 

2

2

1

/

y

T t

∂

r ∂
(35)

which is the one-dimensional wave equation. Thus we may
conclude that transverse waves can propagate through a
stretched string, and if we compare the above equation with
Eq. (25), we obtain the following expression for the speed of
the transverse waves:

v = 
T

r
(36)

6 In Chap. 23 we will derive the wave equation from Maxwell’s equations and thereby obtain an expression for the speed of electro-
magnetic waves.
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The vibrations of a clamped string will be discussed in
Sec. 13.2. In an actual string, the displacement is not rigor-
ously of the form given by Eq. (24); this is a consequence of
the various approximations made in the derivation of the wave
equation. There is, in general, an attenuation of the wave, and
also the shape does not remain unaltered.

11.7 LONGITUDINAL SOUND

WAVES IN A SOLID

In this section we will derive an expression for the velocity of
longitudinal sound waves propagating in an elastic solid. Let us
consider a solid cylindrical rod of cross-sectional area A. Let PQ
and RS be two transverse sections of the rod at distances x and
x + Dx, respectively, from a fixed point O, where we have chosen
the x axis to be along the length of the rod (see Fig. 11.7).

Let the longitudinal displacement of a plane be denoted
by x(x). Thus the displacements of the planes PQ and RS are
x(x) and x(x + Dx), respectively. In the displaced position, the
distance between the planes P¢Q¢ and R¢S¢ is

x(x + Dx) – x(x) + Dx = x(x) + 
x

∂x

∂
Dx – x (x) + Dx

= Dx + 
x

∂x

∂
Dx

The elongation of the element is ( / )x∂x ∂ Dx, and therefore,

the longitudinal strain is

Increase in length
Original length

= 
( / )x x

x

∂x ∂ D

D
 = 

x

∂x

∂
(37)

Since Young’s modulus Y is defined as the ratio of the longi-
tudinal stress to the longitudinal strain, we have

Longitudinal stress = F
A

 = Y ¥ strain

= Y
x

∂x

∂
(38)

where F is the force acting on the element P¢Q¢. Thus

F(x) = YA
x

∂x

∂
(39)

and, therefore,

∂

∂

F
x

= YA
2

2x

∂ x

∂
(40)

Now, if we consider the volume P¢Q¢S¢R¢, then a force F is
acting on the element P¢Q¢ in the negative x direction, and a
force F(x + Dx) is acting on the plane R¢S¢ along the positive
x direction. Thus the resultant force acting on the element
P¢Q¢S¢R¢ will be

F(x + Dx) – F(x) = 
F

x
x

∂
D

∂

= YA 
2

2
x

x

∂ x
D

∂
(41)

If r represents the density, then the mass of the element is
rADx. Thus the equation of motion will be

2

2
A x

t

∂ x
r D

∂
= 

2

2
YA x

x

∂ x
D

∂

or
2

2x

∂ x

∂
= 

2

2 2

1

l t

∂ x

∂v
(42)

where vl = 
1/2

YÊ ˆ
Á ˜rË ¯

(43)

x

y

q1

q2

T

T

A

B

dx

x x dx+

Fig. 11.6 Transverse vibrations of a stretched string.

x

x

O

O

x

x

Dx
P

P ¢

Q

Q ¢

R

R ¢

S

S ¢

x( )x x( +     )x xD

Dx + Dx
∂x
∂x

Fig. 11.7 Propagation of longitudinal sound waves

through a cylindrical rod.
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represents the velocity of the waves and the subscript l
refers to the fact that we are considering longitudinal waves.7

The above derivation is valid when the transverse dimen-
sion of the rod is small compared with the wavelength of the
disturbance so that one may assume that the longitudinal
displacement at all points on any transverse section (such as
PQ) is the same. In general, if one carries out a rigorous
analysis of the vibrations of an extended isotropic elastic
solid, one can show that the velocities of the longitudinal
and transverse waves are given by8

vl = 
1/2

1

(1 )(1 2 )

YÈ ˘- s
Í ˙r + s - sÎ ˚

 = 

1/2
(4 / 3)KÊ ˆ+ h

Á ˜rË ¯
(44)

vt = 
1/2

1
2(1 )

YÈ ˘
Í ˙r + sÎ ˚

 = 
1/ 2

Ê ˆh
Á ˜rË ¯

(45)

where s, h, and K represent the Poisson ratio, modulus of rigid-
ity, and bulk modulus, respectively. In this case, the transverse
wave [whose velocity is given by Eq. (45)] is due to the restor-
ing forces arising because of the elastic properties of the
material, whereas corresponding to the transverse waves dis-
cussed in Sec. 11.6, the string moved as a whole and the
restoring force was due to the externally applied tension.

11.8 LONGITUDINAL WAVES

IN A GAS

To determine the speed of propagation of longitudinal sound
waves in a gas, we consider a column PQSR as shown in
Fig. 11.8(a). Once again, because of a longitudinal displacement,
the plane PQ gets displaced by x(x) and the plane RS gets dis-
placed by a distance x(x + Dx) (see Fig. 11.8). Let the pressure of
the gas in the absence of any disturbance be P0. Let P0 + DP(x)
and P0 + DP(x + Dx) denote the pressures at the planes P¢Q¢ and
R¢S¢, respectively. Now, if we consider the column P¢Q¢S¢R¢, then
the pressure P0 + DP(x) on the face P¢Q¢ acts in the +x direction
whereas the pressure P0 + DP(x + Dx) on the face R¢S¢ acts in the
–x direction. Thus the force acting on the column P¢Q¢S¢R¢ is

[DP(x) – DP(x + Dx)]A = –
x

∂

∂
(DP)DxA (46)

where A represents the cross-sectional area. Consequently,
the equation of motion for the column P¢Q¢S¢R¢ is

( )P A x
x

∂
- D D
∂

= 
2

2
A x

t

∂ x
r D

∂

where r represents the density of the gas. Thus

( )P
x

∂
- D
∂

= 
2

2t

∂ x
r
∂

(47)

Now, a change in pressure gives rise to a change in volume,
and if the frequency of the wave is large ( >~ 20 Hz), the pres-
sure fluctuations will be rapid and one may assume the
process to be adiabatic. Thus, we may write

PVg = constant (48)

where g = Cp/C
n
 represents the ratio of the two specific

heats. If we differentiate the above expression, we get

DP Vg + gVg–1PDV = 0

DP = – 
P

V

g
DV (49)

The change in the length of the column PQSR is

[x(x + Dx) – x(x) + Dx] – Dx = 
x

∂x

∂
Dx

Thus, the change in the volume is

DV = 
x

∂x

∂
ADx

7 In a similar manner one can consider transverse waves  propagating through an elastic solid, the velocity of which is given by [see, for
example, Ref. 8]

vt = /h r

where h represents the modulus of rigidity.
8 See, for example, Ref. 5.

x
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O
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Dx
P
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R

R ¢

S

S ¢

x( )x x( +     )x xD

Dx + Dx
∂x
∂x

(a)

(b)

Fig. 11.8 Propagation of longitudinal sound waves

through air.
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The original volume V of the element is ADx. Thus

DP = 
P

A x
A x x

g ∂x
- D

D ∂

= –gP
x

∂x

∂
(50)

or ( )P
x

∂
D

∂
= –gP

2

2x

∂ x

∂
(51)

Using Eqs. (47) and (51), we obtain

2

2x

∂ x

∂
= 

2

2 2

1

t

∂ x

∂v
(52)

where

v = 
1/ 2

PÊ ˆg
Á ˜rË ¯

(53)

represents the velocity of propagation of longitudinal sound
waves in a gas. For air, if we assume g = 1.40, P = 1.01 ¥
105 Nm–2 and r = 1.3 ¥ 10–3 kg m–3, then we obtain

v ª 330 m s–1

The adiabatic compressibility of a gas is given by

kS = –
1

S

V

V P

∂Ê ˆ
Á ˜Ë ¯∂

 = 
1

Pg
(54)

where the subscript S refers to the adiabatic condition (constant
entropy). The bulk modulus K of a gas is the inverse of kS

K = 
1

Sk
 = gP (55)

and if we substitute this expression for K in Eq. (44), we obtain
Eq. (53) where we have used the fact that the modulus of
rigidity h for a gas is zero.

11.9 THE GENERAL SOLUTION

OF THE ONE-DIMENSIONAL

WAVE EQUATION9

To obtain a general solution of the equation

2

2x

∂ y

∂
= 

2

2 2

1

t

∂ y

∂v
(56)

we introduce two new variables

x = x – vt (57)

h = x + vt (58)

and write Eq. (56) in terms of these variables. Now,

x

∂y

∂
= 

x x

∂y ∂x ∂y ∂h
+

∂x ∂ ∂h ∂
(59)

or
x

∂y

∂
= 

∂y ∂y
+

∂x ∂h
(60)

where we have used the fact that

x

∂x

∂
= 1 and

x

∂h

∂
 = 1

Differentiating Eq. (60) with respect to x, we get

2

2x

∂ y

∂
= 

x x

Ê ˆ Ê ˆ∂ ∂y ∂ ∂y
+Á ˜ Á ˜∂ ∂x ∂ ∂hË ¯ Ë ¯

= 
x x

Ê ˆ Ê ˆ∂ ∂y ∂x ∂ ∂y ∂h
+Á ˜ Á ˜∂x ∂x ∂ ∂h ∂x ∂Ë ¯ Ë ¯

x x

Ê ˆ Ê ˆ∂ ∂y ∂x ∂ ∂y ∂h
+ +Á ˜ Á ˜∂x ∂h ∂ ∂h ∂h ∂Ë ¯ Ë ¯

or
2

2x

∂ y

∂
= 

2 2 2

2 2
2

∂ y ∂ y ∂ y
+ +

∂h∂x∂x ∂h
(61)

Similarly

t

∂y

∂
= 

t t

∂y ∂x ∂y ∂h
+

∂x ∂ ∂h ∂

= – v
∂y ∂y

+
∂x ∂h

v

and

2

2t

∂ y

∂
= – 

t t

È ˘Ê ˆ Ê ˆ∂ ∂y ∂x ∂ ∂y ∂h
+Í ˙Á ˜ Á ˜∂x ∂x ∂ ∂h ∂x ∂Ë ¯ Ë ¯Î ˚

v

t t

È ˘Ê ˆ Ê ˆ∂ ∂y ∂x ∂ ∂y ∂h
+ +Í ˙Á ˜ Á ˜∂x ∂h ∂ ∂h ∂h ∂Ë ¯ Ë ¯Î ˚

v

or
2

2t

∂ y

∂
= 

2 2 2
2

2 2
2

Ê ˆ∂ y ∂ y ∂ y
- +Á ˜∂h∂x∂x ∂hË ¯

v (62)

Substituting the expressions for ∂2
y/∂x2 and ∂2

y/∂t2 from
Eqs. (61) and (62) into Eq. (56), we obtain

2 2 2

2 2
2

∂ y ∂ y ∂ y
+ +

∂h∂x∂x ∂h
= 

2 2 2

2 2
2

∂ y ∂ y ∂ y
- +

∂h∂x∂x ∂h

9 This section may be skipped in the first reading.
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or
Ê ˆ∂ ∂y
Á ˜∂h ∂xË ¯ = 0 (63)

Thus ∂y/∂x has to be independent of h; however, it can be
an arbitrary function of x:

∂y

∂x
= F(x) (64)

or y = ( )F dx x +Ú  constant of integration

The constant of integration can be an arbitrary function of h,
and since the integral of an arbitrary function is again an
arbitrary function, we obtain as the most general solution of
the wave equation

y = f (x ) + g(h)

= f (x – vt) + g(x + vt) (65)

where f and g are arbitrary functions of their argument. The
function f(x – vt) represents a disturbance propagating in the
+x direction with speed v, and the function g(x + vt) repre-
sents a disturbance propagating in the –x direction.

Example 11.5 Solve the one-dimensional wave equation
[Eq. (25)] by the method of separation of variables,10 and show that
the solution can indeed be expressed in the form given by Eqs. (27)
and (28).

Solution: In the method of separation of variables, we try a

solution of the wave equation

2

2x

∂ y

∂
= 

2

2 2

1

t

∂ y

∂v (66)

of the form

y(x, t) = X(x) T(t) (67)

where X(x) is a function of x alone and T(t) is a function of t alone.
Substituting in Eq. (66), we get

T(t) 
2

2

d X

dx
= 

2

2 2

1
( )

T
X x

d t

∂

v

or

2

2

1

( )

d X

X x d x
= 

2

2 2

1

( )

d T

T t d tv (68)

Notice that partial derivatives have been replaced by total
derivatives.

The LHS is a function of x alone and the RHS is a function of t
alone. This implies that a function of one independent variable x is
equal to a function of another independent variable t for all values
of x and t. This is possible only when each side is equal to a con-
stant; we set this constant equal to –k2. Thus

2

2

1

( )

d X

X x dx
= 

2

2 2

1 1

( )

d T

T t d tv
 = –k2 (69)

or
2

2

d X

dx
 + k2X(x) = 0 (70)

and
d T

dt

2

2  + w2T(t) = 0 (71)

where w = kv = 
2p

l

v
(72)

represents the angular frequency of the wave. The solutions of
Eqs. (70) and (71) can be easily written as

X(x) = A cos kx + B sin kx
and

T(t) = C cos wt + D sinwt
Thus

y(x, t) = (Acoskx + Bsinkx)

(Ccosw t + Dsinwt)
(73)

Suitable choice of the constants A, B, C, and D gives

y(x, t) = a cos (kx – wt + f)

or y(x, t) = a cos (kx + wt + f)

representing waves propagating in the +x and –x directions, respec-
tively. One can also have

y(x, t) = a exp [± i(kx ± wt + f)]

as a solution.

In general, all values of the frequencies are possible, but
the frequency and wavelength have to be related through
Eq. (72). However, there are systems (such as a string under
tension and fixed at both ends) where only certain values of
frequencies are possible (see Sec. 8.2).

Example 11.6 Until now we have confined our discussion
to waves in one dimension. The three-dimensional wave equation is
of the form

—
2
y = 

2

2 2

1

t

∂ y

∂v
(74)

10 The method of separation of variables is a powerful method for solving certain kinds of partial differential equations. According to this
method, the solution is assumed to be a product of functions, each function depending only on one independent variable [see Eq. (67)].
On substituting this solution, if the variables separate out, then the method is said to work and the general solution is a linear sum of
all possible solutions; see, e.g., the analysis given in Sec. 8.2. If the variables do not separate out, one has to try some other method
to solve the equation.
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where —
2
y ∫ 

2 2 2

2 2 2x y z

∂ y ∂ y ∂ y
+ +

∂ ∂ ∂
(75)

Solve the three-dimensional wave equation by the method of sepa-
ration of variables and interpret the solution physically.

Solution: Using the method of separation of variables, we write

y(x, y, z, t) = X(x)Y(y)Z(z)T(t) (76)

where X(x) is a function of x alone, etc. Substituting in Eq. (74), we
obtain

YZT
2

2

d X

dx
 + XZT

2

2

d Y

dy
 + XYT

2

2

d Z

d z
 = 1

2v
 XYZ

d T

dt

2

2

or dividing throughout by y

2 2 2

2 2 2

1 1 1d X d Y d Z

X Y Zdx dy dz

Ê ˆ Ê ˆ Ê ˆ
+ +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

 = 
2

2 2

1 1 d T

T dt

È ˘
Í ˙
Î ˚v

(77)

Since the first term on the LHS is a function of x alone, the second
term is a function of y alone, etc., each term must be set equal to a
constant. We write

2

2

1 d X

X dx
= –kx

2

2

2

1 d Y

Y dy
= –ky

2 (78)

2

2

1 d Z

Z dz
= –kz

2

where kx
2, ky

2, and kz
2 are constants. Thus

2

2 2

1 1 d T

T dt

Ê ˆ
Á ˜Ë ¯v

= –(kx
2 + ky

2 + kz
2)

or
2

2

d T

dt
 + w2T(t) = 0 (79)

where

w
2 = k2v2 (80)

and

k2 = kx
2 + ky

2 + kz
2

The solutions of Eqs. (78) and (79) could be written in terms of
sine and cosine functions; it is more convenient to write them in
terms of the exponentials:

y = A exp [i(kx x + kyy + kzz ± wt + f)]

= A exp [i(k • r ± wt + f)] (81)

where the vector k is defined such that its x, y, and  z components
are kx, ky, and kz, respectively. One could have also written

y = A cos (k • r – w t + f) (82)

Consider a vector r which is normal to k; thus k • r = 0; con-
sequently at a given time the phase of the disturbance is
constant on a plane normal to k. The direction of propagation of
the disturbance is along k, and the phase fronts are planes nor-
mal to k; such waves are known as plane waves (see Fig. 11.9).
Notice that for a given value of the frequency, the value of k2

is fixed [see Eq. (80)]; however, we can have waves propagat-
ing in different directions depending on the values of kx, ky, and
kz. For example, if

kx = k and ky = kz = 0 (83a)

we have a wave propagating along the x axis, and the phase fronts
are parallel to the yz plane. Similarly, for

kx = 
k
2

, ky = 
k
2

, kz = 0 (83b)

the waves are propagating in a direction which makes equal angles
with x and y axes (see Fig. 11.9).

Example 11.7 For a spherical wave, the displacement y

depends only on r and t, where r is the magnitude of the distance
from a fixed point. Obtain a general solution of the wave equation
for a spherical wave.

Solution: When y depends only on r and t,

—
2
y = 

2

2

2

r rr

∂ y ∂y
+

∂∂
 = 2

2

1
r

r rr

∂ ∂yÊ ˆ
Á ˜Ë ¯∂ ∂

(84)

Thus, the wave equation for a spherical wave simplifies to

—
2
y = 2

2

1
r

r rr

Ê ˆ∂ ∂y
Á ˜∂ ∂Ë ¯

 = 
2

2 2

1

t

∂ y

∂v
(85)

If we make the substitution

y = 
u r t

r
( , )

(86)

z

x

y

k

Fig. 11.9 Propagation of a plane wave along the direction

k. k k
k

kx y z= =
2
, = 0

F
HG

I
KJ
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then

2
2

1
r

r rr

Ê ˆ∂ ∂y
Á ˜∂ ∂Ë ¯

=
2

1 u
r u

r rr

Ê ˆ∂ ∂
-Á ˜∂ ∂Ë ¯

= 
2

2

1 u

r r

∂

∂

Thus Eq. (85) becomes

2

2

1 u

r r

∂

∂
= 

2

2 2

1 1 u

r t

∂

∂v

or

2

2

u

r

∂

∂
= 

2

2 2

1 u

t

∂

∂v
(87)

which is of the same form as the one-dimensional wave equation.
The general solution of Eq. (87) is therefore given by

y = 
f r t

r
g r t

r
( ) ( )− + +v v

(88)

the first and the second terms (on the RHS) representing an outgo-
ing spherical wave and an incoming spherical wave, respectively.
For time dependence of the form exp (±iwt), one obtains

y = A
r

 exp [i(kr ± wt)] (89)

Notice that the factor 1/r term implies that the amplitude of a spherical
wave decreases inversely with r, and therefore the intensity will fall
off as 1/r2.

Summary

� For a sinusoidal wave, the displacement is given by

Y = a cos [kx ± wt + f]

where a represents the amplitude of the wave, w  (= 2pn) is
the angular frequency of the wave, k (= 2p/l) is the wave
number, and l represents the wavelength associated with the
wave. The upper and lower signs correspond to waves
propagating in the –x and + x directions, respectively. Such a
displacement is indeed produced in a long stretched string at
the end of which a continuously vibrating tuning fork is
placed. The quantity f is known as the phase of the wave.

� The most general solution of the wave equation

2

2x

∂ y

∂
= 2

1

v

2

2t

∂ y

∂

is of the form

y = f (x – vt) + g(x + vt)

where f and g are arbitrary functions of their argument.
The first term on the RHS of the above equation represents
a disturbance propagating in the +x direction with speed v,
and similarly, the second term represents a disturbance
propagating in the – x direction with speed v. Thus if we can
derive the wave equation from physical considerations, then

we can be sure that waves will result and y will represent
the displacement associated with the wave.

� For a spherical wave, the displacement is given by

Y = ( )i kr tA
e

r
±w

where the + and - signs correspond to incoming and outgoing
waves, respectively. Notice that the factor 1/r term implies
that the amplitude of a spherical wave decreases inversely
with r, and therefore, the intensity will fall off as 1/r2.

Problems

11.1 The displacement associated with a wave is given by
(a) y(x, t) = 0.1 cos (0.2x – 2t)
(b) y(x, t) = 0.2 sin (0.5x + 3t)
(c) y(x, t) = 0.5 sin 2p (0.1x – t)

where in each case x and y are measured in centimeters and
t in seconds. Calculate the wavelength, amplitude, fre-
quency, and velocity in each case.

[Ans.: (a) n ª 0.32 s–1; v = 10 cm s–1; (b) n ª 0.48 s–1;
v = 6 cm s–1; (c) n = 1 s–1; v = 10 cm s–1]

11.2 A transverse wave (l = 15 cm, n = 200 s–1) is propagating
on a stretched string in the +x direction with an amplitude
of 0.5 cm. At t = 0, the point x = 0 is at its equilibrium
position moving in the upward direction. Write the equation
describing the wave, and if r = 0.1 g cm–1, calculate the
energy associated with the wave per unit length of the wire.

[Ans.: Energy associated with the wave
ª 1.97 ¥ 104 erg cm–1]

11.3 Assuming that the human ear can hear in the frequency
range 20 < n < 20,000 Hz, what will be the corresponding
wavelength range?

[Ans.: 16.5 m > l > 0.0165 m]

11.4 Calculate the speed of longitudinal waves at NTP in
(a) argon (g = 1.67), (b) hydrogen (g = 1.41).

[Ans.: (a) 308 m s–1; (b) 1.26 ¥ 105 cm s–1]

11.5 Consider a wave propagating in the +x direction with speed
100 cm s–1. The displacement at x = 10 cm is given by the
following equation:

y(x = 10, t) = 0.5 sin (0.4 t)

where x and y are measured in centimeters and t in seconds.
Calculate the wavelength and the frequency associated with
the wave, and obtain an expression for the time variation of
the displacement at x = 0.

[Ans.: l ª 1571 cm:
y(x, t) = 0.5 sin [0.4 t – 0.004(x –10)]

11.6 Consider a wave propagating in the –x direction whose fre-
quency is 100 s–1. At t = 5 s the displacement associated
with the wave is given by

y(x, t = 5) = 0.5 cos (0.1x)
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where x and y are measured in centimeters and t in seconds.
Obtain the displacement (as a function of x) at t = 10 s.
What are the wavelength and the velocity associated with
the wave?

[Ans.: y(x, t) = 0.5 cos[0.1x + 200p (t – 5]]

11.7 Repeat the above problem corresponding to

y(x, t = 5) = 0.5 cos (0.1x) + 0.4 sin (0.1x + p/3)

11.8 A Gaussian pulse is propagating in the +x direction and at
t = t0 the displacement is given by

y(x, t = t0) = a exp
2

2

( )x bÈ ˘-
-Í ˙

sÎ ˚

Find y(x, t).

2
0

2

[ ( ) ]
( , ) exp

x b t t
y x t = a

È ˘Ï ¸- - -Ô Ô
-Í ˙Ì ˝

sÔ ÔÍ ˙Ó ˛Î ˚
Ans. :

v

11.9 A sonometer wire is stretched with a tension of 1 N. Calcu-
late the velocity of transverse waves if r = 0.2 g cm–1.

[Ans.: n ª 707 cm s–1]
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11.10 The displacement associated with a three-dimensional wave
is given by

y(x, y, z, t) = a cos 
3 1

2 2
kx ky t

Ê ˆ
+ - wÁ ˜Ë ¯

Show that the wave propagates along a direction making an
angle of 30∞ with the x axis.

11.11 Obtain the unit vector along the direction of propagation for
a wave, the displacement of which is given by

y(x, y, z, t) = a cos (2x + 3y + 4z – 5t)

where, x, y, and z are measured in centimeters and t is in
seconds. What will be the wavelength and the frequency of
the wave?

2 3 4ˆ ˆ ˆ
29 29 29

È ˘
+ +Í ˙

Î ˚
Ans. : x y z
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12.1 INTRODUCTION

The wave theory of light was first put forward by Christian
Huygens in 1678. During that period, everyone believed in
Newton’s corpuscular theory, which had satisfactorily ex-
plained the phenomena of reflection and refraction, the
rectilinear propagation of light, and the fact that light could
propagate through vacuum. So empowering was Newton’s
authority that the scientists around Newton believed in the
corpuscular theory much more than Newton himself; as such,
when Huygens put forward his wave theory, no one really
believed him. On the basis of his wave theory, Huygens ex-
plained satisfactorily the phenomena of reflection, refraction,
and total internal reflection and also provided a simple expla-
nation of the then recently discovered birefringence (see
Chap. 22). As we will see later, Huygens’ theory predicted
that the velocity of light in a medium (such as water) should
be less than the velocity of light in free space, which is just
the converse of the prediction made from Newton’s corpus-
cular theory (see Sec. 2.2).

The wave character of light was not really accepted
until the interference experiments of Young and Fresnel (in
the early part of the nineteenth century) which could be
explained only on the basis of a wave theory. At a later
date, the data on the speed of light through transparent
media were also available which were consistent with the
results obtained by using the wave theory. Huygens did
not know whether the light waves were longitudinal or
transverse and also how they propagate through vacuum.
It was only in the later part of the nineteenth century,

Christian Huygens, a Dutch physicist, in a communication to the Academie des Sciences in Paris,
propounded his wave theory of light (published in his Traite de Lumiere in 1690). He considered
that light is transmitted through an all-pervading aether that is made up of small elastic particles,
each of which can act as a secondary source of wavelets. On this basis, Huygens explained many
of the known propagation characteristics of light, including the double refraction in calcite
discovered by Bartholinus.

 —From the Internet

HUYGENS’ PRINCIPLE AND

ITS APPLICATIONS

Chapter

Twelve

when Maxwell propounded his famous electromagnetic
theory, that the nature of light waves could be understood
properly.

12.2 HUYGENS’ THEORY

Huygens’ theory is essentially based on a geometrical con-
struction which allows us to determine the shape of the wave
front at any time, if the shape of the wave front at an earlier
time is known. A wave front is the locus of the points which
are in the same phase; for example, if we drop a small stone in
a calm pool of water, circular ripples spread out from the point
of impact, each point on the circumference of the circle (whose
center is at the point of impact) oscillates with the same ampli-
tude and same phase, and thus we have a circular wave front.
On the other hand, if we have a point source emanating waves
in a uniform isotropic medium, the locus of points which have
the same amplitude and are in the same phase is spheres. In this
case we have spherical wave fronts, as shown in Fig. 12.1(a).
At large distances from the source, a small portion of the
sphere can be considered as a plane, and we have what is
known as a plane wave [see Fig. 12.1(b)].

Now, according to Huygens’ principle, each point of a
wave front is a source of secondary disturbance, and the
wavelets emanating from these points spread out in all direc-
tions with the speed of the wave. The envelope of these
wavelets gives the shape of the new wave front. In Fig. 12.2,
S1S2 represents the shape of the wave front (emanating from
the point O) at a particular time which we denote as t = 0.
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The medium is assumed to be homogeneous and isotropic; i.e.,
the medium is characterized by the same property at all points,
and the speed of propagation of the wave is the same in all
directions. Let us suppose we want to determine the shape of
the wave front after a time interval of Dt. Then with each point
on the wave front as center, we draw spheres of radius vDt,
where v is the speed of the wave in that medium. If we draw a
common tangent to all these spheres, then we obtain the en-
velope which is again a sphere centered at O. Thus the shape
of the wave front at a later time Dt is the sphere S1¢S¢2.

There is, however, one drawback with the above model,
because we also obtain a back wave which is not present in
practice. This back wave is shown as S1¢¢S2¢¢ in Fig. 12.2. In
Huygens’ theory, the presence of the back wave is avoided by

assuming that the amplitude of the secondary wavelets is not
uniform in all directions; it is maximum in the forward direction
and zero in the backward direction1. The absence of the back
wave is really justified through the more rigorous wave theory.

In the next section we will discuss the original argument
of Huygens to explain the rectilinear propagation of light. In
Sec. 12.4 we will derive the laws of refraction and reflection
by using Huygens’ principle. Finally, in Sec. 12.5 we will show
how Huygens’ principle can be used in inhomogeneous
media.

12.3 RECTILINEAR

PROPAGATION

Let us consider spherical waves emanating from the point
source O and striking the obstacle A (see Fig. 12.3). Accord-
ing to the rectilinear propagation of light (which is also
predicted by corpuscular theory), one should obtain a
shadow in the region PQ of the screen. As we will see in a
later chapter, this is not quite true and one does obtain a fi-
nite intensity in the region of the geometrical shadow. However,
at the time of Huygens, light was known to travel in straight
lines, and Huygens explained this by assuming that the sec-
ondary wavelets do not have any amplitude at any point not
enveloped by the wave front. Thus, referring to Fig. 12.2, the
secondary wavelets emanating from a typical point B will give
rise to a finite amplitude at B¢ only and not at any other point.

1 Indeed it can be shown from diffraction theory that one does obtain (under certain approximations) an obliquity factor, which is of

the form 
1

2
(1 + cos q ), where q is the angle between the normal to the wave front and the direction under consideration. Clearly

when q = 0, the obliquity factor is 1 (thereby giving rise to maximum amplitude in the forward direction) and when q = p, the
obliquity factor is zero (thereby giving rise to zero amplitude in the backward direction).

(a) (b)

Fig. 12.1 (a) A point source emitting spherical waves.
(b) At large distances, a small portion of the
spherical wave front can be approximated to a
plane wave front, thus resulting in plane waves.

S¢ 1

S¢¢1 S¢¢2

S¢2

S2

S 1

vDt

B ¢

B

O

Fig. 12.2 Huygens’ construction for the determination of
the shape of the wave front, given the shape of
the wave front at an earlier time. S1S2 is a spheri-
cal wave front centered at O at a time, say, t = 0.
S1¢S2¢ corresponds to the state of the wave front at a
time Dt, which is again spherical and centered at
O. The dashed curve represents the back wave.

O A

P

Q

Fig. 12.3 Rectilinear propagation of light. Point O is a
point source emitting spherical waves, and A is
an obstacle which forms a shadow in the region
PQ of the screen.
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The above explanation of the rectilinear propagation of
light is indeed unsatisfactory and is incorrect. Further, as
pointed out earlier, one does observe a finite intensity of
light in the geometrical shadow. A satisfactory explanation
was put forward by Fresnel, who postulated that the sec-
ondary wavelets mutually interfere. Huygens’ principle,
along with the fact that the secondary wavelets mutually
interfere, is known as the Huygens–Fresnel principle. If a
plane wave is allowed to fall on a tiny hole,2 then the hole
approximately acts as a point source and spherical waves
emanate from it [see Fig. 12.4(a) and (b)]. This fact is in
direct contradiction to the original proposition of Huygens3

according to which the secondary wavelets do not have

any amplitude at any point not enveloped by the wave
front; however, as we will see in the chapter on diffraction,
it can be explained satisfactorily on the basis of the
Huygens–Fresnel principle.

12.4 APPLICATION OF HUYGENS’

PRINCIPLE TO STUDY

REFRACTION AND

REFLECTION

12.4.1 Refraction of a Plane Wave at a

Plane Interface

We will first derive the laws of refraction. Let S1S2 be a
surface separating two media with different speeds of
propagation of light v1 and v2 as shown in Fig. 12.5. Let A1B1

be a plane wave front incident on the surface at an angle
i; A1B1 represents the position of the wave front at an instant
t = 0.

Let t be the time taken for the wave front to travel the dis-
tance B1B3. Then B1B3 = v1t. In the same time the light would
have traveled a distance A1A3 = v2t in the second medium.
(Note that the lines A1A3, B1B3, etc. are always normal to the
wave front; these represent rays in isotropic media—see
Chap. 4.) It can  be easily seen that the incident and

Fig. 12.4 (b) Diffraction of straight water wave when it passes through an opening (Adapted from Ref. 6).

2 By a tiny hole we imply that the diameter of the hole should be of the order of 0.1 mm or less.
3 Use of Huygens’ principle in determining the shape of the wave front in anisotropic media will be discussed in Chap. 22.

S¢

S

Fig. 12.4 (a) A plane wave front is incident on a pinhole. If
the diameter of the pinhole is small (compared to
the wavelength), the entire screen SS¢ will be
illuminated; see also Fig. 17 in the insert at the
back of the book.
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refracted rays make angles i and r, respectively, with the normal.
To determine the shape of the wave front at the instant t = t,
we consider an arbitrary point C1 on the wave front. Let the
time taken for the disturbance to travel the distance C1C2 be
t1. Thus C1C2 = v1t1. From point C2 we draw a secondary
wavelet of radius v2(t – t1). Similarly from point A1 we draw a
secondary wavelet of radius v2t. The envelope of these sec-
ondary wavelets is shown as A3C3B3. The shape of the wave
front at the intermediate time t1 is shown as A2C2B2, and
clearly B1B2 = C1C2 = v1t1 and A1A2 = v2t1. In the right-angle
triangles B2C2B3 and C3C2B3, –B2C2B3 = i (the angle of inci-
dence) and –C2B3C3 = r (the angle of refraction). Clearly,

sin

sin

i

r
= 2 3 2 3

2 3 2 3

/

/

B B C B

C C C B
 = 2 3

2 3

B B

C C

= 1 1

2 1

( )

( )

t - t

t - t

v
v

 = 1

2

v
v

(1)

which is known as Snell’s law. It is observed that when light
travels from a rarer to a denser medium, the angle
of incidence is greater than the angle of refraction, and con-
sequently

sin

sin

i

r
> 1

which implies v1 > v2; thus, Huygens’ theory predicts that the
speed of light in a rarer medium is greater than the speed of
light in a denser medium. This prediction is contradictory to
that made by Newton’s corpuscular theory (see Sec. 2.2), and
as later experiments showed, the prediction of the wave
theory was indeed correct.

If c represents the speed of light in free space, then the
ratio /c v  (where v represents the speed of light in the par-
ticular medium) is called the refractive index n of the medium.

Thus if n1 ( )1/c= v  and n2 ( )2/c= v  are the refractive indices

of the two media, then Snell’s law can also be written as

n1 sin i = n2 sin r (2)

Let A1C1B1, A2C2B2, A3C3B3, and A4C4B4 denote the suc-
cessive positions of crests. If l1 and l2 denote the
wavelength of light in medium 1 and medium 2, respectively,
then the distance B1B2 (= B2B3 = C1C2) will be equal to l1

and the distance A1A2 (= A2 A3 = C2C3) will be equal to l2.
From Fig. 12.5 it is obvious that

1

2

l

l
=

sin
sin

i
r

 = 1

2

v
v

(3)

or

1

1l

v
= 2

2l

v
(4)

Thus, when a wave gets refracted into a denser medium
(v1 > v2), the wavelength and the speed of propagation de-
crease, but the frequency (= v/l) remains the same; when
refracted into a rarer medium, the wavelength and the speed
of propagation will increase. In Table 12.1 we have given the
indices of refraction of several materials with respect to
vacuum. In Table 12.2, the wavelength dependence of the

Table 12.1 Refractive Indices of Various Materials Relative
to Vacuum (Adapted from Ref. 1)

(For light of wavelength l = 5.890 ¥ 10–5 cm)

Material n Material n

Vacuum 1.0000 Quartz (fused) 1.46
Air 1.0003 Rock salt 1.54
Water 1.33 Glass (ordinary

crown) 1.52
Quartz (crystalline) 1.54 Glass (dense flint) 1.66

Table 12.2 Refractive Indices of Telescope Crown Glass
and Vitreous Quartz for Various Wavelengths
(Adapted from Ref. 7)

Telescope Vitreous
Wavelength crown quartz

1 6.562816 ¥ 10–5 cm 1.52441 1.45640
2 5.889953 ¥ 10–5 cm 1.52704 1.45845
3 4.861327 ¥ 10–5 cm 1.53303 1.46318

Note: The wavelengths specified at serial numbers 1, 2, and 3
correspond roughly to the red, yellow, and blue colors. The table
shows the accuracy with which the wavelengths and refractive in-
dices can be measured; see also Prob. 10.5.

S1

A1

A2

A3

A4

C1

B1

B2

B4

B3

S2

C4

C3

C2

i i
r

v1t

Fig. 12.5 Refraction of a plane wave front A
1
B
1
 by a plane

interface S
1
S
2
 separating two media with different

velocities of propagation of light v
1
 and v

2
 (< v

1
); i

and r are the angles of incidence and refraction,
respectively. A

2
C
2
B
2
 corresponds to the shape of

the wave front at an intermediate time t
1
. Notice

that r < i.
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refractive index for crown glass and vitreous quartz is given.
The three wavelengths correspond roughly to the red, yellow,
and blue colors. Notice the accuracy with which the wave-
length and the refractive index can be measured.

12.4.2 Total Internal Reflection

In Fig. 12.5 the angle of incidence has been shown to be
greater than the angle of refraction. This corresponds to the
case when v2 < v1, i.e., the light wave is incident on a denser
medium. However, if the second medium is a rarer medium
(i.e., v1 < v2), then the angle of refraction will be greater than
the angle of incidence, and a typical refracted wave front has
the form shown in Fig. 12.6, where B1B2 = v1t and A1A2 =
v2t. Clearly, if the angle of incidence is such that v2t is
greater than A1B2, then the refracted wave front will be ab-
sent and we will have what is known as total internal
reflection. The critical angle will correspond to

A1B2 = v2t

Thus

sin ic = 1 2

1 2

B B

A B
 = 1

2

v
v

 = n12 (5)

where ic denotes the critical angle and n12 represents the
refractive index of the second medium with respect to the
first. For all angles of incidence greater than ic, we will have
total internal reflection.

12.4.3 Reflection of a Plane Wave by a

Plane Surface

Let us consider a plane wave AB incident at an angle i on a
plane mirror as shown in Fig. 12.7. We consider the reflection
of the plane wave and try to obtain the shape of the reflected

wave front. Let the position of the wave front at t = 0 be AB.
If the mirror were not present, then at a later time t the posi-
tion of the wave front would be CB¢, where BB¢ = PP¢ = AC =
vt and v is the speed of propagation of the wave. To deter-
mine the shape of the reflected wave front at the instant t = t,
we consider an arbitrary point P on the wave front AB and let t1

be the time taken by a disturbance to reach point P1 from P. From
point P1, we draw a sphere of radius v(t – t1). We draw a tangent
plane on this sphere from point B¢. Since BB1 = PP1 = vt1,
the distance B1B¢ is equal to P1P2 [= v(t – t1)]. If we con-
sider triangles P2P1B¢ and B1P1B¢, then the side P1B¢ is
common to both and since P1P ¢ = B ¢B2, and since both the
triangles are right-angle triangles, –P2B¢P1 = –B1P1B¢. The
former is the angle of reflection, and the latter is the angle of
incidence. Thus, we have the law of reflection; when a plane
wave front gets reflected from a plane surface, the angle of
reflection is equal to the angle of incidence and the reflected
wave is a plane wave.

12.4.4 Diffuse Reflection

In the above we have considered the reflection of light from
a smooth surface. This is known as specular reflection. If the
surface is irregular (as shown in Fig. 12.8) we have diffuse
reflection. The secondary wavelets emanating from the ir-
regular surface travel in many directions, and we do not have
a well-defined reflected wave. Indeed, it can be shown that if

B ¢

A¢

P ¢

C

B1

B

P

A P1

P2

rii

Fig. 12.7 Reflection of a plane wave front AB incident on a
plane mirror. A¢B¢ is the reflected wave front; i and r
correspond to angles of incidence and reflection,
respectively.

B1

B2

A2

v1

v v2 1>

v2t

v1t

A1 i
r

Fig. 12.6 Refraction of a plane wave front incident on a
rarer medium (i.e., v

2
 > v

1
). Notice that the angle

of refraction r is greater than the angle of inci-
dence i. The value of i, when r is equal to p/2,
gives the critical angle.

Fig. 12.8 Diffuse reflection of a plane wave front from a
rough surface. It is evident that one does not have
a well-defined reflected beam.
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the irregularity in the surface is considerably greater than the
wavelength, we will have diffuse reflection.

12.4.5 Reflection of Light from a Point

Source near a Mirror

Let us consider spherical waves (emanating from a point
source P) incident on a plane mirror MM¢, as shown in
Fig. 12.9. Let ABC denote the shape of the wave front at time
t = 0. In the absence of the mirror, the shape of the wave front
at a later time t would be A1B1C1, where AA1 = BB1 = CC1 = vt,
Q being an arbitrary point on the wave front. If the time taken
for the disturbance to traverse the distance QQ¢ is t1, then,
to determine the shape of the reflected wave front, we draw a
sphere of radius v(t – t1) whose center is at  point Q¢. In a
similar manner we can draw the secondary wavelets emanat-
ing from other points on the mirror, and, in particular, from
point B we have to draw a sphere of radius vt. The shape
of the reflected wave front is obtained by drawing a com-
mon tangent plane to all these spheres, which is shown as
A1B1¢C1 in the figure. It can be seen immediately that
A1B1¢C1 will have an exactly similar shape as A1B1C1 except
that A1B1¢C1 will have its center of curvature at point P¢
where PB = BP¢. Thus the reflected waves will appear to
emanate from point P¢ which will be the virtual image of
point P.

12.4.6 Refraction of a Spherical Wave by

a Spherical Surface

Let us consider spherical waves (emanating from point P)
incident on the curved spherical surface SBS¢. Let the
shape of the wave front at time t = 0 be ABC [see Fig. 12.10(a)].
Let the refractive indices on the left and on the right of the
spherical surface be n1 and n2, respectively. In the absence
of the spherical surface, the shape of the wave front at a
later time t would be A1B1C1, where AA1 = BB1 = CC1 = v1t.
We consider an arbitrary point Q on the wave front ABC
and let t1 be the time taken for the disturbance to reach
point Q¢ (on the surface of the spherical wave); thus QQ¢ =
v1t1. To determine the shape of the refracted wave front at
a later time t, we draw a sphere of radius v2(t – t1) from
point Q¢. We may draw similar spheres from other points on
the spherical surface; in particular, the radius of the spheri-
cal wave front from point B, which is equal to BB2, will be
v2t. The envelope of these spherical wavelets is shown as
A1B2C1 which, in general, will not be a sphere.4 However, a
small portion of any curved surface can be considered as a
sphere, and in this approximation we may consider A1B2C1

to be a sphere whose center of curvature is at point M.
The spherical wave front will, therefore, converge toward
point M, and hence point M represents the real image of
point P.

We adopt a sign convention in which all distances, mea-
sured to the left of point B, are negative and all distances
measured to the right of point B are positive. Thus

PB = –u

where u itself is a negative quantity. Further, since point M
lies on the right of B, we have

BM = v

and similarly,

BO = R

where O represents the center of curvature of the spherical
surface.

To derive a relation among u, v, and R, we use a theorem
in geometry, according to which

(A1G)2 = GB ¥ (2R – GB) (6)

where G is the foot of the perpendicular on the axis PM [see
Fig. 12.10(b)]. In Fig. 12.10(b) the diameter B¢OB intersects
the chord A1GC1 normally. If GB << R, then

(A1G)2 ~
- 2R(GB)

4 The fact that the refracted wave front is not, in general, a sphere leads to, what are known as aberrations.

P¢

MA1
M

A

Q
B

C

C1

B1

B ¢1

Q ¢

t = 0

vt

P

¢

Fig. 12.9 Point P is a point source placed in front of a
plane mirror MM ¢. ABC is the incident wave
front (which is spherical and centered at P), and
A1B ¢1C1 is the corresponding reflected wave front
(which is spherical and centered at P ¢). Point P ¢

is the virtual image of P.
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Consider the spherical surface SBS¢ [see Fig. 12.10(a)]
whose radius is R. Clearly,

(A1G)2 = (2R – GB)GB
~
- 2R(GB) (7)

where we have assumed GB <<  R. Similarly by considering
the spherical surface A1B2C1 (whose center is at point M) we
obtain

(A1G)2 ~
- 2v(GB2) (8)

where v = BM ~- B2M. In a similar manner,

(A1G)2 ~
- 2(–u)GB1 (9)

Since u is a negative quantity, (A1G)2 is positive. Now

BB1 = v1t and BB2 = v2t

Therefore

1

2

BB

BB
= 1

2

v
v

 = 2

1

n

n

or n1BB1 = n2BB2

or n1(BG + GB1) = n2(BG – GB2)
or

2 2
1 1

1
( ) ( )

2 2

A G A G
n

R u

È ˘
-Í ˙

Î ˚
= n

A G
R

A G
2

1
2

1
2

2 2
( ) ( )

-

L

N
M

O

Q
Pv

where we used Eqs. (7), (8), and (9). Thus

n2

v
 – 1n

u
= 

n n
R

2 1-

(10)

which may be rewritten in the form

n2

v
= 1 2 1n n n

u R

-
+ (11)

Thus, if

n
u
1

| |
> n n

R
2 1-

or | u | < 
Rn

n n
1

2 1-

we will obtain a virtual image. (We are of course assuming
that the second medium is a denser medium, i.e., n2 > n1; if
n2 < n1, we will always have a virtual image.)

A converging spherical wave front will propagate in a
manner shown in Fig. 12.11. Beyond the focal point it will
start diverging as shown in the figure.5

In a similar manner we can consider the refraction of a
spherical wave from a surface SBS¢ shown in Fig. 12.12
(n2 > n1). Here the center of curvature will also lie on the left

MOB1

A1

S

–u
B2

n1

B

Q

Q ¢

S ¢

B¢

C1

C1A1

v
R

G

A

C

P

n n2 1(> )

(a)

(b)

O

G

B

Fig. 12.10 (a) Refraction of a spherical wave ABC (emanat-
ing from the point source P) by a convex spherical
surface SBS¢ separating media of refractive indi-
ces n

1
 and n

2
 (> n

1
). A

1
B
2
C
1
 is the refracted wave

front, which is approximately spherical and
whose center of curvature is at M. Thus M is the
real image of P. Point O is the center of curvature
of SS¢. (b) The diameter B¢OB intersects the
chord A

1
GC

1
 normally.

5 Very close to the focal point, one has to use a more rigorous wave theory, and the shape of the wave front is very much different from
spherical (see Ref. 8). However, much beyond the focal point the wave fronts again become spherical.

Fig. 12.11 Propagation of a converging spherical wave
using Huygens¢ principle.
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of point B, and both u and R will be negative quantities.
Thus no matter what the values of u and R may be, v will be
negative and we will obtain a virtual image.

Using Eq. (10), we can easily derive the thin lens formula.
We assume a thin lens made of a material of refractive index
n2 to be placed in a medium of refractive index n1 (see
Fig. 12.13). Let the radii of curvature of the first and second
surfaces be R1 and R2, respectively. Let v ¢ be the distance of
the image of the object P if the second surface were not
present. Then

2 1n n

u
-

¢v
= 2 1

1

n n

R

-

(12)

(Since the lens is assumed to be thin, all the distances are
measured from point O). This image now acts as an object to
the spherical surface R2 on the left of which is the medium of
refractive index n2 and on the right of which is the medium of
refractive index n1. Thus, if v is the distance of the final im-
age point from O, then

1 2n n
-

¢v v
= 1 2

2

n n

R

-

(13)

Adding Eqs. (12) and (13), we obtain

n n
u

1 1

v
- = 2 1

1 2

1 1
( )n n

R R

Ê ˆ
- -Á ˜Ë ¯

(14)

or
1 1

u
-

v
= 

1
f

(15)

where

1
f

= 2 1

1 1 2

1 1n n

n R R

Ê ˆ-
-Á ˜Ë ¯

(16)

Notice that we do not have to worry whether v ¢ is posi-
tive or negative; it is automatically taken care of through the
sign convention. Further, the relation derived is valid for any
lens; for example, for a double convex lens, R1 is positive and
R2 is negative; and for a double concave lens, R1 is negative
and R2 is positive. Similarly it follows for other types of
lenses (see Fig. 5.6).

Example 12.1 Consider a vibrating source moving through a
medium with a speed V. Let the speed of propagation of the wave
in the medium be v. Show that if V > v, then a conical wave front is
set up whose half angle is given by

q = sin–1 

V
Ê ˆ
Á ˜Ë ¯

v
(17)

Solution: At t = 0 let the source be at point P0 moving with a
speed V in the x direction (see Fig. 12.14). We wish to find out the
wave front at a later time t. The disturbance emanating from point
P0 traverses a distance vt in time t. Thus from point P0 we draw a

P

n1

n2

R1 R2

O P ¢
–u v

Fig. 12.13 A thin lens made of a medium of refractive index
n2 placed in a medium of refractive index n1.
The radii of curvature of the two surfaces are R1
and R2. Point P is the image (at a distance v from
point O) of the point object P (at a distance
–u from point O).

P0

P1 Q
q

x

L v ( – )t t1

Vt1
Vt

Fig. 12.14 Generation of a shock wave front by a vibrating
particle P

0
 moving with a speed V in a medium

in which the velocity of propagation of the
wave is v (< V).

n1 n2

O P B B1

A1

C1

C

A

S

B2P ¢

S ¢

R

Fig. 12.12 Refraction of a spherical wave by a concave
surface separating media of refractive indices n

1

and n
2
 (> n

1
). Point P¢ is the virtual image of P.
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sphere of radius vt. We next consider the waves emanating from the
source at a time t1 (<t). At time t1 let the source be at position P1;
consequently,

P0P1 = Vt1

To determine the shape of the wave front at t, we draw a sphere
of radius v(t – t1) centered at P1. Let the source be at  position Q
at the instant t. Then

P0Q = Vt

We draw a tangent plane from point Q on the sphere whose
origin is point P1. Since

P1L = v(t – t1) and P1Q = V(t – t1)

sin q = 1

1

P L

P Q
 = 

V

v
(independent of t1)

Since q is independent of t1, all the spheres drawn from any
point on line P0 Q will have a common tangent plane. This plane is
known as the shock wave front and propagates with a speed v.

It is interesting to point out that even when the source is
not vibrating, if its speed is greater than the speed of sound
waves, a shock wave front is always set up. A similar phe-
nomenon also occurs when a charged particle (such as an
electron) moves in a medium with a speed greater than the
speed of light in that medium.6 The emitted light is known
as Cerenkov radiation. If you ever see a swimming pool type
of reactor, you will find a blue glow coming from it; this is
due to the Cerenkov radiation emitted by the fast-moving
electrons.

Summary

� According to Huygens’ principle, each point of a wave front
is a source of secondary disturbance, and the wavelets ema-
nating from these points spread out in all directions with the
speed of the wave. The envelope of these wavelets gives the
shape of the new wave front.

� Huygens’ principle, along with the fact that the secondary
wavelets mutually interfere, is known as the Huygens–Fresnel
principle.

� Laws of reflection and Snell’s law of refraction can be de-
rived using Huygens’ principle.

� Using Huygens’ principle, one can derive the lens formula

1 1 1
=

u f
-

v
.

Problems

12.1 Use Huygens’ principle to study the reflection of a spherical
wave emanating from a point on the axis at a concave mirror
of radius of curvature R, and obtain the mirror equation

1 1

u
+

v
= 

2

R

12.2 Consider a plane wave incident obliquely on the face of a
prism. Using Huygens’ principle, construct the transmitted
wave front and show that the deviation produced by the
prism is given by

d = i + t – A
where A is the angle of the prism and i and t are the angles of
incidence and transmittance.

6 This does not contradict the theory of relativity according to which no particle can have a speed greater than the speed of light in free
space (= 3 ¥ 108 m s−1). The speed of light in a medium will be equal to c/n, where n represents the refractive index. For example, in
water, the speed of light will be about 2.25 ¥ 108 m s−1, and the speed of the electron could be greater than this value.
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PART  3
InteInteInteInteInterrrrrferenceferenceferenceferenceference

This part covers the very important and fascinating area of interference and many beautiful
experiments associated with it—the underlying principle is the superposition principle,
which is discussed in Chap. 13. Chapter 14 discusses interference by division of wave
front including the famous Young’s double-hole interference experiment. In Chap. 15,
interference by division of amplitude is discussed which allows us to understand colors of
thin films and applications like antireflection films, etc. The basic principle of the working
of the fiber Bragg gratings (usually abbreviated as FBG) is discussed along with some of
their important applications in the industry. In the same chapter, the Michelson interfer-
ometer is also discussed which is perhaps one of the most ingenious and sensational
optical instruments ever and for which Michelson received the Nobel Prize in Physics in
1907. Chapter 16 discusses the Fabry–Perot interferometer that is based on multiple-beam
interference and is characterized by a high resolving power and hence finds applications in
high-resolution spectroscopy. Chapter 17 discusses the basic concept of temporal and
spatial coherence. The ingenious experiment of Michelson, which used the concept of spatial
coherence to determine the angular diameter of stars, has been discussed in detail. Topics
like optical beats and Fourier transform spectroscopy have also been discussed.
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13.1 INTRODUCTION

In this chapter we will discuss the applications of the prin-
ciple of superposition of waves according to which the
resultant displacement (at a particular point) produced by a
number of waves is the vector sum of the displacements pro-
duced by each one of the disturbances. As a simple example,
we consider a long stretched string AB (see Fig. 13.1). From
the end A, a triangular pulse is generated which propagates to
the right with a certain speed v. In the absence of any other
disturbance, this pulse would have propagated in the +x di-
rection without any change in shape; we are, of course,
neglecting any attenuation or distortion of the pulse. We next
assume that from the end B an identical pulse is generated
which starts moving to the left with the same speed v. (As
shown in Sec. 11.6, the speed of the wave is determined by
the ratio of the tension in the string to its mass per unit
length.) At t = 0, the snapshot of the string is shown in
Fig. 13.1(a). At a little later time each pulse moves close to
the other, as shown in Fig. 13.1(b), without any interference.
Figure 13.1(c) represents a snapshot at an instant when the
two pulses interfere; the dashed curves represent the profile
of the string if each of the impulses was moving all by itself,
whereas the solid curve shows the resultant displacement
obtained by algebraic addition of each displacement. Shortly
later [Fig. 13.1(d)] the two pulses exactly overlap each other,
and the resultant displacement is zero everywhere (where has
the energy gone?). At a much later time the impulses sort of
cross each other [Fig. 13.1(e)] and move as if nothing had

The experiments described appear to me, at any rate, eminently adapted to remove any doubt
as to the identity of light, radiant heat, and electromagnetic wave motion. I believe that from now
on we shall have greater confidence in making use of the advantages which this identity enables
us to derive both in the study of optics and of electricity.

—Heinrich Hertz (1888)1

SUPERPOSITION OF WAVES
Chapter

Thirteen

happened. This is a characteristic feature of superposition of
waves.

The phenomenon of interference contains no more phy-
sics than embodied in the above example. In the following
sections we will consider some more examples.

13.2 STATIONARY WAVES ON

A STRING

Consider a string which is fixed at point A (see Fig. 13.2). A
transverse sinusoidal wave is sent down the string along the

B

B

B

B

B

A

A

A

A

A

(e)

(a)

(b)

(c)

(d)

Fig. 13.1 The propagation in opposite directions of two tri-

angular pulses in a stretched string. The solid line

gives the actual shape of the string; (a), (b), (c), (d),

and (e) correspond to different instants of time.

1 The author found this quotation in the book by Smith and King (Ref. 1).
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–x direction. The displacement at any point on the string due
to this wave is given by

yi = a sin 
2

( )x t
pÈ ˘

+ + fÍ ˙lÎ ˚
v (1)

where the subscript i refers to the fact that we are consider-
ing the incident wave. Without any loss of generality we can
set f = 0; thus we may write

yi = a sin 
2

( )x t
pÈ ˘

+Í ˙lÎ ˚
v

= a sin 2
x

t
È ˘Ê ˆp +Í ˙Á ˜Ë ¯lÎ ˚

v (2)

Thus, because of the incident wave, the displacement at
point A is

yi x=0
= asin(2pnt) (3)

where n = v/l and we have assumed point A to correspond
to x = 0. Since point A is fixed, there must be a reflected wave
such that the displacement due to this reflected wave (at
point A) is equal and opposite to yi:

yr x=0
= –a sin (2pnt) (4)

where the subscript r refers to the fact that we are consider-
ing the reflected wave. Since the reflected wave propagates
in the +x direction, we must have

yr = +a sin 2p 
x

t
Ê ˆ- nÁ ˜Ë ¯l

(5)

The resultant displacement is given by

y = yi + yr = a sin 2 sin 2
x x

t t
È ˘Ê ˆ Ê ˆp + n + p - nÍ ˙Á ˜ Á ˜Ë ¯ Ë ¯l lÎ ˚

= 2a sin
2p

l
x cos 2pvt (6)

Thus, for values of x such that

sin 
2

x
pÊ ˆ

Á ˜Ë ¯l
= 0 (7)

the displacement y is zero at all times. Such points are
known as nodes; the x coordinates of the nodes are given by

x = 
3

0, , , , 2 , . . .
2 2

l l
l l (8)

and are marked as points A, P, Q, and R in Fig. 13.2. The
nodes are separated by a distance l/2, and at the midpoint
between two consecutive nodes, i.e., at

x = 
4

l
, 

3

4

l
, 

5

4

l
, . . .

the amplitude of the vibration is maximum. The displace-
ments at these points (which are knowns as antinodes) are
given by

y = ±2acos2pnt (9)

At the antinodes the kinetic energy density is given by (see
Sec. 7.2)

Kinetic energy/unit length = 2 2 21
(2 ) cos

2
a tr w w

= 2ra2w2cos2wt (10)

where w = 2pn is the angular frequency and r the mass per
unit length of the string.

We can also carry out a similar experiment for electro-
magnetic waves. In Fig. 13.3, T represents a transmitter of electro-
magnetic waves (the wavelength of which may be of the order of
few centimeters); R represents a reflector which may be a highly
polished metal surface, and D represents the detector which can
measure the variation of the intensity of the electromagnetic
waves at different points. One may approximately assume plane
waves to be incident on the reflector; the incident and reflected
waves interfere and produce nodes and antinodes. The result of
a typical experiment is shown in Fig. 13.4. One can see the peri-
odic variation of intensity. Two consecutive maxima are separated
by about 5.8 cm; thus l ª 13.6 cm. The corresponding frequency
(ª 2.6 ¥ 109 s–1) can be easily generated in the laboratory. If the
frequency is changed, one can observe the change in the

A
SRQP S ¢R ¢Q ¢P ¢

x = 0 x

Fig. 13.2 Reflection of a wave at x = 0. T

D

R

Fig. 13.3 An arrangement for studying standing electro-

magnetic waves.
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distance between the antinodes. One should notice that the
minima do not really correspond to zero intensity and that the in-
tensities at the maxima are not constant. This is so because the
incident wave is really not a plane wave2 and the reflection is not
really perfect. In fact, one can introduce a coefficient of reflection
r which is defined as the ratio of the energy of the reflected beam
to the energy of the incident beam. Thus the ratio of the ampli-
tudes is r , and if the incident wave is given by

Eincident = a sin 2
x

t
È ˘Ê ˆp + nÁ ˜Í ˙Ë ¯lÎ ˚

(11)

then the reflected wave is given by

Ereflected = sin 2
x

a r t
È ˘Ê ˆp - nÁ ˜Í ˙Ë ¯lÎ ˚

(12)

where the plane x = 0 corresponds to the plane of the reflec-
tor. Here E represents the electric field associated with the
electromagnetic wave. Thus the resultant field is given by

Eresultant = Eincident + Ereflected

= sin 2 sin 2
x x

a t a r t
È ˘ È ˘Ê ˆ Ê ˆp + n + p - nÁ ˜ Á ˜Í ˙ Í ˙Ë ¯ Ë ¯l lÎ ˚ Î ˚

= sin 2 sin 2
x x

a r t t
Ï ¸È ˘ È ˘Ê ˆ Ê ˆp + n + p - nÌ ˝Á ˜ Á ˜Í ˙ Í ˙Ë ¯ Ë ¯l lÎ ˚ Î ˚Ó ˛

(1 ) sin 2
x

a r t
È ˘Ê ˆ+ - p + nÁ ˜Í ˙Ë ¯lÎ ˚

= 
2

2 sin cos 2a r x t
pÊ ˆ pnÁ ˜Ë ¯l

(1 ) sin 2
x

a r t
È ˘Ê ˆ+ - p + nÁ ˜Í ˙Ë ¯lÎ ˚

  
(13)

The first term represents the stationary component of the
wave, and the second term (which is small if r is close to
unity) represents the progressive part of the beam.

13.3 STATIONARY WAVES ON

A STRING WHOSE ENDS

ARE FIXED

In Sec. 13.2, while discussing the stationary waves on a string
we assumed only one end of the string (x = 0) to be fixed; and
the resultant displacement was given by [see Eq. (6)]

y = 2asin
2

x
pÊ ˆ

Á ˜Ë ¯l
cos2pvt (14)

If the other end of the string (say, at x = L) is also fixed, then
we must have

2asin
2

L
pÊ ˆ

Á ˜Ë ¯l
cos2pvt = 0 (15)

Equation (15) is to be valid at all times; therefore,

sin 
2

L
pÊ ˆ

Á ˜Ë ¯l
= 0 = sin np (16)

or l = ln = 
2L

n
n = 1, 2, 3, . . . (17)

The corresponding frequencies are

nn = 
nl

v
 = 

2

n

L

v
n = 1, 2, 3, . . . (18)

Thus, if a string of length L is clamped at both ends (as in
a sonometer wire), then it can only vibrate with certain well-
defined wavelengths. When l = 2L (i.e., n = 1), the string is
said to vibrate in its fundamental mode [Fig. 13.5(a)]. Similarly
when l = 2L/2 and 2L/3, the string is said to vibrate in its first
and second harmonic. In general, if the string is plucked and
then made to vibrate, the displacement is given by

y(x, t) = 
1

2
sinn

nn

a x
•

=

Ê ˆp
Á ˜lË ¯Â  cos (2p nnt + fn) (19)

0

2

4
6

8

10 20 30 40 50 60 70 80

In
te

ns
ity

Distance from reflecting plane, cm

Fig. 13.4 A typical variation of the intensity between the

reflector and the transmitter [Adapted from

Ref. 2].

2 A plane wave is obtained by a point source at a very large distance from the point of observation (see Chap. 11).

l = 2L

l = L

l = 2  /3L

L

(a)

(b)

(c)

Fig. 13.5 Standing waves on a stretched string clamped at

both ends.
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where the constants an and fn are determined by the values

of y(x, t = 0) and 
0t

y t
=

∂ ∂ ; these are known as the initial

conditions. A more detailed discussion of the vibration of
stretched strings is given in Sec. 8.2.

When a string is vibrating in a particular mode, there is no
net transfer of energy although each element of the string is
associated with a certain energy density [see Eq. (10)]. The
energy density is maximum at the antinodes and minimum at
nodes. The distances between two successive antinodes and
successive nodes are l/2.

13.4 STATIONARY LIGHT

WAVES: IVES’ AND

WIENER’S EXPERIMENTS

It is difficult to carry out experiments in which one obtains sta-
tionary light waves. This is so because light wavelengths are
extremely small (ª 5 ¥ 10–5 cm). In the experimental arrangement
of Ives, the emulsion side of a photographic plate was placed in
contact with a film of mercury as shown in Fig. 13.6. A parallel
beam of monochromatic light was allowed to fall normally on the
glass plate. The beam was reflected on the mercury surface, and
the incident wave interfered with the reflected wave, forming
standing waves. A section of the photographic film was cut
along a plane normal to the surface. The cut section was viewed
under a microscope, and bright and dark bands (separated by
regular intervals)) were observed. By measuring the distance
between two consecutive dark bands (which is equal to l/2) one
can calculate the wavelength.

Because of the small wavelength of light, the distance be-
tween two consecutive dark (or bright) bands was extremely
small and was, therefore, difficult to measure. Wiener over-
came this difficulty by placing the photographic film at a
small angle and thereby increasing considerably the distance
between the dark (or bright) bands (Fig. 13.7).

Example 13.1 In a typical experimental arrangement of
Wiener, the angle between the film and the mirror was about
10–3 rad. For l = 5 ¥ 10–5 cm what is the distance between two
consecutive dark bands?

Solution: The required distance is

2

l

a
= 

5 10

2 10

5

3
×
×

−

− cm  = 0.25 mm

On the other hand, in the setup of Ives the distance is 2.5 ¥ 10–4 mm.

13.5 SUPERPOSITION OF TWO

SINUSOIDAL WAVES

Let us consider the superposition of two sinusoidal waves
(having the same frequency) at a particular point. Let

and 1 1 1

2 2 2

( ) = cos ( )

( ) = cos ( )

x t a t

x t a t

w + q

w + q

(20)

represent the displacements produced by each of the distur-
bances: we are assuming that the displacements are in the same
direction.3 However, they may have different amplitudes and
different initial phases. In Sec. 17.5 we will consider the super-
position of waves having nearly equal frequencies which leads
to the phenomenon of beats. Now, according to the superposi-
tion principle, the resultant displacement x(t) is given by

x(t) = x1(t) + x2(t)

= a1 cos (wt + q1) + a2 cos (wt + q2) (21)

3 Indeed in Sec. 13.2, while discussing stationary waves on a string, we had, at a particular value of x, two sinusoidal waves of the same
frequency (but having different initial phases) superposing on each other. However, in general, one could have superposition of dis-
placements which are in different directions, for example, the superposition of two linearly polarized waves to produce a circularly
polarized wave (see Chap. 22).

Emulsion

Glass

Mercury

Incident
Light Beam

l

Fig. 13.6 The experimental arrangement of Ives for study-

ing stationary light waves.

a

Filmª
l

a2

Mirror

Fig. 13.7 The experimental arrangement of Wiener for

studying stationary light waves.
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which can be written in the form

x(t) = a cos (wt + q) (22)

where

a cos q = a1 cos q1 + a2 cos q2 (23)

and

a sin q = a1 sin q1 + a2 sin q2 (24)

Thus the resultant disturbance is also simple harmonic in
character having the same frequency but different amplitude
and different initial phase. If we square and add Eqs. (23) and
(24), we obtain

a = 2 2 1/ 2
1 2 1 2 1 2[ 2 cos ( )]a a a a+ + q - q (25)

Further

tan q = 1 1 2 2

1 1 2 2

sin sin

cos cos

a a

a a

q + q

q + q
(26)

The angle q is not uniquely determined from Eq. (26); how-
ever, if we assume a to be always positive, then cos q and
sin q can be determined from Eqs. (23) and (24) which will
uniquely determine q.

From Eq. (25) we find that if

q1 ~ q2 = 0, 2p, 4p, . . . (27)

then a = a1 + a2 (28)

Thus, if the two displacements are in phase, then the result-
ant amplitude will be the sum of the two amplitudes; this is
known as constructive interference. Similarly, if

q1 ~ q2 = p, 3p, 5p, . . . (29)

then

a = a1 ~ a2 (30)

and the resultant amplitude is the difference of the two am-
plitudes. This is known as destructive interference. If we
refer to Fig. 13.2, then we can see that constructive inter-
ference occurs at x = l/4, 3l/4, 5l/4, . . . (i.e., at the points P¢,
Q¢, R¢, . . .) and destructive interference occurs at x = 0, l/2,
l, 3l/2, . . . (i.e., at points A, P, Q, R, . . .). When constructive
and destructive interferences occur, there is no violation of
the principle of conservation of energy; the energy is just
redistributed.

In general, if we have n displacements

1 1 1

2 2 2

= cos ( )

= cos ( )

= cos ( )n n n

x a t

x a t

x a t

w + q

w + q

w + q

� � � � � �

(31)

then

x = x1 + x2 + . . . + xn = a cos (w t + q) (32)
where

a cos q = a1 cos q1 + . . . + an cos qn (33)

and
a sin q = a1 sin q1 + . . . + an sin qn (34)

13.6 THE GRAPHICAL METHOD

FOR STUDYING

SUPERPOSITION OF

SINUSOIDAL WAVES

In this section we will discuss the graphical method for add-
ing displacements of the same frequency. This method is
particularly useful when we have a large number of super-
posing waves, as indeed happens when we consider the
phenomenon of diffraction.

Let us first try to obtain the resultant of the two displace-
ments given by Eq. (20), using the graphical method. We
draw a circle of radius a1 and let point P on the circle
be such that OP makes an angle q1 with the x axis4 (see
Fig. 13.8). We next draw a circle of radius a2 and let point Q
on the circle be such that OQ makes an angle q2 with the x
axis. We use the law of parallelograms to find the resultant
OR  of the vectors  OP  and OQ . The length of the vector
OR  will represent the amplitude of the resultant displace-
ment, and if q is the angle that OR makes with the x axis, then
the initial phase of the resultant will be q. This can be easily
seen by noting that

OR cos q = OP cos q1 + PR cos q2

= a1 cos q1 + a2 cos q2 (35)

Similarly,

OR sin q = a1 sin q1 + a2 sin q2 (36)

consistent with Eqs. (23) and (24). Further, as vectors OP
and OQ  rotate on the circumference of the circles of radii a1

4 Clearly, if we assume vector OP  to rotate (in the counterclockwise direction) with angular velocity w, then the x coordinate of vector

OP  will be a1 cos (wt + q1), where t = 0 corresponds to the instant when the rotating vector is at point P.
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and a2, vector OR  rotates on the circumference of the circle
of radius OR with the same frequency.

Thus, if we wish to find the resultant of the two displace-
ments given by Eq. (20), then we must first draw a vector
( OP ) of length a1 making an angle q1 with the axis; from the
tip of this vector we must draw another vector ( PR ) of
length a2 making an angle q2 with the axis. The length of
vector OR  will represent the resultant amplitude, and the
angle that it makes with the axis will represent the initial
phase of the resultant displacement. It can be easily seen
that if we have a third displacement

x3 = a3 cos (wt + q3) (37)

then from point R we must draw a vector RR ¢  of length a3

which makes an angle q3 with the axis; vector OR ¢  will rep-
resent the resultant of x1, x2, and x3.

As an illustration of the above procedure, we consider the
resultant of N simple harmonic motions all having the same
amplitude and with their phases increasing in arithmetic pro-
gression. Thus

x1 = a cos wt

x2 = a cos (wt + q0) (38)

. . .  . . .  . . .  . . .  . . .  . . .  . . .  . . .  . . .

xN = a cos [wt + (N – 1)q0]

In Fig. 13.9 vectors OP1 , P P1 2 , P P2 3 , . . . correspond to x1,
x2, x3, . . . , respectively. The resultant is denoted by vector

OPN . Let Q1L and Q2L be the perpendicular bisectors of
OP1 and P1P2. It is easy to prove that

DLQ1P1 ∫ DLQ2P1

Thus LO = LP1 = LP2. Therefore, points O, P1, P2, P3, . . .,  PN

will lie on the circumference of a circle whose center is L and
whose radius is LO. Further, –LP1O = 0– / 2,p q and therefore
–OLP1 = q0. Thus,

LO = 
0

/2

sin ( /2)

a

q

and OPN = 2OC = 2LO sin 0

2

Nq

= a 0

0

sin / 2

sin / 2

Nq

q

(39)

R

y

Q

a

x

P

O

a1

a2

qq1

q2

q2

Fig. 13.8 The graphical method for determining the resultant

of two simple harmonic motions along the same

direction and having the same frequency.

y

xO Q1

Q2

P1

P2

a

P3

P4

PN

L

C a

q0

q0

q0

q0

( – 1)N q0
1
2

q0

Nq0/2

sin
 (

/2
)

sin
 (

/2
)

Nq
q

0
0

Fig. 13.9 The graphical method for determining the resultant

of N simple harmonic motions along the same

direction and having the same frequency.
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Further, the phase of the resultant displacement is

–PNOX = 
1

2
(N – 1)q0

Thus

a cos wt + a cos (wt + q0) + . . . + a cos [wt + (N – 1)q0]

= A cos (wt + q) (40)

where

A = 0

0

sin / 2

sin / 2

a Nq

q

(41)

and

q = 1
2

(N – 1)q0 (42)

We will use this result in Chap. 18.

13.7 THE COMPLEX

REPRESENTATION

Often it is more convenient to use the complex representa-
tion in which the displacement

x1 = a1 cos (wt + q1) (43)

is written as

x1 = a1e
i(wt+q1) (44)

where it is implied that the actual displacement is the real part
of x1. Further, if

x2 = a2ei(wt + q2)

then

x1 + x2 = (a1e
iq1 + a2e

iq2)eiwt = aei(wt + q) (45)

where

aeiq = a1e
iq1 + a2e

iq2 (46)

If we equate the real and imaginary parts of Eq. (46), we obtain
Eqs. (23) and (24).

An interesting illustration of the usefulness of this method
is to consider the resultant of the N displacements described
by Eq. (38). Thus we write

x1 = aeiwt,  x2 = aei(wt + q0), . . .

Hence

x = x1 + x2 + . . .

= 0 0 02 ( 1)(1 )i i i Ni tae e e eq q - qw
+ + + +…

= 
0

0

1

1

Ni
i t

i

e
ae

e

q

w

q

-

-

=  
0 0 0

0 0 0

/ 2 / 2 / 2

/ 2 / 2 / 2

iN iN iN
i t

i i i

e e e
ae

e e e

q q - q

w

q q - q

-

◊

-

= 0 0

0

sin ( / 2)
exp ( 1)

sin ( / 2) 2

a N
i t N

q Ï q ¸È ˘
w + -Ì ˝Í ˙q Î ˚Ó ˛

(47)

which is consistent with Eq. (40). The complex representa-
tion is also very useful in considering the spreading of a wave
packet (see Sec. 10.3).

Note that whereas

Re (x1) + Re (x2) = Re (x1 + x2)

(Re x1)(Re x2) π Re (x1x2)

where Re (. . . ) denotes the “real part” of  the quantity inside
the parentheses. Thus, one must be careful in calculating the
intensity of a wave which is proportional to the square of the
amplitude. While using the complex representation, one must
calculate first the amplitude and then the intensity.

Summary

� According to the principle of superposition of waves, the
resultant displacement (at a particular point) produced by
a number of waves is the vector sum of the displacements
produced by each one of the disturbances.

� The stationary waves on a string and the formation of standing
electromagnetic waves are formed by the superposition of
waves traveling in opposite directions.

� If the two displacements (produced by two sinusoidal waves)
are in phase, then the resultant amplitude is the sum of the
two amplitudes; this is known as constructive interference. On
the other hand, if the two displacements are p out of phase,
then the resultant amplitude is the difference of the two am-
plitudes; this is known as destructive interference.

Problems

13.1 Standing waves are formed on a stretched string under ten-
sion of 1 N. The length of the string is 30 cm, and it
vibrates in three loops. If the mass per unit length of the
wire is 10 mg cm–1, calculate the frequency of the vibrations.

13.2 In Prob. 13.1, if the string is made to vibrate in its funda-
mental mode, what will be the frequency of vibration?

13.3 In the experimental arrangement of Wiener, what should be
the angle between the film and the mirror if the distance
between two consecutive dark bands is 7 ¥ 10–3 cm2.
Assume l = 6 ¥ 10–5 cm.

[Ans.: ~1/4∞]

13.4 Standing waves with five loops are produced on a stretched
string under tension. The length of the string is 50 cm, and
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the frequency of vibrations is 250 s–1. Calculate the time
variation of the displacement of the points which are at
distances of 2, 5, 15, 18, 20, 35, and 45 cm from one end of
the string.

13.5 The displacements associated with two waves (propagating
in the same direction) having same amplitude but slightly
different frequencies can be written in the form

cos 2
x

a t
Ê ˆp n -Á ˜Ë ¯l

and cos 2 ( )
x

a t
È ˘

p n + Dn -Í ˙
l - DlÎ ˚

(Such displacements are indeed obtained when we have two
tuning forks with slightly different frequencies.) Discuss the
superposition of the displacements, and show that at a
particular value of x, the intensity will vary with time.

13.6 In Prob. 13.5 assume v = 330 m s–1, n = 256 s–1, Dn = 2 s–1,
and a = 0.1 cm. Plot the time variation of the intensity at

x = 0, / 4,l  and / 2l .

13.7 Use the complex representation to study the time variation
of the resultant displacement at x = 0 in Prob.13.5 and 13.6.

13.8 Discuss the superposition of two plane waves (of the same
frequency and propagating in the same direction) as a func-
tion of the phase difference between them. (Such a situation
indeed arises when a plane wave gets reflected at the upper
and lower surfaces of a glass slab; see Sec. 15.2.)

13.9 In Example 11.1 we discussed the propagation of a semicir-
cular pulse on a string. Consider two semicircular pulses
propagating in opposite directions. At t = 0, the displacements
associated with the pulses propagating in the +x and in the
–x directions are given by

(R2 – x2)1/2 and –[R2 – (x – 10R)2]1/2

respectively. Plot the resultant disturbance at t =
R/v, 2.5R/v, 5R/v, 7.5R/v, and 10R/v, where v denotes the
speed of propagation of the wave.

REFERENCES AND SUGGESTED READINGS

See those at the end of Chap. 14.
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14.1 INTRODUCTION

In Chap.13, we had considered the superposition of one-
dimensional waves propagating on a string and showed
that there is a variation of energy density along the length
of the string due to the interference of two waves (see Fig.
13.5). In general, whenever two waves superpose, one ob-
tains an intensity distribution which is known as the
interference pattern. In this chapter, we will consider the in-
terference pattern produced by waves emanating from two
point sources. We may note that with sound waves the in-
terference pattern can be observed without much difficulty
because the two interfering waves maintain a constant
phase relationship; this is also the case for microwaves.
However, for light waves, due to the very process of emis-
sion, one cannot observe interference between the waves
from two independent sources,1 although the interference
does take place (see Sec. 14.4). Thus, one tries to derive

‘The wave nature of light was demonstrated convincingly for the first time in 1801 by Thomas
Young by a wonderfully simple experiment . . . He let a ray of sunlight into a dark room, placed
a dark screen in front of it, pierced with two small pinholes, and beyond this, at some distance
a white screen. He then saw two darkish lines at both sides of a bright line, which gave him
sufficient encouragement to repeat the experiment, this time with spirit flame as light source,
with a little salt in it, to produce the bright yellow sodium light. This time he saw a number of
dark lines, regularly spaced; the first clear proof that light added to light can produce darkness.
This phenomenon is called interference. Thomas Young had expected it because he believed in
the wave theory of light.

—Dennis Gabor in his Nobel Lecture, December 11, 1971

Thomas Young had amazing broad interests and talents . . . From his discoveries in medicine and
science, Helmholtz concluded: ‘His was one of the most profound minds that the world has ever
seen.’

—From the Internet

TWO BEAM INTERFERENCE

BY DIVISION OF WAVE FRONT

Chapter

Fourteen

interfering waves from a single wave so that the phase rela-
tionship is maintained. The methods to achieve this can be
classified under two broad categories. Under the first cat-
egory, in a typical arrangement, a beam is allowed to fall on
two closely spaced holes, and the two beams emanating
from the holes, interfere. This method is known as division
of wave front and will be discussed in detail in this chapter.
In the other method, known as division of amplitude, a
beam is divided at two or more reflecting surfaces and the
reflected beams interfere. This will be discussed in Chap.15.
We must, however, emphasize that the present and the fol-
lowing chapters are based on one underlying principle,
namely, the superposition principle.

It is also possible to observe interference by using
multiple-beams; this is known as multiple-beam interferom-
etry and will be discussed in Chap. 16. It will be shown that
multiple beam interferometry offers some unique advantages
over two-beam interferometry.

1 It is difficult to observe the interference pattern even with two laser beams unless they are phase-locked.
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14.2 INTERFERENCE PATTERN

PRODUCED ON THE

SURFACE OF WATER

We consider surface waves emanating from two point sources
in a water tank. We may have, for example, two sharp needles
vibrating up and down at points S1 and S2 (see Fig. 14.1). Al-
though water waves are not really transverse, we will, for the
sake of simplicity, assume water waves to produce displace-
ments which are transverse to the direction of propagation.

If there were only one needle (say, at S1) vibrating with a
certain frequency n, then circular ripples would have spread
out from point S1. The wavelength would have been
v/n, and the crests and troughs would have moved outward.
Similarly for the vibrating needle at S2. However, if both
needles are vibrating, then waves emanating from S1 will inter-
fere with the waves emanating from S2. We assume that the
needle at S2 vibrates in phase with the needle at S1; i.e., S1 and
S2 go up simultaneously, and they also reach the lowest posi-
tion at the same time. Thus, if at a certain instant, the
disturbance emanating from the source S1 produced a crest at
a distance r from S1 then the disturbance from S2 would also
produce a crest at a distance r from S2, etc. This is explicitly
shown in Fig. 14.1, where the solid curves represent (at a par-
ticular instant) the positions of the crests due to disturbances
emanating from S1 and S2. Similarly, the dashed curves repre-
sent (at the same instant) the positions of the troughs. Notice
that at all points on the perpendicular bisector OY, the distur-
bances reaching from S1 and from S2 will always be in phase.
Consequently, at an arbitrary point A (on the perpendicular
bisector) we may write the resultant disturbance as

y = y1 + y2

= 2acoswt (1)

where y1 (= a cos w t) and y2 (= a cos wt) represent the
displacements at point A due to S1 and S2, respectively. We

see that the amplitude at A is twice the amplitude produced
by each one of the sources. At t = /4T (= 1/4 = π/2ω)n  the
displacements produced at point A by each of the sources
will be zero, and the resultant will also be zero. This is also
obvious from Eq. (1).

Next, let us consider a point B such that

S2B – S1B = l/2 (2)

At such a point the disturbance reaching from source S1

will always be out of phase with the disturbance reaching
from S2. This follows from the fact that the disturbance
reaching point B from source S2 must have started one-
half of a period (= T/2) earlier than the disturbance
reaching B from S1. Consequently, if the displacement at B
due to S1 is given by

y1 = a cos wt

then the displacement at B due to S2 is given by

y2 = a cos (wt – p) = –a cos wt

and the resultant y = y1 + y2 is zero at all times. Such a point
corresponds to destructive interference and is known as a
node and corresponds to minimum intensity. The amplitudes
of the two vibrations reaching the point B will not really be
equal, as it is at different distances from S1 and S2. However,
if the distances involved are large (in comparison to the
wavelength), the two amplitudes will be very nearly equal
and the resultant intensity will be very nearly zero.

In a similar manner we may consider a point C such that

S2C – S1C = l

where the phases of the vibration (reaching from S1 and S2)
are exactly the same as at point A. Consequently we will
again have constructive interference. In general, if a point P
is such that

S2P ~ S1P = nl (maxima) (3)

S1 S2

P

Y

A

B

O

C

Fig. 14.1 Waves emanating from two point sources S
1
 and S

2
 vibrating in phase. The solid and the dashed

curves represent the positions of the crests and troughs, respectively.
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n = 0, 1, 2, . . . , then the disturbances reaching point P from
the two sources will be in phase, the interference will be
constructive, and the intensity will be maximum. On the other
hand, if point P is such that

S2P ~ S1P = 
1

2
n

Ê ˆ+ lÁ ˜Ë ¯
(minima) (4)

then the disturbances reaching point P from the two sources
will be out of phase, the interference will be destructive, and
the intensity will be minimum. The actual interference pattern
produced from two point sources vibrating in phase in a
ripple tank is shown in Fig. 14.2.

Example 14.1 The intensity at the point which statisfies
neither Eq. (3) nor Eq. (4) will not be a maximum or zero. Consider
a point P such that S2P – S1P = l/3. Find the ratio of the intensity
at point P to that at a maximum.

Solution: If the disturbance reaching point P from S1 is given by
y1 = a cos wt

then the disturbance from S2 is given by

y2 = a cos 
2

3
t

pÊ ˆw -Á ˜Ë ¯

because a path difference of l/3 corresponds to a phase difference

of 2π/3.

Thus the resultant displacement is

y = y1 + y2

= a 
2

cos cos
3

t t
È ˘pÊ ˆw + w -Á ˜Í ˙Ë ¯Î ˚

= 2a cos 
3

t
pÊ ˆw -Á ˜Ë ¯

cos
3

p

= a cos 
3

t
pÊ ˆw -Á ˜Ë ¯

The intensity is therefore one-fourth of the intensity at the maxima.
In a similar manner one can calculate the intensity at any other point.

Example 14.2 The locus of points which correspond to
minima is known as nodal lines. Show that the equation of a nodal
line is a hyperbola. Also obtain the locus of points which corre-
spond to maxima.

Solution: For the sake of generality we find the locus of point P
which satisfies the following equation:

S1P – S2P = D (5)

Thus, if D = nl, we have a maximum; and if D = ( )1
2 ,n + l

we have a minimum. We choose the midpoint of S1S2 as the origin,

Fig. 14.2 The actual interference pattern produced from two point sources vibrating in phase in a ripple tank

(After Ref. 9, used with permission).
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with the x axis along S1S2 and the y axis perpendicular to it
(see Fig. 14.3). If the distance between S1 and S2 is d, then the

coordinates of points S1 and S2 are (–d/2, 0) and (+d/2, 0) respec-

tively. Let the coordinates of the point P be (x, y). Then

S1P = 

1/ 22
2

2

d
x y

È ˘Ê ˆ+ +Í ˙Á ˜Ë ¯Í ˙Î ˚

and S2P = 

1/ 22
2

2

d
x y

È ˘Ê ˆ- +Í ˙Á ˜Ë ¯Í ˙Î ˚
Therefore,

S1P – S2P = 

1/ 22
2

2

d
x y

È ˘Ê ˆ+ +Í ˙Á ˜Ë ¯Í ˙Î ˚
1/ 22

2

2

d
x y

È ˘Ê ˆ- - +Í ˙Á ˜Ë ¯Í ˙Î ˚
 = D

or
2

2

2

d
x y

Ê ˆ+ +Á ˜Ë ¯
= 

2
2

2

d
x

Ê ˆD + -Á ˜Ë ¯
1/ 22

2 22
2

d
y x y

È ˘Ê ˆ+ + D - +Í ˙Á ˜Ë ¯Í ˙Î ˚

or 2xd – D2 = 

1/ 22
22

2

d
x y

È ˘Ê ˆD - +Í ˙Á ˜Ë ¯Í ˙Î ˚
On squaring, we obtain

4x2d2 – 4xdD
2 + D4 = 4D

2 
2

2 2

4

d
x xd y

Ê ˆ
- + +Á ˜Ë ¯

Thus we obtain

2 2

2 2 21 1
4 4 ( )

x y

d
-

D - D

 = 1 (6)

which is the equation of a hyperbola. When D = ( )1
2 ,n + l  the

curves correspond to minima; and when D = nl, the curves corre-
spond to maxima. For large values of x and y, the curves
asymptotically tend to the straight lines

y = 

1/ 22 2

2

d
x

Ê ˆ- D
± Á ˜DË ¯

(7)

There is no point P for which  S1P ~ S2P > d (S1P ~ S2P equals d on
the x axis only). Now, it appears from Eq. (6) that when D > d, the
resulting equation is an ellipse, which we know is impossible. The
fallacy is a result of the fact that because of a few squaring opera-
tions, Eq. (6) also represents the locus of all those points for which
S1P + S2P = D, and obviously in this case D can exceed d.

Example 14.3 Consider a line parallel to the x axis at a
distance D from the origin (see Fig. 14.3). Assume D >>> l. Find
the points on this line where minimum intensity will occur.

Solution: The equation of this line is

y = D (8)

Further, at large distances from the origin the equation of the nodal
lines is

y = 
1/ 22 2

2
n

n

d
x

Ê ˆ- D
± Á ˜DË ¯

(9)

where Dn = ( )1
2n + l; n = 0, 1, 2, . . . Clearly the points at which

minima will occur (on the line y = D) are given by

xn = 
1/ 22

2 2
n

n

D
d

Ê ˆD
± Á ˜- DË ¯

= 
1/ 22

21n n D
d d

-

Ê ˆD D
± -Á ˜Ë ¯

ª 
1

2

D
n

d

lÊ ˆ± +Á ˜Ë ¯ (10)

where we have assumed Dn << d. Thus the points corresponding to
minima will be equally spaced with a spacing of lD/d.

Example 14.4 Until now we have assumed the needles at S1

and S2 (see Fig. 14.1) to vibrate in phase. Assume now that the
needles vibrate with a phase difference of p, and obtain the nodal
lines. Generalize the result for an arbitrary phase difference between
the vibrations of the two needles.

Solution: The two needles S1 and S2 vibrate out of phase. Thus
if, at any instant, the needle at S1 produces a crest at a distance R

x

y

S1 S2
d

O

P

y D=

Fig. 14.3 The nodal curves.
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from it, then the needle at S2 produces a trough at a distance R
from S2. Therefore, at all points on the perpendicular bisector OY
(see Fig. 14.4), the two vibrations will always be out of phase and
we will have a minimum. On the other hand, at point B which
satisfies the equation

S2B – S1B = l/2

the two vibrations will be in phase, and we will have a maximum.
Thus, because of the initial phase difference of p, the conditions for
maxima and minima are reversed; i.e., when

S2P ~ S1P = 
1

2
n

Ê ˆ+ lÁ ˜Ë ¯ (maxima)

the interference will be constructive and we will have maxima, and
when

S2P ~ S1P = nl (minima)

the interference will be destructive and we will have minima. Notice
that one again obtains a stationary interference pattern with nodal
lines as hyperbolas.

The above analysis can be easily generalized for an arbitrary
phase difference between the two needles. Assume, for example,
that there is a phase difference of p/3; i.e., if there is a crest at a
distance R from S1, then there is a crest at a distance R – l/6 from
S2. Consequently, the condition

S1P – S2P = nl + 
6

l
 n = 0, ±1, ±2, . . .

will correspond to maxima.

14.3 COHERENCE

From the above examples we find that whenever the two
needles vibrate with a constant phase difference, a station-
ary interference pattern is produced. The positions of the
maxima and minima will, however, depend on the phase dif-
ference in the vibration of the two needles. Two sources
which vibrate with a fixed phase difference between them are
said to be coherent.

We next assume that the two needles are sometimes vi-
brating in phase, sometimes vibrating out of phase,
sometimes vibrating with a phase difference of p/3, etc.; then
the interference pattern will keep on changing. If the phase
difference changes with such great rapidity that a stationary
interference cannot be observed, then the sources are said
to be incoherent.

Let the displacement produced by the sources at S1 and
S2 be given by

1

2

= cos
= cos ( )

y a t
y a t

w

w + f
(11)

Then the resultant displacement is

y = y1 + y2 = 2a cos 
2

f  cos (wt + 
2

f ) (12)

The intensity I which is proportional to the square of the
amplitude can be written in the form

I = 4I0 cos2

2

f (13)

where I0 is the intensity produced by each one of the sources
individually. Clearly if f = ±p, ±3p, . . . , the resultant intensity
will be zero and we will have minima. On the other hand,
when f = 0, ±2p, ±4p, . . . , the intensity will be maximum
(= 4I0). However, if the phase difference between sources S1

and S2 (i.e., f) is changing with time, the observed intensity
is given by

I = 4I0 
2cos

2

f
(14)

where . . .  denotes the time average of the quantity inside
the angular brackets; the time average of a time-dependent
function is defined by the relation

f t( ) = 
/ 2

/ 2

1
( )f t dt

+t

-t
t
Ú (15)

S1 S2

P

Y

A

B

O

C

Fig. 14.4 Waves emanating from two point sources S
1
 and S

2
 vibrating out of phase.
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where t represents the time over which the averaging is car-
ried out. For example, if the interference pattern is viewed by a
normal eye, this averaging will be over about 0.1; for a cam-
era with exposure time 0.001 s, t = 0.001 s, etc. Clearly, if f
varies in a random manner in times which are small compared
to t, then cos2 (f/2) will randomly vary between 0 and 1 and

2cos ( / 2)f  will be 1
2

 (see also Sec. 14.6). For such a case

I = 2I0 (16)

which implies that if the sources are incoherent, then the
resultant intensity is the sum of the two intensities and there
is no variation of intensity! Thus, if one (or both) of the two
vibrating sources is such that the phase difference between
the vibrations of the two sources varies rapidly, then the
interference phenomenon will not be observed. We will
discuss this point again in Sec. 14.6 and in Chap. 17.

14.4 INTERFERENCE OF LIGHT

WAVES

Until now we have considered interference of waves pro-
duced on the surface of water. We will now discuss the
interference pattern produced by light waves; however, for
light waves it is difficult to observe a stationary interference
pattern. For example, if we use two conventional light
sources (such as two sodium lamps) illuminating two pin-
holes (see Fig. 14.5), we will not observe any interference
pattern on the screen. This can be understood from the
following reasoning: In a conventional light source, light

comes from a large number of independent atoms, each atom
emitting light for about 10–10 s, i.e., light emitted by an atom
is essentially a pulse lasting for only 10–10 s. However, since
the optical frequencies are of the order of 1015 s–1, such a
short pulse consists of about 1 million oscillations; thus it is
almost monochromatic (see Chap. 17). Even if the atoms were
emitting under similar conditions, waves from different atoms
would differ in their initial phases.

Consequently, light coming out from holes S1 and
S2 will have a fixed phase relationship for about 10–10 s, hence
the interference pattern will keep on changing every billionth
of a second. The eye can notice intensity changes which last
at least for 0.1 s, and hence we will observe a uniform intensity
over the screen. However, if we have a camera whose time of
shutter opening can be made less than 10–10 s, then the film
will record an interference pattern.2 We summarize the above
results by noting that light beams from two independent
sources do not have any fixed relationship, as such, they do
not produce any stationary interference pattern.

Thomas Young in 1801 devised an ingenious but simple
method to lock the phase relationship between the two
sources. The trick lies in the division of a single wave front
into two; these two split wave fronts act as if they emanated
from two sources having a fixed phase relationship, and
therefore when these two waves were allowed to interfere, a
stationary interference pattern was obtained. In the actual
experiment a light source illuminates pinhole S (see
Fig. 14.6). Light diverging from this pinhole fell on a barrier
which contained two pinholes S1 and S2 that were very close
to each other and were located equidistant from S. Spherical

2 This interference pattern will be a set of dark and bright bands only if the light waves have the same state of polarization. This can,
however, be easily done by putting two Polaroids in front of S1 and S2 (see Fig. 14.5).

S1

S2

Screen

Fig. 14.5 If two sodium lamps illuminate two pinholes S
1

and S
2
, no interference pattern will be observed on

the screen.

O

P

x

y

S1

S2

S

d

D

z = 0

Fig. 14.6 Young’s arrangement to produce interference

pattern.
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waves emanating from S1 and S2 (see Fig. 14.7) were coher-
ent, and on the screen beautiful interference fringes were
obtained. To show that this was indeed an interference effect,
Young showed that the fringes on the screen disappear when
S1 (or S2) is covered up. Young explained the interference
pattern by considering the principle of superposition, and by
measuring the distance between the fringes he calculated the
wavelength. Figure 14.7 shows the section of the wave front
on the plane containing S, S1, and S2.

14.5 THE INTERFERENCE

PATTERN

Let S1 and S2 represent the two pinholes of Young’s interference
experiment. We want to determine the positions of maxima and
of minima on line LL¢ which is parallel to the y axis and lies in
the plane containing points S, S1, and S2 (see Fig. 14.8). We will
show that the interference pattern (around point O) consists of
a series of dark and bright lines perpendicular to the plane of
Fig. 14.8; point O is the foot of the perpendicular from point S on
the screen.

For an arbitrary point P (on line LL¢) to correspond to a
maximum, we must have

S2P – S1P = nl  n = 0, 1, 2, . . . (17)

Now,

(S2P)2 – (S1P)2 = 
2

2

2n
d

D y
È ˘Ê ˆ+ +Í ˙Á ˜Ë ¯Í ˙Î ˚

2
2

2n
d

D y
È ˘Ê ˆ- + -Í ˙Á ˜Ë ¯Í ˙Î ˚

= 2ynd

where
S1S2 = d and OP = yn

Thus

S2P – S1P = 
2 1

2 ny d

S P S P+

(18)

If yn , d << D, then negligible error will be introduced if
S2P + S1P is replaced by 2D. For example, for d = 0.02 cm,
D=50 cm, and OP = 0.5 cm (which corresponds to typical
values for a light interference experiment)

S2P + S1P = [(50)2 + (0.51)2]1/2 + [(50)2 + (0.49)2]1/2

ª 100.005 cm
Thus if we replace S2P + S1P by 2D, the error involved is
about 0.005%. In this approximation, Eq. (18) becomes

S2P – S1P ª ny d

D
(19)

Using Eq. (17), we obtain

yn = 
n D

d

l
(20)

Thus the dark and bright fringes are equally spaced, and the
distance between two consecutive dark (or bright) fringes is
given by

b = yn+1 – yn = 
( 1)n D n D

d d

+ l l
-

or b = 
D

d

l
(21)

which is the expression for the fringe width.
To determine the shape of the interference pattern, we first

note that the locus of point P such that

S2P – S1P = D (22)

is a hyperbola in any plane containing points S1 and S2 (see
Example 14.2). Consequently, the locus is a hyperbola of

z
x

y

S

d

S1

S2
D

L

L¢

P

O

yn

Fig. 14.8 Arrangement for producing Young’s interference

pattern.

Light

Light

Light

Light

Light maximum

Dark

Dark
Central

Dark

Dark

ScreenBarrier

S1

S2

Source

Fig. 14.7 Sections of the spherical wave fronts emanating

from S, S
1
, and S

2
 (Adapted from Ref. 7; used

with permission).
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revolution obtained by rotating the hyperbola about the axis
S1S2. To find the shape of the fringe on the screen, we
assume the origin to be at point O and the z axis to be per-
pendicular to the plane of the screen as shown in Fig. 14.6.
The y axis is assumed to be parallel to S2S1. We consider
an arbitrary point P on the plane of the screen (i.e., z = 0)
(see Fig. 14.6). Let its coordinates be (x, y, 0). The coordi-
nates of points S1 and S2 are (0, d/2, D) and (0, –d/2, D)
respectively. Thus

S2P – S1P =

1/ 22
2 2

2
d

x y D
È ˘Ê ˆ+ + +Í ˙Á ˜Ë ¯Í ˙Î ˚

1/ 22
2 2

2
d

x y D
È ˘Ê ˆ- + - +Í ˙Á ˜Ë ¯Í ˙Î ˚

= D (say)
or

2
2 2

2

d
x y D
È ˘Ê ˆ+ + +Í ˙Á ˜Ë ¯Í ˙Î ˚

= 

21/ 22
2 2

2

d
x y D

Ï ¸È ˘Ô ÔÊ ˆD + + - +Í ˙Ì ˝Á ˜Ë ¯Í ˙Ô ÔÎ ˚Ó ˛

or (2yd – D2)2 = ( )
2

2 2 22
2

d
x y D
È ˘Ê ˆD + - +Í ˙Á ˜Ë ¯Í ˙Î ˚

Hence,

(d2 – D2)y2 – D2x2 = D2 2 2 21
( )

4
D d
È ˘

+ - DÍ ˙
Î ˚

which is the equation of a hyperbola. Thus the shape of the
fringes is hyperbolic. On rearranging, we get

y = 
1/ 2 1/ 22

2 2 2 2
2 2

1
( )

4
x D d

d

Ê ˆD È ˘± + + - DÁ ˜ Í ˙- DË ¯ Î ˚
(23)

For values of x such that

x2 << D2 (24)

the loci are straight lines parallel to the x axis. Thus we
obtain approximately straight-line fringes on the screen. It
should be emphasized that the fringes are straight lines
although sources S1 and S2 are point sources. It is easy to see
that if we had slits instead of the point sources, we would have
obtained again straight-line fringes with increased intensities.

The fringes so produced are said to be nonlocalized; they
can be photographed by just placing a film on the screen;
they can also be seen through an eyepiece.

14.6 THE INTENSITY

DISTRIBUTION

Let E1 and E2 be the electric fields produced at point P by S1

and S2, respectively (see Fig. 14.8). The electric fields E1 and
E2 will, in general, have different directions and different
magnitudes. However, if the distances S1P and S2P are very
large in comparison to the distance S1S2, the two fields will
almost be in the same direction. Thus, we may write

and
01 1

02 2

2ˆ= cos

2ˆ= cos

E S P t

E S P t

pÊ ˆ- wÁ ˜Ë ¯l

pÊ ˆ- wÁ ˜Ë ¯l

1

2

E i

E i

(25)

where �i  represents the unit vector along the direction of
either of the electric fields. The resultant field is given by

E = E1 + E2

= 01 1
2ˆ cosE S P t

È pÊ ˆ- wÍ Á ˜Ë ¯lÎ
i

02 2
2

cosE S P t
˘pÊ ˆ+ - w ˙Á ˜Ë ¯l ˚

(26)

The intensity I is proportional to the square of the electric
field and is given by

I = KE2 (27)
or

I = K 2 2
01 1

2
cosE S P t

È pÊ ˆ- wÍ Á ˜Ë ¯lÎ

2 2
02 2

2
cosE S P t

pÊ ˆ+ - wÁ ˜Ë ¯l

01 02 2 1
2

cos ( )E E S P S P
Ï pÈ ˘

+ -Ì Í ˙lÎ ˚Ó

2 1
2

cos 2 ( )t S P S P
˘¸pÈ ˘

+ w - + ˝˙Í ˙lÎ ˚˛˚
(28)

where K is a proportionality constant.3 For an optical beam
the frequency is very large (w ª 1015 s–1), and all the terms

3 Equation (27) will be derived in Sec. 23.5. In free space the constant K will be shown to be equal to e0c2, where
e0 (=8.854 ¥ 10–12

 C
2 N–1 m–2) represents the permittivity of free space and c is the speed of light in free space.
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depending on w t will vary with extreme rapidity (1015 times
per  second); consequently, any detector would record an
average value of various quantities. Now

2cos ( )tw - q = 
1 1 cos [2( )]

2 2

t
d t

+t

-t

+ w - q

t
Ú

= [ ]{ }1 1
sin 2( )

2 16

T
t

+t

-t
+ w - q

p t

where T = 2 /p w (ª 2p ¥ 10–15 s for an optical beam). For any
practical detector /T t  <<< 1, and since the quantity within the

curly braces will always be between –2 and +2, we may write

·cos2(w t – q) Ò ª 1
2 (29)

For the normal eye, t ª 0.1 s; thus T/t ª 6 ¥ 10–14; even for a
detector having 1 ns as the resolution time, T/t ª 6 ¥ 10–5.

The factor cos (2wt – f) will oscillate between +1 and
–1, and its average will be zero as can indeed be shown math-
ematically. Thus the intensity, that a detector will record, will
be given by

I = I1 + I2 + 1 22 cosI I d (30)

where

d = 2 1
2

( )S P S P
p

-
l

(31)

represents the phase difference between the displacements
reaching point P from S1 and S2. Further

I1 = 1
2 KE2

01

represents the intensity produced by source S1 if
no light from S2 is allowed to fall on the screen; similarly,

I2 = 1
2 KE2

02 represents the intensity produced by source S2

if no light from S1 is allowed to fall on the screen. From
Eq. (30) we may deduce the following:

1. The maximum and minimum values of cos d are +1 and
–1, respectively; as such, the maximum and minimum
values of I are given by

and
2

max 1 2

2
min 1 2

= ( )

= ( )

I I I

I I I

+

-

(32)

The maximum intensity occurs when
d = 2np n = 0, 1, 2, . . .

or
S2P ~ S1P = nl

and the minimum intensity occurs when
d = (2n + 1)p  n = 0, 1, 2, . . .

or

S2P ~ S1P = n +
F
H

I
K

1
2

l

When I1 = I2, the intensity minimum is zero. In general,
I1 π I2 and the minimum intensity is not zero.

2. If  holes S1 and S2 are illuminated by different light
sources (see Fig. 14.4), then the phase difference d will
remain constant for about 10–10 s (see discussion in
Sec. 14.3) and thus d would also vary with time4 in a
random way. If we now carry out the averaging over
time scales which are of the order of 10 – 8 s, then

cos d = 0

and we obtain

I =  I1 + I2

Thus, for two incoherent sources, the resultant intensity
is the sum of the intensities produced by each one of
the sources independently, and no interference pattern
is observed.

3. In the arrangement shown in Fig. 14.6, if the distances
S1P and S2P are extremely large in comparison to d, then

I1 ª I2 = I0 (say)

and

I = 2I0 + 2I0 cos d = 4I0 cos2

2

d
(33)

The intensity distribution (which is often termed the
cos2 pattern) is shown in Fig. 14.9. The actual fringe
pattern (as it will appear on the screen) is shown in
Fig. 14.10. Figure 14.10(a) and (b) corresponds to
d = 0.005 mm (b ª 5 mm) and d = 0.025 mm (b ª 1 mm),
respectively. Both figures correspond to D = 5 cm and
l = 5 ¥ 10–5 cm. The values of the parameters are such
that one can see the hyperbolic nature of the fringe
pattern in Fig. 14.10(a).

4 Notice that this variation occurs in times of the order of 10–10 s which is about 1 million times longer than the times for variation of
the intensity due to the terms depending on wt. Thus we are justified in first carrying out the averaging which leads to Eq. (30).

–5π –3π –π 5π3ππ

δ

cos
2

2 δ

I
I/
0

Fig. 14.9 The variation of intensity with δ.
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Example 14.5 Instead of considering two point sources, we
consider the superposition of two plane waves as shown in
Fig. 14.11(a). The wave vectors for the two waves are given by

k1 = – �yk sin q1 + �zk cos q1

and

k2 = + �yk sin q2 + �zk cos q2

where k = 2p/l and q1 and q2 are defined in Fig. 14.11(a). Thus the
electric fields of the two waves are described by the equations

E1 =  E01 cos (k1 • r – w t)
=  E01 cos (– ky sin q1 + kz cos q1 – w t)

E2 = E02 cos (k2 • r – w t)
= E02 cos (ky sin q2 + kz cos q2 – w t)

where we have assumed both electric fields along the same direction
(say, along the x axis); if we further assume E01 = E02 = E0 and q1 =
q2 = q,  then the resultant field is given by

E = 2E0 cos ( ky sin q) cos (kz cos q – wt)

Thus the intensity distribution on the photograph plate LL¢ is given by

I =  4I0 cos2 (ky sin q)

and the fringe pattern will be strictly straight lines (parallel to the
x-axis) with fringe width given by

b = 2 sin

l

q

Figure 14.11(b) shows the computer-generated interference pattern
on the screen LL¢ for q = p/6 and l = 5000 Å. Thus b = l =
0.0005 mm.

Example 14.6 In this example, we consider the interference
pattern produced by two point sources S1 and S2 on a plane PP¢ which
is perpendicular to the line joining S1 and S2 [see
Fig. 14.12(a)]. Obviously, on plane PP¢, the locus of point P for which

S1P – S2P = constant

will be a circle. Figure 14.12(b) and (c) shows the fringe patterns
for D = 20 and 10 cm; for both figures S1S2 = d = 0.05 mm and
l = 5000 Å. Obviously, if O represents the center of the fringe
pattern, then

S1O – S2O = d = 100l

Thus (for this value of d) the central spot will be bright for all val-
ues of D and will correspond to n = 100. The first and second bright
circles will correspond to a path difference of 99l and 98l, respec-
tively. Similarly, the first and second dark rings in the interference
pattern will correspond to a path difference of 99.5l and 98.5l,

respectively. The radii of the fringes can be calculated by using the
formula given in Prob. 14.10.

Example 14.7 We finally consider the interference pattern
produced on PP¢ by the superposition of a plane wave incident

–10100 50– 50 0

–50 –10

50 10

0

(a)

0

(b)

y
(m

m
)

y
(m

m
)

x (mm)x (mm)

d = 0.005 mm ( = 5 mm)β d = 0.025 mm ( = 1 mm)β

Fig. 14.10 Computer-generated fringe pattern produced by two point sources S
1
 and S

2
 on the screen LL′ (see

Fig. 14.8); (a) and (b) correspond to d = 0.005 and 0.025 mm, respectively (both figures correspond

to D = 5 cm and l = 5 ¥ 10
–5

 cm).

q2

q1

y

L
k1

k2
L¢

z

0.0005 mm
(b)(a)

Fig. 14.11 (a) The superposition of two plane waves on

LL′. (b) Computer-generated interference pat-

tern on the screen LL′ for θ
1
 = θ

2
 = π/6 and λ =

5000 Å. The fringes are parallel to the x axis.

gha80482_ch14_177-194.PMD 1/16/2009, 5:56 PM186



Two Beam Interference by Division of Wave Front 187
�

normally and a spherical wave emanating from point O (see
Fig.14.13). The plane wave is given by

E1 = E0 cos (kz – wt + f)

and the spherical wave is given by

E2 = 0A

r
cos (kr – wt)

where r is the distance measured from point O which is assumed to
be the origin. Now, on the plane PP¢ (z = D)

r = 
1

2

2 2
2 2 2

2( ) 1
2

x y
x y D D

D

Ê ˆ+
+ + ª +Á ˜Ë ¯

ª D + 
2 2

2

x y

D

+

where we have assumed x, y << D. On the plane z = D, the resultant
field is given by

E = E1 + E2

ª E0 cos (kD – wt + f)

2 20 cos ( )
2

A k
kD x y t

D D
È ˘

+ + + - wÍ ˙
Î ˚

Thus

2E = 
2

2 0
0

1 1

2 2

A
E

D
Ê ˆ+ Á ˜Ë ¯

2 20
0 cos ( )

2

A k
E x y

D D
È ˘+ + - fÍ ˙Î ˚

If we assume that

A
D

0
ª E0

0 2

D = 20 cm D = 10 cm

x (cm)
(c)

0 –2–2
–2

y
(c

m
)

(b)

P¢

P

O

y

S2S1

d D

(a)

0

2

2

Fig. 14.12 (a) S1 and S2 represent two coherent sources. (b) and (c) Interference fringes observed on the screen
PP ′ when D = 20 cm and D = 10 cm, respectively.

Spherical wave
emanating from O

P

P¢Incident
plane wave

O
z

D
(a) (b)

4 (mm)

4
(m

m
)

Fig. 14.13 (a) Superposition of a plane wave and a spherical wave emanating from point O; (b) interference
fringes observed on the screen PP ′.
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i.e., the amplitude of the spherical wave (on plane PP¢) is the same
as the amplitude of the plane wave, then

2E ª 2 2 2 2
0

1
2 cos ( )

4 2

k
E x y

D
È ˘

+ - fÍ ˙Î ˚

and we obtain circular interference fringes as shown in Fig. 14.13(b). If
rm and rm+p denote the radii of the mth and (m + p)th bright rings, then

r2
m+ p – rm

2 = 2plD

14.6.1 Moiré Fringes

Moiré fringes can be very effectively used to study the for-
mation of fringe patterns. In Fig. 14.14 we have shown the
overlapping of two simple patterns from which one can un-
derstand the formation of bright and dark fringes when two

plane waves propagate in slightly different directions. In a
classroom, it can be easily demonstrated by having a peri-
odic pattern on a transparency and overlapping it with its
own photocopy at different angles. Similarly, if one overlaps
a circular pattern (on a transparency) with its own copy, one
obtains the hyperbolic fringes as shown in Fig. 14.15. (To get
a clearer fringe pattern, you may have to view the patterns
from a greater distance.) In Sec. 17.5 we have shown how the
beat phenomenon can be understood by observing the Moiré
fringes obtained by the overlapping of two patterns of
slightly different periods (see Fig. 17.13).

Example 14.8 Consider a parallel beam of light (from a
distant source S¢  such as a star) incident (at an angle  q) on two slits S1

and  S2 as shown in Fig. 14.16. Obviously the path difference between
the waves emanating from slits S1 and  S2 is given by

           XS2 =  d sin q

Therefore the intensity distribution on the screen due to S¢ is
given by

2
0

δ
= cos

2
I I

where

( )2 2 1

2 1

2π
δ =

λ

2π
= ( ) sinθ

λ

2π
= sinθ

λ

XS S P S P

S P S P d

xd
d

D

+ -

- +È ˘Î ˚

Ê ˆ+Á ˜Ë ¯

Thus the intensity distribution (due to light coming from the dis-
tant source S¢) is given by

2
0

π
= cos + sinθ

λ

xd
I I d

D

È ˘Ê ˆ¢ Í ˙Á ˜Ë ¯Î ˚

φ

S�

S�

P

X

S1

S2

Screen

d
θ

Fig. 14.16 Two distant sources illuminating the slits S
1

and S
2
.

Fig. 14.14 The moiré pattern produced by two overlapping

straight-line patterns.

(a)

(b) (c)

Fig. 14.15 The moiré pattern produced by two overlap-

ping circular patterns. You will see clear

hyperbolic fringes if you put the pattern at a

greater distance from the eye. The circular pat-

tern was provided by Dr. R. E. Bailey.
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Similarly, if there is light incident from another distant source S ¢¢í

(at an angle f), then the corresponding intensity distribution on the
screen is given by

2
0

π xd
= cos sin

λ D
I I d

È ˘Ê ˆ- f¢¢ Í ˙Á ˜Ë ¯Î ˚
The resultant intensity distribution is given by

               I  = I¢  +   I¢¢

Example 14.9 This example presupposes the knowledge of
half wave plates (see Sec. 22.6), and therefore readers may skip
this example until they have gone through Chap. 22.

Consider a y-polarized light beam incident on a double-hole sys-
tem as shown in Fig. 14.17. Behind the hole S1 we have put a half
wave plate H1 whose optic axis is along the y direction, and  behind
the hole S2 we have put a half wave plate H2 whose optic axis is
along the x direction. Thus as discussed in Sec. 22.6, in H1

a y-polarized  beam will propagate with velocity c/ne; and in H2  a
y-polarized  beam will propagate with velocity c/no. In calcite. ne < no ;
and in  a half wave plate, a phase change of p  is introduced between
the o wave and the  e wave. Thus the whole fringe pattern will shift
by b/2, where b is the fringe width. What will happen if the incident
light beam is x-polarized?

14.7 FRESNEL’S TWO-MIRROR

ARRANGEMENT

After Young’s double-hole interference experiment, Fresnel
devised a series of arrangements to produce the interference
pattern. One of the experimental arrangements, known as the
Fresnel two-mirror arrangement, is shown in Fig. 14.18; it con-
sists of two plane mirrors which are inclined to each other at a
small angle q and touching at the point M. Point S  represents
a narrow slit placed perpendicular to the plane of the paper.

A portion of the wave front from S gets reflected from
M1M and illuminates the region AD of the screen. Another

portion of the wave front gets reflected from the mirror MM2

and illuminates the region BC of the screen. Since these
two wave fronts are derived from the same source, they are
coherent. Thus in the region BC, one observes interference
fringes. The formation of the fringes can also be understood
as being due to the interference of the wave fronts from the
virtual sources S1 and S2 of S formed by mirrors M1 and M2,
respectively. From simple geometric considerations, it can be
shown that points S, S1, and S2 lie on a circle whose center is
at point M. Further, if the angle between the mirrors is q, then
the angle S1SS2 is also q and the angle S1MS2 is 2q. Thus
S1S2 is 2Rq, where R is the radius of the circle.

14.8 FRESNEL BIPRISM

Fresnel devised yet another simple arrangement for the pro-
duction of interference pattern. He used a biprism, which was
actually a simple prism, the base angles of which are
extremely small (~20¢). The base of the prism is shown in
Fig. 14.19, and the prism is assumed to stand perpendicular to
the plane of the paper. Point S represents the slit which is also
placed perpendicular to the plane of the paper. Light from slit
S gets refracted by the prism and produces two virtual images
S1 and S2. These images act as coherent sources and produce
interference fringes on the right of the biprism. The fringes can
be viewed through an eyepiece. If n represents the refractive

S1

H1

H2

S2

P

Screen

x

z

S

y

Fig. 14.17 H
1
 and H

2
 are half wave plates placed in front of

S
1
 and S

2
. The optic axis of H

1
 and H

2
 are along

y and x directions respectively.

A
B

C
D

S1

S

2θ
θM

M1
M2

S2

Fig. 14.18 Fresnel’s two-mirror arrangement.
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index of the material of the biprism and a the base angle, then
(n – 1)a is approximately the angular deviation produced by
the prism, and therefore the distance S1S2 is 2a(n – 1)a, where
a represents the distance from S to the base of the prism.
Thus, for n = 1.5, a ª 20¢ ª 5.8 ¥ 10–3 radians, a ª 2 cm, one
gets d = 0.012 cm.

The biprism arrangement can be used for the determina-
tion of wavelength of an almost monochromatic light such as
the one coming from a sodium lamp. Light from the sodium
lamp illuminates slit S, and interference fringes can be easily
viewed through the eyepiece. The fringe width b can be
determined by means of a micrometer attached to the eye-
piece. Once b is known, l can be determined by using the
following relation:

l =
d

D

b
(34)

To determine d, one need not measure the value of a. In fact
the distances d and D can  be easily determined by placing a
convex lens between the biprism and the eyepiece. For a
fixed position of the eyepiece there will be two positions of
the lens (shown as L1 and L2 in Fig. 14.19) where the images
of S1 and S2 can be seen at the eyepiece. Let d1 be the dis-
tance between the two images when the lens is at position L1

(at a distance b1 from the eyepiece). Let d2 and b2 be the
corresponding distances when the lens is at L2. Then it can
be easily shown that

d = 1 2d d

and

D = b1 + b2

Typically for d ª 0.01 cm, l ª 6 ¥ 10–5 cm, D ª 50 cm, and
b ª 0.3 cm.

In the above we considered here a slit instead of a point
source. Since each pair of points S1 and S2 produces  (ap-
proximately) straight-line fringes, the slit will also produce
straight-line fringes of increased intensity.

14.9 INTERFERENCE WITH

WHITE LIGHT

We will now discuss the interference pattern when the slit is
illuminated by white light. The wavelengths corresponding
to the violet and red ends of the spectrum are about
4 ¥ 10–5 cm and 7 ¥ 10–5 cm, respectively. Clearly, the central
fringe produced at point O (Fig. 14.19) will be white because
all wavelengths will constructively interfere here. Now,
slightly below (or above) point O the fringes will become
colored. For example, if point P is such that

S2P ~ S1P = 2 ¥ 10–5 cm violet=
2

lÊ ˆ
Á ˜Ë ¯

then complete destructive interference will occur only for the
violet color. Partial destructive interference will occur for
other wavelengths. Consequently we will have a line devoid
of the violet color that will appear reddish. The point Q which
satisfies

S2Q ~ S1Q = 3.5 ¥ 10–5 cm red=
2

lÊ ˆ
Á ˜Ë ¯

will be devoid of the red color. It will correspond to almost
constructive interference for the violet color. No other
wavelength (in the visible region) will either construc-
tively or destructively interfere. Thus following the white
central fringe we will have colored fringes; when the path
difference is about 2 ¥ 10–5 cm, the fringe will be red, then
the color will gradually change to violet. The colored
fringes will soon disappear because at points far away
from O there will be so many wavelengths (in the visible
region) which will constructively interfere that we will ob-
serve uniform white illumination. For example, at a point R,
such that S2R ~ S1R = 30 ¥ 10–5 cm, wavelengths corre-
sponding to 30 ¥ 10–5/n (n = 1, 2, . . .) will constructively
interfere. In the visible region these wavelengths will be
7.5 ¥ 10–5 cm (red), 6 ¥ 10–5 cm (yellow), 5 ¥ 10–5 cm
(greenish yellow), and 4.3 ¥ 10–5 cm (violet). Further,
wavelengths corresponding to 30 ¥ 10–5/ ( )1

2n + will
destructively interfere; thus, in the visible region, the
wavelengths 6.67 ¥ 10–5 cm (orange), 5.5 ¥ 10–5 cm
(yellow), 4.6 ¥ 10–5 cm (indigo) and  4.0 ¥ 10–5 cm (violet)

S2

S1
S

LL1L2

α
O

C

P
Q
R

d

b1
b2

D

a

Fig. 14.19 Fresnel’s biprism arrangement. Points C and

L represent the positions of the crosswires

and the eyepiece, respectively. To determine

d, one introduces a lens between the biprism

and the crosswires; L1 and L2 represent the

two positions of the lens where the slits are

clearly seen.
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will be absent. The color of such light, as seen by the unaided
eye, will be white. Thus, with white light one gets a white cen-
tral fringe at the point of zero path difference along with a few
colored fringes on both the sides, the color soon fading off to
white. While using a white light source, if we put a red (or green)
filter in front of our eye, we will see the interference pattern cor-
responding to the red (or green) light.

As discussed above, when we observe an interference
pattern using a white light source, we will see only a few col-
ored fringes. However, if we put a red filter in front of our
eye, the fringe pattern (corresponding to the red color) will
suddenly appear. If we replace the red filter by a green filter
in front of our eye, the fringe pattern corresponding to the
green color will appear.

In the usual interference pattern with a nearly monochro-
matic source (such as a sodium lamp), a large number of
interference fringes are obtained, and it is extremely difficult
to determine the position of the central fringe. In many inter-
ference experiments it is necessary to determine the position
of the central fringe, and as has been discussed above, this
can be easily done by using white light as a source.

14.10 DISPLACEMENT OF

FRINGES

We will now discuss the change in the interference pattern
produced by introducing a thin transparent plate in the path
of one of the two interference beams as shown in Fig. 14.20.
Let t be the thickness of the plate, and let n be its refractive
index. It is easily seen from the figure that light reaching

point P from S1 has to traverse a distance t in the plate and a
distance S1P – t in air. Thus the time required for the light to
reach from S1 to point P is given by

1S P t t

c

-
+

v
= ( )1

1
S P t nt

c
- +

= 1
c

[S1P + (n – 1)t] (35)

where v ( )= /c n  represents the speed of light in the plate.

Equation (35) shows that by introducing the thin plate the ef-
fective optical path increases by (n – 1)t. Thus, when the thin
plate is introduced, the central fringe (which corresponds to
equal optical path from S1 and S2) is formed at  point O¢ where

S1O¢ + (n – 1)t = S2O¢

Since [see Eq. (19)]

S2O¢ – S1O¢ ª 
d

D
OO¢

therefore

(n – 1)t = 
d

D
OO¢ (36)

Thus the fringe pattern gets shifted by a distance D which is
given by

D = 
( 1)D n t

d

-

(37)

The above principle enables us to determine the thickness of
extremely thin transparent sheets (such as that of mica) by
measuring the displacement of the central fringe. Further, if
white light is used as a source, the displacement of the cen-
tral fringe is easy to measure.

Example 14.10 In a double-slit interference arrangement
one of the slits is covered by a thin mica sheet whose refractive
index is 1.58. The distances S1S2 and AO (see Fig. 14.20) are 0.1
and 50 cm, respectively. Due to the introduction of the mica sheet
the central fringe gets shifted by 0.2 cm. Determine the thickness of
the mica sheet.

Solution: D = 0.2 cm d = 0.1 cm D = 50 cm

Hence

t = 
( 1)

d

D n

D

-
 = 

0.1 0.2

50 0.58

¥

¥

ª 6.9 ¥ 10–4 cm

Example 14.11 In an experimental arrangement similar to
that discussed in Example 14.10, one finds that by introducing the
mica sheet the central fringe occupies the position that was origi-
nally occupied by the eleventh bright fringe. If the source of light
is a sodium lamp (l = 5893 Å), determine the thickness of the
mica sheet.

S1

A

S2

d

t
P

O¢

O

D n t
d

(   – 1)

D

Fig. 14.20 If a thin transparent sheet (of thickness t) is

introduced in one of the beams, the fringe pat-

tern gets shifted by a distance (n – 1)tD/d.
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Solution: The point O¢ (see Fig. 14.20) corresponds to the elev-
enth bright fringe, thus

S2O¢ – S1O¢ = 11l = (n – 1)t = 0.58 t

14.11 LLOYD’S MIRROR

ARRANGEMENT

In this arrangement, light from a slit S1 is allowed to fall on a
plane mirror at grazing incidence (see Fig. 14.21). The light
directly coming from slit S1 interferes with the light reflected
from the mirror, forming an interference pattern in the region
BC of the screen. One may thus consider slit S1 and its vir-
tual image S2 to form two coherent sources which produce
the interference pattern. Note that at grazing incidence one
really need not have a mirror; even a dielectric surface has
very high reflectivity (see Chap. 23).

As can be seen from Fig. 14.21, the central fringe cannot
be observed on the screen unless the latter is moved to the
position L¢1L¢2, where it touches the end of the reflector. Al-
ternatively, one may introduce a thin mica sheet in the path of
the direct beam so that the central fringe appears in the re-
gion BC. (This is discussed in detail in Prob. 14.2.) Indeed, if
the central fringe is observed with white light, it is found to
be dark. This implies that the reflected beam undergoes a
sudden phase change of p on reflection. Consequently, when
point P on the screen is such that

S2P – S1P = nl n = 0, 1, 2, 3, . . .

we will get minima (i.e., destructive interference). On the
other hand, if

S2P – S1P = 
1

2
n

Ê ˆ+ lÁ ˜Ë ¯

we will get maxima.

In the next section, using the principle of optical reversi-
bility, we will show that if there is an abrupt phase change of
p when light gets reflected by a denser medium, then no such
abrupt phase change occurs when reflection takes place at a
rarer medium.

14.12 PHASE CHANGE ON

REFLECTION

We will now investigate the reflection of light at an interface
between two media, using the principle of optical reversibility.
According to this principle, in the absence of any absorp-
tion, a light ray that is reflected or refracted will retrace its
original path if its direction is reversed.5

Consider a light ray incident on an interface of two media
of refractive indices n1 and n2 as shown in Fig. 14.22(a). Let
the amplitude reflection and transmission coefficients be r1

and t1, respectively. Thus, if the amplitude of the incident ray
is a, then the amplitudes of the reflected and refracted rays
are ar1 and at1, respectively.

We now reverse the rays, and we consider a ray of ampli-
tude at1 incident on medium 1 and a ray of amplitude ar1

incident on medium 2 as shown in Fig. 14.22(b). The ray of
amplitude at1 will give rise to a reflected ray of amplitude
at1r2 and a transmitted ray of amplitude at1t2, where r2 and t2

are the amplitude reflection and transmission coefficients,
respectively, when a ray is incident from medium 2 on me-
dium 1. Similarly, the ray of amplitude ar1 will give rise to a
ray of amplitude ar2

1 and a refracted ray of amplitude ar1t1.
According to the principle of optical reversibility, the two
rays of amplitudes ar2

1 and at1t2 must combine to give the
incident ray of Fig. 14.22(a); thus

ar2
1 + at1t2 = a

5 This principle is a consequence of time reversal invariance according to which processes can run either way in time; for more details
see Refs. 3 and 8.

ar1 ar1

ar1
2

ar t1 1

at t1 2

at r1 2at1 at1

n1

n2

a

(a) (b)

Fig. 14.22 (a) A ray traveling in a medium of refractive in-

dex n
1
 incident on a medium of refractive index

n
2
. (b) Rays of amplitude ar

1
 and at

1
 incident on a

medium of refractive index n
1
.

S2

S1

L¢1
L1

B

C

P

L¢2 L2

Fig. 14.21 The Lloyd’s mirror arrangement.
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or
t1t2 = 1 – r2

1 (38)

Further, the two rays of amplitudes at1r2 and ar1t1 must
cancel each other, i.e.,

at1r2 + ar1t1 = 0

or r2 = – r1 (39)

Since we know from Lloyd’s mirror experiment that an abrupt
phase change of p occurs when light gets reflected by a
denser medium, we may infer from Eq. (39) that no such
abrupt phase change occurs when light gets reflected by a
rarer medium. This is indeed borne out by experiments. Equa-
tions (38) and (39) are known as Stokes’ relations.

In Chap. 24, we will calculate the amplitude reflection and
transmission coefficients for plane waves incident on a di-
electric and also on a conductor. It will be shown that the
coefficients satisfy Stokes’ relations; the phase change on
reflection will also be discussed there.

Summary

� In 1801, Thomas Young devised an ingenious but simple
method to lock the phase relationship between  two sources
of light. The trick lies in the division of a single wave front
into two; these two split wave fronts act as if they emanated
from two sources having a fixed phase relationship, and
therefore when these two waves are allowed to interfere, a
stationary interference pattern is obtained.

� For two coherent point sources, almost straight-line interference
fringes are formed on some planes, and by measuring the fringe
width (which represents the distance between two consecutive
fringes) one can calculate the wavelength.

� On a plane which is normal to the line joining the two coher-
ent point sources, the fringe pattern is circular.

� In Young’s double-slit interference pattern, if we use a white
light source, we get a white central fringe at the point of zero
path difference along with a few colored fringes on both the
sides, the color soon fading off to white. If we now intro-
duce a very thin slice of transparent material (such as mica)
in the path of one of the interfering beams, the fringes get
displaced; and by measuring the displacement of fringes, we
can calculate the thickness of the mica sheet.

Problems

14.1 In Young’s double-hole experiment (see Fig. 14.6), the dis-
tance between the two holes is 0.5 mm, l = 5 ¥ 10–5 cm,
and D = 50 cm. What will be the fringe width?

14.2 Figure 14.23 represents the layout of Lloyd’s mirror experi-
ment. Point S is a point source emitting waves of frequency
6 ¥ 1014 s–1. Points A and B represent the two ends of a

mirror placed horizontally, and LOM represents the screen.
The distances SP, PA, AB, and BO are 1 mm, 5 cm, 5 cm,
and 190 cm, respectively. (a) Determine the position of the
region where the fringes will be visible, and calculate the
number of fringes. (b) Calculate the thickness of a mica
sheet (n = 1.5) which should be introduced in the path of
the direct ray so that the lowest fringe becomes the central
fringe. The velocity of light is 3 ¥ 1010 cm s–1.

[Ans: (a) 2 cm, 40 fringes, (b) 38 mm]

14.3 (a) In Fresnel’s biprism arrangement, show that d =
2(n – 1)aa, where a represents the distance from the
source to the base of the prism (see Fig. 14.19), a is
the angle of the biprism, and n is the refractive index
of the material of the biprism.

(b) In a typical biprism arrangement b/a = 20, and for so-
dium light (l ~

-  5893 Å) one obtains a fringe width of
0.1 cm; here b is the distance between the biprism and
the screen. Assuming n = 1.5, calculate the angle a.

[Ans: ~
-  0.71°]

14.4 In Young’s double-hole experiment, a thin mica sheet
(n = 1.5) is introduced in the path of one of the beams. If
the central fringe gets shifted by 0.2 cm, calculate the thick-
ness of the mica sheet. Assume d = 0.1 cm and D = 50 cm.

14.5 To determine the distance between the slits in the Fresnel
biprism experiment, one puts a convex lens in between the
biprism and the eyepiece. Show that if D > 4f, one will
obtain two positions of the lens where the image of the
slits will be formed at the eyepiece; here f is the focal length
of the convex lens, and D is the distance between the slit
and the eyepiece. If d1 and d2 are the distances between the
images (of the slits) as measured by the eyepiece, then

show that d = 1 2d d . What would happen if D < 4f?

14.6 In Young’s double-hole experiment, interference fringes are
formed using sodium light which predominantly comprises
two wavelengths (5890 and 5896 Å). Obtain the regions on
the screen where the fringe pattern will disappear. You may
assume d = 0.5 mm and D = 100 cm.

S

P A B
0

L

M

Fig. 14.23 For Prob. 14.2.
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14.7 If one carries out Young’s double-hole interference experi-
ment using microwaves of wavelength 3 cm, discuss the
nature of the fringe pattern if d = 0.1, 1, and 4 cm. You
may assume D = 100 cm. Can you use Eq. (21) for the
fringe width?

14.8 In Fresnel’s two-mirror arrangement (see Fig. 14.18) show
that points S, S1, and S2 lie on a circle and S1S2 = 2bq,

where b = MS and q is the angle between the mirrors.

14.9 In the double-hole experiment using white light, consider
two points on the screen, one corresponding to a path differ-
ence of 5000 Å and the other corresponding to a path
difference of 40,000 Å. Find the wavelengths (in the visible
region) which correspond to constructive and destructive
interference. What will be the color of these points?

14.10 (a) Consider a plane which is normal to the line joining
two point coherent sources S1 and S2 as shown in
Fig. 14.14. If S1P – S2P = D, then show that

y = 
1

2D
(d2 – D2)

1
2 [4D2 + 4Dd + (d 2 – D2)]

1
2

ª ( ) ( )
D

d d- D + D

D

where the last expression is valid for D >> d.

(b) For l = 0.5 mm, d = 0.4 mm and D = 20 cm;
S1O – S2O = 800 l. Calculate the value of S1P – S2P for
point P to be the first dark ring and first bright ring.

[Ans: 0.39975 mm, 0.3995 mm]

14.11 In continuation of Prob. 14.10, calculate the radii of the
first two dark rings for (a) D = 20 cm and (b) D = 10 cm.

[Ans: (a) ª 0.71 cm, (b) 1.22 cm]

14.12 In continuation of Prob. 14.10, assume that d = 0.5 mm,
l = 5 ¥ 10 –5 cm, and D = 100 cm. Thus the central (bright)
spot will correspond to n = 1000. Calculate the radii of the
first, second, and third bright rings which will correspond
to n = 999, 998, and 997, respectively.

14.13 Using the expressions for the amplitude reflection and trans-
mission coefficients [see Eqs. (67) to (72) of Chap. 24],
show that they satisfy Stokes’ relations.

14.14 Assume a plane wave incident normally on a plane contain-
ing two holes separated by a distance d. If we place a
convex lens behind the slits, show that the fringe width, as
observed on the focal plane of the lens, will be f l/d, where
f is the focal length of the lens.

14.15 In Prob. 14.14, show that if the plane (containing the holes)
lies in the front focal plane of the lens, then the interference
pattern will consist of exactly parallel straight lines. However,
if the plane does not lie on the front focal plane, the fringe
pattern will be hyperbolas.

14.16 In Young’s double-hole experiment, calculate I/Imax where I
represents the intensity at a point where the path differ-
ence is l/5.
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15.1 INTRODUCTION

In Chap. 14 we discussed the interference pattern produced
by division of a wave front; for example, light coming out of
a pinhole was allowed to fall on two holes, and spherical
waves emanating from these two holes produced the interfer-
ence pattern. In this chapter we will consider the formation

Following a method suggested by Fizeau in 1868, Professor Michelson has produced what is
perhaps the most ingenious and sensational instrument in the service of astronomy—the
interferometer.

—Sir James Jeans, The Universe Around Us, Cambridge University Press, 1930

INTERFERENCE BY

DIVISION OF AMPLITUDE

Chapter

Fifteen

Important Milestones
1665 In his treatise Micrographia, the British physicist Robert Hooke described his observations of the colors

produced in flakes of mica, soap bubbles, and films of oil on water. He recognized that the color produced

in mica flakes is related to their thickness but was unable to establish any definite relationship between

thickness and color. Hooke supported a wave theory of light.

1704 “Newton’s rings” were first observed by Boyle and Hooke—they are named after Newton because he had given

an explanation using the corpuscular model which was later found to be unsatisfactory.

1802 Thomas Young gave a satisfactory explanation of Newton’s rings based on wave theory.

1881 A. A. Michelson invented the Michelson interferometer. He was awarded the 1907 Nobel Prize in Physics “for

his optical precision instruments and the spectroscopic and metrological investigations carried out with their

aid.” Michelson was America’s first Nobel Prize winner in Science, and during the presentation ceremony of

the Nobel Prize, the president of the Royal Swedish Academy of Sciences said, “Professor Michelson, your

interferometer has rendered it possible to obtain a nonmaterial standard of length possessed of a degree of

accuracy never hitherto attained. By its means we are enabled to ensure that the prototype of the meter has

remained unaltered in length, and to restore it with absolute infallibility, supposing it were to get lost. . . . ”

1887 A. A. Michelson and E.W. Morley carried out the famous Michelson–Morley experiment using the Michelson

interferometer to detect the motion of the Earth with respect to the “Luminiferous Aether.”

of interference pattern by division of amplitude; for example,
if a plane wave falls on a thin film, then the wave reflected
from the upper surface interferes with the wave reflected from
the lower surface. Such studies have many practical applica-
tions and also explain phenomena such as the formation of
beautiful colors produced by a soap film illuminated by white
light.

gha80482_ch15_195-220.PMD 1/19/2009, 8:05 PM195



Optics196
�

15.2 INTERFERENCE BY A PLANE

PARALLEL FILM WHEN

ILLUMINATED BY A PLANE

WAVE

If a plane wave is incident normally on a thin film of uni-
form thickness d (see Fig. 15.1), then the waves reflected
from the upper surface interfere with the waves reflected
from the lower surface; in this section we will study this
interference pattern; why the film should be thin is ex-
plained in Sec. 15.7. To observe the interference pattern
without obstructing the incident beam, we use a partially re-
flecting plate G as shown in Fig. 15.1. Such an arrangement
also enables us to eliminate the direct beam from reaching
the photographic plate P (or the eye). The plane wave may
be produced by placing an illuminated pinhole at the focal
point of a corrected lens; alternatively, it may just be a beam
coming out of a laser.

Let the solid and the dashed lines in Fig. 15.2 represent
the positions of the crests1 (at any particular instant of time)
corresponding to the waves reflected from the upper and
lower surfaces of the film, respectively; in general, the wave
reflected from the lower surface of the film will suffer multiple
reflections—the effect of such multiple reflections is neglected
(see Chap. 16).  Clearly, the wave reflected from the lower sur-
face of the film traverses an additional optical path of 2nd,

where n represents the refractive index of the material of the
film. Further, if the film is placed in air, then the wave reflected
from the upper surface of the film will undergo a sudden
change in phase of p (see Sec. 14.12), and as such the condi-
tions for destructive or constructive interference will be
given by

 2nd = ml destructive interference (1a)

 = ( )1
2m + l constructive interference (1b)

where m = 0, 1, 2, . . .  and l represents the free space
wavelength.

Thus, if we place a photographic plate at P (see Fig. 15.1),
then the plate will receive uniform illumination; it will be dark
when 2nd = ml and bright when 2nd = ( )1

2m + l , for
m = 0, 1, 2, … . Instead of placing the photographic plate, if
we try to view the film (from the top) with the naked eye, then
the film will appear to be uniformly illuminated.

The amplitudes of the waves reflected from the upper and
lower surfaces will, in general, be slightly different; and as
such the interference will not be completely destructive.
However, with appropriate choice of the refractive indices of
media II and III, the two amplitudes can be made very nearly
equal (see Example 15.1).

For an air film between two glass plates (see Fig. 15.3) no
phase change will occur on reflection at the glass-air inter-
face; but a phase change of p will occur on reflection
at the air-glass interface and the conditions for maxima
and minima will remain the same. On the other hand, if

1  Notice that the distance between consecutive crests in the film is less than the corresponding distance in air. This is so because the
effective wavelength in a medium of refractive index n is l/n.

d

G

P

n

Fig. 15.1 The normal incidence of a parallel beam of light

on a thin film of refractive index n and thickness d.

G denotes a partially reflecting plate and P repre-

sents a photographic plate.

I

II

n

III

d

Fig. 15.2 The solid and the dashed lines represent the

crests of the waves reflected from the upper sur-

face and from the lower surface of the thin film.

Notice that the distance between the consecutive

crests inside the film is less than the correspond-

ing distance in medium I.
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medium I is crown glass (n = 1.52), medium II is an oil of refrac-
tive index 1.60, and medium III is flint glass (n = 1.66), then a
phase change of p will occur at both the reflections and the
conditions for maxima and minima will be

2nd = ( )1
2m + l minima (2a)

= ml maxima (2b)

In general, whenever the refractive index of medium II lies
in between the refractive indices of medium I and medium III,
then the conditions of maxima and minima are given by Eqs. (2a)
and (2b).

We next consider the oblique incidence of the plane wave
on the thin film (see Fig. 15.4). Once again, the wave reflected
from the upper surface of the film interferes with the wave
reflected from the lower surface of the film. The latter
traverses an additional optical path D, which is given by (see
Fig. 15.5)

D = n2(BD + DF) – n1BC (3)

where C is the foot of the perpendicular from point F on BG.
We will show in the next section that

D = 2n2d cos q¢ (4)

where q¢ is the angle of refraction.
For a film placed in air, a phase change of p will occur when

reflection takes place at point B, and as such, the conditions
of destructive and constructive interference are given by

D = 2n2d cos q ¢ = ml minima (5a)

= ( )1
2m + l maxima (5b)

If we place a photographic plate at P (see Fig. 15.5), it will
receive uniform illumination; if we try to view the film with
the naked eye (at position E — see Fig. 15.4), then only light
rays reflected from a small position QR of the film will reach
the eye. The image formed at the retina will be dark or bright
depending on the value of D [(see Eq. (5)].

15.3 THE COSINE LAW

In this section we will show that the wave reflected from the
lower surface of the film traverses an additional optical path
which is given by the

D [= n2(BD + DF) – n1BC] = 2n2d cos q¢ (6)

Let q and q¢ denote the angles of incidence and refraction,
respectively. We drop a perpendicular BJ from point B on the
lower surface LL¢ and extend BJ and FD to point B¢ where
they meet (see Fig. 15.5). Clearly,

–JBD = –BDN = –NDF = q¢

where N is the foot of the perpendicular drawn from point D
on BF. Now

–BDJ = 
2

p
 – q¢

and –B¢DJ = p – 
2

È ˘pÊ ˆ- q + q + q¢ ¢ ¢Í ˙Á ˜Ë ¯Î ˚
 = 

2

p
- q¢

Thus BD = BD¢ and BJ = JB¢ = d

Glass

Glass

Air

Fig. 15.3 Thin film of air formed between two glass plates.

d
QR

E

Fig. 15.4 The oblique incidence of a plane wave on a thin

film. The solid and dashed lines denote the bound-

ary of the wave reflected from the upper surface

and from the lower surface of the film. The eye E

receives the light reflected from the region QR.

d
B

L J

B

n2

n1

D

K
F

N
C

G

L

P
x

θ′

θ

′

′

Fig. 15.5 Calculation of the optical path difference between

the waves reflected from the upper surface of the

film and from the lower surface of the film. The

solid and the dashed lines represent the corre-

sponding positions of the crests. P denotes a

photographic plate.
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or BD + DF = B¢D + DF = B¢F

Hence D = n2B¢F – n1BC (7)

Now –CFB = –CBX = q

BC = BF sin q = 
sin

KF

q¢
sin q = 2

1

n

n
KF (8)

where K is the foot of the perpendicular from B on B¢F. Sub-
stituting the above expression for BC in Eq. (7), we get

D = n2B¢F – n2KF = n2B¢K

or D = 2n2d cos q¢ (9)

which is known as the cosine law.

15.4 NONREFLECTING FILMS

One of the important applications of the thin film interfer-
ence phenomenon discussed in Sec. 15.2 lies in reducing the
reflectivity of lens surfaces; we discuss this in this section.
However, for a quantitative understanding of the pheno-
menon, we will have to assume that when a light beam
(propagating in a medium of refractive index n1) is incident
normally on a dielectric of refractive index n2, then the ampli-
tudes of the reflected and the transmitted beams are related
to that of the incident beam through the following relations
[see Fig. 15.6(a)]:

ar = 1 2

1 2
i

n n
a

n n

-

+
(10a)

at = 1

1 2

2
i

n
a

n n+
(10b)

where ai, ar, and at are the amplitudes of the incident beam,
reflected beam, and transmitted beam, respectively. Notice
that when n2 > n1, amplitude ar is negative, showing that
when a reflection occurs at a denser medium, a phase change
of p occurs. The amplitude reflection and transmission coeffi-
cients r and t are, therefore, given by

r = 1 2

1 2

n n

n n

-

+

(11a)

t = 1

1 2

2n

n n+

(11b)

Equations (10) and (11) can be derived using electromagnetic
theory; see Eqs. (67) to 72 (with θ1 = θ2 = 0) in Sec.24.2. If r¢ and
t¢ are the reflection and transmission coefficients where light
propagating in a medium of refractive index n2 is incident on a
medium of refractive index n1 [see Fig. 15.6(b)], then

r¢ = 
n n
n n

2 1

2 1

-

+
 = –r (12)

t¢ = 
2 2

1 2

n
n n+

(13)

and

1 – tt¢ = 1 – 
4 1 2

1 2
2

n n

n n( )+

 = 
n n
n n

1 2

1 2

2
-

+

F
HG

I
KJ

 = r2 (14)

Equations (13) and (14) represent Stokes’ relations (see
Sec. 14.12).

We will now discuss the application of the thin film interfer-
ence phenomenon in reducing the reflectivity of lens surfaces.
We all know that in many optical instruments (such as a tele-
scope) there are many interfaces, and the loss of intensity due
to reflections can be severe. For example, for near-normal inci-
dence, the reflectivity of the crown glass surface in air is

2
1
1

n

n

Ê ˆ-
Á ˜+Ë ¯

= 

2
1.5 1

0.04
1.5 1

Ê ˆ-
-Á ˜+Ë ¯
�

i.e., 4% of the incident light is reflected. For a dense flint
glass n ~

-  1.67, and about 6% of light is reflected. Thus, if we
have a large number of surfaces, the losses at the interfaces
can be considerable. To reduce these losses, lens surfaces
are often coated with a l/4n thick nonreflecting film; the re-
fractive index of the film is less than that of the lens. For
example, glass (n = 1.5) may be coated with a MgF2 film (see
Fig. 15.7), and the film thickness d should be such that2

2nf d = 
1

2
l

2 Since the refractive index of the nonreflecting film is greater than that of air and less than that of the glass, abrupt phase change
of p occurs at both the reflections. Consequently, when 2nd cos q¢ = ml, there will be constructive interference and when

2nd cos q¢ = ( )1
2m + l , there will be destructive interference.

ai ain1 n2
n2 n1

rai r ai

tai t ai′

′

Fig. 15.6 (a) If a plane wave of amplitude ai, propagating in

a medium of refractive index n
1
, is incident nor-

mally on a medium of refractive index n
2
, then the

amplitudes of the reflected and the transmitted

beams are ar and at, respectively. Similarly,

(b) corresponds to the case when the beam (propa-

gating in a medium of refractive index n
2
) is

incident on a medium of refractive index n
1
.
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or d = 
4 fn

l
(15)

where we have assumed near-normal incidence [i.e., cos-q¢ @
1; see Eq. (9)] and nf represents the refractive index of the film;
for MgF2, nf = 1.38. Thus, if we assume l to be 5.0 ¥ 10–5 cm
(which roughly corresponds to the center of the visible
spectrum), we will have

d = 
5 0 10

4 138

5.
.

¥

¥

- cm
 ª 0.9 ¥ 10–5 cm

Figure 15.8 shows a comparison between an eyeglass
lens without antireflective coating (top) and a lens with
antireflective coating (bottom). Note the reflection of the
photographer in the top lens and the tinted reflection in the
bottom. We note the following points:

1. Let na, nf , and ng be the refractive indices of air, non-
reflecting film, and glass, respectively. If a is the
amplitude of the incident wave, then the amplitudes of
the reflected and refracted waves (the corresponding
rays shown as 2 and 3 in Fig. 15.7) are

f a

f a

n n

n n

-

-

+

a and 
2 a

f a

n

n n+

a

respectively (we have assumed near-normal incidence).
The amplitudes of the waves corresponding to rays 4
and 5 are

2 g fa

f a g f

n nn
a

n n n n

-

-

+ +

and
22 g f fa

f a g f f a

n n nn
a

n n n n n n

-

-

+ + +

d =
λ

4nf
(3)

(1) (2) (5)

(4)

x

Nonreflecting film

Air ( = 1)na

Glass ( )ng

n nf g(< )

x = 0

x d=

Fig. 15.7 If a film (having a thickness of l/4nf and having

refractive index less than that of the glass) is coated

on the glass, then waves reflected from the upper

surface of the film destructively interfere with the

waves reflected from the lower surface of the film.

Such a film is known as a nonreflecting film.

Fig. 15.8 Comparison between an eyeglass lens without

antireflective coating (top) and a lens with anti-

reflective coating (bottom). Note the reflection

of the photographer in the top lens and the

tinted reflection in the bottom. The photograph

was taken by Justin Lebar; used with permission

from Mr. Lebar. A color photograph appears in

the insert at the back of the book.

respectively. Now, for complete destructive interfer-
ence, the waves corresponding to rays 2 and 5 should
have the same amplitude, i.e.,

–
f a

f a

n n
a

n n

-

+

= 
22 g f fa

f a g f f a

n n nn
a

n n n n n n

-

-

+ + +
(16)

or  
f a

f a

n n

n n

-

+
= 

g f

g f

n n

n n

-

+
(17)

where we have used the fact that 24 /( )a f f an n n n+ is
very nearly equal to unity; for na = 1 and nf = 1.4,

2

4

( )
a f

f a

n n

n n+

ª 0.97

On simplification we obtain

nf = a gn n (18)

If the first medium is air, then na = 1, and with ng = 1.66
(dense flint glass) nf should be 1.29, and when ng = 1.5
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(light crown glass), nf should be 1.22. We note that the
refractive indices of magnesium fluoride and cryolite
are 1.38 and 1.36, respectively. Now for a /4nl thick film,
the reflectivity will be about

2

f a g f

f a g f

n n n n

n n n n

Ê ˆ- -
-Á ˜+ +Ë ¯

(19)

Thus, for na = 1, nf = 1.38, and ng = 1.5, the reflectivity
will be about 1.3%. In the absence of the film, the
reflectivity would have been about 4%. The reduction
of reflectivity is much more pronounced for the dense
flint glass. This technique of reducing the reflectivity is
known as blooming.

2. The film is nonreflecting only for a particular value of
l; in Eq. (15) l was assumed to be 5000 Å. For a poly-
chromatic light, the film’s nonreflecting property will be
falling off when l is greater or less than the above
value. However, the effect is not serious. For example,
for the MgF2 film on crown glass at 5000 Å, the
reflectivity rises by about 0.5% as one goes to either
the red or the violet end of the visible spectrum. In
Sec. 15.4.2 we will discuss why we should use a /4nl

thick film and not 3 /4nl  or 5 /4nl  thick film, although
the latter will also give destructive interference for the
chosen wavelength.

3. As in the case of Young’s double-slit experiment there is
no loss of energy; there is merely a redistribution of en-
ergy. The energy appears mostly in the transmitted beam.

15.4.1 Mathematical Expressions for the

Reflected Waves

We will carry out a bit of mathematical analysis for the
antireflecting film shown in Fig. 15.7. We assume that ng > nf > na

and that the x axis is pointing downward with x = 0 at the
upper surface of the film. The displacement associated with
the incident wave (propagating in the +x direction) is given by

y1 = a cos (w t – kax); ka = an
c

w
(20)

Thus at x = 0, y1 = a cos wt. The reflected wave (shown as 2)
is therefore

y2 = –a| r1 | cos (wt + kax) (21)

where

| r1 | = 
n n

n n
f a

f a

-

+
(22)

is a positive quantity. The minus sign in Eq. (21) represents
the sudden phase change of p at x = 0. The transmitted wave
(shown as 3) is given by

y3 = at1 cos (wt – kf x) kf = 
c

w
nf (23)

where

t1 = 
2 a

f a

n

n n+

(24)

Thus the displacement at x = d (associated with wave 3) is

y3 = at1 cos (wt – kf d) (25)

Therefore, the wave reflected from the lower surface (wave 4,
which would be propagating in the negative x direction) is
given by

y4 = –at1| r2 | cos [wt + kf (x – 2d)]

| r2 | = 
n n

n n
g f

g f

-

+
(26)

where the phase factor is adjusted such that at x = +d we
obtain the phase given by Eq. (25). Wave 5 is therefore
given by

y5 = –at1| r2 |t2 cos (wt + kax – 2kf d ) (27)

Assuming the amplitudes of y2 and y5 to be approxi-
mately the same, destructive interference (between y2 and y5)
occurs if

2kf d = p, 3p, . . . (28)

or d = 
3 5

, ,
4 4 4

f f fl l l
, . . . lf = 

fn

l
(29)

15.4.2 Rigorous Expressions for

Reflectivity

In the above section we considered two-beam interference and
neglected multiple reflections at the lower and upper sur-
faces. The effect of multiple reflections will be discussed in
Sec. 16.2; however, such an effect is automatically taken into
account when we solve Maxwell’s equations incorporating
the appropriate boundary conditions. In Sec. 24.4 we will
carry out such an analysis and will show that the reflectivity
(at normal incidence) of a dielectric film of the type shown in
Fig. 15.7 is given by [see Eq. (97) of Chap. 24]3

R = 
2 2

1 2 1 2
2 2

1 2 1 2

2 cos 2

1 2 cos 2

r r r r

r r r r

+ + d

+ + d

(30)

3 Equation (30) is actually valid even for oblique incidence with r1, r2, and d defined appropriately (see Sec. 24.4).
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where

r1 = 
n n

n n
a f

a f

-

+

and r2 = 
n n

n n
f g

f g

-

+

(31)

represent the Fresnel reflection coefficients at the first and
second interface, respectively, and

d = 
2p

l
nf d (32)

d is the thickness of the film, and, as before, l is the free
space wavelength. Elementary differentiation shows us that
dR/dd = 0 when sin 2d = 0. Indeed for r1r2 > 0,

cos 2d = –1 (minima) (33)

represents the condition for minimum reflectivity, and when
this condition is satisfied, the reflectivity is given by

R = 
r r

r r
1 2

1 2

2

1
-

-

F
HG

I
KJ

 = 
n n n

n n n

a g f

a g f

-

+

F

H
G

I

K
J

2

2

2

(34)

where we have used Eq. (31). Thus the film is nonreflecting
when

nf = n na g

consistent with Eq. (18). Now, the condition cos 2d = –1
implies

2d = 
4

fn d
p

l
= (2m + 1)p m = 0, 1, 2, . . . (35)

or d = 
3 5

, ,
4 4 4f f fn n n

l l l
, . . . (36)

In Fig. 15.9 we have plotted the reflectivity as a function of d
for

na = 1 ng = 1.5 (37)

and

nf = n na g
~ .- 1225

As expected, R is maximum (ª 4%) when d = 0, p, 2p, . . . , and
the film is antireflecting (R = 0) when d = p /2, 3p /2, . . . ,
implying d = l/4nf , 3l /4nf , . . . . As an example, suppose that
we wish to make the film antireflecting at l = 6000 Å; then
from Eq. (26) the thickness of the film could be

1224.7 Å or 3674.2 Å or 6123.7 Å, . . .

In Fig. 15.9(b) we have plotted the reflectivity as a function
of wavelength for d = 1224.7 and 3674.2 Å. As can be seen,
for d = l/4nf , the minimum is broad and the reflectivity small
for the entire range of the visible spectrum. Thus for
antireflecting coating, the smallest film thickness is always

preferred. For na = 1, ng = 1.5, and nf = 1.38, the reflectivity
[according to Eq. (34)] comes out to be 1.4%, which is quite
close to the result obtained by using the approximate theory
described earlier [see Eq. (19)].

15.5 HIGH REFLECTIVITY BY

THIN FILM DEPOSITION

Another important application of the thin film interference
phenomenon is the converse of the procedure just dis-
cussed; i.e., the glass surface is coated by a thin film of
suitable material to increase the reflectivity. The film thick-
ness is again l/4nf , where nf represents the refractive index
of the film; however, the film is such that its refractive index
is greater than that of the glass. Consequently, an abrupt
phase change of p occurs only at the air-film interface, and
the beams reflected from the air-film interface and the film-
glass interface constructively interfere. For example, if we

0.04

0.02

0 2π
δ

3π 4ππ

(a)

(b)
R

R

0.04

0.02

0
2000 4000

λ (in Angstroms)

6000 8000

d = 3673.5 Å
d = 1224.5 Å

Fig. 15.9 (a) Variation of the reflectivity of a film as a

function of d (= 2pnf d /l) for na = 1, ng = 1.5, and

nf = n na g
~− 1.225 . Notice that the reflectivity is

zero for d = p/2, 3p/2, 5p/2, . . . . (b) Wavelength

variation of the reflectivity for a film of thick-

ness 1224.5 Å (dashed curve) and of thickness

3673.5 Å (solid curve) with na = 1, ng = 1.5, and

nf = n na g  ª 1.225. Notice that both films are

non-reflecting at 6000 Å.
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consider a film of refractive index 2.37 (zinc sulfide), then the
reflectivity is (2.37 – 1)2/(2.37 + 1)2, i.e., about 16%. In the
presence of a glass surface of refractive index 1.5 (light
crown glass), the reflectivity will become (see the analysis in
Sec. 15.4)

2

2

2.37 1 4 1 2.37 2.37 1.5

2.37 1 2.37 1.5(3.37)

È ˘- ¥ ¥ -
- - ¥Í ˙

+ +Î ˚

which gives about 35%. Note that if the difference between
the refractive indices of the film and the glass is increased,
then the reflectivity will also increase.

We can again use Eq. (30) to calculate the high reflectivity
obtained by thin film deposition. Indeed when na < nf and
nf > ng, r1r2 < 0 [(see Eq. (31)] and

cos 2d = –1 (maxima) (38)

represents the condition for maximum reflectivity. The maxi-
mum value of the reflectivity is given by

R = 
r r

r r
1 2

1 2

2

1
-

-

F
HG

I
KJ

(39)

For na = 1.0, nf = 2.37, and ng = 1.5, we have

r1
~
-  –0.407 r2 ~

-  0.225

Elementary calculations show that the reflectivity is about
33% which compares well with the value of 35% obtained by
using the approximate theory described earlier.

15.6 REFLECTION BY A PERIODIC

STRUCTURE4

In Sec. 15.4 we showed that a film of thickness l/4nf , where
l is the free space wavelength and nf is the film refractive
index (which lies between the refractive indices of the two
surrounding media), acts as an antireflection layer. This is
due to the destructive interference occurring between the waves
reflected from the top and bottom interfaces. In Sec. 15.5 we
showed that if the refractive index of the film was smaller (or
greater) than those of both the surrounding media, then in
such a case, in addition to the phase difference due to the
additional path traveled by the wave reflected from the lower
interface, there would be an extra phase difference of p be-
tween the two reflected waves. Thus, in such a case a film of
thickness l/4nf would increase the reflectivity rather than
reduce it.

We now consider a medium consisting of alternate layers
of high and low refractive indices of n0 + Dn and n0 – Dn of
equal thickness d [see Fig. 15.10(a)]. Such a medium is called

Λ = 2d

n n0 + Δ

n n0 – Δ

n n0 + Δ

N

n n0 – Δ

N
2 + 11 2 3 4

(b)

Λ = 2d

(a)

d

Fig. 15.10 (a) Reflection from a periodic structure consisting of alternate layers of refractive indices n0 + Dn

and n0 – Dn, each of thickness d = lB/4n0. (b) If we choose a wavelength lB + Dl such that reflections

from layer 1 and layer N/2 + 1 are out of phase, reflections from layer 2 and layer N/2 + 2 are out

of phase, etc., and finally reflections from layers N/2 and N are out of phase, then the reflectivity

will be zero.

4 This section has been very kindly written by Prof. K. Thyagarajan.
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a periodic medium, and the spatial period of the refractive
index variation is given by

L = 2d

Now if Dn << n0 and if we choose the thickness of each
layer to be

d = 
0 0 04 4( ) 4( )n n n n n

l l l
ª ª

+ D - D

then the reflections arising out of individual reflections from
the various interfaces will all be in phase and should result in
a strong reflection. Thus for strong reflection at a chosen
(free space) wavelength lB, the period of the refractive index
variation should be

L = 2d = 
02

B

n

l
(40)

This is referred to as the Bragg condition and is very simi-
lar to the Bragg diffraction of X-rays from various atomic
layers (see Sec. 18.9). Equation (40) corresponds to the
Bragg condition for normal incidence. The quantity lB is often
referred to as the Bragg wavelength.

As an example, we consider a periodic medium compris-
ing alternate layers of refractive indices 1.51 and 1.49; i.e.,
n0 = 1.50 and Dn = 0.01. If we require a strong reflectivity at
l = lB = 5500 Å, then the required periodicity is

L = 
5500
2 15¥ .

Å ª 1833 Å

If the periodic medium is made up of 100 layers (i.e., 50
periods), then we may approximate the total resultant ampli-
tude to be

100 ¥ 
Dn
n0

ª 
1

15.

where Dn/n0 is the amplitude reflection coefficient at each
interface. The above estimation is only an approximation
which is valid when N Dn/n0 << 1, i.e., for small reflectivi-
ties; here we are just trying to obtain a crude estimate of the
total reflectivity. Thus the reflectivity at 5500 Å should be

R ª 1
15

2

.
F
HG
I
KJ

fi R ª 44% (41)

Figure 15.11 shows an actual calculated value of the
reflectivity as a function of wavelength (using rigorous elec-
tromagnetic theory—see Ref. 6) for a periodic medium with
n0 = 1.5, Dn = 0.01, and d = lB/4n0, and consisting of 100 layers.
Note that the actual calculation predicts a reflectivity of about
33% which compares well with our crude estimate of 44%!

One notices from Fig. 15.11 that as we move away from
the central wavelength (lB = 2n0L), the reflectivity of the
periodic medium falls off sharply. One can indeed obtain an

approximate expression for the wavelength deviation Dl from
lB which will produce a zero reflectivity. To do this, we first
note that at lB (= 2n0L), the waves reflected from each of the
N individual layers are all in phase, leading to a strong reflec-
tion. If we move away from lB, then the individual waves
reflected from the various layers will not be in phase, and
thus the reflectivity reduces. If we choose a wavelength lB + Dl

such that the reflections from layer 1 and layer /2 1N + , from
layers 2 and /2 2N + , and so on, up to the reflections from
layers /2N and N are out of phase [see Fig. 15.10(b)], then the
reflectivity will be zero. For reflection from each of the top N/2
layers, there is a reflection from a corresponding lower N/2
layer which is out of phase. (The argument is very similar to
that used for obtaining the direction of minima in the diffrac-
tion pattern of a slit—see Sec. 18.2 and Fig. 18.5). Thus when
we move from lB to lB + Dl, the waves reflected from the
first layer and ( /2 1)N + st layer should have an additional
phase difference of p. Thus,

0 0
2 2

2 ( ) 2B B

N N
n n

p L p L
-

l l + Dl
 = p (42)

where the first term on the LHS is simply the phase differ-

ence at lB between reflections 1 and /2 1N + due to the extra
path traveled by the latter wave, and the second term is that
at lB + Dl. Assuming Dl << lB , we have

0
2

2

2B

n NLp
Dl

l
= p

0
5250 5500

λ(Å)

5750

0.1

R
ef

le
ct

iv
ity

0.2

0.3

Fig. 15.11 The exact variation of reflectivity with wave-

length of a 100-layer periodic structure with

n
0
 = 1.5, Dn = 0.01, and L = 2d = 1833 Å. The peak

reflectivity appears at l = lB = 4n
0
d. (Adapted

from Ref. 6.)
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or
B

Dl

l
 ª 

0

B

n N

l

L
= 

02
B

n L

l
(43)

where we used Eq. (40) and L = NL/2 is the total thickness of the
periodic medium. For the example shown in Fig. 15.11, we have

Dl ª 110 Å (44)

which compares very well with the actual value in
Fig. 15.11. Thus if the incident wave is polychromatic (such
as white light), the reflected light may have a high degree of
monochromaticity. This is indeed the principle used in white
light holography.

The periodic medium discussed above finds wide applications
in high-reflectivity multilayer coatings, volume holography, fiber
Bragg gratings, etc.

15.6.1 Fiber Bragg Gratings

A periodic structure discussed above has a very important
application in the working of a fiber Bragg grating (usually
abbreviated FBG). We will discuss the optical fiber in Chap. 27;
it may suffice here to mention that an optical fiber is a cylin-
drical structure consisting of a central dielectric core cladded
by a material of slightly lower refractive index (see Fig. 27.7).
The guidance of the light beam takes place because of total
internal reflections at the core-cladding interface (see Chaps.
27 and 29 for details). The cladding material is pure silica,
and the core is usually silica doped with germanium; the dop-
ing results in a slightly higher refractive index. Now, when a
germanium-doped silica core fiber is exposed to ultraviolet
radiation (with wavelength around 0.24 mm), the refractive index
of the germanium-doped region increases; this is due to the
phenomenon known as photosensitivity which was discov-
ered by Kenneth Hill in 1974. The refractive index increase
can be as large as 0.001 in the core of the fiber. If the fiber is
exposed to a pair of interfering UV beams (see Fig. 15.12),
then we obtain an interference pattern similar to that shown
in Fig.14.11(b). In regions of constructive interference, the

refractive index increases. Since the fringe width depends on
the angle between the interfering beams, the period of the
grating can be controlled by choosing the angle between the
interfering beams (see Example 14.5). Thus exposing a germanium-
doped silica fiber to the interference pattern formed between
two UV beams leads to the formation of a periodic refractive
index variation in the core of the fiber.

We consider a polychromatic beam incident on the fiber
as shown in Fig. 15.13. As discussed above, the reflection
from the periodic structure will add up in phase when

l = lB = 2Ln0 Bragg condition (45)
where L represents the period of the refractive index variation
(see Fig. 15.12). Figure 15.13(a) shows the frequency spectrum
of the incident polychromatic beam, and the corresponding
spectrum of the reflected beam is shown in Fig. 15.13(b).
Figure 15.13(c) shows a typical frequency spectrum of the
reflected wave; solid line shows the calculated spectrum
[using Eq.(3) of App. C], and the dashed curve shows the
experimentally measured values. For a silica fiber n0 ª 1.46, and
for the periodic structure to be reflecting at l = 1550 nm we
must have

L = 
02

B

n

l
 = 

1550
2 1

nm
× .46

 ª 0.531 mm (46)

The corresponding peak reflectivity is given by

Rp = tanh2

B

nLÊ ˆp D
Á ˜lË ¯

ª 0.855 (47)

Λ μ~ 0.5 m

UV beam

Fig. 15.12 A fiber Bragg grating (usually abbreviated FBG)

is produced by allowing two beams to produce

an interference pattern.

Refractive index grating

Cladding

Core

λ
(a) (b)

R
ef

le
ct
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ity

1550.6
1550.8

1551.0
1551.2

1551.4

Wavelength (nm)

(c)

Fig. 15.13 (a) The broad spectrum of the light wave incident

on the FBG shown in (b). (c) The spectrum of the

reflected wave; solid line shows the calculated

spectrum; and the dots show the experimentally

measured values of the FBG fabricated at CGCRI,

Kolkata. (Figure courtesy Dr. S. Bhadra and Dr. S.

Bandyopadhyay of CGCRI, Kolkata.)
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where we have assumed Dn ª 4 ¥ 10–4 and L = 2 mm. The
corresponding bandwidth is given by (see Appendix C)

0

B

Dl

l
ª 

2

0

1
2

B

B

nL

n L

Ê ˆl D
+ Á ˜lË ¯

(48)

giving  Dl
0
 ª 0.5 nm. As can be seen from the above equations,

that the bandwidth (i.e., the monochromaticity of the reflected
wave) and the peak reflectivity are determined by Dn and L.

Sensor 1

Sensor 2

Splice
housing box

Fig. 15.14 FBG-based temperature sensor system on 400 kV power conductor at Subhashgram substation (near
Kolkata) of Powergrid Corporation of India. Photo courtesy of Dr. Kamal Dasgupta and Dr. Tarun
Gangopadhyay, CGCRI, Kolkata. Color photographs appear in the insert at the back of the book.

Fig. 15.15 The substation of Powergrid Corporation of India
(near Kolkata, India) where the FBG temperature
sensors have been installed. In the photograph, the
author is with Dr. Tarun Gangopadhyay and
Dr. Kamal Dasgupta of CGCRI, Kolkata. A color
photograph appears in the insert at the back of
the book. Photo courtesy of Dr. Kamal Dasgupta
and Dr. Tarun Gangopadhyay, CGCRI, Kolkata.

Because of the extremely small bandwidth of the reflected
spectrum, FBGs are being extensively used as sensors. For
example, a small increase in the temperature will increase the
period of the grating which will result in an increase of the
peak wavelength. Because silica is a dielectric material,
FBG-based temperature sensors become particularly useful in
places where there is high voltage. Figure 15.14 shows the
FBG-based temperature sensor system on a 400 kV power
conductor at an electric power substation (see Fig. 15.15).
Figure 15.16 shows a typical reflection spectrum and the
temperature recorded from the two FBG sensors shown in

Fig. 15.16 A typical reflection spectrum from the two FBG
sensors shown in Fig. 15.14. (Photo courtesy of
Dr. Kamal Dasgupta and Dr. Tarun Gangopadhyay,
CGCRI, Kolkata.)

gha80482_ch15_195-220.PMD 2/9/2009, 7:43 PM205



Optics206
�

1522.150 nm. Each grating has a length of 1 cm. Thus for the
first grating with lB = 1522.030 nm, we get

L = 
02

B

n

l
 = 

1522 03
2 1

.
.46

nm
×

 ª 0.5212 mm

Further, assuming L ª 0.01 m and n0 ª 1.46, Eq. (48) gives
(one has to be careful with the units!)

0 240
1522
.

ª 
26

6

1.522 10 0.01
1

1.46 0.01 1.522 10

n-

-

Ê ˆ¥ D ¥
+ Á ˜¥ ¥Ë ¯

giving Dn ª 1.7 ¥ 10–4.

15.7 INTERFERENCE BY A PLANE

PARALLEL FILM WHEN

ILLUMINATED BY A POINT

SOURCE

In Sec. 15.2 we considered the incidence of a parallel beam of
light on a thin film and discussed the interference produced
by the waves reflected from the upper and lower surfaces of
the film. We will now consider the illumination of the film by
a point source of light. Once again, to observe the film with-
out obstructing the incident beam, we will use a partially
reflecting plate G as shown in Fig. 15.19. However, to study
the interference pattern, we may assume the point source S
to be right above the film (see Fig. 15.20) such that the dis-
tance SK (in Fig. 15.20) is equal to SA + AK (in Fig. 15.19); KA
(in Fig. 15.19) and KS (in Fig. 15.20) are normal to the film.

A

G

P

S

K

S

d

′

Fig. 15.19 Light emanating from a point source S is allowed

to fall on a thin film of thickness d. G is a partially

reflecting plate, and P represents the photographic

plate. On the photographic plate, circular fringes

are obtained.

1 3 4 5 6

1520 nm 1565 nm
nm/division)(4.5λ (nm)

R
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Fig. 15.18 The actual spectrum of the reflected wave from a

fiber on which six gratings have been written, each

having a slightly different period. The wavelengths

at which peak reflectivity occurs are 1522.030 nm,

1529.915 nm, 1537.950 nm, 1545.955 nm, 1553.990 nm,

and 1561.895 nm. The gratings were fabricated at

CGCRI, Kolkata. (Figure courtesy of Dr. Kamal

Dasgupta of CGCRI, Kolkata.)

Fig. 15.14; for the two sensors, peak reflectivity occurs at
1544.6438 and 1545.8789 nm, respectively.

One of the main advantages of the FBG sensor is the fact
that several gratings can be written on a single fiber, as
shown in Fig. 15.17. Each grating has a different period and
therefore a specific wavelength at which peak reflectivity
occurs. If such a distributed sensor is put inside a bridge, one
can measure the strain corresponding to the particular region.
In fact for many newly constructed bridges, FBG sensors are
put at various places. Figure 15.18 shows the actual spectrum
of the reflected light beam from a fiber on which six gratings
have been written, each having a slightly different period.
The wavelengths at which peak reflectivity occur are

1522.030 nm with 3 dB bandwidth of 0.240 nm
1529.915 nm with 3 dB bandwidth of 0.230 nm
1537.950 nm with 3 dB bandwidth of 0.240 nm
1545.955 nm with 3 dB bandwidth of 0.230 nm
1553.990 nm with 3 dB bandwidth of 0.240 nm
1561.895 nm with 3 dB bandwidth of 0.230 nm

The 3 dB bandwidth means that, for example, for the first
grating, the reflectivity will fall by 50% at l ª 1521.910 and

(a)

λ

(b)

λ1 λ2 λ3 λ4

Fig. 15.17 (a) The broad spectrum of the light wave incident

on a fiber on which  four gratings have been writ-

ten, as shown in (b). Each grating has a slightly

different period because of which each will have

peak reflectivity at a different wavelength.
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Obviously, the waves reflected from the upper surface of the
film will appear to emanate from point the S¢ where

KS¢ = KS (49)

(see Fig. 15.20). Further, simple geometric considerations will
show that the waves reflected from the lower surface appear
to emanate from point S≤, where

KS ≤ ~
-  KS + 2d/n2 (50)

(see Fig. 15.20). Equation (50) is valid only for near-normal
incidence; this is a consequence of the fact that the image of
a point source produced by a plane refracting surface is not
perfect. Thus, at least for near-normal incidence, the interfer-
ence pattern produced in region I (see Fig. 15.20) will be very
nearly the same as that produced by two point coherent
sources S¢ and S≤ (which is the double-hole experiment of
Young discussed in the previous chapter). This is not identi-
cal to Young’s pattern because S≤ is not a perfect image of
point S. For large angles of incidence, the waves reflected
from the lower surface will appear to emanate from a point
which will be displaced from S≤. Thus, if we put a photographic

plate P (see Fig. 15.19), we will, in general, obtain interference
fringes. The intensity of an arbitrary point Q (in Fig. 15.20)
will be determined by the following relations:

D = m +
F
H

I
K

1
2

l maxima (51a)

= ml minima (51b)
where

D = [n1SF + n2(FG + GH) + n1HQ] – [n1(SA + AQ)] (52)

represents the optical path difference and we have assumed
that in one of the reflections, an abrupt phase change of p

occurs; n1 and n2 are the refractive indices of media I and II,
respectively. The above conditions are rigorously correct;
i.e., valid even for large angles of incidence. Further, it can be
shown that for near-normal incidence,

D ~
-  2n2d cos-q¢ (53)

A more rigorous calculation shows (see Ref. 7)

D ~
-  2n2d cos q¢ 

2
01

2 2 2
2 1

sin cos
1

2sin

n

n n

È ˘q - qq q Ê ˆ-Í ˙Á ˜Ë ¯- qÎ ˚
(54)

where the angles q, q0, and q¢ are defined in Fig. 15.20.
Now, if we put a photographic plate [parallel to the surface

of the film (see Fig. 15.20)], we will obtain dark and bright con-
centric rings (see Example 14.6).5 On the other hand, if we
view the film with the naked eye then, for a given position of
the eye, we will be able to see only a very small portion of
the film. From examples, with the eye at the position E and
the point source at S, only a portion of the film around the
point B will be visible [see Fig. 15.21(a)], and this point will
appear to be dark or bright as the optical path difference

D = n1SQ + n2(QA + AB) – n1SB

is ml or ( )1
2m + l. Further, using a method similar to the one

described in Sec. 15.3, we obtain

D ~
-  2n2d cos-q¢ (55)

Instead of looking at the film, if the eye is focused at infinity,
then the interference is between the rays which are derived from
a single incident ray by reflection from the upper and lower sur-
faces of the film [see Fig. 15.21(b)]. For example, rays PM and QR,
which focus at the point O of the retina, are derived from the
single ray SP, and rays P¢M¢ and Q¢R¢, which focus at a different
point O¢ on the retina, are derived from ray SP¢. Since the angles
of refraction q¢1 and q¢2 (for these two sets of rays) will be differ-
ent, points O and O¢ will, in general, not have the same intensity.

5  If the point source is taken far away, then it can be easily seen that the rings will spread out, and in the limit of the point source being
taken to infinity (i.e., incidence of a parallel beam), the photographic plate will be uniformly illuminated.

K
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n2

S

S

G

A H

Q
I

II
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F

θ

θ
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2 /d n2

′

′

′′

Fig. 15.20 If light emanating from a point source S is inci-

dent on a thin film, then the interference pattern

produced in region I is approximately same as

would have been produced by two coherent point

sources S¢ and S≤ (separated by a distance 2d/n2,

where d represents the thickness of the film and n
2

represents the refractive index of the film).
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We next consider the illumination by an extended source of
light S (see Fig. 15.22). Such an extended source may be pro-
duced by illuminating a ground glass plate by a sodium lamp.
Each point on the extended source will produce its own interfer-
ence pattern on the photographic plate P; these will be
displaced with respect to one another. Consequently, no defi-
nite fringe pattern will appear on the photographic plate.
However, if we view the film with the naked eye, rays from all
points of the film will reach the eye. If the eye is focused at in-
finity, then parallel light coming in a particular direction reaching
the eye would have originated from nearby points of the ex-
tended source, and the intensity produced on the retina would
depend on the value of 2nd cos-q¢ which is the same for all
parallel rays such as S1Q, S2Q¢, etc. (see Fig. 15.22). Rays ema-
nating in a different direction (such as S1R, S2R¢, etc.) would
correspond to a different value of q¢ and would focus at a different
point on the retina. Since q¢ is constant over the circumference
of a cone (whose axis is normal to the film and whose vertex is
at the eye), the eye will see dark and bright concentric rings,

with the center lying along the direction q¢ = 0. Such fringes,
produced by a film of uniform thickness, are known as Haidinger
fringes. They are also known as fringes of equal inclination
because the changes in the optical path are due to the changes
in the direction of incidence and hence in the value of q¢. In
Sec. 15.10 we will discuss the Michelson interferometer where
such fringes are observed.

15.8 INTERFERENCE BY A FILM

WITH TWO NONPARALLEL

REFLECTING SURFACES

Untill now we have assumed the film to be of uniform thick-
ness. We will now discuss the interference pattern produced
by a film of varying thickness. Such a film may be produced
by a wedge which consists of two nonparallel plane surfaces
[see Fig. 15.23(a)].

We first consider a parallel beam of light incident normally
on the upper surface of the film [see Fig. 15.23(a)]. In
Fig. 15.23(b) the successive positions of the crests (at a par-
ticular instant of time) reflected from the upper surface and
from the lower surface of the film are shown by solid and
dashed lines, respectively. Obviously, a photographic plate
P will record straight-line interference fringes which will be
parallel to the edge of the wedge (the edge is the line passing
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S
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Fig. 15.21 Light emanating from a point source S is inci-

dent on a thin film; (a) if the film is viewed by

the naked eye E then the point B will appear to

be dark if the optical path [{n
1
 SQ + n

2
 (QA +

AB)}– n
1
 SB] is ml, and bright if the optical path

is ( )+ lm
1

2
. (b) If the eye is focused for infinity

then it receives parallel rays from different di-

rections corresponding to different values of the

angles of refraction q¢ (and hence different values

of the optical path difference).

θ′

G

E

Q

R
Q

R

P
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S2

S

′

′
′

Fig. 15.22 Light emanating from an extended source illu-

minates a thin film. G represents the partially

reflecting plate, and P represents the photo-

graphic plate. The eye E is focused at infinity.
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through point O and perpendicular to the plane of the paper).
The dots in the figure indicate the positions of maxima. To find
the distance between two consecutive fringes on the film, we

note that for point A to be bright6

n(LM + MA) = ( )1
2m + l m = 0, 1, 2, . . . (56)

[see Fig. 15.23(a)]. However, when the wedge angle f is very
small (which is indeed the case for practical systems),

LM + MA ª 2AA¢

where AA¢ represents the thickness of the film at A. Thus the
condition for point A to be bright is

2nAA¢ ª ( )1
2m + l (57)

Similarly, the next bright fringe will occur at point B where

2nBB¢ ª 
3

λ
2

m
Ê ˆ+Á ˜Ë ¯

(58)

Thus 2n(BB¢ – AA¢ ) ª l

or XB¢ ª l /2n (59)

But XB¢ = A¢X tan f

or A¢X = b ª 
2n

l
f

(60)

where b represents the fringe width and we have assumed f
to be small. Such fringes are commonly referred to as fringes of
equal thickness.

On the other hand, for a point source, the fringe pattern
will be similar to the parallel film case; i.e., for near-normal
incidence, the pattern will be very nearly the same as that
produced by two sources S¢ and S≤ (Fig. 15.24). (Notice that

O φ
A B C

φO

M A
B

X

AL

G

B C

P

n

P

(a)

(b)

′
′

Fig. 15.23 (a) A parallel beam of light incident on a

wedge. (b) The solid and the dashed lines rep-

resent the positions of the crests (at a particular

instant of time) corresponding to the waves re-

flected from the upper surface and from the

lower surface respectively. The maxima will

correspond to the intersection of the solid and

dashed lines. The fringes will be perpendicular

to the plane of the paper.

6 We are assuming here that the beam undergoes a sudden phase change of p when it gets reflected by the upper surface. The expression
for the fringe width [Eq. (60)] is, however, independent of this condition.

S

Q

E

RNCDA

n

B L

S

S ′′

′

Fig. 15.24 Light from a point source illuminating a wedge.

E represents the lens of the eye.
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point S≤ is not vertically below S¢; this is a consequence of
the fact that the two surfaces of the film are not parallel.) The
intensity of an arbitrary point Q will be determined by the
following equations:

[SA + n(AB + BC) + CQ] – (SD + DQ)

= 
( )1

2 maxima

minima

m

m

Ï + lÔ
Ì

lÔÓ
(61)

If we view the film with the naked eye (say, at position
E—see Fig. 15.24), then only a small portion of the film
(around the point R) will be visible and the point R will be
bright or dark as the optical path difference [SN + n(NL +
LR)] – SR is ( )1

2m + l  or ml, respectively. One can similarly
discuss the case when the eye is focused for infinity.

We next consider the illumination by an extended source
S as shown in Fig. 15.25. Since the extended source can be
assumed to consist of a large number of independent point
sources, each point source will produce its own pattern on
a photographic plate P; consequently, no definite fringe

pattern will be observed.7 However, if we view the film with a
camera (or with the naked eye) and if the camera is focused
on the upper surface of the film, then a particular point on the
film will appear dark or bright depending on whether 2nd is
ml or ( )1

2m + l  (see Fig. 15.25)—we are assuming near-normal
incidence. The interference at point Q may occur due to light
coming from different points on the extended source; but if
the incidence is near normal, then the intensity at point Q will
be determined entirely by the thickness of the film there.
Similarly, the intensity at point Q¢ will be determined by the
thickness of the film at Q¢; however, point Q¢ will be
focused at a different point B¢ on the retina of the eye. The
fringes formed by a wedge will be straight lines parallel to
the edge of the film OO¢ (Fig. 15.26). It should be emphasized
that all along we are assuming near-normal incidence and that
the wedge angle is extremely small. These assumptions are
indeed valid for practical systems.

Note that if we focus the camera on a plane XX¢, which is
slightly above the film, then no definite interference pattern
will be observed. This follows from the fact that the light
waves reaching the point K from S2 undergo reflection at
points D2 and F2, and the light waves reaching K from S1

undergo reflection at points D1 and F1. Since the thickness
of the film is not uniform, the waves reaching K from S1 may
produce brightness, whereas the waves reaching from S2 may
produce darkness. Thus, to view the fringes, one must focus the
camera on the upper surface of the film, and in this sense,
the fringes are said to be localized. It is left as an exercise for
the reader to verify that if the camera is focused for infinity,
no definite interference pattern will be recorded.

Until now we have assumed the film to be “thin”; the question
now arises as to how thin the film should be. To obtain an inter-
ference pattern, there should be a definite phase relationship

B

P

E

G

X
K S

B

X

QQ

S2

S1

D2

F2F1

D1

I

II

III

′

′

′

Fig. 15.25 Localized interference fringes produced by an ex-

tended source S. Fringes will be seen only when

the eye is focused on the upper surface of the film.

7 There is, however, one exception to this. When the extended source is taken to a very large distance, then the light rays reaching the
plate G will be approximately parallel and an interference pattern (of low contrast) will be formed on plate P. The same phenomenon
will also occur if, instead of moving the extended source, we take the plate P far away from the wedge.

φ
O

O

B
A

AB

′
′

′

Fig. 15.26 The fringes formed by a wedge will be parallel

to the edge OO ¢.
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between the waves reflected from the upper surface of the film
and from the lower surface of the film. Thus the path differ-
ence D (= 2nd cos-q¢) should be small compared to the
coherence length.8 For example, if we are using the D1 line of
an ordinary sodium lamp (l = 5.890 ¥ 10–5 cm), the coherence
length is of the order of 1 cm, and for fringes to be visible,
D should be much less than 1 mm. There is no particular value
of D for which the fringes disappear; but as the value of D
increases, the contrast of the fringes becomes poorer. A laser
beam has a very high coherence length, and fringes can be
visible even for path differences much greater than 1 m. On
the other hand, if we use a white light source, no fringes will
be visible for D >~  2 ¥ 10–4 cm (see Sec. 14.9).

Interference also occurs in region III (see Fig. 15.27) be-
tween the directly transmitted beam and the beam which
comes out of the film after suffering two reflections, first from
the lower surface and then from the upper surface of the film.
However, the two amplitudes will be very different, and the
fringes will have very poor contrast (see Example 15.1).

Example 15.1 Consider a film of refractive index 1.36 in air.
Assuming near-normal incidence (q ª 0), show that whereas the
amplitudes of the reflected rays 1 and 5 (Fig. 15.27) are nearly
equal, the amplitudes of the transmitted rays 4 and 7 are quite dif-
ferent. (This is the reason why the fringes observed in transmission
have very poor contrast.)

Solution: Let the amplitude of the incident ray be a, and let the
amplitudes of rays 1, 2, 3, . . .  be denoted by a1, a2, . . .  etc. Using
Eqs. (10a) and (10b), we get

a1 = 
1

1

n
a

n

-

+

  = –
0.36

2.36
a  ª – 0.153a

a2 = 
2

1
a

n+

  = 
2

2.36
a  ª 0.847a

a3 = 2
1

1

n
a

n

-

+

 = 0 36
2 36
.
.

 ¥ 0.874a ª 0.129a

a5 = 3
2

1

n
a

n +

 = 
2 1 36

2 36
× .
.

 ¥ 0.129a ª 0.149a

a4 = 2
2

1

n
a

n+

 = 2 1 36
2 36
× .
.

 ¥ 0.847a ª 0.977a

a7 = 6
2

1

n
a

n +

 = 3
2 1

1 1

n n
a

n n

-
◊

+ +

 = 32

2 1.36 .36

(2.36)
a

¥ ¥

ª 0.023a

We first note that the sign of a5 is opposite to that of a1 which
is a consequence of the fact that a sudden phase change of p occurs
when the ray gets reflected at point B. Further the magnitude of a5

is nearly equal to that of a1. On the other hand, | a7 | << | a4 |. This
is the reason why the interference fringes formed in transmission
have poor contrast.

15.9 COLORS OF THIN FILMS

We saw in Sec. 15.8 that if light from an extended monochro-
matic source (such as a sodium lamp) is incident normally on
a wedge, then equally spaced dark and bright fringes will be
observed. The distance between two consecutive bright (or
dark) fringes is determined by the wedge angle, the wave-
length of light, and the refractive index of the film. If we use a
polychromatic source (such as an incandescent lamp), we
will observe colored fringes. Further, if instead of a wedge
we have a film of arbitrarily varying thickness, we will again
observe fringes, each fringe representing the locus of con-
stant film thickness (see Fig. 15.28). This is indeed what we
see when sunlight falls on a soap bubble or on a thin film of
oil on water. If the optical path difference between the waves
reflected from the upper surface of the film and from the lower
surface of the film exceeds a few wavelengths, the interference
pattern will be washed out due to the overlapping of interfer-
ence patterns of many colors and no fringes will be seen (see

8 Coherence length is defined in Sec. 17.1. If a source remains coherent for a time t, then the coherence length L will be about ctc, where
c is the speed of light in free space. Thus for tc ~ 10–10 s, L ~ 3 cm.

(1)

(4) (7)

(6)

(3)
(2)

(5)

I

II

III

Glass ( )ng

Air ( = 1)na

n nf g(< )

Nonreflecting film

Fig. 15.27 In general, whereas the amplitudes of rays 1 and 5

are nearly the same, the amplitudes of 2 and 6

are quite different.
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Sec. 14.9). Thus, to see the fringes with white light, the film
should not be more than few wavelengths thick.

15.10 NEWTON’S RINGS

If we place a planoconvex lens on a plane glass surface, a thin
film of air is formed between the curved surface of the lens (AOB)
and the plane glass plate (POQ)—see Fig. 15.29. The thickness of
the air film is zero at the point of contact O and increases as one
moves away from the point of contact. If we allow monochromatic
light (such as from a sodium lamp) to fall on the surface of the
lens, then the light reflected from the surface AOB interferes with
the light reflected from the surface POQ. For near-normal inci-
dence (and considering points very close to the point of contact)
the optical path difference between the two waves is very nearly
equal to 2nt, where n is the refractive index of the film and t is the
thickness of the film. Thus, whenever the thickness of the air film
satisfies the condition

2nt = ( )1
2m + l m = 0, 1, 2, . . . (62)

we will have maxima. Similarly the condition

2nt = ml (63)

will correspond to minima. Since the convex side of the lens
is a spherical surface, the thickness of the air film will be
constant over a circle (whose center will be at O), and we will
obtain concentric dark and bright rings. These rings are
known as Newton’s rings.9 Note that to observe the fringes,

the microscope (or the eye) has to be focused on the upper
surface of the film (see the discussion in Sec. 15.7).

The radii of various rings can be easily calculated. As men-
tioned earlier, the thickness of the air film will be constant over
a circle whose center is at the point of contact O. Let the ra-
dius of the mth dark ring be rm, and if t is the thickness of the
air film where the mth dark ring appears to be formed, then

r2
m = t(2R – t) (64)

where R represents the radius of curvature of the convex
surface of the lens (see Fig. 15.30). Now R ª 100 cm and

Fig. 15.28 A typical fringe pattern produced by an air film

formed between two glass surfaces (which are not

optically flat) and placed in contact with each

other. Whenever the thickness of the air film is

ml/2, we obtain a dark fringe; and when the

thickness is ( )+ lm
1

2
/2, we obtain a bright fringe.

Each fringe describes a focus of equal thickness of

the film. (Photograph courtesy Prof. R. S. Sirohi.)

9 Boyle and Hooke had independently observed the fringes earlier, but Newton was the first to measure their radii and make an analysis.
The proper explanation was given by Thomas Young. Also see Milestones in the beginning of this chapter.

M

SG

A

P O

B

Q

Fig. 15.29 An arrangement for observing Newton’s rings.

Light from an extended source S is allowed to

fall on a thin film formed between the plano-

convex lens AOB and the plane glass plate POQ.

M represents a traveling microscope.

C2
–

R
   

 t

P Q

t

rm

Fig. 15.30 r
m

 represents the radius of the mth dark ring;

the thickness of the air film (where the mth

dark ring is formed) is t.
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Thus the radii of the first, second, and third dark rings are ap-
proximately 0.0774, 0.110, and 0.134 cm, respectively. Notice that
the spacing between the second and third dark rings is smaller
than the spacing between the first and second dark rings.

Equation (63) predicts that the central spot should be
dark. Normally, with the presence of minute dust particles the
point of contact is really not perfect, and the central spot
may not be perfectly dark. Thus while carrying out the ex-
periment, one should measure the radii of the mth and the
(m+p)th ring (p ª 10) and take the difference in the squares
of the radii (r 2

m+p – r 2
m = plR), which is indeed independent

of m. Usually, the diameter can be more accurately measured,
and in terms of the diameters the wavelength is given by

l = 
D D

pR
m p m+

-

2 2

4
(68)

The radius of curvature can be accurately measured
with the help of a spherometer, and therefore by carefully
measuring the diameters of dark (or bright) rings one can
experimentally determine the wavelength.

If a liquid of refractive index n is introduced between the
lens and the glass plate, the radii of the dark rings are given by

λ
=m

m R
r

n (69)

Equation (69) may be compared with Eq. (66). Further, if the
refractive indices of the material of the lens and of the glass
plate are different and if the refractive index of the liquid lies in
between the two values, the central spot will be bright as in
Fig. 15.31 and Eq. (69) gives the radii of the bright rings.

An important practical application of the principle
involved in the Newton rings experiment lies in the determina-
tion of the optical flatness of a glass plate. Consider a glass
surface placed on another surface whose flatness is known. If
a monochromatic light beam is allowed to fall on this combina-
tion and the reflected light is viewed by a microscope, then, in
general, dark and bright patches will be seen (Fig. 15.28). The
space between the two glass surfaces forms an air film of vary-
ing thickness, and whenever this thickness becomes ml/2, we
see a dark spot; and when this thickness becomes m +

1
2d i l/2,

we see a bright spot. Two consecutive dark fringes will be
separated by the air film whose thickness will differ by l/2.
Consequently, by measuring the distance between consecu-
tive dark and bright fringes, one can calculate the optical
flatness of a glass plate.

When we observe Newton’s rings by using a white light
source, we will have a situation similar to that discussed in
Sec. 14.9; i.e., we will see only a few colored fringes. However,
if we put a red filter in front of the naked eye, the fringe pattern
(corresponding to the red color) will suddenly appear. If we

t <~  10–3 cm. Thus we may neglect t in comparison to 2R to
obtain

r2
m ª 2Rt

or 2t ª 
2
mr

R
(65)

Substituting this in Eq. (63), we get

r2
m ª mlR ; m = 0, 1, 2, . . . (66)

which implies that the radii of the rings vary as the square
root of natural numbers. Thus the rings will become close to
each other as the radius increases (see Fig. 15.31). Between
the two dark rings there will be a bright ring whose radius

will be m +
1
2  lR.

Newton’s rings can be easily observed in the laboratory by
using an apparatus as shown in Fig. 15.29. Light from an ex-
tended source (emitting almost monochromatic light, such as a
sodium lamp) is allowed to fall on a glass plate which partially
reflects the beam. This reflected beam falls on the planoconvex
lens–glass plate arrangement, and Newton’s rings can be easily
observed by viewing directly or through a traveling microscope
M. Actually, one really need not have a planoconvex lens; the
rings will be visible even if a biconvex lens is used.

Typically for l = 6 ¥ 10–5 cm and R = 100 cm

rm = 0.0774 m cm (67)

Fig. 15.31 Newton’s rings as observed in reflection.

The rings observed with transmitted light

are of much poorer contrast. (Photograph

courtesy Dr. G. Bose.)
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replace the red filter by a green filter in front of the eye, the
fringe pattern corresponding to the green color will appear;
this is similar to the discussion in Sec. 14.9.

Example 15.2 Consider the formation of Newton’s rings by
monochromatic light of l = 6.4 ¥ 10–5 cm. Assume the point of
contact to be perfect. Now slowly raise the lens vertically above the
plate. As the lens moves gradually away from the plate, discuss the
ring pattern as seen through the microscope. Assume the radius of
the convex surface to be 100 cm.

Solution: Since the point of contact is perfect, the central spot
will be dark, the first dark ring will form at P where PA = l/2, and the

radius of this ring OA will be Rl  (= 0.080 cm); see Fig. 15.32(a).

Similarly, the radius of the second dark ring will be OB = 2 Rl

(= 0.113 cm). If we now raise the lens by /4l (= 1.6 ¥ 10–5 cm),
then 2t corresponding to the central spot would be l/2 and instead of
the dark spot at the center we will now have a bright spot. The radii
of the first and the second dark rings will be

OA1 = 
1/ 2

1
λ

2
R

Ê ˆ
Á ˜Ë ¯

 = 0.0566 cm

and OB1 = 
1/ 2

3

2
R

Ê ˆlÁ ˜Ë ¯
 = 0.098 cm

respectively [see Fig. 15.32(b)]. If the lens is further moved by l/4
(see Fig. 15.32(c)], then the first dark ring collapses to the center
and the central spot will be dark. The ring which was originally at Q
now shifts to Q2; similarly the ring at R [Fig. 15.32(a)] collapses to
R2 [Fig. 15.32(c)].

Thus, as the lens is moved upward, the rings collapse to the center.
Hence if we can measure the distance by which the lens is moved up-
ward and also count the number of dark spots that have collapsed to the
center, we can determine the wavelength. For example, in the present
case, if the lens is moved by 6.4 ¥ 10–3 cm, 200 rings will collapse to the
center. If one carries out this experiment, it will be observed that the
200th dark ring will slowly converge to the center, and when the lens has
moved by exactly 6.4 ¥ 10–3 cm, it has exactly come to the center.

Example 15.3 Consider the formation of Newton’s rings
when two closely spaced wavelengths are present; for example, the
D1 and D2 lines of sodium (l1 = 5890 Å and l2 = 5896 Å). What
will be the effect of the presence of these two wavelengths as the
lens is gradually moved away from the plate? What will happen if
the sodium lamp is replaced by a white light source?

Solution: We will first assume that the lens is in contact with the
plane glass plate [see Fig. 15.32(a)]. Since the two wavelengths are very
close, the bright and dark rings of l1 superpose on the bright and dark
rings of l2, respectively. This can be easily seen by calculating the radii
of the ninth dark and bright ring for each wavelength.

R C1 1 = 3 /2λ

RC = 3 /2λ

Q B1 1= λ

R C R C RC2 2 1 1= = = 3 /2λ

QB = λ

P A1 1= /2λ

Q B Q B QB2 2 1 1= = = λ

PA = /2λ

JO = /4λ

P O2 = /2λ

P

P1

Q2

Q

Q1

R2

R

R1

A

A1

B2

O

O

O

J

P2

B

B1

C2

C

C1

(a)

(b)

(c)

Fig. 15.32 The rings collapse to the center as the lens is moved away from the plate.
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For l = 5.890 ¥ 10–5 cm,

Radius of ninth bright ring = ( )1
29 R+ l

= 9 5 5 890 10 1005. .× × ×−

= 0.236548 cm

Radius of ninth dark ring = 9 Rl

= 0.230239 cm

Similarly, for l = 5.896 ¥ 10–5 cm,

Radius of ninth bright ring = 9 5 5 896 10 1005. .× × ×−

= 0.236669 cm
and

Radius of ninth dark ring = 9 5 896 10 3× × −.

= 0.230356 cm

Thus the rings almost exactly superpose on each other. However, for
large values of m, the two ring patterns may produce uniform illumina-
tion. To be more specific, when the air-film thickness t is such that

2t = ml1 = ( )1
22m + l

or
2 1

2 2t t
-

l l
= 1

2
(70)

then around that point the fringe system will completely disappear;
i.e., the bright ring for wavelength l1 will fall on the dark ring for
wavelength l2, and conversely. Thus the contrast will be zero, and
no fringe pattern will be visible. Rewriting Eq. (70), we get

1 2

1 2

2t
l - l

l l
= 

1
2

or 2t = 
5 2

1 2
8

1 1 (5.893 10 )

2 2 6 10

-

-

l l ¥
ª

Dl ¥

ª 3 ¥ 10–2 cm

This will correspond to m ª 500.
We will see the effect of the same phenomenon if we slowly

raise the convex lens in the upward direction as we had considered
in Example 15.2. Let t0 be the vertical distance through which the
lens has been raised (see Fig. 15.33), and let t0 be such that it sat-
isfies the following equation:

0 0

2 1

2 2t t
-

l l
= 1

2

or t0 = 1 2

1 24( )

l l

l - l

Thus, if point J (see Fig. 15.33) corresponds to a dark spot for l1, then
it will correspond to a bright spot for l2, and conversely. Further, the
nearby dark rings for l1 will almost fall at the same place as the bright
rings for l2, and the interference pattern will be washed out. Thus view-
ing from a microscope, we will not be able to see any ring pattern. Now,
if the lens is further moved upward by a distance t0, then we will have

1 1

2 1

2 2t t
-

l l
= 1 (71)

where t1 = 2t0. Consequently, if point J¢ corresponds to a dark spot
for l1, then it will also correspond to a dark spot for l2. The fringe
pattern will reappear but now with a slightly weaker contrast (see
also Chap. 17).

In this way if we continue to move the lens upward, the fringe
system will reappear every time the lens is moved up by a distance
2t0 ( )1

1 22 /ª l l Dl . This principle is used in a Michelson interfer-
ometer to measure the small wavelength difference Dl between two
closely spaced lines (such as the D1 and D2 lines of sodium).

For complete disappearance of the fringe pattern the intensities
of the two lines l1 and l2 should be the same.

Another corollary of the above experiment consists in finding
the change in the interference pattern (as we move up the convex
lens) when we consider a single line of wavelength l, but which
has a width of Dl. Thus we should assume all wavelengths
between l and l + Dl to exist. By finding the approximate height
at which the fringes disappear, we can calculate Dl. The coherence
length L is related to Dl through the following relation (see
Sec. 17.2):

L ~
2

l

Dl
(72)

J

O

O

J

t t1 0= 2

t0 =
λ λ

λ λ
1 2

1 24( – )

′

Fig. 15.33 In the Newton rings experiment, if the light

consists of two closely spaced wavelengths l
1

and l
2
 (such as the D

1
 and D

2
 lines of sodium),

then if the lens is separated by a distance t
0

( )1 2= / 4( )l l l - l
1 2

, interference fringes will be

washed out. The fringes will reappear when the

distance is 2t
0
.
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15.11 THE MICHELSON

INTERFEROMETER

A schematic diagram of the Michelson interferometer is
shown in Fig. 15.34; S represents a light source (which may
be a sodium lamp) and L represents a ground glass plate so
that an extended source of almost uniform intensity is
formed. G1 is a beam splitter; i.e., a beam incident on G1 gets
partially reflected and partially transmitted. M1 and M2 are
good-quality plane mirrors having very high reflectivity. One
of the mirrors (usually M2) is fixed and the other (usually M1)
is capable of moving away from or toward the glass plate G1

along an accurately machined track by means of a screw. In
the normal adjustment of the interferometer, mirrors M1 and M2

are perpendicular to each other and G1 is at 45∞ to the mirror.
Waves emanating from a point P get partially reflected and

partially transmitted by the beam splitter G1, and the two result-
ing beams are made to interfere in the following manner: The
reflected wave (shown as 1 in Fig. 15.34) undergoes a further
reflection at M1, and this reflected wave gets (partially) transmit-
ted through G1; this is shown as 5 in the figure. The transmitted
wave (shown as 2 in Fig. 15.34) gets reflected by M2 and gets
(partially) reflected by G1 and results in the wave shown as 6 in
the figure. Waves 5 and 6 interfere in a manner exactly similar to
that shown in Fig. 15.22. This can be easily  seen from the fact
that if x1 and x2 are the distances of mirrors M1 and M2 from the
plate G1, then to the eye the waves emanating from point P will
appear to get reflected by two parallel mirrors (M1 and M2¢ —
see Fig. 15.34) separated by a distance x1 ~ x2. As discussed in
Sec. 15.7, if we use an extended source, then no definite interfer-
ence pattern will be obtained on a photographic plate placed at
the position of the eye. Instead, if we have a camera focused for
infinity, then on the focal plane we will obtain circular fringes,

each circle corresponding to a definite value of q (see Figs. 15.22
and 15.35); the circular fringes will look like the ones shown in
Fig. 15.36. Now, if the beam splitter is just a simple glass plate,
the beam reflected from mirror M2 will undergo an abrupt phase
change of p (when getting reflected by the beam splitter), and
since the extra path that one of the beams will traverse will be
2(x1 ~ x2), the condition for destructive interference will be

2d cos q = ml

where m = 0, 1, 2, 3, . . . .  and

d = x1 ~ x2

and the angle q represents the angle that the rays make
with the axis (which is normal to the mirrors as shown in
Fig. 15.35). Similarly, the condition for a bright ring is

2d cos q = ( )1
2m + l

P

P1

P2

θ

M2
M1

2d

d

Fig. 15.35 A schematic of the formation of circular fringes (Adapted from Ref. 7).

M2

S

P

L

M 2

M1

G1

(4)

(2)

(1)(3)

(5) (6)

x2

x2 x1

′

Fig. 15.34 Schematic of the Michelson interferometer.
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For example, for l = 6 ¥ 10–5 cm if d = 0.3 mm, the angles at
which the dark rings will occur are

1cos
500

m
-

q =

= 0∞, 2.56∞, 3.62∞, 4.44∞, 5.13∞, 5.73∞, 6.28∞, . . .

corresponding to m  = 1000, 999, 998, 997, 996, 995, . . . . Thus
the central dark ring in Fig. 15.36(a) corresponds to m = 1000,
the first dark ring corresponds to m = 999, etc. If we now re-
duce the separation between the two mirrors so that
d = 0.15 mm, the angles at which the dark rings occur will be
[see Fig.15.36(b)]

 1cos
500

m
-

q =  = 0∞, 3.62∞, 5.13∞, 6.28∞, 7.25∞, . . .

where the angles now correspond to m = 500, 499, 498, 497,
496, 495, . . . . Thus as we start reducing the value of d, the
fringes will appear to collapse at the center and the fringes

become less closely placed. Note that if d is now slightly
decreased, say, from 0.15 to 0.14985 mm, then

2d = 499.5l

the dark central spot in Fig.15.36(b) (corresponding to m =
500) would disappear and the central fringe will become
bright. Thus, as d decreases, the fringe pattern tends to col-
lapse toward the center. (Conversely, if d is increased, the
fringe pattern will expand.) Indeed, if N fringes collapse to
the center as mirror M1 moves by a distance d0, then we must
have

2d = ml

2(d – d0) = (m – N)l

where we have set q¢ = 0 because we are looking at the cen-
tral fringe. Thus

l = 
2 0d
N

(73)

d = 0.3 mm

d = 0.14985 mm

d = 0.15 mm

d = 0.0 mm

(a)

(c)

(b)

(d)

Fig. 15.36 Computer-generated interference pattern produced by a Michelson interferometer.
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This provides us with a method for the measurement of the
wavelength. For example, in a typical experiment, if  1000
fringes collapse to the center as the mirror is moved through
a distance of 2.90 ¥ 10–2 cm, then

l = 5800 Å

The above method was used by Michelson for the stan-
dardization of the meter. He found that the red cadmium line
(l = 6438.4696 Å) is one of the ideal monochromatic sources,
and as such this wavelength was used as a reference for the
standardization of the meter. In fact he defined the meter by
the following relation:

1 m = 1,553,164.13 red cadmium wavelengths

the accuracy is almost 1 part in 109.
In an actual Michelson interferometer, the beam splitter G1

consists of a plate (which may be about 1
2  cm thick), the

back surface of which is partially silvered, and the reflections
occur at the back surface as shown in Fig. 15.37. It is immedi-
ately obvious that beam 5 traverses the glass plate three
times, and to compensate for this additional path, one intro-
duces a “compensating plate” G2 which is exactly of the
same thickness as G1. The compensating plate is not really
necessary for a monochromatic source because the additional
path 2(n – 1)t introduced by G1 can be compensated by mov-
ing mirror M1 by a distance (n – 1)t, where n is the refractive
index of the material of the glass plate G1.

However, for a white light source it is not possible to simul-
taneously satisfy the zero path-difference condition for all
wavelengths, since the refractive index depends on wavelength.
For example, for l = 6560 and 4861 Å, the refractive index of
crown glass is 1.5244 and 1.5330, respectively. If we are using a
0.5 cm thick crown glass plate as G1, then M1 should be moved
by 0.2622 cm for l = 6560 Å and by 0.2665 cm for l = 4861 Å,
the difference between the two positions corresponding to over
100 wavelengths! Thus, if we have a continuous range of wave-
lengths from 4861 to 6560 Å, the path difference between any
pair of interfering rays (see Fig. 15.34) will vary so rapidly with
wavelength that we would observe only a uniform white light
illumination. However, in the presence of the compensating
plate G2, we would observe a few colored fringes around the
point corresponding to zero path difference (see Sec. 14.9).

The Michelson interferometer can also be used in the mea-
surement of two closely spaced wavelengths. Let us assume
that we have a sodium lamp which emits predominantly two
closely spaced wavelengths 5890 and 5896 Å. The interfer-
ometer is first set corresponding to the zero path
difference.10 Near d = 0, both the fringe patterns will overlap.
If mirror M1 is moved away from (or toward) plate G1 through
a distance d, then the maxima corresponding to the wave-
length l1 will not, in general, occur at the same angle as l2.
Indeed, if the distance d is such that

1 2

2 2d d
-

l l
= 1

2
(74)

and if 2d cos-q¢ = ml1, then 2d cos q¢ = ( )1
22 λm + . Thus, the

maxima of l1 will fall on the minima of l2, and conversely, and the
fringe system will disappear. It can be easily seen that if

1 2

2 2d d
-

l l
= 1 (75)

then interference pattern will again reappear. In general, if

1 2

2 2d d
-

l l

is 1/2, 3/2, 5/2, . . . , we will have disappearance of the fringe
pattern; and if it is equal to 1, 2, 3, . . . , then the interference
pattern will appear.

Instead of two discrete wavelengths, if the source con-
sists of all wavelengths lying between l and l + Dl, then no
interference pattern will be observed if

2 2

/2

d d
-

l l + Dl
>~  

1
2

or 2d >~  

2
l

Dl
(76)

10 The zero path difference is easily obtained by using white light where only a few colored fringes, around d = 0, will be visible.

S

L

M 2
M2

M2G2G1

(5)

′

Fig. 15.37 In an actual interferometer there is also a com-

pensating plate G
2
.
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In this case the fringes will not reappear because we have
a continuous range of wavelengths rather than two discrete
wavelengths (see Sec. 17.2).

Michelson and Morley carried out the famous Michelson–
Morley experiments using the Michelson interferometer to
detect the motion of the earth with respect to the “ether”—
this experiment is discussed in Sec. 30.10.

Example 15.4 For a sodium lamp, the distance traversed by
the mirror between two successive disappearances is 0.289 mm.
Calculate the difference in the wavelengths of the D1 and D2 lines.
Assume l = 5890 Å.

Solution: When the mirror moves through a distance 0.289 mm,

the additional path introduced is 0.578 mm. Thus

0.578 0.578
-

l l + Dl
= 1

or Dl

2

0.578

l
-
�

 = 
( )

.
5890 10

0 578

7 2× −
mm

~
- 6 Å

Summary

� If a plane wave is incident normally on a thin film of uniform
thickness d, then the waves reflected from the upper surface
interfere with the waves reflected from the lower surface.
Indeed, for a film of thickness l /4nf (where l is the free
space wavelength and nf is the film refractive index which lies
between the refractive indices of the two surrounding media),
the wave reflected from the upper surface interferes destruc-
tively with the wave reflected from the lower surface, and
therefore the film acts as an antireflection layer.

� A medium consisting of a large number of alternate layers of
high and low refractive indices of n0 + Dn and n0 – Dn of
equal thickness d is called a periodic medium, and the spatial
period of the refractive index variation is denoted by
L (= 2d). For Dn << n0, if d ª 0/4nl (where l is the free
space wavelength), the reflections arising out of the individual
reflections from the various interfaces will all be in phase and
will result in a strong reflection. Thus for strong reflection at
a chosen (free space) wavelength lB, the period of the refrac-
tive index variation should be

L = 2d = 
02

B

n

l

This is referred to as the Bragg condition. This is the prin-
ciple of operation of fiber Bragg gratings.

� If we place a planoconvex lens on a plane glass surface, a
thin film of air is formed between the curved surface of the
lens and the plane glass plate. If we allow monochromatic
light (such as from a sodium lamp) to fall (almost normally)
on the surface of the lens, then the light reflected from the
curved surface interferes with the light reflected from the

plane surface. Since the convex side of the lens is a spherical
surface, the thickness of the air film will be constant over a
circle and we will see concentric dark and bright rings. These
rings are known as Newton's rings. The radii of the concentric
rings are such that the difference between the square of the
radii of successive fringes is very nearly a constant.

� The Michelson interferometer was used by Michelson for the
standardization of the meter. He found that the red
cadmium line (l = 6438.4696 Å) is one of the ideal mono-
chromatic sources, and as such this wavelength was used as
a reference for the standardization of the meter. In fact he
defined the meter as

1 m = 1,553,164.13 red cadmium wavelengths

the accuracy is almost 1 part in 109.

� The Michelson interferometer can also be used in the mea-
surement of two closely spaced wavelengths.

Problems

15.1 A glass plate of refractive index 1.6 is in contact with an-
other glass plate of refractive index 1.8 along a line such
that a wedge of 0.5∞ is formed. Light of wavelength 5000 Å
is incident vertically on the wedge, and the film is viewed
from the top. Calculate the fringe spacing. The whole appa-
ratus is immersed in an oil of refractive index 1.7. What
will be the qualitative difference in the fringe pattern, and
what will be the new fringe width?

15.2 Two plane glass plates are placed on top of each other, and
on one side a cardboard is introduced to form a thin wedge
of air. Assuming that a beam of wavelength 6000 Å is inci-
dent normally, and that there are 100 interference fringes
per centimeter, calculate the wedge angle.

15.3 Consider a nonreflecting film of refractive index 1.38. As-
sume that its thickness is 9 ¥ 10–6 cm. Calculate the
wavelengths (in the visible region) for which the film will
be nonreflecting. Repeat the calculations for the thickness
of the film to be 45 ¥ 10–6 cm. Show that both films will be
nonreflecting for a particular wavelength, but only the
former one will be suitable. Why?

15.4 In the Newton rings arrangement, the radius of curvature of
the curved side of the planoconvex lens is 100 cm. For
l = 6 ¥ 10–5 cm, what will be the radii of the 9th and 10th
bright rings?

15.5 In the Newton rings arrangement, the radius of curvature of
the curved surface is 50 cm. The radii of the 9th and 16th
dark rings are 0.18 and 0.2235 cm, respectively. Calculate
the wavelength.

[Hint: The use of Eq. (66) will give wrong results. Why?]
[Ans: 5015 Å]

15.6 In the Newton rings arrangement, if the incident light con-
sists of two wavelengths of 4000 and 4002 Å, calculate the
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distance (from the point of contact) at which the rings will
disappear. Assume that the radius of curvature of the
curved surface is 400 cm.

[Ans: 4 cm]

15.7 In Prob. 15.6 if the lens is slowly moved upward, calculate
the height of the lens at which the fringe system (around
the center) will disappear.

[Ans: 0.2 mm]

15.8 An equiconvex lens is placed on another equiconvex lens.
The radii of curvature of the two surfaces of the upper lens
are 50 cm, and those of the lower lens are 100 cm. The
waves reflected from the upper and lower surfaces of the air
film (formed between the two lenses) interfere to produce
Newton’s rings. Calculate the radii of the dark rings.
Assume l = 6000 Å.

[Ans: 0.0447 m  cm]

15.9 In the Michelson interferometer arrangement, if one of the
mirrors is moved by a distance 0.08 mm, 250 fringes cross
the field of view. Calculate the wavelength.

[Ans: 6400 Å]

15.10 The Michelson interferometer experiment is performed with
a source which consists of two wavelengths of 4882 and
4886 Å. Through what distance does the mirror have to be
moved between two positions of the disappearance of the
fringes?

[Ans: 0.298 mm]

15.11 In the Michelson interferometer experiment, calculate the
various values of q¢ (corresponding to bright rings) for
d = 5 ¥ 10–3 cm. Show that if d is decreased to 4.997 ¥
10–3 cm, the fringe corresponding to m = 200 disappears.
What will be the corresponding values of q¢? Assume
l = 5 ¥ 10–5 cm.
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16.1 INTRODUCTION

In the last two chapters, we have been discussing interfer-
ence between two beams which are derived from a single
beam either by division of wave front or by division of ampli-
tude. In this chapter, we will discuss interference involving
many beams which are derived from a single beam by mul-
tiple reflections (division of amplitude). Thus, for example, if
a plane wave falls on a plane parallel glass plate, then the
beam undergoes multiple reflections at the two surfaces and
a large number of beams of successively diminishing ampli-
tude emerge on both sides of the plate. These beams (on
either side) interfere to produce an interference pattern at in-
finity. We will show that the fringes so formed are much
sharper than those by two-beam interference and, therefore,
the interferometers involving multiple-beam interference have
a high resolving power and hence find applications in high-
resolution spectroscopy.

16.2 MULTIPLE REFLECTIONS

FROM A PLANE PARALLEL

FILM

We consider the incidence of a plane wave on a plate of
thickness h (and of refractive index n2) surrounded by a me-
dium of refractive index n1 as shown in Fig. 16.1; as we will

When two Undulations . . . coincide either perfectly or very nearly in Direction, their joint effect
is a Combination of the Motions belonging to each.1

—Thomas Young (1801)

MULTIPLE-BEAM

INTERFEROMETRY

Chapter

Sixteen

Important Milestone
1899 Marie Fabry and Jean Perot invented the Fabry–Perot interferometer which is characterized by a very high

resolving power.

discuss later, the Fabry–Perot interferometer consists of two
partially reflecting mirrors (separated by a fixed distance h)
placed in air so that n1 = n2 = 1.

Let A0 be the (complex) amplitude of the incident wave.
The wave will undergo multiple reflections at the two inter-
faces as shown in Fig. 16.1(a). Let r1 and t1 represent the
amplitude reflection and transmission coefficients, respec-
tively, when the wave is incident from n1 toward n2, and let r2

and t2 represent the corresponding coefficients when the
wave is incident from n2 toward n1. Thus the amplitude of
the successive reflected waves will be

A0r1, A0t1r2t2eid, A0t1r2
3e2id, . . .

where d = 
0

2p
D

l
 = 2 2

0

4 cosn hp q

l
(1)

represents the phase difference (between two successive
waves emanating from the plate) due to the additional path
traversed by the beam in the film (see Sec. 15.1) and in
Eq. (1), q2 is the angle of refraction inside the film (of refrac-
tive index n2), h the film thickness, and l0 is the free space
wavelength. Thus the resultant (complex) amplitude of the
reflected wave will be

Ar = A0[r1 + t1t2r2e
id (1 + r2

2eid + r2
4e2id + . . .)]

= A0 
1 2 2

1 2
21

i

i

t t r e
r

r e

d

d

Ê ˆ
+Á ˜-Ë ¯

(2)

1 The author found this quotation in Ref. 1.
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Now, if the reflectors are lossless, the reflectivity and the
transmittivity at each interface are given by (see Sec. 14.12)

R = r1
2 = r2

2

t = t1t2 = 1 – R

(We are reserving the symbol T for the transmittivity of the
Fabry–Perot etalon.) Thus

0

rA

A
= 1

(1 )
1

1

i

i

R e
r

Re

d

d

È ˘-
-Í ˙

-Í ˙Î ˚

where we have used the fact that r2 = –r1. Thus the
reflectivity of the Fabry–Perot etalon is given by

R = 
2

0

rA

A
 = R

2
1

1

i

i

e

Re

d

d

-

-

= R 
2 2

2 2 2

(1 cos ) sin

(1 cos ) sinR R

- d + d

- d + d

= 
2

2 2

4 sin /2

(1 ) 4 sin /2

R

R R

d

- + d

or R = 
2

2

sin /2

1 sin /2

F

F

d

+ d
(3)

where

F = 2

4

(1 )

R

R-

(4)

is called the coefficient of Finesse. One can immediately see
that when R << 1, F is small and the reflectivity is propor-
tional to sin2 (d/2). The same intensity distribution is
obtained in the two-beam interference pattern (see Sec. 14.7);
we obtained sin2 (d/2) instead of cos2 (d/2) because of the
additional phase change of p in one of the reflected beams.

Similarly, the amplitude of the successive transmitted
waves will be

A0t1t2, A0t1t2r2
2eid, A0t1t2r2

4e2id, . . .

where, without any loss of generality, we have assumed the
first transmitted wave to have zero phase. Thus the resultant
amplitude of the transmitted wave will be given by

At = A0t1t2 (1 + r2
2eid + r2

4e2id
 + . . .)

= A0
1 2

2
21 i

t t

r e d
-

 = A0 
1

1 i

R

Re d

-

-

Thus the transmittivity T of the film is given by

T = 
2

0

tA

A
 = 

2

2 2 2

(1 )

(1 cos ) sin

R

R R

-

- d + d

or T = 2

1

1 sin /2F+ d
(5)

Reflector

n1

n1

n2
θ2

θi

θi

A
A0

B

h

(a)

(b)

O P

L2

L1

A

B

O P′ ′

Fig. 16.1 (a) Reflection and transmission of a beam of am-
plitude A

0
 incident at an angle q

i
 on a film of

refractive index n
2
 and thickness h. (b) Any ray

parallel to AB will focus at the same point P. If
ray AB is rotated about the normal at B, then
point P will rotate on the circumference of a
circle centered at point O ; this circle will be
bright or dark depending on the value of q

i
.

Rays incident at different angles will focus at dif-
ferent distances from point O, and one will
obtain concentric bright and dark rings for an
extended source.
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It is immediately seen that the reflectivity and the trans-
mittivity of the Fabry–Perot etalon add to unity. Further,

T = 1

when

d = 2mp m = 1, 2, 3, . . . (6)

In Fig. 16.2 we have plotted the transmittivity as a function
of d for different values of F. To get an estimate of the width
of the transmission resources, let

T = 
1

2
for d = 2mp ± 

2

Dd

Thus

F sin2 
4

Dd
= 1 (7)

The quantity Dd represents the FWHM (full width at half
maximum). In almost all cases, Dd <<< 1, and therefore, to a
very good approximation, it is given by

Dd ª 
4

F
 = 

2(1 )R

R

-

(8)

Thus the transmission resources become sharper as the
value of F increases (see Fig. 16.2).

16.3 THE FABRY–PEROT ETALON

In this section, we will discuss the Fabry–Perot interfero-
meter which is based on the principle of multiple-beam
interferometry discussed in Sec. 16.2. The interferometer (as
shown in Fig. 16.3) consists of two plane glass (or quartz)
plates which are coated on one side with a partially reflecting
metallic film2 (of aluminum or silver) of about 80% reflectivity.
These two plates are kept in such a way that they enclose a
plane parallel slab of air between their coated surfaces. If the
reflecting glass plates are held parallel to each other at a
fixed separation, we have a Fabry–Perot etalon. In fact,
we may neglect the presence of the plates and consider only
the reflection (and transmission) by the metallic film; further,
if the plates are parallel, the rays will not undergo any
deviation.

In a typical experiment, light from a broad source is colli-
mated by a lens and is passed through the Fabry–Perot
etalon as shown in Fig. 16.3. Thus, if we consider light of a
specific wavelength l0 , the incident light will be completely
transmitted (i.e., T = 1) if the angle of incidence is such that

d = 2
0

4
n

p

l
hcosq2 = 2mp (9)

or cos q2 = 0

22

m

n h

l
(10)

For large values of F, when q2 is slightly different from the
value given by the above equation, the transmittivity will
be very small. Hence, for a given wavelength, at the focal
plane of lens L, we will obtain a fringe pattern consisting of
concentric rings—each bright ring will correspond to a
particular value of m. The sharpness of the bright rings (and
hence the resolving power of the etalon) will increase with
the value of F.

2 In the visible region of the spectrum, silver is the best metal to coat with (the reflectivity is about 0.97 in the red region and decreases
to about 0.90 in the blue region). But beyond the blue region, the reflectivity falls rapidly. Aluminum is usually employed below
4000 Å.

0.5

1

T

Δδ

F = 2

F = 10

F = 400

2 mπ
δ

(2 + 2)m π

Fig. 16.2 The transmittivity of a Fabry–Perot etalon as a
function of d for different values of F; the value
of m is usually large. The transmission reso-
nances become sharper as we increase the value
of F. The FWHM is denoted by Dd.

Screen

θ

Extended
source

L

S

h f

Fig. 16.3 The Fabry–Perot etalon.
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Example 16.1 As an example, we assume an etalon with
n2 = 1, h = 1 cm, and F = 400 (F = 400 implies R ª 0.905; i.e., each
mirror of the etalon has about 90% reflectivity). In Fig. 16.4 we
have plotted the intensity variation with q for l0 = 5000 and
4999.98 Å. The actual fringe pattern (as obtained on the focal plane
of a lens of focal length 25 cm) is shown in Fig. 16.5. Now, for

l0 = l1 = 5000 Å

Eq. (9) gives us

q2 = cos–1 
40000

m

Thus bright rings will form at

q2 = 0∞, 0.41∞, 0.57∞, 0.70∞, . . .

corresponding to m = 40,000; 39,999; 39,998; 39,997; . . . , respec-
tively. This is shown as the thick curve in Fig. 16.4. On the other
hand, for

l0 = l2 = 4999.98 Å
we get

q2 = cos–1

40000.16

m

Thus bright rings will form at

q2 = 0.162∞, 0.436∞, 0.595∞, . . .

corresponding to m = 40,000; 39,999; and 39,998 respec-
tively. This is shown as the thin curve in Fig. 16.4. The correspond-
ing ring patterns as obtained on the focal plane of the lens are
shown in Fig. 16.5; from the figure we can see that the two spectral
lines having a small wavelength difference of 0.02 Å are quite well
resolved by the etalon. In the figure, the central bright spot and the
first ring correspond, respectively, to l0 = 5000 and 4999.98 Å, both
corresponding to m = 40000. The next two closely spaced rings
correspond to m = 39999 for the two wavelengths.

16.3.1 Flatness of the Coated Surfaces
To have sharp fringes, the coated surfaces should be parallel
to a very high degree of accuracy. Indeed, the coated surfaces
should be flat within about l/50, where l is the wavelength
of light. To see this, we assume that in the above example h
is increased by l/20 (= 250 Å = 2.5 ¥ 10–6 cm):

h = 1 + 2.5 ¥ 10–6 = 1.0000025 cm

For l0 = 5000 Å, we will have

q2 = cos–1

40,000.1

m

and bright rings will form at

q2 = 0.128∞, 0.425∞, 0.587∞, . . .

If we compare the results obtained in Example 16.1, we find
that if there is a variation in the spacing by about l/20, the
fringes corresponding to the wavelengths 5000 and 4999.98 Å
will start overlapping. Thus the coated surfaces should be
parallel within a very small fraction of the wavelength.
Further, the two uncoated surfaces of each plate are made to
have a slight angle between them (~1 to 10 minutes, see
Fig. 16.3) so that one could avoid the unwanted fringes
formed due to multiple reflections in the plate itself.

Fig. 16.5 The (computer generated) ring pattern as
obtained (on the focal plane of a lens) in a
Fabry–Perot etalon with n2 = 1, h = 1.0 cm and
F = 400, corresponding to l0 = 5000 Å (=l1) and
l0 = 4999.98 Å (=l2).

0.5

0

1

In
te

ns
ity

0.1 0.2 0.3 0.4 0.5 0.6

θ (degrees)

λ λ= = 4999.98 Å2

λ λ= = 5000 Å1
λ λ= 1

λ λ= 2

Fig. 16.4 The variation of intensity with q for a Fabry–
Perot interferometer with n2 = 1, h = 1.0 cm, and
F = 400, corresponding to l0 = 5000 Å (= l1) and
l0 = 4999.98 Å (= l2).
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16.3.2 Modes of the Fabry–Perot Cavity
We consider a polychromatic beam incident normally (q2 = 0)
on a Fabry–Perot etalon with air between the reflecting
plates (n2 = 1); see Fig. 16.6. In terms of the frequency

n = 
0

c

l

Eq. (9) tells us that transmission resonance will occur when

n = nm = m
c
h2

(11)

where m is an integer. The above equation represents the
different (longitudinal) modes of the (Fabry–Perot) cavity.
For h = 10 cm, the frequency spacing of two adjacent modes

7000 MHz h

ν ν

1500 MHz

Fig. 16.6 A beam having a spectral width of about 7000 MHz (around n0 = 6 ¥ 1014 Hz) is incident normally on
a Fabry–Perot etalon with h = 10 cm and n2 = 1. The output has five narrow spectral lines.

3 For n0 = 6 ¥ 1014 Hz, l0 = 5000 Å and a spectral width of 7000 MHz would imply 0 0/Dl l  = 
0/Dn n  = 9 147 10 /6 10¥ ¥  ª 1.2 ¥ 10–5, giving

Dl0 ª 0.06 Å. Thus a frequency spectral width of 7000 MHz (around n0 = 6 ¥ 1014 Hz) implies a wavelength spread of only 0.06 Å.

1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59

λ μ( m)

Fig. 16.7 Typical output spectrum of a Fabry–Perot
multilongitudinal mode laser diode; the wave-
length spacing between two modes is about
0.005 mm (After Ref. 9).

is given by

dn = 
2

c

h
 = 1500 MHz

For an incident beam having a central frequency of

n = n0 = 6 ¥ 1014 Hz

and a spectral width3 of 7000 MHz, the output beam will have
frequencies

n0 n0 ± d n and n0 ± 2dn

as shown in Fig. 16.6. One can readily calculate from
Eq. (11) that the five lines correspond to

m = 399,998; 399,999; 400,000; 400,001 and 400,002

Figure 16.7 shows a typical output of a multilongitudinal
(MLM) laser diode. The wavelength spacing between two
modes is about 0.005 mm.

16.4 THE FABRY–PEROT
INTERFEROMETER

If one of the mirrors is kept fixed while the other is capable of
moving to change the separation between the two mirrors,
the system is called a Fabry–Perot interferometer. For a beam
incident normally on the interferometer, we vary the separa-
tion h and measure the intensity variation on the focal plane
of lens L as shown in Fig. 16.8. Such an arrangement is
usually referred to as a scanning Fabry–Perot interferometer.
Since the separation h is varied, we write it as

h = h0 + x (12)

If the incident beam is monochromatic, a typical variation
of intensity at point P is shown in Fig. 16.9. The figure corre-
sponds to the frequency of the incident beam being

n = n0 = 6 ¥ 1014 Hz
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For h0 = 10 cm, n2 = 1, and cos q2 = 1, we get

d = 0 04 ( )h x

c

pn +

= 800000p
0

1
x

h

Ê ˆ
+Á ˜Ë ¯

Thus transmission resonances will occur for

d = 800000p, 800002p, 800004p, . . .

which will occur when

x = 0, 250 nm, 500 nm, . . .

respectively. The two curves in Fig. 16.9 correspond to
F = 100 and F = 1000. Notice that the transmission
resonances become sharper if we increase the value of F.
Figure 16.10 shows variation of intensity at point P when the

incident beam has two frequencies separated by 300 MHz.
Obviously, the two frequencies are well resolved.

If the frequency of the incident beam is increased by
c/(2h0), i.e., if

n = n0 + 
02

c

h

then one can easily show that transmission resonances will
occur at the same values of x, and the corresponding values
of d will be 800,002p (corresponding to x = 0), 800,004p
(corresponding to x = 250 nm), etc. Indeed, if

n = n0 ± p
02

c

h
p = 1, 2, 3, . . .

we will have the same T versus x curve. The quantity

Dns = 
02

c

h
(13)

is known as the free spectral range (FSR) of the inter-
ferometer. Thus when the spectrum has widely separated
wavelength components, we have overlapping of orders.

16.5 RESOLVING POWER

We will first consider the resolving power corresponding to
a beam incident normally on a scanning Fabry–Perot inter-
ferometer. This will be followed by the case corresponding to
the Fabry–Perot etalon.

0.5

1

T

0 250 500

δ = 800,000π δ = 800,002π δ = 800,004π

x (nm)

F = 100

F = 1000

Fig. 16.9 Variation of intensity at point P with x (see Fig. 16.8) for a monochromatic beam incident normally

on a scanning Fabry–Perot interferometer; the solid curve corresponds to F = 1000, and the dashed

curve corresponds to F = 100.

Photodetector

P

L
x

h0

Fig. 16.8 A scanning  Fabry–Perot interferometer. The in-

tensity variation is recorded (by a photodetector)

on the focal plane of lens L.
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16.5.1 Resolving Power of a Scanning

Fabry–Perot Interferometer

We consider the presence of two frequencies n1 and n2 of
equal intensity in the beam incident normally on a scanning
Fabry–Perot interferometer. For the two frequencies to be
just resolved, we assume that the half intensity point of n1

falls on the half intensity point of n2 as shown in Fig. 16.11.

When this happens, the minimum of the resultant intensity
distribution (shown as the dashed curve in Fig. 16.11) is
about 74% of the corresponding maximum value. Now, as
discussed in Sec. 16.2, if the half intensity point occurs at

d = d1/2 = 2mp ± 
2

Dd
(14)

0
0

0.5

1

–100 25050 300 400

δ = 800,000π δ = 800,002π

I1

I2

ν ν= – 300 MHz0

ν ν= = 6 10 Hz0
14×

x nm( )

T

Fig. 16.10 Variation of intensity at point P with x (see Fig. 16.8) when the incident beam has two frequencies
separated by 300 MHz.
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Fig. 16.11 The individual intensity variations I
1
 and I

2
 in the presence of two frequencies n

1
 and n

2
 and the

total intensity variation I
1
 + I

2
 when the two frequencies are just resolved.
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then

Dd ª 4

F
(15)

[see Eq. (8)]. Consider the frequency n1. If the intensity maxi-
mum occurs at h = h1 then

d1 = 1 14 h

c

p n
 = 2mp (16)

Let the intensity maximum for n = n2 (= n1 + Dn1) occur at

h = h2 = h1 + Dh1

Thus

d2 = 1 1 1 14 ( ) ( )h h

c

p + D n + Dn

 = 2mp (17)

Using Eqs. (16) and (17) and neglecting the second-order
term Dh1Dn1, we get

n1 Dh1 + h1 Dn1 = 0

or Dh1 = – 1

1

h

n
Dn1 (18)

Equation (18) implies that for Dh1 to be positive, Dn1 should
be negative. Now, for the frequency n1, let the half intensity
point occur at h = h1 + dh1 (the corresponding value of d will
be 2mp + ½ Dd1; thus using Eq. (16), we find

1 14 h

c

pn d
= 1

1 2

2 F
Dd ª (19)

or Dh1 ª 
12

c

Fpn

(20)

For the two frequencies to be just resolved

Dh1 = 2dh1 ª 
1

c

Fpn

(21)

Using Eq. (18), we get for the resolving power

1

1

n

Dn
= 

1

1

h

hD
 = 1 1h F

c

p n

Or dropping the subscript, we get

Resolving power = 
n

Dn
 = 

h F

c

p n

(22)

Or, in terms of the wavelength,

Resolving power = 0

0

l

Dl
 = 

0

h Fp

l
(23)

For h = 1 cm, and l0 = 6 ¥ 10–5 cm

0.013Å for = 80

0.006Å for =360

F

F

Ï
DlªÌ

Ó

16.5.2 Resolving Power of a Fabry–Perot

Etalon

We consider light from a broad source incident on a Fabry–
Perot etalon as shown in Fig. 16.3. We once again consider the
presence of two wavelengths l1 and l2 of equal intensity.
Now, T = 1 if the angle of incidence is such that [see Eq. (9)]

d = 
4

c

pn
hm = 2mp (24)

where m = cos q, and for the sake of simplicity, we have
dropped the subscript on m and q. We can now have argu-
ments very similar to those in Sec. 16.5.1 except now h is
fixed and m (= cos q) is varied. Thus, if the mth-order inten-
sity maxima for n = n1 and n = n2 (= n1 + Dn1) occur at m = m1

and m = m2 (= m1 + Dm1), then

d1 = 1 14 h

c

pn m

 = 2mp (25)

and

d2 = 1 1 1 14 ( )( )h

c

p n + Dn m + Dm
 = 2mp (26)

Thus, neglecting the second-order term we get

Dm1 = – 1

1

m

n
Dn1 (27)

Now, for the frequency n1, let the half intensity point oc-
cur at m = m1 + dm1 (the corresponding value of d will be
2mp + ½Dd1); thus using Eq. (24) gives

1 14 v h

c

p dm
= 1

1 2

2 F
Dd ª (28)

or dm1 ª 
12

c

h Fpn
(29)

As discussed earlier, for the two frequencies to be just
resolved, we assume that the half intensity point of n1 falls
on the half intensity point of n2, giving

Dm1 = 2dm1 ª 
1

c

h Fpn

(30)

Using Eq. (27), we get

Resolving power = 1

1

n

Dn
 = 1

1

m

Dm
 = 1 1h F

c

pn m

(31)

Or, in terms of the wavelength,

Resolving power = 0

0

l

Dl
 = 

0

cosh Fp q

l
(32)

Thus for F = 360 (R = 0.9), h = 1 cm, and l0 = 5000 Å,

0

0

l

Dl
ª 1.2 ¥ 106
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where we have assumed normal incidence. The above equa-
tion gives

Dl0 ª 0.004 Å

Thus a Fabry–Perot instrument can resolve wavelengths dif-
fering by about 10–3 Å. This is in contrast to a grating (say,
having 25,000 grooves) which resolves up to about 0.1 Å at
l = 5000 Å and a prism (made of dense flint glass with 5 cm
base) which resolves only up to about 1 Å at 5000 Å. Note
that in the above analysis, we have considered two mono-
chromatic lines at l and l + Dl. In general, the lines at the
two wavelengths l and l + Dl themselves will have a wave-
length spread, and this restricts the use of such high
resolving powers.

When the Fabry–Perot interferometer is used to analyze
spectra with closely spaced lines, then the distance between
the adjacent maxima is greater than the displacement between
the system of rings of the spectral lines. But when the
spectrum has widely separated wavelength components,
then the displacement between the rings may be greater than
the separation between adjacent maxima. The results in the
“overlapping” of orders (see also the discussion at the end
of Sec. 16.4). The difference in wavelength Dls which corre-
sponds to a displacement of one order is called the spectral
range of the interferometer. Thus we can write

Dls = 
2

2 cosnh

l

q
(33)

This becomes, for near normal incidence (q ª 0),

Dls = 
2

2nh

l
(34)

which is found to be inversely proportional to h. This is in
contrast to the resolving power which depends directly on h
[see Eqs. (31) and (32)].

When the spectrum is complex consisting of a number of
widely separated wavelength components, each with a
hyperfine structure, then one can separate the different
wavelength components by employing the Fabry–Perot
interferometer along with a spectrograph as shown in
Fig. 16.12(a). The light emerging from source S is
rendered parallel by lens L1. The interference pattern formed
by the Fabry–Perot interferometer (marked by FP in the fig-
ure) is made to fall on the slit of the spectrograph. The
spectrograph separates the spectral components, and one
obtains in plane P images of the slit, each crossed by fringes
as shown in Fig. 16.12(b).

16.6 THE LUMMER–GEHRCKE

PLATE4

We saw in Sec. 16.2 that the sharpness of fringes (and hence
the resolving power) of a multiple-beam interferometer
increases as the reflectivity R of the plate increases. But one
cannot use every thick coating of metals to increase the
reflectivity as the intensity of the beam would be reduced
considerably due to absorption in metallic coatings. This dif-
ficulty can be overcome by the use of the phenomenon of
total internal reflection (instead of metallic reflection); this is
used in the Lummer–Gehrcke plate.

A Lummer–Gehrcke plate is a plane parallel made of glass
(or quartz), on one end of which a small right-angle prism of
the same material is fixed (see Fig. 16.13). The angle of the
prism is chosen in such a way that the rays incident normally
on the surface of the prism hit the two surfaces of the plate
at an angle slightly less than the critical angle.5 Since the two
surfaces are parallel, all successive reflections will occur at
the same (near critical) angle. Most of the light will be
reflected with a little fraction being transmitted at each reflec-
tion. Thus, there will emerge from the upper and lower
surfaces of the plate a series of waves which will finally in-
terfere to produce interference fringes in plane P (see
Fig. 16.13). Notice that the prism suppresses the externally
reflected beam. In plane P, one obtains fringe patterns on
either side of the plate. The fringes are approximately straight
lines parallel to the plate surfaces.

(i) (ii) (iii)

Slit
FPL L P

(a)

(b)

Fig. 16.12 (a) A Fabry–Perot interferometer used in conjunc-
tion with a spectrograph. (b) The interlaced fringes
formed in the plane of the slit are separated by the
prism. For example, (i), (ii), and (iii) may corre-
spond to the lines in the red, yellow, and green
regions, respectively, as observed on plane P.

4 Sections 16.6 and 16.7 have been very kindly written by Prof. Anurag Sharma.
5 Beyond the critical angle, the reflection is total, while slightly below the critical angle, the reflectivity is high (see Sec. 24.2).
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We will not go into the details of the theory of the
Lummer–Gehrcke plate, but we note two points:

1. Unlike in the Fabry–Perot interferometer, the space be-
tween the reflecting surfaces is a dispersive medium.

2. The number of reflections is also not very large as
in the case of the Fabry–Perot interferometer; the num-
ber of reflections depends on the length of the plate and
the angle q (see Fig. 16.13). Thus, the resolving power
of the instrument depends on the length of the plate.

Earlier, Lummer–Gehrcke plates were used in high-
resolution spectroscopy. However, they have been replaced
by the more flexible Fabry–Perot interferometer.

16.7 INTERFERENCE FILTERS

When a Fabry–Perot interferometer is illuminated by a mono-
chromatic (uncollimated) beam, we get a spectrum consisting
of different intensity maxima which satisfy the following
relation:

2nh cos qr = ml (35)

Now if a Fabry–Perot interferometer is illuminated with a col-
limated white light incident normally (qr ª 0), maxima of
different orders are formed in the transmitted light corre-
sponding to wavelengths given by

l = 
2nh

m
(36)

If h is large, a large number of maxima will be observed in the
visible region; for example, about 23,000 maxima are observed
if h = 1 cm. But if we go on reducing h, we reach a situation
in which only one or two maxima are obtained in the visible
region. For example, if n = 1.5 and h = 6 ¥  10–5 cm, there
are only two maxima in the visible region, corresponding to
l = 6000 Å (m = 3) and l = 4500 Å  (m = 4). They are widely
separated, and one of them can  be masked so as to transmit
only one wavelength. In  this way, it is possible to filter a
particular wavelength out of a white light beam. Such a struc-
ture is known as an interference filter.6 Interference filters

using this principle can be obtained by modern vacuum
deposition techniques. A thin metallic film (usually of alumi-
num or silver) is deposited on a substrate (generally, a glass
plate) by vacuum deposition techniques. Then a thin layer of
a dielectric material such as cryolite (3NaF•AlF3) is deposited
over this. This structure is again covered by another metallic
film (see Fig. 16.14). To protect this film structure from any
damage, another glass plate is placed over it. Thus a Fabry–
Perot structure is formed between the two glass plates. By
varying the thickness of the dielectric film, one can filter out
any particular wavelength. However, the filtered light will
have a finite width; i.e., it will have a narrow spectrum sharply
peaked about one wavelength. The sharpness of the trans-
mitted spectrum is determined by the resolving power of the
formed Fabry–Perot structure, and hence by the reflectivity
of the surfaces. The larger the reflectivity, the narrower is the
transmitted spectrum. But it is not possible to increase the
thickness of the metallic films indefinitely as absorption will
reduce the intensity of the transmitted light. To overcome
this difficulty, metallic films are replaced by all dielectric
structures.

In an all-dielectric structure, layers of dielectric materials
of appropriate refractive indices are deposited. It was shown
in Chap. 15 how dielectric films can be used to enhance the
reflectivity of a surface. If, on a glass plate, a l/4 thick film of
a dielectric material whose refractive index is more than that
of glass is deposited, the reflectivity of the glass plate in-
creases. The larger the difference between the refractive
indices, the greater will be the reflectivity. The materials gen-
erally used in interference filters are titanium oxide (n = 2.8)
or zinc sulfide (n = 2.3). To obtain interference filters, a l/4
thick film of titanium oxide is deposited on a glass substrate.
Then a thin layer of dielectric material with lower refractive
index (such as cryolite or magnesium fluoride) is depos-
ited. On this is again deposited a l/4 thick layer of a
material of higher refractive index. To increase the
reflectivity, multilayer structures of alternate higher and
lower refractive index materials are used. In this way, it is
possible to achieve a reflectivity of more than 90% for any
particular wavelength (see Sec. 15.6 for a more detailed
account). Thus if the incident wave is polychromatic (like
white light), the reflected light may have a high degree of
monochromaticity.

6 The Fabry–Perot structure also behaves as a resonator and supports the oscillation of what are known as modes.

P

P

L

′

Fig. 16.13 The Lummer–Gehrcke plate.

Metal films

Substrate

Cover plate

Dielectric film

Fig. 16.14 The interference filter.
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Summary

� If a plane wave falls on a plane parallel film, then the beam
undergoes multiple reflections at the two surfaces and a large
number of beams of successively diminishing amplitude will
emerge on both sides of the plate. These beams (on either
side) interfere to produce an interference pattern at infinity.
If the reflectivity R at each surface is close to unity, then the
fringes so formed are much sharper than those formed by
two-beam interference and, therefore, the interferometers in-
volving multiple-beam interference have a high resolving
power and hence find applications in-high resolution spec-
troscopy. The transmittivity of such a film is given by

T = 2

1

1 sin /2F+ d

where F = 4R/(1 – R)2 is known as coefficient of Finesse and

d = 2 2

0

4 cosn hp q

l

represents the phase difference (between two consecutive
waves emanating from the film) due to the additional path
traversed by the beam in the film; q2 is the angle of refraction
inside the film (of refractive index n2), h is the film thickness,
and l0 is the free space wavelength. The transmittivity T = 1
when d = 2mp, m = 1, 2, 3, . . . . For  R ª 1, the value of F
is very large and the transmission resonances become very
sharp. This is the principle used in the Fabry–Perot interfer-
ometer which is characterized by a high resolving power.

Problems

16.1 Calculate the resolving power of a Fabry–Perot inter-
ferometer made of reflecting surfaces of reflectivity 0.85 and
separated by a distance 1 mm at l = 4880 Å.

16.2 Calculate the minimum spacing between the plates of a
Fabry–Perot interferometer which will resolve two lines with
Dl = 0.1 Å at l = 6000 Å. Assume the reflectivity to be 0.8.

16.3 Consider a monochromatic beam of wavelength 6000 Å
incident (from an extended source) on a Fabry–Perot etalon
with n2 = 1, h = 1 cm, and F = 200. Concentric rings are
observed on the focal plane of a lens of focal length 20 cm.

(a) Calculate the reflectivity of each mirror.

(b) Calculate the radii of the first four bright rings. What
will be the corresponding values of m?

(c) Calculate the angular width of each ring where the in-
tensity falls by one-half and the corresponding
FWHM (in mm) of each ring.

16.4 Consider now two wavelengths 6000 and 5999.9 Å inci-
dent on a Fabry–Perot etalon with the same parameters as
given in Prob. 16.3. Calculate the radii of the first three
bright rings corresponding to each wavelength. What will
be the corresponding values of m? Will the lines be re-
solved?

16.5 Consider a monochromatic beam of wavelength 6000 Å in-
cident normally on a scanning Fabry–Perot interferometer
with n2 = 1 and F = 400. The distance between the two
mirrors is written as h = h0 + x. Given h0 = 10 cm:

(a) Calculate the first three values of x for which we will
have unit transmittivity and the corresponding values
of m.

(b) Also calculate the FWHM Dh for which the trans-
mittivity will be one-half.

(c) What would be the value of Dh if F were 200?

[Ans.: (a) x ª 200 nm (m = 333,334), 500 nm

(m = 333,335); (b) Dh ª 9.5 nm]

16.6 In continuation of Prob. 16.5, consider now two wave-
lengths l0 (= 6000 Å) and l0 + Dl incident normally on the
Fabry–Perot interferometer with n2 = 1, F = 400, and
h0 = 10 cm. What will be the value of Dl so that T = ½
occurs at the same value of h for both wavelengths?

16.7 Consider a laser beam incident normally on the Fabry–
Perot interferometer as shown in Fig. 16.15.

(a) Assume h0 = 0.1m, c = 3 ¥ 108 m/s, and n = n0 = 5 ¥ 1014 s–1.
Plot T as a function of x (–100 nm < x < 400 nm) for F =
200 and F = 1000.

(b) Show that if n = n0 ± p (1500 MHz), p = 1, 2, . . . ,) we
will have the same T versus x curve; 1500 MHz is known
as the free spectral range (FSR). What will be the corre-
sponding values of d?

n = 1

h0

x

Fig. 16.15
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17.1 INTRODUCTION

In earlier chapters on interference we assumed that the dis-
placement associated with a wave remained sinusoidal for all
values of time. Thus the displacement (which we denote by E)
was assumed to be given by

E = A cos (kx – wt + f)

The above equation predicts that at any value of x, the
displacement is sinusoidal for –• < t < •. For example, at
x = 0 we have [see Fig. 17.1(a)]

E = A cos (wt – f)  –• < t < • (1)

Obviously this corresponds to an idealized situation because
the radiation from an ordinary light source consists of finite
size wave trains, a typical variation of which is shown in
Fig. 17.1(b). Since we will be considering only light waves,
the quantity E represents the electric field associated with
the light wave. Now, in Fig. 17.1(b), tc represents the average
duration of the wave trains; i.e., the electric field remains si-
nusoidal for times of the order of tc . Thus, at a given point,
the electric fields at times t and t + Dt will, in general, have a
definite phase relationship if Dt << tc and will (almost) never
have any phase relationship if Dt >> tc . The time duration tc

is known as the coherence time of the source, and the field is
said to remain coherent for times ~tc . The length of the wave
train, given by

L = ctc (2)

Light which is capable of interference is called ‘coherent,’ and it is evident that in order to
yield many interference fringes, it must be very monochromatic. Coherence is conveniently
measured by the path difference between two rays of the same source, by which they can
differ while still giving observable interference contrast. This is called the coherence length. . . . Lord
Rayleigh and Albert Michelson were the first to understand that it is a reciprocal measure of
the spectroscopic line width. Michelson used it for ingenious methods of spectral analysis and
for the measurement of the diameter of stars.

—Dennis Gabor in his Nobel Lecture on Holography, December 11, 1971

COHERENCE
Chapter

Seventeen

(where c is the speed of light in free space) is referred to
as the coherence length. For example, for the neon line
(l = 6328 Å), tc ~ 10–10 s, and for the red cadmium line
(l = 6438 Å), tc ~ 10–9 s; the corresponding coherence
lengths are 3 and 30 cm, respectively. The finite value
of the coherence time tc could be due to many factors; for
example, if a radiating atom undergoes collision with an-
other atom, then the wave train undergoes an abrupt phase
shift of the type shown in Fig. 17.1(b). The finite coherence
time could also be due to the random motion of atoms or

t

t

E

E

(a)

(b)

~ τc

T =
2π
ω0

Fig. 17.1 (a) For a perfectly monochromatic beam, the dis-
placement remains sinusoidal for –• < t < +•.
(b) For an actual source, a definite phase relation-
ship exists for times of the order of t

c
, which is

known as the temporal coherence of the beam.
For n ~ 5 ¥ 1014 Hz and t

c
 ~ 10–10 s, one has about

50,000 oscillations in time t
c
.
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due to the fact that an atom has a finite lifetime in the
energy level from which it drops to the lower energy level
while radiating.1

To understand the concept of coherence time (or of
coherence length), we consider Young’s double-hole experi-
ment as shown in Fig. 17.2; the interference pattern produced
by this experimental arrangement was discussed in consider-
able detail in Sec. 14.4. Now, the interference pattern observed
around point P at time t is due to the superposition of waves
emanating from S1 and S2 at times t – r1/c, and t – r2/c, respec-
tively, where r1 and r2 are the distances S1P, and S2P,
respectively. Obviously, if

2 1r r

c

-

 << tc

then the waves arriving at P from S1 and S2 will have a defi-
nite phase relationship, and an interference pattern of good
contrast will be obtained. On the other hand, if the path dif-
ference r2 – r1 is large enough that

r r
c

2 1-

 >> tc

then the waves arriving at P from S1 and S2 will have no fixed
phase relationship, and no interference pattern will be
observed. Thus the central fringe (for which r1 = r2) will, in
general, have a good contrast, and as we move toward higher-
order fringes, the contrast of the fringes will gradually become
poorer. This point is discussed in greater detail in Sec. 17.7.

We next consider the Michelson interferometer experiment
(see Sec. 15.10). A light beam falls on a beam splitter G (which
is usually a partially silvered plate), and the waves reflected
from mirrors M1 and M2 interfere (see Fig. 17.3). Let M2¢

represent the image of mirror M2 (formed by plate G) as seen by
the eye. If distance M1M2¢ is denoted by d, then the beam which
gets reflected by mirror M2 travels an additional path equal to
2d. Thus, the beam reflected from M1 interferes with the beam
reflected by M2 which had originated 2d/c seconds earlier.

If the distance d is such that

2d
c

 << tc

then a definite phase relationship exists between the two
beams and well-defined interference fringes are observed. On
the other hand, if

2d
c

 >> tc

then, in general, there is no definite phase relationship be-
tween the two beams and no interference pattern is observed.
There is no definite distance at which the interference pat-
tern disappears; as the distance increases, the contrast of
the fringes becomes gradually poorer and eventually the
fringe system disappears. For the neon line (l = 6328 Å), the
disappearance occurs when the path difference is about a
few centimeters giving tc ~ 10–10 s. On the other hand, for
the red cadmium line (l = 6438 Å), the coherence length is of
the order of 30 cm, giving tc ~ 10–9 s.

The coherence time for a laser beam is usually much larger
in comparison to ordinary light sources. Indeed, for a helium-
neon laser, coherence times as large as 50 ms have been
obtained (Ref. 9); this would imply a coherence length of
15,000 km! Commercially available helium-neon lasers have

S2

S

S1

r1

P

r2

Fig. 17.2 Young’s double-hole experiment. The interference

pattern observed around point P at time t is due
to the superposition of waves emanating from S

1

and S
2
 at times /c-t r

1
 and /c-t r

2
, respectively;

thus interference fringes of good contrast will be
observed at P if (r

2
 – r

1
)/c << t

c
.

1 For more details, see Ref. 17.

M1

M 2

M2
G

′

Fig. 17.3 The Michelson interferometer arrangement.
G represents the beam splitter, and M2¢ represents
the image of M2 as formed by G.
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tc ~ 50 ns, implying coherence lengths of about 15 m. Thus
using such a laser beam, high-contrast interference fringes
can be obtained even for a path difference of a few meters.

To demonstrate the large coherence length of the laser
beam, we consider an experimental arrangement shown in
Fig. 17.4. A parallel beam of light is incident normally on a
pair of circular holes. The Fraunhofer diffraction pattern is
observed on the focal plane of a convex lens. We first use a
helium-neon laser beam. The resulting interference pattern is
shown in Fig. 17.5(a), which is simply the product of the Airy
pattern and the interference pattern produced by two point
sources (see Sec. 19.8). We next introduce a 1

2 mm thick glass
plate in front of one of the circular holes; there is almost
no change in the interference pattern as can be seen from
Fig. 17.5(b). Clearly, the extra path introduced by the plate
[= (m – 1)t, see Sec. 14.10] is very small in comparison to the

Screen

Lens

Incident
plane
wave

Fig. 17.4 A parallel beam of light is incident normally on
a pair of circular holes, and the Fraunhofer dif-
fraction pattern is observed on the focal plane
of a convex lens.
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(a) (b)

Fig. 17.5 (a) The interference pattern produced for the
arrangement shown in Fig. 17.4 using a helium-
neon laser beam. (b) The interference pattern
produced by the same arrangement with 1 mm
thick glass plate in front of one of the holes. (The
above figures are computer-generated; the ex-
perimentally obtained photographs are very
similar—see Ref. 16.)

coherence length associated with the laser beam. If we repeat
the experiment with a collimated mercury arc beam, we find
that with the introduction of the glass plate the interference
pattern disappears (Fig. 17.6). This implies that the extra path
length introduced by the glass plate is so large that there is
no definite phase relationship between the waves arriving on
the screen from the two circular apertures.

17.2 THE LINEWIDTH

In the Michelson interferometer experiment discussed in
Sec. 17.5, the decrease in contrast of the fringes can also be
interpreted as being due to the fact that the source is not
emitting at a single frequency but over a narrow band of fre-
quencies. When the path difference between the two
interfering beams is zero or very small, the different wave-
length components produce fringes superimposed on one
another and the fringe contrast is good. On the other hand,
when the path difference is increased, different wavelength
components produce fringe patterns which are slightly dis-
placed with respect to one another, and the fringe contrast
becomes poorer. One can equally well say that the poor
fringe visibility for a large optical path difference is due to
the nonmonochromaticity of the light source.

The equivalence of the above two approaches can be easily
understood if we consider the Michelson interferometer ex-
periment using two closely spaced wavelengths l1 and l2.
Indeed in Sec. 15.10 we showed that for two closely spaced
wavelengths l1 and l2 (like the D1 and D2 lines of sodium),

0 20 40 60 80 100
0

20

40

60

80

100

(a) (b)

Fig. 17.6 (a) The interference pattern prodcued for the ar-
rangement shown in Fig. 17.4 using a collimated
mercury arc. (b) The interference pattern is washed
out when 0.5 mm thick glass plate is introduced in
front of one of the holes. (The above figures are
computer-generated; the experimentally obtained
photographs are very similar—see Ref. 16.)
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the interference pattern will disappear if

2 1

2 2d d
-

l l
= 1

2
(3)

where 2d represents the path difference between the two
beams. Thus

2d = 
2

1 2

1 2 1 22( ) 2( )

l l l
-

l - l l - l
� (4)

Instead of two discrete wavelengths, if we assume that
the beam consists of all wavelengths lying between l and
l + Dl, then the interference pattern produced by wave-

lengths l and l + 1
2 Dl will disappear if

2d = 
( )

2

1
22

l

Dl
 = 

2
l

Dl
(5)

Further, for each wavelength lying between l and l + 1
2 Dl,

there will be a corresponding wavelength (lying between

l + 1
2 Dl and l + Dl) such that the minima of one fall on the

maxima of the other, making the fringes disappear. Thus, for

2d >~  
2

l

Dl
(6)

the contrast of the interference fringes will be extremely poor.
We may rewrite the above equation in the form

Dl >~  
2

2d

l
(7)

implying that if the contrast of the interference fringes be-
comes very poor when the path difference is ~d, then the
spectral width of the source will be ~ l2/(2d).

Now, in Sec. 17.1 we observed that if the path difference
exceeds the coherence length L , the fringes are not observed.
From the above discussion it therefore follows that the spec-
tral width of the source Dl is given by

Dl ~ 
2

L

l
 = 

2

cc

l

t
(8)

Thus the temporal coherence tc of the beam is directly re-
lated to the spectral width Dl. For example, for the red
cadmium line, l = 6438 Å, and L ~

-  30 cm (tc ~
- 10–9 s), giving

Dl ~ 
2

cc

l

t
 = 

( . )6 438 10

3 10 10

5 2

10 9

¥

¥ ¥

-

-

~ 0.01 Å
For the sodium line, l ~

-  5890 Å, L ~
-  3 cm (tc ~

-  10–10 s),
and Dl ~ 0.1 Å. Further, since ν = c/l, the frequency spread
Dν of a line is

  Dν ~ 2 ~
c c

L
Dl

l
(9)

where we have disregarded the sign. Since tc = L/c, we
obtain

Dν ~ 
1

ct
(10)

Thus the frequency spread of a spectral line is of the order
of the inverse of the coherence time. For example, for the
yellow line of sodium (l = 5890 Å),

tc ~ 10–10 s fi Dν ~ 1010 Hz

ν = 
c

l
 = 

3 10

589 10

10

5

¥

¥

-
-.

~ 5 ¥ 1014 Hz

we get

Dn

n
~ 

10

5 10

10

14
¥

 = 2 ¥ 10–5

The quantity Dν/ν represents the monochromaticity (or
the spectral purity) of the source, and one can see that even
for an ordinary light source it is very small. For a commer-
cially available laser beam, tc ~ 50 ns, implying Dν/ν ~
4 ¥ 10–8. The fact that the finite coherence time is directly
related to the spectral width of the source can also be seen
by using Fourier analysis; this is discussed in Sec. 17.6.

17.3 THE SPATIAL COHERENCE

Until now we have considered the coherence of two fields
arriving at a particular point in space from a point source
through two different optical paths. In this section we will
discuss the coherence properties of the field associated with
the finite dimension of the source.

We consider Young’s double-hole experiment with point
source S being equidistant from S1 and S2 [see Fig. 17.7(a)].
We assume S to be nearly monochromatic so that it produces
interference fringes of good contrast on screen PP¢. Point O
on the screen is such that S1O = S2O. Clearly, point source S
will produce an intensity maximum around point O. We next
consider another similar source S¢ at a distance l from S. We
assume that the waves from S and S¢ have no definite phase
relationship. Thus the interference pattern observed on
screen PP¢ will be a superposition of the intensity distribu-
tions of the interference patterns formed due to S and S¢ (see
Sec. 14.6). If the separation l is slowly increased from zero,
the contrast of the fringes on the screen PP¢ becomes poorer
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because the interference pattern produced by S¢ is slightly
shifted from that produced by S. Clearly, if

S¢S2 – S¢S1 = 
2

l
(11)

the minima of the interference pattern produced by S will fall
on the maxima of the interference pattern produced by S¢ and
no fringe pattern will be observed. It can be easily seen that

S¢S2 = a d l a
a

d l2
2 1 2 2

2
1

2 2
+ +
F
H

I
K

L

N
M
M

O

Q
P
P

- + +
F
H

I
K

/

~

and

S¢S1 = a d l a
a

d l2
2 1 2 2

2
1

2 2
+ -
F
H

I
K

L

N
M
M

O

Q
P
P

- + -
F
H

I
K

/

~

where

a = a1 + a2

and we have assumed a >> d, l. Thus

S¢S2 – S¢S1
~
-

ld
a

Thus for the fringes to disappear, we must have

2

l
= S¢S2 – S¢S1 ~

-

ld
a

or

l
2

a

d

l
-
�

Now, if we have an extended incoherent source whose linear
dimension is ~ la/d, then for every point on the source,
there is a point at a distance of la/(2d) which produces
fringes that are shifted by one-half of a fringe width. There-
fore the interference pattern will not be observed. Thus for
an extended incoherent source, interference fringes of good
contrast will be observed only when

l << 
a

d

l
(12)

Now, if q is the angle subtended by the source at the slits
[see Fig. 17.7(b)], then q ~

-  l/a and the above condition for
obtaining fringes of good contrast takes the form

d << 
l

q
(13)

On the other hand, if

d ~ 
l

q
(14)

the fringes will be of very poor contrast. Indeed, a more rig-
orous diffraction theory tells us that the interference pattern
disappears when (see, e.g., Sec. 5.5 of Ref. 7).

d = 1.22 , 2.25 , 3.24 , . . .
l l l

q q q
(15)

Thus as the separation of the pinholes is increased from
zero, the interference fringes disappear when d = 1.22l /q ; if
d is further increased, the fringes reappear with relatively poor
contrast and they are washed out again when d = 2.25l /q,
and so on. The distance

lw = l /q lateral coherence width (16)

gives the distance over which the beam may be assumed
to be spatially coherent and is referred to as the lateral
coherence width.

Example 17.1 On the surface of the Earth, the Sun subtends
an angle of about 32 minutes. Assume that sunlight falls normally
on a double-hole arrangement of the type shown in Fig. 17.7 and

P

S

O

O

O

P

l
S

Sl

d
Q

α

α

θ

S1

S1

S2

S2

a1 a2

a

(a)

(b)

′

′

′

Fig. 17.7 (a) Young’s double-hole interference experiment
with two independent point sources S and S ¢.
(b) The same experiment with an extended source.
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that there is a filter in front of S1S2 so that light corresponding to
l ª 5000 Å is incident on S1S2. What should be the separation between
S1 and S2 so that fringes of good contrast are observed on the screen?

Solution:

q ª 32¢ = 
32

rad 0.01 rad
180 60

p
-

¥
�

Thus the lateral coherence length

lw ª 
5 10

10

5

2
× −

−  = 0.005 cm

Therefore if the pinholes are separated by a distance which is small
compared to 0.005 cm, interference fringes of good contrast should
be observed.

17.4 MICHELSON STELLAR

INTERFEROMETER

Using the concept of spatial coherence, Michelson devel-
oped an ingenious method for determining the angular
diameter of stars. The method is based on the result that
for a distant circular source, the interference fringes will
disappear if the distance between pinholes S1 and S2 (see
Fig. 17.8) is given by [see Eq. (15)]

1.22d
l

=
q

(17)

where q is the angle subtended by the circular source as
shown in Fig. 17.8. For a star whose angular diameter is
10–7 rad, the distance d for which the fringes will disappear is

d ~ 
122 5 10

10

5

7

. ~¥ ¥

-

-

-

 600 cm

where we have assumed l ~
-  5000 Å. Obviously, for such a

large value of d, the fringe width will become extremely small.
Further, one has to use a big lens, which not only is difficult

to make, but only a small portion of which will be used. To
overcome this difficulty, Michelson used two movable mir-
rors M1 and M2 as shown in Fig. 17.9, and thus he effectively
got a large value of d. The apparatus is known as
Michelson’s stellar interferometer. In a typical experiment the
first disappearance occurred when the distance M1M2 was
about 24 ft, which gave

q ~ .
.

-

¥ ¥

¥ ¥

-122 5 10
24 12 2 54

5

 rad ~
-  0.02 second

for the angular diameter of the star. This star is known as
Arctures. From the known distance of the star, one can estimate
that the diameter of the star is about 27 times that of the Sun.

Note that a laser beam is spatially coherent across the en-
tire beam. Thus, if a laser beam is allowed to fall directly on a
double-slit arrangement (see Fig. 17.10), then as long as the
beam falls on both the slits, a clear interference pattern is
observed on the screen. This shows that the laser beam is
spatially coherent across the entire wave front.

Figure 17.11 shows the interference pattern obtained by
Nelson and Collins (Ref. 14) by placing a pair of slits of width
7.5 mm separated by a distance 54.1 mm on the end of the
ruby rod in a ruby laser. The interference pattern agrees with

S

S1

L

S2

d

f

Fig. 17.8 S is a source of certain spatial extent; S
1
 and S

2

are two slits separated by a distance d which can
be varied. The fringes are observed on the focal
plane of lens L.

ScreenLaser
beam

Fig. 17.10 If a laser beam falls on a double-slit arrangement,
interference fringes are observed on the screen.
This shows that the laser beam is spatially coher-
ent across the entire wave front.

L

M1

M2

Fig. 17.9 Michelson’s stellar interferometer.
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the theoretical calculation to within 20%. To show that the
spatial coherence is indeed due to laser action, they showed
that below threshold (of the laser) no regular interference
pattern was observed; only a uniform darkening of the pho-
tographic plate was obtained.

17.5 OPTICAL BEATS

When two tuning forks, one having a frequency of 256 Hz
and the other a frequency of 260 Hz, are made to vibrate at
the same time, we hear a frequency of about 258 Hz whose
intensity varies from zero to maximum and back with a fre-
quency of 4 Hz. This phenomenon is known as beats. It can
be easily understood by considering the superposition of
two waves having frequencies w and w + Dw :

y1 = a sin (wt + f1)
y2 = a sin [(w + Dw)t + f2] (18)

where we are assuming (for the sake of simplicity) that both the
waves have the same amplitude. The resultant displacement is
given by

y = y1 + y2

= 2a sin ( )1
1 22

1
( )

2
t

È ˘w + Dw + f + fÍ ˙Î ˚

¥ 2 1
1 1

cos ( ) ( )
2 2

t
È ˘Dw + f - fÍ ˙Î ˚

= 2a sin
1 1

sin
2 2

t t
È ˘Ê ˆ Ê ˆw + Dw DwÁ ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

(19)

where we have assumed, without any loss of generality, f1 =
p/2 = –f2. Figure 17.12(a) and (b) shows the time variation of
the terms

sin 
1

2
t

Ê ˆw + DwÁ ˜Ë ¯ and sin 
1

2
t

Ê ˆDwÁ ˜Ë ¯

respectively. In Fig. 17.12(c), we have plotted their product
which represents the resultant displacement. Notice that

although the envelope has a frequency of ( )1
2/4Dw p = Dn

[see Fig. 17.12(b)], the intensity repeats itself after every 1/Dν
seconds. This waxing and waning of sound is known as beats.

The beat phenomenon can be easily understood by ob-
serving the Moiré fringes obtained by the overlapping of two
patterns of slightly different spatial frequency (see
Fig. 17.13). Whenever the dark line of one of the patterns
falls on the bright region of the other, the two waves can be
considered to be “out of phase” and we have a broad dark
region which appears periodically.

In a similar manner, one can consider the phenomenon of
optical beats. For example, let us consider the superposition
of two fields E1 and E2 having frequencies w and w + Dw:

E1 = E01 sin (w t + f1) (20)

(b)

(a)

0.2

0.5

1.0
∞

O
pt
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 d
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ty

5 mm

Fig. 17.11 The double-slit interference pattern obtained by placing a pair of slits each 7.5 mm wide and separated
by a distance of 54.1 mm across the diameter of a ruby rod. (a) The actual interference pattern and
(b) a densitometer trace of the interference pattern. The dots correspond to a theoretical calculation
assuming that a plane wave strikes the pair of slits. (After Ref. 14. Photograph courtesy: Dr. D. F. Nelson.)

(a)

(b)

(c)

Fig. 17.12 (a), (b) Typical time variation of

sin 
È ˘Ê ˆw + DwÍ ˙Á ˜Ë ¯Î ˚

t
1

2
 and sin 

Ê ˆDwÁ ˜Ë ¯
t

1

2
, re-

spectively; (c) time dependence of the
product.
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and

E2 = E02 sin [(w + Dw)t + f2] (21)

If we assume that both fields are linearly polarized in
the same direction, then to calculate the resultant field, we
simply algebraically add E1 and E2. Thus the resultant is

E = E1 + E2

= E01 sin (wt + f1) + E02 sin [(w + Dw)t + f2]

Now

E2(t) = E2
01 sin2 (wt + f1) + E2

02 sin2 [(w + Dw)t + f2]
+ E01E02[– cos (2wt + Dwt + f1 + f2)
+ cos (Dwt + f2 – f1)] (22)

For optical frequencies, w ª 1015 Hz and therefore the first
three terms will vary with extreme rapidity and a detector
(such as the eye or the photodetector) will observe a time
average of the quantity. Now, the time average of the quantity
F(t) over a duration of 2T is defined through the following
equation:

( )F t· Ò = 
1

( )
2

T

T

F t dt
T

+

-

Ú (23)

Thus
2 2
01 1sin ( )E t· w + f Ò

= 2 2
01 1

1
sin ( )

2

T

T

E t dt
T

+

-

w + fÚ

= [ ]2
01 1

1 1
sin 2( )

2 2
T

T
E t

T
+

-

Ï ¸
- w + fÌ ˝

wÓ ˛

= 2
01 1

1 1
1 sin 2 cos 2

2 2
E T

T

Ê ˆ
- w fÁ ˜wË ¯

(24)

For averaging times T >> 1/w, the second term inside the
curly braces will be extremely small and hence can be ne-
glected. Thus we may write

2 2 21
01 1 012sin ( )E t E· w + f Ò -

�
(25)

For example, the eye would respond to changes in times of the
order of 0.05 s. Thus T ~ 0.05 s and since w ~

-  1015 Hz, we have

1

Tw

~
-  2 ¥ 10–14

which is an extremely small quantity in comparison to unity.
It is for this reason that the eye does not see any intensity
variations. Even for a fast photodetector with response times
~ 10–9 s, 1/(wT) ~ 10–6 which can also be neglected.

Returning to Eq. (22), if we carry out an averaging over
times which are long compared to 2p/w but short compared
to 2p/Dw, then we obtain

2( )E t· Ò  = 2 21 1
01 022 2E E+

+ E01 E02 cos [(Dw) t + f2 – f1] (26)

For example, if Dw ~
-  107 Hz and the photodetector reso-

lution is about 10–9 s, then the detector will record only the
average values of the first three terms on the RHS of Eq. (22);
however, it will be able to record the time variation of the last
term. This is what is shown in the above equation, leading to
the familiar phenomenon of beats.

As an example, we consider the beating of the D1 and D2

lines of sodium for which

l1 = 5890 Å (fi w1 ~
-  3.2003 ¥ 1015 Hz)

l2 = 5896 Å (fi w2 ~
-  3.1970 ¥ 1015 Hz)

Thus Dw ~
-  3.3 ¥ 1012 Hz

To observe the beating, the detector should have a re-
sponse time much smaller than 1/Dw; thus the photodetector
response time should be <~  10–13 s which is a practical im-
possibility. Therefore, to observe the beats, we must
decrease the value of Dw. Indeed the first experiment on op-
tical beats was carried out by Forrester et al. (Ref. 6) in which
they used two closely spaced frequencies by splitting a
spectral line using a magnetic field (this splitting is known as
the Zeeman effect). The weaker the magnetic field, the smaller
is the value of Dw. In the experiment of Forrester and his
coworkers, Dn was of the order of 1010 Hz, and they were able
to observe optical beats.

Obviously, for the beats to occur very slowly (so that we
may use photodetectors of much longer response times), Dw

should be made even smaller—but then we may have the coher-
ence problem. In the above analysis we assumed the phases
f1 and f2 to remain constant in time. Now for an incoherent
source, f1 and f2 will randomly change in times ~10–9 s; thus if
the detector response time is >~  10–8 s, we will observe the
average of the cos [(Dw)t + f2 – f1] term in Eq. (26). Obviously,
the average value of the cosine term is zero, and we will have

2 ( )E t· Ò = 1
2

1
201

2
02
2E E+

implying that the resultant intensity will be just the sum of
the independent intensities:

I = I1 + I2 (27)

Fig. 17.13 The Moiré pattern produced by the overlapping
of two patterns of parallel lines (of slightly
different spatial periods) show the beating
phenomenon [after Ref. 1 ].
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With the advent of laser beams, the beating experiments
have become much easier; a typical arrangement (which re-
sembles a Michelson interferometer) is shown in Fig. 17.14. A
typical beat note of the experiment of Lipsett and Mandel
(Ref. 11) is shown in Fig. 17.15. It was observed that the beat
note changed in frequency from about 33 to approximately
21 MHz in about 0.7 ms. The coherence time is ~0.5 ms which
is consistent with the duration of the spike.

We conclude this section by quoting Feynman: “With
the availability of laser sources, someone will be able to dem-
onstrate two sources shining on a wall, in which the beats
are so slow that one can see the wall get bright and dark.”

17.6 COHERENCE TIME AND

LINEWIDTH VIA FOURIER

ANALYSIS

That the frequency spread of a line is of the order of the
inverse of the coherence time [see Eq. (10)] can also be
shown by Fourier analysis. As an example, we consider a
sinusoidal displacement of duration tc. Thus we may write

y(x = 0, t) = 
0 1

2
1
2

| |

0 | |

i t
c

c

ae t

t

wÏ < tÔ
Ì

> tÔÓ
(28)

We will assume that tc is long enough that the distur-
bance consists of many oscillations. For example, for a 2 ns
pulse corresponding to n0 ~

-  5 ¥ 1014 Hz, the number of os-
cillations will be 5 ¥ 1014 ¥ 2 ¥ 10–9 = 106; i.e., the pulse will
consist of about 1 million oscillations!

Now, while discussing the Fourier transform theory (see
Secs. 8.4 and 9.5), we showed that for a time-dependent func-
tion f (t), if we define

F(w) = 
1

( )
2

i tf t e dt
+•

- w

-•
p
Ú (29)

then

f(t) = 
1

( )
2

i tF e d
+•

w

-•

w w

p
Ú (30)

Replacing f (t) by y(x = 0, t), we have

y(x = 0, t) = 
1

( )
2

i tA e d
+•

w

-•

w w

p
Ú (31)

The RHS represents a superposition of plane waves
with A(w) representing the amplitude2 of the plane wave

Laser 1

Laser 2

Photocell 2

Photocell 1

Photocell 3

Fig. 17.14 The experimental arrangement of Lipsett and
Mandel (Ref. 11) to observe optical beats using
two laser beams.

0.5 μs

Fig. 17.15 Oscilloscope trace of the sum of the intensities
of the laser beams (upper curve) and the inten-
sity of the superposed laser beam (lower curve)
(Ref. 11).

2 Notice that the integral appearing on the RHS of Eq. (30) is over negative values of w also. However, the displacement (or the electric

field) is the real part of y which is given by (omitting the 2p factor)

E = Re [y(x = 0, t)] = ( )Re | ( ) | i tA e d
•

w + f

-•

Ê ˆ
w wÁ ˜Á ˜Ë ¯

Ú

= | ( ) | cos ( )A t d
•

-•

w w + f wÚ = 
0

| ( ) | cos ( )A t d
•

w w + f wÚ  + 
0

| ( ) | cos [ ( )]A t d
•

-w w - f -w wÚ

where we have used the relation A(w) = |A(w)| eif. The above equation can always be written in the form

0

( ) cos [ ( )]C t d
•

w w + q w wÚ

Thus the amplitudes associated with the negative frequencies contribute essentially to the corresponding positive frequencies.
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corresponding to the frequency w. Equation (31) tells us that
y (x = 0, t) is the Fourier transform of A(w), and therefore
using the inverse Fourier transform [see Eq. (29)], we get

A(w) = 
1

( = 0, )
2

i tx t e dt
+•

- w

-•

y
p
Ú

= 

1
2

0

1
2

( )1

2

c

c

i tae dt
+ t

w -w

- t
p
Ú

= 
1/ 2 1

02

0

sin ( )2 ca
Ï ¸È ˘w - w tÔ ÔÊ ˆ Î ˚
Ì ˝Á ˜Ë ¯p w - wÔ ÔÓ ˛

= 
1/ 2

0

2 sin [ ( 1)]

1

a Ï ¸a W -Ê ˆ
Ì ˝Á ˜Ë ¯p w W -Ó ˛

(32)

where W ∫ 0/w w and a = 1
2 w0tc. In Fig. 17.16 we have plotted

the function

sin [ ( 1)]

1

a W -

W -
(33)

as a function of W for a = 200. One can see that the function
is sharply peaked at W = 1 (where it has a value equal to a)
and that the first zero on either side occurs at W = 1 ± p/a.
For larger values of a the function will become more sharply
peaked; the width of the peak is given by

DW 
0

= ~
Ê ˆDw p
Á ˜w aË ¯

(34)

or

Dw 0 2
~ ~

c

pw p

a t

Thus

Dn 
1

~
ct

(35)

τc

(a)

(b)

100

0

200

f ( ) =Ω
sin ( – 1)

( – 1)
α Ω
Ω

1 2

Ω

Fig. 17.16 (a) A sinusoidal displacement of duration t
c
. (b) The variation of the function

[sin(W – 1)a]/(W – 1) as a function of W for a = 200. Notice that the function is sharply
peaked around W = 1.
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consistent with Eq. (10). The above analysis shows that
a wave having a coherence time ~tc is essentially a superpo-
sition of harmonic waves having frequencies in the region
n0 – 1

2 Dn <~  n <~  n0 + 1
2 Dn, where Dn ~ 1/tc.

The condition expressed by Eq. (35) is quite general in the
sense that it is valid for a pulse of arbitrary shape. For ex-
ample, for a Gaussian pulse having a duration ~tc, the
corresponding frequency spread will again be given by
Eq. (35) (see Example 10.4).

17.7 COMPLEX DEGREE OF

COHERENCE AND FRINGE

VISIBILITY IN YOUNG’S

DOUBLE-HOLE

EXPERIMENT

In this section we will introduce the complex degree of
coherence and will show how it can be related to the contrast
of the fringes in Young’s double-hole interference experiment.
We refer to Fig. 17.2. Let Y1(P, t) and Y2(P, t) represent the
complex fields at point P due to the waves emanating from S1

and S2, respectively. The resultant displacement is given by

Y = Y1(P, t) + Y2(P, t) (36)

Now, the intensity at point P will be proportional to |Y|2

which is given by

|Y|2 = Y*
1Y1 + Y*

2Y2 + Y*
1Y2 + Y1Y

*
2

= |Y1|
2 + |Y2|

2 + 2Re(Y*
1Y2)

Since Y1 and Y2 vary with extreme rapidity, we can observe
only the average values of |Y1|2 and |Y2|2. Thus, if we write

I1 = · |Y1(P, t) |2Ò

and

I2 = · |Y2(P, t)|2Ò

then

I = I1 + I2 + 2 1 2I I Re g12 (37)

where g12 = 
· Ò

· Ò · Ò

Y Y

Y Y

1 2

1
2

2
2 1 2

*

/

( , ) ( , )

[ | ( , ) | | ( , ) | ]

P t P t

P t P t
(38)

is known as the complex degree of coherence and · . . . Ò de-
notes the time average of the quantity inside the triangular
brackets [see Eq. (23)]. The field Y1(P, t) is due to the waves

emanating from point S1 at t – r1/c, where r1 = S1P. Thus, Y1(P, t)

will be proportional to Y ( 1 1, /S t r c- ) where Y(S1, t) denotes

the field at S1 at time t. Similarly Y2(P, t) will be proportional

to ( 2 2, /S t r c- ). Thus

g12 = 
( )

*
1 1 2 2

2 2 1/ 2
1 1 2 2

( , / ) ( , / )

[ | ( , / ) | | , / | ]

S t r c S t r c

S t r c S t r c

·Y - Y - Ò

· Y - Ò · Y - Ò

Since the overall intensity distribution in the fringe pattern
does not change with time, we may write

g12 = 
*

1 2
* 2 2 1/ 2

1 2

( , ) ( , )

[ | ( , ) | | ( , ) | ]

S t S t

S t S t

·Y + t Y Ò

· Y Ò · Y Ò
(39)

where t = (r2 – r1)/c. To discuss the effect of temporal coher-
ence, we assume S, S1, and S2 to be of negligible spatial
dimensions. Further, if S1, and S2 are equidistant from S, then
we may assume that

Y(S1, t) = Y(S2, t) = Y(t) (40)

Thus, for such a case,

g12(t) = 
*

2

( ) ( )

| ( ) |

t t

t

·Y + t Y Ò

· Y Ò
(41)

Now, for an actual field we may write

Y(t) = A(t)e–i[wt+f(t)] (42)

where A(t) and f(t) are slowly varying real functions of time.
For a perfectly monochromatic beam (i.e., infinite coherence
time) A(t) and f(t) are constants so that

Y*(t + t)Y(t) = A2eiwt

Consequently

g12(t) = eiwt (43)

Thus, for such a case

I = I1 + I2 + 1 22 cosI I wt (44)

and the visibility V, which is defined by

V = 
I I
I I

max min

max min

-

+
(45)

is given by

V = 
2 1 2

1 2

I I

I I+
(46)

For I1 = I2 we have V = 1, implying that, for a perfectly
monochromatic beam, the contrast of the fringes is perfect.
On the other hand, for an ordinary light source having
tc ~ 10–10 s, the functions A(t) and f(t) can be assumed to
be constants in times <~  10–10 s. Thus, if tc >~  10–10 s, Y(t + t)
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will have no phase relationship with Y(t) and the time aver-
age ·Y*(t + t)Y(t)Ò will be zero. Thus, if the path difference
S2P ~ S1P is such that

S P S P
c

2 1~
>
~  tc (47)

the fringe pattern will not be observed.
In general, we may write

g12 = | g12 |ei(wt+b) (48)

where | g12 | and b may be assumed to be constants around
the observation point. This gives us

I = I1 + I2 + 1 2 122 | cosI I g | a (49)

where a = wt + b. Thus

Imax = I1 + I2 + 1 2 122 |I I g | (50)

and

Imin = I1 + I2 – 1 2 122 |I I g | (51)

Hence the visibility becomes

V = 
1 2max min

12
max min 1 2

2
= | |

I II I

I I I I

-
g

+ +
(52)

Thus the visibility (or the contrast) of the fringes is a di-
rect measure of |g12|. If I1 = I2, then V = |g12|. In the present
case, since S, S1, and S2 have been assumed to be points,
|g12| depends only on the temporal coherence of the beam.
For t << tc, |g12| is very close to unity and the contrast of the
fringes will be very good; for t >> tc, |g12| will be close to zero
and the contrast will be extremely poor.

Note from Eq. (43) that for a perfectly monochromatic
beam |g12| = 1 and a = wt = w(S2P ~ S1P)/c. In general, it can
be shown that 0 < |g12| < 1; |g12| = 0 implies complete incoher-
ence and |g12| = 1 implies complete coherence. In practice, if
|g12| > 0.88, the light is said to be “almost coherent.” Further, since

· Y*(t + t)Y(t)Ò = eiwt
· A(t + t)A(t)ei[f(t +t)–f(t)]

Ò

and for a nearly monochromatic source A(t) and f(t) are
already slowly varying functions of time, the quantity inside
the angular brackets (on the RHS of the above equation) will
not vary rapidly with t. Thus, we may write

g12 = |g12|eibeiwt (53)

where both |g12| and b are slowly varying functions of

t = 
S P S P

c
2 1~

(54)

For a more detailed theory of spatial and temporal coherence,
see Refs 2, 3, 7, and 20.

17.8 FOURIER TRANSFORM

SPECTROSCOPY3

In Sec. 17.7, we have showed that the contrast in an interfer-
ence pattern depends on the relative magnitudes of the optical
path difference D, vis à vis the coherence length of the source
Lc (= ctc). For a given source, the contrast varies as the optical
path difference D is varied, beginning from an extremely good
contrast for D << Lc to a very poor contrast for D >> Lc. Indeed
Fizeau in 1862 interpreted the periodic variation in contrast in
Newton’s rings, under illumination with a sodium lamp as the
lens is moved up, as being due to the presence of two lines
separated by 6 Å (see Example 15.4). Michelson in the years 1890
to 1900 performed various experiments with a number of spectral
lines. Using the Michelson interferometer, he measured visibility
as a function of optical path difference; and using a mechanical
device he himself had built, he could obtain the spectra. It is the
purpose of this section to show that from a knowledge of varia-
tion of intensity with optical path difference one can obtain the
source spectral distribution by a Fourier transformation.

The use of the Michelson interferometer for spectroscopy
was revived in the 1950s for application, especially for the
relatively complex spectra in the infrared region.

We will derive expressions for the variation of visibility with
optical path difference for a source having a certain spectral dis-
tribution, and we will show that from the interference pattern one
can obtain the spectral intensity distribution of the given source.

17.8.1 Principle of Fourier Transform

Spectroscopy

Figure 17.17 shows the arrangement used in a Fourier trans-
form spectrometer. Light from the given source is collimated

3 This section was kindly written by Prof. K. Thyagarajan.

M2

M1

Detector

Source

Fig. 17.17 The arrangement used in a Fourier transform
spectrometer.
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and enters the Michelson interferometer, and in the transmit-
ted arm we measure the intensity at the focus of the lens as
a function of the path difference D. Now, if a monochromatic
beam of intensity I0 is split into two beams (each of intensity
1
2 I0) and are made to interfere, then the resultant intensity is

given by

I = I0(1 + cos d) (55)
where

d = 
2p

D
l

 = 
2

c

pn
D (56)

represents the phase difference between the interfering
beams, and in writing Eq. (55), we used Eq. (30) of  Chap. 14
with

I1 = I2 = 1
2 I0

Thus if I(n) dn represents the intensity emitted by the source
between n and n + dn, then the intensity at O lying between n
and n + dn is given by

It(n) dn = I(n) dn

2
1 cos

c

pnDÊ ˆ+Á ˜Ë ¯ (57)

Hence, the total intensity at O corresponding to a path dif-
ference D is

It(D) = 
0

( )tI d
•

n nÚ

= 
0 0

2
( ) ( ) cosI d I d

c

• •

pnD
n n + n nÚ Ú (58)

The quantity

IT = 
0

( )I d
•

n nÚ  = 1
2

It(0) (59)

represents the total intensity of the source. We define nor-
malized transmission as

g(D) = 
I I

I
t T

T

( )D -

= 
0

1 2
( ) cos

T

I d
I c

•

pnD

n nÚ (60)

It is the quantity It(D) which is measured as a function of
D from which g (D) is evaluated. We first consider some ex-
amples giving explicit expressions for It(D) and g (D) for some
specific cases.

a. Monochromatic Source For a monochromatic source
of intensity I0 emitting at a frequency n0, we have

I(n)dn = I0 d (n – n0)dn (61)

where d (n – n0) represents the Dirac delta function. Hence

g (D) = I0

0
0

0
0

( ) cos (2 / )

( )

c d

d

•

•

d n - n pnD n

d n - n n

Ú

Ú

= cos 02

c

pn D
(62)

and

It(D) = I0 
02

1 cos
c

pn DÊ ˆ+Á ˜Ë ¯ (63)

Hence It(D) and g vary sinusoidally for all values of path dif-
ference D [see Fig. 17.18(a) and (b)], implying that the
coherence length of the source is infinite.

b. Source Emitting Two Monochromatic Lines We
now consider a source emitting two monochromatic lines at
frequencies n1 and n2, each characterized by an intensity
1
2 I0. Thus

I(n) dn = 1
2

I0[d (n – n1) + d (n – n2)] (64)

1

–1

2

1

0

0

2

2

4

4

6

6

8

8

10

10

I It ( )/Δ 0

γ ( )Δ

Δ/λ0

Δ/λ0

(a)

(b)

Fig. 17.18 (a) The variation of the total intensity at O as a
function of the path difference D for a mono-
chromatic source. (b) The corresponding cosi-
nusoidal variation of g (D) with D.
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and

g (D) = 1
0

1 2
( ) cos

2
d

c

•È pnD
d n - n nÍ

ÍÎ
Ú

2
0

2
( ) cos d

c

• ˘pnD
+ d n - n n˙

˙̊
Ú

= 1 22 21
cos cos

2 c c

pn D pn DÊ ˆ+Á ˜Ë ¯

= cos
1 22
2c

n + nÊ ˆp DÁ ˜Ë ¯

 ¥ cos
1 22
2c

n - nÊ ˆp DÁ ˜Ë ¯ (65)

and

It(D) = I0
1 21 cos 2
2c

È n - nÊ ˆ+ p DÁ ˜Í Ë ¯Î

¥ 1 2cos 2
2c

n + n ˘Ê ˆp DÁ ˜ ˙Ë ¯ ˚
(66)

Such a variation of It(D) and g (D) with D is shown in
Fig. 17.19. From Eq. (65) we note that g (D) corresponds to an
amplitude-modulated sinusoidal variation. The sinusoidal
variation has a period

p = 
1 2

2c

n + n
 = 

1 2
0

1 2

2l l
- l

l + l
� (67)

where l0 (~
- l1

~
- l2) is the average wavelength. The modula-

tion amplitude has zeros at D values given by

1 22
2c

n - n
p D = 

1

2
m

Ê ˆ+ pÁ ˜Ë ¯
or

D = 
1 2

1

2

c
m

Ê ˆ+Á ˜Ë ¯ n - n (68)

Hence the minimum path difference at which the visibility
vanishes is given by

Dm = 
1 22( )

c

n - n
 = 

2

c

dn
(69)

which corresponds to the coherence length of the source.
Expressing dn in terms of dl, we have

Lc = Dm = 
2

2

l

dl
(70)

consistent with Eq. (2).

The difference in path difference between two consecu-
tive positions of the disappearance of the fringes is
c/dn = l2/dl. As a simple consequence of this, we may con-
sider Newton’s rings experiment with a sodium lamp. If we
assume that the sodium lamp emits two discrete wavelengths
l1 and l2, then as we raise the convex lens above the glass
plate, we should have a periodic appearance of fringes as we
discussed in Example 15.3.

17.8.2 Inversion to Recover I(n) from g(D)

In an actual experiment, we measure It(D) and IT. Thus
Eq. (60) has to be inverted to obtain the source spectral dis-
tribution I(n) from the measured g (D). To do this, we just

1

0

2

1

0

–1

I
I

t(
)/Δ

0
γ

(
)Δ

0 2

2

4

4

6

6

8

8

10

10

Δ/λ0

Δ/λ0

(a)

(b)

Fig. 17.19 (a) The variation of the total intensity at O as a
function of the path difference D for a source
emitting two monochromatic lines. (b) The cor-
responding variation of g (D) with D.
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multiply Eq. (60) by cos 2 /cpn D¢ and integrate over D. Thus

0

2
( ) cos d

c

•

pn D¢
g D DÚ

= 
0 0

1 2 2
( )cos cos

T

d d I
I c c

• •

pnD pn D¢
D n nÚ Ú

= 
0 0

1 2 2
( ) cos cos

T

d I d
I c c

• •

pnD pn D¢
n n DÚ Ú

Now,

0

2 2
cos cos d

c c

•

pnD pn D¢
DÚ

= 
1 2 2

cos cos
2

d
c c

+•

-•

pnD pn D¢
DÚ

since the integrand is an even function of D. Writing the two
cosine terms in terms of exponentials and using

2 ( ) /i ce d
+•

± p n -n D¢

-•

DÚ = 
c

n - n¢Ê ˆd Á ˜Ë ¯  = cd(n – n¢) (71)

and

2 ( ) /i ce d
+•

± p n +n D¢

-•

DÚ = 0 (72)

(since n and n¢ are positive), we obtain

0

2
( ) cos d

c

•

pn D¢
g D DÚ = 

0

( ) ( )
4 T

c
I d

I

•

d n - n n n¢Ú

= ( )
4 T

c
I

I
n¢ (73)

Hence I (n) = 
0

4 2
( )cosTI d

c c

•

pnD
g D DÚ (74)

Thus one can obtain the source spectral distribution I(n)
from the measured g (D) just by a cosine transformation. Such
an inversion from g (D) to I(n) is usually performed using a
computer.

17.8.3 Resolution

From Eq. (74), it follows that to obtain I(n) one must measure
g (D) for all values of path difference D lying between 0 and •.
Since in an actual experiment there is a maximum limit to path

differences that can be introduced, this maximum path differ-
ence determines the resolution obtainable in the estimated
I(n). To estimate the resolution, we consider a perfectly
monochromatic beam of frequency n0 incident on the inter-
ferometer. We have seen that for such a case g (D) varies with
D as given by Eq. (62). Now in the experiment if Dm is the
maximum path difference measured, then g (D) is

g (D) = 
02

cos 0

0 otherwise

mc

pn DÏ
< D < DÔ

Ì
ÔÓ

(75)

Hence using Eq. (74), we have

I(n) = 0

0

24 2
cos cos

m

TI d
c c c

D

pn D pnDÊ ˆ Ê ˆ DÁ ˜Á ˜ Ë ¯Ë ¯Ú

  = 0 0

0

2 ( ) 2 ( )2
cos cos

m

TI d
c c c

D

p n + n D p n - n DÈ ˘
+ DÍ ˙

Î ˚
Ú

= 

0 0

0 0

2 ( ) 2 ( )
sin sin2

2 2
( ) ( )

m m

TI c c
c

c c

p n + n D p n - n DÈ ˘
Í ˙

+Í ˙p pÍ ˙n + n n - n
Î ˚

Since n and n0 are both positive and much much greater than
c/D, the first term in the RHS within brackets is negligible
and we obtain

I(n)

0

0

2 ( )
sin2

2
( )

m

TI c
c

c

p n - n DÈ ˘
Í ˙

- Í ˙pÍ ˙n - n
Î ˚

�

(76)

The above estimated source spectrum is similar to that shown
in Fig. 17.16. The spectrum is peaked at n0, and the first zero
appears at

02 ( )

c

p n - n

Dm = ±p

or

n = n0 ± c

m2D
(77)

Thus although the incident beam is monochromatic, the in-
version process gives us a finite spectral width due to a finite
value of Dm.

If the incident source contains two frequencies, then we
may use the Rayleigh criterion and define the minimum re-
solvable frequency separation to be the frequency width
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from the peak to the first zero in I(n). Hence

dn = c

m2D
(78)

Hence, the larger the maximum path difference Dm over which
g is measured, the higher will be the resolution.

As an example, if Dm = 5 cm, then

dn = 
3 10

2 5

10
¥

¥

 = 3 GHz

At l = 1 mm, this corresponds to dl = 0.1 Å.

Example 17.2 We consider a quasi-monochromatic source
characterized by a Gaussian spectral distribution given by

I(n) = 
2 2

0( ) /( )
0

1
I e- n-n dn

p dn

= 
2 2

0( )0I
e- n-n t

t

p

(79)

Here dn = 1/t characterizes the width of the spectrum since I(n)
drops to 1/e of the value at n = n0 at n = n0 ± dn. For a quasi-
monochromatic source dn/n0 << 1. Thus

IT = 
0

( )I d
•

n nÚ

= 
2 2

0( )0

0

I
e d

•

- n-n t
t

n

p
Ú

2 2
0( )0I

e d
+•

- n-n t

-•

- t n

p
Ú� (80)

where in the last step we used the condition 1/t = dn << n0. If we
now use the integral

2x xe dx
+•

-a + b

-•

Ú = 
1/ 2 2

exp Re 0
4

Ê ˆp bÊ ˆ a >Á ˜ Á ˜Ë ¯a aË ¯
(81)

we obtain

IT = I0 (82)

Now,

0

2
( )cosI d

c

•

pnD

n nÚ

= 
2 2

0( )0

0

2
cos

I
e d

c

•

- n - n t
t pnD

n
p
Ú

~
-

2 2
0( )

0
2

cosI e d
c

+•

- n - n t

-•

t pnD

n

p
Ú

= 
2 2

0( ) 2 /
0 Re i cI e e d

+•

- n - n t pnD

-•

t
n

p
Ú

= 
2 2

02 / 2 /
0 Re i c i cI e e e d

+•
p n D -x t pxD

-•

t
x

p Ú x = n – n0

= I0 Re 0

2 2
2 /

2 2expi ce
c

p n D

È ˘Ê ˆp D
-Í ˙Á ˜tË ¯Í ˙Î ˚

where we have used Eq. (81) with a = t and b = i2pD/c. Thus,

0

2
( ) cosI d

c

•

pnD

n nÚ =
2 2

0
0 2 2

2
exp cosI

cc

Ê ˆ pn Dp D
-Á ˜tË ¯

(83)

Hence,

g (D) =
2 2

0
2 2

2
exp cos

cc

Ê ˆ pn Dp D
-Á ˜tË ¯

(84)

Figure 17.20 shows the source spectral distribution as well as
the variation of g (D) with D. Notice that in this case for path dif-
ferences D << c/dn, g (D) ~

-  cos (2pn0D/c) much like that for a

0

1

–1

γ
(

)Δ
I

(
)ν

Δ/λ0

ν

1 2

ν00

Fig. 17.20 Spectral distribution and the variation of g (D)
with D for a source characterized by Eq. (79).
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monochromatic source. But as the path difference increases, the
modulation amplitude of g (D) is reduced. For good contrast, one
must have

D << ct = 
c

dn
(85)

We may thus define the coherence length as

Lc = ct = 
c

dn
(86)

consistent with Eq. (2).

Example 17.3 Consider a quasi-monochromatic source char-
acterized by a spectral distribution

I(n) = 
1 1

0 0 02 2

1

0 otherwise

I
Ï

n - dn < n < n + dnÔ
dnÌ

ÔÓ

(87)

Calculate g (D) and show that again for path differences
D >> c/dn, the contrast will be very poor.

Solution:

IT = 
1

dn

1
0 2

1
0 2

0I d

+ dn n

n - dn

nÚ  = I0 (88)

0

2
( )cosI d

c

•

pnD

n nÚ  = 0 02 sin /
cos

/

I c

c c

pn D pdnD

dn pD

Thus

g (D) = 
0

1 2
( )cos

T

I d
I c

•

pnD

n nÚ

= 02sin ( / )
cos

/

c

c c

pn DpdnD

pdnD
(89)

For D << c/dn, g (D) ~
-

 cos (2pn0 D/c) and the contrast vanishes for

D = 
c

dn
(90)

which represents the coherence length. Plot g (D) as a function of D,
and notice that unlike in the earlier example, in this case g (D) does
not monotonically reduce to zero.

For more details on Fourier transform spectroscopy, see
Refs. 10, 12, and 18.

Summary

� The coherence time  tc represents the average duration of the
wave trains; i.e., the electric field remains sinusoidal for times
of the order of tc.

� The length of the wave train, given by

Lc = ctc

(where c is the speed of the light in free space) is referred to
as the coherence length. For example, for the red cadmium
line (l = 6438 Å), tc ~ 10–9 s; the corresponding coherence
length is ~30 cm.

� The lateral coherence width lw of an extended incoherent
source represents the distance over which the beam may be
assumed to be spatially coherent; it is given by

lw ª l

q

where q is the angle subtended by the source at the point of
observation.

� Using the concept of spatial coherence, Michelson developed
an ingenious method for determining the angular diameter of
stars. The method is based on the result that for a distant cir-
cular source, the interference fringes (formed by two
pinholes) will disappear if the distance between the two pin-
holes is given by

d = 1.22
l

q

where q is the angle subtended by the circular source.
� Using two laser beams, it is possible to observe optical beats.
� In the two-beam interference pattern, the contrast of the

interference fringes varies as the optical path difference D is
varied, beginning from an extremely good contrast for D << Lc

to a very poor contrast for D >> Lc.
� Indeed from a knowledge of variation of intensity with opti-

cal path difference, one can obtain the source spectral
distribution by a Fourier transformation.

Problems

17.1 The orange krypton line (l = 6058 Å) has a coherence
length of ~20 cm. Calculate the line width and the fre-
quency stability.

[Ans: ~0.018 Å, ~3 ¥ 10–6]

17.2 Laser line widths as low as 20 Hz have been obtained. Cal-
culate the coherence length and the frequency stability.
Assume l = 6328 Å.

17.3 In Sec. 17.4 we mentioned that the lateral coherence width
of a circular source is 1.22l /q. It can be shown that for
good coherence (i.e., for a visibility of 0.88 or better), the
coherence width should be £ 0.3l/q. Assuming that the
angular diameter of the Sun is about 30 minutes, calculate
the distance between two pinholes which would produce a
clear interference pattern.

[Ans: ~ 0.02 mm]

17.4 Calculate the distance at which a source of diameter 1 mm
should be kept from a screen so that two points separated by
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a distance of 0.5 mm may be said to be coherent. Assume
l = 6 ¥ 10–5 cm.

17.5 In a Michelson interferometer experiment, it is found that
for a source S, as one of the mirrors is moved away from the
equal path length position by a distance of about 5 cm, the
fringes disappear. What is the coherence time of the radia-
tion emerging from the source?

17.6 If we perform Young’s double-hole experiment using white
light, then only a few colored fringes are visible. Assuming
that the visible spectrum extends from 4000 to 7000 Å,
explain this phenomenon qualitatively on the basis of
coherence length.

17.7 Using the stellar interferometer, Michelson observed for
the star Betelgeuse that the fringes disappear when the dis-
tance between the movable mirrors is 25 in. Assuming
l ~

-  6 ¥ 10–5 cm, calculate the angular diameter of the
star.

17.8 Consider Young’s double-hole experiment as shown in
Fig. 17.2. The distance SS1 ~

-  1 m and S1S2 ª 0.5 mm.
Calculate the angular diameter of the hole S which will pro-
duce a good interference pattern on the screen. Assume
l = 6000 Å.

17.9 Assume a Gaussian pulse of the form

Y(x = 0, t) = E0 exp 0

2

22
i tt

e w
Ê ˆ
-Á ˜tË ¯

Show that the Fourier transform is given by

A(w) = E0t exp 2 2
0

1
( )

2
È ˘
- w - w tÍ ˙
Î ˚

You will have to use the following integral:

2exp ( )x x dx
+•

-•

-a + bÚ  = 
1/ 2 2

exp
4

Ê ˆp bÊ ˆ
Á ˜ Á ˜Ë ¯a aË ¯

a > 0

Show that the temporal coherence is ~t. Assume t >>
1/w0, plot the Fourier transform A(w) (as a function of w)
and interpret it physically. Show that the frequency spread
Dw ~ 1/t.

17.10 In Prob. 17.9, assume l0 = 6 ¥ 10–5 cm and t ~ 10–9 s. Cal-
culate the frequency components predominantly present in
the pulse, and compare than with the case corresponding to
t ~ 10–6 s.
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PART 4
DiffractionDiffractionDiffractionDiffractionDiffraction

Chapters 18, 19, and 20  cover the very important area of diffraction and discuss the
principle behind topics such as diffraction divergence of laser beams, resolving power of
telescopes, laser focusing, spatial frequency filtering, and X-ray diffraction. Chapter 21
discusses holography, giving the underlying principle and many applications. Dennis
Gabor received the 1971 Nobel Prize in Physics for discovering the principle of holography.
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18.1 INTRODUCTION

Consider a plane wave incident on a long narrow slit of width b
(see Fig. 18.1). According to geometrical optics, one expects re-
gion AB of screen SS¢ to be illuminated and the remaining portion
(known as the geometrical shadow) to be absolutely dark. How-
ever, if the observations are made carefully, then one finds that if
the width of the slit is not very large compared to the wavelength,
then the light intensity in region AB is not uniform and there is
also some intensity inside the geometrical shadow. Further, if the
width of the slit is made smaller, larger amounts of energy reach
the geometrical shadow. This spreading out of a wave when it
passes through a narrow opening is usually referred to as dif-
fraction, and the intensity distribution on the screen is known
as the diffraction pattern. We will discuss the phenomenon of

No one has ever been able to define the difference between interference and diffraction satis-
factorily. It is just a question of usage, and there is no specific, important physical difference
between them. The best we can do is, roughly speaking, is to say that when there are only a few
sources, say two, interfering, then the result is usually called interference, but if there is a large
number of them, it seems that the word diffraction is more often used.

—Richard Feynman, Feynman Lectures on Physics, Vol. 1

FRAUNHOFER

DIFFRACTION: I

Chapter

Eighteen

Important Milestones
1819 Joseph Fraunhofer demonstrated the diffraction of light by gratings which were initially made by winding fine

wires around parallel screws.

1823 Fraunhofer published his theory of diffraction.

1835 George Airy calculated the (Fraunhofer) diffraction pattern produced by a circular aperture.

diffraction in this chapter and will show that the spreading out
decreases with a decrease in wavelength. Indeed, since the light
wavelengths are very small (l ~ 5 ¥ 10–5 cm), the effects due to
diffraction are not readily observed.

Actually, there is not much of a difference between the
phenomena of interference and diffraction; indeed, interfer-
ence corresponds to the situation when we consider the
superposition of waves coming out from a number of point
sources, and diffraction corresponds to the situation when
we consider waves coming out from an area source such as a
circular or rectangular aperture or even a large number of
rectangular apertures (such as the diffraction grating).

The diffraction phenomena are usually divided into
two categories: Fresnel diffraction and Fraunhofer diffraction.

In the Fresnel class of diffraction the source of light
and the screen are, in general, at a finite distance from the dif-
fracting aperture [see Fig. 18.2(a)]. In the Fraunhofer class of
diffraction, the source and the screen are at infinite distances
from the aperture; this is easily achieved by placing the source
on the focal plane of a convex lens and placing the screen on
the focal plane of another convex lens [see Fig. 18.2(b)]. The
two lenses effectively moved the source and the screen to in-
finity because the first lens makes the light beam parallel and
the second lens effectively makes the screen receive a parallel
beam of light. It turns out that it is much easier to calculate the

b

S

A
B

S¢

Fig. 18.1 If a plane wave is incident on an aperture, then

according to geometrical optics a sharp shadow

will be cast in region AB of the screen.
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intensity distribution of a Fraunhofer diffraction pattern, which
we will do in this chapter. Further, the Fraunhofer diffraction
pattern is not difficult to observe. All that one needs is an
ordinary laboratory spectrometer; the collimator renders a par-
allel beam of light, and the telescope receives parallel beams of
light on its focal plane. The diffracting aperture is placed on
the prism table. In Chap. 20 we will study the Fresnel class of
diffraction and will discuss the transition from the Fresnel re-
gion to the Fraunhofer region.

18.2 SINGLE-SLIT DIFFRACTION

PATTERN

We will first study the Fraunhofer diffraction pattern pro-
duced by an infinitely long slit, of width b. A plane wave is
assumed to fall normally on the slit, and we wish to calculate
the intensity distribution on the focal plane of lens L [see
Fig. 18.3(a)]. We assume that the slit consists of a large num-
ber of equally spaced point sources and that each point on

Point
source

Point
source

S

S¢
(a)

(b)

f f
L

Fig. 18.2 (a) When either the source or the screen (or both)

is at a finite distance from the aperture, the dif-

fraction pattern corresponds to the Fresnel class.

(b) In the Fraunhofer class both the source and

the screen are at infinity.

Screen

Diffraction
pattern

Incident

plane wave

Long narrow slit

Lens

f

A1

A2

A3

A¢2

q
D

B1

B2

B3
b

L

P

f

(b)

(a)

Fig. 18.3 (a) Diffraction of a plane wave incident normally on a long narrow slit of width b. Notice that the

spreading occurs along the width of the slit. (b) To calculate the diffraction pattern, the slit is

assumed to consist of a large number of equally spaced points.
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the slit is a source of Huygens’ secondary wavelets which in-
terfere with the wavelets emanating from other points. Let
the point sources be at A1, A2, A3, . . ., and let the distance
between two consecutive points be D [see Fig. 18.3(b)].
Thus, if the number of point sources is n, then

b = (n – 1)D (1)

We will now calculate the resultant field produced by these n
sources at point P, with P being an arbitrary point (on the
focal plane of the lens) receiving parallel rays making an
angle q with the normal to the slit [see Fig. 18.3(b)]. Since the
slit actually consists of a continuous distribution of sources,
we will, in the final expression, let n go to infinity and D go to
zero such that nD tends to b.

Now, at point P, the amplitudes of the disturbances reach-
ing from A1, A2, . . . will be very nearly the same because point
P is at a distance which is very large in comparison to b [see
Fig. 18.3(b)]. However, because of even slightly different
path lengths to point P, the field produced by A1 will differ in
phase from the field produced by A2.

For an incident plane wave, points A1, A2, . . . are in phase,
and, therefore, the additional path traversed by the distur-
bance emanating from point A2 will be A2A2¢, where A2¢ is the
foot of the perpendicular drawn from A1 on A2B2. This fol-
lows from the fact that the optical paths A1B1P and A2¢B2P
are the same. If the diffracted rays make an angle q with the
normal to the slit, then the path difference is

A2A2¢ = D sin q

The corresponding phase difference f is given by

f = 
2p

l
D sin q (2)

Thus, if the field at point P due to the disturbance emanating
from point A1 is a cos wt, then the field due to the distur-
bance emanating from A2 is a cos (wt – f). Now the
difference in the phases of the disturbance reaching from
points A2 and A3 will also be f, and thus the resultant field at
point P is given by

E = a[cos wt + cos (wt – f) + . . . + cos [(wt – (n – 1)f)] (3)

where

f = 
2p

l
D sin q

Now, we showed in Sec. 11.7 that

cos wt + cos (wt – f) + . . . + cos [wt – (n – 1)f]

= 
sin ( /2) 1

cos ( 1)
sin ( /2) 2

n
t n

f È ˘
w - - fÍ ˙f Î ˚

(4)

Thus

E = E0 cos 1
2 ( 1)t nÈ ˘w - - fÎ ˚ (5)

where the amplitude E
q
 of the resultant field is given by1

E
q

= a
sin ( /2)

sin ( /2)

nf

f
(6)

In the limit of n Æ • and D Æ 0 in such a way that nD Æ b,
we have

2

nf
= sin sinn b

p p
D qÆ q

l l

Further

f = 
2

sin
p
D q

l
 = 

2 sinb

n

p q

l

will tend to zero, and, so we may write

Eq ª 
( )sin 2

2

a nf

f

= na 
( )

( )

sin sin

sin

b

b

p q l

p q l

=  A 
sin b

b
(7)

where2

A = na
and

b = 
sinbp q

l
(8)

Thus

E = A
sin

cos ( )t
b

w - b
b

(9)

The corresponding intensity distribution is given by

I = I0

2

2

sin b

b
(10)

where I0 represents the intensity at q = 0.

18.2.1 Positions of Maxima and Minima

The variation of the intensity with b is shown in Fig. 18.4(a). It
is obvious from Eq. (10) that the intensity is zero when

b = mp m π 0 (11)

1 Equation (6) represents the amplitude distribution due to the interference of n point sources. Thus, for n = 2, the amplitude Eq

becomes cos (f/2), giving rise to cos2 (f/2) intensity distribution [cf. Eq. (13) of Chap. 14]. Notice that if we have a large number of
equidistant sources oscillating in phase, then the propagation is only in certain directions where the displacements add in phase.

2 Note that in the limit n Æ • and a Æ 0 the product na tends to a finite limit.
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When b = 0, (sin )b b  = 1 and I = I0, which corresponds to

the maximum of the intensity. Substituting the value of b, one
obtains

b sin q = ml m = ±1, ±2, ±3, . . . (minima) (12)

as the conditions for minima. The first minimum occurs at
q = ± sin–1 ( / )bl ; the second minimum occurs at q =
± sin–1 (2 / )bl , etc. Since sin q cannot exceed unity, the maxi-
mum value of m is the integer which is less than (and closest
to) / .b l

The positions of minima can be directly obtained by
simple qualitative arguments. Let us consider the case m = 1.
The angle q satisfies the equation

b sin q = l (13)

We divide the slit into two halves as shown in Fig. 18.5.
Consider two points A and A¢ separated by a distance b/2.
Clearly the path difference between the disturbances (reach-

ing the point P) emanating from A and A¢ is ( / 2)b  sin q,

which in this case is / 2l . The corresponding phase differ-
ence will be p, and the resultant disturbance will be zero.
Similarly, the disturbance from point B will be canceled by the

disturbance reaching from point B¢. Thus the resultant dis-
turbance due to the upper half of the slit will be canceled by
the disturbances reaching from the lower half, and the result-
ant intensity will be zero. In a similar manner when

b sin q = 2l (14)

we divide the slit into four parts; the first and second quarters
cancel each other, and the third and fourth quarters cancel
each other. Similarly when m = 3, the slit is divided into six
parts, and so on.

To determine the positions of maxima, we differentiate
Eq. (10) with respect to b and set it equal to zero. Thus

dI

db
= 

2

0 2 3

2 sin cos 2 sin
I

Ê ˆb b b
-Á ˜b bË ¯

 = 0

or

sin b (b – tan b ) = 0 (15)

The condition sin b = 0, or b = mp (m π 0), corresponds to
minima. The conditions for maxima are roots of the transcen-
dental equation

tan b = b (maxima) (16)

The root b = 0 corresponds to the central maximum. The other
roots can be found by determining the points of intersections
of the curves y = b and y = tan b [see Fig. 18.4(b)]. The inter-
sections occur at b = 1.43p, b = 2.46p, etc., and are known as
the first maximum, the second maximum, etc. Since

2
sin 1.43

1.43

Ê ˆp
Á ˜pË ¯

0

p

p
b

b2p

2p

3p

3p

y = tan b

y = tan b

y = by

Amplitude distribution

Intensity distribution

(a)

(b)

Fig. 18.4 (a) The intensity distribution corresponding to

the single-slit Fraunhofer diffraction pattern.

(b) Graphical method for determining the roots

of the equation tan b = b.

q
A

A¢
B ¢

B

b/2

b

Fig. 18.5 The slit is divided into two halves for deriving

the condition for the first minimum.
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is about 0.0496, the intensity of the first maximum is about
4.96% of the central maximum. Similarly, the intensities of the
second and third maxima are about 1.68% and 0.83% of the
central maximum, respectively.

Example 18.1 A parallel beam of light is incident normally
on a narrow slit of width 0.2 mm. The Fraunhofer diffraction pattern
is observed on a screen which is placed at the focal plane of a convex
lens whose focal length is 20 cm. Calculate the distance between the
first two minima and the first two maxima on the screen. Assume
that l = 5 ¥ 10–5 cm and that the lens is placed very close to the slit.

Solution:

b

l
= 

5 10

2 10

5

2
×
×

−

−  = 2.5 ¥ 10–3

Now, the conditions for diffraction minima are given by
sin q = ml/b. We assume q to be small (measured in radians) so that
we may write sin q ª q (an assumption which will be justified by
subsequent calculations); thus, on substituting the value of l/b, we
get

q ~−  2.5 ¥ 10–3 and 5 ¥ 10–3 rad

as the angles of diffraction corresponding to the first and second
minima, respectively. Notice that since

sin (2.5 ¥ 10–3) = 2.4999973 ¥ 10–3

the error in the approximation sin q ~−  q is about 1 part
in 1 million! These minima will be separated by a distance
(5 ¥ 10–3 – 2.5 ¥ 10–3) ¥ 20 = 0.05 cm on the focal plane of the
lens. Similarly, the first and second maxima occur at

b = 1.43p and 2.46p

respectively. Thus

b sin q = 1.43l and 2.46l

or

sin q = 1.43 ¥ 2.5 ¥ 10–3 and 2.46 ¥ 2.5 ¥ 10–3

Consequently, the maxima will be separated by the distance given by

(2.46 – 1.43) ¥ 2.5 ¥ 10–3 ¥ 20 ~−  0.05 cm

Example 18.2 Consider, once again, a parallel beam of light
(l = 5 ¥ 10–5 cm) to be incident normally on a long narrow slit of
width 0.2 mm. A screen is placed at a distance of 3 m from the slit.
Assuming that the screen is so far away that the diffraction is es-
sentially of the Fraunhofer type, calculate the total width of the
central maximum.

Solution: As in Example 18.1, the first minimum occurs at
q ~−  2.5 ¥ 10–3 rad; thus the total width of the central maximum is
approximately given by

2 ¥ 3 ¥ tan (2.5 ¥ 10–3) ~−  0.015 m

In Fig. 18.6, we have given the actual single-slit diffraction pat-
tern (as seen on a screen) for the following values of slit widths:
8.8 ¥ 10–3, 1.76 ¥ 10–2, 3.5 ¥ 10–2, and 7.0 ¥ 10–2 cm. The light
wavelength used was 6328 Å = 6.328 ¥ 10–5 cm. We note the
following two points:

1. The spreading is only in the direction of the width
of the slit. This is so because the lengths of the slits were
very large compared to their widths.

2. The values of l/b corresponding to the four slit widths are
7.191 ¥ 10–3, 3.595 ¥ 10–3, 1.808 ¥ 10–3, and 0.904 ¥ 10–3.
Thus the diffraction angle at which the first minimum will
occur is

q ~−  sin q = 7.191 ¥ 10–3, 3.595 ¥ 10–3,

1.808 ¥ 10–3, and 0.904 ¥ 10–3

where the angles are measured in radians.3 The intensity distributions
predicted by Eq. (10) are given in Fig. 18.7 for b = 8.8 ¥ 10–3 cm and

Fig. 18.6 The single-slit diffraction patterns correspond-

ing to b = 0.0088, 0.0176, 0.035, and 0.070 cm,

respectively. The wavelength of the light used

is 6.328 ¥ 10
–5

 cm (After Ref. 17; used with

permission).

3 Figure 18.6 corresponds to the photographic film being 15 ft away from the slit. Thus it records the Fraunhofer pattern (see also Sec. 20.7);
and for b = 8.8 ¥ 10–3, 1.76 ¥ 10–2, 3.5 ¥ 10–2, and 7.0 ¥ 10–2 cm, the first minima occur at distances of 3.288, 1.644, 0.827, and
0.413 cm, respectively, from the central maximum.
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b = 0.0088 cm

= 6.328 10 cml ¥ –5

b = 0.0176 cm

= 6.328 10 cml ¥ –5

(a)

(b)

q (degrees)

q (degrees)

Fig. 18.7 The intensity distribution as calculated by using

Eq. (10) for b = 0.0088 cm and 0.0176 cm (l =

6.328 ¥ 10
–5

 cm).

Lens

Lens

Airy
pattern

Circular
aperture

f

f

Fig. 18.8 Experimental arrangement for observing the

Fraunhofer diffraction pattern by a circular aperture.

a plane wave is incident normally on the circular aperture, a
lens whose diameter is much larger than that of the aperture
of is placed close to the aperture, and the Fraunhofer diffrac-
tion pattern is observed on the focal plane of the lens.
Because of the rotational symmetry of the system, the dif-
fraction pattern will consist of concentric dark and bright
rings; this diffraction pattern (as observed on the back focal
plane of the lens) is known as the Airy pattern. In
Fig. 18.9(a) and (b) we have shown the Airy patterns corre-
sponding to the radius of the circular aperture of 0.5 and
0.25 mm, respectively. The detailed derivation of the diffrac-
tion pattern for a circular aperture is somewhat complicated
(see Sec. 19.7); we give here the final result: The intensity
distribution is given by

I = I0 
2

12 ( )JÈ ˘
Í ˙
Î ˚

v
v

(19)

where

v = 
2p

l
a sin q (20)

a being the radius of the circular aperture, l the wavelength
of light, and q the angle of diffraction; I0 is the intensity at
q = 0 (which represents the central maximum) and J1(v) is
known as the Bessel function of the first order. On the focal
plane of the convex lens

v ª 
2 2 1/ 22 ( )x y

a
f

p +

l
(21)

where f is the focal length of the lens. For those not familiar
with Bessel functions, the variation of J1(v) is somewhat like
a damped sine curve (see Fig. 18.10), and although J1(0) = 0,
we have

1

0

2 ( )
Lim

J
Æv

v
v

= 1

1.76 ¥ 10–2 cm. For b >> l, most of the energy (of the diffracted
beam) is contained between the first two minima, i.e., for

b

l
-  <~  q <~  

b

l
(17)

(where q is measured in radians). Thus the divergence angle (which
contains most of the energy) is given by

Dq ~ 
b

l
(18)

For very small values of b, the light almost uniformly spreads out
from the slit. Also in the limit of l Æ 0, Dq Æ 0 and the diffraction
effects are absent.

18.3 DIFFRACTION BY A

CIRCULAR APERTURE

In Sec. 18.2 we showed that when a plane wave is incident
on a long narrow slit (of width b), then the emergent wave
spreads out (along the width of the slit) with angular diver-
gence ~l/b. In a similar manner one can discuss the
diffraction of a plane wave by a circular aperture. Figure 18.8
shows the arrangement for observing the diffraction pattern;
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similar to the relation

0

sin
Lim
x

x

xÆ

= 1

Other zeros of J1(v) occur at

v = 3.832, 7.016, 10.174, . . .

In Fig. 18.11 we have plotted the function
2

12 ( )JÈ ˘
Í ˙
Î ˚

v
v

which represents the intensity distribution corresponding to
the Airy pattern. Thus the successive dark rings in the Airy
pattern (see Fig. 18.9) will correspond to

v = 
2p

l
 a sin q

= 3.832, 7.016, 10.174, . . . (22)

or

 sin q = 
3.832 7.016

, , . . .
2 2a a

l l

p p
(23)

If f represents the focal length of the convex lens, then

Radii of dark rings = f tan q ª 
3.832 7.016

, , . . .
2 2

f f

a a

l l

p p
(24)

                      

a = 0.5 mm a = 0.25 mm

1 mm 1

(a) (b)

mm

1 mm

Fig. 18.9 Computer-generated Airy patterns; (a) and (b) correspond to a = 0.5 and 0.25 mm, respectively, at

the focal plane of a lens of focal length 20 cm (l = 0.5 mm).

0.5

0
v

J1( )v

10.174

7.0163.832

4 8 12

Fig. 18.10 The variation of J
1

(v) with v.

0.5

1

0

2 ( )J1 v

v

2

1284

3.832 7.016

a sin qv = 2p
l

Fig. 18.11 The intensity variation associated with the

Airy pattern.
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where we have assumed q to be small so that tan q ª sin q.
The Airy patterns shown in Fig. 18.9(a) and (b) correspond
to a = 0.5 and 0.25 mm, respectively; both figures correspond
to l = 5000 Å and f = 20 cm. Thus

Radius of first dark ring ª 0.12 and 0.24 mm

corresponding to a = 0.5 and 0.25 mm, respectively. Detailed
mathematical analysis shows that about 84% of the energy is
contained within the first dark ring (see Sec. 19.7); thus the
angular spread of the beam is approximately given by

Dq ª 
0.61

D D

l l
ª (25)

where D (= 2a) represents the diameter of the aperture. Com-
paring Eqs. (18) and (25), we see that the angular divergence
associated with the diffraction pattern can be written in the
following general form:

Dq ~
linear dimension of aperture

l (26)

An interesting application of the above phenomenon is
shown in Fig. 18.12. A layperson would expect that to obtain
greater directionality of sound waves, one should use a loud-
speaker of small aperture as shown in Fig. 18.12(a); however,

l
D

~

(a) (b)

Fig. 18.12 The directionality of sound waves increases

with an increase in the diameter of the speaker.

Fig. 18.13 If an obstacle with a small gap is placed in the

tank, the ripples emerge in an almost semicir-

cular pattern, the small gap acting almost as a

point source. If the gap is large, however, the

diffraction is much more limited. Small, in this

context, means that the size of the obstacle is

comparable to the wavelength of the ripples.

this will result in a greater diffraction divergence and only a
small fraction of energy will reach the observer. On the other
hand, if one uses a loudspeaker of larger diameter, greater
directionality is achieved [see Fig. 18.12(b)].

In Fig. 18.13 we have shown that if an obstacle with
a small gap is placed in the tank, the ripples emerge in an al-
most semicircular pattern, the small gap acting almost as a
point source. If the gap is large, however, the diffraction is
much more limited. Small, in this context, means that the size
of the obstacle is comparable to the wavelength of the ripples.

Example 18.3 Calculate the radii of the first two dark rings
of the Fraunhofer diffraction pattern produced by a circular aper-
ture of radius 0.02 cm at the focal plane of a convex lens of focal
length 20 cm. Assume l = 6 ¥ 10 –5 cm.

Solution: The first dark ring occurs at

q ª sin q = 
122 6 10

2 0 02

5.
.

× ×
×

−
 ª 1.8 ¥ 10–3 rad

Thus the radius of the first dark ring is

ª 20 ¥ 1.8 ¥ 10–3 = 3.6 ¥ 10–2 cm

Similarly, the radius of the second dark ring is

ª 
5

27.016 6 10
20 6.7 10 cm

2 0.02

-

-

¥ ¥
¥ ª ¥

p ¥

18.4 DIRECTIONALITY OF

LASER BEAMS

An ordinary source of light (such as a sodium lamp) radiates
in all directions. On the other hand, the divergence of a laser
beam is primarily due to diffraction effects. For most laser
beams, the transverse amplitude distribution is approximately
Gaussian; indeed just when the beam is leaving the laser
(which we assume to be z = 0), the amplitude distribution can
be assumed to be given by

A(x, y) = a exp
2 2

2
0

x y

w

Ê ˆ+
-Á ˜

Ë ¯
(27)

where we have assumed that the phase front is plane at
z = 0. From the above equation it follows that at a distance w0

from the z axis, the amplitude falls by a factor 1/e (i.e., the intensity
reduces by a factor 1/e2). This quantity w0 is called the spot size
of the beam. In Sec. 20.5 we will show that as the beam propa-
gates in the z direction, the intensity distribution is given by

I(x, y, z) = 
2 2

0
2 2

2( )
exp

1 ( )

I x y

w z

È ˘+
-Í ˙

+ g Í ˙Î ˚
(28)
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where

g = 2
0

z

w

l

p

w(z) = w0 (1 + g 2)1/2

=

1/ 22 2

0 2 4
0

1
z

w
w

Ê ˆl
+Á ˜pË ¯

(29)

Thus the transverse intensity distribution remains Gaussian
with the beam width increasing with z. For large values of z
(>> w0

2/l), we obtain

w(z) ª 0 2
0

z
w

w

l

p
 = 

0

z

w

l

p
(30)

which shows that the width increases linearly with z. We
define the diffraction angle as

tan q = 
0

( )w z

z w

l
ª
p

(31)

showing that the rate of increase in the width is proportional
to the wavelength and inversely proportional to the initial
width of the beam; the above equation is consistent with
Eq. (26). To get some numerical values, we assume l = 0.5 mm.
Then for w0 = 1 mm

2 q ª 0.018∞ and w ª 1.88 mm at z = 10 m

Similarly, for w0 = 0.25 mm,

2 q ª 0.073∞ and w ª 6.35 mm at z = 2 m

(see Fig. 18.14). Notice that q increases with a decrease in w0

(the smaller the size of the aperture, the greater the diffrac-
tion). From Eq. (31) we find the following:

1. For a given value of l0, q increases with a decrease in
the value of w0, implying that the smaller the initial spot
size of the beam, the greater the diffraction divergence.

2. For a given value of w0 the value of q (and hence the
diffraction divergence) decreases with decrease in the
value of l0. Indeed, as l0 Æ 0, there is no spreading of
the beam, and we have what is known as the geometri-
cal optics limit.

In Fig. 18.15 we have shown a laser beam propagating through
air. Notice the nondivergence of the beam. We give a more

l0 = 5000 Å

w0 = 0.25 mm

0 2 4 6 8 10
z (m)

0.5 mm 0.073°

0.018°2 mm

12.7 mm

3.76 mm

w0 = 1 mm

Fig. 18.14 Diffraction divergence of a Gaussian beam whose phase front is plane at z = 0. The figure shows

the increase in the diffraction divergence as the initial spot size is decreased from 1 to 0.25 mm; the

wavelength is assumed to be 5000 Å.

Fig. 18.15 A laser beam. Notice the nondivergence of the

beam.  A color photograph appears in the insert at

the back of the book.

(c
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detailed discussion in Sec. 20.5. From Eq. (27) one can readily
show that

( , , )I x y z dx dy
+ •

- •

Ú Ú  = 
2
0

02

w
I

p

which is independent of z. This is to be expected, as the total
energy crossing the entire xy plane will not change with z.

Example 18.4 The output from a single-mode fiber operating
at the He-Ne laser wavelength (l0 = 0.6328 mm) is approximately
Gaussian with w0 = 5 mm. Thus, the corresponding divergence is

q ª tan–1 0

0w

l

p
ª 2.3∞

Thus, if a screen is placed at a distance of about 50 cm from the
fiber, the radius of the beam is about 2 cm.

A beam is said to be diffraction-limited if it diverges only
due to diffraction. Usually laser beams are diffraction-limited.
On the other hand, if we have a tiny filament at the focal
plane of a lens, the beam will diverge primarily due to the
finite size of the filament (see Fig. 18.16). The angular spread
of the beam is given by (see Fig. 18.16)

Dq ª 
l

f
(32)

where l is the length of the filament and f is the focal length
of the lens. If the linear dimension of the filament is about 2
mm (placed on the focal plane of a convex lens of focal
length 10 cm), then the angular divergence of the beam (due
to the finite size of the filament) is approximately given by

Dq ª 
2 mm

100 mm
 = 0.02 rad

If the diameter of the aperture of the lens is 5 cm, then the
angular divergence due to diffraction is

Dq ª 
D

l
ª 

55 10 cm

5 cm

-

¥

 = 0.00001 rad

which is much much smaller than the angular divergence of
the beam due to the finite size of the filament. Only if the size
of the filament is smaller than 10–3 mm will the beam diver-
gence be determined by diffraction. Thus for most practical
sources, the beam divergence is due to the finite size of the
filament rather than to diffraction.

18.4.1 Focusing of Laser Beams

As mentioned earlier, laser beams are usually diffraction-
limited. If such a diffraction-limited beam is allowed to fall on
a convex lens, then

Radius of focused spot ª 0 f

a

l
(33)

(see Fig. 18.17). In Eq. (33), f represents the focal length of
the lens and a represents the beam radius or the radius of
the aperture of the lens (whichever is smaller). Thus

Area of focused spot Am ª p 
2

0 f

a

lÊ ˆ
Á ˜Ë ¯

We illustrate the effects of this focusing through some examples.

Example 18.5 We consider a 2 mW laser beam (l0 ª 6 ¥

10–5 cm) incident on the eye whose focal length is given by f ª

2.5 cm. If the pupil diameter (= 2a) is taken to be 2 mm, then

Area of focused spot A = p 

2
0 f

a

lÊ ˆ
Á ˜Ë ¯

 ª 7 ¥ 10–6 cm2

On the retina, the intensity will be approximately given by

I ª 
P

A
 ª 

3

10 2

2 10 W

7 10 m

-

-

¥

¥

ª 3 ¥ 106 W m–2

Such high intensities will damage the retina! So never look
into a (seemingly innocent) low-power laser beam.

Example 18.6 We next consider a 3 MW laser beam (l0 ª
6 ¥ 10–5 cm and beam width 2a ª 1 cm) incident on a lens of focal
length 5 cm, then

Area of focused spot A = p

2
0 f

a

lÊ ˆ
Á ˜Ë ¯

 ª 10–6 cm2 = 10–10 m2

On the focal plane of the lens, the intensity will be approximately
given by

I ª 
P

A
 ª 

6

10 2

3 10 W

10 m-

¥
 ª 3 ¥ 1016 W m–2

2a

f

2λ0f

a

Laser beam

Fig. 18.17 If a truncated plane wave (of diameter 2a) is in-

cident on an aberrationless lens of focal length

f, then the wave emerging from the lens will

get focused to the spot of radius ª l
0
 f /a; the

area of the focused spot size is ª p(l
0
 f/a)

2
.

l

f

Δθ

Fig. 18.16 A filament placed at the focal plane of a convex lens.
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Now, the intensity of the beam is related to the electric field ampli-
tude E0 through the relation [see Eq. (78) of Chap. 23]

I = 1
2 e0cE0

2 (34)

where e0 ª 8.854 ¥ 10–12 MKS units represents the dielectric per-
mittivity of free space and c ª 3 ¥ 108 m s–1 represents the speed
of light in free space. Substituting I ª 3 ¥ 1016 W m–2 in Eq. (34),
we readily get

E0 ª 5 ¥ 109 V m–1

Such high electric fields result in the creation of spark in air (see
Fig. 18.18). Thus laser beams (because of their high directionality)
can be focused to extremely small regions, producing very high in-
tensities. Such high intensities lead to numerous industrial
applications of the laser such as welding, hole drilling, and cutting
materials (see, e.g., Ref. 5).

In the following two examples, we will calculate the in-
tensities (at the retina of the eye) when we directly view a
500 W bulb or the Sun. Caution: Never look into the Sun;
the retina will be damaged not only because of high inten-
sities but also because of the large ultraviolet content of
the sunlight.

Example 18.7 We consider a 6 cm diameter incandescent
source (such as a 500 W bulb) at a distance of about 5 m from the
eye (see Fig. 18.19). We assume the pupil diameter to be about
2 mm. Thus

Area of pupil of eye ª p(1 ¥ 1) mm2 ª 3 ¥ 10–6 m2

Power entering eye ª (500 W)
2

24

r

R

p

p

 ª 5 ¥ 10–6 W

Radius of image = radius of source ¥ demagnification

ª 
0.03

5
¥ 0.025 ª 1.5 ¥ 10–4 m

where we have assumed the image to be formed at a distance of about
2.5 cm from the pupil of the eye. Thus,

Power density in image = 
6

4 2 2

5 10 W

(1.5 10 ) m

-

-

¥

p ¥

 ª 70 W/m2

Example 18.8 We next calculate the intensity at the retina if
we are directly looking at the Sun (see Fig. 18.20). Now

Intensity of solar energy on Earth ª 1.35 kW m–2

Thus

Energy entering eye ª 1.35 ¥ 103 ¥ p ¥ 10–6 
ª 4 mW

The Sun subtends about 0.5∞ on the Earth. Thus

Diameter of image of Sun

ª 0.5 ¥ 
180

p
 ¥ 25 ª 0.2 mm

= 2 ¥ 10–4 m
and

Power density in image ª 
3

4 2 2

4 10 W

(1 10 ) m

-

-

¥

p ¥ ¥

ª 130 kW m–2

To summarize, a 2 mW diffraction-limited laser beam incident
on the eye can produce an intensity of about 106 W m–2 at the
retina—this would certainly damage the retina. Thus, whereas
it is quite safe to look at a 500 W bulb, it is very dangerous to

Eye
500 W bulb

5 m

Fig. 18.19 A 500 W bulb at a distance of about 5 m from

the eye.

Eye
30¢

SUN

Fig. 18.20 If we look directly at the Sun, intensities as

high as 130 kW m
–2

 are produced; this can dam-

age the retina of the eye!

Fig. 18.18 Focusing of a 3 MW peak power pulsed ruby

laser beam. At the focus, the electric field

strengths are of the order of 10
 9

 V m
–1

 which

results in the creation of a spark in the air,

(Photograph courtesy Dr. R. W. Terhune).
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look directly into a 2 mW laser beam. Indeed, because a laser
beam can be focused to very narrow areas, it has found impor-
tant applications in areas such as eye surgery and welding .

From the above discussion it immediately follows that the
greater the radius of the beam, the smaller the size of the fo-
cused spot and hence the greater the intensity at the focused
spot. Indeed, one may use a beam expander (see Fig. 18.21) to
produce a beam of greater size and hence a smaller focused
spot size. However, after the focused spot, the beam would
have a greater divergence and would therefore expand within
a very short distance. One usually defines a depth of focus as
the distance over which the intensity of the beam (on the axis)
decreases by a certain factor of the value at the focal point.
Thus a small focused spot leads to a small depth of focus. The
intensity distribution at the focal plane of the lens is given by
Eq. (19) where the parameter n is given by Eq. (21). On the
other hand, the intensity along the axis is given by

I = I0 
2

sin ( /4)
/4
w

w

È ˘
Í ˙
Î ˚

(35)

where

w = 
2

2 a
z

f

Ê ˆp
Á ˜l Ë ¯

(36)

and z = 0 represents the focal plane.4

The intensity would drop by about 20% at

z ª ± 0.5l (f/a)2 (37)

which is usually referred to as the depth of the focus or focal
tolerance. Notice that larger the value of a, the smaller the
focal tolerance. For l ª 6 ¥ 10–5 cm, f ª 10 cm, and a ª 1 cm,
the focal tolerance is about 3 ¥ 10–3 cm.

18.5 LIMIT OF RESOLUTION

Consider two point sources, such as stars (so that we can
consider plane waves entering the aperture) being focused by
a telescope objective of diameter D (see Fig. 18.22). As dis-

cussed in Sec. 18.4, the system can be thought of as being
equivalent to a circular aperture of diameter D, followed by a
converging lens of focal length f, as shown in Fig. 18.8. As
such, each point source will produce its Airy pattern as sche-
matically shown in Fig. 18.22. The diameters of the Airy rings
will be determined by the diameter of the objective, its focal
length, and the wavelength of light (see Example 18.3).

In Fig. 18.22 the Airy patterns are shown to be quite far
away from each other, and therefore, the two objects are said
to be well resolved. Since the radius of the first ring is 1.22l  f /D,
the Airy patterns will overlap more for smaller values of D;
hence for better resolution one requires a larger diameter of
the objective. It is for this reason that a telescope is usually
characterized by the diameter of the objective; for example, a
40 in. telescope implies that the diameter of the objective is
40 in. In Fig. 18.23 we have shown the image of the binary
star Zeta Bootis by a 2.56 m telescope aperture; the Airy disk
around each of the stars can be seen.

4 The derivation of the formulas has been given at many places; see, e.g., Sec. 6.5 of Ref. 6.

f f1 2+

Fig. 18.21 Two convex lenses separated by a distance equal

to the sum of their focal lengths act as a beam

expander.

q
Lens

Airy patterns

f

Fig. 18.22 The image of two distant objects on the focal

plane of a convex lens. If the diffraction pat-

terns are well separated, they are said to be

resolved.

Fig. 18.23 Image of the binary star Zeta Bootis by a 2.56 m

telescope aperture; the Airy disk around each

of the stars can be seen [Image by Bob Tubbs

and collaborators, used with permission from

Dr. Tubbs].
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In Figs. 18.24, 18.25, and 18.26, we have plotted the inde-
pendent intensity distributions and their resultant produced
by two distant objects for various angular separations; in
each case we have assumed that the two sources produce
the same intensity at their respective central spots. Obviously,
the resultant intensity distributions are quite complicated
(see Fig. 18.27); what we have plotted in Figs. 18.24, 18.25,

1.0

0.5

(2) (1)

(3)

–8.0 –4.0 4.0 8.0 120
v

2 ( )J1 v
v

2 ( -6)

-6

J1 v
v

2

2

2 ( )J1 v
v

2
2 ( -6)

-6

J1 v
v

2

(1)

(2)

(3) +

Fig. 18.24 The dashed curves correspond to the intensity dis-

tribution produced independently by two distant

point objects having an angular separation of

6l/(pD). The resultant intensity distribution

(shown as a solid curve) has two well defined

peaks and the objects are well resolved.
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Fig. 18.25 The dashed curves correspond to the intensity

distribution produced independently by two dis-

tant point objects having an angular separation of

1.22l/D and according to the Rayleigh crite-

rion, the objects are just resolved.

and 18.26 are the intensity distributions on the line joining
the two centers of the Airy patterns; since the point sources
are independent sources, their intensity distributions (Airy
patterns) will add. If we choose this line as the x axis, then
the parameter v in Figs. 18.24, 18.25, and 18.26 is given by

v = 
2 a

x
f

p

l
(38)

Now, the intensity distributions given in Fig. 18.24 corre-
spond to two distant point objects having an angular
separation of 6l/pD, and as can be seen, the two images are
clearly resolved. Figure 18.26 corresponds to

Dq

2

D

l

p
� (39)

and as can be seen, the resultant intensity distribution has
only one peak and therefore the two points cannot be re-
solved at all. Finally, if the angular separation of the two
objects is 1.22l/D, then the central spot of one pattern falls
on the first minimum of the second and the objects are said
to be just resolved. This criterion of limit of resolution is
called the Rayleigh criterion of resolution, and the intensity
distribution corresponding to this is plotted in Fig. 18.25. The
actual diffraction patterns are shown in Fig. 18.27.

To get a numerical appreciation of the above results, we con-
sider a telescope objective whose diameter and focal length are
5 and 30 cm, respectively. Assuming the light wavelength to be

–8.0 –4.0 4.0 8.00

(1) (2)(3)

v

2 ( )J1 v
v

2 ( -2)
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v

2
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(1)

(2)

(3) +

Fig. 18.26 The dashed curves correspond to the intensity

distribution produced independently by two dis-

tant point objects having an angular separation of

2l/(pD). The resultant intensity distribution

(shown as a solid curve) has only one peak, and

hence the objects are unresolved.
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In the above discussion we have assumed that the two ob-
ject points produce identical (but displaced) Airy patterns. If that
is not the case, then the two central maxima will have different
intensities; accordingly one has to set up a modified criterion for
the limit of resolution such that the two maxima stand out.

18.5.1 Resolving Power of a

Microscope

We next consider the resolving power of a microscope objec-
tive of diameter D as shown in Fig. 18.28. Let P and Q
represent two closely spaced self-luminous point objects
which are to be viewed through the microscope. Assuming
the absence of any geometrical aberrations, rays emanating
from points P and Q will produce spherical wave fronts (after
refraction through the lens) which will form Airy patterns
around their paraxial image points P ¢ and Q¢. For points P
and Q to be just resolved, point Q¢ should lie on the first dark
ring surrounding point P¢, and therefore we must have

sin a¢ ª 

1.22

D

l
 = 01.22

n D

l

¢
(41)

(a) (b) (c)

Fig. 18.27 Computer-generated intensity distributions corresponding to two point sources when they are

(a) well resolved, (b) just resolved, and (c) unresolved.

6 ¥ 10–5 cm, one finds that the minimum angular separation of
two distant objects which can just be resolved will be

1.22

D

l
= 

51.22 6 10

5

-

¥ ¥ ~
-  1.5 ¥ 10–5 rad

Further, the radius of the first dark ring (of the Airy pattern) will be

1.22
focal length

D

l
¥ = 

51.22 6 10
30

5

-

¥ ¥

¥

~
-  4.5 ¥ 10–4 cm

It is immediately obvious that the larger the diameter of
the objective, the better its resolving power. For example, the
diameter of the largest telescope objective is about 80 in.,
and the corresponding angular separation of the objects that
it can resolve is ~

-  0.07 second of arc. This very low limit of
resolution is never achieved in ground-based telescopes due
to the turbulence of the atmosphere. However, a larger aper-
ture still provides a larger light-gathering power and hence
the ability to see deeper in space.

If we assume that the angular resolution of the human eye
is primarily due to diffraction effects, then it will be given by

Dq ~ 
5

1

6 10

2 10D

-

-

l ¥
ª

¥
 = 3 ¥ 10–4 rad (40)

where we have assumed the pupil diameter to be 2 mm. Thus,
at a distance of 20 m, the eye should be able to resolve two
points which are separated by a distance

3 ¥ 10–4 ¥ 20 = 6 ¥ 10–3 m = 6 mm

One can indeed verify that this result is qualitatively valid
by finding the distance at which the millimeter scale will be-
come blurred.

y ¢

D
O

Q

P i

n

P ¢i ¢

n ¢

a¢

Q ¢

u v

y

Fig. 18.28 The resolving power of a microscope objective.
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where n and n¢ represent the refractive indices of the object
and image spaces, and l0 and l (= l0/n¢) represent the wave-
length of light in free space and in the medium of refractive
index n¢, respectively. The angle a¢ is defined in Fig. 18.28, and
we have

sin a¢ ª 
y

OP

¢

¢

 = 
tan

/2

y i

D

¢ ¢

 ª 
sin

/2

y i

D

¢ ¢

(42)

where we have assumed sin i¢ ª tan i¢; this is justified since
the image distance OP¢ is large compared to D. Using
Eqs. (41) and (42), we get

y¢ ª 00.61

sinn i

l

¢ ¢

If we now use the sine law n¢y¢ sin i¢ = ny sin i [see Eq. (39)
of Chap. 4], we get

y ª 00.61

sinn i

l
(43)

which represents the smallest distance that the microscope
can resolve. The quantity n sin i is the numerical aperture of
the optical system, and the resolving power increases with
an increase in the numerical aperture. For this reason in some
microscopes the space between the object and the objective
is filled with an oil—and they are referred to as oil immersion
objectives. Equation (43) also tells us that the resolving
power increases with a decrease in l. As such, one often
uses blue light (or even ultraviolet light) for the illumination
of the object. For example, in an electron microscope the de
Broglie wavelength of electrons accelerated to 100 keV is
about 0.03 ¥ 10–8 cm, and therefore such a microscope has a
very high resolving power.

In the above analysis, we have assumed that the two
object points are self-luminous so that the intensities can be
added. However, in actual practice, the objects are illumi-
nated by the same source, and therefore, in general, there is
some phase relationship between the waves emanating from
the two object points. For such a case the intensities will not
be strictly additive (see Sec. 14.6); nevertheless Eq. (43) will
give the correct order for the limit of resolution.

18.6 TWO-SLIT FRAUNHOFER

DIFFRACTION PATTERN

In Sec. 18.3 we studied the Fraunhofer diffraction pattern pro-
duced by a slit of width b and found that the intensity
distribution consisted of maxima and minima. In this section we
will study the Fraunhofer diffraction pattern produced by two
parallel slits (each of width b) separated by a distance d. We will

find that the resultant intensity distribution is a product of the
single-slit diffraction pattern and the interference pattern pro-
duced by two point sources separated by a distance d.

To calculate the diffraction pattern, we use a method simi-
lar to that used for the case of a single slit. We assume that
the slits consist of a large number of equally spaced point
sources and that each point on the slit is a source of
Huygens’ secondary wavelets. Let the point sources be at
A1, A2, A3, . . . (in the first slit) and at B1, B2, B3, . . . (in the
second slit) (see Fig. 18.29). As before, we assume that the
distance between two consecutive points in either of the
slits is D. If the diffracted rays make an angle q with the nor-
mal to the plane of the slits, then the path difference between
the disturbances reaching point P from two consecutive
points in a slit will be D sin q. The field produced by the first
slit at point P will, therefore, be given by [see Eq. (9)]

E1 = A
sin b

b
cos(wt – b)

Similarly, the second slit will produce a field

E2 = A
sin b

b
cos (wt – b – F1)

at point P, where

F1 = 
2p

l
dsinq

represents the phase difference between the disturbances
(reaching point P) from two corresponding points on the
slits; by corresponding points we imply pairs of points such
as (A1,B1), (A2,B2), . . . which are separated by a distance d.
Hence the resultant field will be

E = E1 + E2

= A
sin b

b
[cos (wt – b ) + cos (wt – b – F1)]

P

f

d

B1

A2

A1

B2b

b

q

Fig. 18.29 Fraunhofer diffraction of a plane wave incident

normally on a double slit.
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which represents the interference of two waves, each of am-
plitude A sinb/b and differing in phase by F1. The above
equation can be rewritten in the form

E = 2A 1
sin 1

cos cos
2

t
b Ê ˆg w - b - FÁ ˜Ë ¯b

where

g = 1

2

F
 = 

p
l

d sin q (44)

The intensity distribution will be of the form

I = 4I0

2

2

sin b

b
cos2

g (45)

where I0 (sin2 b)/b2 represents the intensity distribution pro-
duced by one of the slits. As can be seen, the intensity
distribution is a product of two terms; the first term (sin2 b)/
b

2 represents the diffraction pattern produced by a single slit
of width b, and the second term cos2

g represents the inter-
ference pattern produced by two point sources separated by
a distance d. Indeed, if the slit widths are very small [so that
there is almost no variation of the (sin2 b)/b2 term with q],
then one simply obtains Young’s interference pattern (see
Sec. 14.6).

In Fig. 18.30, we have shown the two-slit diffraction patterns
corresponding to d = 0, 0.0176, 0.035, and 0.070 cm with b =
0.0088 cm and l = 6.328 ¥ 10–5 cm. The intensity distributions as
predicted by Eq. (45) are shown in Figs. 18.31 and 18.32.

18.6.1 Positions of Maxima and Minima

Equation (45) tells us that the intensity is zero wherever

b = p, 2p, 3p, . . .
or when

g = 
3 5

, , , . . .
2 2 2

p p p

The corresponding angles of diffraction are given by the fol-
lowing equations:

( )1
2

sin = = 1, 2, 3, . . .

sin = = 1, 2, 3, . . .

b m m

d n n

q l Ô̧
˝

q + l Ǫ̂
(46)

The interference maxima occur when

g = 0, p, 2p, . . .
or when

d sin q = 0, l, 2l, 3l, . . . (47)

Fig. 18.30 The double-slit Fraunhofer diffraction pattern

corresponding to b = 0.0088 cm and l = 6.328 ¥

10
–5

 cm. The values of d are 0, 0.0176, 0.035, and

0.070 cm, respectively [After Ref. 17; used with

permission].

–1 –0.5 0 0.5 1

1

b
d

= 0.0088 cm
= 0.035 cm
= 6.328 10 cml ¥ –5

I I/ 0

Fig. 18.31 The double-slit intensity distribution as predicted by Eq. (45) corresponding to b = 0.0088 cm,

l = 6.328 x 10
–5

 cm, and d = 0.035 cm.
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The angular separation between two interference maxima is
approximately given by [see Eq. (47)]

Dq
d

l
-
�  = 0.904 ¥ 10–4

Thus the fringe width is
15 ¥ 12 ¥ 2.54 ¥ 0.904 ¥ 10–4 ~−  0.0413 cm

18.7 N-SLIT FRAUNHOFER

DIFFRACTION PATTERN

We next consider the diffraction pattern produced by N parallel
slits, each of width b; the distance between two consecutive
slits is assumed to be d.

As before, we assume that each slit consists of n equally
spaced point sources with spacing D (see Fig. 18.33). Thus the
field at an arbitrary point P will essentially be a sum of N terms:

E =  A
sin b

b
cos (wt – b) + A

sin b

b
cos (wt – b – F1)

+ . . .  + A
sin b

b
cos [wt – b – (N – 1)F1] (48)

The actual positions of the maxima will approximately
occur at the above angles provided the variation of the dif-
fraction term is not too rapid. Further, a maximum may not
occur at all if q corresponds to a diffraction minimum, i.e., if
b sin q = l, 2l, 3l, . . . . These are usually referred to as miss-
ing orders. For example, in Fig. 18.31 we can see that for
b = 0.0088 cm, the interference maxima are extremely weak
around q ~

-  0.41∞; this is so because at

q = sin–1 
b

lÊ ˆ
Á ˜Ë ¯

= sin–1 
5

3

6.328 10

8.8 10

-

-

Ê ˆ¥
Á ˜¥Ë ¯

 = sin–1 (7.19 ¥ 10–3)

~
-  0.00719 rad
~
-  0.412∞

the first minimum of the diffraction term occurs.

Example 18.9 Consider the case when b = 8.8 ¥ 10–3 cm,
d = 7.0 ¥ 10–2 cm, and l = 6.328 ¥ 10–5 cm (see Fig. 18.32). How
many interference minima will occur between the two diffraction
minima on either side of the central maximum? In the experimental
arrangement corresponding to Fig. 18.30 the screen was placed at a
distance of 15 ft. Calculate the fringe width.

Solution: The interference minima will occur when Eq. (46) is

satisfied, i.e., when

sin q = 
1

2
n

d

lÊ ˆ+Á ˜Ë ¯
 = 0.904 ¥ 10–3 n +FH

I
K

1
2

n = 0, 1, 2, . . .

= 0.452 ¥ 10–3, 1.356 ¥ 10–3, 2.260 ¥ 10–3,

3.164 ¥ 10–3, 4.068 ¥ 10–3, 4.972 ¥ 10–3,

5.876 ¥ 10–3, 6.780 ¥ 10–3

Thus there will be 16 minima between the two first-order diffrac-
tion minima.

-1 -0.5 0 0.5 1

q (in degrees)

1

b
d

= 0.0088 cm
= 0.07 cm
= 6.328 10 cml ¥ –5

Fig. 18.32 The double-slit intensity distribution as predicted by Eq. (45) corresponding to b = 0.0088 cm, l = 6.328 x

10
–5

 cm, and d = 0.07 cm.

d
b
D q

P

Fig. 18.33 Fraunhofer diffraction of a plane wave incident

normally on a multiple slit.
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where the first term represents the amplitude produced by
the first slit, the second term by the second slit, etc. and the
various symbols have the same meaning as in Sec. 18.5. Re-
writing Eq. (48), we get

E =
sinA b

b
{cos (wt – b) + cos (wt – b + F1)

+ . . . + cos [wt – b – (N – 1)F1]}

= 1
sin sin 1

cos ( 1)
sin 2

A N
t N

b g È ˘
w - b - - FÍ ˙b g Î ˚

(49)

where

g = 
F1

2
 = 

p

l
d sin q

The corresponding intensity distribution will be

I = I0

2 2

2 2

sin sin

sin

Nb g

b g
(50)

where I0 (sin2
b)/b2 represents the intensity distribution pro-

duced by a single slit. As can be seen, the intensity distribution

is a product of two terms; the first term 2 2(sin )/b b  represents

the diffraction pattern produced by a single slit, and the second

term 2 2(sin )/sinNg g  represents the interference pattern pro-

duced by N equally spaced point sources. For N = 1, Eq. (50)
reduces to the single-slit diffraction pattern [see Eq. (10)] and
for N = 2, to the double-slit diffraction pattern [see Eq. (45)]. In
Fig. 18.34 we have given a plot of the function

2

2

sin

sin

Ng

g

as a function of g for N = 5 and N = 11. One can immediately
see that as the value of N becomes very large, the above
function becomes very sharply peaked at g = 0, p, 2p, . . . .
Between the two peaks, the function vanishes when

g  = 
p

N

p
p = ±1, ±2, . . . but p π 0, ±N, ±2N

which are referred to as secondary minima.

–2p

–2p

2p

2p

0

0

(a)

(b)

–p

–p

p

p
g

sin

sin

2

2
Ng

g

N = 5

N = 12

10

50

20

100

Fig. 18.34 The variation of the function (sin
2

Ng )/sin
2

g  with g  for N = 5 and 12. As N becomes larger, the

function becomes more and more sharply peaked at g = 0, ±p, ±2p, ±3p, . . . .
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18.7.1 Positions of Maxima and Minima

When the value of N is very large, one obtains intense maxima
at g ~

-  mp, i.e., when

d sin q = ml m = 0, 1, 2, . . . (51)

This can be easily seen by noting that

sin
Lim

sinm

N
gÆ p

g

g
= 

cos
Lim

cosm

N N
gÆ p

g

g
 = ±N

thus, the resultant amplitude and the corresponding intensity
distributions are given by

E = N
sinA b

b
(52)

and

I = N2I0

2

2

sin b

b
(53)

where

b = 
sinbp q

l
 = 

b m

d

p l

l

 = 
bm

d

p
(54)

Such maxima are known as principal maxima. Physically, at
these maxima the fields produced by each of the slits are in
phase, and therefore, they add and the resultant field is N times
the field produced by each of the slits. Consequently, the in-

tensity has a large value unless 2 2(sin ) /b b  itself is very small.
Since | sin q | £ 1, m cannot be greater than d/l [see Eq. (51)];
thus, there will only be a finite number of principal maxima.

From Eq. (50) it can be easily seen that the intensity is zero
when either

b sin q = nl n = 1, 2, 3, . . . (55)
or

Ng = pp p π N, 2N, . . . (56)

Equation (55) gives us the minima corresponding to
the single-slit diffraction pattern. The angles of diffraction
corresponding to Eq. (56) are

d sin q = 
2 ( 1) ( 1) ( 2)

, , . . . , , , ,
N N N

N N N N N

l l - l + l + l

(2 1) (2 1) (2 2)
. . . , , , , . . .

N N N

N N N

- l + l + l

(57)

Thus, between two principal maxima we have N – 1 minima.
Between two such consecutive minima the intensity has to
have a maximum; these maxima are known as secondary
maxima. Typical diffraction patterns for N = 1, 2, 3, and 4 are
shown in Fig. 18.35, and the intensity distribution as predicted
by Eq. (50) for N = 4 is shown in Fig. 18.36. When N is very
large, the principal maxima will be much more intense in com-
parison to the secondary maxima. We mention here two points:

1. A particular principal maximum may be absent if it cor-
responds to the angle which also determines the

minimum of the single-slit diffraction pattern. This will
happen when

d sin q = ml (58)

and b sin q = l, 2l, 3l, . . . (59)

are satisfied simultaneously, and it is usually referred to
as a missing order. Even when Eq. (59) does not hold ex-
actly (i.e., if b sin q is close to an integral multiple of l ),
the intensity of the corresponding principal maximum will
be very weak (see, for example, Fig. 18.36 around q ª 0.8∞).

Fig. 18.35 The multiple-slit Fraunhofer diffraction patterns

corresponding to b = 0.0044 cm, d = 0.0132 cm,

and l = 6.328 ¥ 10
–5

 cm. The number of slits is 1,

2, 3, and 4 respectively (After Ref. 17; used with

permission).

–2 –1 0 1 2
q (degrees)

N
b
d

= 4
= 0.0044 cm
= 0.0132 cm
= 6.328 10 cml ¥ –5

Fig. 18.36 The intensity distribution corresponding to the

four–slit Fraunhofer diffraction pattern as pre-

dicted by Eq. (50) corresponding to b = 0.0044 cm,

d = 0.0132 cm, and l = 6.328 ¥ 10
–5

 cm. The

principal maxima occur at q ª 0.275∞, 0.55∞, 0.82∞,

1.1∞, . . . .  Notice the (almost) absent third order.
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opaque spaces. After each groove is ruled, the machine lifts
the diamond point and moves the sheet forward for the rul-
ing of the next groove. Since the distance between two
consecutive grooves is extremely small, the movement of
the sheet is obtained with the help of the rotation of a
screw which drives the carriage carrying it. Further, one of
the important requirements of a good-quality grating is that
the lines be as equally spaced as possible; consequently,
the pitch of the screw must be constant, and it was not until
the manufacture of a nearly perfect screw (which was
achieved by Rowland in 1882) that the problem of construc-
tion of gratings was successfully solved. Rowland’s
arrangement gave 14,438 lines per inch, corresponding to
d = 2.54/14,438 = 1.759 ¥ 10–4 cm. For such a grating, for
l = 6 ¥ 10–5 cm, the maximum value of m would be 2, and,
therefore, only the first two orders of the spectrum will be
observed. However, for l = 5 ¥ 10–5 cm, the third-order
spectrum will also be visible.

Commercial gratings are produced by taking the cast of
an actual grating on a transparent film like that of cellulose
acetate. An appropriate strength solution of cellulose ac-
etate is poured on the ruled surface and allowed to dry to
form a strong thin film, detachable from the parent grating.
These impressions of a grating are preserved by mounting
the film between two glass sheets. Nowadays gratings are
also produced holographically, where one records the in-
terference pattern between two plane or spherical waves
(see Example 14.5). In contrast to ruled gratings, holo-
graphic gratings have a much larger number of lines per
centimeter.

18.8.1 The Grating Spectrum

In Sec. 18.6 we showed that the positions of the principal
maxima are given by

d sin q = ml m = 0, 1, 2, . . . . (64)

This relation, which is also called the grating equation, can
be used to study the dependence of the angle of diffraction
q on the wavelength l. The zeroth-order principal maximum
occurs at q = 0 irrespective of the wavelength. Thus, if we
are using a polychromatic source (e.g., white light), then the
central maximum will be of the same color as the source itself.
However, for m π 0, the angles of diffraction are different for
different wavelengths, and therefore, various spectral com-
ponents appear at different positions. Thus by measuring the
angles of diffraction for various colors one can (knowing
the value of m) determine the values of the wavelengths. The
intensity is maximum for the zeroth-order spectrum (where no
dispersion occurs), and it falls off as the value of m increases.

2. In addition to the minima predicted by Eq. (56), we will
have the diffraction minima [see Eq. (55)]; however, when
N is very large, the number of such minima is very small.

18.7.2 Width of the Principal Maxima

We have shown above that in the diffraction pattern produced
by N slits, the mth-order principal maximum occurs at

d sin qm = ml m = 0, 1, 2, . . . (60)

Further, the minima occur at the angles given by Eq. (57). If
qm + Dq1m and qm – Dq2m represent the angles of diffraction
corresponding to the first minimum on either side of the prin-
cipal maximum, then 1

2 (Dq1m + Dq2m) is known as the angular
half width of the mth-order principal maximum. For a large
value of N, Dq1m ~

-  Dq2m which we write as Dqm. Clearly,

d sin (qm ± Dqm) = ml ± 
N

l
(61)

But

sin (qm ± Dqm) = sin qm cos Dqm ± cos qm sin Dqm

~
-  sin qm ± Dqm cos qm (62)

Thus Eq. (61) gives

Dqm
~
-  

cos mNd

l

q
(63)

which shows that the principal maximum becomes sharper as
N increases.

18.8 THE DIFFRACTION

GRATING

In Sec. 18.6 we discussed the diffraction pattern produced by
a system of parallel equidistant slits. An arrangement which
essentially consists of a large number of equidistant slits is
known as a diffraction grating; the corresponding diffrac-
tion pattern is known as the grating spectrum. Since the
exact positions of the principal maxima in the diffraction
pattern depend on the wavelength, the principal maxima
corresponding to different spectral lines (associated with a
source) will correspond to different angles of diffraction.
Thus the grating spectrum provides us with an easily ob-
tainable experimental setup for determination of wave-
lengths. From Eq. (63) we see that for narrow principal
maxima (i.e., sharper spectral lines), a large value of N is re-
quired. A good-quality grating, therefore, requires a large
number of slits (typically about 15,000 per inch). This is
achieved by ruling grooves with a diamond point on an op-
tically transparent sheet of material; the grooves act as
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If we differentiate Eq. (64), we obtain

Dq

Dl
= 

cos

m

d q
(65)

From this result we can deduce the following conclusions:

1. Assuming q to be very small (i.e., cos q ~
-  1), we can

see that the angle Dq is directly proportional to the or-
der of spectrum m for a given Dl, so that for a given m,
Dq/Dl is a constant. Such a spectrum is known as a
normal spectrum, and in this the difference in angle for
two spectral lines is directly proportional to the differ-
ence in wavelengths. However, for large q, it can be
easily shown that the dispersion is greater at the red
end of the spectrum.

2. Equation (65) tells us that Dq is inversely proportional
to d, and therefore the smaller the grating element, the
larger the angular dispersion.

Figures 18.37 and 18.38 show schematic diagrams of the
experimental arrangement for studying the grating spectrum
of a polychromatic source. In Fig. 18.37 we have shown a
small hole placed at the focal plane of lens L1. A parallel beam
of white light emerging from L1 falls on the grating, and the
diffraction pattern is observed on the focal plane of lens L2.
If instead of a hole we have a slit at the focal plane of L1 (see
Fig. 18.38) — as is indeed the case in a typical laboratory set
up — we will have parallel beams propagating in different
directions, and in the focal plane of the lens L2 we will have
a band spectrum as shown in Fig. 18.38.

Lens L2 is the objective of a telescope, and the diffraction
pattern is viewed through an eyepiece. The angles of diffrac-
tion for various orders of the grating spectrum can be

measured, and knowing the value of d, one can calculate the
wavelength of different spectral lines.

Example 18.10 Consider a diffraction grating with 15,000 lines
per inch. (a) Show that if we use a white light source, the second- and
third-order spectra overlap. (b) What will be the angular separation of
the D1 and D2 lines of sodium in the second-order spectra?

Solution: (a) The grating element is

d = 
2.54

15,000
 = 1.69 ¥ 10–4 cm

Let qmn
 and qmr represent the angles of diffraction for the mth-order

spectrum corresponding to the violet and red colors, respectively.
Thus

q2n = sin–1 
5

4

2 4 10

1.69 10

-

-

Ê ˆ¥ ¥
ªÁ ˜¥Ë ¯

sin–1 0.473 ª 28.2∞

q2r = sin–1 
5

4

2 7 10

1.69 10

-

-

Ê ˆ¥ ¥
ªÁ ˜¥Ë ¯

sin–1 0.828 ª 55.90∞

and

q3n = sin–1 
5

4

3 4 10

1.69 10

-

-

Ê ˆ¥ ¥
ªÁ ˜¥Ë ¯

sin–1 0.710 ª 45.23∞

where we have assumed the wavelengths of the violet and red
colors to be 4 ¥ 10–5 and 7 ¥ 10–5 cm, respectively. Since
q2r > q3n, the second- and third-order spectra will overlap. Further
since sin q3r > 1, the third-order spectrum for the red color will
not be observed.

L1

L2

Grating

Screen

Fig. 18.37 Fraunhofer diffraction of a plane wave incident

normally on a grating.

Slit

L1

L2

Grating

Screen

Fig. 18.38 If instead of a point source we have a slit in the

focal plane of L
1

, then we will obtain bands on

the focal plane of L
2

.
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(b) Since d sin q = ml, we have for small Dl:

(d cos q) Dq = m(Dl)

or

Dq = 
( ){ }

1/ 22
1 /

m

d m d

Dl

- l

( )

8

1/ 224 5 4

2 6 10

1.69 10 1 2 6 10 /1.69 10

-

- - -

¥ ¥

È ˘¥ - ¥ ¥ ¥
Í ˙Î ˚

�

� 0.0010 rad � 3.44 minutes

Thus, if we are using telescope of angular magnification 10, the
two lines will appear to have an angular separation of 34.4  minutes.

18.8.2 Resolving Power of a Grating

In the case of a grating, the resolving power refers to the
power of distinguishing two nearby spectral lines and is
defined by the

R = 
l

Dl
(66)

where Dl is the separation of two wavelengths which the
grating can just resolve; the smaller the value of Dl, the
larger the resolving power.

The Rayleigh criterion (see Sec. 18.4) can again be used to
define the limit of resolution. According to this criterion, if
the principal maximum corresponding to the wavelength
l + Dl falls on the first minimum (on the either side of
the principal maximum) of the wavelength l, then the two
wavelengths l and l + Dl are said to be just resolved (see
Fig. 18.39). If this common diffraction angle is represented by
q and if we are looking at the mth-order spectrum, then the
two wavelengths l and l + Dl will be just resolved if the
following two equations are simultaneously satisfied:

d sin q = m(l + Dl) (67)

and

d sin q = ml + 
N

l
(68)

Thus

R = 
l

Dl
 = mN (69)

which implies that the resolving power depends on the total
number of lines in the grating—obviously on only those
lines which are exposed to the incident beam (see the deriva-
tion in Sec. 18.6). Further, the resolving power is proportional
to the order of the spectrum. Thus to resolve the D1 and D2

lines of sodium (Dl = 6 Å) in the first order, N must be at
least (5.89 ¥ 10–5)/(6 ¥ 10–8) ª 1,000.

From Eq. (69) it appears that the resolving power of
the grating will increase indefinitely if N is increased; how-
ever, for a given width of the grating D (= Nd), as N is
increased d decreases and therefore the maximum value of m
also decreases. Thus if d becomes 2.5l, only first- and second-
order spectra will be seen; and if it is further reduced to
about 1.5l, then only the first-order spectrum will be seen.

18.8.3 Resolving Power of a Prism

We conclude this section by calculating the resolving power
of a prism. Figure 18.40 gives a schematic description of the
experimental arrangement for observing the prism spectrum
which is determined through the following formula:

n(l) = 
sin {[ ( )] /2}

sin ( /2)

A

A

+ d l

(70)

where A represents the angle of the prism and d the angle of
minimum deviation. We assume that the refractive index de-
creases with l (which is usually the case) so that d also
decreases with l. In Fig. 18.40 points P1 and P2 represent the
images corresponding to l and l + Dl, respectively. We are as-
suming that Dl is small so that the same position of the prism
corresponds to the minimum deviation position for both wave-

l

1.0

0.811

l Dl+

q

Fig. 18.39 The Rayleigh criterion for the resolution of two

spectral lines.

l l
l

,
+ D

Incident B
eam

t

Aq

a

d l( )

P
1 ( )l

P
2 (

+
)

l
lD

b

Fig. 18.40 The schematic of the experimental arrangement

to observe the prism spectrum. P
1

 and P
2

 repre-

sent the images corresponding to l and l + Dl,

respectively.
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lengths. In an actual experiment one usually has a slit source
(perpendicular to the plane of the paper) forming line images at
P1 and P2. Since the faces of the prism are rectangular, the in-
tensity distribution will be similar to that produced by a slit of
width b (see Sec. 18.2).5 For the lines to be just resolved, the
first diffraction minimum [m = 1 in Eq. (12)] of l should fall at the
central maximum of l + Dl; thus we must have

Dd ª 
b

l
(71)

To express Dd in terms of Dl, we differentiate Eq. (70):

dn

dl
= 

1 ( ) 1
cos

sin ( /2) 2 2

A d

A d

+ d l dÈ ˘
Í ˙ lÎ ˚

Thus

Dd = 
2 sin ( /2)

cos {[ ( )] /2}

A d n

A d
Dl

+ d l l

Now from Fig. 18.40, we have

q = 
1
2

[p – (A + d)]

or sin q = 
b
a

 = cos
2

A + d

where the length a is shown in the figure. Further

sin A
2

= 
t
a
/2

where t is the length of the base of the prism. Thus

Dd ª 
t dn

b d
Dl

l
(72)

Substituting in Eq. (71), we get for the resolving power

R = 
l

Dl
 = dn

t
dl

(73)

Now, for most glasses, the wavelength dependence of the
refractive index (in the visible region of the spectrum) can be
accurately described by the Cauchy formula

n = A + 2 4
. . .B C

+ +
l l

(74)

Thus

dn

dl
= 

3 5

2 4 . . .B CÊ ˆ- + +Á ˜Ë ¯l l
(75)

the negative sign implying that the refractive index decreases
with an increase in wavelength. As an example, we consider
telescope crown glass for which6

A = 1.51375   B = 4.608 ¥ 10–11 cm2   C = 6.88 ¥ 10–22 cm4

For l = 6 ¥ 10–5 cm we have

dn

dl
~
- –(4.27 ¥ 102 + 3.54)

~
- –4.30 ¥ 102 cm–1

Thus, for t ~
-  2.5 cm we have

R = 
l

Dl
 ~
- 1000

which is an order of magnitude less than that for typical dif-
fraction gratings with 15,000 lines.

18.9 OBLIQUE INCIDENCE

Until now we have assumed plane waves incident normally on
the grating. For an experimental setting it is quite difficult to
achieve the condition of normal incidence to a great precision,
and it is easily seen that slight deviations from normal inci-
dence will introduce considerable errors. It is, therefore, more
practical to consider the more general oblique incidence case
(see Fig. 18.41). The wavelength measurement can be carried
out by using the method of minimum deviation as we do
for prisms.

5 Since we have a slit source, we need not consider the diffraction in a direction perpendicular to the plane of the diagram.
6 Data quoted from Ref. 2.

i q

Fig. 18.41 Diffraction of a plane wave incident obliquely

on a grating.
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If the angle of incidence is i, then the path difference
of the diffracted rays from two corresponding points in adja-
cent slits will be d sin q + d sin i (see Fig. 18.41). Thus,
principal maxima will occur when

d(sin q + sin i) = ml (76)

or d [sin (d – i) + sin i] = ml (77)

when d = i + q is the angle of deviation. For d to be minimum,
we must have

d

di
[sin (d – i) + sin i] = 0 (78)

–cos (d – i) + cos i = 0

i.e., i = d – i = q (79)

or i = 
2

d
= q (80)

Hence, at the position of minimum deviation, the grating con-
dition becomes

2d sin
2

d
= ml (81)

The minimum deviation position can be obtained in a man-
ner similar to that used in the case of a prism, and since the
adjustments are relatively simpler, this provides a more accu-
rate method for the determination of l.

18.10 X-RAY DIFFRACTION7

Visible light is an electromagnetic wave whose wavelength ap-
proximately lies between 4000 and 7000 Å. X-rays are also
electromagnetic waves whose wavelengths are ~1 Å. Obvi-
ously, it is extremely difficult to make slits which are narrow
enough for the study of X-ray diffraction patterns. Since the
interatomic spacings in a crystal are usually of the order of
angstroms, one can use it as a three-dimensional diffraction
grating for studying the diffraction of X-rays. Indeed,
X-rays have extensively been used to study crystal structures
(Ref. 7).

In an ideal crystal, the atoms or molecules arrange them-
selves in a regular three-dimensional pattern which can be
obtained by a three-dimensional repetition of a certain unit
pattern. This simplest volume which has all the characteris-
tics of the whole crystal and which completely fills space is
called the unit cell. One can think of various identifiable
planes in the regular three-dimensional periodic arrangement

(see Fig. 18.42). Miller indices are universally used as a
system of notation for planes within a crystal. They specify
the orientation of planes relative to the crystal axis without
giving the position of the plane in space with respect to the
origin. These indices are based on the intercepts of a plane
with the three crystal axes, each intercept with an axis being
measured in terms of unit cell dimensions (a, b, or c) along
that axis. To determine the Miller indices of a plane, the fol-
lowing procedure is used:

1. Find the intercepts (of the plane nearest to the origin)
on the three axes, and express them as multiples or frac-
tions of the unit cell dimension.

2. Take the reciprocals of these numbers and multiply by
the LCM of the denominators.

3. Enclose in parentheses.

For example, a (111) plane intercepts all three axes at one
unit distance [see Fig. 18.43(a)]; a (211) plane intercepts

the three axes at 1
2 , 1, and 1 unit distances [see Fig.

18.43(b)]. Similarly, a (110) plane intercepts the z axis at •.
Miller indices can also be negative; the minus sign is
shown above the digit as in ( )111 . Figure 18.44 shows the
planes characterized by the Miller indices ( )111  in a
simple cubic lattice.

Consider a monochromatic beam of X-rays to be incident
on a crystal. In Fig. 18.45 the horizontal dotted lines represent
a set of parallel crystal planes with Miller indices (hkl). W1W2

and W3W4 represent the incident and reflected wave fronts,
respectively. Obviously, the secondary wavelets emanating
from points A, B, and C are in phase on W3W4 (see Sec. 12.4

7 The author is grateful to Prof. Lalit K. Malhotra for his help in writing this section.

Fig. 18.42 Skewed planes in a NaCl crystal.
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or when

2dhkl sin q = ml (83)

where dhkl is the interplanar spacing between crystal planes
of indices (hkl), m = 1, 2, 3, . . .  is called the order of diffrac-
tion, and q is known as the glancing angle. This equation is
known as Bragg’s law and gives the angular positions of the
reinforced diffracted beams in terms of the wavelength l of
the incoming X-rays and of the interplanar spacings dhkl of
the crystal planes. When the condition expressed by
Eq. (83) is not satisfied, destructive interference occurs and
no reinforced beam will be produced. Constructive interfer-
ence occurs when the condition given by Eq. (83) is
satisfied, leading to peaks in the intensity distribution. For
solids which crystallize in cubic structures (which are dis-
cussed later), the interplanar spacing dhkl between two
closest parallel planes with Miller indices (hkl) is given by

dhkl = 
a

h k l2 2 2
+ +

(84)

where a represents the lattice constant. Thus knowing the
Miller indices, we can find dhkl; and from Bragg’s law, we can
determine the value of q at which Bragg’s equation can be
satisfied.

There are three types of cubic structures: simple cubic,
body-centered cubic (BCC) and face-centered cubic (FCC). Fig-
ure 18.46 shows a simple cubic structure (abbreviated as SC)
in which the atoms are at the corners of a cube which forms
what is known as a unit cell. The crystal is built up by the
repetition of this unit cell in three dimensions. In addition, if

a a

b b
y y

c c

x x

z z

(a) (b)

Fig. 18.43 (a) The (111) plane intercepts all three axes at

1 unit distance of each axial dimension. (b) The

(211) plane intercepts the three axes at ½, 1, and

1 unit distances.

x

z

y

Fig. 18.44 Planes characterized by the Miller indices

(1

_

1 1) in a simple cubic lattice.

q B C

Y

A

X
A1 B1 C1

W4

W3W1

W2

q
d

Fig. 18.45 Reflection of a plane wave by a set of parallel

crystal planes characterized by the Miller indices

(hkl). When the Bragg condition 2d sin q = ml is

satisfied, the waves scattered from different rows

will be in phase.

and Fig. 12.7); and the waves emanating from points A1, B1,
and C1 will also be in phase on W3W4 if

XB1 + B1Y = ml m = 1, 2, 3, . . . (82)

129

10 11

8

3

z

7

6

y

x

5

2

1

4

a/2

Fig. 18.46 A body-centered cubic (BCC) lattice. The (11 0 )

planes are separated by a 2 .
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there is an atom at the center of each cube (shown as 9, 10,
11, and 12 in Fig. 18.46), the arrangement is known as a BCC
structure. The distance between two adjacent planes charac-

terized by the Miller indices (1 10 )  is 2 ,a  which can be
verified by simple geometry. On the other hand, if instead of
having an atom at the center of the cube there is an atom at
the center of each of the six faces of the cube (see Fig. 18.47),
we will have the FCC structure. Copper, silver, and gold crys-
tallize in the FCC form with the lattice parameter a = 3.61, 4.09,
and 4.08 Å, respectively. Metals such as sodium, barium, and
tungsten crystallize in the BCC form with a = 4.29, 5.03, and
3.16 Å, respectively.8

Just as there are optical missing orders of a diffraction
grating, there are structural extinctions of X-ray reflection
from a crystal. For simple cubic structures, reflections from
all (hkl) planes are possible. However, for the BCC struc-
ture, diffraction occurs only on planes whose Miller indices
when added total to an even number. Thus for the BCC
structure, the principal diffracting planes for a first-order
diffraction are (110), (200), (211) (and other similar planes),
etc. where h + k + l is an even number. In the case of the
FCC crystal structure, the principal diffracting planes are
those whose Miller indices are either all even or all odd,
e.g., (111), (200), (220), etc.

18.10.1 Experimental Methods of

X-ray Diffraction

From Bragg’s law 2dhkl sin q = ml, it is clear that essentially
three methods can be used so that Bragg’s formula can be
satisfied:

l q

Rotating crystal method Fixed Variable
(intentional)

Powder method Fixed Variable
(inherent)

Laue method Variable Fixed

When one uses monochomatic X-rays, Bragg’s formula
cannot be satisfied for an arbitrary value of q. Hence one
rotates the single crystal so that reflection can occur for a
discrete set of q values. This method can be employed only
if single crystals of reasonable size are available. If this
is not the case, one can still use monochromatic X-rays pro-
vided the sample is in powder form so that there are always
enough crystallites of the right orientation available to sat-
isfy the Bragg relation. A powder will consist of a large number
of randomly oriented microcrystals; each microcrystal is
essentially a single crystal. As the X-ray beam passes through
such a polycrystalline material, the orientation of any given set
of planes, with reference to the X-ray beam, changes from one
microcrystal to the other. Thus, corresponding to any given
set of planes there will be a large number of crystals for which
Bragg’s condition will be satisfied, and on the photographic
plate one will obtain concentric rings [see Fig. 18.48(a)]; each
ring will correspond to a particular value of dhkl and a particu-
lar value of m. The appearance of the circular rings can be
understood as follows. Consider a set of planes parallel to
AB [see Fig. 18.48(b)]. The glancing angle q is assumed to
satisfy the Bragg condition. If the microcrystal is rotated
about the direction of the incident X-ray beam, then for all
positions of the microcrystal, the glacing angle will be the
same for these sets of planes. Further, for each position of
the microcrystal, the direction of the diffracted beam will be
different, but it will always lie on the surface of the cone
whose semivertical angle will be 2q. Consequently, one will
obtain concentric circular rings on the photographic plate;
these rings are known as Debye-Scherrer rings.

While using the powder method, the photographic film is
put in a cylindrical form surrounding the polycrystalline
sample as shown in Fig. 18.49(a). Each Debye-Scherrer ring
will produce an arc on the film, and when the film is unrolled,
one obtains a pattern as shown in Fig. 18.49(b) and (c). From
the position of these arcs one can calculate q and thus deter-
mine the interplanar spacing. From a study of the interplanar
spacings one can determine the crystal structure.9 Although
a powder camera with an enclosed film strip has been exten-
sively used in the past, modern X-ray crystal analysis uses

8 Crystal structures other than cubic are also common; for example, zinc crystallizes into a hexagonal structure, and carbon forms a
diamond structure. However, the most important fact is that in all these structures there is a definite periodicity of atoms.

9 For more details, you may look up Ref. 7.

Fig. 18.47 A face-centered cubic (FCC) lattice.
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where
N = h2 + k2 + l2

Now, for a simple cubic lattice, all values of (hkl) are possible,
implying the following possible values of N:

N = 1, 2, 3, 4, 5, 6, 7, . . . (SC) (87a)

Similarly, for a BCC lattice h + k + l must be even, implying

N = h2 + k2 + l2

= 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, . . . (BCC) (87b)

X-ray

beam Polycrystalline
Powder

(a)

(b)

2qB
q

A

Fig. 18.48 (a) When a monochromatic X-ray beam falls

on a polycrystalline sample, one obtains the

Debye-Scherrer rings. (b) Diffraction from a

polycrystalline sample.

(a)

(b)

(c)

Incident -rayX
beam

Microcrystalline
Power

Sodium

Copper

Fig. 18.49 (a) While using the powder method the photo-

graphic film is kept in a cylindrical form as shown

in the figure. (b) and (c) Schematic diffraction pat-

terns for sodium and copper, respectively.

an X-ray diffractometer which has a radiation counter to
detect the angle and intensity of the diffracted beam.

Finally there is the Laue method in which the single crys-
tal is held stationary in a beam of white X-rays. Each set of
planes then chooses its own wavelength to satisfy the Bragg
relation (see Fig. 18.50).

To calculate the angles of diffraction, we substitute
Eq. (84) into Bragg’s law [Eq. (83)] to obtain

2
2 2 2

a

h k l+ +

sin q = ml (85)

We restrict ourselves to only first-order reflections (m = 1);
higher-order reflections are usually rather weak (see also
Prob. 18.22). Thus Eq. (85) can be written in the form

sin q = 
2

N
a

l
(86)

X-ray
beam

Single
Crystal

Fig. 18.50 When a polychromatic X-ray beam falls on a

single crystal, one obtains Laue spots. Each set of

planes chooses its own wavelength to satisfy the

Bragg relation given by Eq. (84).
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tion of a light beam due to the dependence of the refractive index
on the intensity of the beam. This leads to the self-focusing
(or defocusing) of the beam. To physically understand the
self-focusing phenomenon, we assume the nonlinear depen-
dence of the refractive index on the intensity to be of the form

n = n0 +
1
2

n¢E2
0 (88)

where n0 is the refractive index of the medium in the absence of
the electromagnetic field, n¢ is a constant representing the non-
linear effect,11 and E0 represents the amplitude of the electric
field. As an example, we consider the incidence of a laser beam
(propagating in the z direction) having Gaussian intensity distri-
bution in the transverse direction; i.e., we assume

E(x, y, z, t) ª E0 cos (kz – wt) (89)

with

E0 = E00 exp -

F

HG
I

KJ
r

a

2

2
(90)

where a represents the width of the Gaussian beam and

r ( = x y2 2
+ ) represents the cylindrical coordinate. In the

absence of any nonlinear effects, the beam will undergo dif-
fraction divergence (see Sec. 20.5). However, if the beam is
incident on a medium characterized by a positive value of n¢,
the intensity distribution will create a refractive index distri-
bution which will have a maximum value on the axis (i.e., at
r = 0) and will gradually decrease with r. Indeed, using
Eqs. (88) to (90), we will have

n ~
-  

2
2

0 00 2

1 2
exp

2

r
n n E

a

Ê ˆ
+ -¢ Á ˜Ë ¯

~
-

2
2

0 00 0
1 1

2 2

r
n n E n
Ê ˆ Ê ˆ+ -¢Á ˜ Á ˜Ë ¯ Ë ¯a

(91)

where

a

2 = 
2

0
2
002

n a

n E¢
(92)

Finally, for an FCC lattice, Miller indices are either all even or
all odd, implying

N = h2 + k2 + l2

= 3, 4, 8, 11, 12, 16, 19, 20, 24, 27, . . .  (FCC) (87b)

For a given structure and for given values of l and a, one can
now easily calculate the different values of q. For example, if
we consider l = 1.540 and 1.544 Å (corresponding to the
CuK

a1 and CuK
a2 lines), then for sodium (which is a BCC

structure with a = 4.2906 Å) the various values of q are

(14.70∞, 14.74∞), (21.03∞, 21.09∞), (26.08∞, 26.15∞),
(30.50∞, 30.59∞), (34.58∞, 34.68∞), (38.44∞, 38.56∞),
(42.18∞, 42.32∞), (45.88∞, 46.03∞), (49.59∞, 49.76∞),
(53.38∞, 53.58∞), (57.33∞, 57.56∞), (61.54∞, 61.82∞),
(66.22∞, 66.56∞), (79.41∞, 80.23∞)

The two values inside the parentheses correspond to the
two wavelengths 1.540 and 1.544 Å, respectively. Because of
the presence of two wavelengths, one obtains double lines
for each family of planes which become resolvable only at
higher scattering angles. Similarly one can consider reflec-
tions from other structures (see Probs. 18.19, 18.20, and
18.21). Each value of q will give rise to a Debye-Scherrer ring
shown in Figs. 18.48(a) and 18.49(b) and (c).

Finally, the intensity of the diffracted wave depends on
the number of atoms per unit area in the plane under consid-

eration. For example, corresponding to the ( 110 ) and ( 2 2 2 )
planes passing through a BCC lattice, there will be one atom
and two atoms, respectively, in an area a2. Thus in the first
case the intensity of the diffracted wave will be much more
than in the second case.

18.11 THE SELF-FOCUSING

PHENOMENON10

With the availability of intense laser beams, a large number of
interesting nonlinear optical phenomena have been investigated.
One such nonlinear phenomenon is the effect on the propaga-

10 Based on Ref. 8; for a rigorous account see, e.g., Ref. 9.
11 This dependence may arise from a variety of mechanisms, such as the Kerr effect, electrostriction, and thermal effect. The simplest to

understand is the thermal effect, which is due to the fact that when an intense optical beam having a transverse distribution of intensity
propagates through an absorbing medium, a temperature gradient is set up. For example, if the beam has a Gaussian transverse intensity
variation [i.e., of the form exp (–r2/a2); the direction of propagation being along the z axis], then the temperature will be maximum on the
axis (i.e., r = 0) and will decrease with an increase in the value of r. If dn/dT > 0, the refractive index will be maximum on the axis, and
the beam will undergo focusing; on the other hand, if dn/dT < 0, the beam will undergo defocusing (see, e.g., Ref. 9).

The Kerr effect arises due to the anisotropic polarizability of liquid molecules (such as CS2). An intense light wave will tend to orient
the anisotropically polarized molecules such that the direction of maximum polarizability is along the direction of the electric vector; this
changes the dielectric constant of the medium. On the other hand, electrostriction (which is important in solids) is the force which a
nonuniform electric field exerts on a material medium; this force affects the density of the material, which in turn affects the refractive
index. Thus, a beam having nonuniform intensity distribution along its wave front will give rise to a refractive index variation leading to
the focusing (or defocusing) of the beam. For a detailed discussion on electrostriction and the Kerr effect, see Refs. 9 to 11.

gha80482_ch18_251-288.PMD 1/30/2009, 10:25 PM280



Fraunhofer Diffraction: I 281
�

and in writing Eq. (91) we have expanded the exponential
term and have retained only the first two terms. In other
words, we are restricting ourselves to small values of r, which

is the paraxial approximation. The term 1
2 n¢E2

00 is usually
very small compared to n0; so we may write (after squaring)

n2 ~
- 

2
2
0 1

r
n

È ˘Ê ˆ-Í ˙Á ˜Ë ¯aÍ ˙Î ˚
(93)

We may recall that in Sec. 3.4.1 we considered propagation
in a medium whose refractive index decreased parabolically
from the axis, and we showed that the beam could undergo
periodic focusing (see Fig. 3.25). Indeed we showed that the
medium behaved as a converging lens of focal length pa/2
[see Eq. (48) of Chap. 3]. In the present case also because of
nonlinear effects (with n¢ > 0), the medium will act as a converg-
ing lens of focal length approximately given by

fnl
~
- 

1/ 2

0
2
002 2 2

n
a

n E

Ê ˆp p
a Á ˜¢Ë ¯
� (94)

the subscript (nl) signifying that the effect is due to a nonlinear
phenomenon. Thus because of nonlinear effects the beam is
said to undergo self-focusing; the word self signifies the fact
that the beam creates its own refractive index gradient, resulting
in the focusing of the beam.12

Our analysis in Sec. 3.4.1 for the calculation of the focal
length was based on ray optics and neglected diffraction ef-
fects. Now, in the absence of any nonlinear effects, the beam
will spread out due to diffraction, and the angle of divergence
will be approximately given by (see Fig. 18.14)

qd 
a

l

p
�  = 0 0/n

a

l

p
(95)

where l0 is the free space wavelength. Thus the phenom-
enon of diffraction can be approximated by a diverging lens
of focal length (see Fig. 18.51)

fd 21

2d

a
ka

q
� �

(96)

where k = 
2p

l
 = 0

0

2
n

p

l
(97)

Clearly if fd < fnl, the diffraction divergence will dominate and the
beam will diverge. On the other hand, if fnl < fd, the nonlinear
focusing effects will dominate and the beam will undergo self-
focusing. For fd ª fnl, the two effects will cancel each other, and
the beam will propagate without any focusing or defocusing.

This is the condition of uniform waveguide like propagation.
To determine the critical power of the beam, we note that the
condition fd ª fnl implies

1
2

2ka ª 

1/ 2
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2
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¢
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Now the total power of the beam is given by

P = 
0

•

Ú velocity ¥ (energy/unit volume) ¥ 2prdr
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� n0ce0E2
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where e (=  n2
00e0) is the dielectric permittivity of the medium

and e0 (= 8.85 ¥ 10–12 C2  N–1 m–2) is the dielectric permittivity
of free space (see Sec. 19.2). Substituting the expression for
E2

00 from Eq. (98) into Eq. (99), we obtain the following
expression for the critical power:

Pcr

2
0

0( )
32

c
n

lp
e

¢
� (100)

a

f

q = /a f

Fig. 18.51 When a plane wave is incident on a diverging

lens, the transmitted rays diverge making an

angle q ª a/ f with the axis.

12 If n¢ were a negative quantity, the refractive index would have increased as we moved away from the axis and the beam would have
undergone defocusing. For example, if the refractive index decreases with an increase in temperature, the beam may undergo what is
known as thermal defocusing.
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Garmire, Chiao, and Townes (Ref. 12) carried out experiments
on the self-focusing of a ruby laser beam (l0 = 0.6943 mm) in
CS2 and found that the critical power was 25 ± 5 kW. Equa-
tion (100) gives

Pcr ~ . .
( . )

- ¥ ¥ ¥ ¥ ¥

¥

¥

-

-

-

314
32

3 10 885 10
0 6943 10

2 10
8 12

6 2

20

~
-  6.3 kW (101)

where we have used the following parameters for CS2: n0 ~
-

1.6276, n¢ ~
- 1.8 ¥ 10–11 cgs units ~

-  2 ¥ 10–20 mks units. [The
mks unit for n¢ is (meter/volt)2.] Although the result is wrong
by a factor of about 4, one does obtain the correct order; this
is indeed the case for all order-of-magnitude calculations.
Thus

1. When P < Pcr, the beam will diverge due to diffraction.
2. When P = Pcr, the beam will propagate without divergence

or convergence. This is the condition for uniform
waveguide propagation.

3. When P > Pcr, we may extrapolate that the beam will
undergo focusing, which is indeed borne out by more
rigorous analysis. This is known as the self-focusing
of the beam.

A detailed study of the self-focusing phenomenon is of
considerable importance in laser-induced fusion experiments
where there is a nonlinear interaction of the laser beam with
the plasma.

18.12 OPTICAL MEDIA

TECHNOLOGY—AN ESSAY13

Optical media technology has been around for the last 30
years or so. There were various avatars of this technology
beginning with laser video disc (an optical medium with ana-
log recording) to the dramatic breakthrough in the form of
compact disc ROM, compact disc recordable/rewritable, magneto-
optical disc, DVD-ROM, recordable and rewritable to
present-day Blu-Ray technology. The optical storage solu-
tion using laser typically provides lowest cost per byte; is
rugged, transportable, and interchangeable; has fast random
access, is durable, and is available in both erasable and
nonerasable forms.

Optical data storage are a system in which data are stored
and retrieved by light, which happens to be a laser. As for
the majority of consumer products, the lasing takes place
through a semiconductor laser diode. The optical system

consists of two broad parts: a medium or disc and a drive.
The discs are all made of optically clear plastic material and
contain digitized information in the form of spiral track con-
sisting of finite lengths of “pits” and “lands”. An optical
drive contains the optical pickup unit (OPU) and servo con-
trol system for controlling it, a disc rotation system, and
associated electronics mounted on a motherboard.

As shown in Fig. 18.52, the OPU is essentially a scanning
optical microscope, which is mounted on a servomotor to
scan any desired position of the disc. The OPU is used for
both recording and reading of data. The OPU is equipped
with a laser diode and a set of optical elements which focus
the beam on the disc surface and detect the light reflected
back. The spot size of the light is given by the familiar opti-
cal concept of numerical aperture (NA) of the OPU lens as
shown in Fig. 18.53. The higher the NA; the smaller the spot
size. Thus, as discussed later, this aspect is utilized for mak-
ing smaller spot sizes to cram more data into the  same
physical structure, resulting in transition to ever-increasing
data capacity in the form of DVD and Blu-Ray format.

In a disc, the pits and lands are essentially physical fea-
tures (protrusions) on the disc surface, which are put there
through injection molding. The heights of the pits from the
surface are not arbitrary; rather they are fixed. For an ideal
case, this height should be equal ~ l/4, as then the total
path difference after reflection is l/2, where l is the wave-
length of the laser used. This ensures that perfect bright
and dark fringes are produced. However, in reality this
height is actually ~ l/6 as some amount of light signal is
required from the pits for the servo controlling the OPU on

13 This essay has been kindly written by Dr. Rajeev Jindal, Mr. Giriraj Nyati, and Mr. Subrata Dutta of Moser Baer India in Greater
Noida, India. Moser Baer has done pioneering work in the manufacture of DVDs.

a

Spot diameter = /NAl

NA = sinn an = 1
n = 1.5Disc

Objective lens

Laser

Semitransparent
mirror

+

Basically:
A scanning microscope

Fig 18.52 Optical pickup unit (OPU) is essentially a scanning

optical microscope, which is mounted on a servo-

motor to scan any desired position of the disc.
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the disc, and hence a perfect dark area is not preferable.  As
shown in Fig. 18.54, bump (pit) height causes a path differ-
ence of ~ l/2 relative to land. The optical head reads
information by capturing reflected light as the laser beam
travels across the pits and lands—a transition from either
land to pit or pit to land is taken a logic 1 and no transition
is taken as logic 0—polarity of pits can be either dark on
bright background or reversed. This is shown in Fig. 18.55.
The actual working can be seen through a schematic dia-
gram as given in Fig. 18.56. The actual system and a cut-a
way section is shown in Figs. 18.57 and 18.58.

A CD-ROM substrate is made of optically clear polycar-
bonate over which the data marks are made through injection
molding. The inner hole has a diameter of 15 mm while the
overall diameter of the disc is 120 mm and the thickness is
1.2 mm. The top of the disc is covered with a very thin layer

1.22l/NA

q

Wavelength l

Objective lens

Information
layer

Numerical aperture
NA = sin q

Intensity profile

Fig 18.53 The spot size of the light is determined by the

wavelength and the NA (numerical aperture) of

the  OPU lens.

λ/2

λ/4

Protective Layer

Pit

Land

Fig 18.54 The pits and lands are essentially physical fea-

tures (protrusions) on the disc surface, which are

put there through injection molding. The

heights of the pits from the surface are not arbi-

trary; rather they are fixed, being equal to l/4

where l is the wavelength of the laser used.

Pit

T

Land Pit PitLand

1 11 110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000

Fig. 18.55 Optical head reads information by capturing

reflected light as the laser beam travels across

the pits and lands; changes in the light inten-

sity are interpreted as 0s and 1s. Polarity of

pits can be either dark on bright background or

reversed.

Track
Pitch

Pit
Width

Focused
Laser
Beam

Disc
Rotation

Incident
Beam

Reflected
Beam

Laser
Spot

Pit
(height /4)l

Constructive
Destructive

Interference - In phase - Land
Interference - Out of Phase - Pit

Pit
Length

Fig. 18.56 Schematic diagram of reflection from the pit.

Fig. 18.57 The pits and lands are essentially physical fea-

tures (protrusions) on the disc surface, which are

put there through injection molding. The

heights of the pits from the surface are not

arbitrary; rather they are fixed, being equal to

l/4 where l is the wavelength of the laser

used. A color figure appears in the insert at the

back of the book. Photograph kindly provided

by Dr. Rajeev Jindal of Moser Baer, India.
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Focusing
lens

Semi-
silvered
mirror

Photodiode
array

LabelLandProtective acrylic

Semiconductor
laser

Laser PIT
Aluminum

Polycarbonate
plastic

Fig. 18.58 A CD-ROM substrate is made of optically clear

polycarbonate over which the data marks are

made through injection molding. The inner

hole has a diameter of 15 mm while the over-

all diameter of the disc is 120 mm and the

thickness is 1.2 mm. The top of the disc is cov-

ered with a very thin layer of silver or gold to

form a reflective layer that reflects the laser

beam so as to be read back. The reflected light

is incident on a quadrant photodetector, which

converts the light to suitable electrical pulses,

which are subsequently processed to extract

relevant data. Details are given in the text.

A color figure appears in the insert at the back

of the book. Photograph kindly provided by

Dr. Rajeev Jindal of Moser Baer, India.

of silver or gold to form a reflective layer which reflects the
laser beam so as to be read back. The reflected light is inci-
dent on a quadrant photodetector, which converts the light
to suitable electrical pulses, which are subsequently pro-
cessed to extract relevant data. The data capacity of the disc
is typically 650 to 700 MB of digital data.

Transition from CD to DVD: Due to the need for higher
capacity and better resolution (picture quality), it was de-
cided to go for a medium having a higher capacity called a
digital versatile disc (DVD). Due to the need for backward
compatibility, it was decided to keep the physical structure
of the disc the same, i.e., a plastic substrate of 120 mm diam-
eter with a 15 mm diameter inner hole. However, as shown in
Fig. 18.52, the spot size is proportional to the wavelength and
inversely proportional to the NA, so in DVD the wavelength
has been reduced to 650 nm and NA increased to 0.65. The
result has been a reduced spot size. However, the optical
path has been reduced (to reduce the aberrations) in the pro-
cess, resulting in thinner substrate. This entire process is
shown in Figs. 18.59 and 18.60. However, ever-increasing hun-
ger for more data has resulted in a new product called Blu-Ray

CD

Infra-red Diode Laser: Wave length I = 780 nm
Simple Objective Lens: NA = 0.45
Single Disc Substrate: thickness = 1.2 nm

Red Laser  =  650 nm
Increased Aperture of Objective: NA = 0.60
Thin Substrate: thickness = 0.6 nm

l

DVD

Fig. 18.60 The reduction in the spot size by decreasing the

spot size and increasing the numerical aperture.

1.
2

nm

0.72 mm

0.6 nm

Scanning Spot
0.6 mm

0.96 mm

NA = 0.4
= 780 nml

NA = 0.6
= 650 nml

Scanning Spot
1.7 mm L1

Fig. 18.59 The reduction in the spot size by decreasing the

spot size and increasing the numerical aperture.

l = 780 nm
NA = 0.45

l = 650 nm
NA = 0.6

l = 405 nm
NA = 0.85

(a) (b) (c)

Fig. 18.61 (a) Infrared diode laser (l = 780 nm) with a simple

objective lens with NA = 0.45. (b) Red laser

(l = 650 nm) with increase aperture objective

with NA = 0.60. (c) Blue laser (l = 405 nm) with

further increase in NA = 0.85. A color figure

appears in the insert at the back of the book.

Photograph kindly provided by Dr. Rajeev

Jindal of Moser Baer, India.

where using precedent argument the NA has been further in-
creased to 0.85 and the wavelength reduced to 405 nm
(blue-violet). The resulting increase in capacity is 25 GB per
layer as shown in Figs. 18.61 and 18.62.
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order of diffraction, and q is known as the glancing angle.
The above equation is known as Bragg's law and gives the
angular positions of the reinforced diffracted beams.

Problems

18.1 A plane wave (l = 5000 Å) falls normally on a long narrow
slit of width 0.5 mm. Calculate the angles of diffraction
corresponding to the first three minima. Repeat the calcula-
tions corresponding to a slit width of 0.1 mm. Interpret
physically the change in the diffraction pattern.

[Ans: 0.057∞, 0.115∞, 0.17∞; 0.29∞, 0.57∞, 0.86∞]

18.2 A convex lens of focal length 20 cm is placed after a slit of
width 0.6 mm. If a plane wave of wavelength 6000 Å falls
normally on the slit, calculate the separation between the
second minima on either side of the central maximum.

[Ans: ~
-  0.08 cm]

18.3 In Prob. 18.2 calculate the ratio of the intensity of the prin-
cipal maximum to the first maximum on either side of the
principal maximum.

[Ans: ~ 21]

18.4 Consider a laser beam of circular crosssection of diameter
3 cm and of wavelength 5 ¥ 10–5 cm. Calculate the order of
the beam diameter after it has traversed a distance of 3 km.

[Ans: ~14 cm. This shows the extremely high directional-
ity of laser beams.]

18.5 A circular aperture of radius 0.01 cm is placed in front of a
convex lens of focal length 25 cm and illuminated by a
parallel beam of light of wavelength 5 ¥ 10–5 cm. Calculate
the radii of the first three dark rings.

[Ans: 0.76, 1.4, 2.02 mm]

18.6 Consider a plane wave incident on a convex lens of diam-
eter 5 cm and of focal length 10 cm. If the wavelength of the
incident light is 6000 Å, calculate the radius of the first
dark ring on the focal plane of the lens. Repeat the calcula-
tions for a lens of the same focal length but with diameter of
15 cm. Interpret the results physically.

[Ans: 1.46 ¥ 10–4 cm, 4.88 ¥ 10–5 cm]

18.7 Consider a set of two slits each of width b = 5 ¥ 10–2 cm
and separated by a distance d = 0.1 cm, illuminated by a
monochromatic light of wavelength 6.328 ¥ 10–5 cm. If a
convex lens of focal length 10 cm is placed beyond the
double-slit arrangement, calculate the positions of the
minima inside the first diffraction minimum.

[Ans: 0.0316 mm, 0.094 mm]
18.8 Show that when b = d, the resulting diffraction pattern cor-

responds to a slit of width 2b.

18.9 Show that the first-order and second-order spectra will never
overlap when the grating is used for studying a light beam
containing wavelength components from 4000 to 7000 Å.

18.10 Consider a diffraction grating of width 5 cm with slits of
width 0.0001 cm separated by a distance of 0.0002 cm.

Summary

� Interference corresponds to the situation when we consider
the superposition of waves coming out from a number of
point sources, and diffraction corresponds to the situation
when we consider waves coming out from an area source
such as a circular or rectangular aperture or even a large num-
ber of rectangular apertures (such as the diffraction grating).

� When a plane wave is incident normally on N parallel slits,
the Fraunhofer diffraction pattern is given by

I = I0

2 2

2 2

sin sin

sin

Nb g
◊

b g

where

b = 
sinbp q

l
g = 

sindp q

l

l is the wavelength of light, q is the angle of diffraction,
b represents the width of each slit, and d is the separation
between two slits. When N =1, we have the single-slit
diffraction pattern producing a central maximum at q = 0 and
minima when b sin q = ml, m = ±1, ±2, . . . . When N ≥ 2, the
intensity distribution is the product of the single-slit diffrac-
tion pattern and the interference pattern produced by N
point sources separated by a distance d. For N = 2, we ob-
tain Young’s double-slit interference pattern. For large values
of N, the principal maxima occur when g = mp, implying

d sin q = ml m = 0, 1, 2, . . .

which is usually referred to as the grating condition.

� The resolving power of the grating is given by

R = 
l

Dl
 = mN

where N represents the total number of lines in the grating. For
example, in the first-order spectrum (m = 1) of a diffraction
grating with N = 10,000, for l ª 5000 Å we get Dl ª 0.5 Å.

� Consider a monochromatic beam of X-rays incident on a
crystal. The glancing angle q for which we have reinforced
diffracted beams is given by

2dhkl sin q = ml

where dhkl is the interplanar spacing between crystal planes
having Miller indices (hkl); m = 1, 2, 3, . . .  is called the
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Fig. 18.62 The evolution of optical media technology.
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What is the corresponding grating element? How many or-
ders would be observable at l = 5.5 ¥ 10–5 cm? Calculate
the width of the principal maximum. Would there be any
missing orders?

18.11 For the diffraction grating of Prob. 18.10, calculate the dis-
persion in the different orders. What will be the resolving
power in each order?

18.12 A grating (with 15,000 lines per inch) is illuminated by
white light. Assuming that white light consists of wave-
lengths lying between 4000 and 7000 Å, calculate the
angular widths of the first- and the second-order spectra.
[Hint: You should not use Eq. (65). Why?]

18.13 A grating (with 15,000 lines per inch) is illuminated by
sodium light. The grating spectrum is observed on the focal
plane of a convex lens of focal length 10 cm. Calculate the
separation between the D1 and D2 lines of sodium. (The
wavelengths of the D1 and D2 lines are 5890 and 5896 Å,
respectively.) [Hint: You may use Eq. (65).]

18.14 Calculate the resolving power in the second-order spectrum
of a 1 in. grating having 15,000 lines.

18.15 Consider a wire grating of width 1 cm having 1000 wires.
Calculate the angular width of the second-order principal
maxima, and compare the value with the one corresponding
to a grating having 5000 lines in 1 cm. Assume l = 5 ¥

10–5 cm.

18.16 In the minimum deviation position of a diffraction grating,
the first-order spectrum corresponds to an angular devia-
tion of 30∞. If l = 6 ¥ 10–5 cm, calculate the grating
element.

18.17 Calculate the diameter of a telescope lens if a resolution of
0.1 second of arc is required at l = 6 ¥ 10–5 cm.

18.18 Assuming that the resolving power of the eye is determined
by diffraction effects only, calculate the maximum distance
at which two objects separated by a distance of 2 m can be
resolved by the eye. (Assume pupil diameter to be 2 mm
and l = 6000 Å.)

18.19 A pinhole camera is essentially a rectangular box with a
tiny pinhole in front. An inverted image of the object is
formed on the rear of the box. Consider a parallel beam of
light incident normally on the pinhole. If we neglect dif-
fraction effects, then the diameter of the image will increase
linearly with the diameter of the pinhole. On the other
hand, if we assume Fraunhofer diffraction, then the diam-
eter of the first dark ring will go on increasing as we reduce
the diameter of the pinhole. Find the pinhole diameter for
which the diameter of the geometrical image is approxi-
mately equal to the diameter of the first dark ring in the

Airy pattern. Assume l = 6000 Å and a separation of 15 cm
between the pinhole and the rear of the box.

[Ans: 0.47 mm]

18.20 Copper is an FCC structure with lattice constant 3.615 Å.
An X-ray powder photograph of copper is taken. The X-ray
beam consists of wavelengths 1.540 and 1.544 Å. Show
that diffraction maxima will be observed at q = (21.64∞,
21.70∞), (25.21∞, 25.28∞), (37.05∞, 37.16∞), (44.94∞,
45.09∞), (47.55∞, 47.71∞), (58.43∞, 58.67∞), (68.20∞,
68.58∞), (72.29∞, 72.76∞).

18.21 Tungsten is a BCC structure with lattice constant 3.1648 Å.
Show that in the powder photograph of tungsten (corre-
sponding to an X-ray wavelength of 1.542 Å) one would
observe diffraction maxima at q = 20.15∞, 29.17∞, 36.64∞,
43.56∞, 50.39∞, 57.55∞, 65.74∞, and 77.03∞.

18.22 (a) In the simple cubic structure if we alternately place
Na and Cl atoms, we obtain the NaCl structure. Show
that the Na atoms (and the Cl atoms) independently
form FCC structures. The lattice constant associated
with each FCC structure is 5.6402 Å. Corresponding
to the X-ray wavelength 1.542 Å, show that diffraction
maxima will be observed at q = 13.69∞, 15.86∞, 22.75∞,
26.95∞, 28.27∞, 33.15∞, 36.57∞, 37.69∞, 42.05∞ 45.26∞,
50.66∞, 53.98∞, 55.10∞, 59.84∞, 63.69∞, 65.06∞, 71.27∞,
77.45∞, and 80.66∞.

(b) Show that if we treat NaCl as a simple cubic structure
with lattice parameter 2.82 Å, then the maxima at q =
13.69∞, 26.95∞, 36.57∞, 45.26∞, 53.98∞, 63.69∞, and
77.45∞ will not be observed. Indeed in the X-ray dif-
fraction pattern of NaCl, the maxima corresponding to
these angles will be very weak.

18.23 Show that the mth-order reflection from the planes charac-
terized by (hkl) can be considered as the same as the
first-order reflection from the planes characterized by
(mh mk ml).

18.24 Calculate the Fraunhofer diffraction pattern produced by a
double-slit arrangement with slits of widths b and 3b, with
their centers separated by a distance 6b.

18.25 Consider the propagation of a 1 kW laser beam (l = 6943 Å,
beam diameter ~

-  1 cm) in CS2. Calculate fd and fnl and dis-
cuss the defocusing (or focusing) of the beam. Repeat the
calculations corresponding to a 1000 kW beam, and discuss
any qualitative differences that exist between the two cases.
The data for n0 and n2 are given in Sec. 18.10.

18.26 The values of n0 and n2 for benzene are 1.5 and
0.6 ¥ 10–10 cgs units, respectively. Obtain an approximate
expression for the critical power.
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19.1 INTRODUCTION

In this chapter, we will present a more general analysis of the
far-field diffraction of a plane wave by different types of
aperture; this is known as Fraunhofer diffraction. We will first
derive the formula for what is known as Fresnel diffraction,
which will be used in Chap.20. We will then make the far-field
approximation, which will give us the Fraunhofer diffraction
pattern; this will be shown to be the Fourier transform of the
aperture function. We will also derive the Fourier transform-
ing property of a thin lens that forms the basis of Fourier
optics and of spatial frequency filtering.

19.2 THE FRESNEL DIFFRACTION

INTEGRAL

We consider a plane wave (of amplitude A) incident nor-
mally on an aperture as shown in Fig. 19.1. Using the

Fourier analysis is a ubiquitous tool that has found application to diverse areas of physics and
engineering.

—Joseph Goodman in the Preface to Introduction to Fourier Optics

FRAUNHOFER DIFFRACTION II

AND FOURIER OPTICS

Chapter

Nineteen

Huygens–Fresnel principle, we will calculate the field pro-
duced at point P on a screen SS¢ which is at a distance z
from the aperture. Now, for a spherical wave diverging
from the origin, the field distribution is given by

u ~ 
1

r
eikr

where r is the distance from the source (at the origin) to the
observation point. We consider an infinitesimal area dx dh

(around point M) on the plane containing the aperture; the
field at point P due to waves emanating from this infinitesi-
mal area will be proportional to

ikrAe

r
dxdh (1)

where r = MP. To calculate the total field (at point P), we will have
to sum over all the infinitesimal areas (in the aperture) to obtain

u(P) = C
ikrAe

rÚÚ dxdh (2)

where C is a proportionality constant and the integration is
over the entire aperture. From a more general theory, one can
show that (see, e.g., Refs. 1 to 4; see also Sec.19.3):

C = –
2

ik

p

 = 
1

il
(3)

We thus obtain

u(P) =
ikrA e

i rl
ÚÚ dx dh (4)

If the amplitude and phase distribution on the plane z = 0 is
given by A(x, h), then the above integral is modified to

u(P) = 
1

il ÚÚ A(x, h) e
r

ikr
dxdh (5)

M
O

d dx h

h

x
z

r

O¢

x

S¢

S

y

P x y z( , , )

Fig 19.1 A plane wave incident normally on an aperture.

The diffraction pattern is observed on screen SS¢.
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In writing Eqs. (4) and (5), we made two assumptions:

1. The first assumption is that the screen (in the plane of
the aperture) does not affect the field at point P. This
assumption is valid when the dimensions of the aper-
ture are large in comparison to the wavelength. A more
accurate analysis would take into consideration the ef-
fect of the screen on the field at any point P; this, in
general, is a very difficult problem.

2. We have used a scalar theory in which we have repre-
sented the field by a scalar function u; this implies that
the electric field is in the same direction everywhere. This
assumption will be valid when the line joining  point O
and observation point P makes a small angle with the axis.

The quantity r, which represents the distance between
point M [whose coordinates are (x, h, 0)] on the plane of the
aperture and point P (whose coordinates are x, y, z) on the
screen (see Fig. 19.1), will be given by

r = [(x – x)2 + (y – h)2 + z2]1/2

= 1z + a

where

a ∫ 
2 2

2 2

( ) ( )x y

z z

- x - h
+ (6)

Now, for a < 1, we may write

1+ a  = 1 + 
1

2
a – 1

8
a

2 + . . . (7)

If we assume a << 1 and neglect quadratic and higher-
order terms in the above expansion, we get

r ª z + 
2 2( ) ( )

2 2

x y

z z

- x - h
+  (8)

Further, in the denominator of Eq. (5) we may safely replace r
by z, so that we may write1

u(x, y, z) ª 
1

i zl
eikzzz A(x, h)

¥ exp 2 2[( ) ( ) ]
2

ik
x y

z

Ï ¸
- x + - hÌ ˝

Ó ˛
dxdh

(9)

1 For example, for l = 6 ¥ 10–5 cm, the factor cos kr becomes cos 510 .
3

r
pÊ ˆ

Á ˜Ë ¯
 As the value of r is changed from, say, 60 to 60.00002 cm,

the cosine factor will change from +1 to –0.5. This shows the rapidity with which the exponential factor will vary in the domain of
integration, although the change in r is extremely small.

The above equation can be rewritten in the form

u(x, y, z) ª 
1

i zl
eikz exp 2 2( )

2

ik
x y

z

È ˘
+Í ˙

Î ˚
zz A(x, h)

¥ exp 2 2( )
2

ik

z

È ˘
x + hÍ ˙

Î ˚
e–i(ux+vh)dxdh (10)

where

u = 
2 x

z

p

l
and v = 

2 y

z

p

l
(11)

are known as spatial frequencies. Both Eqs. (9) and (10) are
usually referred to as the Fresnel diffraction integral. In
Chap. 20 we will use the above integrals to calculate the
Fresnel diffraction pattern. We must mention here that in the
Fresnel approximation, we have neglected the terms propor-
tional to a2; this will be justified if it leads to maximum phase
change which is much less than p. Thus the Fresnel approxi-
mation will be valid when

1
8

kza

2 << p fi 

22 2

3

( – ) + ( – )1 2

8

x y

z

È ˘x hp Î ˚
l

<< p (12)

Thus, we must have

z >> 

1

322 2

max

1
( ) ( )

4
x y

Ê ˆÈ ˘- x + - hÁ ˜Î ˚lË ¯

(13)

As an example, we consider a circular aperture of radius a;
if we observe in a region of dimensions much greater than a,
then we may neglect the terms involving x and h on the
right-hand side to obtain

z >> 

1

32 2 21
( )

4
x y

È ˘
+Í ˙lÎ ˚

(14)

Thus for a circular aperture of radius 0.1 cm, if we observe
in a radius of about 1 cm, the maximum value of x2 + y2 will
be about 1 cm2; if we assume l ª 5 ¥ 10–5 cm, Eq. (14) will
imply z >> 17 cm.

Fresnel diffraction
integral

Condition for Fresnel
approximation to be valid
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19.3 UNIFORM AMPLITUDE AND

PHASE DISTRIBUTION

We first consider the absence of any aperture. Thus, at z = 0

A(x,h) = A for all values of x and h

and Eq. (9) can be written as

u(x, y, z) = 
A

i zl
eikz 

2

2
i k

Y
ze

+•

-•

Ú dX 
2

2
i k

Y
ze

+•

-•

Ú dY

where X = x – x and Y = y – h. If we now use the integral (see
App. A)

−∞

+∞

z e–a x2+b x dx = 
p

a

exp
2

4

Ê ˆb
Á ˜aË ¯

(15)

we get

u(x, y, z) = 
A

i zl
eikz 2 2z z

ik ik

p p

- -

or

u(x, y, z) = Aeikz  (16)

as it indeed should for a uniform plane wave. This shows that
in spite of all the approximations that we have made, we
ended up getting the correct result! The above equation also
tells us that the value of C given by Eq. (3) is correct.

19.4 THE FRAUNHOFER

APPROXIMATION

In the Fraunhofer approximation, we assume z to be so large
that inside the integral in Eq. (10) the function

exp 2 2( )
2

ik

z

È ˘
x + hÍ ˙

Î ˚

can be replaced by unity, or the maximum phase change
should be much less than p. Thus, in addition to the condi-
tion given by Eq. (13), we must have

z >> 
2 2

max[ ]x + h

l
(17)

y

S

O¢ X

P x y z( , , )

O x

q r ¢

rM( , , 0)x h

h

S¢

Fig. 19.2 Diffraction of a plane wave incident normally

on a rectangular aperture.

In this approximation, Eq. (10) takes the form

    u(x, y, z) ª 
1

i zl
eikzexp 2 2( )

2

ik
x y

z

È ˘
+Í ˙

Î ˚

¥ zz A(x, h)e–i(ux+vh)dxdh (18)

which represents the Fraunhofer diffraction pattern. The in-
tegral on the right-hand side is the two-dimensional Fourier
transform of the function A(x, h) (see Sec. 9.6). Thus Eq. (18)
gives the very important result that

Fraunhofer diffraction pattern is the Fourier
transform of the aperture function.

For a circular aperture of radius a, Eq. (17) would become

z >> 
2a

l
(19)

We introduce the Fresnel number

NF = 
2a

zl
(20)

Thus for the Fraunhofer approximation to be valid, we must
have

NF << 1 (21)

19.5 FRAUNHOFER DIFFRACTION

BY A LONG NARROW SLIT

We first consider Fraunhofer diffraction of a plane wave
incident normally on a long narrow slit of width b (along
the x axis) placed on the aperture plane. Figure 19.2 corre-
sponds to a rectangular slit — if the slit is very long along
the h axis, then we will have a long narrow slit. For such a

Condition for Fraunhofer

approximation to be valid

Fraunhofer

diffraction

integral
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case, we will have

2( , ) = 

0
2

b
A

A
b

Ï
x <ÔÔ

x h Ì
Ô x >
ÔÓ

(22)

for all values of h. Substituting Eq. (22) into Eq. (18), we
obtain

u(x, y, z) = 
A

i zl
eikz exp 2 2( )

2

ik
x y

z

Ê ˆ
+Á ˜Ë ¯

¥ 

−

+

z b

b

/

/

2

2
e–iux dx 

− ∞

+ ∞

z e–ivh dh (23)

Now, in Sec. 9.3 we showed

d (v) = 
+

–

1

2

•

•p
Ú e–ivhdh (24)

and

−

+

z
b

b

/

/

2

2

e–iuxdx =
1

iu-

e–iux
-

+

b

b

/

/

2

2

= 
/ 2 – / 22 –

2

iub iube e

u i
= b

sin b

b

where

b = 
2

ub
 = 

bx

z

p

l
 ª 

sinbp q

l
(25)

and sin q ª / ,x z  with q representing the angle of diffraction
along the x direction. Thus

u(x, y, z) = 
Ab

i zl
eikz exp 2 2 sin

( + )
2

ik
x y

z

È ˘ b
Í ˙ bÎ ˚

2pd (v) (26)

Because of the d function, the intensity is zero except on
the x axis; thus the intensity distribution along the x axis will be

I = I0

2

2

sin b

b
(27)

We thus obtain the single-slit diffraction pattern as dis-
cussed in Sec. 18.3 [see Figs. 18.3(a) and 18.6].

19.6 FRAUNHOFER DIFFRACTION

BY A RECTANGULAR

APERTURE

We next consider a rectangular aperture (of dimension
a ¥ b) (see Fig. 19.2). The Fraunhofer diffraction of a
plane wave incident normally on such a rectangular

aperture will be given by

u(x, y, z) = 
A

i zl
eikz exp 2 2( )

2

ik
x y

z

È ˘
+Í ˙

Î ˚

¥  
−

+

z b

b

/

/

2

2
e–iux dx 

−

+

z a

a

/

/

2

2
e–ivh dh (28)

where we have chosen the origin to be at the center of the
rectangular aperture (see Fig. 19.2). Carrying out the integra-
tion as in the previous section, we obtain

u(x, y, z) = 
Aba

i zl
eikz exp 2 2 sin sin

( )
2

ik
x y

z

È ˘Ê ˆ Ê ˆb g
+Í ˙ Á ˜Á ˜b Ë g ¯Ë ¯Î ˚

(29)
where b is given by Eq. (25),

g = 
av
2

 = 
ay

z

p

l
 ª 

sinap f

l
(30)

and sin f ª / ,y z  with f representing the angle of diffraction
along the y direction. Thus we may write for the intensity
distribution

I(P) = I0

2 2

2 2

sin sing b

g b
(31)

The above equation represents the Fraunhofer diffraction
pattern by a rectangular aperture. We must remember that
Eqs. (29) and (31) are valid when both Eqs. (13) and (17) are
satisfied. The intensity distribution due to a square aperture
(a = b) is shown in Fig. 19.3; the figure corresponds to a = b =
0.01 cm and z = 100 cm, and we have assumed l = 5 ¥ 10–5 cm.

350

300

250

200

150

100

50

0
0 50 100 150 200 250 300 350

4
cm

4 cm
(b)

(a)

Fig. 19.3 (a) A square aperture of side 0.01 cm. (b) The cor-

responding (computer-generated) Fraunhofer

diffraction pattern on a screen at a distance of

100 cm from the aperture; l = 5 ¥ 10
–5

 cm.
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Now, if we observe in a region of radius 0.5 cm [i.e., (x2 + y2)
< 0.25 cm2], then Eq. (13) gives

z >> 

1/3

2
5

1
(0.25)

4 5 10-

È ˘
Í ˙

¥ ¥Î ˚
 ª 7 cm

Further Eq. (17)  gives

z >> 2
–5

1
2 (0.01)

5 10

È ˘
¥Í ˙

¥Î ˚
 ª 4 cm

We have chosen z = 100 cm, and we get the diffraction
pattern as shown in Fig. 19.3. Although in the above we have
assumed that we are observing a region of radius 0.5 cm, we
have plotted the diffraction pattern for –2 cm < x, y < +2 cm.
Note that along the x axis, the intensity will be zero when

b = 
bx

z

Ê ˆp
Á ˜lË ¯

 = mp; m = 0, 1, 2, 3, . . . (32)

or

x = 
m

z
b

l

= 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm, . . .

corresponding to m = 1, 2, 3, 4, . . ., respectively; this is con-
sistent with the positions of the minima in Fig. 19.3.

For the case of a long narrow slit (i.e. for a Æ •), the
function

sina g

g
= ( )sin sin /

( sin / )

ap f l

p f l

becomes very sharply peaked around f = 0. Since f = 0 im-
plies y = 0, there is no diffraction along the y axis (see
Sec. 19.4).

19.7 FRAUNHOFER DIFFRACTION

BY A CIRCULAR APERTURE

We consider a plane wave incident normally on a circular
aperture as shown in Fig. 19.4. On the plane of the circular
aperture we choose cylindrical coordinates (see Fig. 19.5)

x = r cos f and h = r sin f (33)

Further, because of the circular symmetry of the system,
the diffraction pattern will be of the form of concentric circu-
lar rings with their centers at point O¢. Consequently, we may
calculate the intensity distribution only along the x axis (i.e.,
at points for which y = 0) and in the final result replace x by

2 2x y+
. Now, when y = 0,

O

x

h

x

O¢ P

S

S¢

q

z

Fig. 19.4 Diffraction of a plane wave incident on a circular

aperture of radius a.

M( , )x h

f
r

O

h

x

Fig. 19.5 Cylindrical coordinates (r, f) on the plane of the

circular aperture.

v = 0 and sin q ª 
x

z
           (34)

where q is the angle that OP makes with the z axis. Thus

u = 
2 x

z

p

l
 = k sin q

and Eq. (18) becomes

u(P) = 
A

i zl
eikz exp

2

2

ik r

z

Ê ˆ
Á ˜Ë ¯

2

0 0

a p

Ú Ú e–ikr sinq cosf r dr df (35)

Thus

u(P) = 
A

i zl
eikz exp

2

2

ik r

z

Ê ˆ
Á ˜Ë ¯

sin
cos

2
0

1

( sin )

ka
id e d

k

q
- z fz z f

q
Ú Ú

 = 
A

i zl
eikz exp

2

2

ik r

z

Ê ˆ
Á ˜Ë ¯

 

sin

2
0

2

( sin )

ka

k

q

p

q
Ú z J0(z )dz (36)
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where z = kr sin q and use has made of the following well-
known relation2

J0(z ) =
1

2p

2
cos

0

ie
p

± z f
Ú df (37)

If we further use the relation

d

dz
[z J1(z )] = z J0(z ) (38)

then Eq. (36) becomes

u(P) = 
A

i zl
eikz exp [ ]

2
sin

12 0

2
( )

2 ( sin )

k aik r
J

z k

qÊ ˆ p
z zÁ ˜ qË ¯

= 
A

i zl
eikz exp

2

2

ik r

z

Ê ˆ
Á ˜Ë ¯

pa2 12 ( )JÈ ˘
Í ˙Î ˚

v
v

where v = ka sin q. Thus the intensity distribution is
given by

I(P) = I0
12 ( )JÈ ˘

Í ˙Î ˚

v
v

(39)

where I0 is the intensity at point O¢ (see Fig. 19.4). This is the
famous Airy pattern which has been discussed in
Sec. 18.3. We already mentioned that the diffraction pattern
(in plane SS¢) will consist of concentric rings with their cen-
ters at point O¢. If F(r) represents the fractional energy
contained in a circle of radius r, then

F(r) = 0

0

( )2

( )2

r

I d

I d
•

s ps s

s ps s

Ú

Ú

(40)

where I(s)2ps ds is proportional to the energy contained in
the annular region whose radii lie between s and s + ds.
Clearly

sin q ª 
z

s
(41)

Since v = ka sin q, we obtain

s = 
z

ka
v (42)

and Eq. (40) becomes

F(r) = 

[ ]

[ ]

2
1

0

2
1

0

2 ( ) /

2 ( ) /

J d

J d
•

Ú

Ú

v

v v v v

v v v v

(43)

where we have used Eq.(39) for the intensity distribution.
Now

2
1 ( )J v
v

= J1(v)
1

0
( )

( )
dJ

J
d

È ˘
-Í ˙

Î ˚

v
v

v

= – 0 1
0 1

( ) ( )
( ) ( )

dJ dJ
J J

d d

È ˘
+Í ˙

Î ˚

v v
v v

v v

= –
1

2

d

dv
[J0

2(v) + J1
2(v)] (44)

Thus

F(r) = 

2 2
0 1 0

2 2
0 1 0

( ) ( )

( ) ( )

J J

J J
•

+

+

v
v v

v v
 = 1 – J0

2(v) – J1
2(v) (45)

The above function is plotted in Fig. 19.6; one can deduce
from the curve that about 84% of light is contained within
the circle bounded by the first dark ring, and about 91% of
the light is contained in the circle bounded by the first two
dark rings, etc. The Fraunhofer pattern by an annular aper-
ture is discussed in Prob. 19.5.

19.8 ARRAY OF IDENTICAL

APERTURES

We next consider an array of N identical apertures as shown
in Fig. 19.7. The Fraunhofer diffraction pattern will be the sum
of the fields produced by the individual apertures and will be
given by [see Eq. (18)]

u = C
1 2

. . .

S S

Ê ˆ+ +
Á ˜Ë ¯
ÚÚ ÚÚ exp [–i(ux + vh)] dx dh (46)

86420
v

0.5

1.0

F
r(
)

Fig. 19.6 The fractional energy contained in a circle of

radius r.

2 The identities associated with Bessel functions can be found in most books on mathematical physics; see, e.g., Refs. 5 to 7.
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where each integral represents the contribution from a par-
ticular aperture. Let O1, O2, O3, . . . represent points that are
identically situated inside the apertures. For example, if the
apertures are rectangular in nature, then O1, O2, O3, . . . could
represent the centers of the (rectangular) aperture. Let
(x1, h1), (x2, h2), (x3, h3), . . . represent the coordinates of
points O1, O2, O3, . . ., respectively; then

u = C
=1

N

n
Â ÚÚ e–i[u (xn+x¢)+v(hn+h¢)] dx ¢ dh ¢ (47)

where (x¢, h¢) represents the coordinates of an arbitrary point
in a given aperture with respect to the point (xn, hn) as
shown in Fig. 19.7. Thus

u = us
=1

N

n
Â e–i[uxn+vhn] (48)

where

us = Czz e–i(ux ¢+vh¢) dx ¢ dh¢ (49)

is the field produced by a single aperture. Thus, the resultant
intensity distribution is given by

I = IsI1 (50)

where Is represents the intensity produced by a single aper-
ture and

I1 = 
2

[ ]

=1

n n

N
i u

n

e- x + h

Â
v (51)

represents the intensity distribution produced by N point
sources.

As an example, we consider N equally spaced identical
apertures as shown in Fig. 19.8. Without loss of generality,
we may assume

xn = (n – 1)d and hn = 0 n = 1, 2, 3, . . ., N

Thus

=1,2,3

N

n
Â e– iu(n–1) d = 1 + e–iud + . . . + e–i(N–1)ud = 

1

1

iNud

iud

e

e

-

-

-

-

= exp
1 sin

( 1)
2 sin

N
i N ud

gÈ ˘- -Í ˙ gÎ ˚
(52)

where

g = 
ud
2

 = 
sindp q

g
(53)

and

sin q = 
x

z
(54)

We therefore obtain

I1 = 
2

( 1)

=1,2,3. . .

N
iu n d

n

e- -

Â  = 
2

2

sin

sin

Ng

g
(55)

which is the interference pattern produced by N identically
placed point sources; this is the same result as derived in
Sec. 18.7. When N = 2, we obtain the interference pattern
produced by two point sources.

If each aperture is a long narrow slit, we obtain the
diffraction pattern produced by a grating [see Eq. (50) of
Chap. 18]. On the other hand, if each aperture is circular, we
obtain the product of the Airy pattern and the interference
pattern produced by two point sources (see Figs 17.4 and 17.5).

O1(0, 0)

x¢

h¢

O d2( , 0)

x¢

h¢

O d3(2 , 0)

x¢

h¢

h

x

Fig. 19.8 Diffraction of a plane wave incident normally

on an array of N identical equally spaced

apertures.

O2 2 2( , )x h

h¢

x¢

O1 1 1( , )x h

h¢

x¢
O4 4 4( , )x h

x¢

O3 3 3( , )x h

h¢

x¢

x

h

h¢

Fig. 19.7 Diffraction of a plane wave incident normally on

an array of N identical apertures.
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19.9 SPATIAL FREQUENCY

FILTERING

In the next section, we will show that if g(x, y) represents the
filed distribution on the front focal plane of a corrected lens
(i.e., on plane P1 in Fig. 19.9), then on the back focal plane P2

of the lens, one obtains the Fourier transform of g(x, y), and
the z axis represents the optical axis of the lens. Thus if
G(x, y) represents the field distribution on the back focal
plane P2 then it is related to g(x, y) through the following
relation:

G(u,v) = 
1

fl ÚÚ g(x¢, y¢) exp[– i(ux¢ + vy¢)]dx¢dy¢ (56)

where,

u ∫ 
2 x

f

p

l
and v ∫ 

2 y

f

p

l
(57)

represent the spatial frequencies. Further, l represents the
wavelength of light and f is the focal length of the lens. If we
compare Eq. (56) with Eq. (29) of Chap. 9, we find that

The field distribution on the back focal plane of a
corrected lens is the Fourier transform of the field
distribution on the front plane.

This important property of a corrected lens forms the
basis of the subject of spatial frequency filtering which finds
applications in many diverse areas (see, e.g., Refs. 2, 4, and 8
to 10). We note here that in writing Eq. (56), we have neg-
lected an (unimportant) phase factor on the right-hand side
(see Sec. 19.11).

We first consider a plane wave incident normally on the
lens. This implies that g(x, y) is a constant (= g0, say) and

G(u, v) = 0g

fl
ÚÚ exp[– i(ux¢ + vy¢)]dx¢dy¢ (58)

Now, if we use

+•

-•
Ú e– iuxdx = 2pd (u) (59)

[see Eq. (32) of Chap. 9], we obtain

G(u, v) = 0g

fl
4p

2 
d(u)d (v) (60)

where d (u) and d (v) represent the Dirac delta functions.
Since d (u) = 0 for u π 0, one can infer from Eq. (60) that the

intensity is zero at all points except at the point x = 0,
y = 0. This is to be expected because a plane wave gets
focused to a point by a corrected lens.3

Another interesting example is a one-dimensional
cosinusoidal field distribution in the object plane, i.e.,

g(x, y) = g0 cos(2pa x) (61)

where a is a constant.4 We have assumed no y dependence
of the field. If we use the identity

cos q = 1
2 (eiq + e– iq)

we would obtain

G(u, v) = 0 1

2

g

fl
Ú  ( )2  2+ i x i xe epa ¢ - pa ¢ e–iux ¢dx ¢ ¥ z eivy¢dy¢

(62)
If we now use Eq. (59), we get

G(u, v) = 0g

fl
2p

2 [d (u – 2pa) + d (u + 2pa)]d (v) (63)

Thus, we will obtain two spots in plane P2. These two
spots will be lying on the x axis (where v = 0) at u = ±2pa

(i.e.; at x = ±l fa). Physically this can be understood from the
following consideration: When a plane wave is incident nor-
mally on plane P1 (see Fig. 19.9), the time dependence is of
the form cos wt. If in plane P1, we have an object whose

x

y

y

x

Object
plane

Incident
plane
wave

P1

L1

P2

L2

P3

Fourier
Transform

plane

Image
plane

f

f

f

f

z

Fig. 19.9 Plane P
2

 is the Fourier transform plane where

the spatial frequency components of the object

(placed in plane P
1

) are displayed. In the above

figure, a small hole is placed on the axis (in

plane P
2

) which filters out the high-frequency

components.

3 We are assuming a very large dimension of the aperture of the lens; as such, the limits of integration in Eq. (56) are assumed to be from
–• to +•. This is a good approximation in most cases.

4 On plane P1 (see Fig. 19.7), if we place the negative of the photograph shown in Fig. 14.11(b) with the y axis along the length of a
fringe and assume a plane wave to be incident normally on the film, then the field distribution is proportional to cos2 (2pax) which
is equal to 1

2 [1 + cos(2pax)].
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transmittance is proportional to cos (2pax), then the field to
the right of plane P1 is proportional to

cos wt cos (2pax)

= 
1

2
[cos (wt + 2pax) + cos (w t – 2pax)] (64)

We know that for a plane wave with ky = 0, the field varia-
tion is of the form (see Example 11.6)

cos (w t – kxx – kzz) (65)

where kx = k sin q, kz = k cos q, k = 2 /p l , and q is the angle
that the propagation vector k makes with the z axis. At z = 0,
the field becomes

cos(w t – kxx) (66)

Comparing the above equation with Eq. (64), we find that
the two terms on the RHS of Eq. (64) represent two plane
waves propagating along directions making angles –q and
+q with the z axis, where

sin q = xk

k
 = 

2

2 /

pa

p l
 = al (67)

These plane waves will obviously focus to two points at
x = –l fa and x = +l fa on the x axis in plane P2. Since a rep-
resents the spatial frequency associated with the object, one
essentially obtains, on the back focal plane, the spatial fre-
quency spectrum of the object.

We are familiar with the fact that a general time varying
signal can be expressed as a superposition of pure sinusoi-
dal signals [see Eq. (33) of Chap. 9]. In a similar manner, the
field variation across an arbitrary object (placed on plane P1),
can be expressed as a superposition of sinusoidal variations,
and one would get the corresponding (spatial) frequency
components on plane P2. For this reason, plane P2 is often
termed as the Fourier transform plane.

As another example, if the amplitude variation of the
object is of the form

g(x, y) = A cos 2pax + B cos 2pbx (68)

then one would obtain four spots on plane P2 (all lying on
the x axis); these spots will appear at x = ±l fa, ±lfb.
Since the Fourier transform of the Fourier transform is the
original function itself5 (see Chap. 9), if we place plane P2 on
the front focal plane of lens L2, then on its back focal plane
(i.e., in plane P3 in Fig. 19.9) we will obtain the amplitude dis-
tribution associated with the object. If we now put stops at
the points (x = +l fa, y = 0) and (x = –l fa, y = 0) on plane P2,
then the field distribution on plane P3 is proportional to
cos 2pbx. Thus, we have been able to filter out the spatial

frequency a. This is the basic principle behind spatial fre-
quency filtering.

For an arbitrary object, if we put a small hole on plane P2,
then it will filter out the high-frequency components [see
Fig. 19.10(a)]; if we put a small stop on the axis, we filter out
the low-frequency components [see Fig. 19.10(b)]. On the
other hand, an annular aperture on plane P2 will act as a
band-pass filter as shown in Fig. 19.10(c).

As a simple application, we consider a halftone photograph
(like that in a newspaper), which consists of a large number of
spots of varying shades that produce the image pattern. Since
the spots are closely spaced, it represents a high-frequency noise,
and the overall image has much smaller frequencies associated
with it. Thus, if we put a transparency similar to that shown in
Fig. 19.11(a) and allow only the low-frequency components to
pass through (as shown in Fig. 19.9), we will obtain, on plane P3,
an image which does not contain the unwanted high-frequency
noise [see Fig 19.11(c)].

The subject of spatial frequency filtering finds applica-
tions in many other areas such as a contrast improvement,
character recognition, etc. (see, e.g., Refs. 2, 4, and 9).

19.9.1 The 4f Correlator

The 4f correlator is based on the convolution theorem dis-
cussed in Sec. 9.7. A plane wave is assumed to be incident
on a transparency containing one two-dimensional function
g(x, y) which is placed on the front focal plane of the first
lens as shown in Fig. 19.12. The Fourier transform of g(x, y)
[= G(u, v)] is formed on the back focal plane of the lens. A
transmission mask containing the Fourier transform of the
second function h(x, y) [= H(u, v)] is placed on this plane.
Thus the product G(u, v)H(u, v) lies on the front focal plane
of the second lens, and therefore on its back focal plane, we
will obtain the Fourier transform of G(u, v)H(u, v) which is
nothing but the convolution of g(x, y) and h(x, y). This con-
cept is of considerable use in many applications (see, e.g.,
Refs. 2, 4, and 8 to10).

(a) (b) (c)

Fig. 19.10 (a) Low-pass filter, (b) high-pass filter, and (c)

band-pass filter; filters are to be put on plane P
2

.

5 There will, however, be an inversion; i.e., f (x, y) will become f(–x, –y) on plane P3. This can also be seen by simple ray tracing.
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19.10 THE FOURIER

TRANSFORMING

PROPERTY OF A THIN

LENS

In this section we will derive the Fourier transforming pro-
perty of a thin lens [see Eq. (56)]. We will first show that the
effect of a thin lens of focal length f is to multiply the inci-
dent field distribution by a factor pL given by

pL = exp 2 2( )
2

ik
x y

f

È ˘
- +Í ˙
Î ˚

(69)

Consider an object point O at a distance d1 from an
aberrationless thin lens of focal length f (see Fig. 19.13). If
the image point I is at a distance d2 from the lens, then d2 is
given by (see Sec. 4.4)

1 2

1 1 1

d d f
+ = (70)

where d1 and d2 represent the magnitude of the distances of
the object and image points from the lens. The phase factor
corresponding to the disturbance emanating from point O
is simply exp(+ikr), where r is the distance measured from
point O. Now

r = (x2 + y2 + d1
2)1/2 = d1

1/ 22 2

2
1

1
x y

d

Ê ˆ+
+Á ˜Ë ¯

ª d1 + 
2 2

12

x y

d

+

where in writing the last expression, we have assumed x, y <<
d1; i.e., we have confined ourselves to a region close to the
axis of the lens—this is known as the paraxial approximation.
Thus, the phase distribution on the transverse plane P2 at a
distance d1 from  point O (i.e., immediately in front of the

(c)

(a) (b)

Fig. 19.11 (a) A photograph consisting of regularly spaced

black-and-white squares of varying sizes. When a

pinhole is placed in the Fourier transform plane to

block the high-frequency components, an image of

the form shown in (b) is obtained; the frequency

spectrum is shown in (c). Notice that in (b) shades

of gray appear as well details such as the missing

part of the eyeglass frame [Photographs reprinted

with permission from R. A. Phillips. “Spatial

Filtering Experiments for Undergraduate Labo-

ratories,” American Journal of Physics, Vol. 37,

536, 1969; Copyright © 1969, American Associa-

tion of Physics Teachers].

G u g x y( , ) [= FT of ( , )]
formed on this plane

v

Input plane containing
the function ( , ) to
be cross-correlated

g x y

Multiplicative
transmission
mask ( , )

[= FT of ( , )]
H u v
h x y

Correlation
of g( , )

and ( , )
appears on
this plane

x y
h x y

f f f f

Fig. 19.12 The 4f correlator.

A diverging spherical
wave front of radius d1

A converging spherical
wave front of radius d

P2 P3

d1 d2

O I

Fig. 19.13 Spherical waves emanating from an object

point O, after refraction through a convex lens,

emerge as spherical waves converging to the

image point I.
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lens—see Fig. 19.13) is given by

exp(+ikr) ª exp
2 2

1
12

x y
ik d

d

È ˘Ê ˆ+
+Í ˙Á ˜Ë ¯Í ˙Î ˚

Since the image is formed at I, the incident spherical wave
emerges as another spherical wave of radius d2, which under
the paraxial approximation is

exp
2 2

2
22

x y
ik d

d

È ˘Ê ˆ+
- +Í ˙Á ˜Ë ¯Í ˙Î ˚

The negative sign inside the square brackets refers to the
fact that we now have a converging spherical wave. Thus, if
pL represents the factor that when multiplied to the incident
phase distribution gives the phase distribution of the emer-
gent wave, then

exp
2 2

2
22

x y
ik d

d

È ˘Ê ˆ+
- +Í ˙Á ˜Ë ¯Í ˙Î ˚

 = exp
2 2

1
12

x y
ik d

d

È ˘Ê ˆ+
+ +Í ˙Á ˜Ë ¯Í ˙Î ˚

pL

pL = exp[– ik(d1 + d2)] exp 2 2

1 2

1 1
( )

2

ik
x y

d d

¸Ï È ˘Ê ˆÔ Ô- + +Ì Í ˙˝Á ˜Ë ¯Ô Î ˚ÔÓ ˛
 (71)

where the subscript L on p corresponds to the fact that we
are referring to a lens. If we use Eq. (70) and neglect the first
factor in the above equation, because it is independent of x
and y, we obtain Eq. (69). Thus the effect of a thin lens on an
incident field is to multiply the incident phase distribution by
a factor that is given by Eq. (69). For a plane wave incident
along the axis, the emerging disturbance will be simply  pL,
which can be seen to be the paraxial approximation of a con-
verging spherical wave front of radius f.

Now, let g(x, y) represent the field distribution on plane P1

(see Fig. 19.14). We first want to determine the field
distribution on plane P2, i.e., at a distance f from plane P1

(see Fig. 19.14). Obviously the field will undergo Fresnel
diffraction, and on plane P2 it will be given by [using
Eq. (9)]

u(x, y)|P2
 = 

1

i fl
exp(ik f )

¥zz g(x, h) ¥ exp 2 2[( – ) ( ) ]
2

ik
x x

f

Ï ¸
x + - hÌ ˝

Ó ˛
dxdh (72)

Now, as shown earlier in this section, the effect of a thin
lens of focal length f is to multiply the incident field distribu-
tion by the factor pL given by Eq. (69). Thus on plane P3, the
field distribution will be given by

u(x, y)|P3
 = 

1

i fl
eikf exp[– ia(x2 + y2)]

¥ zz g(x, h) ¥ exp{ia [(x – x)2 + (y – h)2]}dxdh (73)

where

a = 
2

k

f
 = 

f

p

l
(74)

From plane P3 the field will again undergo Fresnel
diffraction, and therefore on plane P4, it will be given by
[using Eq. (9)]

u(x, y)|P4
 = 

1

i fl
eikfzz u(z, t)|P3

¥ exp{ia[(x – z )2 + (y – t)2]}dzdt (75)

Substituting for u|P3
 from Eq. (73), we get

u(x, y)|P4
= 

2
1 ikfe

i f

Ê ˆ
Á ˜lË ¯

I(x, y) (76)

where

I(x, y) = 
− ∞

+ ∞

zz g(x, h)H(x, y, x, h)dxdh (77)

H(x, y, x, h) = 
−∞

+∞

zz exp{–ia (z 2 + t 2)}

¥ exp{ia [(z – x)2 + (t – h)2]}

¥ exp{ia [(x – z )2 + (y – t)2]}dzdt

= Hx(x)Hh( y) (78)

Hx(x) = 
− ∞

+ ∞

z exp [ia (x2 – 2xz  + x2 – 2xz  + z 2)]dz (79)

and a similar expression for Hh. Now,

x

2 – 2xz + x2 – 2xz + z 2 = z 2 – 2z(x + x) + (x + x)2

   – (x + x)2 + x 2 + x2

= (z – g)2 – 2xx

P1
P2 P3 P4

h(x,y)g(x,y)
L1

f f

Fig. 19.14 A field distribution g(x, y) placed at the front

focal plane of a lens produces a field distribution

h(x, y) in plane P
4

 at the back focal plane of the

lens. The field g(x, y) first undergoes Fresnel

diffraction from plane P
1

 to P
2

, then it gets mul-

tiplied by a phase factor due to the presence of

the lens, and the resultant field again undergoes

Fresnel diffraction from plane P
3

 to P
4

 to pro-

duce the field distribution h(x, y).

or
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where g = x + x. Thus

Hx = exp(–2iaxx)
− ∞

+ ∞

z exp[ia (z – g)2]dz

or

Hx(x) = e–2iaxx 
i

p

- a

(80)

and a similar expression for Hh(y). Thus

I(x, y) = 
+•

-•
Ú Ú g(x, h) Hx(x) Hh(y)dxdh

= 
i

+•

-•

p

- a
Ú Ú g(x, h)e–2ia(xx+yh)dxdh

= il f
+•

-•
Ú Ú g(x, h)e–i(ux

 

+vh)dx dh

where we have used Eq. (74) and

u = 2a x = 
2 x

f

p

l
and v = 2ay = 

2 y

f

p

l
(81)

represent the spatial frequencies in the x and y directions,
respectively. If we substitute the above expression for I(x, y)
in Eq. (76), we obtain

u(x, y)|P4
 = 

1

fl -•

+•

zz g(x, h) e–i(ux+vh)dxdh

where we have neglected the unimportant constant phase
factors. Equation (81) is the same as Eq. (56) and gives the
important result that

The field distribution on the back focal plane of a
corrected lens is the Fourier transform of the field
distribution on the front plane.

Note that in writing the limits in the integral from –• to +•, we
have assumed the lens to be of infinite extent; the error involved
is usually very small because in almost all practical cases

a/l >>> 1

where a represents the aperture of the lens.

Summary

� If the amplitude and phase distribution on the plane z = 0
are given by A(x, h), then the Fresnel diffraction pattern is
given by

u(x, y, z) ª 
1

i zl
eikzzz A(x, h)

¥ exp 2 2[( ) ( )
2

ik
x y

z

Ï ¸
- x + - hÌ ˝

Ó ˛
dxdh

where k = 
2p

l

� The Fraunhofer diffraction pattern is the Fourier transform
of the aperture function and is given by

u(x, y, z) ª
1

i zl
eikz exp 2 2( )

2

ik
x y

z

È ˘
+Í ˙

Î ˚

¥ zz A(x, h)e– i(ux+vh) dx dh

For a plane wave incident normally on a circular aperture of
radius a, the Fraunhofer diffraction pattern is given by

I(P) = I0
12 ( )JÈ ˘

Í ˙
Î ˚

v
v

where v = ka sin q.

� If g(x, y) and G(x, y) represent the filed distributions on the
front focal plane and on the back focal plane of a corrected
lens, then

G(u, v) = 
1

fl
g x y( , )¢ ¢zz  exp[– i(ux¢ + vy¢)]dx¢dy¢

where u ∫ 2 /x fp l  and n ∫ 2 /y fp l  represent the spatial
frequencies. Thus on the back focal plane of the lens one ob-
tains the Fourier transform of g(x, y); the z axis represents
the optical axis of the lens. This important property of a
corrected lens forms the basis of the subject of spatial fre-
quency filtering.

Problems

19.1 Consider a rectangular aperture of dimensions 0.2 mm ¥  0.3 mm
with a screen placed at a distance of 100 cm from the aper-
ture. Assume a plane wave with l = 5 ¥ 10–5 cm incident
normally on the aperture. Calculate the positions of maxima
and minima in a region 0.2 cm ¥ 0.2 cm of the screen. Show
that both Fresnel and Fraunhofer approximations are
satisfied.

19.2 In Prob. 19.1, assume a convex lens (of focal length 20 cm)
placed immediately after the aperture. Calculate the positions
of the first three maxima and minima on the x axis (implying
f = 0) and also on the y axis (implying q = 0).

19.3 The Fraunhofer diffraction pattern of a circular aperture (of
radius 0.5 mm) is observed on the focal plane of a convex
lens of focal length 20 cm. Calculate the radii of the first and
second dark rings. Assume l = 5.5 ¥ 10–5 cm.

[Ans: 0.13 mm, 0.18 mm]

19.4 In Prob. 19.3, calculate the area of the patch (on focal plane)
which will contain 95% of the total energy.

19.5 Obtain the diffraction pattern of an annular aperture bounded
by circles of radii a1 and a2 (> a1). [Hint: The integration lim-
its of r in Eq. (103) must be a1 and a2.]
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20.1 INTRODUCTION

In Chap. 18 we had mentioned that the phenomenon of
diffraction can be broadly classified under two categories:
Under the first category comes the Fresnel class of diffrac-
tion in which either the source or the screen (or both) is at a
finite distance from the diffracting aperture. In the second
category comes the Fraunhofer class of diffraction (dis-
cussed in the last two chapters) in which the wave incident
on the aperture is a plane wave and the diffraction pattern is
observed on the focal plane of a convex lens, so that the
screen is effectively at an infinite distance from the aperture.
In this chapter. we will discuss the Fresnel class of diffrac-
tion and also study the transition to the Fraunhofer region.
The underlying principle in the entire analysis is the
Huygens–Fresnel principle according to which

Each point on a wave front is a source of secondary
disturbance, and the secondary wavelets emanating
from different points mutually interfere.

One of your commissioners, M. Poisson, had deduced from the integrals reported by the author
[Fresnel] the singular result that the centre of the shadow of an opaque circular screen must,
when the rays penetrate there at incidences which are only a little oblique, be just as illuminated
as if the screen did not exist. The consequences have been submitted to the test of a direct
experiment, and observation has perfectly confirmed the calculation.

—Dominique Arago to the French Academy of Sciences1

FRESNEL DIFFRACTION
Chapter

Twenty

Important Milestones
1816 Augustin Fresnel developed the theory of diffraction using the wave theory of light.

1817 Using Fresnel's theory, Poisson predicted a bright spot at the center of the shadow of an opaque disc—

this is usually referred to as the Poisson spot.

1818 Fresnel and Arago carried out the experiment to demonstrate the existence of the Poisson spot, validating the

wave theory.

1874 Marie Cornu developed a graphical approach to study Fresnel diffraction—this came to be known as Cornu's

spiral.

To appreciate the implications of this principle, we con-
sider the incidence of a plane wave on a circular hole of
radius a as shown in Fig. 20.1. In Sec. 18.3 we showed that
the beam will undergo diffraction divergence and the angular
spreading will be given by

Dq ~ 
2a

l

Thus, when a >>> l, the intensity at a point R (which is deep
inside the geometrical shadow) will be negligible; on the
other hand, if a ~ l, there will be almost uniform spreading
out of the beam, resulting in an (almost) uniform illumination
of the screen. This phenomenon is a manifestation of the fact
that when a >>> l, the secondary wavelets emanating from dif-
ferent points on the circular aperture so beautifully interfere to
produce (almost) zero intensity in the geometrical shadow and a
large intensity inside the circular region (see Fig. 20.1). However,
if a ~ l, then the aperture almost acts as a point source, result-
ing in a uniform illumination of the screen (see Fig. 12.3).

1 The author found this quotation in Ref. 1.
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Edge of the
geometrical

shadow

a
O

P

R

S

S¢
d

Fig. 20.1 Diffraction of a plane wave incident normally on

a circular aperture of radius a.

We will first introduce the concept of Fresnel half-period
zones to have a qualitative understanding of the Fresnel dif-
fraction pattern; this will be followed by a more rigorous
analysis of the Fresnel class of diffraction and its transition
to the Fraunhofer region.

20.2 FRESNEL HALF-PERIOD

ZONES

Let us consider a plane wave front WW¢ propagating in the
z direction as shown in Fig. 20.2. To determine the field at an
arbitrary point P due to the disturbances reaching from dif-
ferent portions of the wave front, we make the following
construction: From point P we drop a perpendicular PO on
the wave front. If PO = d, then with point P as center we draw
spheres of radii d + l/2, d + 2l/2, d + 3l/2, . . ., these spheres
will intersect WW¢ in circles as shown in Fig. 20.2. The radius

of the nth circle will obviously be given by

rn = 

1/ 22
2

2
d n d

È ˘lÊ ˆ+ -Í ˙Á ˜Ë ¯Í ˙Î ˚

= 
1/ 2

1
4

n
n d

d

Ê ˆl
l +Á ˜Ë ¯

or

rn ª n dl (1)

where we have assumed d >>> l; this is indeed justified for
practical systems using visible light. Of course, we are assum-
ing that n is not a very large number. The annular region
between the nth circle and (n – 1)st circle is known as the nth
half-period zone; the area of the nth half-period zone is given by

An = p r2
n – p r2

n–1

ª p [nld – (n – 1)ld] = pld (2)

Thus the areas of all the half-period zones are approxi-
mately equal. Now the resultant disturbance produced by
the nth zone will be p out of phase with the disturbance
produced by the (n – 1)st [or the (n + 1)st] zone. This can
be easily seen from the following consideration: For infini-
tesimal area surrounding a point Qn in the nth half-period
zone, there is a corresponding infinitesimal area surround-
ing point Qn – 1 in the (n – 1)st half-period zone such that

QnP – Qn–1P = 
2

l

which corresponds to a phase difference of p. Since the ar-
eas of the zones are approximately equal, one can have a
one-to-one correspondence between points in various zones.
Thus, the resultant amplitude at point P can be written as

u(P) = u1 – u2 + u3 – u4 + . . . + (–1)m+1um + . . . (3)

where un represents the net amplitude produced by the
secondary wavelets emanating from the nth zone; the alter-
nate negative and positive signs represent the fact that the
resultant disturbances produced by two consecutive zones
are p out of phase with respect to each other. The amplitude
produced by a particular zone is proportional to the area of
the zone and inversely proportional to the distance of the
zone from point P; further, it also depends on an obliquity
factor which is proportional to 1

2 (1 + cos c), where c is
the angle that the normal to the zone makes with line
QP; this obliquity factor comes out automatically from rigor-
ous diffraction theory.2 Thus we may write

un = constant 
1 cos

2
n

n

A

Q P

+ c

(4)

P

O

W

W¢

d

Qn – 1

Qn

nth half-period zone

d +
nl
2

Fig. 20.2 Construction of Fresnel half-period zones.

2 See, e.g., Ref. 2.
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where An represents the area of the nth zone. It can be shown
that if we use the exact expression for rn, the area of the zones
increases with n; however, this slight increase in area is
exactly compensated by the increased distance of the zone
from point P. In spite of this, the amplitudes u1, u2, u3 . . .
decrease monotonically because of increased obliquity. Thus
we may write

u1 > u2 > u3  > . . . (5)

The series expressed by Eq. (3) can be approximately summed
due to a method by Schuster. We rewrite Eq. (3) as

u(P) = 31 1
22 2 2

uu u
u

È ˘
+ - +Í ˙
Î ˚

 + 3 5
4

. . .
2 2

u u
u

È ˘
- + +Í ˙

Î ˚
(6)

where the last term is either 1
2 um or 1

12 m mu u
-
-  according

to whether m is odd or even. If the obliquity factor is such
that

un > 1
1 12 ( )n nu u
- +
+ (7)

then the quantities inside the brackets in Eq. (6) will be nega-
tive; consequently,

1

1
1 1

1 1
( ) ( odd)

2 2
1 1

( ) ( even)
2 2 2 2

m

m
m m

u P u u m

uu
u P u u u m

-

< +

< + - ª -

(8)

where we have assumed that the amplitudes of the fields pro-
duced by consecutive zones differ only slightly. To obtain
the upper limits, we rewrite Eq. (3) in the form

u(P) = u1 – 2 2 4
32 2 2

u u u
u

È ˘
- - +Í ˙Î ˚

 – 64
52 2

uu
u

È ˘
- +Í ˙

Î ˚
(9)

where the last term is now 1
12 m mu u
-

- + , when m is odd, and
– 1

2 um; when m is even. Since the quantities inside the brack-
ets are negative, we obtain

12 1
1

2 1
1

( )
2 2 2 2

odd

( )
2 2 2 2

even

m m
m

m m

u uu u
u P u u

m

u uu u
u P u

m

-

> - - + ª +

> - - ª -

(10)

Using Eqs. (8) and (10), we may approximately write

1

1

( ) odd
2 2

( ) even
2 2

m

m

uu
u P m

uu
u P m

ª +

ª -

(11)

If we can neglect um in comparison to u1, then the Eq. (11)3

gives the remarkable result that

u(P) ª 1

2

u
(12)

implying that the resultant amplitude produced by the en-
tire wave front is only one-half of the amplitude produced
by the first half-period zone.

20.2.1 Diffraction by a Circular Aperture

We may use the above analysis to study the diffraction of a
plane wave by a circular aperture. Let point P be at a dis-
tance d from the circular aperture (see Fig. 20.1). We assume
that the radius of the circular aperture a can be increased
from zero onward. As a increases, the intensity at point P will
also increase until the circular aperture contains the first half-

period zone; this happens when a = dl . The resultant
amplitude at point P is u1 which is twice the value of the am-
plitude for the unobstructed wave front [see Eq. (12)]. The
intensity is therefore 4I0, where I0 represents the intensity at
point P due to the unobstructed wave front. If we further
increase a, then u(P) will start decreasing and when the cir-
cular aperture contains the first two half-period zones (which

happens when a = 2 dl ), the resultant amplitude (= u1 – u2)
is almost zero. Thus, by increasing the hole diameter,
the intensity at point P decreases almost to zero. This inter-
esting result is once again due to the validity of the
Huygens–Fresnel principle and hence would be valid for
sound waves also. We may generalize the above result by
noting that if

a = (2 1)n d+ l  n = 0, 1, 2, . . .  (maxima)

the aperture will contain an odd number of half-period zones
and the intensity will be maximum; on the other hand, if

a = 2n dl  n = 1, 2, . . .  (minima)

3If one assumes a form of the obliquity factor as given by Eq. (4), then it decreases from 1 to 1
2  as m increases from 1 to •; this

implies that |um| can never be smaller than 1 / 2u . However, when m is large, a slight shift of point P on the axis will change the
amplitude from 1/2 /2mu u+  to 1/2 /2mu u- ; the changes will occur with such great rapidity that one can only observe the average
value which will be 1/2u .
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the aperture will contain an even number of half-period zones
and the intensity will be minimum. To have a numerical ap-
preciation, we note that for d = 50 cm and  l = 5 ¥ 10–5 cm,
the radii of the first, second, and third zones are 0.500, 0.707,
and 0.866 mm, respectively. As a corollary of the above
analysis, we can consider a circular aperture of a fixed radius
a and study the intensity variation along the axis. Whenever
the distance

d = 
2

(2 1)

a

n + l

n = 0, 1, 2, . . .  (maxima)

point P (see Fig. 20.1) will correspond to a maximum. Simi-
larly, when

d = 
2

2

a

nl
 n = 1, 2, . . .  (minima)

point P will correspond to a minimum. The intensity distribu-
tion on screen SS¢ at off-axis points can be approximately
calculated by using the half-period zones, but such a
calculation is fairly cumbersome. However, from the symme-
try of the problem, one can deduce that the diffraction
pattern has to be in the form of concentric circular rings with
their centers at point P.

20.2.2 Diffraction by an Opaque

Disc—The Poisson Spot

If instead of the circular aperture we have a circular disc [see
Fig. 20.3(a)] and if the disc obstructs the first p half-period

zones, then the field at point P is

u(P) = up+1 – up+2 + . . .

ª 
1

2
pu
+

(13)

Thus, we should always obtain a bright spot on the axis be-
hind a circular disc (the more rigorous theory also predicts
the same result—see Sec. 20.4.2). This is called the Poisson
spot. In 1816 the French physicist Augustin Fresnel devel-
oped the mathematical theory of diffraction using the wave
theory of light. Simeon Poisson, the famous mathematician,
used Fresnel's theory to predict a bright spot at the center of
the shadow of an opaque disc. Poisson was a great sup-
porter of the corpuscular theory of light, and he said that
since the bright spot is against common sense, the wave
theory must be wrong. Shortly afterward, Fresnel and Arago
carried out the experiment to demonstrate the existence of the
Poisson spot [see Fig. 20.3(b)], validating the wave theory.

20.3 THE ZONE PLATE

A beautiful application of the concept of Fresnel half-period
zones lies in the construction of the zone plate which consists of
a large number of concentric circles whose radii are proportional
to the square root of natural numbers and the alternate annular
regions of which are blackened (see Fig. 20.4). Let the radii of the

circles be 1 K, 2 K, 3 K, 4 K, . . .  where K is a constant
and has the dimension of length. We consider a point P1 which is
at a distance K2/l from the zone plate; for this point the blackened

(a) (b)

P

Opaque disc

Fig. 20.3 (a) When a plane wave is incident normally on an opaque disc, a bright spot is always formed

on an axial point. This spot is known as the Poisson spot. (b)  The Poisson spot at the center of

the shadow of a penny; the screen is 20 m from the coin, and the source of light is also 20 m

from the coin [Photograph reprinted with permission from P. M. Rinard, “Large Scale Diffrac-

tion Patterns from Circular Objects,” American Journal of Physics, Vol. 44, p. 70, 1976; Copyright

1976, American Association of Physics Teachers].
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rings correspond to the 2nd, 4th, 6th, . . . half-period zones. Thus,
the even zones are obstructed and the resultant amplitude at P1

[see Fig. 20.5(a)] will be

u1 + u3 + u5 + . . . (14)

producing an intense maximum. For point P3 (which is at a
distance K2/3l) the first blackened ring contains the 4th, 5th,
6th zones, the second blackened ring contains the 10th, 11th
and 12th zones, etc.; thus the resultant amplitude is

(u1 – u2 + u3) + (u7 – u8 + u9) + . . . (15)

which would again correspond to a maximum, but it would not be
as intense as point P1. Between points P1 and P3 there will be a
point P2 (at a distance K2/2l) where the resultant amplitude is

(u1 – u2 ) + (u5 – u6 ) + . . . (16)

implying that corresponding to P2 the first blackened ring
contains the 3rd and 4th half-period zones, etc. Obviously,
point P2 will correspond to a minimum. Thus, if a plane wave
is incident normally on a zone plate, then the corresponding
focal points are at distances

2K

l
, 

2

3

K

l
, 

2

5

K

l
, . . . (17)

from the zone plate. Elementary calculations will show that
the zone plate suffers from considerable chromatic aberra-
tions (see Prob. 20.5).

Example 20.1 Assume a plane wave (l = 5 ¥ 10–5 cm) to
be incident on a circular aperture of radius 0.5 mm. We will calcu-
late the positions of the brightest and darkest points on the axis.
For the brightest point, the aperture should contain only the first
zone, and thus we must have (see Fig. 20.1)

(0.05)2 = OP(5 ¥ 10–5)

Thus OP = 50 cm. Similarly the darkest point would be at a distance

2

5

(0.05)

2 5 10-

¥ ¥

= 25 cm

Example 20.2 Consider a zone plate with radii

rn = 0.1 n cm
For l = 5 ¥ 10–5 cm, we will calculate the positions of various foci.
The most intense focal point will be at a distance

2
1r

l
= 0 01

5 10 5
.

× −  = 200 cm

The other focal points will be at distances of 200/3, 200/5,and
200/7 cm, etc. Between any two consecutive foci there will be dark
points on the axis corresponding to which the first circle will con-
tain an even number of half-period zones.

The zone plate can also be used for imaging points on the axis;
e.g., if we have a point source at S, then a bright image will be
formed at P, where point P should be such that [see Fig. 20.5(b)]

SL + LP – SP = 
2

l
(18)

the point L being on the periphery of the first circle of the
zone plate [see Fig. 20.5(b)]. If the radius of the first circle is
r1, then

SL + LP – SP = a r b r a b2
1
2 2

1
2

+ + + - +( )

ª 
2 2

1 1
2 21 1 ( )

2 2

r r
a b a b

a b

Ê ˆ Ê ˆ
+ + + - +Á ˜ Á ˜Ë ¯ Ë ¯

ª 
2

1 1 1

2

r

a b
Ê ˆ+Á ˜Ë ¯ (19)

Fig. 20.4 The zone plate.

P4 P3 P2 P1P5

(a)

(b)

r1

L

S P

Fig. 20.5 (a) For a plane wave incident on a zone plate, the

maximum intensity occurs at points P
1
, P

3
, etc.

The minima occur at P
2
, P

4
, . . .. (b) Imaging of a

point object by a zone plate.
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Thus Eq. (18) becomes

1 1

a b
+ = 1

f
(20)

where f = r1
2/l represents the focal length. Equation (20) re-

sembles the lens law. A very interesting demonstration
experiment of the zone plate can be carried out by using mi-
crowave sources (l ~ 1 cm) and, instead of the dark rings,
having aluminum rings on a perspex sheet of dimension
~40 cm ¥ 40 cm.

20.4 FRESNEL DIFFRACTION—A

MORE RIGOROUS

APPROACH

In Sec. 19.2 we gave a more rigorous analysis of the diffrac-
tion of a plane wave by different types of aperture. We
considered a plane wave (of amplitude A) incident normally
on an aperture as shown in Fig. 20.6. Using the Huygens–
Fresnel principle, we showed that the field produced at point
P on screen SS¢ (which is at a distance d from the aperture)
is given by

u(P) = 
ikrA e

i rl
ÚÚ dx dh (21)

where the integration is over the area of the aperture. Now, if
the amplitude and phase distribution on the plane z = 0 is
given by A(x, h), then the above integral is modified to

u(P) = 
1

il ÚÚ A(x, h)
ikre

r
dx dh (22)

Further, in the Fresnel approximation [see Eq. (9) of Chap.19]
the above integral takes the form

u(x, y, z) ª 
1

i zl
eikz zz A(x, h)

¥ exp 2 2[ ) ( ) ]
2

ik
x y

z

Ï ¸
- x + - hÌ ˝

Ó ˛
dx dh (23)

20.4.1 Diffraction of a Plane Wave

Incident Normally on a Circular

Aperture

We assume a plane wave incident normally on a circular ap-
erture of radius a as shown in Fig. 20.7. The z axis is normal
to the plane of the aperture, and screen SS ¢ is assumed to be
normal to the z axis. It is obvious from the symmetry of the
problem that we will obtain circular fringes on screen SS¢ ;
however, it is very difficult to calculate the actual intensity
variation on the screen. Therefore, for the sake of mathemati-
cal simplicity, we will calculate the variation of intensity only
along the z axis. Obviously, it will be more convenient to use the
circular system of coordinates. In this system, the coordinates
of an arbitrary point M on the aperture will be (r, f), where r
is the distance the point M from the center O and f is the
angle that OM makes with the x axis (see Fig. 20.7), and a
small element area dS surrounding point M will be r dr df.
Thus, using Eq. (21) we get

u(P) ª

2

0 0

a ikriA e
d d

r

p

- r r f
l
Ú Ú (24)

x

P

y

S

S¢

r

h

x

Md dx h

d

Fig. 20.6 A plane wave incident normally on an aperture.

h

r j

x
Q
O

M

r

P

S¢

S

d

Fig. 20.7 Diffraction of a plane wave incident normally on

a circular aperture of radius a; point Q is an arbi-

trary point on the periphery of the aperture.
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Now

r
2 + d2 = r2

Thus

rdr = rdr

and Eq. (24) becomes

u(P) ª 

2 2
2

0

a d
ikr

d

iA
e dr d

+p

- f
l
Ú Ú (25)

The integration is very simple, and since k = 2p/l , we readily
obtain

u(P) ª Aeikd (1 – eipp ) (26)

where we have defined p by the equation

k ( )2 2a d d+ - = pp

The above equation implies

QP – OP = 
2

pl

where Q is a point on the periphery of the circular aperture
(see Fig. 20.7). From Eq. (26) we readily get

I(P) = 4I0 sin2

2

pp
(27)

where I0 is the intensity associated with the incident plane
wave. Equation (27) tells us that the intensity is zero or maxi-
mum when p is an even or odd integer, i.e., when
QP – OP is an even or odd multiple of l/2. This can be under-
stood physically by using the concept of Fresnel half-period
zones discussed in Sec. 20.2. Thus, if the aperture contains an
even number of half-period zones, the intensity at point P will
be negligibly small; and conversely, if the circular aperture
contains an odd number of zones, the intensity at P will be
maximum. Now, when d << a (as is usually the case)

p ª 
2

2
1

2

k a
d d

d

È ˘Ê ˆ
+ -Í ˙Á ˜p Ë ¯Í ˙Î ˚

or

p ª 
2a

dl
(28)

which is known as the Fresnel number of the aperture. In
Fig. 20.8 we have plotted the corresponding intensity varia-
tion as a function of the dimensionless parameter

2

d

a

l

The figure shows that when the (circular) aperture contains
an even number of half-period zones, the intensity at point P
will be zero; and when the aperture contains an odd number
of zones, the intensity at point P will be maximum.

20.4.2 Diffraction by a Circular Disc

We next consider the diffraction pattern produced by an
opaque disc of radius a (see Fig. 20.3). Once again we
assume that the observation point lies on the axis of the disc.
Equation (21) tells us that to calculate the field we have to
carry out an integration over the open region of the aperture.
Obviously, i f u1(P) and u2(P), respectively, represent the
fields at point P due to a circular aperture and an opaque
disc (of the same radius), then

u1(P) + u2(P) = u0(P) (29)

where u0(P) represents the field in the absence of any aper-
ture; Eq. (29) is known as Babinet's principle. Thus,

u2(P) = u0(P) – u1(P)

= u0(P) – u0(P)(1 – e ipp)

or u2(P) = u0(P) e ipp (30)

where for u1(P) we have used Eq. (26). Thus the intensity at
point P on the axis of a circular disc is

I2(P) = |u2(P) |2 = I0(P) (31)

which gives us the remarkable result that the intensity at a
point on the axis of an opaque disc is equal to the intensity
at the point in the absence of the disc! This is the Poisson
spot discussed in Sec. 20.2.2.

I
I0

0
0 0.25 0.5 0.75 1 1.25 1.5

2

4

ld

a2

Fig. 20.8 The intensity variation on an axial point corre-

sponding to a plane wave incident on a circular

aperture of radius a.

gha80482_ch20_303-324.PMD 2/2/2009, 1:06 PM309



Optics310
�

20.5 GAUSSIAN BEAM

PROPAGATION

When a laser oscillates in its fundamental transverse mode,
the transverse amplitude distribution is Gaussian (see
Sec.26.5). Also, the output of a single mode fiber is very
nearly Gaussian. Therefore, the study of the diffraction of a
Gaussian beam is of great importance. We assume a Gaussian
beam propagating along the z direction whose amplitude dis-
tribution on the plane z = 0 is given by

A(x,h) = a exp
2 2

2
0w

Ê ˆx + h
-Á ˜

Ë ¯
(32)

implying that the phase front is plane at z = 0. From Eq. (32)
it follows that at a distance w0 from the z axis, the amplitude
falls by a factor 1/e (i.e., the intensity reduces by a factor
1/e2). This quantity w0 is called the spot size of the beam.
Substituting Eq. (32) into Eq. (23) and carrying out the inte-
gration, we obtain (see App. D)

u (x, y, z) ª 
2 2

2
exp

1 ( )
ia x y

e
i w z

F
È ˘+
-Í ˙

+ g Î ˚
(33)

where

g = 
2
0

z

w

l

p
(34)

w(z) = w0(1 + g 2)1/2 = w0

1/ 22 2

2 4
0

1
z

w

Ê ˆl
+Á ˜pË ¯

(35)

F = kz + 2 2( )
2 ( )

k
x y

R z
+ (36)

R(z) ∫ 
2

1
1z
Ê ˆ

+Á ˜Ë g ¯
 = 

2 4
0

2 2
1

w
z

z

Ê ˆp
+Á ˜lË ¯

(37)

Thus the intensity distribution is given by

I (x, y, z) = 
2 2

0
2 2

2 ( )
exp

1 ( )

I x y

w z

È ˘+
-Í ˙

+ g Î ˚
(38)

which shows that the transverse intensity distribution
remains Gaussian with the beam width increasing with z
which essentially implies diffraction divergence. As can be
seen from Eq. (35), for small values of z, the width increases

quadratically with z, but for large values of z >> w0
2 /l,

we obtain

w(z) ª 0 2
0

z
w

w

l

p
 = 

0

z

w

l

p
(39)

which shows that the width increases linearly with z. We
define the diffraction angle as

tan q = 
0

( )w z

z w

l
ª
p

(40)

showing that the rate of increase in the width is proportional
to the wavelength and inversely proportional to the initial
width of the beam.To get some numerical values, we assume
l = 0.5 mm. Then for w0 = 1 mm

2q ª 0.018° and w ª 1.88 mm at z = 10 m (41)

Similarly, for w0 = 0.25 mm,

2q ª 0.073° and w ª 6.35 mm at z = 10 m (42)

(see Fig. 20.9). Notice that q increases with a decrease in w0

(the smaller the size of the aperture, the greater the diffrac-
tion). Further, for a given value of w0, the diffraction effects
decrease with l. In Fig. 20.10 we have shown the decrease in
diffraction divergence for w0 = 0.25 mm as the wavelength is
decreased from 5000 to 500 Å; indeed as l Æ 0, q Æ 0 and
there is no diffraction which is the geometric optics limit.
From Eq. (38) one can readily show that

I x y z dx dy( , , )
•

•

-

+

zz  = 
2
0

02

w
I

p

(43)

which is independent of z. This is to be expected, as the total
energy crossing the entire xy plane will not change with z.

Now, for a spherical wave diverging from the origin, the
field distribution is given by

u ~ 
1 ikre
r

(44)

Now, on the plane z = R (see Fig. 20.11)

r = (x2 + y2 + R2)1/2 (45)
Thus

1/ 22 2

2
1

x y
r R

R

Ê ˆ+
= +Á ˜Ë ¯

2 2

2

x y
R

R

+
ª +

(46)

where we have assumed | x |, | y | << R. Thus on the plane
z = R, the phase distribution (corresponding to a spherical
wave of radius R) is given by

ei k r
ª ei kR

2 2
2 ( )i k

R x y
e

+

(47)
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w0 = 1 mm

l = 5000 Å

w0 = 0.25 mm

0 2 4 6 8 10

z (m)

0.5 mm 0.073°

0.018°2 mm

12.7 mm

3.76 mm

Fig. 20.9 Diffraction divergence of a Gaussian beam whose phase front is plane at z = 0. The figure shows

the increase in the diffraction divergence as the initial spot size is decreased from 1 to 0.25 mm;

the wavelength is assumed to be 5000 Å.

1.37 mm

12.7 mm

w0 = 0.25 mm

l = 5000 Å

l = 500 Å

0.073°

0.0073°0.5 mm

0.5 mm

0 2 4 6 8 10
z (m)

Fig. 20.10 Diffraction divergence of a Gaussian beam whose phase front is plane at z = 0. The figure shows the

decrease in divergence as the wavelength is decreased from 5000 to 500 Å; the initial spot size w0

is assumed to be 0.25 mm.
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From the above equation it follows that a phase variation of
the type

2 2exp ( )
2

k
i x y

R
È ˘

+Í ˙
Î ˚

(48)

(on the xy plane) represents a diverging spherical wave of
radius R. If we compare the above expression with Eqs. (42)
and (43), we obtain the following approximate expression for
the radius of curvature of the phase front:

R(z) ª 
4
0

2 2
1

w
z

z

Ê ˆp
+Á ˜
lË ¯

(49)

which is shown in Fig. 20.11. Thus as the beam propagates,
the phase front which was plane at z = 0 becomes curved. In
Fig. 20.12 we have shown a Gaussian beam resonating be-
tween two identical spherical mirrors of radius R;  the plane
z = 0, where the phase front is plane and the beam has the

minimum spot size, is referred to as the waist of the Gaussian
beam. For the beam to resonate, the phase front must have a
radius of curvature equal to R on the mirrors. For this to hap-
pen, we must have

R ª 
4
0

2 2

4
1

2

wd

d

Ê ˆp
+Á ˜lË ¯

(50)

where d is the distance between the two mirrors. We will use the
above analysis in Sec. 26.5 and discuss the modes of a laser.

Note that although in the derivation of Eq. (33) we have
assumed z to be large, Eq. (33) does give the correct field
distribution even at z = 0.

20.6 DIFFRACTION BY A

STRAIGHT EDGE

Let us consider a straightedge MN placed perpendicular to
the plane of the paper and parallel to a long, narrow slit S
(see Fig. 20.13). We wish to calculate the intensity variation
on screen LL¢. From the geometry of the arrangement, it is

O
z

z R=

Fig. 20.11 A spherical wave diverging from point O. The

dashed curve represents a section of the spheri-

cal wave front at a distance R from the source.

z = 0

Fig. 20.12 Diffraction divergence of a Gaussian beam

whose phase front is plane at z = 0. The dashed

curves represent the phase fronts; see also

Fig. 40 in the insert at the back of the book.

P1

P

L

L¢
G¢ N

E

X

(a)

(b)

ba M

Q

Q1
Q2

G

S

Q2

Q1

Q PS

Fig. 20.13 (a) Diffraction at a straightedge. (b) Half-period

strips of a cylindrical wave front.
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where 1 / 2u  is the amplitude produced by the first half-
period strip in the lower portion and 1 / 4u  is the
resultant amplitude produced by the upper half of the

wave front [see Eq. (12)]. The intensity is 9
4 I0. For a

point P1 such that

SM + MP1 – SP1 = l (56)

we will have a minimum, and the resultant amplitude
will be

1 2 1

2 2 4

u u uÊ ˆ- +Á ˜Ë ¯
(57)

In general, an arbitrary point P will correspond to maxi-
mum intensity if

SM + MP – SP = (2n + 1)
2

l
n = 0, 1, 2, . . . (58)

and minimum intensity if

SM + MP – SP = 2n
2

l
n = 1, 2, . . . (59)

Now,

MP = (b2 + x2)1/2 ª 
2

2

1
1

2

x
b

b

Ê ˆ
+Á ˜Ë ¯

 = 
2

2

x
b

b
+

 SP = [(a + b)2 + x2]1/2 ª a + b + 
2

2( )

x

a b+

Hence,

SM + MP – SP ª 
2

( )
2

x
a b a b

b
+ + - +

2

2( )

x

a b
-

+

ª 2

2( )

a
x

a b b+

Thus, when

x 
1/ 2

( )
(2 1)

b a b
n

a

+È ˘
@ + lÍ ˙
Î ˚

 n = 1, 2, . . . (60)

we will have a maximum. For example, for a = b = 25 cm
and l = 5 ¥ 10–5 cm,

1/ 2
( )b a b

a

+È ˘
lÍ ˙

Î ˚
 = 5 ¥ 10–2 cm

obvious that on the screen there will be no intensity variation
along the direction parallel to the length of the edge. Thus,
the fringes (wherever they occur) will be straight lines parallel
to the edge. We will first give a very approximate theory
based on Fresnel half-period zones; this will be followed by
a more rigorous analysis.

20.6.1 Analysis Using Half-Period Zones

In this section we will give a very approximate theory based
on Fresnel half-period zones. The wave front emanating from
the slit is cylindrical, and to find the amplitude at an arbitrary
point P (on the screen), we draw half-period strips in the fol-
lowing manner: Let GQMG¢ represent a section of the wave
front, and point Q lies on the line joining S and P. Points Q1

and Q2 on the wave front are such that

1 1

2 2

=
2
2

=
2

SQ Q P SQP

SQ Q P SQP

l
+ -

l
+ -

�

(51)

The half-period strips will be on the surface of the cylindrical
wave front as shown in Fig. 20.13(b). However, unlike the
Fresnel half-period zones, the areas of the half-period strips
will not be equal, and thus the analysis becomes quite diffi-
cult. Even then one can draw the following conclusions:

1. Corresponding to the edge of the geometrical shadow
[which is shown as E in Fig. 20.13(a)], one-half of the
wave front is obstructed by the edge. Hence the ampli-
tude will be given by

u(E) = 1
02 u                                           (52)

where u0 represents the amplitude that would be
produced by the unobstructed wave front (i.e., in
the absence of the edge). Thus the intensity will be
given by

I(E) = 1
04 I (53)

2. Let us next assume that point P satisfies the following
relation:

SM + MP – SQP = 
2

l
(54)

Thus only the first half-period strip of the lower part of
the wave front contributes, and the resultant amplitude
is approximately

1 1

2 4

u u
+ = 13

4

u
 = 13

2 2

uÊ ˆ
Á ˜Ë ¯

 = 0
3

2
u (55)
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Thus the first maximum will occur at a distance of
0.05 cm from the edge of the shadow, and the second
and third maxima will occur at distances of 0.0866 and
0.112 cm, respectively. The distance between two con-
secutive maxima will decrease as we go away from the
edge of the geometrical shadow. Similarly, the positions
of the minima are given by

x ~
-

1/ 2
( )

2
b a b

n
a

+È ˘
lÍ ˙

Î ˚
 n = 1, 2, 3, . . . (61)

and for the above parameters they will occur at dis-
tances of 0.07 cm, 0.10 cm, etc. By determining the
positions of these maxima and minima, one can calcu-
late the wavelength. The precise variation of the
intensity is difficult to calculate from this analysis; a
more rigorous theory will be given now.

20.6.2 More Rigorous Analysis of the

Straightedge Diffraction Pattern

Before we discuss the straightedge diffraction pattern, we
introduce the Fresnel integrals.

Fresnel Integrals: The Fresnel integrals are defined by the
following equations:

C(t) = 2

0

1
cos

2
u du

t

Ê ˆpÁ ˜Ë ¯Ú (62)

and

S(t) = 2

0

1
sin

2
u du

t

Ê ˆpÁ ˜Ë ¯Ú (63)

Since the integrands are even functions of t, the Fresnel
integrals C(t) and S(t) are odd functions of t:

C(–t ) = –C(t ) and S(–t ) = –S(t ) (64)

Further, since

2xe dx
•

-a

-•

Ú = 
p

a

(65)

we have

2 / 2i ue du
•

p

-•

Ú = 
/2i

p

- p

 = / 42 ie p =  1 + i (66)

Now,

2

exp
2

u
i d u

+•

-•

Ê ˆp
Á ˜Ë ¯Ú

= 2 2

0 0

1 1
2 cos sin

2 2
u du i u du

• •È ˘Ê ˆ Ê ˆp + pÍ ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
Ú Ú

= 2[C(•) + i S(•)]

Thus, using Eq.(66), we get C (•) = 1
2  = S(•).

To summarize, the Fresnel integrals have the following
important properties:

C (•) = S (•) = 1
2

 C (0) = S(0) = 0 (67)

C(–t ) = –C(t ) and S(–t ) = –S(t ) (68)

The values of the Fresnel integrals for typical values of t are
tabulated in Table 20.1.

Figure 20.14 gives a parametric representation of the
Fresnel integrals and is known as Cornu’s spiral. The hori-
zontal and the vertical axes represent C(t) and S(t)
respectively, and the numbers written on the spiral are the
values of t. For example, as can be seen from the figure, for
t = 1.0, C(t) ª 0.77989 and S(t) ª 0.43826.

We now return to the calculation of the straightedge dif-
fraction pattern which we had qualitatively discussed in
Sec. 20.6.1. In this section we will make a more rigorous

Table 20.1 Table of Fresnel Integrals*

t t

p pÊ ˆ Ê ˆ
t tÁ ˜ Á ˜Ë ¯ Ë ¯Ú Úv v v v2 2

0 0

( ) = cos ( ) = sin
2 2

C d S d

t C(t) S(t) t C(t) S(t)

0.0 0.00000 0.00000 2.6 0.38894 0.54999
0.2 0.19992 0.00419 2.8 0.46749 0.39153
0.4 0.39748 0.03336 3.0 0.60572 0.49631
0.6 0.58110 0.11054 3.2 0.46632 0.59335
0.8 0.72284 0.24934 3.4 0.43849 0.42965
1.0 0.77989 0.43826 3.6 0.58795 0.49231
1.2 0.71544 0.62340 3.8 0.44809 0.56562
1.4 0.54310 0.71353 4.0 0.49843 0.42052
1.6 0.36546 0.63889 4.2 0.54172 0.56320
1.8 0.33363 0.45094 4.4 0.43833 0.46227
2.0 0.48825 0.34342 4.6 0.56724 0.51619
2.2 0.63629 0.45570 4.8 0.43380 0.49675
2.4 0.55496 0.61969 5.0 0.56363 0.49919

   • 0.5 0.5

*Adapted from Ref. 5; a more detailed table (with greater accuracy)
has been given there.
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analysis of the diffraction of a plane wave incident normally
on a straight edge (see Fig. 20.15). Once again, there will be
no variation of intensity along the x axis and therefore,
without any loss of generality, we may assume the coordi-
nates of an arbitrary point P (on the screen) to be (0, y),
where the origin has been assumed to be on the edge of the

geometrical shadow. If the x and y coordinates of an arbitrary
point M on the plane of the straightedge are denoted by
x and h, then

r = MP = [x 2 + (h – y)2 + d2]1/2

= 
1/ 22 2

2

( )
1

y
d

d

È ˘x + h -
+Í ˙

Î ˚

ª 
2 2( )

2

y
d

d

x + h -
+ (69)

where d is the distance between the straightedge and the
screen. On substituting the expression for r from Eq. (69) into
Eq. (21), we obtain

u(P) ª 

2 2

0

( )
exp

2

i A y
d d ik d

d d

• •

-•

Ï ¸È ˘x + h -Ô Ô
- x h +Í ˙Ì ˝
l Ô ÔÎ ˚Ó ˛

Ú Ú

(70)

where, in the denominator of the integrand, we have replaced
r by its minimum value4 d. To express the above expression
in terms of the Fresnel integrals, we introduce two dimen-
sionless variables u and v such that

2 2 2

2 2 2

1
= =

2 2

1
= ( ) = ( )

2 2

k
u

d d

k
y y

d d

p
p x x

l

p
p h - h -

l
v

Thus we may assume u and v to be defined by the following
equations:

 

2
=

2
= ( )

u
d

y
d

x
l

h -
l

v

(71)

With these substitutions, Eq. (70) becomes

u(P) = 
2

0 exp
2 2

i i u
u du

+•

-•

Ê ˆp
- Á ˜Ë ¯Ú  

0

2

exp
2

v

i
d

• Ê ˆp
Á ˜Ë ¯Ú

v
v (72)

where

v0 = 
2

y
d

-
l

(73)

and
u0 = A eikd

represents the field at point P in the absence of the straight-
edge. To calculate the intensity distribution, we use the

4 This is justified because in carrying out the integration, only a small region around the point r = d contributes; the contribution due
to far-off points is small because of the rapid oscillations of the exponential term in the integrand (see also footnote on page 290).

h

M( , )x h

r

L
S

y

O
Q

L¢

x

P y(0, )

x

Screen

Straightedge

Fig. 20.15 Diffraction of a plane wave incident normally

on a straightedge.
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0.4
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M
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1.5
2.5

2.0

–2.0

–0.4 0–0.8–1.2 1.20.80.4

–1.0

–1.5
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q

1.0

P1
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P

Fig. 20.14 Cornu’s spiral which is a parametric plot of C(t)

and S(t).
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Fresnel integrals; thus

2

exp
2

u
i du

+•

-•

Ê ˆp
Á ˜Ë ¯Ú = 2 [C(•) + S(•)]

= 1 + i (74)

Further,

0

0

2
2 2

0 0

exp = cos cos
2 2 2

i
d d d

• •È ˘Ê ˆp p pÊ ˆ Ê ˆÍ ˙-Á ˜ Á ˜Á ˜ Ë ¯ Ë ¯Í ˙Ë ¯ Î ˚
Ú Ú Ú

v

v

v
v v v v v

2 2

0 0

sin sin
2 2

i d d
•È ˘p pÊ ˆ Ê ˆÍ ˙+ -Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
Ú Ú

0v

v v v v

= 0 0
1 1

( ) ( )
2 2

C i S
È ˘ È ˘

- + -Í ˙ Í ˙Î ˚ Î ˚
v v (75)

Substituting in Eq. (72), we obtain

u (P) = 0 0 0
1 1

(1 ) ( ) ( )
2 2 2

i
u i C i S

Ï ¸È ˘ È ˘
- + - + -Ì ˝Í ˙ Í ˙Î ˚ Î ˚Ó ˛

v v

= 0 0 0
1 1 1

( ) ( )
2 2 2

i
u C i S

- Ï ¸È ˘ È ˘
- + -Ì ˝Í ˙ Í ˙

Î ˚ Î ˚Ó ˛

v v (76)

Note that a large value of y corresponds to a point which is
very far above the edge of the geometrical shadow. For such
a point v0 tends to –• [see Eq. (73)] and we obtain

u(P) = 0
1 1 1 1 1

2 2 2 2 2

i
u i

- È ˘Ê ˆ Ê ˆ+ + +Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚
= u0 (77)

Thus, as expected, the amplitude at such a point is the same
as that in the absence of the edge. This also justifies the value
of the constant given by Eq. (21). On the other hand, when
point P is deep inside the geometrical shadow (i.e., when
y Æ –• and hence v0 Æ •), we obtain

C(v0) = S(v0) Æ 1
2

giving u(P) Æ 0

as it should indeed be. The intensity distribution correspond-
ing to Eq. (76) is given by

I(P) = 
2 2

0 0 0
1 1 1

( ) ( )
2 2 2

I C S
Ï ¸Ô ÔÈ ˘ È ˘

- + -Ì ˝Í ˙ Í ˙
Î ˚ Î ˚Ô ÔÓ ˛

v v (78)

If point P is such that it lies on the edge of the geometrical
shadow [i.e., on the line LL¢ (see Fig. 20.15], then y = 0 and
hence v0 = 0; thus

I(P) = 0
1 1 1

2 4 4
I

Ê ˆ+Á ˜Ë ¯
 = 0

1

4
I (79)

where we have used the fact that C(0) = S(0) = 0. Thus the
intensity on the edge of the geometrical shadow is one-fourth

of the intensity that it would have been in the absence of the
edge [see also Eq. (53)]. To determine the field at an arbitrary
point P, we may use Table 20.1 to calculate the RHS of
Eq. (78). The intensity variation is plotted in Fig. 20.16 from
which one can make the following observations:

1. Figure 20.16 represents a universal curve; i.e., for given
values of l and d, one simply has to calculate v0 as the
observation point moves along the y axis. For example,
the first three maxima occur at

0 0

0 0

0 0

1.22 with 1.37

2.34 with 1.20

3.08 with 1.15

I I

I I

I I

ª - ª

ª - ª

ª - ª

v

v

v

 maxima

Similarly, the first three minima occur at

0 0

0 0

0 0

1.87 with 0.778

2.74 with 0.843

3.39 with 0.872

I I

I I

I I

ª - ª

ª - ª

ª - ª

v

v

v

minima

Thus, as y increases, the intensity modulation decreases
(see Fig. 20.16).

2. For a given experimental setup, the determination of the
positions of maxima and minima is quite straightforward.
For example, for l = 6 ¥ 10–5 cm and d = 120 cm,

y = – 02

dl
v  = –0.06v0 cm

Thus the first three maxima will occur at

y ª 0.732, 1.404, and 1.848 mm

–2 2 4 6 8

I 
I/
0

1

2

2

λd
y

Fig. 20.16 The intensity variation corresponding to the

straightedge diffraction pattern.
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respectively. Similarly, the first three minima will
occur at

y ª 1.122, 1.644, and 2.034 mm

respectively. These results may be compared with
those obtained in Sec. 20.6.1.

3. As we go inside the geometrical shadow, the intensity
monotonically decreases to zero.

4. One could have also studied the intensity variation
directly from Cornu’s spiral (see Fig. 20.14). This is due
to the fact that associated with Cornu’s spiral, we have
the following interesting property. Let us write

[C(t2) – C(t1)] + i[S(t2) – S(t1)] ∫ Aeiq (80)

Thus

C(t2) – C(t1) = Acosq

and

S(t2) – S(t1) = Asinq

Let points P and Q on Cornu’s spiral (see Fig. 20.14)
correspond to t = t1 and t = t2, respectively. It is obvi-
ous that

PM = C(t2) – C(t1) = Acosq

and

QM = S(t2) – S(t1) = A sinq

Thus the length of the line joining points P and Q is A,
and the angle that the line makes with the abscissa is
q. To use Cornu’s spiral, we rewrite Eq. (76):

u = 0 0 0
1 1 1

( ) ( )
2 2 2

i
u C i S

- Ï ¸È ˘ È ˘
- + -Ì ˝Í ˙ Í ˙Î ˚ Î ˚Ó ˛

v v

Let us first consider a point of observation Q in the
geometrical shadow region. Consequently v0 will be
positive. Let point Q on the spiral (see Fig. 20.14) cor-
respond to t = v0. Since point C in the curve
corresponds to t = •, we have

0 0
1 1

( ) ( )
2 2

C i S
È ˘

- + -
Í ˙
Î ˚

v v  = QCeiy

where y is the angle that QC makes with the abscissa
[see Eq. (80)]. Thus,

u(Q) = 0
1

2
ii

QCe uy-

or

I(Q) = 2
0

1
( )

2
QC I (81)

We can easily see that as the point of observation moves
into the shadow region, the value of v0 increases. Thus
point Q keeps on moving on the spiral toward point C,
and the length QC decreases uniformly. Hence in the
shadow region the intensity uniformly decreases to zero
(see Figs. 20.16 and 20.17).

As we move away from the edge of the geometrical
shadow to the illuminated region, the value of v0 be-
comes negative and the corresponding point P (on
Cornu’s spiral) lies in the third quadrant as shown in
Fig. 20.14. The intensity is again given by

I(P) = 2
0

1
( )

2
PC I

As the value of v0 becomes more and more negative,
the length PC keeps on increasing until point P
reaches P1 which corresponds to v0 ª –1.22. The inten-
sity at this point is maximum, and the length P1C ª

1.67. Thus, the corresponding intensity is

I(P1) ª 2
0 0

1
(1.67) 1.37

2
I Iª (82)

As the value of v0 becomes further negative, the
length PC starts decreasing until it reaches point P2.
Thus, the intensity keeps on oscillating with decreas-
ing amplitude about I0 as we move more and more into
the illuminated region (see Figs. 20.16 and 20.17).

–2 0 2 4

2
ld

y

Fig. 20.17 Computer-generated intensity distribution corre-

sponding to the straightedge diffraction pattern.
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20.7 DIFFRACTION OF A PLANE

WAVE BY A LONG NARROW

SLIT AND TRANSITION TO

THE FRAUNHOFER REGION

We next consider a plane wave incident normally on a long
narrow slit (of width b) as shown in Fig. 20.18. We wish to
calculate the intensity distribution at an arbitrary point P on
screen SS¢. Lines LL¢ and MM ¢ represent the edges of the
geometrical shadow. Once again, there will be no variation of
the intensity along the x axis, and we may (without any loss
of generality) assume the coordinates of point P to be (0,y).
The field at point P will again be given by Eq. (70) except that
the limits of the h integral will be –b/2 and +b/2 (we are
assuming the origin to be at the center of the slit).

u(P) = 
iA

d
d

•

-•

- x
l

Ú  
/ 2 2 2

/ 2

( )
exp

2

b

b

y
d ik d

d

+

-

Ï ¸È ˘x + h -Ô Ô
h +Ì ˝Í ˙

Ô ÔÎ ˚Ó ˛
Ú

Carrying out manipulations similar to those in the previous
section, we obtain

u(P) = 
2

0 exp
2 2

i i u
u du

•

-•

Ê ˆp
- Á ˜Ë ¯Ú

2 1

2 1

( ) 2

( )

exp
2

i
d

- -

- +

Ê ˆp
Á ˜Ë ¯Ú

v v

v v

v
v

where

u = 
2

d
x

l
, v = 

2
( )y

d
h -

l

and

v1 = 
2

2

b

dl
v2 = 

2

dl
y

Using Eq. (66), we obtain

u (P) = – 0 (1 )
2

i
u i+

¥ 
2 1( )

2 2

0

cos sin
2 2

i d
- -Ï È ˘p pÊ ˆ Ê ˆÔ +Ì Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚ÔÓ
Ú

v v

v v v

2 1( )
2 2

0

cos sin
2 2

i d
- + ¸È p p ˘ ÔÊ ˆ Ê ˆ- + ˝Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚ Ǫ̂
Ú

v v

v v v

or

u(P) = 0
1

2

i
u

-

{[C (v2 + v1) – C (v2 – v1)]

+ i[S (v2 + v1) – S (v2 – v1)]} (83)

where we have used Eq. (64). Thus the intensity distribu-
tion is

I(P) = 1
02 I {[C (v2 + v1) – C (v2 – v1)]2

+ [S (v2 + v1) – S (v2 – v1)]2} (84)

For a given system l, d, and b are known and determine v1;
e.g., for l = 5 ¥ 10–5 cm, d = 100 cm, and b = 0.1 cm, one
obtains v1 = 2.0; further, as y varies on the screen, the quan-
tity v2 also changes. In Figs. 20.19, 20.20, 20.21, and 20.22 we
have plotted the intensity variation as a function of v2 for

b
M

h

x

S¢ M¢

L¢

L

S y

M

x

Screen

P y(0, )

Plane wave

Fig. 20.18 Diffraction of a plane wave incident normally

on a long narrow slit.

–6 –4 –2 2 4 6

0.5 v1 = 0.5

v2

I
I0

Fig. 20.19 The intensity distribution produced by diffrac-

tion of a plane wave by a long narrow slit

corresponding to v
1
 = 0.5. The dashed curves

correspond to Eq. (86).
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–3 –2 –1 1 2 3

1

2

v2

I
I0

v1 = 1.0

Fig. 20.20 The intensity distribution produced by diffrac-

tion of a plane wave by a long narrow slit

corresponding to v1 = 1.0. The dashed curves

correspond to Eq. (86).

1

2

3

4

5

v1 = 1.5

–4 –3 –2 –1 1 2 3 4
v2

I
I0

Fig. 20.21 The intensity distribution produced by diffraction

of a plane wave by a long narrow slit correspond-

ing to v
1
 = 1.5. The dashed curves correspond to

Eq. (86).

2

v1 = 5.0

–8 –6 –4 –2 2 4 6 8
v2

I
I0

Fig. 20.22 The intensity distribution produced by diffrac-

tion of a plane wave by a long narrow slit

corresponding to v
1
 = 5.0.

v1 = 0.5, 1.0, 1.5, and 5.0, respectively. One can see that for a
large value of v1 (i.e., when the slit width is very large) the
diffraction pattern is similar to that produced by two
straightedges. This is indeed what we should have also ex-
pected. On the other hand, for small values of v1 (i.e., when
the observation screen is far away from the aperture), the
diffraction pattern is essentially of the Fraunhofer type. To
show this explicitly, we notice that

v2 = 
2 2 2

=
d y d

y
d d

ª q
l l l

(85)

where q represents the angle of diffraction (see Fig. 20.23).
Clearly, in the Fraunhofer region since d is very large, the

q

d

y

Fig. 20.23 In the Fraunhofer region, d is very large.

value of v2 will also be very large, and thus we must look for
expressions of the Fresnel integrals in the limit of v Æ •.
Now, we may write

C(v) = 2

0

cos
2

d
pÊ ˆ

Á ˜Ë ¯Ú
v

v v

= 2 2

0

cos cos
2 2

d d
• •p pÊ ˆ Ê ˆ-Á ˜ Á ˜Ë ¯ Ë ¯Ú Ú

v

v v v v

= 21 1
cos

2 2
d

• pÊ ˆ- pÁ ˜Ë ¯pÚ
v

v v v
v

= 2 2
2

1 1 1
sin sin

2 2 2
d

• •p pÊ ˆ Ê ˆ- +Á ˜ Á ˜Ë ¯ Ë ¯p pÚv v

v v v
v v

@ 
21 1

sin
2 2

pÊ ˆ+ Á ˜Ë ¯p
v

v
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where we have neglected terms which would be of order 1/v3.
Similarly,

S(v) = 21 1
cos

2 2

pÊ ˆ- Á ˜Ë ¯p
v

v
Since v2 is large and v1 is small, we have

C(v2 + v1) –C(v2 – v1) ª 2
2 1

2

1 1
sin ( )

2 2

Ï ¸pÈ ˘+ +Ì ˝Í ˙p Î ˚Ó ˛
v v

v

– 2
2 1

2

1 1
sin ( )

2 2

Ï ¸pÈ ˘
+ -Ì ˝Í ˙p Î ˚Ó ˛

v v
v

@ 
2 2
2 1 1 2

2

2
cos ( ) sin

2

pÈ ˘+ pÍ ˙p Î ˚
v v v v

v

Similarly,

S(v2 + v1) – S (v2 – v1)ª ( )

2 2
2 1 1 2

2

2
sin sin

2

pÈ ˘
+ pÍ ˙p Î ˚

v v v v
v

Thus, in the Fraunhofer limit, Eq. (84) becomes

I(P) = 2
0 1 22 2

2

1 4
sin

2
I

Ê ˆ
pÁ ˜pË ¯

v v
v

= I00 

2

2

sin b

b
(86)

where
I00 = 2I0v

2
1

and

b = pv1v2 = 
b

by
d

p p
ª q

l l
(87)

and

q ª 
y

d
(88)

represents the diffraction angle. Equation (86) shows that
the intensity distribution is indeed of the Fraunhofer type
(see Sec. 18.2). In Figs. 20.19 to 20.22 the dashed curves
correspond to Eq. (86), and one can see that the intensity
distribution is almost of the Fraunhofer type for  v1 û£ 0.5.

Summary

� The underlying principle in the theory of diffraction is the
Huygens–Fresnel principle according to which each point on
a wave front is a source of secondary disturbance, and the
secondary wavelets emanating from different points mutually
interfere.

� For a plane wave incident normally on a circular aperture of
radius a, the intensity variation on an axial point P is given by

I = I0 sin2

2

pp

where

p ª 
2a

dl

l is the wavelength and d is the distance of  point P from
the center of the circular aperture. The quantity p is
known as the Fresnel number of the aperture. When
p = 1, 3, 5, 7, . . ., we have maximum intensity and the
circular aperture will contain (with respect to point P)
an odd number of Fresnel half-period zones; and when
p = 2, 4, 6, 8, . . ., we have minimum intensity and the cir-
cular aperture will contain an even number of half-period
zones.

� If instead of the circular aperture we have an opaque disc,
then we always obtain a bright spot on the axis behind the
disc; this is called the Poisson spot.

� For a Gaussian beam (whose phase front is plane at z = 0),
the variation of the spot size is given by

w(z) ª w0

1/22 2

2 4
0

1
z

w

Ê ˆl
+Á ˜pË ¯

where w0 is the spot size at z = 0. For large values of z,

w(z) ª 
0

z

w

l

p

which shows that the width increases linearly with z. We
define the diffraction angle as

tan q = 
( )w z

z
 ª 

0w

l

p

showing that the rate of increase in width is proportional to
the wavelength and inversely proportional to the initial width
of the beam; this is characteristic of diffraction. The corre-
sponding radius of curvature of the wave front is given by

R(z) ª z 
2 4

0
2 21
w

z

Ê ˆ

p

+

Á ˜

l
Ë ¯

� For a plane wave incident normally on a straightedge, the
intensity variation on a screen (at a distance d from the
straightedge) is given by

I = 1
2

I0

2 2

0 0
1 1

( ) ( )
2 2

C S
Ï ¸Ô ÔÈ ˘ È ˘

- + -Ì ˝Í ˙ Í ˙
Î ˚ Î ˚Ô ÔÓ ˛

v v

where I0 is the intensity in the absence of the straightedge,

v0 = –
2

dl
y

with y being the distance from the edge of the geometrical
shadow, and

C(x) = ( )21
20

cos
x

u dupÚ

and S(x) = ( )21
20

sin
x

u dupÚ
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are known as Fresnel integrals. The intensity monotonically
goes to zero as we go deep inside the geometrical shadow.
As we move away from the edge of the geometrical shadow
to the illuminated region, one obtains maxima at v0 ª

–1.22 (I ª 1.37I0), –2.34 (I ª 1.20I0), –3.08 (I ª 1.15I0) . . .
and minima at v0 ª –1.87 (I ª 0.78I0), –2.74 (I ª 0.84I0),
–3.39 (I ª 0.87I0), . . . .

� For a plane wave incident normally on a long narrow slit of
width b, the intensity variation on a screen (at a distance d
from the slit) is given by

I = 1
2

 I0 {[C(v2 + v1) – C(v2 – v1)]
2

+ [S(v2 + v1) – S(v2 – v1)]2}
where

v1 = 
2

dl 2

b v2 = 
2

dl
y

and y is the distance from the midpoint of the edges of the
geometrical shadow. As v1 becomes large, we obtain the in-
tensity distribution corresponding to two straightedges, and
for v1 Æ 0 we get the Fraunhofer diffraction pattern.

Problems

20.1 Consider a plane wave of wavelength 6 ¥ 10–5 cm incident nor-
mally on a circular aperture of radius 0.01 cm. Calculate the
positions of the brightest and the darkest points on the axis.

[Ans: d ª 1.67 cm, 0.56 cm, 0.33 cm, . . . (maxima);
d ª 0.83 cm, 0.42 cm, . . . (minima)]

20.2 What would happen if the circular aperture in Prob. 20.1
were replaced by a circular disc of the same radius?

20.3 (a) A plane wave (l = 6 ¥ 10–5 cm) is incident normally
on a circular aperture of radius a.
(i) Assume a = 1 mm. Calculate the values of z (on

the axis) for which maximum intensity will occur.
Plot the intensity as a function of z and interpret
physically.

(ii) Assume z = 50 cm. Calculate the values of a for
which minimum intensity will occur on the axial
point. Plot the intensity variation as a function of
a and interpret physically.

(b) Repeat the calculations for l = 5 ¥ 10–5 cm and dis-
cuss chromatic aberration of a zone plate.

[Ans: (a) (i) z ª 166.7 cm, 55.6 cm, 33.3 cm, . . . (maxima);
(ii) minimum intensity will occur when a ª 0.0775 cm,

0.110 cm, 0.134 cm, . . . ]

20.4 Consider a circular aperture of diameter 2 mm illuminated
by a plane wave. The most intense point on the axis is at a
distance of 200 cm from the aperture. Calculate the
wavelength.

[Ans: 5 ¥ 10–5 cm]

20.5 If a zone plate has to have a principal focal length of
50 cm corresponding to l = 6 ¥ 10–5 cm, obtain an expression
for the radii of different zones. What is its principal focal
length for l = 5 ¥ 10–5 cm?

[Ans: 0.3n  mm, 60 cm]

20.6 In a zone-plate, the second, fourth, sixth , . . . zones are
blackened; what would happen if instead the first, third,
fifth, etc., zones were blackened?

20.7 (a) A plane wave is incident normally on a straightedge
(see Fig. 20.24). Show that the field at an arbitrary
point P is given by

u(P) = 0
1

2

i
u

-

0 0
1 1

( ) ( )
2 2

C i S
Ï ¸È ˘ È ˘

- + -Ì ˝Í ˙ Í ˙
Î ˚ Î ˚Ó ˛

v v

where v0 = 
2

y
d

-
l

(b) Assume l0 = 5000 Å and d = 100 cm. Using Table 20.1,
write approximately the values of I/I0 at points O, P,
(y = 0.5 mm), Q (y = 1 mm), and R (y = –1 mm), where O
is at the edge of the geometrical shadow.

[Ans: (b) I/I0 ª 1.26, 0.24, 0.01]

O

P

Q

R

z

y

x

d

Straightedge

Fig. 20.24

20.8 Consider a straightedge being illuminated by a parallel beam
of light with l = 6 ¥ 10–5 cm. Calculate the positions of the
first two maxima and minima on a screen at a distance of
50 cm from the edge.

[Ans: the first two maxima occur at y ª 0.0473 and
0.0906 cm. The first two minima occur

at y ª 0.0724 and 0.1061 cm.]

20.9 In a straightedge diffraction pattern, one observes that the
most intense maximum occurs at a distance of 1 mm
from the edge of the geometrical shadow. Calculate the
wavelength of light, if the distance between the screen and
the straightedge is 300 cm.

[Ans: ª 4480 Å]

20.10 In a straightedge diffraction pattern, if the wavelength of
the light used is 6000 Å and if the distance between the
screen and the straightedge is 100 cm, calculate the distance
between the most intense maximum and the next maximum.
Find approximately the distance in centimeters inside the
geometrical shadow where I/I0 = 0.1.

[Ans: y ª 0.027 cm]
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20.11 Consider a plane wave falling normally on a narrow slit of
width 0.5 mm. If the wavelength of light is 6 ¥ 10–5 cm,
calculate the distance between the slit and the screen so
that the value of v1 is 0.5, 1.0, 1.5, and 5.0 (see Figs. 20.19
to 20.22). Discuss the transition to the Fraunhofer region.

20.12 Consider the Fresnel diffraction pattern produced by a
plane wave incident normally on a slit of width b. Assume
l = 5 ¥ 10–5 cm and d = 100 cm. Using Table 20.1,
approximately calculate the intensity values (for b = 0.1 cm)
at y = 0, ±0.05 cm, ±0.1 cm. Repeat the analysis for
b = 5 cm.

[Ans: At y = 0, I/I0 ª 1.60; at y = ±0.05 cm, I/I0 ª
0.356; at y = ±0.01 cm, I/I0 ª 0.01685].

20.13 In Sec. 20.9 we obtained the diffraction pattern of a cir-
cular aperture of radius a. Obtain the diffraction pattern
of an annular aperture bounded by circles of radii a1 and
a2 (> a1).

[Hint: The integration limits
of r in Eq. (103) must be a1 and a2.]

20.14 Consider a rectangular aperture of dimensions 0.2 mm ¥
0.3 mm. Obtain the positions of the first few maxima and
minima in the Fraunhofer diffraction pattern along
directions parallel to the length and breadth of the
rectangle. Assume l = 5 ¥ 10–5 cm and that the diffraction
pattern is produced at the focal plane of a lens of focal
length 20 cm.

[Ans: Along the x axis, minima will occur at x ª 0.05,
0.10, 0.15, . . . cm; along the y axis, minima will occur at

y ª 0.033, 0.067, 0.1, . . . cm]

20.15 The Fraunhofer diffraction pattern of a circular aperture
(of radius 0.5 mm) is observed on the focal plane of a con-
vex lens of focal length 20 cm. Calculate the radii of the
first and the second dark rings. Assume l = 5.5 ¥ 10–5 cm.

[Ans: 0.13 mm, 0.25 mm]

20.16 In Prob. 20.15, calculate the area of the patch (on focal
plane) which will contain 95% of the total energy.

[Ans: ª 5.55 ¥ 10–3 cm2]

20.17 (a) The output of a He-Ne laser (l = 6328 Å) can be
assumed to be Gaussian with plane phase front. For
w0 = 1 mm and w0 = 0.2 mm, calculate the beam diam-
eter at z = 20 m.

(b) Repeat the calculation for l = 5000 Å and interpret
the results physically.

[Ans: (a) 0.83 cm and 4.0 cm]

20.18 A Gaussian beam is coming out of a laser. Assume l = 6000 Å
and that at z = 0, the beam width is 1 mm and the phase
front is plane. After traversing 10 m through vacuum, what
will be (a) the beam width and (b) the radius of curvature
of the phase front?

[Ans: 2w ª 0.77 cm; R(z) ª 1017 cm]

b
P

1
3b + l

Fig. 20.25

20.19 A plane wave of intensity I0 is incident normally on a cir-
cular aperture as shown in Fig. 20.25. What will be the
intensity on the axial point P?

[Hint: You may use Eq. (25).]

20.20 Show that a phase variation of the type

exp
2 2( )

2 ( )

ik x y
ik z

R z

È ˘
+

+

Í ˙

Î ˚

represents a diverging spherical wave of radius R.

20.21 Consider a resonator consisting of a plane mirror and a con-
cave mirror of radius of curvature R (see Fig. 20.26).
Assume l = 1 mm, R = 100 cm, and the distance between
the two mirrors is 50 cm. Calculate the spot size of the
Gaussian beam.

[Ans: w0 ª 0.4 mm]

R

50 cm

Fig. 20.26

20.22 The output of a semiconductor laser can be approximately
described by a Gaussian function with two different widths
along the transverse (wT) and lateral (wL) directions as

y (x, y) = 
2 2

2 2exp
L T

x y
A

w w

Ê ˆ
- -Á ˜Ë ¯

where x and y, respectively, axes parallel and perpendicular
to the junction plane. Typically wT ª 0.5 mm and wL = 2 mm.
Discuss the far field of this beam (see Fig. 20.27).

x

y

Fig. 20.27
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21.1 INTRODUCTION

A photograph represents a two-dimensional recording of a
three-dimensional scene. What is recorded is the intensity
distribution that prevailed at the plane of the photograph
when it was exposed. The light-sensitive medium is sensitive
only to the intensity variations; hence while recording a
photograph, the phase distribution which prevailed at the
plane of the photograph is lost. Since only the intensity pat-
tern has been recorded, the three-dimensional character (e.g.,
parallax) of the object scene is lost. Thus one cannot change
the perspective of the image in the photograph by viewing it

The electron microscope was to produce the interference figure between the object beam and
the coherent background, that is to say the non-diffracted part of the illuminating beam. This
interference pattern I called a hologram, from the Greek word holos—the whole, because it
contained the whole information. The hologram was then reconstructed with light, in an optical
system which corrected the aberrations of the electron optics.

—Dennis Gabor in his Nobel lecture2, December 11, 1971

Chapter

Twenty-

One

Important Milestones
1948 Dennis Gabor discovered the principle of holography.

1960 The first successful operation of a laser device was achieved by Theodore Maiman.

1962 Off-axis technique of holography  was pioneered by Leith and Upatnieks.

1962 Denisyuk suggested the idea of three-dimensional holograms based on thick photoemulsion layers. His holograms

can be reconstructed in ordinary sunlight. These holograms are called Lippmann–Bragg holograms.

1964 Leith and Upatnieks pointed out that a multicolor image can be produced by a hologram recorded with three

suitably chosen wavelengths.

1969 Benton invented “rainbow holography” for display of holograms in white light. This was a vital step to make

holography suitable for display applications.

from a different angle, or one cannot refocus any unfocused
part of the image in the photograph. Holography is a method
invented by Dennis Gabor in 1948, in which one records not
only the amplitude but also the phase of the light wave; this
is done by using interferometric techniques. Because of
this, the image, produced by the technique of holography
has a true three-dimensional form. Thus, as with the object,
one can change one’s position and view a different perspec-
tive of the image, or one can focus at different distances.
The capability to produce images as true as the object
itself is responsible for the wide popularity gained by
holography.

1 A portion of this chapter is based on the unpublished lecture notes of Prof. K. Thyagarajan.
2 Dennis Gabor received the 1971 Nobel Prize in Physics for discovering the principles of holography; the original paper of Gabor
appeared in 1948 (see Ref. 1). Gabor’s Nobel lecture entitled “Holography, 1948–1971” is nonmathematical and full of beautiful
illustrations; it is reprinted in Ref. 2.
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1

gha80482_ch21_325-334.PMD 2/2/2009, 1:14 PM325



Optics326
�

(a)

(c)

(b)

(d)

Fig. 21.3 (a) An ordinary photograph of an object. (b) The hologram of the object produced by a method similar
to the one as shown in Fig. 21.1. (c) The reconstructed image as seen by an observer. (d) A magnified
view of a small portion of the hologram shown in (b) [Photographs courtesy Professor R. S. Sirohi].

z
y

x

Photographic
plate

Object

Reference
wave

Mirror

Object wave

Fig. 21.1 Recording of a hologram.

Real image

Observer

Hologram

Reconstruction
wave

Virtual
image

Fig. 21.2 Reconstruction process.

The basic technique in holography is the following: In the
recording of the hologram, one superimposes on the object
wave another wave called the reference wave, and the photo-
graphic plate is made to record the resulting interference
pattern (see Fig. 21.1). The reference wave is usually a plane
wave. This recorded interference pattern forms the hologram
and (as will be shown) contains information about not only
the amplitude but also the phase of the object wave. Unlike a
photograph, a hologram has little resemblance to the object;
in fact, information about the object is coded into the holo-
gram. To view the image, we again illuminate the hologram
with another wave, called the reconstruction wave (which in

most cases is identical to the reference wave used during the
formation of the hologram); this process is termed recon-
struction  (see Fig. 21.2). The reconstruction process leads,
in general, to a virtual and a real image of the object scene.
The virtual image has all the characteristics of the object,
such as parallax. Thus one can move the position of the eye
and look behind the objects, or one can focus at different
distances. The real image can be photographed without the
aid of lenses just by placing a light-sensitive medium at the
position where the real image is formed. Figure 21.3(a), (b),
and (c) represents the object, its hologram, and the recon-
structed image, respectively.
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21.2 THEORY

If the object is a point scatterer, then the object wave is just

( / )A r  cos (kr – wt + f), where r represents the distance of
the point of observation from the point scatterer and A repre-
sents a constant; k = 2p/l. Any general object can be
thought of as being made up of a large number of points, and
the composite wave reflected by the object is the vectorial
sum of these. The fundamental problem in holography is the
recording of this object wave, in particular, the phase distri-
bution associated with it.

Let us consider the recording process. Let

O(x,y) = a(x,y) cos [f(x, y) – wt] (1)

represents the object wave (which, as mentioned earlier, is
due to the superposition of waves from point scatterers on
the object) in the plane of the photographic plate which is
assumed to be z = 0 (see Fig. 21.1). We consider a plane ref-
erence wave and assume, for simplicity, that it is propagating
in the xz plane inclined at an angle q with the z direction (see
Fig. 21.1). Thus, the field associated with this plane wave is
given by

r(x, y, z) = A cos (k i r – wt)

= A cos (kx sin q + kz cos q – wt) (2)

If r(x, y) represents the field at the plane z = 0 due to this
reference wave, then one can see that

r(x, y) = A cos (kx sin q – wt)

= A cos (2pax – wt) (3)

where a = sin q/l is the spatial frequency (see Sec. 19.9). The
above equation represents the field due to a plane wave in-
clined at an angle q with the z axis, and as can be seen, the
phase varies linearly with x. Notice that there is no y depen-
dence because the plane wave has been assumed to have its
propagation vector in the xz plane. Thus the total field at the
photographic plate (which is coincident with the plane z = 0)
is given by

u(x, y, t) = a(x, y) cos [f(x, y) – wt] + A cos (2pax – wt)

(4)

The photographic plate responds only to the intensity
which is proportional to the time average of [u(x, y, t)]2.
Thus, the intensity pattern recorded by the photographic
plate is

I(x, y) = ·u2(x, y, t)Ò

= ·{a(x, y) cos [f(x, y) – wt]

+ A cos(2pa x – w t)}2
Ò (5)

where the angular brackets denote time averaging (see
Sec. 17.3). Thus

I(x, y) = a2(x, y) ·cos2 [f(x, y) – wt]Ò

+ A2
·cos2 (2pax – wt)Ò

+ 2a(x, y) A·cos [f(x, y) – wt] cos (2p ax – wt)Ò (6)
Since

·cos2 [f (x, y) – wt] Ò = 1
2  = ·cos2 (2pax – wt)Ò (7)

and

·cos [f (x, y) – wt] cos (2pax – wt)Ò

= 1
2

·cos [f(x, y) + 2pax – 2wt]Ò

  + 1
2

·cos [f (x, y) – 2pax]Ò

= 1
2

cos [f (x, y) – 2pax] (8)

Eq. (6) becomes

I (x, y) = 1
2 a2(x, y) + 1

2 A2

+ Aa(x, y) cos [f(x, y) – 2pax] (9)

From the above relation it is obvious that the phase informa-
tion of the object wave, which is contained in f(x, y), is
recorded in the intensity pattern.

When the photographic plate (which has recorded the
above intensity pattern) is developed, one obtains a hologram
[see Fig. 21.3(b) and (d)]. The transmittance of the hologram,
i.e., the ratio of the transmitted field to the incident field,
depends on I(x, y). By a suitable developing process one can
obtain a condition under which the amplitude transmittance
is linearly related to I(x, y). Thus, in such a case if R(x, y)
represents the field of the reconstruction wave at the hologram
plane, then the transmitted field is given by

v(x, y) = KR(x, y) I(x, y)

= K 2 21 1
2 2( , ) ( , )a x y A R x yÈ ˘+Î ˚

 + KAa(x, y)R(x, y) cos [f(x, y) – 2pax] (10)
where K is a constant. We consider the case when the recon-
struction wave is identical to the reference wave r(x, y) (see
Fig. 21.2). In such a case we obtain (omitting the constant K)

v(x, y) = 2 21 1
2 2( , )a x y AÈ ˘+Î ˚ A cos (2pax – wt)

  + A2a(x, y) cos (2pax – wt) cos [f(x, y) – 2pax]

= 2 21 1
2 2( , )a x y AÈ ˘

+

Î ˚

A cos (2pax – wt)

  + 1
2

A2a(x, y) cos [f (x, y) – w t]

  + 1
2

A2a(x, y) cos [4pax – f (x, y) – w t] (11)

Equation (11) gives the transmitted field in the plane z = 0.
We consider each of the three terms separately. The first term
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is nothing but the reconstruction wave itself whose ampli-
tude is modulated due to the presence of the term a2(x, y).
This part of the total field is traveling in the direction of the
reconstructed wave. The second term is identical (within a
constant term) to the RHS of Eq. (1) and hence represents
the original object wave; this gives rise to a virtual image.
Thus the effect of viewing this wave is the same as viewing
the object itself. The reconstructed object wave is traveling
in the same direction as the original object wave.

To study the last term, we first observe that in addition to the
term 4pax, the phase term f(x, y) carries a negative sign. The
negative sign represents the fact that the wave has a
 curvature opposite to that of the object wave. Thus if the
object wave is a diverging spherical wave, then the last term
represents a converging spherical wave. Thus in contrast to the
second term, this wave forms a real image of the object which
can be photographed by simply placing a film (see Fig. 21.2).

To determine the effect of the term 4pax, we consider the
case when the object wave is also a plane wave traveling
along the z axis. For such a wave f(x, y) = 0, and the last
term  represents a plane wave propagating along a direction
q¢ = sin–1 (2 sin q). Thus the effect of the term 4pax is to
rotate the direction of the wave. Hence the last term on the
RHS of Eq. (11) represents the conjugate of the object wave
propagating along a direction different from that of the re-
construction wave and the object wave, which forms a real
image of the object. Since the waves represented by the
three terms are propagating along different directions, they
separate after traversing a distance and enable the observer
to view the virtual image without any disturbance.

A very interesting property possessed by holograms
is that even if the hologram is broken up into different frag-
ments, each separate fragment is capable of producing a
complete virtual image of the object.3 This property can be
understood from the fact that for a diffusely reflecting ob-
ject, each point of the object illuminates the complete
hologram and consequently each point in the hologram re-
ceives waves from the complete object. But the resolution in
the image decreases as the size of the fragment decreases.
For nondiffusely reflecting objects or for transparencies, one
makes use of an additional diffusing screen through which
the object is illuminated.

Example 21.1 As an explicit example of the formation and
reconstruction of a hologram, we consider the simple case when
both the object wave and the reference wave are plane waves [see

3 This property of a hologram exists only when the object is a diffuse scatterer such that the wave from each scattering point of the
object reaches all parts of the hologram plate. There are cases where this does not hold good, for example, when a hologram of a
transparency is to be recorded.

y

x

z

z = 0

Photographic
plate

(a)

(b)

Reference
wave

Object wave

Reconstruction
wave Hologram

Fig. 21.4 (a) Formation of a hologram when both the ob-
ject wave and the reference wave are plane
waves. (b) Reconstruction of the hologram with
another plane wave.

Fig. 21.4(a)]—a plane object wave corresponds to a single object
point lying far away from the hologram. (a) Show that for such a
case the hologram consists of a series of Young’s interference
fringes having an intensity distribution of the cos2 type. (see also
Fig. 14.11). (b) If we reconstruct the hologram with another plane
wave [see Fig. 21.4(b)], then show that the transmitted light con-
sists of a zeroth-order plane wave and two first-order plane
waves; the two first-order waves correspond to the primary and
conjugate waves.

Solution: (a) Consider a plane wave with its propagation vector
lying in the xz plane and making an angle q1 with the z axis. For such
a wave, the field is of the form

A1cos[kx sinq1 + kzcosq1 – w t]

If the photographic film is assumed to coincide with the plane z = 0,
then the field distribution on this plane is given by

A1 cos (kx sin q1 – w t)

Similarly the field (on the plane of the film) due to a plane wave making
an angle q2 with the z axis, is given by

A2 cos (kx sin q2 – wt)
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The resultant intensity distribution is proportional to

· [A1 cos (kx sin q1 – wt) + A2 cos (kx sin q2 – wt)]2
Ò

= 
1

2
A1

2 + 1
2

A2
2 + A1A2 cos [kx (sin q1 – sin q2)]

= 
2

1 2 1 2 1 2
1

( ) 2 cos (sin sin )
2 2

kx
A A A A2 È ˘

- + q - qÍ ˙
Î ˚

For A1 = A2, the above expression simplifies to

2 2
1 22 cos (sin sin )

2

kx
A

È ˘
q - qÍ ˙

Î ˚

showing that the intensity remains constant along lines parallel to the
y axis with fringe spacing depending on the values of q1 and q2. Fur-
ther, the intensity distribution is of the cos2 type (cf. Fig. 14.11).(b)
Before we calculate the transmitted field of the hologram, we first con-
sider a narrow slit of width b being illuminated by a plane wave (see
Fig. 21.5). Consider an element ds at a distance s from the center of the
slit. Then the amplitude at a far away point P due to this element is
proportional to sin [k(r – s sin q) – wt] ds; here k = 2p/l and q is
defined in Fig. 21.5. Thus the total field in the direction q is given by

E ª 
/ 2

/ 2

sin [ ( sin ) ]
b

b

A k r s t ds
+

-

- q - wÚ
(12)

where A is a constant. The above integral can also be written as

E = 
/ 2

/ 2

[sin ( ) cos ( sin )
b

b

A k r t ks
+

-

- w qÚ

– cos (kr – w t) sin (ks sin q)] ds

= 2A sin (kr – w t) 
sin[( /2)sin ]

sin

kb

k

q

q

where the second integral is zero because the integrand is an odd
function of s. Thus

E = Ab sin (kr – wt) 
sin b

b
(13)

where

b = 
1

2
kb sin q = 

sinbp q

l

which is of the same form as obtained in Sec. 18.2. In the present
case, the hologram has a cos2

as type of variation in transmittance,
and hence the transmitted field will be of the form

E =
/ 2

2

/ 2

cos
b

b

A s
+

-

aÚ sin [kr – ks(sinq – sinqi) – wt] ds (14)

where qi represents the angle of incidence of the illuminating plane
wave. Thus

E = 
/ 2

/ 2

1
(1 cos 2 )

2

b

b

s
+

-

+ aÚ

  ¥ {sin (kr – wt) cos [ks (sin q – sin qi)]
  – cos (kr – wt) sin [ks (sin q – sin qi)]} ds

= 
/ 2

/ 2

1
sin ( – ) cos [ (sin – sin )]

2

b

i

b

A kr t ks ds
+

-

È
Íw q q
ÍÎ
Ú

  +
/ 2

/ 2

1
cos

2

b

b

+

-

Ú [ks(sin q – sin qi + 2a)] ds

  +
/ 2

/ 2

1
cos [ (sin sin 2 )]

2

b

i

b

k s ds
+

-

˘
˙q - q - a
˙̊

Ú (15)

The above integrations can easily be carried out. Thus, for example,

cos

/

/

−

+

z

b

b

2

2

[ks (sin q – sin qi + 2a )]ds

= 
[ ]sin ( /2) (sin sin 2 )

( /2) (sin sin 2 )

i

i

b k

k

q - q + a

q - q + a
(16)

which becomes more and more sharply peaked around sin q =
sin qi – 2a as b Æ •, i.e., as the size of the hologram becomes
larger. Thus the three integrals in Eq. (15) in the limit of a large
value of b give rise to three plane waves propagating along sin q =
sin qi, sin q = sin qi – 2a, and sin q = sin qi + 2a, which represent
the zeroth-order and two first-order waves.

Example 21.2 Consider the formation of a hologram with a
point object and a plane reference wave [see Fig. 14.13(a)]. Choose the
z axis to be along the normal from the point source to the plane of the
photograph, assumed to be coincident with the plane z = 0. For sim-
plicity assume the reference wave to fall normally on the photographic
plate. Obtain the interference pattern recorded by the hologram.

P

r

s
b

θ

Fig. 21.5 A plane wave incident on a narrow slit of
width b.
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Solution: Let the point source be situated at a distance d from
the photographic plate. The field at any point P(x, y, 0) on the
photographic plate, due to waves emanating from the point object,
is given by

O(x, y, z = 0, t) = A
r

cos (kr –wt) (17)

where r = (x2 + y2 + d2) ½ and A represents a constant. A plane wave
traveling along a direction parallel to the z axis is given by

R (x, y, z, t) = B cos (kz – wt) (18)

Hence, the field due to the reference wave at the plane of the pho-
tographic plate (z = 0) is

R (x, y, z = 0, t) = B cos wt (19)

Thus, the total field at the plane of the photographic plate is

T(x, y, t) = O(x, y, z = 0, t) + R(x, y, z = 0, t)

= 
A

r
cos (kr – wt) + B cos wt (20)

The recorded intensity pattern is

I(x, y) = · | T(x, y, t) |2 Ò

= 
2

cos ( – ) + cos
A

kr t B t
r

w w (21)

where, as before, angular brackets denote time averaging. Carrying
out the above time averaging, we get

I(x, y) = 
2 2

2 + + cos
22

A B AB
kr

rr
(22)

If we assume that d >> x, y (which is valid in most practical cases),
we can write

r = (x2 + y2 + d2)½ ª d + 
x y

d

2 2

2
+

(23)

Thus

I(x, y) = 
2 2

2 + +
22

A B AB

rd
2 2cos ( )

2

k
k d x y

d

È ˘
+ +Í ˙

Î ˚
(24)

The resultant fringe pattern is circular and centered at the origin
(see Example 14.7). The hologram thus formed is essentially a zone
plate with the transmittance varying sinusoidally in contrast to the
Fresnel zone plate [see Fig. 14.13(b) and Sec. 20.3].

21.3 REQUIREMENTS

Since holography is essentially an interference phenomenon,
certain coherence requirements have to be met. In Chap. 17
we introduced the notion of coherence length. Thus, if stable
interference fringes are to be formed (so that they are record-
able), the maximum path difference between the object wave
and the reference wave should not exceed the coherence

length. Further, the spatial coherence is important so that the
waves scattered from different regions of the object could
interfere with the reference beam.

During reconstruction, the reconstructed image depends
on both the wavelength and the position of the reconstruct-
ing source. Hence if the resolution in the reconstructed image
has to be good, the source must not be broad and must be
emitting a narrow band of wavelengths. It may be worthwhile
to mention here that the reconstruction process has associ-
ated with it aberrations similar to those in the images formed
by lenses. If the reconstruction source is of the same wave-
length and is situated at the same relative position with respect
to the hologram as the reference source, then the reconstructed
image does not suffer from any aberrations.

Another critical requirement in making holograms is stabil-
ity of the recording arrangement. Thus, the film, the object, and
any mirrors used in producing the reference beam must be mo-
tionless with respect to one another during exposure. One more
requirement which is not so obvious (but is a necessity) is the
resolution of the film. Two plane waves making angles +q and –q

with the axis produce an interference pattern with spacing

d = /(2sin )l q . Assuming q = 15° and l = 6328 Å (He-Ne laser),
one obtains d = 1.222 ¥ 10–3 mm; thus the spatial frequency is
818 lines/mm. Thus the photographic plate should be able to
record fringes as close as 0.1222 ¥ 10–4 mm apart. This requires
special kinds of material which tend to be exceedingly slow,
thus taking the stability requirements even further. Some of
the holographic materials are 649F Kodak or 10E 75 or 8E 75
Agfa–Gaevert films and plates.

21.4 SOME APPLICATIONS

The principle of holography finds applications in many
diverse fields.4 The ability to record information about the
depth finds application in studying transient microscopic
events. Thus, if one has to study some transient phenomenon
which occurs in a certain volume, then by using ordinary
microscopic techniques it becomes difficult to first locate the
position and make observations. If a hologram is recorded of
the scene, then the event gets frozen into the hologram and
one can focus through the depth of the reconstructed image
to study the phenomenon at leisure.

One of the most promising applications of holography lies
in the field of interferometry. The ability of the holographic
process to release the object wave when reconstructed with
a reconstruction wave allows us to perform interference be-
tween different waves which exist at different times. Thus, in

4 See, e.g., Refs. 3 to 12.
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the technique called double-exposure holographic interfer-
ometry, the photographic plate is first partially exposed to
the object wave and the reference wave.5 Then the object is
stressed, and the photographic plate is again exposed along
with the same reference wave. The photographic plate after
development forms the hologram. When this hologram is illu-
minated with a reconstruction wave, two object waves
emerge from the hologram; one corresponds to the un-
stressed object and the other to the stressed object. Since
the object waves themselves have been reconstructed, they
interfere and produce interference fringes. These interference
fringes are characteristic of the strain suffered by the body.
A quantitative study of the fringe pattern produced in the
body gives the distribution of strain in the object.

To understand the formation of the fringe pattern, we as-
sume that the deformation of the object has been such as to
alter only the phase distribution. Thus, if

O(x, y, t) = A(x, y) cos [f(x, y) – wt] (25)

represents the object wave (in the hologram plane) when the
object is unstressed [see Fig. 21.6(a)] and if O¢(x, y, t)

represents the object wave when the object is stressed [see
Fig. 21.6(b)] then we may write

O¢(x, y, t) = A(x, y) cos [f¢(x, y) – wt] (26)
where the phase distribution has been assumed to change
from f(x, y) to f¢(x, y). On reconstruction, each of the above
two object waves emerges from the hologram, and what is
observed is the intensity pattern due to interference of the
two waves, given by6

I(x, y) = ·{A(x, y) cos [f(x, y) – wt]

+ A(x, y) cos [f¢ (x, y) – wt]}2
Ò

= A2(x, y) + A2(x, y) cos [f¢(x, y) – f(x, y)] (27)

Thus, whenever

f¢(x, y) – f(x, y) = 2mp  m = 0, 1, 2, . . . (28)

the two waves interfere constructively, and whenever

f¢(x, y) – f(x, y) = (2m + 1)
2

p
 m = 0, 1, 2,  . . . (29)

the two waves interfere destructively. Thus, depending on
[f¢(x, y) – f(x, y)], one obtains, on reconstruction, the object
superimposed with bright and dark fringes (see Fig. 21.7).

We will consider here a simple application of the above
technique in the determination of Young’s modulus of a ma-
terial. If we have a bar fixed at one end and loaded at the
other and if it results in a displacement d of the end of the bar,
then we can show that7

d = 
3

3

WL

YI
(30)

where W is the load, L is the length of the bar, I is the moment of
inertia of cross section which for a rectangular bar of width a and
thickness b is given by I = ab3/12, and Y represents Young’s
modulus of the material of the rod. Thus if we could determine d
for a given load, then Y can be determined from Eq. (30).

We will first determine an expression for f¢ – f. In
Fig. 21.6 we have shown the undisplaced and displaced posi-
tions of the cantilever illuminated by a laser light along a
direction making an angle q1 with the z axis. We observe the
cantilever along a direction making an angle q2 with the
z axis. The phase change when the cantilever undergoes a
displacement d as shown in Fig. 21.6(b) is

f¢ – f = 
2p

l
(dcosq1 + dcosq2)

= 
2p

l
d (cosq1 + cosq2) (31)

5 This example was provided to the author by Prof. R.S. Sirohi.
6 The reconstruction process produces other wave components also, but as was observed earlier, these components travel along
different directions. Here we are concerned only with the object waves.

7 See, e.g., Ref. 13, p.75.

θ2
θ1

Cantilever

Cantilever

Mirror

Mirror

(a)

(b)

Photographic
plate

Photographic
plate

W

Fig. 21.6 (a) Recording of the unstressed object wave.
(b) Recording of the stressed object wave on the
same emulsion to produce the doubly exposed
hologram.
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If there are N fringes over the length L of the cantilever, then
since a phase difference of 2p corresponds to one fringe [see
Eq. (28)] we can write

2p

l
d (cos q1 + cosq2) = N(2p)

or

d = 
1 2cos cos

Nl

q + q

Thus by measuring N, q1, and q2, and knowing l, d can be
determined. Figure 21.7 shows the reconstruction of a double-
exposed hologram of an aluminum strip of width 4 cm, thickness
0.2 cm, and length 12 cm. From the number of fringes formed,
one can calculate Young’s modulus (see Prob. 21.3).

Summary

� The basic technique in holography is the following: In the
recording of the hologram, one superimposes on the object
wave another wave called the reference wave, and the
photographic plate is made to record the resulting interference
pattern. The reference wave is usually a plane wave. This
recorded interference pattern forms the hologram and contains
information about not only the amplitude but also the phase
of the object wave. To view the image, we again illuminate the
hologram with another wave, called the reconstruction wave.
The reconstruction process leads, in general, to a virtual and a
real image of the object scene. The virtual image has all the
characteristics of the object such as parallax.

� If the object wave and the reference wave are plane waves, the
hologram consists of a series of Young’s interference fringes.

� For a point object and a plane reference wave, the hologram
is very similar to a zone plate with the transmittance varying
sinusoidally in contrast to the Fresnel zone plate.

Problems

21.1 Consider the reconstruction of the hologram as formed in the
configuration of Example 21.2, by a plane wave traveling
along a direction parallel to the z axis. Show the formation of
a virtual and a real image.

21.2 In continuation of Example 21.2, calculate the interference
pattern when the incident plane wave makes an angle q
with the z axis (see Fig. 14. 13). Assume B ª A/d.

2 2 2 24 cos – sin + ( + )
2

k
B k d kx x y

d

È ˘È ˘
qÍ ˙Í ˙

Î ˚Î ˚
Ans :

21.3 Figure 21.7 corresponds to the reconstruction of a doubly
exposed hologram, the objects corresponding to the
unstrained and strained positions of an aluminum bar of
width 4 cm, thickness 0.2 cm, and length 12 cm. If the
strained position corresponds to a load of 1 g force applied
at the end of the bar, calculate Young’s modulus of alumi-
num. Assume q1 ª q2 ª 0; assume l = 6328 Å.

[Hint: N represents the number of fringes
produced over the length of the cantilever.]

[Ans: 0.7 ¥ 10 11 N m–2]

Fig. 21.7 Interference fringes produced in the measurement of Young’s modulus using double-exposure

interferometry (Photograph courtesy: Prof. R. S. Sirohi).
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PART  5
ElectromagneticElectromagneticElectromagneticElectromagneticElectromagnetic

Character of LightCharacter of LightCharacter of LightCharacter of LightCharacter of Light
This part consists of three chapters discussing various aspects of the electromagnetic
character of light waves. In Chap. 22, the generation and analysis of various forms of
polarized light are discussed followed by a detailed analysis of propagation of electro-
magnetic waves in anisotropic media including first-principle derivations of wave and ray
velocities. Applications such as optical activity and Faraday rotation are also discussed.
Chapter 23 is a bit mathematical—starting with Maxwell’s equations, various states of
polarization are discussed; the wave equation is also derived that led Maxwell to predict
the existence of electromagnetic waves. Reflection and refraction of electromagnetic waves
by a dielectric interface are discussed in Chap. 24. The results directly explain phenom-
ena such as Brewster’s law, total internal reflection, and evanescent waves, and Fabry–
Perot transmission resonances.
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22.1 INTRODUCTION

If we move one end of a string up and down, then a
transverse wave is generated [see Fig. 22.1(a)]. Each point of
the string executes a sinusoidal oscillation in a straight line
(along the x axis), and the wave is, therefore, known as a lin-
early polarized wave. It is also known as a plane polarized wave
because the string is always confined to the xz plane. The dis-
placement for such a wave can be written in the form

1( , ) cos ( )

( , ) 0

x z t a kz t

y z t

= - w + f

=

(1)

where a represents the amplitude of the wave and f1 is
the phase constant to be determined from the initial condi-
tion; the y coordinate of the displacement is always zero. At
any instant the displacement will be a cosine curve as shown
in Fig. 22.1(a). Further, an arbitrary point z = z0 will execute
simple harmonic motion of amplitude a. The string can also

As to the other emanation which should produce the irregular refraction, I wished to try what
Elliptical waves, or rather spheroidal waves, would do; and these I suppose would spread differ-
ently both in the ethereal matter diffused throughout the crystal and in the particles of which
it is composed . . .

—Christiaan Huygens

POLARIZATION AND

DOUBLE REFRACTION

Chapter

Twenty-

Two

Important Milestones
1669 Erasmus Bartholinus discovered double refraction in calcite.

1678 In the wave theory of light communicated to the Academie des Sciences in Paris, Christiaan Huygens gave

the theory of double refraction in calcite, discovered by Bartholinus.

1809 Malus showed polarization of light by reflection.

1811 David Brewster stated Brewster’s law.

1828 William Nicol invented the prism which produced polarized light—this prism came to be known as the Nicol prism.

1929 Edwin Land, an American scientist and inventor, patented Polaroid, which is the name of a type of synthetic

plastic sheet used to polarize light.

be made to vibrate in the yz plane [see Fig. 22.1(b)] for which
the displacement is given by

and 2( , ) = cos ( )

( , ) = 0

y z t a kz t

x z t

- w + f

(2)

In general, the string can be made to vibrate in any plane
containing the z axis. If one rotates the end of the string on
the circumference of a circle, then each point of the string
will move in a circular path as shown in Fig. 22.2; such a
wave is known as a circularly polarized wave, and the corre-
sponding displacement is given by

( , ) = cos ( )

( , ) = sin ( )

x z t a kz t

y z t a kz t

- w + f

- w + f

(3)

so that x2 + y2 is a constant (= a2).
We next consider a long narrow slit placed in the path of the

string as shown in Fig. 22.3(a). If the length of the slit is along the
direction of the displacement, then the entire amplitude will be
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Fig. 22.2 (a) The displacement corresponding to a circularly
polarized wave—all points on the string are at
the same distance from the z axis. (b) Each point on
the string rotates on the circumference of the
circle.

(a)

(b)

Fig. 22.3 If a linearly polarized transverse wave (propa-
gating on a string) is incident on a long narrow
slit, then the slit will allow only the component
of the displacement, which is along the length of
the slit, to pass through.

transmitted as shown in Fig. 22.3(a). On the other hand, if the
slit is at right angles to the direction of the displacement, then
almost nothing will be transmitted to the other side of the slit
[see Fig. 22.3(b)]. This is so because the slit allows only the
component of the displacement, which is along the length of
the slit, to pass through. However, if a longitudinal wave were
propagating through the string, then the amplitude of the trans-
mitted wave would have been the same for all orientations of
the slit. Thus, the change in amplitude of the transmitted wave
with the orientation of the slit is due to the transverse character
of the wave. Indeed, an experiment which is, in principle, very
similar to the experiment discussed above proves the transverse
character of light waves. However, before we discuss the experi-
ment with light waves, we must define an unpolarized wave.

We once again consider transverse waves generated at
one end of a string. If the plane of vibration is changed in a
random manner in very short intervals of time, then such a

x

y

z

x-polarized wave

(a)

x

y

z

y-polarized wave

(b)

Fig. 22.1 (a) An x-polarized wave on a string with the dis-
placement confined to the xz plane. (b) A
y-polarized wave on a string with the displace-
ment confined to the yz plane.
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wave is known as an unpolarized wave.1 If an unpolarized
wave falls on a slit S1 (see Fig. 22.4), then the displacement
associated with the transmitted wave is along the length of
the slit and a rotation of the slit does not affect the amplitude
of the transmitted wave, although the plane of polarization of
transmitted wave depends on the orientation of the slit.
Thus, the transmitted wave is linearly polarized, and slit S1 is
said to act as a polarizer. If this polarized beam falls on an-
other slit S2 (see Fig. 22.4), then by rotating slit S2 we obtain
a variation of the transmitted amplitude as discussed earlier;
the second slit is said to act as an analyzer.

The transverse character of light waves was known in the
early years of the nineteenth century; however, the nature of
the displacement associated with a light wave was known
only after Maxwell put forward his famous electromagnetic
theory. We will discuss the basic electromagnetic theory in
Chap. 23 where we will show that associated with a plane elec-
tromagnetic wave are an electric field E and a magnetic field B
which are at right angles to each other. For a linearly polarized
wave propagating in the z direction, the electric and magnetic
fields can be written in the form (see Fig. 22.5)

Ex = E0 cos (kz – wt) Ey = 0 Ez = 0 (4)
and

Bx = 0  By = B0 cos (kz – wt) Bz = 0 (5)

where

k = 
w

v
 = w em (6)

and

v = 1

em

(7)

represents the velocity of the waves, and e and m are the
dielectric permittivity and the magnetic permeability of the
medium. Since Ez = 0 and Bz = 0, the wave is transverse.
Equations (4) and (5) also show that E and B are at right
angles to each other and both the vectors are at right angles
to the direction of propagation. In fact, the direction of
propagation is along the vector E ¥ B. The electromagnetic
theory also tells us that [see Eq. (33) of Chap. 23]:

B0 = 
1

v
 E0 (8)

Let us next consider an ordinary light beam falling on a
Polaroid P1 as shown in Fig. 22.6(a); a Polaroid is a plastic-
like material used for producing polarized light—it will be
discussed in detail in the next section. In general, an ordinary
light beam (such as the one coming from a sodium lamp or
from the sun) is unpolarized; i.e., the electric vector (in a
plane transverse to the direction of propagation) keeps
changing its direction in a random manner [see Fig. 22.7(a)].
When such a beam is incident on a Polaroid, the emergent
light is linearly polarized with its electric vector oscillating in
a particular direction as shown in Fig. 22.6(a) [see also
Fig. 22.7 (b)]. The direction of the electric vector of the emer-
gent beam will depend on the orientation of the Polaroid. As
will be shown in Sec. 22.2, the component of E along a par-
ticular direction gets absorbed by the Polaroid, and the
component at right angles to it passes through. The direc-
tion of the electric vector of the emergent wave is usually
called the pass axis of the Polaroid. Returning to Fig. 22.6(a),

1 By a short interval, we imply times which are short compared to the detection time; however, for the wave to be characterized with
a certain frequency n, this time has to be much greater than 1/n, so that in the short interval it executes a large number of oscillations
(see also Sec. 17.1).

x

z

y
Linearly polarized

light

B

E

Fig. 22.5 An x-polarized electromagnetic wave propagating
in the z direction.

Linearly
polarized wave

No wave

Unpolarized
wave S1

S2

Fig. 22.4 If an unpolarized wave propagating on a string
is incident on a long narrow slit S

1
, then the

transmitted beam is linearly polarized and its
amplitude does not depend on the orientation of
S

1
. If this polarized wave is allowed to pass

through another slit S
2
, then the intensity of the

emerging wave depends on the relative orienta-
tion of S

2
 with respect to S

1
.
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if the position of the eye is as shown in the figure, then one
will observe no variation of intensity if the Polaroid is rotated
about the z axis. However, if we place another Polaroid P2

[see Fig. 22.6(b)], then by rotating the Polaroid P2 (about the
z axis) we will observe variation of intensity, when the two
Polaroids are parallel, maximum light will pass through the
second Polaroid [see Fig. 22.6 (b)] and when the two

Polaroids are perpendicular to each other, no light will pass
through the second Polaroid [see Fig. 22.6 (c)]. A similar
phenomenon will also be observed if instead of rotating the
Polaroid P2 we rotate P1. On the basis of our earlier discus-
sions, this phenomenon proves the transverse character of
light; i.e., the displacement associated with a light wave is at
right angles to the direction of propagation of the wave. The
Polaroid P1 acts as a polarizer, and the transmitted beam is
linearly polarized. The second Polaroid acts as an analyzer.

22.2 PRODUCTION OF

POLARIZED LIGHT

In this section we will discuss various methods for the pro-
duction of linearly polarized light waves.

22.2.1 The Wire Grid Polarizer

and the Polaroid

The physics behind the working of the wire grid polarizer is
probably the easiest to understand. It essentially consists of
a large number of thin copper wires placed parallel to one
another as shown in Fig. 22.8. When an unpolarized electro-
magnetic wave is incident on it, then the component of the
electric vector along the length of the wire is absorbed. This
is so because the electric field does work on the electrons
inside the thin wires, and the energy associated with the elec-
tric field is lost in the Joule heating of the wires. On the other
hand, since the wires are assumed to be very thin, the com-
ponent of the electric vector along the x axis passes through
without much attenuation. Thus the emergent wave is lin-
early polarized with the electric vector along the x axis.
However, for the system to be effective (i.e., for the Ey com-
ponent to be almost completely attenuated) the spacing
between the wires should be <~ l. Clearly, the fabrication of
such a polarizer for a 3 cm microwave is relatively easy
because the spacing has to be <~ 3 cm. On the other hand,

Unpolarized
light

Unpolarized light

Unpolarized
light

Linearly
polarized

light

Linearly polarized light

P1

P1

P2

P1

P2

z

z

Eye

Eye

(a)

(b)

(c)

Fig. 22.6 If an ordinary light beam is allowed to fall on a
Polaroid, then the emerging beam will be lin-
early polarized; and if we place another
Polaroid P

2
, then the intensity of the transmit-

ted light will depend on the relative orientation
of P

2
 with respect to P

1
.

E x

y

B¥

x

z
y

(a) (b)

Fig. 22.7 (a) For an unpolarized wave propagating in the
+z direction, the electric vector (which lies in
the xy plane) continues to change its direction
in a random manner. (b) For a linearly polar-
ized wave, the electric (or the magnetic) vector
oscillates along a particular direction.

x

y

z Incident
unpolarized

wave

Emergent
polarized

wave

E
Æ

Fig. 22.8 The wire grid polarizer.

gha80482_ch22_335-374.PMD 1/28/2009, 3:00 PM340



Polarization and Double Refraction 341
�

since the light waves are associated with a very small wave-
length (~5 ¥ 10–5 cm), the fabrication of a polarizer in which
the wires are placed at distances <~ 5 ¥ 10–5 cm is extremely
difficult. Nevertheless, Bird and Parrish did succeed in putting
about 30,000 wires in about 1 in; for more details see Ref. 1.
The details of the procedure for making this wire grating are
also discussed in this book. The original work of Bird and
Parrish was published in 1950 (see Ref. 2).

As already pointed out, it is extremely difficult to fabricate
a wire grid polarizer which would be effective for visible light.
However, instead of long, thin wires, one may employ long
chain polymer molecules that contain atoms (such as iodine)
which provide high conductivity along the length of the
chain. These long chain molecules are aligned so that they
are almost parallel to one another. Because of the high con-
ductivity provided by the iodine atoms, the electric field
parallel to the molecules gets absorbed. A sheet containing
such long chain polymer molecules (which are aligned paral-
lel to one another) is known as a Polaroid. When a light
beam is incident on such a Polaroid, the molecules (aligned
parallel to one another) absorb the component of electric
field which is parallel to the direction of alignment because
of the high conductivity provided by the iodine atoms; the
component perpendicular to it passes through. Thus the
aligned conducting molecules act similar to the wires in the
wire grid polarizer, and since the spacing between two adja-
cent long chain molecules is small compared to the optical
wavelength, the Polaroid is usually very effective in produc-
ing linearly polarized light. The aligning of the long chain
conducting molecules is not very difficult; experimental
details of producing the polarizer are given in Ref. 1.

22.2.2 Polarization by Reflection

Let us consider the incidence of a plane wave on a dielectric.
We assume that the electric vector associated with the inci-
dent wave lies in the plane of incidence as shown in
Fig. 22.9. It will be shown in Sec. 24.2 that if the angle of in-
cidence q is such that

q = qp = tan–1 2

1

n

n

Ê ˆ
Á ˜Ë ¯

(9)

then the reflection coefficient is zero. Thus, if an unpolarized
beam is incident at this angle, then the reflected beam will be
linearly polarized with its electric vector perpendicular to the
plane of incidence (see Fig. 22.10). Equation (9) is referred to
as Brewster’s law, and at this angle of incidence, the reflected
and the transmitted rays are at right angles to one another;
the angle qp is known as the polarizing angle or the Brewster
angle.

For the air-glass interface, n1 = 1 and n2 ª 1.5, giving
qp ª 570. The transmitted beam is partially polarized, and if one
uses a large number of reflecting surfaces, one obtains an al-
most plane polarized transmitted beam (see Fig. 22.10).

For the air-water interface, n1 ª 1 and n2 ª 1.33 and the
polarizing angle qp ª 53°. Thus if the sunlight is incident on
the sea at an angle close to the polarizing angle, then the
reflected light will be almost polarized. If we now view through
a rotating Polaroid, the sea will appear more transparent when
the Polaroid blocks the reflected light. Figure 22.11 shows sun-
light incident on a water surface at an angle close to the
polarizing angle so that the reflected light is almost polarized.
If the Polaroid allows the (almost polarized) reflected beam

θp
No reflected wave

n1

n2

Fig. 22.9 If a linearly polarized wave (with its E in the
plane of incidence) is incident on the interface of
two dielectrics with the angle of incidence equal
to qp [= tan—1 (n

2
/n

1
)], then the reflection coeffi-

cient is zero.

Fig. 22.10 If an unpolarized beam is incident with an angle
of incidence equal to qp , the reflected beam is
plane polarized whose electric vector is perpen-
dicular to the plane of incidence. The transmitted
beam is partially polarized, and if this beam is
made to undergo several reflections, then the
emergent beam is almost plane polarized with
its electric vector in the plane of incidence.

Glass

Glass

Air

Air

Air

Almost polarized

θp Plane polarized

Partially polarized
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to pass through, we see the glare from  water surface [see
Fig. 22.11(a)]; the glare can be blocked by using a vertical
polarizer, and one can see the inside of the water [see
Fig. 22.11(b) and Fig. 28 in the insert at the back of the book].

22.2.3 Polarization by Double Refraction
In Secs. 22.5 and 22.12 we will discuss the phenomenon of
double refraction and will show that when an unpolarized
beam enters an anisotropic crystal, it splits up into two beams,
each being characterized by a certain state of polarization. If,
by some method, we could eliminate one of the beams, then
we would obtain a linearly polarized beam.

A simple method for eliminating one of the beams is through
selective absorption; this property of selective absorption is
known as dichroism. A crystal such as tourmaline has different
coefficients of absorption for the two linearly polarized beams
into which the incident beam splits up. Consequently, one of
the beams gets absorbed quickly, and the other component
passes through without much attenuation. Thus, if an unpolar-
ized beam is passed through a tourmaline crystal, the emergent
beam will be linearly polarized (see Fig. 22.12).

Another method for eliminating one of the polarized
beams is through total internal reflection. We will show in
Secs. 22.5 and 22.12 that the two beams have different veloci-
ties, and as such the corresponding refractive indices will be
different. If one can sandwich a layer of a material whose
refractive index lies between the two, then for one of the
beams, the incidence will be at a rarer medium and for the
other it will be at a denser medium. This principle is used in
a Nicol prism which consists of a calcite crystal cut in such a
way that for the beam, for which the sandwiched material is a
rarer medium, the angle of incidence is greater than the critical

(a) (b)

Fig. 22.11 If the sunlight is incident on the water surface at an angle close to the polarizing angle, then
the reflected light will be almost polarized. (a) If the Polaroid allows the (almost polarized)
reflected beam to pass through, we see the glare from the water surface. (b) The glare can be
blocked by using a vertical polarizer, and one can see inside the water. Figure adapted from
the website www.polarization.com/water/water.html © J. Alcoz, 2001; used with permission
of Dr. Alcoz. Color photographs appear in the insert at the back of the book.

x

y

z

Incident unpolarized
light

Linearly polarized
wave

Tourmaline
crystal

Fig. 22.12 When an unpolarized beam enters a dichroic
crystal such as tourmaline, it splits up into two
linearly polarized components. One of the com-
ponents gets absorbed quickly, and the other
component passes through without much attenua-
tion [Adapted from Ref. 3; used with permission].

angle. Thus this particular beam will be eliminated by total
internal reflection. Figure 22.13 shows a properly cut calcite
crystal in which a layer of Canada balsam has been intro-
duced so that the ordinary ray undergoes total internal
reflection. The extraordinary component passes through, and
the beam emerging from the crystal is linearly polarized.

22.2.4 Polarization by Scattering
If an unpolarized beam is allowed to fall on a gas, then the
beam scattered at 90° to the incident beam is linearly polar-
ized. This follows from the fact that the waves propagating

gha80482_ch22_335-374.PMD 2/9/2009, 8:37 PM342

http://www.polarization.com/water/water.html


Polarization and Double Refraction 343
�

in the y direction are produced by the x component of the
dipole oscillations (see Fig. 22.14). The y component of the
dipole oscillations will produce no field in the y direction (see
Sec. 23.4.1). Indeed, it was through scattering experiments
that Barkla could establish the transverse character of

X-rays. Clearly, if the incident beam is linearly polarized with
its electric vector along the x direction, then there will be no
scattered light along the x axis. As such, one can carry out
an analysis of a scattered wave by allowing it to undergo a
further scattering [see Fig. 22.14(b)].

As discussed in Sec. 7.6, the blue color of the sky is due to
Rayleigh scattering of sunlight by molecules in our atmo-
sphere. When the Sun is about to set, if we look vertically
upward, light will have a high degree of polarization; this is so
because the angle of scattering will be very close to 90°. If we
view the blue sky (which is vertically above us) with a rotating
Polaroid, we will observe considerable variation of intensity.

22.3 MALUS’ LAW

Let us consider a polarizer P1 which has a pass axis parallel
to the x axis (see Fig. 22.15); i.e., if an unpolarized beam
propagating in the z direction is incident on the polarizer,
then the electric vector associated with the emergent wave
will oscillate along the x axis. Note that if the polarizer is a
Polaroid, then for the pass axis to be along the x direction,
the long chain molecules must be aligned along the y axis.
We next consider the incidence of the x-polarized beam on
the Polaroid P2 whose pass axis makes an angle q with the
x axis (see Fig. 22.15). If the amplitude of the incident electric
field is E0, then the amplitude of the wave emerging from the
Polaroid P2 will be E0 cos q, and thus the intensity of the
emerging beam will be given by

I = I0 cos2 q (10)

where I0 represents the intensity of the emergent beam when
the pass axis of P2 is also along the x axis (i.e., when q = 0).
Equation (10) represents Malus’ law. Thus, if a linearly

48°

68°
71°

90°

Axis
O

ptic o-ray

e-ray

Calcite

Fig. 22.13 The Nicol prism. The dashed outline corre-
sponds to the natural crystal which is cut in such
a way that the ordinary ray undergoes total in-
ternal reflection at the Canada balsam layer.

Unpolarized
light

y
z

z

x

Scatterer

y-polarized
scattered wave

Incident wave
polarized in the

y

Scattered wave
polarized in the

x-polarized
scattered wave

Scatterer

No scattered
wave in the

directionx

directionx

directionx

x

(a)

(b)

Fig. 22.14 (a) If the electromagnetic wave is propagating
along the z direction, then the scattered wave
along any direction that is perpendicular to the
z axis will be linearly polarized. (b) If a linearly
polarized wave (with its E oscillating along the
x direction) is incident on a dipole, then there
will be no scattered wave in the x direction.
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Fig. 22.15 An unpolarized light beam gets x-polarized
after passing through the polaroid P

1
, the pass

axis of the second polaroid P
2 

makes an angle q
with the x axis. The intensity of the emerging
beam will vary as cos2 q.
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polarized beam is incident on a Polaroid and if the Polaroid is
rotated about the z axis, then the intensity of the emergent
wave will vary according to the above law. For example, if the
Polaroid P2 shown in Fig. 22.15 is rotated in the clockwise
direction, then the intensity will increase until the pass axis
is parallel to the x axis; a further rotation will result in a de-
crease in intensity until the pass axis is parallel to the y axis,
where the intensity will be almost zero. If we further rotate it,
it will pass through a maximum and again a minimum before it
reaches its original position.

22.4 SUPERPOSITION OF TWO

DISTURBANCES

Let us consider the propagation of two linearly polarized
electromagnetic waves (both propagating along the z axis)
with their electric vectors oscillating along the x axis. The
electric fields associated with the waves can be written in
the form

E1 = �x a1 cos (kz – wt + q1)    (11)

E2 = �x a2 cos (kz – wt + q2) (12)

where a1 and a2 represent the amplitudes of the waves, �x
represents the unit vector along the x axis, and q1 and q2 are
phase constants. The resultant of these two waves is given by

E = E1 + E2 (13)

which can always be written in the form

E = �x a cos (kz – wt + q) (14)
where

a = [a1
2 + a2

2 + 2a1a2 cos(q1 – q2)]1/2 (15)

represents the amplitude of the wave. Equation (14) tells us
that the resultant is also a linearly polarized wave with its
electric vector oscillating along the same axis.

We next consider the superposition of two linearly
polarized electromagnetic waves (both propagating along the
z axis) but with their electric vectors oscillating along two
mutually perpendicular directions. Thus, we may have

E1 = �x a1 cos (kz – wt) (16)

E2 = �ya2 cos (kz – wt + q) (17)

For q = np, the resultant will also be a linearly polarized wave
with its electric vector oscillating along a direction making a
certain angle with the x axis; this angle will depend on the rela-
tive values of a1 and a2.

To find the state of polarization of the resultant field, we
consider the time variation of the resultant electric field at an

arbitrary plane perpendicular to the z axis which we may,
without any loss of generality, assume to be z = 0. If Ex and
Ey represent the x and y components of the resultant field
E (= E1 + E2), then

Ex = a1 cos wt (18)

and Ey = a2 cos (wt – q) (19)

where we have used Eqs. (16) and (17) with z = 0. For q = np,
the above equations simplify to

Ex = a1 cos wt

and Ey = (–1)na2 cos wt (20)

from which we obtain

y

x

E

E
= 2

1

a

a
± (independent of t) (21)

where the upper and lower signs correspond to n even and n
odd, respectively. In the Ex Ey plane, Eq. (21) represents a
straight line; the angle f that this line makes with the
Ex axis depends on the ratio a2/a1. In fact

f = tan–1 ±
F
HG

I
KJ

a
a

2

1
(22)

The condition q = np implies that the two vibrations are ei-
ther in phase (n = 0, 2, 4, . . .) or out of phase (n = 1, 3,
5, . . .). Thus, the superposition of two linearly polarized elec-
tromagnetic waves with their electric fields at right angles to
each other and oscillating in phase is again a linearly polar-
ized wave with its electric vector, in general, oscillating in a
direction which is different from the fields of either of the two
waves. Figure 22.16 is a plot of the resultant field corre-
sponding to Eq. (20) for various values of a2/a1. The tip of
the electric vector oscillates (with angular frequency w) along
the thick lines shown in the figure. The equation of the
straight line is given by Eq. (21).

For q π np (n = 0, 1, 2, . . .), the resultant electric vector
does not, in general, oscillate along a straight line. We first
consider the simple case corresponding to q = p /2  with
a1 = a2. Thus,

Ex = a1 cos wt (23)

Ey = a1 sin wt (24)

If we plot the time variation of the resultant electric vector
whose x and y components are given by Eqs. (23) and (24),
we find that the tip of the electric vector rotates on the
circumference of a circle (of radius a1) in the counter-
clockwise direction [see Fig. 22.17(c)], and the propagation is
in the +z direction which is coming out of the page. Such a
wave is known as a right circularly polarized wave (usually
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abbreviated as a RCP wave).2 That the tip of the resultant
electric vector should lie on the circumference of a circle is
also obvious from the fact that

Ex
2 + Ey

2 = a1
2 (independent of t)

For q = 3p/2, we would have had

Ex = a1 cos wt (25)

Ey = – a1 sin wt (26)

which would also represent a circularly polarized wave; how-
ever, the electric vector will rotate in the clockwise direction
[see Fig. 22.17(g)]. Such a wave is known as a left circularly
polarized wave (usually abbreviated as a LCP wave).

For q π mp/2 (m = 0, 1, 2, . . .), the tip of the electric vector
rotates on the circumference of an ellipse (see Fig. 22.17 which

corresponds to various values of q). As can be seen from the
figure, this ellipse will degenerate into a straight line or a circle
when q becomes an even or an odd multiple of p/2. In general,
when a1 π a2, one obtains an elliptically polarized wave which
degenerates into a straight line for q = 0, p, 2p, . . ., etc. We
will show this mathematically in Sec. 22.4.1.

The different states of polarization are a characteristic of
any transverse wave. For example, as discussed in Sec. 22.1,
if we move a stretched string up and down, we generate a
linearly polarized wave with its displacement confined to the
vertical plane. Similarly, we may generate a linearly polarized
wave with its displacement confined to the horizontal plane
[see Fig. 22.1(b)]. Further, we may rotate the end of the string
on the circumference of a circle (or an ellipse) to produce a
circularly polarized (or an elliptically polarized) wave; similar

Ey

Ey

Ey

Ey
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Ex

Ex

Ex

a1

a1

a2

a2

f

f

q p=

q = 0

a2 = 1.5a1

a2 = 1.5a1

a1 = 0

a2 = 0

(c)

(a)

(d)

(b)

Fig. 22.16 The superposition of two linearly polarized
waves with their electric fields oscillating in
phase along the x axis and the y axis. The result-
ant is again a linearly polarized wave with its
electric vector oscillating in a direction making an
angle f with the x axis.

2 Our convention for labeling left and right circularly polarized light is consistent with the one used by Ref. 4, but in some books the
opposite convention is used.
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Fig. 22.17 States of polarization for various values of q

corresponding to a1 = a2 [see Eqs. (18) and (19)].
For example, (c) and (g) correspond to right cir-
cularly and left circularly polarized light,
respectively; similarly, (b) and (d) correspond
to right elliptically polarized (REP) light, and (f)
and (h) correspond to left elliptically polarized
(LEP) light. The propagation is out of the page.
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to the case of an electromagnetic wave, one may produce an
elliptically polarized wave by allowing two linearly polarized
waves to propagate through the string. For such a wave, the
particles of the string actually move on the circumference of
a circle (or an ellipse). On the other hand, for an elliptically
polarized electromagnetic wave, it is the electric (or the mag-
netic) field which changes its magnitude and direction at a
particular point; the presence of these fields can be felt by
their interaction with a charged particle. In particular, for a
circularly polarized wave, the magnitude of the field remains
the same; the direction changes with an angular frequency w.
On the other hand, for a linearly polarized wave, the direction
of the field does not change; it is the magnitude which keeps
on oscillating about the zero value with the angular frequency
of the wave.

22.4.1 The Mathematical Analysis

In this section, we will show that Eqs. (18) and (19) represent
an elliptically polarized wave. We rewrite Eqs. (18) and (19) as

Ex = a1 cos wt

Ey = a2 cos (wt – q)

We assume that the major axis of the ellipse is along the x¢

or the y¢ axes and that the x¢ axis makes an angle a with the
x axis [see Fig. 22.17(b)]; i.e.,

Ex¢ = E1cos (wt – ñf) (28)

and
Ey¢ = E2sin (wt – f) (29)

Obviously,

22

1 2

yx
EE

E E

¢Ê ˆÊ ˆ¢
+Á ˜ Á ˜Ë ¯ Ë ¯

 = 1

which represents the equation of an ellipse. Now, for the
rotated coordinates

Ex = Ex¢ cos a – Ey¢ sin a

Ey = Ex¢ sin a + Ey¢ cos a

If we multiply the first equation by cos a and the second
equation by sin a and add, we get

Ex¢ = Ex cos a + Ey sin a (30)
Similarly,

Ey¢ = –Ex sin a + Ey cos a (31)

Substituting Eqs. (18), (19), (28), and (29) into Eqs. (30) and
(31), we get

E1cos(w t – f) = a1cosw t cos a + a2 cos(w t – q) sin a

E2 sin(wt – f) = –a1coswt sin a + a2 cos(w t – q)cos a

The above equations have to be valid at all times; thus,
we equate the coefficients of cos wt and sin wt on both sides
of the equation to obtain

E1 cos f = a1 cos a + a2 cos q sin a

E1 sin f = a2 sin q sin a

and

–E2 sin f = –a1 sin a + a2 cos q cos a

E2 cos f = a2 sin q cos a

If we square the four equations above and add, we get

E1
2 + E2

2 = a1
2 + a2

2

which is to be expected because the total intensity of both
beams should be equal. Further,

E
E

2

1
 = 2

1 2

sin cos

cos cos sin

a

a a

q a

a + q a
 = 

1 2

2

sin cos cos

sin sin

a a

a

a - q a

q a

(32)

Thus,

a2
2 sin2 q sin a cos a = a1

2 sin a cos a

– a2
2 cos2q sin a cos a

– a1a2 cos q (cos2a – sin2a)

Simple manipulations give

tan 2a = 1 2
2 2
1 2

2 cosa a

a a

q

-
(33)

We consider some simple examples.

For a1 = a2 2a = 
2

p
 fi a = 

4

p
(34)

implying that the major (or minor) axis of the ellipse makes
45° with the x axis [see Fig. 22.17(b)]. Further,

E
E

2

1
= 

sin

1 cos

q

+ q
 = tan

2

q
(35)

Thus, for a1 = a2 and for

q = 
3

p
, 

2

p
, 

2

3

p

, 
4

3

p

, 
3

2

p

, 
5

3

p

E
E

2

1
= +0.577, 1, 1.732, –1.732, –1, –0.577

which correspond to REP, RCP, REP, LEP, LCP, and LEP,

respectively, as shown in Fig. 22.17. For example, for q = 4 /3p

Ex¢ = E1 cos (wt – f)

Ey¢ = –1.732 E1 sin(wt – f)

Thus, the major axis of the ellipse is along the y¢ axis. To de-
termine the state of polarization, without any loss of generality,
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we may choose t = 0 at the instant so that f may be assumed to
be zero:

Ex¢ = E1 cos wt
Ey¢ = –1.732E1 sin wt

Thus at

t = 0 Ex¢ = E1 Ey¢= 0

t = 
2

p

w

Ex¢ = 0   Ey¢= –1.732E1

t = 
p

w

Ex¢ = –E1  Ey¢= 0

etc., and the electric vector will rotate in the clockwise direc-
tion as shown in Fig. 22.17(f).

22.5 THE PHENOMENON OF

DOUBLE REFRACTION

When an unpolarized light beam is incident normally on
a calcite crystal, it would in general, split up into two lin-
early polarized beams as shown in Fig. 22.18(a). The beam
which travels undeviated is known as the ordinary ray

(usually abbreviated as the o-ray) and obeys Snell’s laws of
refraction On the other hand, the second beam, which in gen-
eral does not obey Snell’s laws, is known as the extraordinary
ray (usually abbreviated as the e-ray). The appearance of two
beams is due to the phenomenon of double refraction, and a
crystal such as calcite is usually referred to as a double-
refracting crystal (see Fig. 22.19). If we put a Polaroid PP¢

behind the calcite crystal and rotate the Polaroid (about NN¢),
then for two positions of the Polaroid (when the pass axis is
perpendicular to the plane of the paper) the e-ray will be
completely blocked and only the o-ray will pass through. On
the other hand, when the pass axis of the Polaroid is in the
plane of the paper (i.e., along the line PP¢), then the o-ray will
be completely blocked and only the e-ray will pass through.
Further, if we rotate the crystal about NN,¢ then the e-ray will
rotate about the axis [see Fig. 22.18(b)].

In Sec. 22.13 we will show that whereas the velocity of the
ordinary ray is the same in all directions, the velocity of the
extraordinary ray is different in different directions; a sub-
stance (such as as calcite, quartz) which exhibits different
properties in different directions is called an anisotropic sub-
stance. Along a particular direction (fixed in the crystal), the
two velocities are equal; this direction is known as the optic
axis of the crystal. In a crystal such as calcite, the two rays
have the same speed only along one direction (which is the
optic axis); such crystals are known as uniaxial crystals.3 The
velocities of the ordinary and the extraordinary rays are given
by the following equations [see Eq. (123)]:

vro = c
no

   ordinary ray (36)

1
2vre

= 
2 2

2 2

sin cos

( / ) ( / )e oc n c n

q q
+ extraordinary ray (37)

Calcite

Calcite

e-ray

o-rayUnpolarized beam

Unpolarized beam

P�

P�

N�

P

P

N

Fig. 22.18 (a) When an unpolarized light beam is incident
normally on a calcite crystal, it would in general,
split up into two linearly polarized beams. (b) If
we rotate the crystal about NN,¢ then the e-ray
will rotate about NN¢.

Fig. 22.19 A calcite crystal showing double refraction.
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3 In general, there may be two directions along which the two rays have the same speed; such crystals are known as biaxial crystals.
The analysis of biaxial crystals is quite difficult; interested readers may look up Refs. 5 and 6.
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where no and ne are constants of the crystal and q is the
angle that the ray makes with the optic axis; we have as-
sumed the optic axis to be parallel to the z axis. Thus, c/no

and c/ne are the velocities of the extraordinary ray when it
propagates parallel and perpendicular to the optic axis. Now,
the equation of an ellipse (in the zx plane) is given by

2 2

2 2

z x

a b
+ = 1 (38)

If (r, q) represents the polar coordinates, then z = r cos q and
x = r sin q, and the equation of the ellipse can be written in
the form

2

1

r
= 

2 2

2 2

cos sin

a b

q q
+ (39)

In three dimensions, Eq. (39) will represent an ellipsoid of
revolution with the optic axis as the axis of revolution. Thus
if we plot vre as a function of q, we obtain an ellipsoid of
revolution; on the other hand, since vro is independent of q,
if we plot vro (as a function of q), we obtain a sphere. Along
the optic axis, q = 0 and

vro = vre = 
o

c

n

We next consider the value of vre perpendicular to the optic
axis (i.e., for q = p /2). For a negative crystal ne < no and

=
2re
pÊ ˆqÁ ˜Ë ¯

v = 
e

c

n
 > vro (40)

Thus the minor axis will be along the optic axis, and the ellip-
soid of revolution will lie outside the sphere [see
Fig. 22.20(a)]. On the other hand, for a positive crystal ne > no

and

=
2re
pÊ ˆqÁ ˜Ë ¯

v = c
ne

 < vro (41)

The major axis will now be along the optic axis, and
the ellipsoid of revolution will lie inside the sphere [see
Fig. 22.20(b)]. The ellipsoid of revolution and the sphere are
known as the ray velocity surfaces.

We next consider an unpolarized plane wave incident on a
calcite crystal. The plane wave splits up into two plane
waves. One is referred to as the ordinary wave (usually ab-
breviated as the o-wave), and the other is referred to as the
extraordinary wave (usually abbreviated as the e-wave). For
both waves, the space and time dependence of the vectors E,
D, B, and H can be assumed to be of the form

ei(k .r–w t)

where k denotes the propagation vector and represents the
direction normal to the phase fronts. In general, the k vector
for the o- and e-waves will be different. In Sec. 22.12 we will
show that

1. Both ordinary and extraordinary waves are linearly
polarized.

2. D • k = 0 for both o- and e-waves (42)
Thus D is always at right angles to k, and for this rea-
son the direction of D is chosen as the direction of
“vibrations.”

3. If we assume the z axis to be parallel to the optic axis
then

D • �z  = 0 (and D • k = 0) for the o-wave (43)
Thus for the o-wave, the D vector is at right angles to
the optic axis as well as to k.

4. On the other hand, for the e-wave, D lies in the
plane containing k and the optic axis, and of course,

D • k = 0 (44)
Using the recipe given above, we will consider the refraction
of a plane electromagnetic wave incident on a negative crys-
tal such as calcite; a similar analysis can be carried out for
positive crystals.

22.5.1 Normal Incidence

We first assume a plane wave incident normally on a uniaxial
crystal as shown in Fig. 22.21. Without loss of generality, we
can always choose the optic axis to lie on the plane of the paper.
The direction of the optic axis is shown as a dashed line in
Fig. 22.21. To determine the ordinary ray, with point B as the
center, we draw a sphere of radius c/no. Similarly, we draw an-
other sphere (of the same radius) from point D. The common
tangent plane to these spheres is shown as OO¢, which repre-
sents the wave front corresponding to the ordinary refracted ray.
The dots show the direction of vibrations (i.e., direction of D)
which are perpendicular to k and to the optic axis [see Eq. (43)].

To determine the extraordinary ray, we draw an ellipse (cen-
tered at point B) with its minor axis (= c/no) along the optic

z
(Optic axis)

z
(Optic axis)

θ θ

Negative crystal Positive crystal

(a) (b)

Fig. 22.20 (a) In a negative crystal, the ellipsoid of revolu-
tion (which corresponds to the extra ordinary ray)
lies outside the sphere; the sphere corresponds to
the ordinary ray. (b) In a positive crystal, the ellip-
soid of revolution (which corresponds to the
extraordinary ray) lies inside the sphere.
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axis and with its major axis equal to c/ne. The ellipsoid of revo-
lution is obtained by rotating the ellipse about the optic axis.
Similarly, we draw another ellipsoid of revolution from point D.
The common tangent plane to these ellipsoids (which will be
perpendicular to k) is shown as EE¢ in Fig. 22.21.

If we join point B to the point of contact O, then corre-
sponding to the incident ray AB, the direction of the ordinary
ray will be along BO. Similarly, if we join point B to the point
of contact E (between the ellipsoid of revolution and the tan-
gent plane EE ¢), then corresponding to the incident ray AB,
the direction of the extraordinary ray will be along BE.

The direction of k is the same for both o and e-waves, i.e.,
both are along BO. However, if we have a narrow beam inci-
dent as AB, then whereas the ordinary ray will propagate
along BO, the extraordinary ray will propagate in a different
direction BE; this is also explicitly shown in Fig. 22.18(a).

Obviously, if we have a different direction of the optic axis
[see Fig, 22.21(b)], then although the direction of the ordi-
nary ray will remain the same, the extraordinary ray will
propagate in a different direction. Thus if a ray is incident
normally on a calcite crystal, and if the crystal is rotated
about the normal, then the optic axis and the extraordinary
ray will also rotate (about the normal) on the periphery of a
cone; each time the ray will lie in the plane containing the
normal and the optic axis [see Fig. 22.18(b)].

The ray refractive index corresponding to the extraordinary
ray nre will be given by

nre = c

rev
= (n2

o cos2 q + n 2
e sin2 q)1/2 (45)

If one starts with Eq. (45) and uses Fermat’s principle to ob-
tain the refracted ray, the results will be consistent with the
ones obtained in this section (see Sec. 3.5).

Now, as mentioned earlier, the direction of vibrations for
the ordinary ray is normal to the optic axis and the vector k;
as such, the directions of these vibrations in this case will be
normal to the plane of the paper and are shown as dots in
Fig. 22.21. Similarly, since the direction of vibrations for the ex-
traordinary ray is perpendicular to k and lies in the plane
containing the extraordinary ray and the optic axis, they are
along the small straight lines drawn on the extraordinary ray
in Fig. 22.21. Thus, an incident ray will split up into two rays
propagating in different directions, and when they leave the
crystal, we will obtain two linearly polarized beams.

In the above case, we have assumed the optic axis to
make an arbitrary angle a with the normal to the surface. In
the special cases of a = 0 and a = p/2, the ordinary and the
extraordinary rays travel along the same directions as shown
in Fig. 22.22(a), (b), and (c). Figure 22.22(b) corresponds to
the case when the optic axis is normal to the plane of the
paper; and as such, the section of the extraordinary wave
front in the plane of the paper will be a circle. Once again,
both the ordinary and the extraordinary rays travel along the
same direction. Figure 22.22(a) and (b) corresponds to the
same configuration; in both cases the optic axis is parallel to
the surface. The figures represent two different cross sec-
tions of the same set of spherical and ellipsoidal wave fronts.

Now, corresponding to Fig. 22.22(a) and (b), if the incident
wave is polarized perpendicular to the optic axis, it will propa-
gate as an o-wave with velocity c/no . On the other hand, if
the incident wave is polarized parallel to the optic axis, it will
propagate as an e-wave with velocity c/ne. In Fig. 22.22(c) the
optic axis is normal to the surface, and both waves will travel
with the same velocity.

In the configuration shown in Fig. 22.22(a) and (b),
although both waves travel in the same direction, they
propagate with different velocities. This phenomenon is

Optic axis

E E�
k

k

O O�

B D

A C

(a)

Optic axis

E E�

O O�

B D

A C

(b)

Fig. 22.21 The refraction of a plane wave incident nor-
mally on a negative crystal whose optic axis is
along the dashed line.
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used in the fabrication of quarter and half wave plates (see
Sec. 22.6). On the other hand, in the configuration shown in
Fig. 22.22(c), both the waves not only travel in the same
direction but also propagate with the same velocity.

22.5.2 Oblique Incidence

We next consider the case of a plane wave incident
obliquely on a negative uniaxial crystal [see Fig. 22.23(a)].
Once again we use Huygens’ principle to determine the
shape of the refracted wave fronts. Let BD represent the in-
cident wave front. If the time taken for the disturbance to
reach point F from D is t, then with B as center we draw a
sphere of radius (c/no)t and an ellipsoid of revolution of
semiminor and semimajor axes (c/no)t, and (c/ne)t, respec-
tively; the semiminor axis is along the optic axis. From point F
we draw tangent planes FO and FE to the sphere and the
ellipsoid of revolution, respectively. These planes represent
the refracted wave fronts corresponding to the ordinary and
the extraordinary rays, respectively. If the points of contact

are O and E, then the ordinary and extraordinary refracted
rays will propagate along BO and BE, respectively; this can
also be shown using Fermat’s principle (see Sec. 3.5). The
directions of vibration of these rays are shown by dots and
small lines, respectively, and are obtained by using the gen-
eral rules discussed earlier. The shape of the refracted wave
fronts corresponding to the particular case of a = 0 and a =
p/2 can be obtained very easily.

Figure 22.23(b) corresponds to the case when the optic axis
is normal to the plane of incidence. The sections of both the
wave fronts will be circles; consequently, the extraordinary ray
will also satisfy Snell’s law, and we will have

sin

sin

i

r
= ne for e-ray when optic axis is

   normal to plane of incidence (46)

Of course, for the ordinary ray we will always have

sin

sin

i

r
= no (47)

Optic
axis

Optic axis normal to the page

o-ray e-ray

(a)

(b)

(c)

O
pt

ic
ax

is

Fig. 22.22 Propagation of a plane wave incident normally on a negative uniaxial crystal. In (a) and
(c) the optic axis is shown as parallel straight lines, and in (b) the optic axis is perpendicular to
the plane of the figure and is shown as dots. In each case, the extraordinary and the ordinary rays
travel in the same direction.
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22.6 INTERFERENCE OF

POLARIZED LIGHT:

QUARTER WAVE PLATES

AND HALF WAVE PLATES

In Sec.22.5 we considered how a plane wave (incident on a
doubly refracting crystal) splits up into two waves, each char-
acterized by a certain state of polarization. The direction of
vibration associated with the ordinary and extraordinary
waves is obtained by using the recipe given by Eqs. (43) and
(44). In this section, we will consider the normal incidence of a
plane polarized beam on a calcite crystal whose optic axis is
parallel to the surface of the crystal as shown in Fig. 22.24. We
will study the state of polarization of the beam emerging from
the crystal. We will assume the z axis to be along the optic
axis. Now, as discussed in Sec. 22.5, if the incident beam is
y-polarized, the beam will propagate as an ordinary wave and
the extraordinary wave will be absent. Similarly, if the incident
beam is z-polarized, the beam will propagate as an extraordi-
nary wave and the ordinary wave will be absent. For any other
state of polarization of the incident beam, both the extraordi-
nary and the ordinary components will be present. For a
negative crystal such as calcite ne < no, and the e-wave will
travel faster than the o-wave; this is shown by putting s (slow)
and f (fast) inside the parentheses in Fig. 22.24.

Let the electric vector (of amplitude E0) associated with
the incident polarized beam make an angle f with the z axis; in
Fig. 22.24, f has been shown to be equal to 45°—but for the
time being we will keep our analysis general and assume f to
be an arbitrary angle. Such a beam can be assumed to be a
superposition of two linearly polarized beams (vibrating in

B

D

F

E

Ordinary ray

Extraordinary ray

O

α

Optic axis

(a)

(b)

B

O

E

F

D

Optic axis normal
to the page

Fig. 22.23 Refraction of a plane wave incident obliquely on a
negative uniaxial crystal. In (a), the direction of the
optic axis is along the dashed line. In (b), the optic
axis is perpendicular to the plane of the paper.

45°

y

y

z

z

x
o s( )

e(f )

Calcite
QWP

Calcite
HWPLCP

RCP

x = 0

Fig. 22.24 A linearly polarized beam making an angle 45° with the z axis gets converted to a LCP after propagating
through a calcite QWP; further, a LCP gets converted to a RCP after propagating through a calcite HWP.
The optic axis in the QWP and HWP is along the z direction as shown by lines parallel to the z axis.
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phase), polarized along the y and z directions with amplitudes
E0 sin f and E0 cos f, respectively. The z component (whose
amplitude is E0 cos f) passes through as an extraordinary
beam propagating with wave velocity c/ne. The y component
(whose amplitude is E0 sin f) passes through as an ordinary
beam propagating with wave velocity c/no. Since ne π no, the
two beams will propagate with different velocities; as such,
when they come out of the crystal, they will not be in phase.
Consequently, the emergent beam (which will be a superposi-
tion of these two beams) will be, in general, elliptically polarized.

Let the plane x = 0 represent the surface of the crystal on
which the beam is incident. The y and z components of the
incident beam can be written in the form

0

0

= sin cos ( )

= cos cos ( )

y

z

E E k x t

E E k x t

f - w

f - w
(48)

where k (= w /c) represents the free space wave number.
Thus, at x = 0, we have

0

0

( = 0) = sin cos

( = 0) = cos cos

y

z

E x E t

E x E t

f w

f w

Inside the crystal, the two components will be given by

Ey = E0 sin f cos (nokx – wt)  ordinary wave

Ez = E0 cos f cos (ne kx – wt) extraordinary wave

If the thickness of the crystal is d, then at the emerging sur-
face, we have

0

0

= sin cos ( )

= cos cos ( )

y o

z e

E E t

E E t

f w - q

f w - q

where qo = nokd and qe = nekd. By appropriately choosing
the instant t = 0, the components may be rewritten as

0

0

= sin cos ( )

= cos cos

y

z

E E t

E E t

f w - q

f w
(49)

where

q = qo – qe = kd (no – ne) = ( )o en n d
c

w

- (50)

represents the phase difference between the ordinary and the
extraordinary beams. Clearly, if the thickness of the crystal is
such that q = 2p, 4p, . . . , the emergent beam will have the
same state of polarization as the incident beam. Now, if the
thickness d of the crystal is such that q = p/2, the crystal is
said to be a quarter wave plate (usually abbreviated as
QWP)—a phase difference of p/2 implies a path difference of a
quarter of a wavelength. On the other hand, if the thickness of
the crystal is such that q = p, the crystal is said to be a half
wave plate (usually abbreviated as HWP). For a general value
of q, the state of polarization was discussed in Sec. 22.4.1.

As an example, let us consider the case when f = p/4 and
q = p/2; i.e., the y and z components of the incident wave
have equal amplitudes, and the crystal introduces a phase
difference of p/2 (see Fig. 22.24). Thus, for the emergent
beam we have

Ey = 
E0

2
sin wt Ez = 

E0

2
cos wt (51)

which represents a circularly polarized wave because

Ey
2 + Ez

2 = 
E0

2

2

To determine the direction of rotation of the electric vector,
we note that at t = 0,

Ey = 0 Ez = 
E0

2
and at t = Dt,

Ey ª 
E0

2
w ††Dt Ez ª 

E0

2
The above equations show that as time increases, the elec-
tric vector rotates in the counterclockwise direction, and
hence the beam is left circularly polarized as shown in
Fig. 22.24. To introduce a phase difference of p/2, the thick-
ness of the crystal should have a value given by

d = 
( ) 2o e

c

n n

p

w -

 = 01

4 o en n

l

-
(52)

where l0 is the free space wavelength. For calcite,

no = 1.65836 ne = 1.48641

which correspond to l0 = 5893 Å at 18°C. Substituting these
values, we obtain

d = 
5893 10
4 017195

8
¥

¥

-

.
 cm ª 0.000857 mm

Thus a calcite QWP (at l0 = 5893 Å) will have a thickness of
0.000857 mm and will have its optic axis parallel to the sur-
face; such a QWP will introduce a phase difference of
p/2 between the ordinary and extraordinary components at
l0 = 5893 Å. If the thickness is an odd multiple of the above
quantity, i.e., if

d = (2m + 1) 0

4( )o en n

λ
−

m = 0, 1, 2, . . . (53)

then in the example considered above (i.e., when f = p/4) it
can be easily shown that the emergent beam will be left cir-
cularly polarized for m = 0, 2, 4, . . . and right circularly
polarized for m = 1, 3, 4, . . .. The  y-polarized o-wave in calcite
has a smaller wave velocity (= c/no), and hence it is referred
to as a slow wave and shown as o(s) in Figs. 22.24 and 22.25;
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similarly, the extraordinary wave is the fast wave (in calcite),
hence shown as  e(f).

We next consider the case when the linearly polarized
beam (with f = p/4) is incident on a HWP so that q = p; i.e.,
the y and z components of the incident wave have equal
amplitudes, and the crystal introduces a phase difference of
p (see Fig. 22.25). Thus, for the emergent beam we have

Ey = –
E0

2
cos wt Ez = 

E0

2
cos wt

which represents a linearly polarized wave with the direction
of polarization making an angle of 135° with the z axis (see
Fig. 22.25). If we now pass this beam through a calcite QWP,
the emergent beam will be right circularly polarized as shown
in Fig. 22.25. On the other hand, if a left circularly polarized is
incident normally on a calcite HWP, the emergent beam will
be right circularly polarized as shown in Fig. 22.24.

Thus, for a HWP the thickness (for a negative crystal) is
given by

d = (2m +1) 0

2( )o en n

l

-

If the crystal thickness is such that if q π p/2, p, 3p/2, 2p, . . .,
the emergent beam will be elliptically polarized; similar to that
shown in Fig. 22.17 (of course, there the propagation was
along the z axis, and here it is along the x axis).

For a positive crystal (such as quartz), ne > no and Eqs. (49)
should be written in the form

0

0

= sin cos ( )

= cos cos

y

z

E E t

E E t

f w + q¢

f w
(54)

where

q ¢ =
c

w

d (ne – no)

For a quarter wave plate,

d = (2m + 1) 0

4( )e on n

l

-
m = 0, 1, 2, . . .

Thus, if in Fig. 22.24 the calcite QWP is replaced by a quartz
QWP, the emergent beam will be right circularly polarized.

Example 22.1 A left circularly polarized beam (l0 = 5893 Å)
is incident normally on a calcite crystal (with its optic axis cut par-
allel to the surface) of thickness 0.005141 mm. What will be the
state of polarization of the emergent beam?

Solution: The electric field for the incident beam at x = 0 is

Ey = 
E0

2
sin w t Ez = 

E0

2
cos wt (55)

Now

q = 
0

( ) 2o en n d- ¥ p

l

= 
7

0.17195 0.005141 2

5893 10-

¥ ¥ p

¥
 ª 3p

Thus the emergent wave will be [cf. Eq. (49)]

Ey = 
E0

2
sin(wt – 3p)

= 0

2

E
- sin wt Ez = 

E0

2
cos wt

which represents a right circularly polarized beam.

y

y

y

z

z

z

x

o s( )

e f( ) Calcite
QWP

Calcite
HWP

RCP

Fig. 22.25 If the linearly polarized beam making an angle 45° with the z axis is incident on a HWP, the plane
of polarization gets rotated by 90°; this beam gets converted to a RCP after propagating through a
calcite QWP. The optic axis in the HWP and QWP is along the z direction as shown by lines parallel
to the z axis.
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Example 22.2 A left circularly polarized beam (l0 = 5893 Å)
is incident on a quartz crystal (with its optic axis cut parallel to the
surface) of thickness 0.025 mm. Determine the state of polarization
of the emergent beam. Assume no and ne to be 1.54425 and 1.55336,
respectively.

Solution: As in Example 22.1, the electric field for the incident

beam at x = 0 is given by Eq. (55). Further,

q ¢ = (ne – no)
0

2p

l
d = 2p 

0 00911 0 025

5893 10 7
. .×

× −  ª 0.77p

Thus the emergent beam will be

Ey = 
E0

2
cos (wt + 0.77p) Ez = 

E0

2
cos (wt)

which will represent a right elliptically polarized light beam.

22.7 ANALYSIS OF POLARIZED

LIGHT

In the previous sections we have seen that a plane wave can
be characterized by different states of polarizations, which
may be any one of the following:

• Linearly polarized
• Circularly polarized
• Elliptically polarized
• Unpolarized
• Mixture of linearly polarized and unpolarized
• Mixture of circularly polarized and unpolarized
• Mixture of elliptically polarized and unpolarized light

To the naked eye, all the states of polarizations will appear
to be the same. In this section, we will discuss the procedure
for determining the state of polarization of a light beam.

If we introduce a Polaroid in the path of the beam and
rotate it about the direction of propagation, then one of the
following three possibilities can occur:

1. If there is complete extinction at two positions of the
polarizer, then the beam is linearly polarized.

2. If there is no variation of intensity, then the beam is
unpolarized or circularly polarized or a mixture of unpo-
larized and circularly polarized light. We now put a
quarter wave plate on the path of the beam followed by
the rotating Polaroid. If there is no variation of inten-
sity, then the incident beam is unpolarized. If there is
complete extinction at two positions, then the beam is
circularly polarized (this is so because a quarter wave
plate will transform a circularly polarized light into a lin-
early polarized light). If there is a variation of intensity
(without complete extinction), then the beam is a mix-
ture of unpolarized and circularly polarized light.

3. If there is a variation of intensity (without complete ex-
tinction), then the beam is elliptically polarized or a
mixture of linearly polarized and unpolarized or a mix-
ture of elliptically polarized and unpolarized light. We
now put a quarter wave plate in front of the Polaroid
with its optic axis parallel to the pass axis of the
Polaroid at the position of maximum intensity. The el-
liptically Polarized light will transform to a linearly
polarized light. Thus, if one obtains two positions of
the Polaroid where complete extinction occurs, then the
original beam is elliptically polarized. If complete extinc-
tion does not occur and the position of maximum
intensity occurs at the same orientation as before, the
beam is a mixture of unpolarized and linearly polarized
light. Finally, if the position of maximum intensity
occurs at a different orientation of the Polaroid, the
beam is a mixture of elliptically polarized and unpolar-
ized light.

22.8 OPTICAL ACTIVITY

When a linearly polarized light beam propagates through an
“optically active” medium such as sugar solution, then as
the beam propagates, its plane of polarization rotates. This
rotation is directly proportional to the distance traversed
by the beam and also to the concentration of sugar in
the solution. Indeed, by measuring the angle by which the
plane of polarization is rotated, one can accurately determine
the concentration of sugar in the solution.

The rotation of the plane of polarization is due to the
fact that the “modes” of the optically active substance are
left circularly polarized (LCP) and right circularly polarized
(RCP) which propagate with slightly different velocities
(see Sec. 22.16). By modes we imply that if a LCP light
beam is incident on the substance, then it will propagate
as a LCP beam; similarly, a RCP light beam will propagate
as a RCP beam but with a slightly different velocity. On
the other hand, if a linearly polarized light beam is inci-
dent, then we must express the linear polarization as a
superposition of a RCP and a LCP beam and then consider
the independent propagation of the two beams. We illus-
trate through an example.

We consider a RCP beam propagating in the +z direction

0

0

= cos ( )

= sin ( )

r
x r

r
y r

E E k z t

E E k z t

- w

- - w

(56)

where kr = ( / )cw  nr and the superscript and subscript r sig-
nify that we are considering a RCP beam. Similarly, a LCP
beam (of the same amplitude) propagating in the +z direction
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can be described by the following equations:

0

0

= cos ( )

= sin ( )

l
x l

l
y l

E E k z t

E E k z t

- w

- w

(57)

where kl = ( / )cw  nl ; nr and nl are the refractive indices corre-
sponding to the RCP and LCP beams, respectively. If we
assume the simultaneous propagation of the two beams, then
the x and y components of the resultant fields are given by

Ex = E0 [cos (krz – wt) + cos (klz – wt)]
or

Ex = 2E0 cos 1
2 ( )l rk k zÈ ˘-Î ˚ cos[wt – q(z)]

Similarly

Ey = 2E0 sin 1
2 ( )l rk k zÈ ˘-Î ˚  cos[wt – q(z)]

where

q (z) = 1
2 (kl + kr)z

Thus the resultant wave is always linearly polarized with the
plane of polarization rotating with z. If the direction of the
oscillating electric vector makes an angle f with the x axis,
then (see Fig. 22.26)

f(z) = 1
2

(kl – kr)z

or
f(z) = 

0

p

l
(nl – nr) z = 

2c

w
(nl – nr)z (58)

where l0 is the free space wavelength. Now, if

nl > nr ¤ the optically active substance is said to be
right-handed or dextrorotatory

nr > nl ¤ the optically active substance is said to be left-
handed or levorotatory

For example, for turpentine,

f = +37° for z = 10 cm

t = 0

t = 0

t = 0

t = 0

x

x

x

x x

x

x
z

y

y

y

y y

y

y

RCP LCP LP

t = Dt t = Dt

t = Dt

+

+

=

=

+

+

E E tx = cos0 w

E E             tx = cos ( – )0 1w f

E E tx = cos0 w

E E             tx = cos ( – )0 2w f

E Ey = sin wt0

E Ey = sin (wt – f  )0

f1 = k zr f2 = klz
f f f=      ( – )2 11/2

1
2

E Ey = – sin wt0

E Ey = – sin wt (wt – f )0

at = 0z

f1 f2
f

f

1 2

Fig. 22.26 The “clockwise” rotation of a linearly polarized wave as it propagates through a “right-handed”
optically active medium.
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As mentioned earlier, we observe optical activity even in a sugar
solution, and this is due to the helical structure of sugar
molecules. Determination of the concentration of sugar solutions
by measuring the rotation of the plane of polarization is a widely
used method in industry. Note that if nl = nr (as is indeed the case
in an isotropic substance), then f(z) = 0 and a linearly polarized
beam remains linearly polarized along the same direction. Optical
activity is also exhibited in crystals. For example, for a linearly
polarized light propagating along the optic axis of a quartz
crystal,4 the plane of polarization gets rotated. Indeed

| nl – nr | ª 7 ¥ 10–5

fi f ª 7
60

p = 21°

for z = 0.1 cm at l0 = 6000 Å

22.9 CHANGE IN THE STATE OF

POLARIZATION OF A LIGHT

BEAM PROPAGATING

THROUGH AN ELLIPTIC

CORE SINGLE-MODE

OPTICAL FIBER

A very interesting phenomenon is the propagation of polar-
ized light through an elliptic core optical fiber. We will have a
brief discussion on optical fibers in Chaps. 27 and 29; it will
suffice here to say that in an ordinary optical fiber we have a
cylindrical core (of circular cross section) cladded with a
medium of slightly lower refractive index. The guidance of

4 When a wave propagates along the optic axis of a quartz crystal, it is, strictly speaking, not like calcite. The modes are not linearly
polarized; they are RCP and LCP propagating with slightly different velocities.

5 We are considering here a single-mode fiber so that no matter what the incident transverse field distribution is, it soon “settles down”
to the transverse field distribution of the fundamental mode which propagates with the velocity w/b0 . This velocity is independent
of the state of polarization (SOP) of the incident beam.

2b
n1

n2

2a

Elliptic core optical fiber
(a)

y

x
Fig. 22.27 (a) The transverse cross section of an elliptic core

fiber; the modes are (approximately) x-polarized
and y-polarized. (b) The actual cross-sectional view
of the perform of an elliptic core fiber fabricated at
CGCRI, Kolkata [photograph courtesy Dr. Shyamal
Bhadra, CGCRI, Kolkata]. (c) Propagation of a left
circularly polarized beam incident on an elliptic
core fiber. If we view along the y’ axis, then dark
spots will be observed at z=z

1
, 5z

1
, 9z

1
, . . ..

the light beam takes place through the phenomenon of total
internal reflection (see Figs. 27.2 and 27.7). Because of the
circular symmetry of the problem, the incident beam can have
any state of polarization5  which will be maintained as the
beam propagates through the fiber. Now, if we have an ellip-
tic core fiber [see Fig. 22.27(a)], then the modes of the fiber

(b)

(c)

z

LCP

RCP

LCP

y

y�
x

z = z1

z = z2

z = z3

z = z4

z = z0

L b
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and the wave will be right circularly polarized [see
Fig. 22.27(c)]. At

z = z3 = 
3

2 x y

p

b - b
 = 3z1

we have

Ex = y (x, y) cos (f3 – wt)

= y (x, y) cos (wt – f3)

Ey = y(x, y) sin 3
3

2
t

pÊ ˆf + - wÁ ˜Ë ¯

= –y(x, y) cos (wt – f3)
where

f3 = bxz3

Thus the wave is again linearly polarized, but now the direc-
tion of the oscillating electric field is at right angles to the
field at z = z1. In a similar manner, we can easily continue to
determine the SOP of the propagating beam. Thus at z = 5z1,
9z1, 13z1, . . . the SOP will be the same as at z = z1, and at
z = 7z1, 11z1, 15z1, . . .  the SOP will be the same as at z = 3z1.
Similarly at z = 4z1, 8z1, 12z1, . . .  the beam will be LCP, and at
z = 2z1, 6z1, 10z1, . . .  the beam will be RCP.

Now, let the fiber be rotated in such a way that the y¢ axis
is along the vertical line (the x¢ and the z axes are assumed to lie
in the horizontal plane). Thus if we put our eyes vertically above
the fiber and view vertically down, then the regions z = z1, 5z1,
9z1, . . . will appear dark (see Fig. 22.28). This is so because in
these regions the electric field is oscillating in the y¢ direction
(which is the vertical direction), and we know that if the dipole
oscillates along the y¢ direction, there is no radiation emitted in
that particular direction (see Figs. 22.14 and 23.4). Thus by mea-
suring the distance between two consecutive black spots
(= 4z1) we can calculate z1 and hence by – bx . Furthermore, by
moving the eyes to the horizontal plane, i.e., viewing along the
x¢ axis, we see the regions z = z1, 5z1, 9z1, . . . appear bright and
the regions z = 3z1, 7z1, 11z1, . . . appear dark. Thus the experi-
ment allows us to understand not only the changing SOP of
a beam propagating through a birefringent fiber, but also the
radiation pattern of an oscillating dipole.

As a numerical example, we consider an elliptical core
fiber for which

2a = 2.14 mm 2b = 8.85 mm

n1 = 1.535 n2 = 1.47

[see Fig. 22.27(a)]. For such a fiber operating at l0 = 6328 Å
(k0 ª 9.929 ¥ 104 cm–1),

0

x

k

b
ª 1.506845 and

0

y

k

b
 ª 1.507716

are (approximately) x and y polarized; i.e., if an x-polarized
beam is incident on the fiber, it will propagate without any
change in the state of polarization with a certain phase ve-
locity w /bx. Similarly, a y-polarized beam will propagate as a
y-polarized beam with a slightly different velocity w /by.
Now, let a circularly polarized beam be incident on the input
face of the fiber at z = 0. Then we must resolve the incident
beam into x- and y-polarized beams propagating with slightly
different velocities. Thus

E(x, y, z) = y(x, y) [ �x cos(bxz – wt) + �y  sin(byz – wt)]
(59)

where y(x, y) is the transverse field distribution of the funda-
mental mode which is assumed to be (approximately) the same
for both x  and y polarizations (see Sec. 28.5). If bx = by , as is
indeed true for circular core fibers, the beam will remain
circularly polarized for all values of z. Now, at z = 0,

Ex = y (x, y) cos wt
(60)

Ey = –y (x, y) sin wt

which represents a left circularly polarized wave [see
Fig. 22.27 (b)]. For

z = z1 = 
2( )y x

p

b - b
(61)

i.e., for by z1 = bx z1 + p/2,

Ex = y(x, y) cos (f1 – w t)

= + y(x, y) cos(wt – f1)

Ey = y (x, y) sin 1 2
t

pÊ ˆf + - wÁ ˜Ë ¯

= + y(x, y) cos (wt – f1)

where

f1 = bx z1

which represents a linearly polarized wave [see Fig. 22.27(c)];
we assume the direction of the E vector to be along the y¢

axis. Similarly, at

z = z2 = 
y x

p

b - b
 = 2z1

Ex = y (x, y) cos (f2 – wt)

= y(x, y) cos (wt – f2) (62)

Ey = y(x, y) sin (f2 + p – wt)

= y(x, y) sin (wt – f2)

where
f2 = bx z2
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The quantity

Lb = 
2p

Db
 = 

2

y x

p

b -b
 ª 0.727 mm

is known as the coupling length.

22.10 WOLLASTON PRISM

A Wollaston prism is used to produce two linearly polarized
beams. It consists of two similar prisms (of, say, calcite) with
the optic axis of the first prism parallel to the surface and the
optic axis of the second prism parallel to the edge of the
prism as shown in Fig. 22.29. Let us first consider the inci-
dence of a z-polarized beam as shown in Fig. 22.29(a). The
beam will propagate as an o-ray in the first prism (because

the vibrations are perpendicular to the optic axis) and will see
the refractive index no. When this beam enters the second
prism, it will become an e-ray and will see the refractive index
ne. For calcite no > ne and therefore the ray will bend away
from the normal. Since the optic axis is normal to the plane of
incidence, the refracted ray will obey Snell’s laws [see
Fig. 22.23(b)], and the angle of refraction will be given by

no sin 20° = ne sin r1

where we have assumed the angle of the prism to be 20° (see
Fig. 22.29). Assuming no ª 1.658 and ne ª 1.486, we readily get

r1 ª 22.43°

Thus the angle of incidence at the second surface is
i1 = 22.43° – 20° = 2.43°. The output angle q1 is given by
ne sin 2.43° = sin q1 fi q1 = 3.61°.

Fig. 22.28 Schematic of the intensity variation as seen from the top (or side) of an elliptic core fiber when a
circularly polarized beam is incident on it. The actual photograph from an experiment by Andrew
Corporation is given in Ref. 13.

20° 20° 20°

θ1

θ2 θ2

θ

θ1

o-ray

z

y

x

e-ray

(a) (b) (c)

Optic axis along the -directionz

Fig. 22.29 A Wollaston prism. The optic axis of the first prism is along the y axis, and the optic axis of the second
prism is along the z axis. (a) If the incident beam is z-polarized, it will propagate as an o-wave in the first
prism and an e-wave in the second prism. (b) If the incident beam is y-polarized, it will propagate as an
e-wave in the first prism and an o-wave in the second prism. (c) For an unpolarized beam incident nor-
mally, there will be two linearly polarized beams propagating in different directions. The ray paths
correspond to prisms being of calcite.
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We next consider the incidence of a y-polarized beam as
shown in Fig. 22.29(b). The beam will propagate as an
e-ray in the first prism and as an o-ray in the second prism.
The angle of refraction is now given by

ne sin 20 = no sin r2 fi r2 ª 17.85°

Thus the angle of incidence at the second interface is

i2 = 20° – 17.85° = 2.15°

The output angle q2 is given by

no sin 2.15° = sin q2 fi q2 ª 3.57°

Thus, if an unpolarized beam is incident on the Wollaston
prism, the angular separation between the two orthogonally
polarized beams is q = q1 + q2 ª 7.18°; see also Fig. 22.30 and
Fig. 30 in the insert at the back of the book.

22.11 ROCHON PRISM

We next consider the Rochon prism which consists of two
similar prisms of (say) calcite; the optic axis of the first prism
is normal to the face of the prism while the optic axis of the
second prism is parallel to the edge as shown in Fig. 22.31.
Now, in the first prism both beams will see the same refractive
index no; this follows from the fact that the ordinary and
extraordinary waves travel with the same velocity (= c/no)
along the optic axis of the crystal.

When the beam enters the second crystal, the ordinary
ray (whose D is normal to the optic axis) will see the same
refractive index and go undeviated as shown in Fig. 22.31.
On the other hand, the extraordinary ray (whose D is along
the optic axis) will see the refractive index ne and will bend

away from the normal. We assume the angle of the prism to
be 25°. The angle of refraction will be determined from

no sin 25° = ne sin r

Thus sin r = o

e

n

n
sin 25°

= 1 658
1
.
.486

 ¥ 0.423 ª 0.472

fi r = 28.2°

Therefore the angle of incidence at the second surface will
be 28.2° – 25° = 3.2°. The emerging angle will be given by

sin q = ne sin (3.2°) ª 0.083

fi q ª 4.8°

22.12 PLANE WAVE PROPAGATION

IN ANISOTROPIC MEDIA

In this section, we discuss the plane wave solutions of
Maxwell’s equations in an anisotropic medium and prove
the various assumptions made in Sec. 22.5. The difference
between an isotropic and an anisotropic medium lies in
the relationship between the displacement vector D and the
electric vector E; the displacement vector D is defined in
Sec. 23.9. In an isotropic medium, D is in the same direction
as E, and one can write

D = eE (63)

where e is the dielectric permittivity of the medium. On the
other hand, in an anisotropic medium D is not, in general, in
the direction of E, and the relation between D and E can be
written in the form

=

=

=

x xx x xy y x z z

y yx x yy y y z z

z zx x zy y z z z

D E E E

D E E E

D E E E

e + e + e

e + e + e

e + e + e

(64)

Fig. 22.30 Schematic of an actual Wollaston prism. The
prism separates an unpolarized light beam into
two linearly polarized beams. It typically consists
of two properly oriented calcite prisms (so that
the optic axes are perpendicular to each other),
cemented together typically with Canada balsam.
A commercially available Wollaston prism has
divergence angles from 15° to about 45°.

θ

25°

Fig. 22.31 Production of two orthogonally polarized beams
by a Rochon prism.
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where exx, exy, . . . are constants. One can show that6

exy = eyx exz = ezx

and eyz = ezy
(65)

Further, one can always choose a coordinate system (i.e., one
can always choose appropriately the directions of x, y, and z
axes inside the crystal) such that

Dx = exEx

Dy = eyEy (66)
Dz = ezEz

This coordinate system is known as the principal axis system,
and the quantities ex, ey, and ez are known as the principal
dielectric permittivities of the medium. If

ex π ey π ez biaxial (67)

we have a biaxial medium and the quantities

nx =
0

xe

e

ny = 
0

ye

e

 nz = 
0

ze

e

(68)

are said to be the principal refractive indices of the medium;
in the above equation e0 represents the dielectric permittivity
of free space (= 8.8542 ¥ 10–12 C2 N–1 m–2). If

ex = ey π ez uniaxial (69)

we have a uniaxial medium with the z axis representing the
optic axis of the medium. The quantities

no = 
0

xe

e

 = 
0

ye

e

ne = nz = 
0

ze

e

(70)

are known as ordinary and extraordinary refractive indices;
typical values for some uniaxial crystals are given in Table 22.1.
For a uniaxial medium, since ex = ey, the x and y directions can
be arbitrarily chosen as long as they are perpendicular to the
optic axis; i.e., any two mutually perpendicular axes (which are
also perpendicular to the z axis) can be taken as the principal
axes of the medium.7 On the other hand, if

ex = ey = ez isotropic (71)

Table 22.1 Ordinary and extraordinary refractive Indices for
some uniaxial crystals (Table adapted from Refs. 6 and 7).

Name of the crystal Wavelength no ne

Calcite 4046 Å 1.68134 1.49694
5890 Å 1.65835 1.48640
7065 Å 1.65207 1.48359

Quartz 5890 Å 1.54424 1.55335
Lithium niobate 6000 Å 2.2967 2.2082
KDP 6328 Å 1.50737 1.46685
ADP 6328 Å 1.52166 1.47685

then we have an isotropic medium and can choose any three
mutually perpendicular axes as the principal axis system. We
will assume the anisotropic medium to be nonmagnetic so
that

B = m0 H

where m0 is the free space magnetic permeability.
Let us consider the propagation of a plane electromag-

netic wave; for such a wave the vectors E, H, D, and B are
proportional to exp [i(k • r – wt)]. Thus

( ) ( )
0 0

( ) ( )
0 0

= =

= =

i t i t

i t i t

e e

e e

-w -w

-w -w

k r k r

k r k r

E E H H

D D B B

◊ ◊

◊ ◊

(72)

where the vectors E0, H0, D0, and B0 are independent of
space and time; k represents the propagation vector of the
wave, and w is the angular frequency. The wave velocity vw

(also known as the phase velocity) and the wave refractive
index nw are defined through

vw = 
k

w
 = c

nw
(73)

Thus

| k | = k = 
c

w
nw (74)

In this section, it is our objective to determine the possible
values of nw when a plane wave propagates through an aniso-
tropic dielectric. Now, in a dielectric medium

div D = 0 (75)

6 See, e.g., Ref. 5.
7 This follows from the fact that for a uniaxial medium

Dx = exEx and  Dy = eyEy = exEy

Now, if we rotate the x and y axes (about the z axis) by an angle q and call the rotated axes x¢ and y¢, then
Dx¢ = Dx cos q + Dy sin q = ex(Ex cos q + Ey sin q)

= exEx¢

Similarly Dy¢ = exEy ¢, implying that the x ¢ and y ¢ axes can also be chosen as principal axes.
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or
∂

∂
+
∂

∂
+
∂

∂

D
x

D

y
D
z

x y z  = 0

For a plane wave given by Eq. (72) the above equation be-
comes

i (kx Dx + ky Dy + kz Dz) = 0
or

D • k = 0 (76)

implying that D is always at right angles to k [see Eq. (44)].
Similarly since in a nonmagnetic medium div H = 0,

H will always be at right angles to k. (77)

Now, in the absence of any currents (i.e., J = 0) Maxwell’s
curl equations [see Eqs. (7) and (8) of Chap. 23] become

— ¥ E = –
t

∂

∂

B
 = iwB = iwm0H (78)

and

— ¥ H = 
t

∂

∂

D
 = –iwD (79)

where we have assumed the medium to be nonmagnetic (i.e.,
B = m0 H). Now, if

E = E0 e
i(k.r – wt)

then

(— ¥ E)x = yz
EE

y z

∂∂
-

∂ ∂

= (iky E0z – ikz E0y)ei(k.r – wt)

= i(ky Ez – kz Ey) = i(k ¥ E)x

Thus
— ¥ E = i(k ¥ E) = iwm0H

fi H = 
0

1

wm

(k ¥ E) (80)

and
— ¥ H = i(k ¥ H) = –iwD

fi D = 
1

w

(H ¥ k) (81)

Equations (80) and (81) show that

H is at right angles to k, E, and D (82)

implying

k, E, and D will always be in the same plane

Further [see Eq. (76)]

D is at right angles to k (83)

Substituting for H in Eq. (81), we get

D = 
2

0

1

w m

 [(k . k)E – (k . E)k] (84)

where we have used the vector identity

(A ¥ B) ¥ C = (A . C)B – (B . C)A

Thus

D = 
2

2
0

k

w m

 [E – ( �k  . E) �k ]

= 
2

2
0

wn

c m
[E – ( �k  . E) �k ] (85)

where

�k = k
k

(86)

represents the unit vector along k (see Fig. 22.32). Since

Dx = ex Ex = e0 nx
2 Ex

we have for the x component of Eq. (85)

2 2
0 0

2
x

w

c n

n

e m
 Ex = Ex – kx (kx Ex + ky Ey + kz Ez)

Since c
2 = 1/(e0 m0), we have

n

n
x

w
y z

2

2
2 2

- -

F

HG
I

KJ
k k  Ex + kx ky Ey + kx kz Ez = 0 (87)

where we have used the relation kx
2 + ky

2 + kz
2 = 1 (since �k

is a unit vector). Similarly,

kxkyEx + 
n

n

y

w
x z

2

2
2 2

- -

F

H
G

I

K
Jk k  Ey + kykzEz = 0 (88)

kxkzEx + kykzEy + 
n

n
z

w
x y

2

2
2 2

- -

F

HG
I

KJ
k k  Ez = 0 (89)

y

x

ψ
z (optic axis)

k, k^

Fig. 22.32 In uniaxial crystals, we can always choose the y

axis in such a way that ky = 0; the optic axis is
assumed to be in the z direction. If y is the angle
that k makes with the optic axis, then kx = k sin y
and kz = k cos y.
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Since the above equations form a set of three homogeneous
equations, for nontrivial solutions, we must have

2
2 2

2

2
2 2

2

2
2 2

2

x
y z x y x z

w

y
x y x z y z

w

z
x z y z x y

w

n

n

n

n

n

n

- k - k k k k k

k k - k - k k k

k k k k - k - k

  = 0 (90)

We should remember that we still do not know the possible
values of nw. Indeed, for a given direction of propagation
(i.e., for given values of kx, ky, and kz) the solution of
Eq. (90) gives us the two allowed values of nw. From Eq. (90)
it appears as if we will have a cubic equation in nw

2 which
would give us three roots of nw

2; however, the coefficient of nw
6

will always be zero and hence there will be always two
roots. We illustrate the general procedure by considering
propagation through a uniaxial medium.

22.12.1 Propagation in Uniaxial Crystals

In this section, we completely restrict ourselves to uniaxial
crystals for which

nx = ny = no and nz = ne (91)

As discussed earlier, for a uniaxial crystal, the x and y direc-
tions can be arbitrarily chosen as long as they are
perpendicular to the optic axis. Now, for a wave propagating
along any direction k, we choose our y axis in such a way
that it is at right angles to k; i.e., the y axis is normal to the
plane defined by k and the z axis; obviously, the x axis will
lie in the same plane (see Fig. 22.32). Thus we may write

kx = sin y ky = 0 kz = cos y

where y is the angle that the k vector makes with the optic
axis (see Fig. 22.32). Equations (87) to (89) therefore become

2
2

2
coso

w

n

n

Ê ˆ
- yÁ ˜Ë ¯

 Ex + sin y cos y Ez = 0 (92)

2

2 1o

w

n

n

Ê ˆ
-Á ˜Ë ¯

 Ey = 0 (93)

and

sin y cos y Ex + 
2

2
2

sine

w

n

n

Ê ˆ
- yÁ ˜Ë ¯

 Ez = 0 (94)

Once again we have a set of three homogeneous equations,
and for nontrivial solutions the determinant must be zero.
However, since two equations involve only Ex and Ez and
one equation involves only Ey, we have the following two
independent solutions:

First Solution: We assume Ey π 0; then Ex = 0 = Ez. From
Eq. (93) we obtain the solution

nw = nwo = no ordinary wave (95)

The corresponding wave velocity is

vw = vwo =
o

c

n
y-polarized o-wave (96)

Since the wave velocity is independent of the direction of
the wave, it is referred to as the ordinary wave (usually ab-
breviated as the o-wave) and hence the subscript o on nw

and vw. Further, for the o-wave, the D vector (and the E
vector) is y-polarized. Thus, for the o-wave, the D vector
(and the E vector) are perpendicular to the plane contain-
ing the k vector and the optic axis (see Fig. 22.33). This
was the recipe that was given through Eq. (43).

Second Solution: The second solution of Eqs. (92) to (94)
will correspond to

Ey = 0  Ex , Ez π 0 (97)

x

z (optic axis)

k, S

H

ψ θ=
D, E

Ordinary wave

Fig. 22.33 For the ordinary wave (in uniaxial crystals), the
D and E vectors are in the y direction; k and S
are in the same direction in the xz plane, and H
also lies in the xz plane.
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We use Eqs. (92) to (94) to obtain

E
E

z

x
= 

2 2 2/ cos

sin cos
o wn n - y

-

y y

 = 2 2 2

sin cos

/ sine wn n

y y
-

- y

Simple manipulations give

1
2nw

= 
1
2nwe

 = 
2 2

2 2

cos sin

o en n

y y
+ (98)

where the subscript e refers to the fact that the wave refrac-
tive index corresponds to the extraordinary wave. The
corresponding wave velocity is given by

v2
we = 

2

2
we

c

n
 = 

2

2
o

c

n
 cos2 y + 

2

2
e

c

n
sin2 y (99)

Since the wave velocity is dependent on the direction of
the wave, it is referred to as the extraordinary wave and hence the
subscript e. Of course, for the extraordinary wave, we must have

Dy = ey Ey = 0

From the above equation and Eq. (81), it follows that the
displacement vector D of the wave is normal to the y axis and
also to k, implying that the displacement vector D associ-
ated with the extraordinary wave lies in the plane
containing the propagation vector k and the optic axis and
is normal to k (see Fig. 22.34). This was the recipe given
through Eq. (44). Figure 22.34 also shows the Poynting vec-
tor S (= E ¥ H) which represents the direction of energy
propagation (i.e., the direction of the e-ray). The small dashes
on the extraordinary ray in Fig. 22.21(a) and (b) represent the
directions of the D vector. Let f and q represent
the angles that the S vector makes with the k vector and the
optic axis, respectively (see Fig. 22.33). To determine the
angle f, we note that

z z

x x

E

E

e

e

= 
D
D

z

x
 = –tan y

z (optic axis)

E

D x

S

k

H

φ
ψ θ

Extraordinary wave

Fig. 22.34 For the extraordinary wave (in uniaxial crystals),
E, D, S, and k vectors lie in the xz plane and H

will be in the y direction. S is at right angles to E
and H; D is at right angles to k and H.

and since

E
E

z

x
= –tan (f + y) (100)

we get

n

n
e

o

2

2
 tan (f + y) = tan y

or

f = tan–1 
2

2
tano

e

n

n

Ê ˆ
yÁ ˜Ë ¯

 – y

Obviously, for negative crystals no > ne and f will be posi-
tive, implying that ray direction is further away from the optic
axis as shown in Fig. 22.34.

Conversely, for positive crystals no < ne and f will be
negative, implying that the ray direction will be toward the
optic axis.

Example 22.3 We consider calcite for which (at l = 5893 Å
and 18ºC)

no = 1.65835 ne = 1.48640

If we consider k making an angle of 30º to the optic axis, then y =
30° and elementary calculations give f = 5.7°.

22.13 RAY VELOCITY AND RAY

REFRACTIVE INDEX

The direction of energy propagation (or the ray propagation)
is along the Poynting vector S which is given by

S = E ¥ H (101)

Thus, since the plane containing the vectors k, E, and D is
normal to H, the Poynting vector S will also lie in the plane
containing the vectors k, E, and D (see Figs. 22.33 and 22.34).
For the extraordinary wave, the direction of the propagation
of the wave �k  is not along the direction of energy propaga-
tion �s , where �s  is the unit vector along S. The ray velocity
(or the energy transmission velocity) vr is defined as

vr = 
S

u
(102)

where u is the energy density. Now,

u = 
1

2
 (D • E + B • H)

= 
1

2
 (D • E + m0 H • H) (103)

gha80482_ch22_335-374.PMD 1/28/2009, 3:00 PM363



Optics364
�

[see Eq. (58) of Chap. 23]. Substituting for H and D from
Eqs. (80) and (81), we obtain

u = 
1

2w
[(H ¥ k) • E + (k ¥ E) • H]

= 
1

2w
 [k • (E ¥ H) + k • (E ¥ H)]

= 
1

w

 k • S (104)

Thus Eq. (102) becomes

vr = 
Sw

.k S
 = 

cosk

w

f
 = 

cos
w

f

v
(105)

where f is the angle between �k  and �s  (see Fig. 22.34). The
ray refractive index nr is defined as

nr = 
r

c

v
 = 

w

c

v
 cos f = nw cos f (106)

To express E in terms of D, we refer to Fig. 22.34 and write

D = (D • �e ) �e  + (D • �s ) �s

where �e  is a unit vector along the direction of the electric
field E. Thus

D – (D • �s ) �s = (D • �e ) �e  = (D cos f) E
E

(107)

Similarly,

E = (E • �d ) �d  + (E • �k ) �k (108)

where �d  represents a unit vector along the displacement
vector D (see Fig. 22.34). If we now substitute for
E – (E • �k ) �k  in Eq. (85), we get

D = 
2

2
0

wn

cm
(E • �d) �d

or

D = 
2

2
0

wn

cm
E cos f (109)

Substituting in Eq. (107), we get

D – (D • �s ) �s = 
2

2
0

wn

cm
 cos2f E = 

2

2
0

rn

cm
E

where, in the last step, we used Eq. (106). Taking the x com-
ponent of the above equation (where x represents the
direction of one of the principal axes), we obtain

Dx – (Dxsx + Dysy + Dzsz) sx

= 
2

2
0

r
x

n
E

cm
 = 

2

2
0

r

x

n

cm e
Dx

If we use the relations

nx
2 = 

0

xe

e

 c2= 
0 0

1

e m
and sx

2 + sy
2 + sz

2 = 1

we get

2
2 2

2
r

y z
x

n
s s

n

Ê ˆ
- -Á ˜Ë ¯

Dx + sx syDy + sx szDz = 0 (110)

Similarly,

sx sy Dx + 
2

2 2
2
r

x z
y

n
s s

n

Ê ˆ
- -Á ˜

Ë ¯
Dy + sz s y Dz = 0 (111)

sx sz Dx + sz sy Dy + 
2

2 2
2
r

x y
z

n
s s

n

Ê ˆ
- -Á ˜Ë ¯

Dz = 0 (112)

As in the previous section, the above set of equations forms
a set of three homogeneous equations. For nontrivial solu-
tions, we must have

2
2 2

2

2
2 2

2

2
2 2

2

r
y z x y x z

x

r
x y x z z y

y

r
x z z y x y

z

n
s s s s s s

n

n
s s s s s s

n

n
s s s s s s

n

- -

- -

- -

 = 0 (113)

We still do not know the possible values of nr . Indeed for a
given ray direction (i.e., for given values of sx , sy, and sz ) the
solution of the above equation gives the two allowed values of nr

and hence two possible values of the ray velocities. We illus-
trate this by considering propagation through uniaxial media.

22.13.1 Ray Propagation in Uniaxial

Crystals

We next consider a uniaxial crystal with its optic axis along
the z direction. Thus

nx = ny = no and nz = ne (114)

As discussed in the previous section, x and y directions can
be arbitrarily chosen as long as they are perpendicular to the
z axis. We choose the y axis in such a way that the ray propa-
gates in the xz plane, making an angle q with the z axis
(see Fig. 22.34); thus

sx = sin q sy = 0 and sz = cos q (115)

and Eqs. (110) to (112) become

2
2

2
cosr

o

n

n

Ê ˆ
- qÁ ˜Ë ¯

Dx + sinq cosq Dz = 0 (116)
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2

2
1r

o

n

n

Ê ˆ
-Á ˜Ë ¯

Dy = 0 (117)

sin q cos q Dx + 
2

2
2 sinr

e

n

n

Ê ˆ
- qÁ ˜Ë ¯

Dz = 0 (118)

Obviously, one of the roots is given by

nr = nro = no

with Dx = 0 = Dz y-polarized (119)

The corresponding ray velocity is given by

vr = vro = c
nro

 = c
no

ordinary ray (120)

Since the ray velocity is independent of the direction of the
ray, it is referred to as the ordinary ray and hence the sub-
script o on vr and nr .

To obtain the other solution, we use Eqs. (116) and (118)
to get

z

x

D

D
= – 

2 2 2/ cos

sin cos
r on n - q

q q

 = – 2 2 2

sin cos

/ sinr en n

q q

- q

and obviously,
Dy = 0

Simple manipulations give

nr
2 = nre

2 = no
2 cos2q + ne

2 sin2q

extraordinary ray (121)
with

2

2

/

/
z e

x o

D n

D n
= 

E
E

z

x
 = – tan q  (Dy = 0) (122)

The corresponding ray velocity is given by [cf. Eq. (37)]

2

1

rv
 = 

2

1

rev
= 

2

2
ren

c
 = 

2 2

2 2 2 2

cos sin

/ /o ec n c n

q q
+ (123)

which corresponds to the extraordinary ray and hence the sub-
script e on vr and nr . As discussed in Sec. 22.5, the above
equation represents an ellipse, and if we rotate it about the
z axis (i.e., the optic axis), we get an ellipsoid of revolution.
These ray velocity surfaces are used in constructing
Huygens’ secondary wavelets while discussing propagation in
uniaxial crystals. For example, in Fig. 22.21(a) we have a plane
wave incident normally. The extraordinary wave also propa-
gates in a direction which is normal to the surface. However,
the extraordinary rays travel in the directions BE and DE¢ with
EE¢ representing the wave front for the extraordinary wave.
Returning to Eq. (120), we obtain (see Fig. 22.34)

tan q = – 
2

2

/

/
z e

x o

D n

D n
 = 

2

2
o

e

n

n
 tan y (124)

Thus when the wave propagates along a direction which
makes an angle y with the optic axis, the ray will propagate
along the direction

q = tan–1 
2

2 tano

e

n

n

È ˘
yÍ ˙

Í ˙Î ˚
(125)

As an example, for calcite

no= 1.65836 ne = 1.48641 with y = 30°

we obtain q ª 35.7°. Thus the ray direction is farther away
from the optic axis, consistent with what is shown in
Fig. 22.21. Note that q = f + y (see Example 22.3).

22.14 JONES’ CALCULUS

Through Jones’ calculus, it becomes quite straightforward to
determine the polarization state of the beam emerging from a
polarizer or a phase retarder (such as a QWP or a HWP). We
illustrate this through some simple examples. We use expo-
nential notation; for example, a y-polarized beam (propagating
in the x direction) is described by

E = �y E0 cos(kx – wt) = �y  Re (E0e
i(kx–wt)) (126)

Such a wave is represented by the vector

| y > = 
1

0

F
HG
I
KJ

E0 (127)

Similarly, a z-polarized wave is given by

| z > = 
0

1

F
HG
I
KJ

E0 (128)

Now, for an RCP (propagating in the x direction) we may write

Ey = E0 cos (kx – wt)

Ez = –E0 sin (kx – wt)

which in exponential notation can be written as

E = �yei(kx – wt) + �z ei(kx – wt + p/2)

Thus neglecting the phase factor,

| RCP > = / 2

1
ie p

Ê ˆ
Á ˜Ë ¯

 E0 = 
1

i

Ê ˆ
Á ˜Ë ¯

 E0 (129)

Similarly

| LCP > = 
1

i

Ê ˆ
Á ˜-Ë ¯

 E0 (130)
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Let us next consider a phase retarder such as a QWP or a
HWP or even an elliptic core fiber. As discussed in earlier
sections, the modes of such a device are linearly polarized
along the fast and slow axes, as shown in Fig. 22.24. The
electric fields along these directions are denoted by Ef and
Es; the subscripts f and s denote the fast and slow axes,
respectively. As an example, we consider a calcite QWP for
which no > ne. The extraordinary wave is z-polarized (i.e.,
along the optic axis), and its velocity  (= c/ne) is more than
the velocity of the o-wave (= c/ne). Thus (for calcite) the fast
axis is along the z direction, and the slow axis is along the
y direction as shown in Fig. 22.24.

The slow and fast components are the modes of the retar-
dation plate; i.e., after propagating through the retardation
plates (of thickness d), the fields are given by

Es¢ = eiksdEs

Ef¢ = eikf dEf

where

k s = 
0

2p

l
ns and kf = 

0

2p

l
 nf

(For calcite ns = no = 1.65836 and nf = ne = 1.48641 at l0 =
5893 Å.) Since only the relative phase difference is of inter-
est, we may write

Es¢ = eiFEs

Ef¢ = Ef

where

F = 
0

2p

l
(ns – nf)d

is the phase difference introduced by the phase retarder. The
calcite plate is therefore represented by the following matrix:

0

0 1

ie FÊ ˆ
Á ˜Ë ¯

Thus we may write

s

f

E

E

¢Ê ˆ
Á ˜¢Ë ¯

= 
0

0 1

i
s

f

Ee
E

FÊ ˆ Ê ˆ
Á ˜ Á ˜Ë ¯Ë ¯

As mentioned earlier, y and z axes are the slow and fast axes,
respectively. Thus

y

z

E

E

¢Ê ˆ
Á ˜¢Ë ¯

= 
0

0 1

i
y

z

Ee

E

FÊ ˆ Ê ˆ
Á ˜ Á ˜Ë ¯Ë ¯

For a y-polarized wave

Ey = E0 Ez = 0

and a y-polarized wave will remain y-polarized (except for
change of phase). Similarly, a z-polarized wave will remain
z-polarized—these are, of course, the modes of the phase

retarder. Now, for a QWP, F = / 2p , giving

y

z

E

E

¢Ê ˆ
Á ˜¢Ë ¯

= 
y

z

iE

E

Ê ˆ
Á ˜Ë ¯

For a linearly polarized beam with E at p/4 with the y and z axes,

Ey = 
1

2
E0 and Ez = 

1

2
E0

Thus

y

z

E

E

¢Ê ˆ
Á ˜¢Ë ¯

= 0

1 2

i EÊ ˆ
Á ˜Ë ¯

which is a LCP. If this LCP is incident on a similarly oriented
calcite QWP, the output beam will be

y

z

E

E

¢¢Ê ˆ
Á ˜¢¢Ë ¯

= 00

0 1 1 2

i i EÊ ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

 = 0 1

12

E -Ê ˆ
Á ˜Ë ¯

which represents a LP beam with its E oscillating at right
angles to the direction of the incident polarization. Note that
two QWPs put together makes a HWP.

Let us next consider the incidence of a LEP given by

Ey = 
E0

2
 cos (kx – wt)

Ez = 3
2

 E0 sin(kx – wt)

= ( )2
0

3
Re

2
i kx t

E e
p

-w -

Thus the beam coming out of the QWP is given by

¢

¢

F
HG
I
KJ

E

E
y

z
= 

1
2

0

0

0 1 3 2

i
E

i

Ê ˆÊ ˆ
Á ˜Á ˜Ë ¯ -Ë ¯

which is LP with its E making an angle of 120° with the z axis.
Thus the Jones matrices for a QWP would be

0

0 1

iÊ ˆ
Á ˜Ë ¯

when the fast axis is horizontal (see Fig. 22.24) and

0

0 1

i-Ê ˆ
Á ˜Ë ¯

when the slow axis is horizontal. Similarly,

1 0

0 0

Ê ˆ
Á ˜Ë ¯  and 

0 0

0 1

Ê ˆ
Á ˜Ë ¯

will represent the Jones matrix for the y polarizer and z polarizer
respectively. It is left as an exercise to show that the matrix

cos sin

sin cos

q qÊ ˆ
Á ˜- q qË ¯
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will correspond to a polarization rotator; thus if Ey/Ez = tan a
then E’y/E’z = tan (a + q).

The use of Jones’ matrices makes it very straightforward
to consider more complicated cases such as two QWPs, with
their axes at an angle.

22.15 FARADAY ROTATION

Consider a linearly polarized light propagating through a
medium. If a magnetic field is applied along the direction of
propagation of the polarized wave, then the plane of polar-
ization gets rotated—this rotation is usually referred to as
Faraday rotation after the famous physicist Michael Fara-
day who discovered this phenomenon in 1845. In the
presence of a (longitudinal) magnetic field, the modes of
propagation are the left circularly polarized (LCP) wave and
the right circularly polarized (RCP) wave (see Fig. 22.35 and
Sec. 22.17). Thus the situation is somewhat similar to the
phenomenon of optical activity discussed in Sec. 22.8. The
angle q by which the plane of polarization rotates is given by
the empirical formula

q = VHl

H RCP

(a)

(b)

(c)

z

z

z

RCP

LCP

LP
LP = RCP + LCP

LP

LCPH

H

Fig. 22.35 An electromagnetic wave is propagating through

a dielectric. If we apply a static magnet field

along the direction of propagation of  the wave,

the modes are now Right Circularly Polarized

(RCP) and Left Circularly Polarized (LCP).

(a) Thus a right circularly polarized wave will

propagate as a right circularly polarized wave

with a particular velocity, and (b) a left circularly

polarized wave will also propagate as a left

circularly polarized wave but with a slightly dif-

ferent  velocity. (c) If a linearly polarized wave is

incident, the direction of the electric vector will

get rotated.

where H is the applied magnetic field, l is the length of the
medium, and V is called the Verdet constant. For silica V ~

2.64 ¥ 10–4 deg /A ~  4.6 ¥ 10–6 rad/A.

22.15.1 THE FARADAY ISOLATOR

One of the very important applications of Faraday rotation is
in the construction of the device known as the Faraday iso-
lator [see Figs. 22.36(a) and (b)]. Faraday isolators allow light
to pass through only in one direction and are extensively
used to avoid optical feedback. In Fig. 22.36, P1  and P2 are

Unpolarized
light

q q = 45∞
P2

P1

x

x�

y

z

Wave propagating
in the +z direction

Faraday
rotator

(a)

Unpolarized
light

q q = 45∞
P2

P1

x

x�

y

No light will
come out

Wave propagating
in the -z direction

Faraday
rotator

(b)

Fig. 22.36 P
1
 and P

2
 are two linear polarizers  with pass

axes at 45° to each other. (a) The light beam

incident from the left gets polarized along

the x direction. The x-polarized light passes

through the Faraday rotator which rotates the

state of polarization by 45°, which is along

the pass axis of the second polarizer P
2
; thus

the light passes through. (b) For a light beam

incident from the right (with arbitrary state of

polarization), it will get polarized along the

x’ direction. The x’-polarized light passes

through the Faraday rotator which will rotate

the state of polarization by 45°. Thus the beam

coming out of the Faraday rotator is polarized

along the y direction and is perpendicular to the

pass axis of the second polarizer P
1
—thus no

light will pass through P
1
.
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two linear polarizers  with pass axes at 45° to each other.
The Faraday rotator is chosen to give a 45° rotation. The
light beam incident from the left gets polarized along the
x direction. The x-polarized light passes through the Fara-
day rotator which rotates the state of polarization by 45°.
Thus the beam coming out of the Faraday rotator is polar-
ized along the x’ direction and is along the pass axis of the
second polarizer P2 [see Fig. 22.36(a)]. Thus the light
passes through, and for a good isolator the transmission
can be very high. Now, if an unpolarized light beam is inci-
dent from the right, it will get polarized along the
x¢ direction. The x¢-polarized light passes through the Faraday
rotator which will further rotate the state of polarization
by 45°. Thus the beam coming out of the Faraday rotator is
polarized along the y direction and is perpendicular to the
pass axis of the second polarizer P1—thus no light will pass
through P1  [see Fig. 22.36(b)]. Note that if the magnetic
field is along the +z direction, then for the wave propagat-
ing along the +z direction [see Fig. 22.36(a)] the rotation will
be in the clockwise direction. On the other hand, for the
wave propagating along the –z direction [see Fig. 22.36(b)],
the magnetic field is opposite to the direction of propaga-
tion and the Faraday rotation will be in the counter-
clockwise direction.

In the wavelength region 0.7 to 1.1 mm one often uses
terbium-doped borosilicate glass. Faraday isolators are exten-
sively used in many fiber-optic devices, and in the
wavelength range of 1.3 to 1.55 mm (which is the wavelength
range of interest in fiber-optic communication systems) one
often uses YIG (yttrium iron garnet) crystals.

22.15.2 LARGE CURRENT
MEASUREMENT USING
FARADAY ROTATION

The Faraday rotation has a very important application in mea-
suring large currents using single-mode optical fibers. We
consider a large length of a single-mode fiber wound in many
turns in the form of a loop around a current-carrying conductor
(see Fig. 22.37 and the corresponding figure (Fig. 45) in the
insert at the back of the book. If a current I is passing through
the conductor, then by Ampere’s law

d⋅∫H l  = NI

where  N represents the number of loops of the fiber around the
conductor. Thus if a linearly polarized light is incident on the
fiber, then its plane of polarization will get rotated by the angle

q = VNI

The rotation q does not depend on the shape of the loop.
As an example, for I = 200 A and N = 50, q ª 0.26°. The light

from the fiber is allowed to fall on a Wollaston prism, and the
outputs are measured separately; the Faraday rotation q is
given by

q = constant 
I I
I I
1 2

1 2

-

+

where I1, and I2 are the currents in the electronic processor
due to the two beams coming out of the Wollaston prism.
Figure 22.38 shows an actual variation of the output with the
current passing through the conductor. Such a setup can be
used to measure very high currents (~ 10,000 A).

Current-carrying
conductor

Single-mode fiber

Electronic
processor

I2

I1

I

Wollaston prism

Fig. 22.37 A single-mode fiber wound helically around a
current-carrying conductor. The rotation of the
plane of  polarization is detected by passing the
light through a Wollaston prism and then an
electronic processor.
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Fig. 22.38 A typical variation of the output signal with
current [Figure kindly provided by Dr. Partha-
sarathi Palai].
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22.16 THEORY OF OPTICAL

ACTIVITY

As mentioned earlier, in an isotropic dielectric, the D vector
is in the same direction as E and we have

D = eE = e0n2 E (131)

where e0 (= 8.854 ¥ 10–12 m k s units) is the permittivity of
free space and ( )0= /n e e  is the refractive index of the
medium. Now, if we dissolve cane sugar in water, the medium
is still isotropic; however, because of the spiral-like structure
of sugar molecules, the relation between D and E is given by

D = e0n
2E + igk̂  ¥ E

= e0n
2[E + iak̂  ¥ E] (132)

where

a = 
2

0

g

ne

and k̂  is the unit vector along the direction of propagation
of the wave. The parameter a can be positive or negative,
but it is usually an extremely small number (<< 1). Without
any loss of generality, we may assume propagation along the
z axis so that kx = ky = 0 and kz = 1, giving

 �k  ¥ E = 

ˆ ˆ ˆ

0 0 1

x y zE E E

Ê ˆ
Á ˜
Á ˜
Á ˜Ë ¯

x y z

 = – �x  Ey + �yEx

Thus

D

D

D

x

y

z

F

H

G
G

I

K

J
J

= 

2
0

2
0

2
0

0

0

0 0

n ig

ig n

n

Ê ˆe -
Á ˜

eÁ ˜
Á ˜eË ¯

 

E

E

E

x

y

z

F

H

G
G

I

K

J
J

(133)

The e matrix is still Hermitian, but there is a “small” off-diagonal
imaginary element. The presence of these off-diagonal terms
give rise to optical activity. We rewrite Eq. (85)

 
2

2
0

wn

c m
[E – ( �k .E) �k ] = D

We write the x and y components of the above equation,
and since kx = 0 = ky  and k z = 1, we get

2

2
0

wn

c m
 Ex = Dx = e0n2Ex – igEy

and

2

2
0

wn

c m
 Ey = Dy = igEx + e0n2Ey

Thus

n

n
w
2

2 1-

F

HG
I

KJ
 Ex = –ia Ey

and

n

n
w
2

2 1-

F

HG
I

KJ
 Ey = ia Ex

where we used the fact that  c = 1/ 0 0e m . For nontrival

solutions

n

n
w
2

2

2

1-

F

HG
I

KJ
= a 2

giving

nw = n 1 ± a (134)

and
Ey = ±iEx (135)

We write the two solutions as nr ( )= 1n + a  and

nl ( )= 1n - a ; the corresponding propagation constants
are given by

k = kr = rn
c

w

 = 
c

w
1n + a (136)

and

k = kl = ln
c

w

 = 
c

w
1n - a (137)

For  nw = nr , if

Ex = E0e
i(kr z–w t)

then

 Ey = + iEx = 
( )/ 2

0
ri k z tE e - w + p

which represents a RCP (right circularly polarized) wave and
hence the subscript r. Similarly, For nw = nl , if

Ex = E0e
i(kl z–w t)

then

Ey = –iEx = 
( )/2

0
li k z tE e - w - p

which represents a LCP (left circularly polarized) wave and
hence the subscript l.  The RCP and LCP waves are the two
modes of the optically active substance, and for an arbitrary
incident state of polarization, we must write it as a superpo-
sition of the two modes and study the independent
propagation of the two modes (see Sec. 22.8). Now,

nr – nl = ( )1 1n + a - - a (138)

ª na

If d grams of pure cane sugar is dissolved in 100 g of water
solution, then for l = 5893 Å (sodium light)

nr – nl ª 2.2 ¥ 10–6 d
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Thus, if  d = 5 g, then nr – nl ª 1.1 ¥ 10–5 and a ª 0.83 ¥ 10–5

where we have assumed n ª 4/3. Further, the angle of rota-
tion is given by [see Eq. (58)]

F = 
0

p

l
 (nl – nr)z (139)

The specific rotation r is defined as the angle through
which the plane of polarization rotates in traversing a dis-
tance of 1 cm; thus

r = 
0

p

l
(nl – nr) (140)

where l0 is measured in centimeters. For the sugar solution
mentioned above (5 g dissolved in 100 g of water solution)

r ª –0.59 rad cm–1

the negative sign indicating that the direction of polarization
rotates in the counterclockwise direction.

22.16.1 Optical Activity in Quartz

One observes optical activity for a plane polarized wave propa-
gating along the optic axis of a quartz crystal. The general
theory of propagation of electromagnetic waves in such crys-
tals is quite difficult; however, if the propagation is not along
the optic axis, the modes are very nearly linearly polarized and
one may use the analysis discussed in  Sec. 22.12. If the propa-
gation is along the z axis, then we may write [cf. Eq. (133)]

x

y

z

D

D

D

Ê ˆ
Á ˜
Á ˜
Á ˜Ë ¯

= 

2
0

2
0

2
0

0

0
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o

o

e

n ig

ig n
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Ê ˆe -
Á ˜

eÁ ˜
Á ˜eË ¯
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z

E

E

E

Ê ˆ
Á ˜
Á ˜
Á ˜Ë ¯
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where no and ne are constants of the crystal. Carrying out an
identical analysis, we get

nr ª no ( )1
21+ a

and

 nl ª no ( )1
21- a

giving

nr – nl ª noa

and

r = 
0

( )l rn n
p

-
l

 ª 
0

onp a

l

where l0 is measured in centimeters. For quartz,

r ª ± 8.54  rad cm–1 at l0 = 4046.56 Å

ª ± 3.79  rad cm–1 at l0 = 5892.90 Å
ª ± 2.43  rad cm–1 at l0 = 7281.35 Å

(data adapted from Ref. 7). In quartz, we can have nr > nl or
nr < nl. For l0 = 4046.56 Å, we readily get

|nl – nr | ª 1.1 ¥ 10–4

We may compare this with the value of   ne – no ª 0.9 ¥ 10–2.
At higher wavelengths, the value of |nr – nl| is much less.

22.17 THEORY OF FARADAY

ROTATION

As discussed in Sec. 7.5, the equation of motion for the elec-
tron, in the presence of an external electric field E, is given
by [see Eq. (62) of Chap. 7]:

2
2
02

d

dt
+ w

r
r = -

q
m

E (142)

In the presence of a static magnetic field B, we have an
additional v ¥ B term:

2
2
02

d

dt
+ w

r
r  + ¥

q
m

�r B = –
q
m

E (143)

where r = x �x  + y �y  + z �z  represents the position vector

of the electron; �x , �y , and �z  are the unit vectors, and
q (= +1.6 ¥ 10–19 C) is the magnitude of the electronic charge.
We assume the magnetic field to be in the z direction.

Bx = 0 = By and Bz = B0 (144)
Thus

�r B¥  = 

� � �x y z

dx
dt

dy
dt

dz
dt
B0 0 0

 = ˆ ˆ
dy dx

dt dt
Ê ˆ-Á ˜Ë ¯

x y B0 (145)

Now, for a circularly polarized light wave propagating
along the z  direction

E± = ( �x  ± i �y)E0 e
i(kz – w t) (146)

where the upper and lower signs correspond to RCP and
LCP, respectively. If we now write the x and y components of
Eq. (143), we get

2
2 0
02

qBd x dy
x

m dtdt
+ w + = -

q
m

E0 e
i(kz – w t) (147)

and

2
2 0
02

qBd y dx
y

m dtdt
+ w - = ∓ i

q
m

E0 e
i(kz – w t) (148)

where the upper and lower signs correspond to RCP and
LCP, respectively. Writing

x = x0e
i(kz – w t) and y = y0ei(kz – w t)

gha80482_ch22_335-374.PMD 1/28/2009, 3:00 PM370



Polarization and Double Refraction 371
�

we get

2 2
0( )

2 2
0 0 0 0

2 2
0 0 0 0

( ) =

( ) =
c

c

c
i

q
x i y E

m
q

y i x i E
m

¥ w - w

¥ - w w

¸
w - w + w w + ÔÔ

˝
Ôw - w - w w ±
Ǫ̂

where

wc = 
qB
m

0

is the electron cyclotron frequency. If we multiply Eq. (149)
by w2 – w0

2 and Eq. (150) by –iwcw and add the two equa-
tions we get

[(w2 – w 0
2)2 – wc

2w2]x0 = 
q
m

E0[(w2 – w 0
2)  ± wcw]

giving

x0 = 0
2 2

0[( ) ]c

qE

m ∓w - w w w

Similarly,

 y0 = ±i 0
2 2

0[( ) ]c

qE

m ∓w - w w w

 = ±ix0

Thus the polarization is given by

P = –Nqr

= –Nq ◊ 0
2 2

0

ˆ ˆ( )

[( ) ]c

qE i

m

x y
∓

±

w - w w w
 ei(kz – w t)

= cE±

where the susceptibility c is given by

c = 
2Nq

m
 ◊ 2 2

0

1

( ) cw - w ± w w

Thus the modes are circularly polarized, and the correspond-
ing refractive indices are given by [cf. Eq. (86) of Chap. 7]

 n±
2 = 1 + 

2

2 2
0 0

1

( ) c

Nq

m
◊

e w - w ±w w

where the upper and lower signs correspond to RCP and
LCP, respectively.

Summary

� For an electromagnetic wave propagating in the z direction,
let the x and y components of the electric field be given by

Ex = a1 cos (kz – w t)

Ey = a2 cos (kz – w t + q)

1. If  a2 = 0, we have an x-polarized wave. If  a1 = 0, we
have a y-polarized wave. For  q = np, n = 0, ±1, ±2, . . .,
we again have a linearly polarized wave with the electric
vector making an angle with the x axis—this angle is ei-
ther + tan–1

2 1( / )a a  or – tan–1
2 1( / )a a .

2. If a1 = a2 and q = /2, 5 /2, 9 /2p p p , . . ., we have a RCP

wave; for q = 3 /2, 7 /2,p p . . .  we have a LCP wave.
3. In general, we have either a LEP (left elliptically polar-

ized) wave or a REP (right elliptically polarized) wave.

� Linearly polarized light can be produced by various methods:

1. By allowing an unpolarized light to pass through a
polaroid.

2. By allowing an unpolarized light to fall on a dielectric

surface at the Brewster angle 1 2

1

= tanp
n

n
-

Ê ˆ
q Á ˜Ë ¯

.

3. By passing through a Nicol prism.

� If an unpolarized plane wave is incident on an uniaxial
crystal, the plane wave will split into two plane waves. One
is referred to as the ordinary wave (usually abbreviated as
the o-wave), and the other is referred to as the extraordinary
wave (usually abbreviated as the e-wave). For both waves,
the space and time dependence of the vectors E, D, B, and H
can be assumed to be of the form ei(k.r – wt) where k denotes
the propagation vector and represents the direction normal
to the phase fronts. In general, k vectors for the o- and
e-waves will be different. Further,

1. Both ordinary and extraordinary waves are linearly po-
larized.

2. D • k = 0 for both o- and e-waves.
3. For the o-wave, the D vector is at right angles to the

optic axis as well as to k.
4. On the other hand, for the e-wave, D lies in the plane

containing k and the optic axis, and of course, D • k = 0.

� Consider a uniaxial crystal whose optic axis lies on the sur-
face of the crystal. If the thickness of the crystal is such that

a phase difference of /2p  is introduced between the ordinary

and extraordinary waves, then the plate is said to be a quarter
wave plate (usually abbreviated as a QWP). If a linearly
polarized wave (with its E making 45º with the optic axis) is
allowed to fall normally on a QWP, the output is a circularly
polarized wave.

� When a linearly polarized light beam propagates through an
optically active medium such as sugar solution, then as the
beam propagates, its plane of polarization rotates.

� In a uniaxial crystal, the wave velocities associated with the
ordinary and extraordinary waves are given by

vw = vwo = 
c
no

o-wave

v 2
we = c

nwe

2

2  = c

no

2

2  cos2 y + c

ne

2

2  sin2 y e-wave

(149)

(150)
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where y is the angle that k makes with the optic axis and
n0 and ne are constants of the crystal. On the other hand, the
corresponding ray velocities are given by

vr = vro = 
c
no

o-ray

2

1

rv
= 

2

1

rev
 = 

2

2
ren

c
 = 

2 2

2 2 2 2
0

cos sin

/ / ec n c n

q q
+ e-ray

where q is the angle that the direction of energy propagation
(direction of the Poynting vector) makes with the optic axis.

Problems

22.1 Discuss the state of polarization when the x and y components
of the electric field are given by the following equations:

(a) 0

0

= cos ( )

1
= cos ( )

2

x

y

E E t k z

E E t k z

w +

w + + p

(b)
0

0

= sin ( )

= cos ( )
x

y

E E t k z

E E t k z

w +

w +

(c)
0

0

= sin
3

= sin
6

x

y

E E k z t

E E k z t

pÊ ˆ
- w +Á ˜Ë ¯

pÊ ˆ
- w -Á ˜Ë ¯

(d) 0

0

= sin
4

1
= sin ( )

2

x

y

E E k z t

E E k z t

pÊ ˆ
- w +Á ˜Ë ¯

- w

In each case, plot the rotation of the tip of the electric vec-
tor on the plane z = 0.

[Ans: (a) Linearly polarized, (b) right
circularly polarized, (c) left circularly

polarized, and (d) left elliptically polarized.]

22.2 The electric field components of a plane electromagnetic
wave are

Ex = 2E0 cos (w t – kz + f) Ey = E0 sin (w t – kz)

Draw the diagram showing the state of polarization (i.e.,
circular, plane, elliptical, or unpolarized) when

(a) f = 0 (b) f = p/2 (c) f = p/4

22.3 Using the data given in Table 22.1, calculate the thickness
of quartz half wave plate for l0 = 5890 Å.

[Ans: 32.34 mm]

22.4 A right circularly polarized beam is incident on a calcite half
wave plate. Show that the emergent beam will be left circu-
larly polarized.

22.5 What will be the Brewster angle for a glass slab (n = 1.5)
immersed in water (n = 4/3)?

[Ans: 48.4°]

22.6 Consider the normal incidence of a plane wave on a quartz
quarter wave plate whose optic axis is parallel to the sur-
face (see Fig. 22.24). Thus the optic axis is along the z axis,
and the propagation is along the x axis. Show that Ey pro-
pagates as an o-wave and Ez as an e-wave.

(a) Assuming

0

0

= cos

= cos

y

z

E E t

E E t

w

w

at x = 0

show that the emergent light is right circularly polarized.
(b) On the other hand, if one assumes

0

0

= sin

= cos

y

z

E E t

E E t

w

w

at x = 0

show that the emergent beam is linearly polarized.

22.7 Show that the angle between vectors D and E is the same as
between the Poynting vector S and the propagation vector k.

22.8 Consider the propagation of an extraordinary wave through
a KDP crystal. If the wave vector is at an angle of 45° to the
optic axis, calculate the angle between S and k. Repeat the
calculation for LiNbO3. The values of no and ne for KDP
and LiNbO3 are given in Table 22.1.

[Ans: 1.56° and 2.25°]

22.9 Prove that when the angle of incidence corresponds to the
Brewster angle, the reflected and refracted rays are at right
angles to each other.

22.10 (a) Consider two crossed Polaroids placed in the path of
an unpolarized beam of intensity I0 (see Fig. 22.6). If
we place a third Polaroid in between the two, then, in
general, some light will be transmitted through. Ex-
plain this phenomenon.

(b) Assuming the pass axis of the third Polaroid
to be at 45° to the pass axis of either of the Polaroids,
calculate the intensity of the transmitted beam. Assume
that all the Polaroids are perfect.

[Ans: 1
8 I0]

22.11 A quarter wave plate is rotated between two crossed
Polaroids. If an unpolarized beam is incident on the first
Polaroid, discuss the variation of intensity of the emergent
beam as the quarter wave plate is rotated. What will hap-
pen if we have a half wave instead of a quarter wave plate?

22.12 In Prob. 22.11, if the optic axis of the quarter wave plate
makes an angle of 45° with the pass axis of either Polaroid,
show that only one-quarter of the incident intensity will be
transmitted. If the quarter wave plate is replaced by a half
wave plate, show that one-half of the incident intensity
will be transmitted through.
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22.13 For calcite the values of no and ne for l0 = 4046 Å are 1.68134
and 1.49694, respectively; corresponding to l0 = 7065 Å the
values are 1.65207 and 1.48359, respectively. We have a calcite
quarter wave plate corresponding to l0 = 4046 Å. A left circu-
larly polarized beam of l0 = 7065 Å is incident on this plate.
Obtain the state of polarization of the emergent beam.

22.14 A HWP is introduced between two crossed Polaroids P1

and P2. The optic axis makes an angle of 15° with the pass
axis of P1 as shown in Fig. 22.39(a) and (b). If an unpolar-
ized beam of intensity I0 is normally incident on P1 and if
I1, I2, and I3 are the intensities after P1, after HWP, and
after P2, respectively, then calculate I1/I0, I2/I0, and I3/I0.

[Ans.: 1
2 , 1

2 , 1
8 ]

P1

P2

Polaroid HWP

I0
I1

I2
I3

(a) (b)

y z

x

15°
y

z Pass axis
of P1

Fig. 22.39

22.15 Two prisms of calcite (no > ne) are cemented together as
shown in Fig. 22.40, so as to form a cube. Lines and dots
show the direction of the optic axis. A beam of unpolarized
light is incident normally from region I. Assume the angle
of the prism to be 12°. Determine the path of rays in re-
gions II, III, and IV indicating the direction of vibrations
(i.e., the direction of D).

Air I
Air

III

II

IV

Fig. 22.40

22.16 A l/6 plate is introduced in between the two crossed
polarizers in such a way that the optic axis of the
l/6 plate makes an angle of 45° with the pass axis of the
first polarizer (see Fig. 22.41). Consider an unpolarized
beam of intensity I0 to be incident normally on the polar-
izer. Assume the optic axis to be along the z axis and the
propagation along the x axis. Write the y and z components
of the electric fields (and the corresponding total intensi-
ties) after passing through (a) P1, (b) l/6 plate, and (c) P2.

I0 I

P1 P2λ/6 plate

Fig. 22.41

22.17 A beam of light is passed through a polarizer. If the polar-
izer is rotated with the beam as an axis, the intensity I of the
emergent beam does not vary. What are the possible states
of polarization of the incident beam? How can you ascer-
tain its state of polarization with the help of the given
polarizer and a QWP?

22.18 Consider a Wollaston prism consisting of two similar
prisms of calcite (no = 1.66 and ne = 1.49) as shown in
Fig. 22.29, with the angle of the prism now equal to 25°.
Calculate the angular divergence of the two emerging beams.

22.19 (a) Consider a plane wave incident normally on a calcite
crystal with its optic axis making an angle of 20° with
the normal [see Fig. 22.21(a)]. Thus y = 20°. Calcu-
late the angle that the Poynting vector will make
with the normal to the surface. Assume no ª 1.66 and
ne ª 1.49.

(b) In (a) assume the crystal to be quartz with no ª 1.544
and ne ª 1.553.

[Ans: (a) 4.31°]

22.20 Consider the incidence of the following REP beam on a
sugar solution at z = 0:

Ex = 5 cos wt Ey = 4 sin wt

with l = 6328 Å. Assume

nl – nr = 10–5 and nl = 4/3

Study the evolution of the SOP of the beam.

22.21 Consider the incidence of the above REP beam on an ellip-
tic core fiber with

0

x

k

b
ª 1.506845 and

0

y

k

b
 ª 1.507716

Calculate the SOP at z = 0.25Lb, 0.5Lb, 0.75Lb, and Lb.

22.22 When the optic axis lies on the surface of the crystal and in
the plane of incidence, show (by geometrical consider-
ations) that the angles of refraction of the ordinary and the
extraordinary rays (which we denote by ro and re, respec-
tively) are related through the following equation:

tan
tan

r
r
o

e
= 

n
n

o

e
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23.1 MAXWELL’S EQUATIONS

All electromagnetic phenomena can be said to follow from
Maxwell’s equations. These equations are based on experimental
observations and are given by

— • D = r (1)
— • B = 0 (2)

¥ E— =
t

∂
-
∂

B
(3)

and ¥ H— =
t

D∂
∂

+ J (4)

where r represents the charge density and J the current den-
sity; and E, D, B, and H represent the  electric field, electric
displacement, magnetic induction, and magnetic field, respec-
tively. Further,

— • D ∫  div D
and

curl¥ ∫E E—

Equations (1) through (4)  can be solved only if the “constitutive
relations” are known which relate D to E, B to H, and J to E; the
constitutive relations depend on the properties of the medium,
field strengths, etc. For example, for an anisotropic medium e is a
tensor of the second tank (see Sec. 22.12); for high field strengths
e may itself depend on E. For a linear, isotropic, and homoge-
neous medium, the constitutive relations are given by

D = eE (5)
 B = mH (6)

and
 J = sE (7)

where e, m, and s denote, respectively, the dielectric permit-
tivity, magnetic permeability, and conductivity of the medium.
For a charge-free dielectric, we may write

r = 0 (8)
m = m0 (9)

and
J = 0 (10)

where m0 (= 4p ¥ 10–7 N s2 C–2) represents the magnetic perme-
ability of vacuum. In many problems of interest, the propagation
is in a dielectric medium, and the above constitutive relations
are valid. If we use the above relations, Maxwell's equations
simplify to

— • E = 0 (11)
— • H = 0 (12)

0 t

H
E

∂
¥ = -m

∂
— (13)

and =
t

E
H

∂
¥ e

∂
— (14)

23.2 PLANE WAVES IN A
DIELECTRIC

In Sec. 23.3, using the above equations, we will derive the
wave equation; however, in this section we will show that
plane wave solutions satisfy Maxwell’s equations and will
study the properties of plane waves. For plane waves propa-
gating in the direction of k, the electric and magnetic fields can
be written in the form

E = E0 e
i(k•r – wt) (15)

and     H = H0 e
i(k•r – wt) (16)

where E0 and H0 are space- and time-independent vectors,
but may, in general, be complex. Now

— • E = + +yx z
EE E

x y z

∂∂ ∂

∂ ∂ ∂

and since

Ex = E0x ei(k•r – wt) = E0x
( + + – )x y zi k x k y k z t

e
w

Maxwell could say, when he was finished with his discovery, “Let there be electricity and
magnetism, and there is light.”

—Richard Feynman

ELECTROMAGNETIC WAVES
Chapter
Twenty-

Three
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we get

xE

x

∂

∂
= ikxE0x

( – )x y zi k x k y k z t
e

+ + w

Thus the equation —  • E = 0 gives

i(kx E0x + ky E0y + kz E0z) ei(k•r – wt) = 0 (17)

implying

k • E = 0 (18)

Similarly, the equation  —  • H = 0 gives

k • H = 0 (19)

The above two equations tell us that E and H are at right angles
to k; thus the waves are transverse. Now, using Eq. (15) gives

   (— × E)x  = 
yz

EE

y z

∂∂
-

∂ ∂
= i(kyE0z – kx E0y) e

i(k.r – wt)

 = i(k × E )x

Thus Eq. (13) gives

i (k × E)x = iwm0 Hx fi Hx = 
0

× x

wm

(k E)
(20)

Similarly, we can write for the y and z components of  Eq. (13).
Thus we obtain the vector equation

H = 
0

×

wm

k E
(21)

Similarly, Eq. (14) would give us

E = 
×H k
we

(22)

showing that k, E, and H are at right angles to one another
(see Fig. 23.1). From Eq. (21) we readily get

0 0
0

=
k

H E
wm (23)

Substituting for H from Eq. (21) into Eq. (22), we get

E =  2
0

1

w em

[(k × E) × k]

  = 2
0

1

w em

 [(k • k)E – (k • E) × k] (24)

where we have used the vector identity

(A × B) × C = (A • C)B – (B • C)A (25)

Since k • E = 0, we get

E = 
2

2
0

k

w em

E

Thus

k = 0w em (26)

and  the speed of propagation of the electromagnetic wave is
given by

v = 
0

1
=

k

w

em
(27)

In free space
e = e0 = 8.8542 ¥ 10–12  C2 N–1 m–2 (28)

m = m0 = 4p ¥ 10–7  N s2 C–2 (29)

and

v = c  = 
–12 –7

1

8.8542 10 4 10¥ ¥ p ¥

= 2.99794 ¥ 108 m s–1 (30)

The above equations show that the plane wave solutions
given by Eqs. (15) and (16) do indeed satisfy  Maxwell’s equa-
tions where k, E, and H are at right angles to one another
and related through Eqs. (21) to (23). Further, the speed of
propagation of the electromagnetic wave is given by Eq. (27). If
we assume the electric vector to be along the x axis, then the
magnetic vector will be along the y axis so that we may write

E = x̂E0 e
i( kz – wt) (31)

H = ŷH0 e
i(kz – wt) (32)

with

0 0
0

=
k

H E
wm (33)

The actual electric fields are the real part of the exponentials
appearing on the RHS of Eqs. (31) and (32):

E = x̂E0 cos(kz – wt) (34)

H = ŷH0 cos(kz – wt) (35)

H

y

E x
k z

Fig. 23.1 If a plane wave is propagating in the z direction
(which is coming out of the paper) and if at any
instant of time the electric vector is along the
x axis then the magnetic vector will be along the
y axis.
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where we have assumed E0 and H0 to be real. The plane wave
as represented by Eq. (31) [or by Eq. (34)] is said to be linearly
polarized (or x-polarized) because the electric vector is always
along the x axis, and similarly, the magnetic vector is always
along the y axis (see Fig. 23.2). Similarly, for a y-polarized wave,
the electric vector is always along the y axis as shown in
Fig. 22.1(b). We may also have superposition of two indepen-
dent plane waves [we are considering the real part of the
exponentials appearing on the RHS of Eqs. (31) and (32)]:

E1 = x̂E0 cos (kz – wt) (36)

H1 = ŷH0 cos (kz – wt) (37)

and

E2 = ŷE0 cos 
2

kz t
pÊ ˆ- w +Á ˜Ë ¯

 =  – ŷE0 sin (kz – wt) (38)

H2 = – x̂H0 cos 
2

kz t
pÊ ˆ- w +Á ˜Ë ¯

 = + x̂H0 sin (kz – wt) (39)

The first wave is x-polarized, the second wave is y-polarized,
and there is a phase difference of p/2. The superposition of
these two waves gives the resultant

E = E1 + E2 = E0[ x̂ cos (kz – wt) – ŷ sin (kz – wt)] (40)

and  H = H1 + H2 = H0[ ŷcos (kz – wt) + x̂ sin (kz – wt)] (41)

Now, at z = 0

Ex = E0 cos wt and Ey = E0 sin wt (42)

and the tip of the electric vector will rotate (on the circumfer-
ence of a circle) in the clockwise direction as shown in Fig. 23.3;
this will represent a right circularly polarized (usually abbre-
viated as RCP) wave. Also, at  z = 0

Hx = –H0 sin wt and Hy = H0 cos wt

and the tip of the H vector will also rotate (on the circumference
of a circle) in the clockwise direction.

From the above equations we may draw the following
inferences for plane waves:

1. Both E and H are at right angles to the direction of propa-
gation. Thus the waves are transverse (see Fig. 23.1).

2. The vectors E and H are at right angles to each other;
thus if the direction of propagation is along the z axis
and if E is assumed to point in the x direction, then H
will point in the y direction (see Fig. 23.1).

3. Since /k wm is  a real number, the electric and magnetic
vectors are in phase; thus if at any instant E is zero,
then H is also zero; similarly, when E attains its maxi-
mum value, H also attains its maximum value; etc.

4. The refractive index n of a dielectric (characterized by
dielectric permittivity e and magnetic permeability m0)
is given by

n = 0

0 0 0

= = =
c em e

k
e m ev

(43)

where  k(= e/e0) is known as the dielectric constant of
the medium.

5. The electric and magnetic waves are interdependent; nei-
ther can exist without the other. Physically, an electric field
varying in time produces a magnetic field varying in
space and time; this changing magnetic field produces an
electric field varying in space and time, and so on. This
mutual generation of electric and magnetic fields results
in the propagation of the electromagnetic wave.

6. Maxwell’s equations are linear in E and H. So if (E1, H1)
and (E2, H2) are two independent solutions of Maxwell’s

x

z

y
Linearly polarized

light

H

E

Fig. 23.2 The arrows represent the direction and magni-
tude of the E and H vectors (at a particular
instant of time) for a plane polarized wave. The
electric vectors always lie in the xz plane, and
the magnetic vectors lie in the yz plane.

(b)(a)

x

RCP

y

x
z

y

Fig. 23.3 For a right circularly polarized wave, if we look
in the direction of the propagation of the wave,
the electric vector rotates in a  clockwise direction
on the circumference of a circle.
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equations, then (E1 + E2,  H1 + H2) will also be a solu-
tion of Maxwell’s equations. This is the superposition
principle according to which the resultant displace-
ment produced by two independent disturbances is the
vector sum of the displacements produced by the dis-
turbances independently.1

7. The plane wave as represented by Eq. (31) is said to be
linearly polarized because the electric vector is always
along the x axis and, similarly, the magnetic vector is
always along the y axis (see Fig. 23.1).

8. There exists a wide and continuous variation of frequency
(and wavelength) of electromagnetic waves as shown in
Fig. 23.4. The radio waves correspond to wavelengths in
the range of 10 to 1000 m whereas the wavelengths of
X-rays are in the region of angstroms (1 Å = 10–10 m). The
range of wavelengths of various kinds of electromagnetic
waves is shown in Fig. 23.4, and as can be seen, the
visible region ( 4 × 10–7 m < l  < 7 × 10–9 m) occupies a
very small portion of the electromagnetic spectrum. The
methods for production of different kinds of electromag-
netic waves are different. For example, gamma rays are
produced in nuclear decay processes, X-rays are usually
produced by the sudden stopping and deflection of elec-

trons, and radio waves are produced by varying the
charge on an antenna. However, all wavelengths propagate
with an identical speed in vacuum (which is denoted by c)
and are always produced by accelerated charges.

23.3 THE THREE-DIMENSIONAL
WAVE EQUATION IN A
DIELECTRIC

In Sec. 23.2 we showed that plane wave solutions indeed
satisfy Maxwell’s equations. In this section we will show that
the wave equation can be derived from  Maxwell’s equations.
If we take the curl of Eq. (13), we obtain

curl curl E =  – m0
t

∂

∂
curl H = – em0

2

2t

∂

∂

E
(44)

where we have used Eq. (14). Now, the operator —
2E is

defined  by the following equation:

—
2E ∫ grad div E – curl curl E (45)

Using Cartesian coordinates, we can easily show that

(—2 E)x = 
2 2 2

2 2 2
+ +x x xE E E

x y z

∂ ∂ ∂

∂ ∂ ∂
= div grad Ex

1 Thus the superposition principle is a consequence of the linearity of Maxwell’s equations. If, for example, the fields associated with
the electromagnetic wave are so high that the dielectric permittivity e depends on E itself, then Maxwell’s equations will become
nonlinear and the superposition principle will not remain valid. Indeed, when we discuss any nonlinear phenomenon, the super-
position principle does not hold.

Wavelength (nm)
10–3 10–1 10 103 105 107 109 1011 1013

Frequency (Hz)
1020 1018 1016 1014 1012 1010 108 106 104

Type of radiation

Gamma
rays

X-rays Ultra-
violet

Sun lampsX-ray Heat
lamps

Microwave ovens,
police radar,

satellite stations

(a)

UHF TV,
cellular

telephones

FM radio,
VHF TV

AM
radio

Infrared

V
is

ib
le

Microwave Radio waves

1 3

4                      

789

*
0#

(b)

500400 600 700

l

Fig. 23.4 The electromagnetic spectrum; visible light occupies a very small portion of the spectrum. A color
photograph appears in the insert at the back of the book.
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i.e., a Cartesian  component of —
2E is the div grad of the

Cartesian component.2 Thus, using

curl curl E = grad div E – —2E

we obtain

grad div E – —2 E = – em0

2

2t

∂

∂

E  (46)

or —
2 E = em0

2

2t

∂

∂

E
(47)

where we have used the equation  div E = 0 [see Eq. (11)].
Equation (47) is known as the three-dimensional wave equa-
tion, and each Cartesian component of E satisfies the scalar
wave equation (see Sec. 11.9)

2
2

0 2t

∂ y
— y = em

∂
(48)

The velocity of propagation v of the wave is simply given by

 v =
0

1

em

(49)

In a similar manner, we can derive the wave equation satis-
fied by H

2

0 2t

∂
= em

∂

2 H
H— (50)

It can be easily seen that the solutions expressed by Eqs. (31)
and (32) [or Eqs. (34) and (35)] indeed satisfy Eqs. (47) and
(50) provided

  
0

1

k

w
=

em
(51)

which is the speed of propagation of the electromagnetic
wave. Around 1860,  Maxwell derived the wave equation, pre-
dicted the existence of electromagnetic waves, and calculated
the speed of theses waves to be about 3.1074 ×108 m s–1; this
he found to be very close to the velocity of light which at
that time was known to be 3.14858 × 108 m s–1 (as measured
by Fizeau in1849). Just based on the closeness of these two
numbers and with “faith in the rationality of nature,”
he propounded the electromagnetic theory of light and
predicted that light must be an electromagnetic wave.3 In
the words of Maxwell himself, the speed of electromagnetic waves

. . . calculated from the electromagnetic measurements of
Kohlrausch and Weber, agrees so exactly with the velocity

of light calculated from the experiments of M. Fizeau, that
we can scarcely avoid the inference that light consists in
the transverse undulations of the same medium which is
the cause of electric and magnetic phenomena.

It was only in 1888 that Heinrich Hertz carried out experi-
ments that could produce and detect electromagnetic waves
of frequencies smaller than those of light. Hertz showed that
the velocity of electromagnetic waves that he generated was
the same as that of light.

In 1931 (during the centennial celebration of Maxwell’s
birth), Max Planck said, “[Maxwell’s equations] . . . remain for
all time one of the greatest triumphs of human intellectual
endeavor.” Albert Einstein said, “[The work of Maxwell was]
. . .  the most profound and the most fruitful that physics has
experienced since the time of Newton.”

23.4 THE POYNTING VECTOR

We rewrite Eqs. (3) and (4) as

curl E = –
t

∂

∂

B
(52)

and

curl H = 
t

D∂
∂

 + J (53)

Now
div (E × H) = H • curl E  – E • curl H (54)

Thus

div (E × H)  =  –H • – –
t t

∂ ∂

∂ ∂

B D
J E Ei i (55)

For a linear material,

H . +
t t

∂ ∂

∂ ∂

B D
E i = +

t t

∂ ∂
m e

∂ ∂

H E
H Ei i

= 
1 1

( ) + ( )
2 2t t

H H E Ei i

∂ ∂
m e
∂ ∂

= 
1

2 t

∂

∂
(B • H + D • E)

Thus Eq. (55) can be rewritten in the form

div S + 
∂

∂

u
t

= –J • E (56)

where S ∫ E ¥ H (57)

2 However, (—2 E)r π div grad Er.
3 We also note that the physical laws described by Eqs. (1), (2), and (3) were known before Maxwell; he introduced only the term

/ t∂ ∂D (which is the concept of displacement current) in Eq. (4), and it is the presence of this term which leads to the prediction of
electromagnetic waves.
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is known as the Poynting vector and4

u = 1 1
2 2+B H D Ei i (58)

Equation (56) resembles the equation of continuity, and for a
physical interpretation we note that if a charge q (moving
with velocity v) is acted on by an electromagnetic field, then
the work done by the field in moving it through a distance ds
is F • ds; thus the work done per unit time is

F • 
d
dt
s

= F • v

= (qE + qv ¥ B) • v

= qE • v (59)

If there are N charged particles per unit volume, each carrying
a charge q, then the work done per unit volume is

Nqv • E = J • E (60)

where J represents the current density. The energy appears
in the form of kinetic (or heat) energy of the charged par-
ticles. Thus the term J • E represents the familiar Joule loss,
and therefore, the quantity J • E on the RHS of Eq. (56) rep-
resents the rate at which energy is produced per unit volume
per unit time. Consequently, we may interpret Eq. (56) as an
equation of continuity5 for energy with u representing the

energy per unit volume. The quantities 1
2  D • E and 1

2 B • H
represent the electrical and magnetic energies per unit volume,
respectively. Further, we may interpret S • da as the electro-
magnetic energy crossing the area da per unit time. For plane
waves in a dielectric, we may write

E 0ˆ= cos ( )kz t-wxE

H = 0 0ˆ ˆcos ( – ) = cos( – )
k

kz t kz tw w
wm

yH y E

(61)

Thus S = E ¥ H

= 2 2
0ˆ cos ( )

k
E kz t- w

wm
z (62)

which implies that the energy flow is in the z direction (which
represents the direction of propagation of the wave) and that
an amount of energy

2
0

k
E

wm

cos2 (kz – wt)

crosses a unit area (perpendicular to the z axis) per unit time.
For optical beams w ª 1015 s–1 and the cos2 term fluctuates
with extreme rapidity6 and any detector would record only an
average value. Since

·cos2(kz – w t)Ò = 21
lim cos

2

T

T
T

T

+

Æ•

-

Ú (kz – wt)dt

= 1
2

we obtain

·SÒ = 2
0

ˆ
2

k
E

wm

z (63)

where ·…Ò denotes the time average of the quantity inside
the angular brackets (see Sec. 17.5).
In general, for a plane wave

E = E0 e
i(k • r – wt) (64)

H = H0 e
i(k • r – wt) (65)

and as shown in Sec. 23.2

H = 
¥

wm

k E
(66)

4 Equation (58) is valid even for anisotropic media because in the principal axis system [see Eq. (66) of Chap. 22]

t

∂

∂

D
E i = 

22 21 1 1
+ +

2 2 2
yx z

x y z

EE E

t t t

∂∂ ∂
e e e

∂ ∂ ∂

= 
1

2 t

∂

∂
(DxEx + DyEy + DzEz)

5 The equation of continuity is always written in the form

div J + 
t

∂r

∂
= 0

where r represents the charge density and J the current density; i.e., J . da represents the amount of charge crossing the area da per unit time.
6 See also Secs. 14.3 and 14.6.
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E = 
¥

we

H k
(67)

showing that k, E and H are at right angles to one another.
The Poynting vector S is obviously in the direction of k.

We must hasten to point out that S • da does not always rep-
resent the rate of energy flow through area da; for example, we
may have static electric and magnetic field where E ¥ H is finite,
but we know that there is no energy flow. However, the integral

Ú� S • da

over a closed surface rigorously represents the net energy
flowing out of the surface. This follows immediately if we
carry out a volume integral of Eq. (56) to give

div dV u dV
t

∂
+
∂

Ú ÚS = – dVÚ J Ei

or

u dV
t

∂
-
∂
Ú = d dV+Ú ÚS a J Ei i

�

where we have used the divergence theorem. The quantity on
the LHS represents the rate of decrease of the total energy;
this must be equal to the Joule loss plus the net flow out of
the surface enclosing the volume.

23.4.1 The Oscillating Dipole

Consider an oscillating dipole in the z direction:

p = p0e
–iw t

�z

At large distances from such a dipole the fields are of the
form (see, e.g., Ref. 8, p. 258)

E = – 
2 ( )

0

0

ˆ(sin )
4

i k r tk p e

r

-wÊ ˆ
qÁ ˜peË ¯

q (68)

H = – 
( )

0 ˆ(sin )
4

i k r tkp e

r

-wwÊ ˆ qÁ ˜Ë ¯p
f (69)

where k = 0 0w e m and the other symbols have their usual
meaning; the unit vectors ˆ ˆˆ, andr q f  are shown in Fig. 23.5.
Notice that the fields fall off as 1/r and that they are in phase.
Further, the ratio of the amplitudes of the magnetic and elec-
tric fields is

0
2

0 0

/4

/4

kp

k p

w p

pe
= 0

k

we

 = 
0

k

wm

(70)

which is consistent with Eq. (23). Because of the sin q factor
in Eqs. (68) and (69), the dipole does not produce any field
along the direction of oscillation (see also Secs. 22.2.4
and 22.8). Thus7

S = E ¥ H

= 
3 2 2

20
2 2

0

cos ( )
ˆ(sin

16

k p kr t

r

w -w
q)

p e
r (71)

Equation (71) shows that S falls off as 1/r2, as it indeed should
for a spherical wave (this is the inverse square law). If we
integrate over a sphere of radius r, we obtain

f

Fig. 23.5 The direction of the electric and magnetic fields
and of the Poynting vector from an oscillating
dipole. To calculate the total energy radiated per
unit time, we must integrate the Poynting vector
over the surface of a sphere.

7 To calculate the Poynting vector, we must take the products of the real parts of E and H. Note that in the complex representation
if E = E1 + E2, then

Re (E) = Re (E1) + Re (E2)
However,

(Re E1) ¥ (Re E2) π Re (E1 ¥ E2)
Here Re (E) denotes the real part of E.
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P = 2 ˆ= sind r d dq q fÚ Ú ÚS a S ri i

�

= 
23 2

2 20
2

0 0 0

cos ( ) sin sin
16

k p
kr t d d

p p

w
- w q q q f

p e
Ú Ú

= 
3 2

0

06

k pw

pe

cos2 (kr – w t) (72)

where P represents the instantaneous radiated power. Since
the cos2 term fluctuates very rapidly, the average radiated
power is given by

P = 
3 2

0

012

k pw

pe

(73)

23.5 ENERGY DENSITY AND
INTENSITY OF AN
ELECTROMAGNETIC WAVE

In Sec. 23.4 we showed that the energy per unit volume as-
sociated with a plane wave is given by

u = 1
2

D • E + 1
2

B • H = 1
2

eE2 + 
1

2m
B2 (74)

For a linearly polarized plane wave, we may write

Ex = E0 cos (kz – wt) Ey = 0, Ez = 0 (75)

Bx = 0 By = B0 cos (kz – wt) Bz = 0 (76)

Thus

u = 2 2 2
0 0

1 1
( – ) + cos ( – )

2 2
E kz t B kz te w w

m

Since

B0 = em E0

[see Eq. (33)], we get
2
0

2

B

m
= 1

2
eE 2

0

Thus the energy associated with the electric field is equal to
the energy associated with the magnetic field. If we take the
time average of the cos2 terms, we get

·uÒ = 1
2

eE2
0 (77)

Further, to obtain the intensity of the beam, we must multiply ·uÒ

by the speed of propagation, which will give us the energy

crossing a unit area in unit time. Thus, the intensity is
given by

I =
1
2

evE2
0 =

1

2

e

m
E2

0 (78)

This should be consistent with Eq. (63). Indeed, if we substi-

tute k = w em  in Eq. (63), we obtain Eq. (78). In free space

I = 1
2

e0cE0
2

= 1
2

(8.854 ¥ 10–12 C2 N–1 m–2) ¥ (3 ¥ 108 m s–1)E2
0

= (1.33 ¥ 10–3 W V–2)E 2
0

For example, for a 100 W lamp, the intensity at a distance of
10 m is

I = 2

100

4 (10)p
�  7.96 ¥ 10–2 W m–2

where we have assumed light to spread out uniformly in all
directions. Thus

E0 = 

1/22

3

7.96 10

1.33 10

-

-

Ê ˆ¥
Á ˜¥Ë ¯

ª 7.74 V m–1

It is of interest to mention here that since a laser beam is
almost perfectly parallel, it can be focused by a lens to a cross-
sectional area of less than 10–6 cm (see Sec. 18.4.1). Thus for a
105 W laser beam, the intensity at the focal plane is

I = 
5

10 2

10 W

10 m-

 = 1015 W m–2

Thus

E0 = 

1/215

3

10

1.33 10-

Ê ˆ
Á ˜¥Ë ¯

 ª 0.87 ¥ 109 V m–1

Such high electric fields can cause extreme high temperatures
which may result in the burning of a target (see Figs. 18.18
and 18.19).

23.6 RADIATION PRESSURE8

Let us consider a linearly polarized electromagnetic wave
propagating in the +z direction; we assume the electric field
to be along the x direction and the magnetic field along the
y direction (see Fig. 23.1). The electromagnetic wave is as-
sumed to interact with a charge q; the electric field makes the
charge move up and down along the x axis. Thus the charge

8 See Ref. 4, Sec. 34.9. A rigorous analysis is given in Ref. 8, Chap. 12.
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acquires a certain velocity in the x direction, and since the
magnetic field is along the y axis, a force

F = qv ¥ B (79)

acts on the charge q. This force acts along the z axis9 (i.e.,
along the direction of propagation of the wave) and consti-
tutes what is known as radiation pressure. Thus,

F = qvB �z (80)
since

B =  0 = =
k E

H E
c

m
w

(81)

[see Eq. (21)], we get

F = 
qE

c
v
�z (82)

Now qEv represents the work done by the field on the
charge per unit time; thus, if we consider a unit volume, then

F = 
1
c

du
dt

�z (83)

But the force is equal to the change in momentum per unit
time; consequently, the momentum per unit volume associ-
ated with the plane wave is given by

p = u
c
�z (84)

In Chap. 25, we will show that light essentially consists of
corpuscles called photons. Each photon carries an energy
equal to hn; the photon momentum, therefore, is given by

p = 
h

c

n

(85)

Let us consider a plane wave incident normally on a perfect
absorber. If we consider an area dS on the absorbing surface,
then the momentum transferred to area dS in time dt is

p dS cdt

which represents the momentum contained in a cylindrical
volume dS c dt (see Fig. 23.6). Thus the force acting on the
area dS is

pc dS
Hence

Prad = cp = u (86)

where Prad represents the radiation pressure due to a plane
wave incident on a perfect absorber. On the other hand, for a
perfect reflector, the momentum of the reflected wave is equal
and opposite to the momentum associated with the incident
wave. Thus the momentum transferred is twice the above
value and hence

Prad = 2cp = 2u (87)

To have a numerical appreciation, let us consider a light
beam of intensity I = 3000 W m–2 falling on a perfectly
reflecting mirror. Since I = cu, we have

u = 
–2

8 –1

3000 W m

3 10 m s¥

 = 10–5 J m–3

9 Using the analysis of Sec. 7.5, we can show that in the presence of a field E = �xE0 cos (kz – wt), the displacement is given by

x = �xqE0 A cos (kz – wt + f)

where we have explicitly shown that the amplitude is proportional to q and E0. Thus

v = d
dt
x  = �xqE0Aw sin (kz – wt + f)

Now

B = �yB0 cos (kz – wt) = �y
E
c
0 cos (kz – wt)

Thus

F = qv ¥ B = + 
2

2 0ˆ
E

q
c

w

z A[cos (kz – wt)] [sin (kz – wt) cos f + cos (kz – wt) sin f]

If we carry out a time averaging, then

·FÒ = 
2 2

0 1
ˆ ˆsin =

2

q E
A q

c c

w
f · Òz z E vi

Since sin f is always positive [see Eqs. (22) and (51) of Chap. 8], the force is always in the z direction.

dS

c dt

Fig. 23.6 A cylindrical volume to calculate radiation pressure.

gha80482_ch23_375-390.PMD 2/5/2009, 7:10 PM383



Optics384
�

The radiation pressure is

10–5N m–2

which may be compared with the atmospheric pressure
(ª 105 N m–2).

It has been possible to measure the radiation pressure by
allowing a light beam to fall on a highly polished mirror M
(see Fig. 23.7).10 The radiation pressure caused a twist in the
suspension which was measured. The intensity of the beam
can be determined by allowing it to fall on an absorber (such
as a blackened disk) and measuring the temperature rise. In a
particular run, the radiation pressure was found to be about
7.01 ¥ 10–6 N m–2 which was in good agreement with the pre-
dicted value of 7.05 ¥ 10–6 N m–2.

For oblique incidence on a perfect reflector, the change in
momentum per unit volume is 2p cos q, and the radiation
pressure is

Prad = 2cp cos2 q = 2u cos2 q (88)

where q represents the angle of incidence.

23.7 THE WAVE EQUATION IN A
CONDUCTING MEDIUM

In Sec. 23.3 we assumed J = 0. For a conducting medium

J = s E (89)

where s represents the conductivity of the medium. Thus,
Maxwell’s equations become

div E = 0 (90)

div H = 0 (91)

curl E = –
t

∂
m
∂

H
(92)

curl H = s E +
t

∂
e
∂

E
(93)

Taking the curl of Eq. (92), we get

curl curl E = –
t

∂
m
∂

curl H

or

grad div E – —2E = –
2

2t t

∂ ∂
ms - me

∂ ∂

E E

Using Eq. (90), we get

—
2E – 

2

2t t

∂ ∂
ms -me

∂ ∂

E E
 = 0 (94)

which is the wave equation for a conducting medium. For a
plane wave of the type

E = E0 e
i(kz – wt) (95)

we obtain

–k2 + iwms + w2
em = 0 (96)

which shows that k must be a complex number. If we write

k = a + ib (97)
then

–(a2 + 2iab – b2) + iwms + w2
em = 0

Equating real and imaginary parts, we get

a
2 – b2 = w2

em (98)

and b = 
2

wms

a

(99)

Substituting for b in Eq. (98) and solving for a, we get

a = 

1/ 21/ 22

2 2

1 1
1 +

2 2

È ˘Ê ˆsÍ ˙w em ± Á ˜Í ˙w eË ¯Î ˚
(100)

We must choose the positive sign; the negative sign would
make a complex. Thus

1/ 21/ 22

2 2

1 1
= 1

2 2

=
2

È ˘Ê ˆsÍ ˙a w em + +Á ˜Í ˙w eË ¯Î ˚
wms

b
a

(101)

Torsion
suspension

M ′M

Fig. 23.7 An experimental arrangement to measure radia-
tion pressure.

10 The experiment was first carried out by Lebedev in Russia in 1899; the experimental arrangement shown in Fig. 23.7 is similar to that
of Nichols and Hull who performed the experiment in 1901 and confirmed the prediction of radiation pressure.
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Now, when k is complex, Eq. (95) becomes

E = E0 exp (–bz) exp [i(az – wt)] (102)

which represents an attenuated wave. The attenuation is due
to the Joule loss. For a good conductor11

s

we

>> 1 (103)

and we obtain

a ª b ª 

1/ 2

2

wmsÊ ˆ
Á ˜Ë ¯

(104)

Indeed if s/we << 1 (say, <~  0.01), the medium can be classi-

fied as a dielectric; and if s/we >> 1 (say, >~  100), the medium
can be classified as a conductor. For

0.01 <~
 
s

we

 <~  100

the medium is said to be a quasi-conductor. Thus, depending
on the frequency, a particular material can behave as a dielec-

tric or as a conductor. For example, for freshwater e/e0 ª 80
and s ª 10–3 mho m–1. (Both e and s can be assumed to be
constants at low frequencies.) Thus

s

e
ª 10

80 8 85 10

3

12

-

-

¥ ¥.
 ª 1.4 ¥ 106 s–1

For w = 2p ¥ 10 s–1

s

we

ª 2 ¥ 104

and for w = 2p ¥ 1010 s–1

s

we

ª 2 ¥ 10–5

Thus, freshwater behaves as a good conductor for n £  103 s–1

and as a dielectric for n ≥  107 s–1. On the other hand, for
copper we may assume e ª e0 and s ª 5.8 ¥ 107 mho m–1, and
for w ª 2p ¥ 1010 s–1

s

we

ª 
7

10 12

5.8 10

2 10 8.9 10-

¥

p ¥ ¥ ¥

 ª 108

Thus even for such frequencies it behaves as an excellent
conductor.

From Eq. (102), it can be easily seen that the field de-
creases by a factor e in traversing a distance

d = 
1

b

which is known as the penetration depth. For copper,

m = m0 = 4p ¥ 10–7 N s2/C2

and

d ª 

1/ 2
2Ê ˆ

Á ˜Ë wms¯
 ª 

1/ 2

7 7

2

2 4 10 5.8 10-

Ê ˆ
Á ˜pn ¥ p ¥ ¥ ¥Ë ¯

ª 0.065

n

m

Thus for n ª 100 s–1, d ª 0.0065 m = 0.65 cm whereas for
n ª 108 s–1, d ª 6.5 ¥ 10–6 m, showing that the penetration
decreases with an increase in frequency.

23.8 THE CONTINUITY
CONDITIONS

In this section we will derive the continuity conditions for
electric and magnetic fields at the interface of two media. Let
us first consider the equation

div B = 0 (105)

At the interface of two media, we consider a pillbox which
encloses an area DS of the interface (see Fig. 23.8). Let the
height of the pillbox be l.

Now if we integrate div B over the cylindrical volume,
then, using Gauss’ theorem, we obtain

0 = 
1 2 3

div = + +
s s s

dV d d dÚ Ú Ú ÚB B a B a B ai i i

� � �

where S1 and S2 represent the flat faces of the cylinder and
S3 represents the curved surface of the cylinder. If we let

11 The corresponding expressions for an insulator are given in Prob. 23.8.

n1

n2

^

^ ΔS

ΔS

2

1
l

Fig. 23.8 A cylindrical pillbox at the interface of two
dielectrics.
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l Æ 0, then the third integral vanishes and we obtain

 
1s

dÚ B a
�

i =
2s

d- Ú B a
�

i

or B1 • �n1 DS = – B2 • �n2 DS (106)

or B1n = B2n (107)

where the directions of �n1 and �n2  are shown in Fig. 23.8.
Thus, the normal component of B is continuous across the
interface.

Similarly, in the absence of free charges

div D = 0

and we obtain12

D1n = D2n (108)

showing that the normal component of D is also continuous
across the interface.

We next consider the equation

curl E + 
∂

∂

B
t

= 0

We consider a rectangular loop ABCD as shown in Fig. 23.9.
Now

0 = curl +
S S

d
t

∂

∂
Ú Ú

B
E a

� �
i  • da (109)

where the surface integral is over any surface bounding the
loop ABCD. Using Stokes’ theorem, we get

dÚ E l
�

i = d
t

∂
-

∂Ú
B

ai (110)

or

AB BC CD DA

Ê ˆ
+ + +Á ˜

Ë ¯
Ú Ú Ú Ú  E • d l = –

t

∂

∂
Ú

B
 • da

If we let l Æ 0, then the integrals along BC and DA tend to
zero, and since the area of the loop also tends to zero, the RHS
vanishes. Thus we obtain

+
AB CD

d dÚ ÚE l E li i = 0

or (E1 • �t )e + [E2 • (– �t )]e = 0

or E1t = E2t

where E1t and E2t represent the tangential components of E
which are continuous across the interface.

Similarly, Eq. (8) gives us13

H1t = H2t

In summary, in the absence of any surface current and sur-
face charges, the normal components of B and D and the
tangential components of H and E are continuous across an
interface.

23.9 PHYSICAL SIGNIFICANCE
OF MAXWELL’S EQUATIONS

Let us first consider the equation

div D = r (111)
In free space

D = e0E (112)

and Eq. (111) becomes

div E = 
0

r
e

(113)

If we integrate the above equation over a volume V, we
obtain

div E dV∫  = 
0

1
dVr

e
Ú

Applying the divergence theorem, we get

dÚ E ai

�
=

0

1

e
Q (114)

A B

D C

l
2

1

e

Fig. 23.9 A rectangular loop at the interface of two dielectrics.

12 Rigorously
D1n – D2n = s

where s represents the surface charge density.
13 More rigorously, H1t– H2t is equal to the normal component of the surface current density. However, if there are no surface currents,

which is indeed true for most cases, then H1t = H2t.
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which is simply Gauss’ law.14 That is, the electric flux through a
closed surface is the total charge inside the volume divided by e0.
In a similar manner, the equation

div B = 0 (115)

gives

Ú� B • da = 0 (116)

i.e., the magnetic flux through a closed surface is always zero;
this implies the absence of magnetic monopoles.

We next consider the equation

curl E = – ∂

∂

B
t

(117)

which associates a space- and time-dependent electric field with
a changing magnetic field. Now, Stokes’ theorem tells us that

d
G

Ú E li

� = curl
S

dE aiÚ (118)

where the LHS represents a line integral over a closed path G
and the RHS represents a surface integral over any surface
bounding path G. Thus

d
G

Ú E li

�
= curl

S

dÚ E ai  = –
S

d
t

∂

∂
Ú

B
ai (119)

or

d
G

Ú E li

�
=

S

d
d

dt
- ÚB ai (120)

where in the last step we have used the fact that the surface S
is fixed.15 The LHS of the above equation represents
the induced emf in a closed circuit which is equal to the nega-
tive of the rate of change of the magnetic flux through the
circuit. This is the famous Faraday law of induction; although
this law was discovered by Faraday, it was put into differential
form [see Eq. (117)] by Maxwell.

We now come to the last of the Maxwell’s equations,16

curl H = J + 
∂

∂

D
t

(121)

Ampere’s law (which was known before Maxwell), when ex-
pressed as a differential equation, was of the form17

curl H = J (122)

which implies that a magnetic field is produced only by cur-
rents. For example, if we have a long wire carrying a current,
we know that it produces a magnetic field. Since the diver-
gence of the curl of any vector is zero, we obtain

div J = 0 (123)

which may be compared with the equation of continuity

div J + 
t

∂r

∂
= 0 (124)

Thus Eq. (122) is valid only when / t∂r ∂  = 0. Thus, for

Ampere’s law to be consistent with the equation of continuity,

14 For a dielectric we get

Ú� D • da = Q

where

D = e0E + P

with P being the dipole moment per unit volume. For a linear homogeneous medium,

P = cE

where c is known as the susceptibility. Thus

D = eE

where

e ∫ e0 + c

is known as the dielectric permittivity of the medium.
15 Equation (120) is not valid for a moving system (see, for example, Ref. 3, p. 526).

16 H = 
0m

B
– M, where M is the magnetic moment per unit volume. For a linear material M = cmH and therefore B = mH, where

m = m0(1 + cm).
17 Once again, it was Maxwell who expressed Ampere’s law as a differential equation.
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Maxwell argued that there must be an additional term on the
RHS of Eq. (122).18

The introduction of the term / t∂ ∂D (which is known as the
displacement current) revolutionized physics. Physically it im-
plies that not only does a current produce a magnetic field, but
also a changing electric field produces a magnetic field (as in-
deed happens during the charging and discharging of a
condenser).19 It is the presence of the term / t∂ ∂D which leads
to the wave equation (see Sec. 23.3) and, therefore, the predic-
tion of electromagnetic waves. We can thus argue on physical
grounds that a changing electric field produces a magnetic
field which varies in space and time, and this changing mag-
netic field produces an electric field varying in space and time,
and so on. This mutual generation of electric and magnetic
fields results in the propagation of electromagnetic waves.

Summary

� In a homogeneous dielectric (with dielectric constant e)
Maxwell’s equations take the form

div E = 0

div H = 0

curl E = –m0
∂

∂

H
t

curl H = e
∂

∂

E
t

where we have assumed the medium to be nonmagnetic so
that m ª m0 = 4p ¥ 10–7 N s2 C–2. The third equation is
Faraday’s law. The RHS of the fourth equation is known as
the displacement current which was introduced by Maxwell;
the inclusion of the displacement current term enabled Max-
well to derive the wave equation

—
2E = em0 

2

2t

∂

∂

E

� In free space e = e0 = 8.854 ¥ 10–12 C2 N–1 m–2, and therefore the

velocity of the electromagnetic waves in free space is given by

c = 
0 0

1

e m

ª 3 ¥ 108 m s–1

(The exact value is 2.99792458 ¥ 108 m s–1). Maxwell found
that the velocity of the electromagnetic waves was very close

to the measured velocity of light and with “faith in rational-
ity of nature” he said that light is an electromagnetic wave.

� For an x-polarized electromagnetic wave propagating in the
+z direction, we may write

E = �x E0 cos (kz – wt)

H = �y H0 cos (kz – wt)

with

H0 = 
0

k

wm

E0 k

w

 = 
0

1

em

 = v = 
c
n

n = 
0

e

e

which represents the refractive index of the dielectric. The
corresponding average energy density is given by

< u > = 1
2 eE 0

2 J m–3

and the intensity is given by

I = 1
2 ev E 0

2 = 1
2 e0cnE 0

2 W m–3

For I = 1015 W m–2,  E0 ª 0.9 ¥ 109 V m–1; such high electric
field can cause a spark in air.

� The momentum associated with a plane wave is given by

p = u
c
�z

Problems

23.1 On the surface of the Earth we receive about 1.37 kW of
energy per square meter from the Sun. Calculate the elec-
tric field associated with the sunlight (on the surface of the
Earth), assuming that it is essentially monochromatic with
l = 6000 Å.

[Ans: ~1000 V m–1]

23.2 (a) On the surface of the Earth, we receive about 1370 W m–2

of energy. Show that the corresponding radiation pressure
is about 4.6 mPa (1 Pa ª 10–5 N m–2).

(b) A 100 W sodium lamp (l ª 5890 Å) is assumed to emit
waves uniformly in all directions. What is the radiation pres-
sure on a plane mirror at a distance of 10 m from  the bulb?

23.3 A 1 kW transmitter is emitting electromagnetic waves (of
wavelength 40 m) uniformly in all directions. Calculate the
electric field at a distance of 1 km from the transmitter.

[Ans: E0 ª 0.25 V m–1]

23.4 Ocean water can be assumed to be a nonmagnetic dielectric
with 0( / )k = e e = 80 and s = 4.3 mho m–1. (a) Calculate the
frequency at which the penetration depth will be 10 cm.

18 Consequently

div curl H = 0 = div J + ∂

∂t
div D

or 0 = div J +
t

∂r

∂

which is the equation of continuity [we have used Eq. (111)].
19 For static fields, / t∂ ∂D = 0 and we obtain Ampere’s law.
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(b) Show that for frequencies less than 108 s–1, it can be
considered as a good conductor.

[Ans: (a) ~6 ¥ 106 s–1]

23.5 For silver one may assume m ª m0 and s ª 3 ¥ 107 mho m–1.
Calculate the skin depth at 108 s–1.

[Ans: ª 9 ¥ 10–4 cm]

23.6 Show that for frequencies <~ 108 s–1, a sample of silicon
will act as a good conductor. For silicon one may as-
sume 0/e e ª 12 and s ª 2 mho m–1. Also calculate the
penetration depth for this sample at n = 106 s–1.

[Ans: ª 9 ¥ 10–4 cm]

23.7 In a conducting medium show that H also satisfies an equation
similar to Eq. (94).

23.8 Using the analysis given in Sec. 23.7 and assuming
s/we << 1 (which is valid for an insulator), show that

a ª 

2 2

0

1 2 1
1+ = 1+

8 8
n

È ˘ È ˘Ê ˆ Ê ˆs p sÍ ˙ Í ˙w em Á ˜ Á ˜we l weË ¯ Ë ¯Í ˙ Í ˙Î ˚ Î ˚

See at the end of Chap. 24.

REFERENCES AND SUGGESTED READINGS

and

b ª 
0

1 2 1
=

2 2
n

È ˘ È ˘Ê ˆ Ê ˆs p s
w em Í ˙ Í ˙Á ˜ Á ˜we l weË ¯ Ë ¯Î ˚ Î ˚

where

n = 0/e e

23.9 For the glass used in a typical optical fiber at l0 ª 8500 Å,
n = (e/e0)

1/2 = 1.46, s ª 3.4 ¥ 10–6 mho m–1. Calculate s /we

and show that we can use the formulas given in Prob. 23.8.
Calculate b and loss in dB km–1. [Hint: The power would de-
crease as exp (–2bz); loss in dB km–1 is defined in Sec. 27.8.]

[Ans: s/w e ª 8 ¥ 10–11;
b ª 4.3 ¥ 10–4 m–1; loss ª 3.7 dB km–1]
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24.1 INTRODUCTION

In Chap. 23 we discussed Maxwell’s equations and showed
the existence of electromagnetic waves. We also showed that
at an interface, the tangential components of E and H and
the normal components of D and B must be continuous.
Using these continuity conditions, we will, in this chapter,
study the reflection and refraction of plane waves at an inter-
face of two dielectrics (Sec. 24.2) and at an interface of a
dielectric and a metal (Sec. 24.3). In Sec. 24.4 we will consider
reflectivity (and transmittivity) of a dielectric film.

24.2 REFLECTION AND

REFRACTION AT AN

INTERFACE OF TWO

DIELECTRICS

Let us consider the incidence of a plane polarized electro-
magnetic wave on an interface of two media; we assume the
plane x = 0 to represent the interface. Let (e1, m1) and (e2, m2)
represent the dielectric permittivity and magnetic permeabil-
ity, respectively, of the media below and above the plane x =
0; we will assume both media to be lossless dielectrics, and
the case of reflection by a conducting surface will be dis-
cussed in Sec. 24.3. Let E1, E2, and E3 denote the electric
fields associated with the incident wave, refracted wave, and
reflected wave, respectively. For an incident plane wave,
these fields will be of the form

1

2

3

( )
1 10

( )
2 20

( )
3 30

=

=

=

i t

i t

i t

e

e

e

- w

- w

- w

k r

k r

k r

E E

E E

E E

i

i

i

(1)

All of electromagnetism is contained in Maxwell’s equations. . . . Untold number of experiments
have confirmed Maxwell’s equations. If we take away the scaffolding he used to build it, we find
that Maxwell’s beautiful edifice stands on its own.

—Richard Feynman

REFLECTION AND REFRACTION

OF ELECTROMAGNETIC WAVES

Chapter

Twenty-

Four

where E10, E20, and E30 are independent of space and time
but may, in general, be complex. The vectors k1, k2, and k3

represent the propagation vectors associated with the incident,
refracted, and reflected waves, respectively. Since the fields
must satisfy Maxwell’s equations, we must have (see Sec. 23.2)

2 2
1 1 1

2 2
2 2 2 2

2 2
3 3 1 1

=

=

=

w e m

w e m

w e m

k

k

k

(2)

As discussed in Sec. 23.9, the fields have to satisfy certain
boundary conditions at the interface (which corresponds to
x = 0) where Eqs. (1) take the form

1 1

2 2 2

3 3 3

( )
1 10

( )
2 20

( )
3 30

=

=

=

y z

y z

y z

i k y k z t

i k y k z t

i k y k z t

e

e

e

+ - w

+ - w

+ - w

E E

E E

E E

where k1x, k1y, and k1z represent the x, y, and z components,
respectively, of k1; similarly for k2 and k3. Now, for example,
the z component of the electric field (which is a tangential
component) must be continuous at x = 0 for all values of y,
z, and t. Consequently, the coefficients of y, z, and t in the
exponents appearing the above equation must be equal.
Thus

w = w2 = w3 (3)

showing that all the waves have the same frequency. Hence
Eqs. (2) simplify to

k 1
2 = w2

e1m1 = k 3
2 (4)

k 2
2 = w2

e2m2 (5)
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Further, we must have

k1y = k2y = k3y (6)

and
k1z = k2y = k3z (7)

Without any loss of generality we may choose the y axis
such that

k1y = 0

(i.e., k1 is assumed to lie in the xz plane—see Fig. 24.1).
Consequently,

k2y = k3y = 0 (8)
Equation (8) implies that vectors k1, k2, and k3 will lie in the
same plane. Further, from Eq. (7) we get

k1 sin q1 = k2 sin q2 = k3 sin q3 (9)

Since k1 = k3 [see Eq. (4)], we must have q1 = q3; i.e., the
angle of incidence is equal to angle of reflection. Further,

1

2

sin

sin

q

q
= 

1/ 2
2 2

1 1

Ê ˆe m
Á ˜e mË ¯

(10)

If v1  ( )1 1=1/ e m  and v2  ( )2 2= 1/ e m  represent the speeds

of propagation of the waves in media 1 and 2, then1

1

2

sin

sin

q

q
= 

v
v

1

2
 = 

n
n

2

1
(11)

where n1 1 1
1

= =
c

c
Ê ˆ

e mÁ ˜Ë ¯v

and n2 2 2
2

= =
c

c
Ê ˆ

e mÁ ˜Ë ¯v
(12)

represent the refractive indices of media 1 and 2, respec-
tively. Equation (10) is the well known Snell’s law.

We will now derive expressions for the reflection and
transmission coefficients when a plane polarized wave is
incident on an interface of two dielectrics. We will first consider
the case when the electric vector lies in the plane of incidence,
which will be followed by the case when the electric vector is
at right angles to the plane of incidence.

Case 1. E parallel to the plane of incidence: We will assume
the electric vector to lie in the plane of incidence as shown in

Fig. 24.1. We will show later that if the electric vector associ-
ated with the incident wave lies in the plane of incidence,
then the electric vectors associated with the reflected and
transmitted waves also lie in the plane of incidence. Similarly,
if the electric vector associated with the incident wave is
normal to the plane of incidence, then the electric vectors
associated with the reflected and transmitted waves also lie
normal to the plane of incidence—see the discussion just
before Example 24.5. The magnetic vectors are along the
y axis. Clearly, the z component of the electric field represents
a tangential component which should be continuous across
the surface. Thus

E1z + E3z = E2z

or –E1 cos q1 + E3 cos q1 = –E2 cos q2 (13)

Thus {–E10 exp [i(k1 • r – wt)]

+ E30 exp [i(k3 • r – wt)]}x = 0 cos q1

= {–E20 exp [i(k2 • r – wt]}x =0 cos q2 (14)

Once again, since this condition has to be satisfied at
all space points in the plane x = 0 and at all times, the expo-
nents must be identically equal which leads to Eqs. (3), (6),
and (7). Thus

(E10 – E30) cos q1 = E20 cos q2 (15)

Further, the normal component of D must also be continuous,
and since D = eE, we must have

e1E1x + e1E3x = e2E2x

q1 q1 q3q3

q2

q2

E1 E3

E2

k1 k3

k2

e m1 1,

e m2 2,
z

y

x

Fig. 24.1 The reflection of a plane wave with its electric

vector parallel to the plane of incidence.

1 Equation (11) remains valid even when the second medium is anisotropic. As a simple example, if we assume the second medium to
be uniaxial with its optic axis along the normal, then for the extraordinary wave we have

n1 sin q1 = nwe (q2) sin q2

where nwe is given by Eq. (98) of Chap. 22 with y replaced by q2; q2 represents the direction of k2, not of the ray. The above equation
would determine q2 (see, e.g., Chap. 3 of Ref. 5).
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or

e1(E10 + E30) sin q1 = e2E20 sin q2 (16)

Substituting for E20 from Eq. (15), we get

e1(E10 + E30) sin q1 = e2 sin q2 
10 30

2cos

E E-

q
 cos q1

or

(e2 sin q2 cos q1 + e1 sin q1 cos q2) E30

= (e2 sin q2 cos q1 – e1 sin q1 cos q2)E10

Thus r|| = 30

10

E

E

= 2 2 1 1 1 2

2 2 1 1 1 2

sin cos sin cos

sin cos sin cos

e q q - e q q

e q q + e q q

(17)

where r||| denotes the amplitude reflection coefficient, the
subscript || refers to parallel polarization. If we now divide
Eq. (15) by E10 and substitute the expression for 30 10/E E
from Eq. (17), we get

2 2 1 1 1 2

2 2 1 1 1 2

sin cos sin cos
1

sin cos sin cos

Ê ˆe q q - e q q
-Á ˜e q q + e q qË ¯

cos q1

= 20

10

E

E
cos q2

or

t|| = 20

10

E

E

= 1 1 1

2 2 1 1 1 2

2 sin cos

sin cos sin cos

e q q

e q q + e q q

(18)

where t|| denotes the amplitude transmission coefficient.
To calculate the reflection coefficient, we must determine

the ratio of the x components of the Poynting vectors (see
Sec. 23.4) associated with the reflected and transmitted
waves. The reason why we should take the ratio of the
x component can be easily understood by referring to Fig. 24.2.
If S1 denotes the magnitude of the Poynting vector associated
with the incident wave, then the energy incident on area dA
(on the surface x = 0) per unit time is S1x dA = S1 dA cos q1.
Similarly, the energy transmitted through area dA is

S2x dA = S2 cos q2 dA

and the energy reflected from area dA is

S3x dA = S3 cos q1 dA

If R|| and T|| denote the reflection and transmission coeffi-
cients, then2

R||| = 3

1

x

x

S

S
 = 3 1

1 1

cos

cos

S

S

q

q

(19)

= 3 3

1 1

· ¥ Ò

· ¥ Ò

E H
E H

 = 
2

1 1 30
2

1 1 10

/ | |

/ | |

E

E

e m

e m

(see Sec. 20.4)

= 

2
30

10

E

E

or

R|| = 
2

2 2 1 1 1 2

2 2 1 1 1 2

sin cos sin cos

sin cos sin cos

Ê ˆe q q - e q q
Á ˜e q q + e q qË ¯

(20)

and

T|| = 2

1

x

x

S

S
 = 2 2

1 1

cos

cos

S

S

q

q

= 2 2 2

1 1 1

cos

cos

· ¥ Ò q

· ¥ Ò q

E H
E H

= 
2

2 2 20 2
2

1 1 10 1

/ | | cos

/ | | cos

E

E

e m q

e m q

= 
2 2 2

1 1 1

sin

sin

e e q

e e q

2 To calculate the Poynting vector, we must use the real parts of E and H; see Sec. 23.4.

k1

q1
q1

q2

dA

k2

e m2 2,

e m1 1,

Fig. 24.2 If the cross-sectional area of the incident beam is

dA cos q
1,

 then the cross-sectional area of the

transmitted beam is dA cos q
2,

 where q
1
 and q

2

represent the angles of incidence and refraction,

respectively.

gha80482_ch24_391-408.PMD 1/28/2009, 7:05 PM393



�
394 Optics

¥ 

2
1 1 1

2 2 1 1 1 2

2 sin cos

sin cos sin cos

Ê ˆe q q
Á ˜e q q + e q qË ¯

¥ 
2

1

cos

cos

q

q

where we have substituted for 1 2/m m  from Eq. (10).

Thus

T|| = 1 2 1 2 1 2
2

2 2 1 1 1 2

4 sin sin cos cos

( sin cos sin cos )

e e q q q q

e q q + e q q

(21)

It can easily be seen that

R|| + T|| = 1 (22)

For nonmagnetic media, m1 ª m2 ª m0 = 4p ¥ 10–7 N A–2, and
the expression for the amplitude reflection coefficient
[Eq. (17)] simplifies to3

r|| = 
2 2
2 2 1 1 1 2
2 2
2 2 1 1 1 2

sin cos sin cos

sin cos sin cos

n n

n n

q q - q q

q q + q q

Since
n1 sin q1 = n2 sin q2 (23)

we get

r|| = 2 1 1 2

2 1 1 2

cos cos

cos cos

n n

n n

q - q

q + q
(24a)

= 1 1 2 2

1 1 2 2

sin cos sin cos

sin cos sin cos

q q - q q

q q + q q
(24b)

or

r|| = 1 2

1 2

sin 2 sin 2

sin 2 sin 2

q - q

q + q

= 1 2 1 2

1 2 1 2

2cos ( ) sin ( )

2sin ( ) cos ( )

q + q q - q

q + q q - q

= 1 2

1 2

tan ( )

tan ( )

q - q

q + q
(24c)

Similarly, starting from Eq. (18), we easily obtain

t|| = 1 2

1 2 1 2

2cos sin

sin ( ) cos ( )

q q

q + q q - q
(25)

From Eqs. (24) and (25) we may deduce the following:

(a) No reflection when n2 = n1

When n2 = n1, q2 = q1 and we get

r || = 0 and t || = 1

Thus there is no reflection when the second medium has the
same refractive index as the first medium (obviously!). Thus if
we have a transparent solid immersed in a liquid of the same
refractive index, the solid will not be seen!

(b) Polarization by reflection: Brewster’s law: If the angle
of incidence is such that

q1 + q2 = 
2

p then r|| = 0

i.e., there is no reflected beam; consequently the entire en-
ergy will appear in the transmitted beam. But t|| = 2 cos2 q1.
Why? (See Fig. 24.2.) Thus, if an unpolarized beam is inci-

dent at an angle such that q1 + q2 = /2p , then the parallel
component of the E vector will not be reflected and the
reflected light will be polarized with its E vector perpendicu-
lar to the plane of incidence (see Fig. 24.3). This is the
famous Brewster law. The corresponding angle of incidence
is known as the Brewster angle (or the polarizing angle) and
is usually denoted by qp.

Notice that the angle of refraction will be p/2 – qp, and
therefore Snell’s law takes the form

2

1

n

n
= 1

2

sin

sin

q

q
 = 

sin

sin ( /2 )
p

p

q

p - q
 = tan qp (26)

or

qp = tan–1 2

1

n

n

Ê ˆ
Á ˜Ë ¯

(27)

Thus, when the angle of incidence is equal to tan–1 ( )2 1/n n ,

then the reflected beam is plane polarized. Further, the trans-
mitted beam is partially polarized. It is easily seen that at the
polarizing angle, the reflected ray is at right angles to the
refracted ray. In Ref. 4, a beautiful physical argument has
been given as to why the reflected light should be linearly

3 We are using here the fact that for nonmagnetic media

 n = 
c

v
 = 

0 0

em

e m
 ª 

0

e

e

Thus

       n2 = 
0

e

e
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polarized when the angle of incidence corresponds to the
Brewster angle.

(c) Phase change on reflection and Stokes’ relations: When
light is incident on a denser medium, q2 < q1 and for q1 + q2 >
p/2ë (i.e., q1 > qp), r|| is negative, implying a phase change of p.
However, no such phase change occurs when q1 < qp. We
will discuss this point in detail later.

The amplitude reflection and transmission coefficients satisfy
Stokes’ relations (see Example 24.1).

(d) Reflection at grazing incidence: For grazing incidence

( )1 /2q ª p , Eq. (23) can be written in the form4

r|| = 1 2 1 2

1 2 1 2

(sin / sin ) sin sin

(sin / sin ) sin sin

q q a - a

q q a + a

= 1 2

1 2

sin sin

sin sin

n

n

a - a

a + a
(28)

where n = n2/n1, a1 = p/2 – q1, and a2 = p/2 – q2 and at grazing
incidence both these angles will be small. Now

n = 1

2

sin

sin

q

q
 = 1

2

cos

cos

a

a

or

sin a2 = (1 – cos2 a2)
1/2 = 

1/ 22
1

2

cos
1

n

Ê ˆa
-Á ˜Ë ¯

Thus

r|| = 

1/ 22
1

1 2

1/ 22
1

1 2

cos
sin 1

cos
sin 1

n
n

n
n

Ê ˆa
a - -Á ˜Ë ¯

Ê ˆa
a + -Á ˜Ë ¯

ª 

1/ 2

1 2

1/ 2

1 2

1
1

1
1

n
n

n
n

Ê ˆa - -Á ˜Ë ¯

Ê ˆa + -Á ˜Ë ¯

(29)

where we have replaced sin a1 by a1 and cos a1 by 1 (thus
we have retained terms proportional to a1 but neglected
terms of higher order—this will be justified when a1 is small).
Thus

r|| ª – 1

2 2
1

( 1)/

n

n n

aÈ ˘
-Í ˙

-Í ˙Î ˚

1
1

2 2
1

( 1)/

n

n n

-

aÈ ˘
+Í ˙

-Í ˙Î ˚

ª – 
2

1

2

2
1

1

n

n

È ˘a
-Í ˙

-Í ˙Î ˚

 Æ –1 as a1 Æ 0 (30)

which shows that the reflection is complete at grazing inci-
dence. The transmission coefficient tends to zero as is indeed
obvious from Eq. (25). Thus, if we hold a glass plate horizon-
tally at the level of the eye (see Fig. 24.4), the angle of
incidence will be close to p/2 and the plate will act as a mirror.

4 The second medium must be a denser medium (i.e., n2 > n1); otherwise, the beam will undergo total internal reflection [see part (e)].

n1

n2

qp

qp qp

Unpolarized Linearly
polarized

Partially
polarized

(a) (b)

Fig. 24.3 When an unpolarized beam of light is incident on a dielectric at the polarizing angle [i.e., the angle

of incidence is equal to tan
–1

 (n2/n1)], then the reflected beam is plane polarized with its E vector

perpendicular to the plane of incidence. The transmitted beam is partially polarized. The dashed

line in (b) is normal to the reflecting surface.
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(e) Total internal reflection: When an electromagnetic
wave is incident on a rarer medium (i.e., n2 < n1), then q2 > q1

and Snell’s law [Eq. (12)] can be written in the form

sin q2 = 
n
n

1

2
 sin q1 =

1

2

e

e

 sin q1 (31)

where the media have been assumed to be nonmagnetic, i.e.,
we have assumed

n1 = 1

0

e

e
and n2 =

2

0

e

e
(32)

Clearly when
q1 > qc sin q2 > 1

where

qc = sin–1  
2

1

n

n
Ê ˆ
Á ˜Ë ¯ = sin–1 2

1

e

e
(33)

The angle qc is known as the critical angle. Now, for nonmag-
netic media the amplitude reflection coefficient will be given
by [see Eq. (17)]

r|| = 2 1 2 1 1 2

2 1 2 1 1 2

cos sin sin cos

cos sin sin cos

e q q - e q q

e q q + e q q

= 
2

1 1 2 2

2
1 1 2 2

cos / 1 sin

cos / 1 sin

q - e e - q

q + e e - q

= 
2

1 1 2 2 1 1

2
1 1 2 2 1 1

cos ( / ) / sin

cos ( / ) / sin

q - e e e e - q

q + e e e e - q

or

r|| = 
2 2

1 1 2 1

2 2
1 1 2 1

cos ( / ) sin sin

cos ( / ) sin sin

c

c

q - e e q - q

q + e e q - q

(34)

where we have used Eqs. (31) and (33). Clearly, for q1 > qc the
quantity under the square root becomes negative and we
may write

1

2

e

e

2 2
1sin sincq - q  = 1

2

e

e

22
1

1

sin
e

- q
e  = ig (35)

where

g  =  1

2

e

e
 

2 2
1

1

sin q -
ε
ε  (36)

is a real number.

Substituting this into Eq. (34), we get

r|| = 1

1

cos

cos

i

i

q - g

q + g
(37)

and the reflection coefficient will be given by

R = |r|| |
2 = 1 (38)

showing that the entire energy is reflected into the first
medium. This is the well-known phenomenon of total inter-
nal reflection. We may, however, note two points:

1. Since r|| is a complex number, there is a phase change
on reflection (see Examples 24.3 and 24.6).

2. The amplitude transmission coefficient is given by

t|| = 1 1 1

1 1 2 2 1 2

2 sin cos

sin cos cos sin

e q q

e q q + e q q

which is not zero. Thus the field in the rarer medium is
not zero (see Example 24.4).

Example 24.1 Figure 24.5 shows that if the media are
interchanged, the angles of incidence and refraction are reversed. If
r||¢ and t||¢ denote the amplitude reflection and transmission coeffi-
cients corresponding to Fig. 24.5(b), then show that

1 + r|| r||¢ =  t|| t||¢ (39)

(This is one of Stokes’ relations—see. Sec. 14.12.)

Solution: Coefficient r|| is given by Eq. (17). To calculate r||¢ in
Eq. (17) we replace e1 by e2, q1 by q2, and q2 by q1 (see Fig. 24.5),
and we readily obtain

r||¢ = – r|| (40)

Thus

1 + r|| r||¢ = 1 – r||
2

= 1 – 
2

2 2 1 1 1 2
2

2 2 1 1 1 2

( sin cos sin cos )

( sin cos sin cos )

e q q - e q q

e q q + e q q

= 1 2 1 1 2 2
2

2 2 1 1 1 2

4 sin cos sin cos

( sin cos sin cos )

e e q q q q

e q q + e q q

Now t|| is given by Eq. (18); if we make the above-mentioned
replacements, we get

t||¢ = 2 2 2

1 1 2 2 2 1

2 sin cos

sin cos sin cos

e q q

e q q + e q q

(41)

a1n1

n2

Eye

Fig. 24.4 When light is incident at grazing angle (i.e., a
1
 ª 0),

the reflection is almost complete.
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If we multiply the above expression for t||¢ by Eq. (18), we readily
get Eq. (39).

Example 24.2 In deriving the reflection and transmission
coefficients, instead of assuming the continuity of the normal com-
ponent of D, if we assume the continuity of the tangential
component of H, show that the same results for the reflection and
transmission coefficients are obtained.

Solution: It is obvious from Fig. 24.1 that the magnetic field will
be in the y direction5 which represents a tangential component. Thus
if H1, H2, and H3 represent the magnetic fields associated with the
incident, transmitted, and reflected waves, respectively, then we
may write

1

2

3

( )
1 10

( )
2 20

( )
3 30

ˆ= e

ˆ= e

ˆ= e

i t

ti

ti

H

H

H

- w

- w

- w

k r

k r

k r

H y

H y

H y

i

i

i

(42)

Continuity of the y component of the field gives

H10 + H30 = H20 (43)
But

H = 
¥

wm

k E
(44)

Thus

1

1

k

wm

(E10 + E30) = 2

2

k

wm

E20 (45)

Continuity of the tangential component of E gives [see Eq. (15)]

(E10 – E30) cos q1 = E20 cos q2

= 1 2

2 1

k

k

m

m
(E10 + E30) cos q2

Thus

r|| = 30

10

E

E

= 2 2 1 1 1 2

2 2 1 1 1 2

/ cos / cos

/ cos / cos

k k

k k

m q - m q

m q + m q
(46)

= 2 2 1 1 1 2

2 2 1 1 1 2

/ cos / cos

/ cos / cos

e m q - e m q

e m q + e m q

(47)

If we now use Snell’s law, i.e.,

1

2

sin

sin

q

q
= 

1/ 2

2 2

1 1

Ê ˆe m
Á ˜e mË ¯

we get Eq. (17). However, from Eq. (47) we get the reflection coef-
ficient at normal incidence

r|| = 2 2 1 1

2 2 1 1

/ /

/ /

e m - e m

e m + e m

 ª 2 1

2 1

n n

n n

-

+

(48)

the last relation holds only for nonmagnetic media (m2 ª m1 ª m0).
Thus

R = 

2

30

10

E

E
 = 

2

2 1

2 1

n n

n n

Ê ˆ-
Á ˜+Ë ¯

(49)

For a beam incident from air onto glass n1 = 1.0, and n2 = 1.5, and
therefore,

R = 0.04 (50)

Thus about 4% of the light is reflected and 96% is transmitted into glass.

Example 24.3 Calculate the phase change in the beam
which undergoes total internal reflection.

Solution:

r|| = 1

1

cos

cos

i

i

q - g

q + g
(51)

= 
i

i

Ae

Ae

- f

f

 = e–2 if

where
A = (cos2 q1 + g2)1/2

5 The vector E ¥ H is along the direction of propagation.

n1 n1

n2 n2

q1 q1

q2 q2

q1

(a) (b)

Fig. 24.5 The angles of incidence and refraction are reversed if the media are interchanged.
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cos f = 1
2 2 1/ 2

1

cos

(cos )

q

q + g
     sin f = 

2 2 1/ 2
1(cos )

g

q + g

Thus
E30 = E10 e–2 if (52)

and the phase change D is given by

D = 2f = 2 tan–1 
1cos

g

q

= 2 tan–1 
2 2

11

2 1

sin sin

cos
c

Ê ˆq - qe
Á ˜
e qÁ ˜Ë ¯

(53)

Example 24.4 Determine the nature of the transmitted

wave when the beam undergoes total internal reflection.

Solution: The electric field associated with the transmitted wave
is given by [see Eq. (1)]

E2 = E20 exp [i(k2◊r – w t)]

= E20 exp [i(k2xx + k2z z – w t)]

= E20 exp [i(k2  x cos q2 + k2  z sin q2 – wt)]       (54)

(see Fig. 24.1). Now

1

2

sin

sin

q

q
= 2

1

e

e

therefore sin q2 =
1

2

e

e
 sin q1

and cos q2 = 21
1

2

1 sin
e

- q
e

= 1

2

e

e
 22

1
1

sin
e

- q
e

= 2

1

e

e
ig

Thus

E2 = E20 e
–b x 1

2 1
2

exp sini k z t
Ï ¸È ˘Ê ˆeÔ ÔÍ ˙q - wÌ ˝Á ˜eÍ ˙Ë ¯Ô ÔÎ ˚Ó ˛

     (55)

where

b = k2
2

1

e

e
g = 

c

w 2 2 2
1 1 2sinn nq - (56)

The field given by Eq. (55) represents a wave propagating in the
+z direction with an amplitude decreasing exponentially in the
x direction. Such a wave is known as a surface wave or an evanescent
wave (see Fig. 24.6). Such waves have many interesting applications.6

Case 2. E  perpendicular to the plane of incidence: Let us
next consider the reflection and refraction of a linearly polar-
ized plane wave with its electric vector perpendicular to the
plane of incidence; the reflection is assumed to occur at the
interface of two dielectrics. Thus the electric vectors will be
along the y axis (see Fig. 24.7) and we may write

1 10 1

2 20 2

3 30 3

ˆ= exp [ ( )]

ˆ= exp [ ( )]

ˆ= exp [ ( )]

E i t

E i t

E i t

- w

- w

- w

E y k r

E y k r

E y k r

i

i

i

(57)

where E1, E2, and E3 denote the electric vectors associated with
the incident, transmitted, and reflected waves, respectively. Since
the y axis is tangential to the interface, the y component of E must
be continuous across the interface; consequently

E10 + E30 = E20 (58)

The directions of the magnetic fields7 are also shown in
Fig. 24.7; they lie in the plane of incidence and are given by

6 See, for example, Ref. 2.
7 Note that since the displacement vector D has no component normal to the interface, the continuity of the normal component of D

will not give us any equation.

x

z
y

n2
n n1 2(> )

q qi c(> )

Evanescent wave

Interface

Fig. 24.6 An evanescent wave is generated in the rarer me-

dium when a beam undergoes total internal

reflection. The evanescent wave propagates along

the z axis, and the amplitude decreases along

the x axis.

q1

q1 q1

q1

q1

q2

E1

H1 H3

E3

E2

H2

k1 k3

k2

z
y

x

Fig. 24.7 The reflection and refraction of a plane wave with

the electric vector lying perpendicular to the

plane of incidence.
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1 10 1

1 10
1

1

2 20 2

2 20
2

2

3 30 3

3 30
3

1

= exp [ ( )]

= exp [ ( )]

= exp [ ( )]

= exp [ ( )]

= exp [ ( )]

= exp [ ( )]

i t

i t

i t

i t

i t

i t

- w

- w
wm

- w

- w
wm

- w

- w
wm

H H k r

k E
k r

H H k r

k E
k r

H H k r

k E
k r

i

i

i

i

i

i

�

�

�

(59)

(Notice that H lies in the plane of incidence.) Since k1 is
at right angles to E10, the magnitude of H10 is simply

1 10 1/k E wm ; similarly for H20 and H30. It is obvious from
Fig. 24.7 that for the z component of the magnetic field to be
continuous, we must have

H10 cos q1 – H30 cos q1 = H20 cos q2 (60)
or

1

1

k

wm

(E10 – E30) cos q1 = 2

2

k

wm

E20 cos q2 (61)

Substituting the expression for E20 from Eq. (58), we get

1

1

k

wm

(E10 – E30) cos q1 = 2

2

k

wm

(E10 + E30) cos q2

Rearranging, we get

r
^

= 30

10

E

E

= 1 1 1 2 2 2

1 1 1 2 2 2

/ cos / cos

/ cos / cos

k k

k k

wm q - wm q

wm q + wm q

(62)

= 1 1 1 2 2 2

1 1 1 2 2 2

/ cos / cos

/ cos / cos

e m q - e m q

e m q + e m q

(63)

ª 2 1 1 2

2 1 1 2

sin cos sin cos

sin cos sin cos

q q - q q

q q + q q

= – 1 2

1 2

sin ( )

sin ( )

q - q

q + q
(64)

Further

t
^

= 20

10

E

E
 = 30

10

1
E

E
+

= 1 1 1

1 1 1 2 2 2

2 / cos

/ cos / cos

e m q

e m q + e m q

(65)

ª 2 1

1 2

2sin cos

sin ( )

q q

q + q
(66)

where the subscript ^ on r and t refers to the state of polar-
ization in which the E vector is perpendicular to the plane of
incidence. Equations (62), (63), and (65) are exact, whereas
Eqs. (64) and (66) are valid for nonmagnetic media. Once
again, we can show that when q1 > qc, total internal reflec-
tion will occur and for grazing incidence the reflection
is complete.

As mentioned earlier, the subscript | | in r and t refers to
polarization parallel to the plane of incidence. Often, instead
of the subscript | |, the subscript  p is used; the letter  p stands
for the word parallel. Similarly, the subscript ^ in r and t
refers to perpendicular polarization; the subscript is often
represented by the subscript s, the letter s stands for the
German word senkrecht which means perpendicular.8

We summarize now the amplitude reflection and transmis-
sion coefficients for the two cases; the results are valid for
nonmagnetic media:

rp = r|| = 2 1 1 2

2 1 1 2

cos cos

cos cos

n n

n n

q - q

q + q

= 
2 2 2

2 1 1 2 1 1

2 2 2
2 1 1 2 1 1

( / ) cos ( / ) sin

( / ) cos ( / ) sin

n n n n

n n n n

q - - q

q + - q

(67)

= 1 2

1 2

tan ( )

tan ( )

q - q

q + q
(68)

rs = r
^

= 1 1 2 2

1 1 2 2

cos cos

cos cos

n n

n n

q - q

q + q

= 
2 2

1 2 1 1

2 2
1 2 1 1

cos ( / ) sin

cos ( / ) sin

n n

n n

q - - q

q + - q

(69)

= – 1 2

1 2

sin ( )

sin ( )

q - q

q + q
(70)

tp = t|| = 1 1

2 1 1 2

2 cos

cos cos

n

n n

q

q + q

= 1 2

1 1 2 2

2 cos sin

sin cos sin cos

q q

q q + q q
(71)

8 The parallel polarization (or the p polarization) is also called the transverse magnetic (or the TM) polarization as the magnetic field
is perpendicular to the plane of incidence. On the other hand, the perpendicular polarization (or the s polarization) is also called the
transverse electric (or the TE) polarization as the electric field is perpendicular to the plane of incidence.
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ts = t
^

= 1 1

1 1 2 2

2 cos

cos cos

n

n n

q

q + q
 = 1 2

1 2

2cos sin

sin ( )

q q

q + q
(72)

Equation, (67) to (72) are known as the Fresnel equations.9

We write

r = | r |eif (73)

The variations of | r|| |, |r
^

|, f||,, and f
^
 are plotted in Figs. 24.8,

and 24.9 for n2/n1 = 1.5. The directions of the E vector in the
reflected components are shown in Fig. 24.10.

Referring to Fig. 24.8, we note that when

q1 = qp = tan–1 2

1

n

n
 ª 56° |r|| | = 0

This is Brewster’s angle. At grazing incidence (i.e., as
q1 Æ 90°), both |r||| and |r

^
| tend to 1 implying complete reflection.

At normal incidence (i.e., q1 = 0) any state of polarization can be
thought of as parallel polarization or perpendicular polarization,10

and we should expect r|| and r
^
 to give the same result.

Figure 24.8 shows that both |r||| and |r
^
| have the same value; how-

ever, Fig. 24.9 shows that whereas the perpendicular component
predicts a phase change of p, there is no phase change associ-
ated with the parallel component. There is, however, no
inconsistency, if we study the direction of the electric vector as-
sociated with the reflected component [see  Fig. 24.10 (b) and (d)].

We must now recapitulate. We first considered the case when
the electric field associated with the incident wave was in the
plane of incidence, and we assumed that the electric fields asso-
ciated with the reflected and transmitted waves were also in the
plane of incidence. Had we assumed that the reflection at the in-
terface resulted in electric fields (E2y and E3y) along the y
direction associated with the transmitted and reflected waves,
then the continuity of Ey and Hz at x = 0 would have given

E3y = E2y

(a)

(c)

(b)

(d)

q q1 < p

Fig. 24.10 For the perpendicular component, there is a

phase change of p at all angles [(a) and (b)]. For

the parallel component there is no phase

change for q
1
 < qp [see (c) and (d)]. Notice that at

normal incidence, the electric field changes di-

rection in both cases.

90° 90°0 0qp

f|| f^

q

p p

q
(a) (b)

Fig. 24.9 The phase change on reflection (a) for the parallel

component and (b) for the perpendicular compo-

nent for n
2
 = 1.5 and n

1
 = 1.0; f^ = p for all values

of q.

9 An alternative derivation of Fresnel equations is given in Ref. 4, §33.6.
10 This is so because at normal incidence the direction of propagation is coincident with the normal to the reflecting surface, and any

plane containing the normal could be thought of as the plane of incidence.

0°
0

0.2

0.4

0.6

0.8

1

15° 30° 45° 60°

qpq

75° 90°

Ω Ωr||

Ω Ωr^

Fig. 24.8 Variation of |r
||

| and |r^| with the angle of in-

cidence when n
2
 = 1.5 and n

1
 = 1.0.
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and

3 3

0

x yk E

wm

= 
2 2

0

x yk E

wm

fi –n1 cos q1 E3y = n2 cos q2 E2y

The above two equations would immediately result in the
solution E2y = E3y = 0. Thus we may conclude that if the in-
cident electric field lies in the plane of incidence, then the
electric fields associated with the reflected and transmitted
waves must also lie in that plane. Similarly, if the incident
electric field is perpendicular to the plane of incidence, then
the electric fields associated with the reflected and transmit-
ted waves will also lie perpendicular to the same plane. In
general, for an arbitrary state of polarization of the incident
wave, we must resolve the incident electric field in compo-
nents which are parallel and perpendicular to the plane of
incidence, consider the reflection (and transmission) of
each of the components, and then superpose to find the
resultant state of polarization (see Example 24.9). Indeed by
studying the polarization characteristics of the reflected
wave, we can determine the (complex) refractive index of the
material. This is known as the field of ellipsometry—a sub-
ject of profound importance (see, e.g., Ref. 1). We will
consider the reflection by a material of complex refractive
index in Sec. 24.3.

In Fig. 24.11 we have plotted the reflection coefficients for
the parallel (p) and the perpendicular (s) components when
light is incident from air on a denser medium of refractive
index 2.0; notice that Rp = 0 at Brewster’s angle (or the polar-
izing angle), showing that, at this angle of incidence, the
reflected light will always be s-polarized. On the other hand,
in Fig. 24.12 we have plotted the reflection coefficients for
the parallel ( p) and the perpendicular (s) components when
light is incident from a denser medium of refractive index 2.0
on air; notice that both Rs  and Rp = 1 at all angles of inci-
dence greater than the critical angle. Further, at Brewster’s
angle Rp = 0, showing that, at this angle of incidence, the
reflected light will again be s-polarized.

Example 24.5 Let us consider the incidence of a plane
electromagnetic wave on an air-glass interface (see Fig. 24.1).
Thus n1 = 1.0 and n2 = 1.5, giving

qp = tan–1 (1.5) ª 56.31°

For q1 = 30°; q2 ª 19.47° we get

r|| ª 0.1589 t||  ª 0.7725

r^ ª –0.2404 r^ ª 0.7596

On the other hand, for q1 = 89° (grazing incidence), q2 = 41.80° and

r||  ª –0.9321 (~87% reflection) t||  ª 0.0452

r^ ª –0.9693 and t^ ª 0.0307

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

R

n1 � 1.0, n2 � 2.0

s

Rp

Angle of incidence (in degrees)

R
ef

le
ct

io
n

co
ef

fic
ie

nt

Fig. 24.11 The reflection coefficients for the p (parallel) and s (perpendicular) components when a light beam

is incident from a rarer Medium (of refractive index 1.0) on a denser medium of refractive index 2.0.

The Brewster angle is 63.43° where Rp is zero and the reflected wave is s-polarized. 
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Example 24.6 We next consider the incidence of a plane elec-
tromagnetic wave on a rarer medium such as a glass-air interface.
Thus n1 = 1.5 and n2 = 1.0, giving

qp = tan–1 
1

1.5
 ª 33.69° and qc = sin–1 1

1.5
 ª 41.81°

1. For q1 = 30°, q2 = 48.59° and

r|| ª –0.06788 t||  ª +1.3982

r^ ª +0.3252 t^ ª +1.3252

2. For q1 = 60°, cos q2 = ia with a ª 0.82916. Thus

r|| = 2 1 1 2

2 1 1 2

cos cos

cos cos

n n

n n

q - q

q + q

= 
0.5 1.5

0.5 1.5

i

i

- a

+ a

ª –0.7217 – i0.6922

ª e–0.7567pi

[Use of Eq. (53) would give the same result.]

t|| = 1 1

2 1 1 2

2 cos

cos cos

n

n n

q

q + q

ª 
1.5

0.5 1.5i+ a

 ª 0.41739 – i1.0382

ª 1.1190e–0.3783p i

r^ = 1 1 2 2

1 1 2 2

cos cos

cos cos

n n

n n

q - q

q + q

ª 
0.75

0.75

i

i

- a

+ a

ª –0.1 – i0.9950 ª e–0.532p i

(Notice that | r|| | = | r^ | = 1.)
and

t̂ = 
1 1

1 1 2 2

2 cos

cos cos

n

n n

q

q + q

ª 0.9 – i0.995

ª 1.3416e–0.266p i

Example 24.7 Consider a linearly polarized electromagnetic
wave (with its electric vector along the y direction of magnitude
5 V m–1) propagating in vacuum. It is incident on a dielectric interface
at x = 0 at an angle of incidence of 30°. The frequency associated
with the wave is 6 ¥ 1014 Hz. The refractive index of the dielectric
is 1.5. Write the complete expressions for the electric and magnetic
fields associated with the incident, reflected, and transmitted waves.

Solution: The wave vector associated with the incident wave is

given by

k1 = (k0 cos 30) �x  + (k0 sin 30) �z

= 0 0
3 1

ˆ ˆ
2 2

k k+x z

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

Rs

Rp

Critical angle

Angle of incidence (in degrees)

R
ef

le
ct

io
n

co
ef

fic
ie

nt n1 � 2.0
n2 � 1.0

Fig. 24.12 The reflection coefficients for the p (parallel) and s (perpendicular) components when a light beam

is incident from a denser medium (of refractive index 2.0) on a rarer medium of refractive index 1.0.

The Brewster angle is 26.56° where Rp is zero and the reflected wave is s-polarized. The critical angle

is 30° beyond which the reflection coefficient is unity.
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Thus

E1 = �y  5 exp 0 0
3 1

2 2
i k x k z t
È ˘Ê ˆ

+ - wÍ ˙Á ˜Ë ¯Í ˙Î ˚
V m–1

where

k0 = 
0

2p

l
 = 4p ¥ 106 m–1

w = 12p ¥ 1014 Hz

Now

sin q2 = 1 1

2

sinn

n

q
 = 

1
3

fi cos q2 = 
8

3

Thus

r^ = 1 1 2 2

1 1 2 2

cos cos

cos cos

n n

n n

q - q

q + q
 = –0.2404

fi Rs = R^ = 0.057796

and

t̂ = 1 2

1 2

2 cos sin

sin ( )

q q

q + q
 = 0.7596

implying

Ts = T^ = 2 2

1 1

cos

cos

n

n

q

q
 | t^|2 = 0.942204

showing that R^ + T^ = 1. Now

k2 = �x (n2 k0 cos q2) + �z (n2 k0 sin q2)

= �x 0( 2 )k  + �z ( )1
02 k

and

k3 = – x̂ k0 cos q1 + ẑ (k0 sin q1)

= – �x 0

3

2
k

Ê ˆ
Á ˜Ë ¯  + �z 0

1

2
k

Ê ˆ
Á ˜Ë ¯

Thus the electric fields associated with the transmitted and reflected
waves are given by

E2 = 3.8 �y  exp 0 0
1

2
2

i k x k z t
È ˘Ê ˆ+ - wÁ ˜Í ˙Ë ¯Î ˚

V/m–1

and

E3 = –1.2 �y  exp 0 0
3 1

2 2
i k x k z t
È ˘Ê ˆ

- + - wÍ ˙Á ˜Ë ¯Í ˙Î ˚
V/m–1

respectively. Notice that the values of kz in E1, E2, and E3 are the
same [see Eq. (7)]. The corresponding magnetic fields can be calcu-
lated by using Eq. (59) to obtain

H1 = 5 1

0

k

wm

 (– �x  sin q1 + �z cos q1)

¥ exp 0 0
3 1

2 2
i k x k z t
È ˘Ê ˆ

+ - wÍ ˙Á ˜Ë ¯Í ˙Î ˚

H2 = 3.8 2

0

k

wm

 (– �x sin q2 + �z  cos q2)

¥ exp 0 0
1

2
2

i k x k z t
È ˘Ê ˆ+ - wÁ ˜Í ˙Ë ¯Î ˚

and

H3 = –1.2 1

0

k

wm

 (– �x  sin q1 – �z cos q1)

¥ exp 0 0
3 1

2 2
i k x k z t
È ˘Ê ˆ

- + - wÍ ˙Á ˜Ë ¯Í ˙Î ˚
where

1

0

k

wm

= 0

0

k

wm

 = 
0

1

cm
 = 

1

120p
 mks units

and 2

0

k

wm

= 0 2

0

k n

wm

 = 2

0

n

cm
 = 

1

80p
 mks units

Example 24.8 Consider once again the situation described
in the above example except that the magnetic vector is now along
the y direction. Formulate the complete expressions for the electric
fields associated with the incident, reflected, and transmitted waves.

Solution: Referring to Fig. 24.1, we have

E1 = 5
1
2

3
2

� �x z−
F
HG

I
KJ

¥ exp 0 0
3 1

2 2
i k x k z t
È ˘Ê ˆ

+ - wÍ ˙Á ˜Ë ¯Í ˙Î ˚
V m–1

Now

r|| = 2 1 1 2

2 1 1 2

cos cos

cos cos

n n

n n

q - q

q + q
 = 0.1589

fi R|| = 0.02525

and t|| = 1 1

2 1 1 2

2 cos

cos cos

n

n n

q

q + q
 = 0.7726

implying

T|| = 2 2

1 1

cos

cos

n

n

q

q
| t|| |

2 = 0.97475

showing that R|| + T|| = 1. Furthermore,

E2 = 3.863
81

ˆ ˆ
3 3

Ê ˆ
-Á ˜Ë ¯x z

¥ exp 0 0
1

2
2

i k x k z t
È ˘Ê ˆ+ - wÁ ˜Í ˙Ë ¯Î ˚

V m–1

E3 = 0.7945
31

ˆ ˆ
2 2

Ê ˆ
+Á ˜Ë ¯x z

¥ exp 0 0
3 1

2 2
i k x k z t
È ˘Ê ˆ

- + - wÍ ˙Á ˜Ë ¯Í ˙Î ˚
V m–1
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Example 24.9 For the situation described in Example 24.7,
consider a right circularly polarized wave incident at the air-glass
interface at q1 = 30°. Determine the state of polarization of the
reflected and transmitted fields.

Solution: We refer to Fig. 24.13. We must resolve the electric
field in components parallel and perpendicular to the plane of in-
cidence. Neglecting the space-dependent parts, if we write for the
y component of the incident field

E^ = Ey = E0 cos wt

then for the beam to be right circularly polarized, the parallel com-
ponent must be given by

E|| = E0 cos
2

t
pÊ ˆw +Á ˜Ë ¯  = –E0 sin wt

The direction of the “parallel axis” is as shown in Fig. 24.13(b)
consistent with Fig. 24.1. Thus

Ex = E|| sin q1 = –E0 sin q1 sin w t

and

Ez = –E|| cos q1 = +E0 cos q1 sin w t

In the reflected field, the “parallel component” will be along the
direction shown in Fig. 24.13(c), consistent with Fig. 24.1. Now,
associated with the reflected wave

Ey = E^ = r^E0 cos wt ~-  – 0.24 E0 cos w t

and

E|| = –r||E0 sin w t ~-  –0.16E0 sin w t

If we now refer to Fig. 24.13(c), the electric vector will rotate in the
clockwise direction, and since the propagation is out of the page,
the reflected wave is left elliptically polarized. We can carry out a
similar analysis for the transmitted wave to show that it is right
elliptically polarized.

24.3 REFLECTION BY A

CONDUCTING MEDIUM

If we consider a plane wave incident from a dielectric onto a
conducting medium (with conductivity s ), the expressions
for E20/E10 and E30/E10 will remain the same, except for the
fact that k2 will now be complex (sec Sec. 23.7). Snell’s law

k1 sin q1 = k2 sin q2 (74)

will also remain valid, but since k2 is complex, sin q2 will also
be complex.

If we consider the case when the electric fields are per-
pendicular to the plane of incidence (see Fig. 24.7), we have
[see Eq. (62)]

r̂ = 
E
E

30

10

30°

30° 30°
k3k1

z z

x x

y

E||

(a)

(b) (c)

k1
k2

y y

| | | |

Fig. 24.13 (a) A right circularly polarized beam is incident on an air-glass interface at 30°. The reflected

beam is left elliptically polarized. (b) The direction of rotation of the E vector for the incident

wave. The direction of propagation (shown as ƒ) is into the page. (c) The direction of rotation of

the E vector for the reflected wave. The direction of propagation (shown as �) is coming out of

the page.
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= 1 1 1 2 2 2

1 1 1 2 2 2

( / ) cos ( / ) cos

( / ) cos ( / ) cos

k k

k k

wm q - wm q

wm q + wm q

(75)

where

k2 = a + ib (76)

a = 2 2w e m

1/ 2
2

2

1 1
1

2 2

È ˘sÊ ˆÍ ˙+ + Á ˜Í ˙weË ¯
Î ˚

b = 2

2

wsm

a
(77)

(see Sec. 23.7). For normal incidence

r
^

= 
E
E

30

10
 = 

1

21 1

1

21 1

1

1

i

i

ma + b
-

mw e m

ma + b
+

mw e m

(78)

and

t
^

= 
E
E

20

10
 = 1 + r

^
 = 

1

21 1

2

1
i ma + b

+
mw e m

(79)

For a good conductor, /s ew  >> 1 and

a ª b ª 
1 2

2

2

wsmÊ ˆ
Á ˜Ë ¯ (80)

Thus

r
^

= 30

10

1 (1 )

1 (1 )

E i

E i

- + D

+ + D

� (81)

t
^

= 20

10

2

1 (1 )

E

E i+ + D

� (82)

where

D = 
1/ 2

1

2 12

Ê ˆsm
Á ˜m e wË ¯

(83)

For infinite conductivity, D Æ • and

E30 = –E10 E20 = 0 (84)

showing that there is a phase change of p on reflection. Fur-
ther, the energy is completely reflected, and the field inside
the conductor is identically zero.11 For a finite (but large)
value of s, an approximate expression for the reflection coef-
ficient can be obtained in the following manner:

R = 

2
30

10

E

E
 = 

2
1 1/(1 )

1 1/(1 )

i

i

- + D

-

+ + D

ª 

2
1 1

1 1
(1 ) (1 )i i

Ê ˆ Ê ˆ
- -Á ˜ Á ˜+ D + DË ¯ Ë ¯

ª 
2

2
1

(1 )i
-

+ D

ª 1 – 2
D

ª 1 – 2
1/ 2

2 1

1

2Ê ˆm e w
Á ˜smË ¯

(85)

For nonmagnetic media, with

e1 ª e0 = 8.854 ¥ 10–12 C2 N–1 m–2

w ª 2p ¥ 1010 s–1
s ª 3 ¥ 107 mho m–1 (silver)

R ª 0.9996

Thus about 99.96% of light is reflected. This is the reason
why metals are such good reflectors. Notice that the reflec-
tion coefficient increases with decrease in frequency.

When the incidence is not normal, one must substitute the
following expression for cos q2.

cos q2 = 2
21 sin- q  = 2 2

1 2 11 ( / ) sink k- q

= 

1/ 22
21 1

12
1 sin

( )i

È ˘w e m
- qÍ ˙

a + bÎ ˚

2 2
1 1 1

2 2 2 2
2

sin1
1

2 ( / 4) (1 )i

w e m q
ª -

w s m +

1ª

The last expression is valid for good conductors. Thus for
the transmitted wave we can write

E2 = E20 exp [i(k2 ◊ r – w t)]

= E20 exp [i(k2 cos q2 x + k2 sin q2 z – wt)]

= E20 exp {i[a(1 + i)x + k1 sin q1 z – wt]}

ª E20 exp (–ax) exp [i(ax + k1 sin q1 z – wt)]
(86)

For a good conductor, a >> k1, and the wave (having
an amplitude exponentially decreasing in the x direction)
propagates along the x axis.

11 Note that if s Æ • (i.e., for a perfect conductor), then r|| Æ +1 and r^ Æ –1 [see Eqs. (46) and (75)] even for nonnormal incidence.
Thus, if a right circularly polarized wave is incident on a perfect conductor, then the reflected light will be left circularly polarized.
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24.4 REFLECTIVITY OF A

DIELECTRIC FILM

In this section we will calculate the reflectivity of a dielectric
film for a plane wave incident normally on it. We will determine
the thickness of the film for which the film will become
antireflecting and compare our results with those obtained in
Sec. 15.4. In Prob. 24.9, we will apply our results to a Fabry–
Perot interferometer (cf. Sec. 16.2).

We consider a plane wave incident normally on a dielectric
film of thickness d (see Fig. 24.14). Without any loss of gener-
ality, we assume the electric field to be along the y axis. Thus
the electric fields in media 1, 2, and 3 are given by

E1 = �yE +
10 ei(k1x–wt) + �y E –

10 e–i(k1x+w t)

E2 = �yE +
20 ei(k2x–wt) + �y E –

20e–i(k2x+w t) (87)

E3 = �yE +
30 ei[k3(x–d) – w t]

where E +
10 and E–

10 represent the amplitudes of the forward
and backward propagating waves, respectively, in region 1;
similarly for other fields. Since the third medium extends to
infinity, there is no backward propagating wave in region 3.
For E3, for the sake of convenience we have introduced a
phase factor of exp (–ik3d); this term makes the analysis more
straightforward.

The corresponding magnetic field is given by [see Eq. (66)
of Chap. 23]

H = 
¥

wm

k E
(88)

where
ˆ for waves propagating in +  direction

ˆ for waves propagating in +  direction

k x

k x

Ï
= Ì

-Ó

x
k

x

Thus

H1 = �z 1

0

k

wm

 (E +
10 ei(k1x–w t) – E –

10 e–i(k1x+w t))

H2 = �z 2

0

k

wm

 (E +
20 ei(k2x–w t) – E –

20 e–i(k2x+w t))

H3 = �z 3

0

k

wm

 E +
30ei[k3(x–d)–w t] (89)

Both Ey and Hz represent tangential components and should
therefore be continuous at interfaces x = 0 and x = d. The
continuity conditions at x = 0 give

E +
10 + E –

10 = E +
20 + E –

20

and

1

0

k

wm

(E +
10 – E –

10 ) = 2

0

k

wm

(E +
20 – E –

20)

or

E +
10 – E –

10 = 
n
n

2

1
(E +

20 – E –
20 )

where we have used the relations

k 2 = 
c

w
n2 and k1 = 

c

w
n1

Simple manipulations give

10
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E
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-

Ê ˆ
Á ˜
Ë ¯
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1 2 1 2
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1 2 1 2 20
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Á ˜Ë ¯

(90)

Similarly, the continuity of Ey and Hz at x = d gives

E +
20 eid + E –

20e– id = E +
30

E +
20eid – E –

20 e– id = 
n
n

3

2
E +

30

where d = k2d. Elementary manipulations give

20

20

E

E

+
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Ê ˆ
Á ˜
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2 3
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2 3

2

2

2
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i

n n
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e

n

- d

d
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Á ˜
Á ˜

-Á ˜
Á ˜Ë ¯

E +
30 (91)

Combining Eqs. (90) and (91), we get

E +
10 = 2 31 2

1 22 2
in nn n

e
n n

- d

ÈÊ ˆ Ê ˆ++
ÍÁ ˜ Á ˜Ë ¯ Ë ¯Î

2 31 2

1 22 2
in nn n

e
n n

d
˘Ê ˆ Ê ˆ--

+ ˙Á ˜ Á ˜Ë ¯ Ë ¯ ˚
E+

30 (92)

x d=

x = 0

E2
+

E3
+

E1
+ H1

+

E2
–

H1
– E1

–

z

x

y

Fig. 24.14 Reflection of a plane wave incident normally on

a dielectric slab of thickness d.
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and

E –
10 = 2 31 2

1 22 2
in nn n

e
n n

- d

ÈÊ ˆ Ê ˆ+-
ÍÁ ˜ Á ˜Ë ¯ Ë ¯Î

2 31 2

1 22 2
in nn n

e
n n

d
˘Ê ˆ Ê ˆ-+

+ ˙Á ˜ Á ˜Ë ¯ Ë ¯ ˚
E +

30 (93)

Dividing Eq. (92) by Eq. (93), we get the amplitude reflection
coefficient

r = 10

10

E

E

-

+
 = 1 2

1 2

i i

i i

r e r e

e r r e

- d d

- d d

+

+

(94)

where

r1 = 1 2

1 2

n n

n n

-

+

(95)

and

r2 = 2 3

2 3

n n

n n

-

+

(96)

represent the Fresnel reflection coefficients at the first and
second interfaces, respectively. The reflectivity is therefore
given by

R = | r |2 = 
2 2

1 2 1 2
2 2

1 2 1 2

2 cos 2

1 2 cos 2

r r r r

r r r r

+ + d

+ + d

(97)

In Secs. 16.2 to 16.4, we discussed the above equation in de-
tail with r2 = r1; however, the definition of d here differs by a
factor of 2 from the definition of d in Chap. 16 (see Prob. 24.10).
A more general analysis shows that the above equation
remains valid even for oblique incidence with d now equal
to k2d cos q2, with q2 being the angle of refraction in the
second medium and r1 and r2 representing the appropriate
Fresnel reflection coefficients corresponding to the particular
angle of incidence and state of polarization.

Summary

� Consider the incidence of a linearly polarized electromagnetic
wave on an interface of two dielectrics (which we assume to be
x = 0); the x z plane is assumed to be the plane of incidence. Let

n1 ( )1 0= /e e  and n2 ( )2 0= /e e  be the refractive indices of

the two media. The incident wave, refracted wave, and reflected
waves can be written as

E1 = E10 exp [i(k1 • r – wt)] incident wave

E2 = E20 exp [i(k2 • r – wt)] refracted wave

E3 = E30 exp [i(k3 • r – wt)] reflected wave

where E10, E20, and E30 are independent of space and time
and

k1 = 
c

w

 n1 = k3 k2 = 
c

w

n2

k1 sin q1 = k2 sin q2 = k3 sin q3

where q1, q2, and q3 are the angle of incidence, angle of refrac-
tion, and angle of reflection, respectively. The above
equations readily give

n1 sin q1 = n2 sin q2 Snell’s law

and  q1 = q3.

� For E1 lying in the xz plane (which is the plane of incidence)

E10 = E10( �x  sin q1 – �z  cos q1)

E20 = t | | E10( �x  sin q2 – �z  cos q2)

E30 = r| | E10( �x  sin q1 + �z  cos q1)

r | | = 2 1 1 2

2 1 1 2

cos cos

cos cos

n n

n n

q - q

q + q
 = 1 2

1 2

tan ( )

tan ( )

q - q

q + q

t| | = 1 1

2 1 1 2

2 cos

cos cos

n

n n

q

q + q

= 1 2

1 2 1 2

2 cos sin

sin ( ) cos( )

q q

q + q q - q

Notice that r | | = 0 when q1 + q2 = / 2,p implying

q1 = qp = tan–1

1

2n

n
Ê ˆ
Á ˜Ë ¯

This is Brewster’s angle.

� For E1 perpendicular to the plane of incidence (i.e., along �y ),

E10 = E10 �y E20 = t^E10 �y E30 = r^ E10 �y
with

r^ = 1 1 2 2

1 1 2 2

cos cos

cos cos

n n

n n

q - q

q + q
 = – 1 2

1 2

sin ( )

sin ( )

q - q

q + q

and

t̂ = 1 1

1 1 2 2

2 cos

cos cos

n

n n

q

q + q
 = 2 1

1 2

2 sin cos

sin ( )

q q

q + q

� In both cases, if n2 < n1 and q1 > qc = ( )1
2 1sin / ,n n-  we have

total internal reflection. We can still use the above expres-
sions for r| | , t| |, r^, and t^ but we must remember that

sin q2 = 
n
n

1

2
 sin q1 > 1

and cos q2 = 2
21 sin- q  = ia

will be pure imaginary. Thus r| |, t| |, r^, and t^ will be com-
plex quantities with | r| | | = 1 = | r^ |, showing that the entire
energy is reflected; however, there will be an evanescent
wave in the second medium whose field will decay along the
x axis and propagate along the z axis.
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Problems

24.1 Show that in the limit of q1 Æ 0 (i.e., at normal incidence)
the reflection coefficient is the same for parallel and per-
pendicular polarizations.

24.2 Consider a magnetic dielectric with a permeability such that
m/m0 = e/e0. Show that for such a material the reflection coef-
ficient for normal incidence is identically equal to zero. This
realization is equivalent to the situation where the impedance
is matched at the junction of two transmission lines.

(The quantity /m e  can be considered as the intrinsic im-
pedance of the medium.)

24.3 A right circularly polarized beam is incident on a perfect
conductor at 45°. Show that the reflected beam is left
circularly polarized.

24.4 Assume n1 = 1.5 and n2 = 1.0 (see Example 24.6).

(a) For q1 = 45° show that

r|| = + 0.28 – i0.96 t|| = 1.92 – i1.44

Similarly, calculate r^ and t^.

(b) On the other hand, for q1 = 33.69° show that

r|| = 0 t||    = 1.5

r^ = +0.3846 t^ = 1.3846

[Ans: (a) r^ = 0.8 – 0.6i; t^=1.8 – 0.6i]

24.5 Consider a right circularly polarized beam incident on a
medium of refractive index 1.6 at an angle of 60°. Calculate
r|| and r^ and show that the reflected beam is right ellipti-
cally polarized with its major axis much longer than its
minor axis. What will happen at 58°?

[Ans: r|| = –0.0249, r^ = –0.4581]

24.6 Consider a y-polarized wave incident on a glass-air inter-
face (n1 = 1.5, n2 = 1.0) at q1 = 45° and at q1 = 80°. Write
the complete expressions for the transmitted field, and
show that in the latter case it is an evanescent wave with

depth of penetration (= 1/b ) equal to about 8.8 ¥ 10–8 m;
assume l = 6000 Å.

24.7 For gold, at l0 = 6530 Å the complex refractive index is
given by n2 = 0.166 + 3.15i. Calculate k2 and show that the
reflectivity at normal incidence is approximately 94%.
[Hint: Use Eq. (75) directly.] On the other hand, at
l0 = 4000 Å, n2 = 1.658 + 1.956i; show that the ref-
lectivity is only 39%.

24.8 Show that for d = 0, Eq. (97) takes the form

R = 

2

1 3

1 3

n n

n n

Ê ˆ-
Á ˜+Ë ¯

(98)

as it indeed should be.

24.9 Using the various equations in Sec. 24.4, calculate the
transmittivity and show that

T = 
21

3 32
21

1 12

| |

| |

n E

n E

+

+
 = 1 – R

24.10 Assume the third medium in Fig. 24.12 to be identical to

the first medium; i.e., n3 = n1. Thus

r2 = –r1 = – 1 2

1 2

n n

n n

-

+

Using Eq. (97), show that

R = 
2

2

sin

1 sin

F

F

d

+ d
(99)

where F = 
2

1
2 2

1

4

(1 )

r

r-

(100)

is called the coefficient of finesse. Equation (99) is iden-
tical to the result derived in Sec. 16.2 while discussing
the theory of the Fabry–Perot interferometer. The defi-
nition of d here differs by a factor of 2 from the
definition of d in Chap. 16.

24.11 When the angle of incidence is equal to the Brewster’s angle,
show that T|| [as given by Eq. (21)] is equal to unity.
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PART 6
PhotonsPhotonsPhotonsPhotonsPhotons

This part consists of only one chapter, namely, Chap. 25 on the particle model of radia-
tion. The photoelectric effect (discovered by Hertz in 1888) had certain peculiarities which
cannot be explained on the basis of wave theory. In 1905, Einstein provided a simple
explanation of the peculiarities by assuming that light consisted of quanta of energy hn
(where n is the frequency) and that the emission of a photoelectron was the result of the
interaction of a single quantum (i.e., of the photon) with an electron. For this Einstein
received the 1921 Nobel Prize in Physics. Chapter 25 also discusses the Compton effect
(for which Prof. Compton received the 1927 Nobel Prize in Physics) which established
that the photon has a  momentum equal to hn/c.
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Are not the rays of light very small bodies emitted from shining substance?
—Isaac Newton, Opticks1

It is undeniable that there is an extensive group of data concerning radiation which shows that
light has certain fundamental properties that can be understood much more readily from the
standpoint of the Newton emission (particle) theory than from the standpoint of the wave theory.
It is my opinion, therefore, that the next phase of the development of theoretical physics will
bring us a theory of light that can be interpreted as a kind of fusion of the wave and emission
theories.

—Albert Einstein (1909)2

THE PARTICLE NATURE OF

RADIATION

Chapter

Twenty-

Five

Important Milestones
1887 Heinrich Hertz, while receiving the electromagnetic waves in a coil with a spark gap, found that the maximum

spark length was reduced when the apparatus was put in a black box.

1897 J. J. Thomson discovered the electron.

1899 J. J. Thomson showed that electrons are emitted when light falls on a metal surface; these are known as

photoelectrons.

1900 To derive the blackbody radiation formula, Planck made a drastic assumption that the oscillators can only

assume discrete energies.

1902 Philip Lenard observed that the kinetic energy of the emitted photoelectrons was independent of the intensity

of the incident light and that the energy of the emitted electron increased when the frequency of the incident

light was increased.

1905 In a paper entitled “On a Heuristic Point of View about the Creation and Conversion of Light,” Einstein

introduced the light quanta. In this paper, he wrote that for an explanation of phenomena such as blackbody

radiation, production of electrons by ultraviolet light (which is the photoelectric effect), it is necessary to

assume that when a light ray starting from a point is propagated, the energy is not continuously distributed

over an ever-increasing volume. Rather it consists of a finite number of energy quanta, localized in space,

which move without being divided and which can be absorbed or emitted only as a whole. Einstein received

the 1921 Nobel Prize in Physics for his services to theoretical physics, and especially for his explanation of

the photoelectric effect.

1923 Compton reported his studies on the scattering of X-rays by solid materials (mainly graphite) and showed that

the shift of the wavelength of the scattered photon could be explained by assuming the photon having momentum

equal to h/l. Compton received the 1927 Nobel Prize in Physics for his discovery of the effect named after him.

1926 Gilbert Lewis, a U.S. chemist, coined the word photon to describe Einstein’s localized energy quanta.

1 The author found this quotation in Ref. 1.
2 The author found this quotation in Ref. 2.
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25.1 INTRODUCTION

In earlier chapters, we discussed the interference, diffraction,
and polarization of light. All these phenomena can be ex-
plained satisfactorily on the basis of the wave theory of light.
We also discussed the electromagnetic character of light
waves (see Chaps. 22 and 23) and showed that the electro-
magnetic theory can be successfully used to explain the
origin of the refractive index (see Chap. 7), the phenomenon
of double refraction (see Chap. 22), and many other experi-
mental results. However, there exist a large number of
experimental phenomena that can be explained only on the
basis of the corpuscular nature of radiation. In this chapter,
we will discuss the famous experiments on the photoelectric
effect and the Compton effect which establish the particle
nature of light—a wave model is totally inadequate to explain
these effects. In Chap. 2, we briefly discussed how to recon-
cile the dual nature of radiation (i.e., the wave and the particle
aspects) on the basis of the quantum theory.

25.2 THE PHOTOELECTRIC

EFFECT

In 1887 Heinrich Hertz, while carrying out his experiments on
electromagnetic waves, found that if the light emitted from
one spark gap were blocked, it would reduce the maximum
spark length in the other gap. After carrying out a series of
experiments, he concluded that it was the ultraviolet radia-
tion from the first spark that was helping the spark across
the second gap. Hertz reported the observations but did not
pursue further and also did not make any attempt to explain
them. In 1897, J. J. Thomson discovered electrons, and in
1899, he showed that electrons are emitted when light falls
on a metal surface; these are now known as photoelectrons.
In 1902, Philip Lenard observed that (1) the kinetic energy of
the emitted electrons was independent of the intensity of the
incident light and (2) the energy of the emitted electron in-
creased when the frequency of the incident light was
increased. Later Millikan carried out very careful experiments
on the photoelectric effect, and the apparatus that he used
was similar to the one shown in Fig. 25.1; these photoelec-
trons constitute a current between plates P1 and P2 which
can be detected by means of an ammeter A. When the volt-
age across the plates is varied, the current also varies;
typical variations of the current with voltage are shown in
Fig. 25.2. The figure corresponds to monochromatic light of a
particular wavelength, and different curves correspond to dif-
ferent intensities of the beam. From the figure we can draw
the following conclusions:

1. At zero voltage there is a finite value of the current,
implying that some of the emitted photoelectrons reach
the metal surface P2.

2. As the voltage is increased, the current increases until it
reaches a saturation value; this will happen when plate P2

collects all the emitted photoelectrons.

3. If plate P2 is kept at a slightly negative potential, there
is a weak current, implying that some of the photo-
electrons do manage to reach plate P2. However,

Photoelectrons

Incident light

Large current

Weak current

P2P1

A

A

(a)

(b)

Fig. 25.1 If light (of a certain frequency) is allowed to fall

on a metal such as sodium, electrons are emitted

which can be collected by plate P
2
. (a) and (b)

correspond to positive and negative voltage ap-

plied to plate P
2
. Even when the plate is kept at a

low negative voltage, one can detect a small current.
C

ur
re

nt

0–Vc

I2

I3

V

I1

I I I1 2 3> >

Fig. 25.2 Typical variation of the photocurrent with volt-

age. The curves correspond to light (of the same

frequency) having different intensities.
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beyond a certain voltage (which is shown as –Vc in the
figure) the current is zero; Vc is known as the cutoff
voltage, and the quantity |q|Vc will represent the maxi-
mum kinetic energy of the photoelectrons (q represents
the charge of the electron). For example, for sodium
Vc ª 2.3 V and for copper Vc ª 4.7 V.

4. If we do not change the wavelength of the incident ra-
diation but make it more intense, the magnitude of the
current will become larger as shown in Fig. 25.2, imply-
ing a greater emission of photoelectrons. Notice that
the value of the cutoff potential remains the same; this
important result implies that the maximum kinetic en-
ergy of the emitted photoelectrons does not depend on
the intensity of the incident radiation.

5. If the frequency of the incident radiation is increased,
then the cutoff potential and hence the maximum kinetic
energy of the electron (= | q |Vc) vary linearly with the
frequency as shown in Fig. 25.3. Further, for frequencies
less than a critical value (shown as nc in Fig. 25.3), there
is no emission of photoelectrons no matter what the
intensity of the incident radiation may be.

At first sight it appears that since electromagnetic waves
carry energy, the wave model for light should be able to ex-
plain the emission of photoelectrons from a metal surface.
However, there are certain peculiarities associated with the
photoelectric effect which cannot be satisfactorily explained
by means of a wave model:

1. The first peculiarity is the fact that the maximum ki-
netic energy of the electrons does not depend on the
intensity of the incident radiation; it depends on only
its frequency; further, a greater intensity leads to a

larger number of electrons, constituting a larger cur-
rent. Thus, a faint violet light would eject electrons of
greater kinetic energy than an intense yellow light al-
though the latter would produce a large number of
electrons. A wave model would, however, predict that
a large intensity of the incident radiation would result
in a greater kinetic energy of the emitted electrons.

2. The second peculiarity is the fact that there is almost no
time lag between the times of incidence of the radiation
and the ejection of the photoelectron. For weak inten-
sities of the incident beam, the wave theory predicts
considerable time lag for the electrons to absorb
enough energy to leave the metal surface. This can be
illustrated by considering a specific example. One can
observe a detectable photocurrent if the surface of
sodium metal is illuminated by violet light of intensity
as low as 10–10 W cm–2. Now, 10 layers of sodium will
contain about

6 10 10 10
23

23 8
¥ ¥ ¥

-

 ª 2 ¥ 1015 atoms per cm2

where we have assumed the density of sodium to
be ª 1 g cm–3. Assuming that the energy is uniformly
absorbed by the upper 10 layers of sodium, each atom
would receive energy at the rate of

10
2 10

10

15

-

¥

 ª 5 ¥ 10–26 J s–1 ª 3 ¥ 10–7 eV s–1

Assuming that an electron should acquire an energy of
~ 1 eV to escape from the metal, we should expect a
time lag of order 107 s (~ few months). However, the
experiments show that there is no detectable time lag
between the incidence of the radiation and the emission
of the photoelectrons. Indeed, in 1928, Lawrence and
Beams devised an experiment to find out whether the
time lag was £ 3 ¥ 10–9 s; the experiment gave a nega-
tive result.

In 1905, Einstein provided a simple explanation of the
above-mentioned peculiarities. He argued that light consisted
of quanta of energy hn (where n is the frequency) and that
the emission of a photoelectron was the result of the interac-
tion of a single quantum (i.e., of the photon) with an electron.
In his 1905 paper (Ref. 3), Einstein wrote:

Monocromatic radiation behaves as if it consists of
mutually independent energy quanta of magnitude [hn].

Einstein’s theory gives a very satisfactory explanation
of the photoelectric effect. According to this theory, a light
beam (of frequency n) essentially consists of individual
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Fig. 25.3 The variation of the maximum kinetic energy of

the electrons as a function of frequency of the

incident light.
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corpuscles called photons; the word photon was coined in
1926 by Gilbert Lewis, a U.S. chemist, to describe Einstein’s
localized energy quanta. Each photon carries an energy equal
to hn. This corpuscular model can explain all the observations
discussed above. Thus, for all frequencies below the cutoff nc,
each photon will carry energy less than hnc which will not be
sufficient to eject the electron from the metal. For n > nc,
a major fraction of the excess energy [= h (n – nc)] appears
as kinetic energy of the emitted electron. Further, the
nonmeasurable time lag between the incidence of the radiation
and the ejection of the electron follows immediately from
the corpuscular nature of the radiation. Indeed, the observed
maximum kinetic energy of the photoelectrons is linearly
related to the frequency of the incident radiation, and one may
write (see Fig. 25.3)

Tmax = –B + hn = h(n – nc) (1)

where B (= hnc) is a constant and h is Planck’s constant
(= 6.627 ¥ 10 –27 erg s). The frequency nc represents the
cutoff frequency and is a characteristic of the metal. For
example,

For cesium B ª 1.9 eV fi nc ª 4.6 ¥ 1014 Hz

For sodium B ª 2.3 eV fi nc ª 5.6 ¥ 1014 Hz

For copper B ª 4.7 eV fi nc ª 11.4 ¥ 1014 Hz

In Fig. 25.3, nc is the intercept on the horizontal axis. In
1909, Einstein wrote (Ref. 1)

It is undeniable that there is an extensive group of data
concerning radiation which shows that light has certain
fundamental properties that can be understood much more
readily from the standpoint of the Newton emission (par-
ticle) theory than from the standpoint of the wave theory.
It is my opinion, therefore, that the next phase of the de-
velopment of theoretical physics will bring us a theory of
light that can be interpreted as a kind of fusion of the
wave and emission theories.

We may note the prediction of Einstein. Einstein received
the 1921 Noble Prize in Physics for his discovery of the law
of photoelectric effect. To quote Max Jammer (Ref. 4),

Owing to Einstein’s paper of 1905, it was primarily the
photoelectric effect to which physicists referred as an irre-
futable demonstration of the existence of photons and
which thus played an important part in the conceptual
development of quantum mechanics.

The validity of Eq. (1) was established in a series of beau-
tiful experiments by Millikan who also made the first direct
determination of Planck’s constant h. In his Nobel lecture,
Millikan (Ref. 5) said

After ten years of testing and changing and learning and
sometimes blundering, all efforts being directed from the
first toward the accurate experimental measurement of the
energies of emission of photoelectrons, now as a function
of temperature, now of wavelength, now of material (con-
tact e.m.f. relation), this work resulted, contrary to my own
expectation, in the first direct experimental proof in 1914
of the exact validity, within narrow limits of experimental
error, of the Einstein equation (Eq. (1)), and the first direct
photoelectric determination of Planck’s constant h.

Millikan further wrote:

Einstein’s equation is one of exact validity (always
within the present small limits of experimental error) and
of very general applicability, is perhaps the most con-
spicuous achievement of Experimental Physics during
the past decade.

After Millikan’s experiments, Duane and his associates
found unambiguous proof of a relation which is just the in-
verse of Einstein’s. They bombarded a metal target with
electrons of known and constant energy and found that the
maximum frequency of the emitted X-rays was given, with
great precision, by

1
2 mv

2 = hn (2)

In making this transition from Planck’s quantized oscillators
to quanta of radiation, Einstein made a very important con-
ceptual transition; namely, he introduced the idea of
corpuscular behaviour of radiation. Although Newton had
described light as a stream of particles, this view had been
completely superseded by the wave picture of light, a picture
that culminated in the electromagnetic theory of Maxwell.
The revival of the particle picture now posed a severe con-
ceptual problem, one of reconciling wave- and particlelike
behavior of radiation. It also soon became apparent that mat-
ter also exhibited wave-particle duality. For example, an
electron with an accurately measured value of mass and
charge could undergo diffraction in a manner similar to that
of light waves—this led to the development of the uncertainty
principle and quantum theory.

In the next section we will discuss a very important ex-
periment carried out by Arthur Compton; this experiment
could be explained by assuming the photon having momen-
tum equal to hn/c.

25.3 THE COMPTON EFFECT

We have seen that Einstein’s explanation for the photoelec-
tric effect implies that quanta of light (photons) carry a
definite amount of energy. The Compton effect provided an
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unambiguous example of a process in which a quantum of
radiation carrying energy as well as momentum scatters off
an electron (see Fig. 25.4). Now, if u represents the energy
per unit volume associated with a plane electromagnetic
wave, Maxwell’s equations predict that the momentum per
unit volume associated with the electromagnetic wave is u/c,
where c represents the speed of light in free space (see
Sec. 23.6). Since each photon carries an energy equal to hn,
it should have a momentum given by

p = 
h

c

n

 = 
h

l
(3)

In 1923, Compton investigated the scattering of X-rays by
a block of paraffin and found that the wavelength of
the radiation scattered at an angle of 90∞ is greater than the
wavelength of the incident radiation. In other words, the fre-
quency n¢ of the scattered wave is smaller than the frequency
of the incident wave. Compton was able to explain the result3

quantitatively as that of an elastic collision between a pho-
ton of energy E = hn and the momentum given by Eq. (3).
Compton was awarded the 1927 Nobel Prize in Physics for
his discovery of the effect named after him.

The light quantum imparts some of its energy to the
electron and emerges with less energy. Thus the scattered ra-
diation has a lower frequency. The kinematics of this
collision process can be worked out on elementary applica-
tion of the laws of conservation of energy and momentum
(see Sec. 25.3.1). These calculations give the following
expression for the shift in the wavelength

Dl = 
2

0

2
sin

2

h

m c

q

(4)

where q is the angle of scattering of the light quantum (see
Fig. 25.4) and m0 represents the rest mass of the electron. If
we substitute the values of h, m0, and c, we obtain

Dl = l¢ – l = 0.0485 sin2 

2

q
(5)

where l is measured in Angstroms. Equation (5) shows that
the maximum change in the wavelength is about 0.05 Å, and as
such for a measurable shift one must use radiation of smaller
wavelength. In Fig. 25.5 we have given the schematic of the
experimental arrangement for the measurement of the Compton
shift. A monochromatic beam of X-rays (or g-rays) is allowed
to fall on a sample scatterer, and the scattered photons were
detected by means of a crystal spectrometer. The crystal
spectrometer allows one to find the intensity distribution
(as a function of l) for a given value of q. In Fig. 25.6

D

S
q

C
ol

lim
at

or

Fig. 25.5 Outline of the experimental arrangement for the

measurement of the Compton shift. A collimated

beam of monochromatic X-rays is scattered by

the scatterer S; the wavelength of the scattered

photon is measured by the detector D.

3 According to the classical explanation of Compton scattering, the electron undergoes oscillatory motion because of the electric field
associated with the incident electromagnetic radiation. The accelerated electron emits electromagnetic waves, and because of Doppler
shifts due to the motion of the electron, the emitted wavelength differs from the wavelength of the incident radiation. However,
classical theory predicts that for a given angle of scattering, a continuous range in the value of the scattered wavelength should be
formed, which is contrary to experimental findings. The details of this analysis are given in Sec. 2.9 of Ref. 6.
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Fig. 25.4 The Compton scattering of a photon: the figure

shows the incidence of a photon (of frequency n)

on an electron; the scattered photon (having a

reduced frequency n¢ ) propagating along the di-

rection which making an angle q with the

original direction; the electron also acquires a

momentum. Figure adapted from the original

paper of Arthur Compton (Ref. 9).
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we have shown the wavelength of the scattered photon at
different angles with respect to the primary beam as obtained
by Compton in his original experiment (Ref. 7) in 1923. The
solid curve corresponds to Eq. (5) with l = 0.022 Å. Notice
that the corresponding photon energy is

~ 
27 10 1

10

6.6 10 erg s 3 10 cm s

2.2 10 cm

- -

-

¥ ¥ ¥

¥

 erg ~ 0.5 MeV

which corresponds to a g-ray. The good agreement between
theory and experiment proves that radiation behaves as if it
consists of corpuscles of energy hn having a momentum hnc.

The experimental arrangement and findings of Compton
are shown in Figs. 25.7 and 25.8; the experiment corresponds
to the molybdenum K

a
 line (l = 0.711 Å). The sample used

was graphite. Notice that at each value of q, there are two
peaks; the first peak appears at almost the same wavelength
as the primary beam. This peak is due to the fact that the
photon may be scattered by the whole atom; consequently,
the quantity m0 appearing in Eq. (4) is not the electron mass
but the mass of the carbon atom (which is about 22,000 times
the mass of the electron). Thus the wavelength shift is neg-
ligible. The second peak corresponds to the Compton shift.
In each figure, the two vertical lines correspond to the
unmodified wavelength and the modified wavelength as
given by Eq. (5), and one can see good agreement between
the predicted and observed values.

Further evidence of the validity of the above theory was
provided by the experiments carried out by Compton and
Simon who studied the scattering of X-rays through super-
saturated water vapor. In the scattering process, the recoil
electrons formed tracks of condensed droplets; however, the
light quantum did not leave any track. Now, if the light quan-
tum undergoes another Compton scattering, then from the
track of the second recoil electron one can determine the
path of the light quantum by simply joining the line of the
starting points of the two recoil electrons. Although there
was considerable uncertainty in the analysis of the experi-
mental data (because of the presence of many tracks),
Compton and Simon could establish agreement between
theoretical results and experimental data.
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l¢ = 0.022 + 0.0485 sin2 q
2

Experimental data
of Compton

Fig. 25.6 The variation of wavelength of the scattered pho-

ton with the angle of scattering. The solid curve

corresponds to Eq. (5) with l = 0.022 Å. The dots

represent the experimental points obtained by

Compton. The figure has been adapted from the

original paper of Compton (Ref. 9).
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Fig. 25.7 Compton’s original experiment made use of

molybdenum K
a
 X-rays, which have a wave-

length of 0.0709 nm. These were scattered from a

block of carbon and observed at different angles

with a Bragg spectrometer. The experimental

data are from the original paper of Compton (see

Fig. 25.8). Adapted from Ref. 10 and a diagram

created by Professor Rod Nave at Georgia State

University [Ref. http://hyperphysics.phy-astr.gsu

.edu/hbase/hframe.html].
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25.3.1 Kinematics of Compton Scattering

We next consider the scattering of a photon by an electron
as shown in Fig. 25.4. The scattered photon is assumed to
have a frequency n¢. Conservation of energy leads to

hn = hn¢ + Ek (6)

where Ek represents the kinetic energy imparted to the electron.
Conserving the x and y components of the momentum, we have

h

c

n
= 

h

c

n¢
cos q + p cos f (7)

and

0 = 
h

c

n¢
sin q – p sin f (8)

where p represents the momentum of the electron after colli-
sion and q and f represent the angles made by the scattered

photon and electron with the original direction of the photon
(see Fig. 25.4). It will be shown that for a measurable Compton
effect, the frequency n should be in the X-ray or in the g-ray re-
gion (for X-rays l £ 1 Å and hn ≥ 104 eV). For such high-energy
photons, the velocity imparted to the electron is comparable to
the speed of light, and one must use proper relativistic expres-
sions for Ek and p. Now, according to the theory of relativity, the
kinetic energy Ek of the scattered electron is given by

Ek = E – m0c
2 = mc2 – m0c

2 = 
2

0

21

m c

- b

 – m0c
2 (9)

where b = v/c, m0 represents the rest mass of the electron,
v is the speed of the electron, and c is the speed of light in
free space; the quantities E and m0c

2 are known as the total
energy and the rest mass energy of the electron. Further, the
relativistic momentum of the electron is given by

p = mv = 0

21

m

- b

v
(10)

Now,

p2c2 + m2
0 c4 = 

2 2 2
0

2 21 /

m c

c-

v

v
 + m2

0c4

= 
2 4
0

2 21 /

m c

c- v
 = m2c4

or
p2c2 + m2

0 c4 = E2 = (Ek + m0c2)2

= Ek
2 + m2

0c
4 + 2Ekm0c

2

Thus,

E2
k + 2Ekm0c2 = p2c2

Substituting for Ek from Eq. (6), we get

h2(n – n¢)2 + 2h(n – n¢ ) m0c2 = p2c2 (11)

Further, Eqs. (7) and (8) can be rewritten in the form

p cos f = 
h h

c c

n n¢

- cos q (12)

and

p sin f = 
h

c

n¢

sin q (13)

To eliminate f, we square and add to obtain

p2 = 
2 2 2

2

2
cos

h h h

c c c

n n¢ nn¢Ê ˆ Ê ˆ+ - qÁ ˜ Á ˜Ë ¯ Ë ¯
(14)

Substituting in Eq. (11), we obtain

h2(n2 – 2nn¢ + n¢
2) + 2h(n – n¢)m0c

2

= h2
n

2 + h2
n¢

2 – 2h2
nn¢ cos q
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Fig. 25.8 The intensity variation as a function of the wave-

length of the scattered photon. The vertical line

(marked P) corresponds to the unmodified

wavelength l = 0.711 Å. The second vertical line

(marked T ) corresponds to the wavelength as pre-

dicted by Eq. (5). The figure has been adapted

from the original paper of Compton (Ref. 10).
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or

2
02 ( )

2

h m cn - n¢

nn¢
= h2 (1 – cos q)

or Dl = l¢ – l = 
0

h

m c
(1 – cos q)

or Dl = 2

0

2
sin

2

h

m c

q
(15)

which gives us the Compton shift.4

25.4 THE PHOTON MASS

Because the photon has energy (= hn /c) we may assume it
to have an inertial mass given by

m = 
2

h

c

n (16)

Thus when a light beam passes near a heavy star, its trajec-
tory ought to get deflected. Indeed, the light coming from a
distant star does get slightly deflected when passing near the
Sun, which has been experimentally observed.

Also, we may expect that when a photon leaves a star, its
energy should decrease because of the gravitation field. This
indeed happens and manifests itself in a decrease in frequency
which is usually referred as the gravitational red shift. One
can approximately calculate the red shift by noting that the
potential energy on the surface of the star is

V ª –
2

=
GMm GM h

R R c

n

- ◊ (17)

where M is the mass of the star, R its radius, and G the gravi-
tational constant. Thus when the light beam reaches Earth,
its frequency is

hn¢ = hn – 
2

GM h

R c

n

or

Dn

n
= 

n - n¢

n
 = 2

GM

Rc
(18)

(we have neglected the effect of the Earth’s gravitational
field). From the above equation, we see that if the mass of
the star is so large that the RHS exceeds unity, then the light
beam will not be able to escape from the star—this is a black
hole. In discussing black holes, we must use the general
theory of relativity, which obtains the following value for the
limiting radius of the star:

Rs = 
2

2GM

c
(19)

this is known as the Schwarschild radius. If the mass of the
star is contained inside a sphere of radius

R < Rs

then a light beam will never leave the star and the star will be
known as a black hole. Thus if

M ª 10M� ª 2 ¥ 1034 g

where M� (ª 2 ¥ 1033 g) represents the mass of the Sun, then

Rs ª 

8 34

10 2

2 6.67 10 2 10

(3 10 )

-

¥ ¥ ¥ ¥

¥

cm ª 30 km

Indeed black holes with radius ~10 km have been detected!

25.5 ANGULAR MOMENTUM OF

A PHOTON

We consider an electromagnetic wave (propagating along the
x direction) to first pass through a Polaroid whose pass axis
is along the y¢ axis (see Fig. 25.9). The electric field along the
y and z directions will be given by

Ey = Ey¢ cos q and Ez = Ey¢ sin q

Thus when a y¢ polarized beam is passed through a Polaroid
whose pass axis is along the y direction (see Fig. 25.9), the

4 In the derivation of the Compton shift, we assume that the electron is free although we know that the electrons are bound to the
atoms. The assumption of a free electron is justified because the binding energy (ª few electron-volts) is usually very much smaller
in comparison to the photon energy (>~  1000 eV).

q

y¢

y

z¢ z

z¢
y¢

z

y

x

P2

P1

Fig. 25.9 Polaroid P1 polarizes in the y¢ direction, and

Polaroid P2 polarizes in the y direction; the propa-

gation is in the x direction.
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component of the electric field that passes through is cos q
and the intensity gets reduced by a factor of cos2 q—which is
nothing but the law of Malus (see Sec. 22.3). Similarly for a
beam polarized along the z¢ direction

Ey = –Ez¢ sin q and Ez = Ez¢ cos q

In general, we may write

Ey = Ey¢ cos q – Ez¢ sin q

and

Ez = Ey¢ sin q + Ez¢ cos q

The above equations can be written in the matrix form

y

z

E

E

Ê ˆ
Á ˜Ë ¯

= S(q)
y

z

E

E

¢Ê ˆ
Á ˜¢Ë ¯

(20)

where

S(q) = 
cos sin

sin cos

q - qÊ ˆ
Á ˜q qË ¯

(21)

is the (rotation) matrix which transforms from the y¢-z¢ basis
to the y-z basis. From the above equations we also obtain

Ey¢ = Ey cos q + Ez sin q

Ez¢ = –Ey sin q + Ez cos q
Thus

y

z

E

E

¢Ê ˆ
Á ˜¢Ë ¯

= S†(q)
y

z

E

E

Ê ˆ
Á ˜¢Ë ¯

(22)

where

S†(q) = 
cos sin

sin cos

q qÊ ˆ
Á ˜- q qË ¯ (23)

is the matrix which transforms from the y-z basis to the
y¢-z¢ basis. Obviously

S†(q) S(q) = S(q) S†(q) = 1 (24)

In Sec. 2.9, we discussed the polarization of a photon; a
y-polarized photon can be represented by the “unit” vector
(see Sec. 22.14):

| y > = 
1

0

Ê ˆ
Á ˜Ë ¯

Similarly, a z-polarized photon is represented by the unit
vector

| z > = 
0

1

Ê ˆ
Á ˜Ë ¯

In the rotated coordinates (see Fig. 25.9)

|

|

y>Ê ˆ
Á ˜>Ë ¯z

=  S(q) 
|

|

y >¢Ê ˆ
Á ˜>¢Ë ¯z

and

|

|

y

z

>¢Ê ˆ
Á ˜>¢Ë ¯

= S†(q) 
|

|

y

z

>Ê ˆ
Á ˜>Ë ¯

Further, a right circularly polarized photon can be repre-
sented by the unit vector

| R > = 
11

2 i

Ê ˆ
Á ˜Ë ¯

 = 
1

2
[| y > + i | z >] (25)

Similarly, a left circularly polarized photon can be repre-
sented by the unit vector

| L > = 
11

2 i

Ê ˆ
Á ˜-Ë ¯

 = 
1

2
[| y > – i | z >] (26)

Under rotation, the right circularly polarized states | R > will
transform to

| R¢> = 1

2
[| y¢ > + i | z¢ >]

= 1

2
{[cosq | y > + sinq | z >]

+ i [–sinq | y > + cosq | z >]}

= 1

2
e–iq [| y > + i | z >]

or
| R¢> = e–iq | R > (27)

Thus in the rotated coordinate system, the right circularly
polarized photon remains right circularly polarized except for
a change in the phase. Now, in quantum mechanics, if R x(q)
represents the rotational operator corresponding to a rota-
tion about the x axis through an angle q, then (see, e.g.,
Refs. 11 and 12)

R x(q) = exp x
i

J
Ê ˆ- qÁ ˜Ë ¯�

(28)

where

� = 
2

h

p

with h being the Planck’s constant and Jx representing the
x component of the angular momentum operator. Thus

R x(q) | R > = | R¢> = e–iq | R > (29)
or

exp x
i

J
Ê ˆ- qÁ ˜Ë ¯�

| R > = e– iq | R > (30)

gha80482_ch25_409-422.PMD 1/29/2009, 3:10 PM419



Optics420
�

420
�

Now, the exponential of an operator O is defined by

2 3
. . .1

1! 2! 3!

. . . . . .1
1! 2! 3!

o O O O
e

O O O O O O

∫ + + + +

= + + + +

We expand the exponential on both sides of Eq. (30), and
if we use the fact that Eq. (30) has to be valid for all values of
q, we must have5

Jx | R > = +�  | R > (31)
If we carry out a similar analysis for the left circularly po-

larized light, we obtain
Jx | L > = –�  | L > (32)

Equations (31) and (32) are known as  eigenvalue equa-
tions; thus, the right and left circularly polarized states are
said to be the eigenstates of Jx; the corresponding eigenval-
ues are +�  and –� , respectively. According to quantum
mechanics, if we measure Jx of a right circularly polarized
light photon, we will always obtain the value +� ; similarly, if
we measure Jx of a left circularly polarized photon, we will
obtain the value –� . For an arbitrary state of polarization, if
we measure Jx, we will obtain one of the eigenvalues; i.e., we
obtain either the value +�  or the value –� . To obtain the
probabilities of finding +�  and –� , the state should be ex-
pressed as a superposition of the eigenstates, which are the
right circularly polarized state and the left circularly polarized
state. For example, a y-polarized state can be represented as

| y > = 
1

0
F
HG
I
KJ

 = 1
2

[| R > + | L >]

Thus, if we make a measurement of Jx on a y-polarized
(or on a z-polarized) state, then there will be 0.5 probability of
obtaining +�  and 0.5 probability of obtaining –� ; one can
never predict the precise outcome of an experiment.6 As
discussed in Secs. 2.6 to 2.9, this is typical of quantum me-
chanics; physics has ceased to be deterministic—one can
only predict the probabilities of a specific outcome of an ex-
periment. As another example, for the left elliptically polarized
state discussed in Sec. 22.14,

| LEP > = 

1

2

3

2
i

Ê ˆ
Á ˜
Á ˜
Á ˜-Á ˜Ë ¯

 = a | R > + b | L >

= 
1 1

2 2

a b

i i

Ê ˆ Ê ˆ
+Á ˜ Á ˜-Ë ¯ Ë ¯

Simple manipulations will give

a = 1 1 3

2 22

Ê ˆ
-Á ˜

Ë ¯
 ª –0.2588

and

b = 1 1 3

2 22

Ê ˆ
+Á ˜

Ë ¯
 ª +0.9659

Thus, if we make a measurement of Jx on such an
elliptically polarized state, we obtain one of the eigenvalues:
the probability of obtaining +�  will be about 0.0670, and the
probability of obtaining –�  will be about 0.933.

Summary

� In 1887, while receiving the electromagnetic waves in a coil
with a spark gap, Hertz found that the maximum spark length
was reduced when the apparatus was put in a black box; this
is due to what is now known as the photoelectric effect, and
the box absorbed the ultraviolet radiation which helped the
electrons to jump across the gap. Hertz reported the obser-
vations but did not pursue further and also did not make any
attempt to explain them. In 1897 J. J. Thomson discovered
electrons, and in 1899 he showed that electrons are emitted
when light falls on a metal surface; these are now known as
photoelectrons, and the phenomenon is known as the photo-
electric effect.

� There are certain peculiarities associated with the photo-
electric effect which cannot be explained on the basis of
wave theory. For example, a faint violet light ejects elec-
trons of greater kinetic energy than an intense yellow light
although the latter produces a larger number of electrons. In
1905, Einstein provided a simple explanation of the pecu-
liarities by assuming that light consisted of quanta of
energy hn (where n is the frequency) and that the emission
of a photoelectron was the result of the interaction of a
single quantum (i.e. of the photon) with an electron. In his
1905 paper, Einstein wrote Monocromatic radiation be-
haves as if it consists of mutually independent energy
quanta of magnitude [hn].

� In 1923, Compton reported his studies on the scattering
of X-rays by solid materials (mainly graphite) and
showed that the shift of the wavelength of the scattered
photon could be explained by assuming the photon to
have momentum equal to h/l. The Compton effect pro-
vided an unambiguous example of a process in which a
quantum of radiation carrying energy as well as momen-
tum scatters off an electron. The kinematics of the

5 Thus, for example, Jx
3 | R > = JxJx Jx | R > = � 3 | R >.

6 For an arbitrary state of polarization, we must express it as a linear superposition of | R > and | L >.
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scattering process gives the following expression for the
shift in the wavelength

Dl =  2

0

2
sin

2

h

m c

q
 ª 0.0485 2sin

2

q

where q is the angle of scattering of the light quantum, m0 rep-
resents the rest mass of the electron, and Dl is measured in
angstroms. Compton found the above formula to be in agree-
ment with his experimental measurements of D l.

Problems

25.1 (a) Calculate the number of photons emitted per second
by a 5 mW laser, assuming that it emits light of wave-
length 6328 Å.

[Ans: 1.6 ¥ 1016]

(b) The beam is allowed to fall normally on a plane mir-
ror. Calculate the force acting on the mirror.

[Ans: 3.3 ¥ 10–11 N]

25.2 Assume a 40 W sodium lamp (l ª 5893 Å) emitting light
in all directions. Calculate the rate at which the photons
cross a unit area placed normally to the beam at a distance
of 10 m from the source.

[Ans: ª 1017 photons per m2 per s]

25.3 In the photoelectric effect, a photon is completely absorbed
by the electron. Show that the laws of conservation of en-
ergy and momentum cannot be satisfied simultaneously if a
free electron is assumed to absorb the photon. (Thus the
electron has to be bound to an atom, and the atom under-
goes a recoil when the electron is ejected. However, since
the mass of the atom is much larger than that of the elec-
tron, the atom picks up only a small fraction of the energy.
This is somewhat similar to the case of a tennis ball hitting
a heavy object—the momentum of the ball is reversed with
its energy remaining almost the same.)

25.4 If photoelectrons are emitted from a metal surface by using
blue light, can you say for sure that photoelectric emission
will take place with yellow light and with violet light?
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PART 7
Lasers and Fiber OpticsLasers and Fiber OpticsLasers and Fiber OpticsLasers and Fiber OpticsLasers and Fiber Optics

This part consists of four chapters. Chapter 26 is on lasers whose discovery in 1960
led to numerous applications in many diverse areas; the chapter discusses the basic
physics of lasers along with their special characteristics. Chapters 27 through 29 are
on fiber optics and waveguide theory, an area which during the last 35 years has
revolutionized communications.
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In The War of Worlds, written before the turn of the century, H. G. Wells told a fanciful story
of how Martians invaded and almost conquered the Earth. Their weapon was a mysterious
“sword of heat,” from which flickered “a ghost of a beam of light,” it felled men in their tracks,
made lead run like water and flashed anything combustible into masses of flame. Today Wells’
sword of heat comes close to reality in the laser . . .

—Thomas Meloy

LASERS: AN INTRODUCTION

Chapter

Twenty-

Six

Important Milestones
1917 The theory of stimulated emission was put forward by Albert Einstein.

1954 The phenomenon of stimulated emission was first used by Charles Townes in 1954 in the construction of a microwave

amplifier device called the maser, which is an acronym for microwave amplification by stimulated emission of radiation.

At about the same time, a similar device was also proposed by Prochorov and Basov in the U.S.S.R.

1958 The maser principle was later extended to the optical frequencies by Schawlow and Townes in 1958, which led

to the realization of the device now known as the laser. Townes, Basov, and Prochorov were awarded the 1964

Nobel Prize in Physics for their “fundamental work in the field of Quantum Electronics, which has led to the

construction of oscillators and amplifiers based on the laser-maser principle.”
1

1959 In a conference paper, Gordon Gould introduced the term LASER as an acronym for Light Amplification by
Stimulated Emission of Radiation.

1960 The first successful operation of a laser device (l ~ 0.6943 mm) was demonstrated by Theodore Maiman in

1960 using a ruby crystal (see Sec. 26.3).

1961 Within a few months of the operation of the ruby laser, Ali Javan and his associates constructed the first gas

laser, namely, the helium-neon laser (see Sec. 26.2).

1961 The first fiber laser (barium crown glass doped with Nd
3+

 ions) was fabricated by Elias Snitzer.

1962 Semiconductor lasers (which are now extensively used in fiber-optic communication systems) were discovered

by four independent groups.

1963 C. K. N. Patel discovered the CO
2
 laser (l ~ 10.6 mm).

1964 W. Bridges discovered the Ar-ion laser (l ~ 0.515 mm), and J. E. Geusic and coworkers discovered the Nd:YAG

laser (l ~ 0.515 mm).

Since then, laser action has been obtained in a large variety of materials including liquids, ionized gases, dyes,

and semiconductors.

26.1 INTRODUCTION

LASER is an acronym for light amplification by stimulated
emission of radiation. The light emitted from a laser often pos-
sesses some very special characteristics. Some of these are

1. Directionality. The divergence of the laser beam is usu-
ally limited by diffraction (see the figure in the insert at
the back of the book), and the actual divergence can be
less than 10–5 rad; this leads to the application of the
laser in surveying, remote sensing, lidar etc.

1 The Nobel lectures of Townes, Basov, and Prochorov (Refs. 1–3) give a nice perspective of the field. These are reprinted in Ref. 4.
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1. Spontaneous emission. Atoms in the energy state E2

can make a (spontaneous) transition to the energy
state E1 with the emission of radiation of frequency

w = 2 1E E-

�
(1)

where

� = 
2

h

p

 ª 1.0546 ¥ 10–34 J s

and h (ª 6.626 ¥ 10–34 J s) is known as Planck’s con-
stant. Since this process can occur even in the absence
of any radiation, this is called spontaneous emission [see
Fig. 26.1(a)]. The rate of spontaneous emission is pro-
portional to the number of atoms in the excited state.

2. Stimulated emission. As put forward by Einstein, when
an atom is in the excited state, it can also make a transi-
tion to a lower energy state through what is known as
stimulated emission, in which an incident signal of appro-
priate frequency triggers an atom in an excited state to
emit radiation—this results in the amplification of the in-
cident beam [see Fig. 26.1(b)]. The rate of stimulated
emission depends on both the intensity of the external
field and the number of atoms in the excited state.

3. Stimulated absorption. Stimulated absorption (or simply
absorption) is the process in which the electromagnetic
radiation of an appropriate frequency (corresponding to
the energy difference of the two atomic levels) can pump
the atom to its excited state [see Fig. 26.1(c)]. The rate of
stimulated absorption depends both on the intensity of
the external field and on the number of atoms in the
lower energy state.

E1

E1

E1

E2

E2

E2

Spontaneous emission

Stimulated emission

Absorption

(a)

(b)

(c)

Fig. 26.1 (a) Spontaneous emission, (b) stimulated emission,
and (c) stimulated absorption.

2. High power. Continuous wave lasers having power levels
of ~105 W and pulsed lasers having a total energy of
~50,000 J can have applications in welding, cutting, laser
fusion, star wars, etc.

3. Tight focusing. Because of highly directional properties
of the laser beams, they can be focused to areas of ap-
proximately few micrometers squared—this leads to very
high intensities and therefore leads to applications in
surgery, material processing, compact discs, etc. Laser
pulses having very small cross-sectional area (and high
energy) can be guided through special fibers leading to
very interesting nonlinear effects (see Fig. 10.10).

4. Spectral purity. Laser beams can have an extremely small
spectral width Dl ~ 10–6 Å. Because of high spectral
purity, lasers find applications in holography, optical
communications, spectroscopy, etc.

Because of such unique properties of the laser beam, it finds
important applications in many diverse areas, and indeed one
can say that after the discovery of the laser, optics has become
an extremely important field of study. For example, in Sec. 18.4
we showed that a 2 mW diffraction-limited laser beam incident
on the eye can produce an intensity of about 106 W m–2 at the
retina—this would certainly damage the retina. Thus, whereas it
is quite safe to look at a 500 W bulb, it is very dangerous to
look directly into a 5 mW laser beam. Indeed, because a laser
beam can be focused to very narrow areas, it has found applica-
tions in areas such as eye surgery and laser cutting.

Theõ basic principle involved in the lasing action is the phe-
nomenon of stimulated emission, which was predicted by
Einstein in 1917 (Ref. 5); the original paper of Einstein is re-
printed in Ref. 6. In Sec. 26.6.1 we will give the original
argument of Einstein to obtain the relationship between the
Einstein coefficients. This will be followed by brief discussions
of the main components of a laser, and the underlying prin-
ciple as to how the laser works. In Sec. 26.2 we will briefly
discuss the working of a fiber laser, and in Sec. 26.3 we will
discuss the working of the ruby laser, which was the first laser
to be fabricated. In Sec. 26.4 we will discuss the working of
the helium-neon laser. In Sec. 26.5 we will give a slightly more
detailed account of resonators, and in Sec. 26.6 we will dis-
cuss Einstein coefficients and optical amplification. In Sec. 26.7
we will discuss the line shape function, and finally in Sec. 26.8
we will discuss the monochromaticity of the laser beam.

26.1.1 Spontaneous and Stimulated

Emissions

Atoms are characterized by discrete energy states. Accord-
ing to Einstein, there are three different ways in which an
atom can interact with electromagnetic radiation:

gha80482_ch26_423-454.PMD 2/3/2009, 8:06 PM426



Lasers: An Introduction 427
�

When the atoms are in thermodynamic equilibrium, there
are larger number of atoms in the lower state, implying that
the number of absorptions exceeds the number of stimulated
emissions; this results in the attenuation of the beam [see
Fig. 26.2(a)]. On the other hand, if we are able to create a state
of population inversion in which there are larger number of
atoms in the upper state, then the number of stimulated emis-
sions exceeds the number of absorptions, resulting in the
(optical) amplification of the beam [see Fig. 26.2(b)]. The amplifi-
cation process due to stimulated transitions is phase-coherent,
i.e. [quoting Townes (Ref. 1)], “the energy delivered by the
molecular system has the same field distribution and frequency
as the stimulating radiation.”

26.1.2 Main Components of the Laser

The three main components of any laser are (see Fig. 26.3)

1. Active medium. The active medium consists of a col-
lection of atoms, molecules, or ions (in solid, liquid, or
gaseous form) which is capable of amplifying light
waves. Under normal circumstances, there are always a
larger number of atoms in the lower energy state than
in the excited energy state. An electromagnetic wave
passing through such a collection of atoms is attenuated;

this is discussed in detail in Sec. 26.6. To have optical
amplification, the medium has to be kept in a state of
population inversion, i.e., in a state in which the
number of atoms in the upper energy level is greater
than that in the lower energy level—this is achieved
by means of the pump.

2. Pumping source. The pump enables us to obtain such
a state of population inversion between a pair of en-
ergy levels of the atomic system. When we have a state
of population inversion, the input light beam can get
amplified by stimulated emission (see Fig. 26.4).

3. Optical resonator. A medium with population inversion
is capable of amplification; however, for it to act as an
oscillator, a part of the output energy must be fed back
into the system.2 Such feedback is brought about by
placing the active medium in a resonator; the resonator
could be just a pair of mirrors facing each other.

 2 Since some of the energy is coupled back to the system, it is said to act as an oscillator. Indeed, in the early stages of the development
of the laser, there was a move to change its name to LOSER which is an acronym for light oscillation by stimulated emission of
radiation. Since it would have been difficult to obtain a research grant for LOSERs, it was decided to retain the name LASER.

Active medium
Pout

M2M1

Pump

Mirror
100% reflecting

Semi-transparent
Mirror
~ 90% reflecting

Fig. 26.3 The three basic components of a laser are (1) the
active medium (which provides amplification),
(2) the optical resonator (which provides fre-
quency selection and optical feedback), and
(3) the pump (which supplies power to the active
medium to achieve population inversion).

E2

E2

E1

E1

Attenuation

State of population inversion amplificationfi

(a)

(b)

Fig. 26.2 (a) A larger number of atoms in the lower state
result in the attenuation of the beam. (b) A larger
number of atoms in the upper state (which is
known as population inversion) result in the am-
plification of the beam.

Optical amplifierIin
Iout

Fig. 26.4 The active medium essentially consists of a collec-
tion of atoms in a state of population inversion
which can amplify the input light beam (or spon-
taneously emitted light) by stimulated emission.
This is known as optical amplification.
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Although Einstein proposed the theory of stimulated
emission in 1917, the concept of population inversion to am-
plify the light beam came much much later. According to
Charles Townes,3

The laser invention happened because I wanted
very much to be able to make an oscillator at fre-
quencies as high as the infrared in order to extend
the field of microwave spectroscopy in which I was
working. I had tried several ideas, but none worked
very well. At the time I was also chairman of a com-
mittee for the navy that was examining ways to
obtain very short-wave oscillators. In 1951, on the
morning before the last meeting of this committee in
Washington, I woke up early worrying over our lack
of success. I got dressed and stepped outside to
Franklin Park, where I sat on a bench admiring the
azaleas and mulling over our problem.

Why couldn’t we think of something that would
work at high frequencies? I went through the possi-
bilities, including, of course, molecules, which
oscillate at high frequencies. Although I had con-
sidered molecules before, I had dismissed them
because of certain laws of thermodynamics.4 But
suddenly I recognized, “Hey, molecules don't have
to obey such a law if they are not in equilibrium.”
And I immediately took a piece of paper out of my
pocket and wrote equations to see if selection of
excited molecules by molecular beam methods could
produce enough molecules to provide a feedback
oscillator. Wow! It looked possible.

I went back to my hotel and told Art Schawlow
about the idea, since he was staying at the same

place. . . . Its extension to waves as short as light
came a few years later, after much excitement over
the maser and as a result of my continued collabora-
tion with Schawlow, then at Bell Labs. An essential
element in this discovery, I believe, was my experi-
ence in both engineering and physics: I knew both
quantum mechanics and the workings and impor-
tance of feedback oscillators.

26.1.3 Understanding Optical

Amplification: EDFA

Perhaps the easiest way to understand optical amplification
is to discuss the working principle of an EDFA (erbium-
doped fiber amplifier), which is shown in Fig. 26.5. The EDFA
essentially consists of about 20 to 40 m of a silica optical
fiber the core of which is doped with erbium oxide (Er2O3).
We will give a detailed discussion on the optical fiber in
Chaps. 27 and 29; it suffices here to say that light is guided
through the optical fiber because of total internal reflection
(see Fig. 27.8). The radius of the core of the optical fiber is
typically about 4 to 5 mm. The erbium concentration is about
1025 ions m–3. Figure 26.6 shows the first three energy levels
of Er3+ ion in silica host glass. Actually, each level shown in
the diagram consists of a large number of very closely spaced
levels—but to keep the analysis simple, we have shown them
as single levels. The energy difference between E1 (the ground
state) and E3 corresponds to a wavelength of about 980 nm,
and the energy difference between E1 and E2 corresponds
to a wavelength of about 1530 nm; thus E3 – E1 ª 1.3 eV and
E2 – E1 ë ª ú0.81 eV.

Now, when a laser beam corresponding to the wavelength
980 nm is passed through the erbium-doped fiber, then the
erbium atoms in the ground state E1 absorb this radiation

3 “LASERS and Fiber Optics Essay,” by Charles H. Townes, http://www.greatachievements.org/?id=3717.
4 In his Nobel lecture (reprinted in Ref. 4) Townes writes, “Why not use the atomic and molecular oscillators already built for us by

nature? This had been one recurring theme which was repeatedly rejected. Thermodynamic arguments tell us that the interaction
between electromagnetic waves and matter at any temperature cannot produce amplification.” However, Townes realized that if popu-
lation inversion is somehow achieved, then the radiation can be amplified. Quoting Townes again, “This condition is of course one of
nonequilibrium for the group of molecules, which hence successfully obviates the limits set by blackbody radiation.”

Pump laser
(980 nm)

Input signal
(1550 nm)

Amplified
signal

Optical
isolator

Coupler

Er-doped fiber

Fig. 26.5 The erbium-doped fiber amplifier (EDFA) in which the input optical pulses (at 1550 nm) are amplified
by stimulated emission of radiation.
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and get excited to energy state E3. This laser beam is usually
referred to as a pump because it pumps the atoms to the
higher energy state E3. The atom in the energy state E3

makes an almost immediate nonradiative transition to state
E2; in a nonradiative transition, a photon is not emitted—the
energy released could, for example, add to the vibrational
energy of the host medium, resulting in its heating. State E2

is a metastable state characterized by a long lifetime (~ few
milliseconds). The erbium atom in state E2 can undergo a
spontaneous transition to state E1. However, because of the
large lifetime of state E2 (in comparison to that of E3), the
population of the erbium atoms in state E2 grows with time,
and if the pump power is high, the rate at which the erbium
atom goes over to state E2 can be so high that we may have
a state of population inversion between E1 and E2; i.e., the
number of erbium atoms in state E2 is greater than that in E1.
When this happens, a signal beam at 1550 nm can get amplified
by stimulated emission of radiation—this is the underlying
principle of optical amplification which is nothing but light
amplification through stimulated emission of radiation (see
Fig. 26.4). Conversely, if the population of level E2 is less
than that of level E1, the number of stimulated absorptions will
exceed stimulated emission, resulting in the attenuation of
the signal beam at 1550 nm. The variation of the pump and
signal powers with distance along the doped fiber is shown
schematically in Fig. 26.7. We notice that because of absorp-
tion by erbium atoms, the pump power gets attenuated as it
propagates through the erbium-doped fiber. Because of this
absorption, the erbium atoms are in a state of population in-
version, and the signal at 1550 nm gets amplified. However,
as we propagate through the erbium-doped fiber, the pump
power decreases, and the erbium atoms are no more in a state
of population inversion and the signal starts attenuating be-
cause of absorption by erbium atoms. Thus, for a given pump
power, there is always an optimum length of the erbium-doped

fiber for which maximum amplification occurs. For a typical
erbium-doped fiber, we may have

Er3+ concentration ª 7 ¥ 1024 ions m–3 pump power ª 5 mW

and, the optimum length of the erbium doped fiber ª 7m.

A typical gain spectrum of an EDFA (using a 50 mW pump
at 980 nm) is shown in Fig. 26.8(a). The gain is usually mea-
sured in dB which is defined as

Gain (dB) = 10 log
P

P
output

input

The gain (corresponding to the optimum length) is usually
between 20 and 30 dB; a 20 dB gain implies a power amplifi-
cation of 100; and a 30 dB gain implies a power amplification
of 1000. If the pump power is higher, the optimum length and
also the gain will be higher. The gain spectrum can be made
flat over a certain wavelength region by a variety of tech-
niques (e.g., by putting an appropriate filter after the EDFA).
Figure 26.8(b) shows an almost flat gain (of about 28 dB) of
an EDFA for wavelengths lying between 1530 and 1560 nm; a
28 dB gain corresponds to a power amplification of about 631.
The wavelength region 1530 nm < l < 1560 nm is extremely
important for optical communications (see Chaps. 27 and 29).
For more details on erbium-doped fiber amplifiers, see Refs. 7

E1

E2

E3

Amplified
signal

Energy level diagram

Pump: 980 nm

Signal: 1550 nm

Absorption of 980 nm pump

Population inversion between andE E2 1

Amplification of signal (at 1550 nm)

Ø

Ø

Fig. 26.6 The energy level diagram of the erbium atom in
host silica.

Erbium-doped fiber

(a)

(b)

(c)

Pump (980 nm)

Signal
(1550 nm)

Signal power

Pump power

Optimum length for maximum gain
z

Fig. 26.7 (a) The pump (corresponding to 980 nm wave-
length) and the signal (corresponding to 1550 nm
wavelength) propagate in the core of an erbium-
doped fiber. (b) and (c) represent the schematic
variation of the pump and signal power as the two
beams propagate through the erbium-doped fiber.
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and 8. There can be two laser diodes providing the pump
power for the erbium-doped fiber (see Fig 26.9). A commer-
cially available EDFA, along with its main characteristics, is
shown in Fig. 26.10.

26.1.4 The Resonator

As mentioned earlier, a medium with population inversion is
capable of amplification, but in order that it act as an oscillator,
a part of the output energy must be fed back into the system.
Such feedback is brought about by placing the active medium
between a pair of mirrors facing each other (see Fig. 26.3).
Such a system formed by a pair of mirrors is referred to as a
resonator, a slightly more detailed account of which will be
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Fig. 26.8 (a) The gain spectrum of a typical erbium-doped fiber amplifier using a 50 mW pump at 980 nm
(Adapted from Ref. 10). (b) Through various mechanisms, the gain spectrum of an EDFA can be made
almost flat. The above figure corresponds to an EDFA which has an almost flat gain (of about 28 dB)
in the wavelength region 1530 to 1560 nm (Adapted from Ref. 11).

LD
980 nm

LD
980 nm

WDM WDM

Er3+

Fig. 26.9 Schematic setup of a simple erbium-doped fiber
amplifier with two laser diodes (LDs) providing the
pump power for the erbium-doped fiber. Figure
adapted from http://www.rpphotonics.com/erbium
_doped_fiber_amplifiers.html.

given in Sec. 26.5. The sides of the cavity are usually open,
and hence such resonators are also referred to as open reso-
nators. A resonator is characterized by various modes of
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oscillation with different field distributions and frequencies
(for more details see Ref. 9). One can visualize a mode as a
wave having a well-defined transverse amplitude distribution
which forms a standing wave pattern. The transverse inten-
sity distribution of the fundamental mode is usually a
Gaussian [see Eq. (13)]. Because of the open nature of the
resonator, all modes have a finite loss due to the diffraction
spillover of energy at the mirrors. In addition to this basic
loss, scattering from the laser medium, absorption at the mir-
rors, and output coupling at the mirrors also contribute to
the cavity loss. In an actual laser, the modes that keep oscil-
lating are those for which the gain provided by the laser
medium compensates for the losses. When the laser oscil-
lates in steady state, the losses are exactly compensated for
by the gain. Since the gain provided by the medium depends
on the extent of population inversion, for each mode there is
a critical value of population inversion (known as the thresh-
old population inversion) below which that particular mode
would cease to oscillate in the laser (see Sec. 26.6).

26.1.5 The Lasing Action

The onset of oscillations in a laser cavity can be understood
as follows: Through a pumping mechanism, one creates a
state of population inversion in the laser medium placed in-
side the resonator system. Thus the medium is prepared to
be in a state in which it is capable of coherent amplification
over a specified band of frequencies.The spontaneous emis-
sion occurring inside the resonator cavity excites the various
modes of the cavity. For a given population inversion, each
mode is characterized by a certain amplification coefficient

due to the gain and a certain attenuation coefficient due to
the losses in the cavity. The modes for which the losses in
the cavity exceed the gain die out. On the other hand, the
modes whose gain is higher than the losses get amplified by
drawing energy from the laser medium. The amplitude of the
mode increases rapidly until the upper level population
reaches a value when the gain equals the losses, and the
mode oscillates in steady state. When the laser oscillates in
steady state, the losses are exactly compensated for by the
gain provided by the medium, and the wave coming out of
the laser can be represented as a continuous wave.

26.2 THE FIBER LASER

If we put the doped fiber between two mirrors (which act as
a resonator), then with an appropriate pump we have a fiber
laser (see Fig. 26.11). Indeed in 1961, Elias Snitzer wrapped  a
flash lamp around a glass fiber (having a 300 mm core doped
with Nd3+ ions clad in a lower-index glass) and when suitable
feedback was applied, the first fiber laser was born (Ref. 12).
Thus the fiber laser was fabricated within a year of the dem-
onstration of the first ever laser by Theodore Maiman. These
days fiber lasers are commercially available in the market
which have applications in many diverse areas because of
their flexibility and high power levels. The lower curve in
Fig. 26.12 corresponds to the output spectrum of an EDFA
just before it starts lasing. As we increase the pump power,
the EDFA starts lasing and the spikes correspond to the vari-
ous resonator modes; the ends of the fiber act as the
resonator. Fiber lasers now find widespread applications in
welding, cutting, drilling, and in medical surgery.

26.2.1 The MOPA
5

The term master oscillator power amplifier (MOPA) refers
to a configuration consisting of a master laser (or seed laser)
and an optical amplifier to boost the output power. A special

Erbium-doped fiber amplifier(EDFA)

Fig. 26.10 An erbium-doped optical fiber amplifier for
telecommunication application developed
jointly by CGCRI, Kolkata, and NeST, Cochin.
The main characteristics are as follows: 32 wave-
lengths can be simultaneously amplified in the
wavelength region from 1532 to 1565 nm. The
input power (of each channel) can be between
–4 dBm (ª 0.4 mW) and +3 dBm (ª 2 mW), and
the output power is always 18 dBm (ª 63 mW)
with a gain flatness of ±0.5 dB [Photo courtesy
Dr. Shyamal Bhadra of CGCRI and Dr. Suresh
Nair of NeST].

Doped
fiber

Dichroic
mirror

Laser
light

Lens

Dichroic
mirror

Pump
light

Lens

Fig. 26.11 Setup of a simple fiber laser. Pump light is
launched from the left side through a dichroic
mirror into the core of the doped fiber. The gen-
erated laser light is extracted on the right side.
Figure adapted from http://www.rpphotonics
.com/fiber_lasers.html.

5 The writeup for this section and Figs. 26.14 to 26.16 have been kindly provided by Mrinmay Pal and Kamal Dasgupta, CGCRI, Kolkata.
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The EDF’s numerical aperture is 0.18 NA, and it has 500 ppm
Er-ion in the fiber core; the numerical aperture of a fiber is
defined in Sec. 27.7. The EDF in the cavity is pumped
through a WDM coupler by a 976 nm laser diode of pump
power 100 mW. Lasing emission starts at the peak wave-
length when the threshold is achieved. Since there is a small
offset in the peak wavelengths of the two FBGs, FBG II is
slightly stretched to match the peak wavelength with that of
the FBG I. When these two wavelengths coincide, laser emis-
sion is obtained from the FBG II with maximum output power
and very good beam quality. In this MOFA, a seed laser (at
1549.45 nm wavelength) with 1 mW of output power  is gen-
erated (see Fig. 26.14). To amplify the laser output power, an
extra length of 15 m EDF is spliced to the cavity. This extra
EDF is pumped by the residual pump power of a 976 nm laser
diode. An optical isolator is placed after the amplifier to pre-
vent the back reflection which otherwise degrades the noise
figure. In the output, 16.05 dBm (ª 40 mW) of laser power is
obtained (shown in Fig. 26.15). This power can be further
enhanced by increasing the pump power.

26.3 THE RUBY LASER

In the first laser fabricated by Maiman in 1960 (Ref. 13), the
population inversion was achieved in the following manner.
It was made from a single cylindrical crystal of ruby whose
ends were flat, with one of the ends completely silvered and
the other partially silvered (see Figs. 26.16 and 26.17). Ruby

Fig. 26.12 The lower and upper curves show the output of
an EDFA just before and after it starts lasing
(Photograph courtesy Prof. Thyagarajan and
Mr. Mandeep Singh).

WDM
Coupler OSA

seed laser

FBG I FBG II

EDF I
L = 54.7 cm

EDF II
L = 15 cm

Isolator

Amplifier
output

Laser
output

Fig. 26.13 Schematic of the master oscillator power amplifier (MOPA) configuration.

case is the master oscillator fiber amplifier (MOFA), where
the power amplifier is a fiber device. Although a MOPA con-
figuration is in principle more complex than a laser which
directly produces the required output power, the MOPA con-
cept can have the advantage of the ease to achieve the
required performance, e.g., in terms of line width, beam qual-
ity, or pulse duration if the required power is very high. In
the MOFA configuration (shown in Fig. 26.13), the seed laser
consists of a 54.7 cm length of EDF (erbium-doped fiber)
comprising of two high reflective FBGs (fiber Bragg gratings)
written directly on both ends of the EDF. We discussed FBGs
in Sec. 15.6 and showed that they are characterized with high
reflectivity at a particular wavelength with a very small band-
width; thus the two FBGs form a resonator. The important
characteristics of both the gratings are given in Table 26.1.

Table 26.1 Characteristics of Two Fiber Bragg Gratings
Used in MOPA.

Parameter FBG I FBG II
Peak wavelength 1549.456 nm 1549.168 nm
3-dB bandwidth 0.344 nm 0.216 nm
Reflectivity 99% 90%
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MKR #1 WVL 1548.5 nmRL 0.00 dBm

ASE

SENS –74 dBm
10.00 dB/DIV

1500 1600
Wavelength (nm)

16.05 dBm

Fig. 26.15 Laser output spectrum from MOPA configuration.

0.04 dBm

Marker Bandwidth
0.20 nm

MKR BW AMPLITUDE
–3.00 dB

*SENS –61 dBm
10.00 dB/DIV

1540 1550 1560

Wavelength (nm)

Fig. 26.14 Spectrum of the seed laser. The peak wavelength is 1548.73 nm with peak power of –0.05 dBm and bandwidth
of 0.225 nm. Figure courtesy Mrinmay Pal and Kamal Dasgupta, CGCRI, Kolkata.

Glass tube Flash lamp Ruby rod

Laser
beam

Partially
silvered

Fig. 26.16 The ruby laser.

Fig. 26.17 The first ruby laser.

6 The Al2O3 crystal which serves as a medium to suspend the chromium ions is known as the host crystal. The characteristics of the
host crystal affect the laser action and also the broadening of the energy levels of the activator atoms which in this case are chromium.
For a good lasing action, the ruby crystal consists of about 0.05% (by weight) of chromium; however, higher concentrations of chro-
mium have also been used. For a detailed discussions of host crystals, see Ref. 14.

consists of Al2O3 with some of the aluminum atoms replaced
by chromium.6 The energy states of the chromium ion are
shown in Fig. 26.18. The chief characteristic of the energy
levels of a chromium ion is the fact that the bands labeled E1

and E2 have a lifetime of ~10–8 s whereas the state marked M
has a lifetime of ~3 ¥ 10–3 s—the lifetime represents the aver-
age time an atom spends in an excited state before making a
transition to a lower energy state. A state characterized by such
a long lifetime is termed a metastable state.

The chromium ion in its ground state can absorb a photon
(whose wavelength is around 6600 Å) and make a transition
to one of the states in the band E1. It could also absorb a
photon of l ~ 4000 Å and make a transition to one of the
states in the band E2—this is known as optical pumping, and
the photons which are absorbed by the chromium ions are
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is higher than the steady-state value, the rate at which the
upper level depletes (because of stimulated transitions) is
much higher than the pump rate. Consequently, the inversion
becomes below threshold, and the laser action ceases. Thus
the emission stops for a few microseconds, within which time
the flash lamp again pumps the ground-state atoms to the
upper level, and laser oscillations begin again. This process
repeats itself till the flash lamp power falls below the threshold
value and the lasing action stops (see Fig. 26.19).

26.4 THE He–Ne LASER

We will now briefly discuss the He-Ne laser which was first
fabricated by Ali Javan and coworkers at Bell Telephone
Laboratories in the United States (Ref. 15). This was also the
first gas laser to be operated successfully.

The He-Ne laser consists of a mixture of He and Ne in a
ratio of about 10 :1, placed inside a long, narrow discharge
tube (see Figs. 26.20 and 26.21).  The pressure inside the rube
is about 1 torr.7 The gas system is enclosed between a pair
of plane mirrors or a pair of concave mirrors so that a resona-
tor system is formed. One of the mirrors is of very high
reflectivity while the other is partially transparent so that
energy may be coupled out of the system.

The first few energy levels of He and Ne atoms are shown
in Fig. 26.22. When an electric discharge is passed through
the gas, the electrons traveling down the tube collide with
the He atoms and excite them (from the ground state F1) to
the levels marked F2 and F3. These levels are metastable; i.e.,
He atoms excited to these states stay in these levels for a
sufficiently long time before losing energy through colli-
sions. Through these collisions, the Ne atoms are excited to
the levels marked E4 and E6 which have nearly the same en-
ergy as the levels F2 and F3 of He. Thus when the atoms in
levels F2 and F3 collide with unexcited Ne atoms, they raise

P
ow

er
 o

ut
pu

t

t

Fig. 26.19 The characteristic spiking of a ruby laser.

produced by the flash lamp (see Fig. 26.16). In either case, it im-
mediately makes a nonradiative transition (in a time ~ 10–8 s) to
the metastable state M—in a nonradiative transition, the excess
energy is absorbed by the lattice and does not appear in the
form of electromagnetic radiation. Also since state M has a very
long life, the number of atoms in this state keeps increasing and
one may achieve population inversion between states M and G.
Thus we may have a larger number of atoms in states M and G.
Once population inversion is achieved, light amplification can
take place, with two reflecting ends of the ruby rod forming a
cavity. The ruby laser is an example of a three-level laser.

In the original setup of Maiman, the flash lamp (filled with
xenon gas) was connected to a capacitor (see Fig. 26.16)
which was charged to a few kilovolts. The energy stored in
the capacitor (~ a few thousand Joules) was discharged
through the xenon lamp in a few milliseconds. This results in
a power which is about a few megawatts. Some of this energy
is absorbed by the chromium ions, resulting in their excitation
and subsequent lasing action.

26.3.1 Spiking in Ruby Laser

The flash operation of the lamp leads to a pulsed output of the
laser. Even in the short period of a few tens of microseconds
in which the ruby is lasing, one finds that the emission is made
up of spikes of high-intensity emissions as shown in Fig. 26.19.
This phenomenon is known as spiking and can be understood
as follows. When the pump is suddenly switched on to a
value much above the threshold, the population inversion
builds up and crosses the threshold value, as a consequence
of which the photon number builds up rapidly to a value much
higher than the steady-state value. Since the photon number

M

l = 6943 Ål ~ 6600 Å
l ~ 4000 Å

G

Pump
Photon

E1

E2

Fig. 26.18 The energy levels of the chromium ion; G and
M represent the ground and metastable states,
respectively.

7 1 torr = 1 mm of Hg = 133 Pa = 133 N m–2; the unit torr is named after Torricelli, the seventh-century Italian mathematician who
invented the mercury manometer.
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them to the levels E4 and E6, respectively. Thus, we have the
following two-step process:

1. Helium atom in the ground state F1 + collision with
electron

Æ Helium atom in the excited state (F2 or F3) + elec-
tron with lesser kinetic energy.

2. The excited states of He (F2 or F3) are metastable8—they
would not readily lose energy through spontaneous

Mirror Mirror

He + Ne

Discharge
electrodes

Laser
beam

Fig. 26.20 The helium-neon laser.
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E2
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F3
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E3
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E6

0
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15

17

19

F1

He Ne

Excitation
by collisions

with electrons

Through atomic
collisions

1.15 mm

3.39 mm

6328 Å

Spontaneous
emission (~6000 )Å

Deexcitation
by collisions

Fig. 26.22 Relevant energy levels of helium and neon.

8 The spectroscopic states corresponding to states F1, F2, and F3 are 11S0, 23S1, and 21S0, respectively.

emissions (the radioactive lifetime of these excited states
would be about 1 h). However, they can readily lose en-
ergy through collisions with Ne atoms:

He atom in excited state F3 + Ne atom in ground state

Æ He atom in ground state + Ne atom in excited state E6

Similarly,

He atom in excited state F2 + Ne atom in ground state

Æ He atom in ground state + Ne atom in excited state E4

This results in a sizeable population of the levels E4 and
E6. The population in these levels happens to be much more
than those in the lower levels E3 and E5. Thus a state of
population inversion is achieved, and any spontaneously
emitted photon can trigger laser action in any of the three
transitions shown in Fig. 26.22. The Ne atoms then drop
down from the lower laser levels to the level E2 through
spontaneous emission.  From the level E2 the Ne atoms are
brought back to the ground state through collision with the
walls.  The transitions from E6 to E5, E4 to E3, and E6 to E3

result in the emission of radiation having wavelengths of
3.39 mm, 1.15 mm, and 6328 Å, respectively. Note that the la-
ser transitions corresponding to 3.39 and 1.15 mm are not in
the visible region. The 6328 Å transition corresponds to the
well-known red light of the He-Ne laser. A proper selection of
different frequencies may be made by choosing end mirrors
having high reflectivity over only the required wavelength
range. The pressures of the two gases must be chosen so
that the condition of population inversion is not quenched.
Thus the conditions must be such that there is an efficient
transfer of energy from He to Ne atoms. Also, since the level
marked E2 is metastable, electrons colliding with atoms in
level E2 may excite them to level E3, thus decreasing the

Fig. 26.21 A helium-neon laser demonstration at the Kastler-
Brossel Laboratory at Univ. Paris 6. The glowing
ray in the middle is an electric discharge produc-
ing light in much the same way as a neon light. It
is the gain medium through which the laser
passes, not the laser beam itself, which is visible
there. The laser beam crosses the air and marks a
red point on the screen to the right. Photograph
by Dr. David Monniaux; used with kind permis-
sion of Dr. Monniaux. A color photo appears in the
insert at the end of the book.
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population inversion. The tube containing the gaseous mix-
ture is also made narrow so that Ne atoms in level E2 can get
de-excited by collision with the walls of the tube. Actually
there are a large number of levels grouped around E2, E3, E4,
E5, and E6 (see Fig. 26.22). Only those levels are shown in
the figure which correspond to the important laser transi-
tions. Further details on the He-Ne laser can be found in
Refs. 16 and 17.

Gas lasers are, in general, found to emit light, which is more
directional and more monochromatic.  This is so because of
the absence of such effects as crystalline imperfection, ther-
mal distortion, and scattering, which are present in solid-state
lasers. Gas lasers are capable of operating continuously with-
out need for cooling.

26.5  OPTICAL RESONATORS

In Sec. 26.1 we briefly discussed that a light beam passing
through a suitable medium with population inversion may
be amplified. To construct an oscillator which can supply
light energy and act as a source of light, one must couple a
part of the output back into the medium. This can be
achieved by placing the active medium between two mirrors
which reflect most of the output energy back to the system;
see Fig. 26.3. Such a system of two mirrors represents a
resonant cavity.

Now, to obtain an output beam, one of the mirrors is made
partially reflecting. Thus, imagine a wave that starts from one
of the mirrors and travels toward the other.  In passing
through the active medium, it gets amplified. If the second
mirror is partially reflecting, then the wave is partially trans-
mitted and the rest is reflected back toward the first mirror. In
traveling to the first mirror, it again gets amplified and returns
to the position it has started from. Thus, in between the two
mirrors, we have waves propagating along both directions.
For resonance, when a wave returns after one round trip, it
must be in phase with the existing wave. For this to happen,
the total phase change suffered by the wave in one complete
round trip must be an integral multiple of 2p, so that stand-
ing waves are formed in the cavity.  Thus if d represents the
length of the cavity, then we may write

 
2p

l
 2d = 2mp m = 1, 2, 3, . . . (2)

where l is the wavelength of the radiation in the medium
enclosed by the cavity, if n0  represents the refractive index
of the medium enclosed by the cavity, then

l = 0

0n

l

If we put l0 = c/n, Eq. (2) gives

n = nm = 
02

c
m

n d
(3)

which gives the discrete frequencies of oscillation of the
modes. If we assume

n0 ª 1
(as in a He-Ne laser), then Eq. (3) simplifies to

n = nm = 
2

c
m

d
(4)

Different values of m lead to different oscillation frequencies,
which constitute the longitudinal modes of the cavity; for
further details and for reasons why they are known as longi-
tudinal modes, see any textbook on lasers (see, e.g., Refs. 4,
9, 14, and 16). The frequency difference between adjacent
longitudinal modes is given by

=
2

c

d
dn (5)

Returning to Eq. (3), we note that for a practical optical resona-
tor, m is a very large number. For example, for an optical
resonator of length d ª 60 cm operating at an optical frequency
of v ª 5 ¥ 1014  Hz (corresponding to l ª 6000 Å), we obtain

m ª

14

10

5 10 2 60

3 10

¥ ¥ ¥

¥

 = 2 ¥ 106

Equation (3) tells us that the cavity will support only those
frequencies for which the round-trip phase shift is an inte-
gral multiple of  2p.

An open resonator consisting of two plane mirrors facing
each other is nothing but the Fabry–Perot  interferometer dis-
cussed in Chap. 16; the main difference is that in a
Fabry–Perot interferometer, the spacing between the mirrors
is  small compared to the transverse dimension of the mirrors
while in an optical resonator, the converse is true. Now, in
Sec. 16.3 we showed that for a light beam incident normally
on a Fabry–Perot interferometer, transmission resonances
occur when

d =
0

4 dp

l
= 2mp m = 1, 2, 3, . . . (6)

where we have assumed n0 = 1 and cos q = 1 since we have
assumed normal incidence. Comparing Eqs. (2) and (6), we
readily observe that transmission resonances occur for the
modes of the cavity.

Example 26.1 Consider a light beam of central frequency
n = n0 = 6 ¥ 1014  Hz and a spectral width of 7000 MHz that is
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incident normally on a resonator as shown in Fig. 26.23 with n0 = 1,
and d = 10 cm. Thus the spacing of two adjacent modes will be

dn = 
2

c

d
 = 1500 MHz

Thus the output beam will have frequencies

n0 – 2dn, n0 – dn, n0, n0 + dn, and n0 + 2dn

corresponding to

m = 399,998; 399,999; 400,000; 400,001; and 400,002

respectively. In the above example, if the reflectivity of one of the
mirrors R = 0.95 and if output power corresponding to one of the
modes is 1 mW, then

Corresponding power incident on mirror inside of the cavity will be

= 1 mW/(1 – 0.95) = 20 mW

Figures 26.24 and 26.25 show respectively the output of a
typical single mode and a typical multilongitudinal mode
(MLM) lasers. The wavelength spacing of two adjacent
modes in the latter case is about 0.005 mm.

In obtaining Eq. (4) for the various oscillating frequen-
cies, we have assumed that a plane wave can propagate to
and fro unmodified inside the resonator. This would not be
true in practice since the mirrors of any practical resonator

system have finite transverse dimensions and hence only
that portion of the wave which strikes the mirror would get
reflected; the portion of the wave lying outside the trans-
verse dimension of the mirror will be lost from the resonator.
The wave which travels back to the first mirror has now fi-
nite transverse dimensions, determined by the transverse
dimensions of the mirror. As we have seen in Chap. 18, a
beam with a finite transverse dimension diffracts as it
propagates. Thus, when the beam comes back to the first
mirror, it will have a larger transverse dimension than the
mirror. Further, since only that portion of the wave that is
intercepted by the mirror is reflected, the remaining portion
lying outside the mirror is lost. This loss constitutes a basic
loss mechanism and is referred to as diffraction loss.

If we consider a resonator made of mirrors of transverse
dimension a and separated by a distance d, then from
Eq. (26) of Chap. 18 we see that the wave after reflection at
one of the mirrors undergoes diffraction divergence at an
angle ~l/a. The angle subtended by one of the mirrors at the
other mirror is ~a/d. Hence for diffraction losses to be low,

a

l
 << 

a

d
or

2a

dl
 >> 1 (7)

The quantity a2/ld  is known as the Fresnel number. As an
example, if the resonator mirrors have transverse dimension
of 1 cm and are separated by 60 cm, then for a wavelength of
5000 Å, we have

2a

dl
 ª 330 >> 1

and hence the diffraction losses will be extremely small. The
losses in a resonator formed by the plane parallel mirrors
would be extremely sensitive to the parallelism of the two
mirrors because a slight angular misalignment would cause a

v v
d7000 MHz

1500 MHz

Fig. 26.23 A light beam of central frequency n = n
0
 = 6 ¥

1014 Hz and a spectral width of 7000 MHz is
incident normally on a resonator. The output
beam corresponds to the resonant frequencies
of the optical cavity.

1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59

( m)m
l

Fig. 26.25 The output of a typical multilongitudinal mode
(MLM) laser (Adapted from Ref. 18).

1.54 1.55 1.56 1.57

( m)m
l

Fig. 26.24 The output of a single longitudinal mode laser.
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large amount of light energy to escape from the resonator.
The loss can be reduced by using spherical mirrors to form
the resonant cavity (see Fig. 26.26). The spherical mirrors
help in focusing which leads to much less loss due to dif-
fraction spillover. In a stable optical resonator, one can show
that there are specific transverse field configurations which
maintain their field distribution after successive round trips.
These field configurations are referred to as the transverse
modes of the resonator. Since oscillations of the laser would
occur in modes which do not have excessive loss on succes-
sive reflections, it is clear that the modes that would oscillate
would be the ones which propagate more or less along the
axis of the resonator and which do not diffract appreciably
as they propagate between the mirrors.

We will show below that under certain conditions, a
Gaussian beam with the appropriate spot size will resonate
between the mirrors of the resonator system shown in Fig. 26.26.
Let the poles of the mirrors M1 and M2 be at z = z1 = –d1 and
at z = z2 = +d2, respectively. We are assuming the origin
somewhere between the mirrors so that both d1 and d2 are posi-
tive quantities. Thus the distance between the two mirrors is
given by

d = d1 + d2

We assume a Gaussian beam propagating along the z direction
whose amplitude distribution on the plane z = 0 is given by

u(x, y) 
2 2

2
0

+
= exp

x y
a

w

Ê ˆ
-Á ˜

Ë ¯
(8)

implying that the phase front is plane at z = 0; the parameter
w0 is the spot size and also called the beam waist. In Sec. 20.5
we showed that as the Gaussian beam propagates along the
z direction, the spot size and the radius of curvature of the

wave front change and are given by

w(z) = w0 
2

1 +
z

a

and R(z) = +z
z

a

 (9)

wherer

2 4
0

2
=

wp
a

l
(10)

For the Gaussian beam to resonate between the two mirrors,
the radii of the phase front (at the mirrors) should be equal to
the radii of curvatures of the mirrors:

        –R1 = –d1 
1

–
d

a

and R2 = d2
2

+
d

a

We  have used the sign convention such that for the type of
mirrors shown in Fig. 26.26, both R1 and R2  are positive. Thus

a = d1 (R1 – d1) = d2 (R2 – d2)

If we use the relation  d2 = d – d1, we readily get

d1 = 2

1 2

( )

+ 2

R d d

R R d

-

-

and 1
2

1 2

( )
=

+ 2

R d d
d

R R d

-

-

We define

g1 = 1–
1

d

R
and g2 = 1–

2

d

R
(11)

From the above equations we may write R1 = d/(1 – g1) and
R2 = d/(1 – g2), and we get

( )2 1
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1 2 1 2

1
=

2
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d
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2
1 2 1 2

1
=

+ 2

g g d g g

g g g g

-

-

Since 2 4 2
0= /wa p l , we get for the spot size at the waist

( )2
0 1 2 1 2

1 2 1 2

= 1
+ 2

d
w g g g g

g g g g

l
-

p -
(12)

For w0 to be real, we must have 0 £ g1 g2 £ 1, or

1 2

0 1 1 1
d d

R R

Ê ˆ Ê ˆ
£ - - £Á ˜ Á ˜Ë ¯ Ë ¯

(13)

where R1 and R2 are the radii of curvature of the mirrors. The
above equation represents the stability condition for a reso-
nator consisting of two spherical mirrors. Figure 26.27 shows
different resonator configurations. In Figure 26.28 the stability

Radius R1

Radius R2

M1 M2

d

z = 0

z = d2z = −d1

Fig. 26.26 A resonator consisting of two spherical
mirrors.
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and a similar expression for w2(z2). As can be easily seen,
when g1g2 Æ 0 or g1g2 Æ 1, w(z1) or w(z2) or both become
very large and our analysis would not remain valid.

Example 26.2 We consider a simple resonator configuration
consisting of a plane mirror and a spherical mirror separated by a
distance d (see Fig. 26.29); indeed such a configuration is used to
produce a single transverse mode oscillation in a ruby laser. Thus
R1 = • and R2 = R, giving  g1 = 1 and g2 = 1– d/R. Simple manipu-
lation of the above equation gives

2
0 = 1

d R
w

d

l Ê ˆ-Á ˜Ë ¯p
(15)

Example 26.3 For a typical He-Ne laser (l = 0.6328 mm) we
may have d ª 50 cm and R ª 100 cm (see Fig. 26.29), giving g1 = 1,
and g2 = 0.5, and the resonator configuration is well within the shaded
region of Fig. 26.28 and is very much stable. Further, g1g2 = 0.5, and
w0 ª 0.32 mm. If we increase R to 200 cm, we will get w0 ª 0.38 mm.
For R < d, w0 will become imaginary and the resonator will become
unstable.

Example 26.4 We next consider another resonator configura-
tion consisting of two spherical mirrors separated by a distance d =
1.5 m with R1 = 1.0 m and R2 = 0.75 m, giving g1 = –0.5, g2 = –1.0,
and g1g2 = 0.5. Thus the values of g1 and g2 are such that the reso-
nator configuration is well within the shaded region of Fig. 26.28
and is very much stable. For l = 1 mm one can readily show that
w0 ª 0.38 mm.

Example 26.5 When g1 = g2 = g, Eq. (12) simplifies to

2
0

1+
=

2 1

d g
w

g

l

p -
(16)

The symmetric concentric resonator will correspond to R1 = R2 = d/2
so that the centers of curvature of both mirrors are at the center
[see Fig. 26.27(b)]. Thus g1 = g2 = –1 and g1g2 = 1 and w0 becomes
zero!

The symmetric confocal resonator will correspond to R1=R2=d
so that the centers of curvature of both mirrors are at the pole of

diagram and the shaded region correspond to stable resona-
tor configurations. In a stable resonator, a ray of light can
keep bouncing back and forth between the two mirrors with-
out ever escaping from it.

The spot size of the Gaussian beam at the mirrors is given
by (see  Prob. 26.11)

( )
2 2

1
1 1 2

( ) =
1

gd
w z

g g g

l

p - (14)

Plane-parallelR1 = ∞ R2 = ∞

d
(a)

Concentric (spherical)R d1 = /2 R d2 = /2

(b)

ConfocalR d1 = R d2 =

(c)

Fig. 26.27 Different configurations of the optical resonator.

50 cm

R

Fig. 26.29 A simple resonator consisting of a plane mirror
and a concave mirror of radius R2 [given by
Eq. (15)].

B

0 1.0
−1.0

A

Concentric

Confocal

Planar

 = 1 –      d
R2

[g1 = g2 = 1]

g2

 = 1 –      d
R1

g1

[g1 = g2 = −1]

��

��

Fig. 26.28 The stability diagram for optical resonators.
The shaded region corresponds to stable con-
figurations.
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the other mirror [see Fig. 26.27(c)]. Thus g1 = g2 = 0 and g1g2 = 0
and

0 =
d

w
l

p

Finally for plane parallel mirrors [see Fig. 26.27(a)] R1 = R2 = •,
g1 = g2 = 1 and w0 becomes infinity!

All three configurations discussed above (concentric,
confocal, and planar) lie on the boundary of the stability dia-
gram so that a small variation of the parameters can make the
system unstable and will have a very large loss. Thus, it is
better to operate inside the shaded region using configura-
tions which have small diffraction loss.

If one chooses a closed resonator system, then the number
of modes (which can get amplified and which can oscillate in a
resonator of practical dimensions) becomes so large that the
output is far from monochromatic. To overcome this problem,
one uses open resonators where the number of modes (which
can oscillate) is only a few and even single-mode oscillation is
possible; furthermore, the open sides of the resonator can
be used for optical pumping as in ruby lasers. Because of the
open nature of the resonator, all modes have a finite loss due
to the diffraction spillover of energy at the mirrors. In addition
to this basic loss, scattering from the laser medium, absorption
at the mirrors, and output coupling at the mirrors contribute to
the cavity loss. One can visualize a mode as a wave having a
well-defined transverse amplitude distribution which forms a
standing wave pattern. In an actual laser, the modes that keep
oscillating are those for which the gain provided by the laser
medium compensates for the losses. When the laser oscillates
in steady state, the losses are exactly compensated for by the
gain. Since the gain provided by the medium depends on the
extent of population inversion, for each mode there is a critical
value of population inversion (known as the threshold popu-
lation inversion) below which that particular mode would cease
to oscillate in the laser.

26.6 EINSTEIN COEFFICIENTS AND

OPTICAL AMPLIFICATION

The consideration which led Einstein to the prediction of stimu-
lated emission was the description of thermodynamic equilibrium
between atoms and the radiation field. Consider an atom having
two states. Let N1 and N2 be the number of atoms (per unit vol-
ume) in states 1 and 2, respectively; the levels correspond to
energies E1 and E2 (see Fig. 26.30).  As mentioned earlier, an
atom in the lower energy level can absorb radiation and get ex-
cited to level E2. This excitation process can occur only in the

presence of radiation. The rate of absorption depends on the
density of radiation at the particular frequency corresponding to
the energy separation of the two levels. Thus, if

E2 – E1 = w� (17)

then the absorption process depends on the energy density
of radiation at the frequency w; this energy density is de-
noted by u(w) and is defined such that

u(w)dw = radiation energy per unit volume within frequency
interval w and w + dw

The rate of absorption is proportional to N1 and to u(w).
Thus, we may write

Number of absorptions per unit volume per unit time =
N1B12u(w) (18)
where B12 is the coefficient of proportionality and is a char-
acteristic of the energy levels.

Let us now consider the reverse process, namely, the emission
of radiation at a frequency w when the atom de-excites from level
E2 to E1.  As mentioned in Sec. 26.1, an atom in an excited level
can make a radiative transition to a lower energy level either
through spontaneous emission or through stimulated emission.
In spontaneous emission, the probability per unit time of the atom
making a downward transition is independent of the energy den-
sity of the radiation field and depends only on the levels involved
in the transition. The rate of spontaneous transitions (per unit
volume) from level E2 to E1 is proportional to N2 and thus

2 2
21 2

sp

= – =
dN N

A N
dt t

- (19)

where A21 represents the coefficient of proportionality and is
known as the Einstein A coefficient and depends on the en-
ergy level pair and

sp
21

1
=t

A (20)

represents the spontaneous lifetime of the upper level.  The
solution of Eq. (19) is given by

N2(t) = N2(0) sp– /t t
e (21)

E1

E2

N1

N2

Absorption

Emission

Fig. 26.30 E
1
 and E

2
 represent the energy levels of an atom.

N
1
 and N

2
 represent the number of atoms (per unit

volume) in the energy levels E
1
 and E

2
,

respectively.
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implying that the population of level 2 reduces by 1/e in a
time tsp. For  example, for the  2P Æ 1S transition in a hydrogen
atom  A ª 6 ¥ 108 s–1, giving a mean lifetime (ª 1/A) of about
1.6 ¥ 10–9 s (see, e.g., Chap. 21 of Ref. 19). In the case of
stimulated emission, the rate of transition to the lower energy
level is directly proportional to the number of atoms in the
upper energy level as well as to the energy density of the
radiation at frequency w. Thus

Number of stimulated emissions (per unit time per unit vol-
ume) = N2B21u(w)

with B21 representing the corresponding proportionality con-
stant.  The quantities A21, B12, and B21 are known as Einstein
coefficients and are determined by the atomic system. At
thermal equilibrium, the number of upward transitions must
be equal to the number of downward transitions.  Thus, we
may write (at thermal equilibrium)

N1B12u(w) = N2A21 + N2B21u(w)

or

21

1 2 12 21

( ) =
/ –

A
u

N N B B
w (22)

Now according to a fundamental principle in thermodynam-
ics, at thermal equilibrium we have the following expression
for the ratio of the populations of two levels:

1 2 1

2

–
= exp = exp

B B

N E E

N k T k T

Ê ˆ Ê ˆw
Á ˜ Á ˜Ë ¯ Ë ¯

�

(23)

where kB (= 1.38 ¥ 10–23 J K–1) represents the Boltzmann con-
stant and T represents the absolute temperature. Equation (21)
is known as Boltzmann's law. Thus, we may write

21
/

12 21

( ) =
–Bk T

A
u

B e Bw
w

� (24)

Now, at thermal equilibrium, the radiation energy density is
given by Planck’s law:

3 3
0

2 3 /

1
( ) =

–1Bk T

n
u

c e w

w
w

p
�

�
(25)

where n0 represents the refractive index of the medium.  Com-
paring Eqs. (24) and (25), we obtain9

B12 = B21 = B (say) (26)

and

 
3 3

021
2 3

21

 = 
nA

B c

w

p

�

(27)

Notice that if we had not assumed the presence of stimulated
emission, we would not have been able to arrive at an expres-
sion for u(w); Einstein in 1917 had predicted the existence of
stimulated emission which was later confirmed by rigorous
quantum theory.

At thermal equilibrium, the ratio of the number of sponta-
neous to stimulated emissions is given by

/21

21

= –1
( )

Bk TA
e

B u
w

w

�

(28)

We note the following two important points:

1. For a normal optical source, T ~ 103 K with w ª 3 ¥
1015 s–1 (corresponding to l ª 6000 Å) we have

–34 15 –1

–23 –1 3

1.054 10 J s 3 10 s
23

1.38 10 J K 10Bk T

w ¥ ¥ ¥

ª ª

¥ ¥

�

giving

1021

21

= 10
( )

A

B u w

Thus, when the atoms are in thermal equilibrium, the
emission (at optical frequencies) is predominantly due
to spontaneous transitions and hence the emission
from ordinary light sources is incoherent.

2. From  Eq. (27), one can see that the coefficient B21 is in-
versely proportional to w3, implying that laser action will
become more difficult as we go to higher frequencies.

26.6.1  Population Inversion

In the previous section we assumed that the atom is capable
of interacting with radiation of a particular frequency w. How-
ever, if one observes the spectrum of the radiation due to
spontaneous emissions from a collection of atoms, one finds
that the radiation is not monochromatic but is spread over a
certain frequency range. This would imply that energy levels
have widths and atoms can interact over a range of frequencies.
As an example, in Fig. 26.31 we have shown that the 2P level
of hydrogen atom has a certain width  DE (= )Dw� so that the

9 If levels 1 and 2 are g1 and g2 fold degenerate, then  N1/N2 = (g1/g2) exp (�w/kBT), B12 = B21 g2/g1, and A21/B21 = n3
0 �w

3/p2c3.

1S

2P DE

E E2 1– 10.2 eVª

D ª ¥E 4 10 eV–7

Fig. 26.31 The 2P level of hydrogen atom has a certain

width DE (= �Dw) so that the atom can absorb/
emit radiation over a range of frequencies Dw.
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atom can absorb/emit radiation over a range of frequencies
Dw. For the 2P Æ 1S transition

–74 10 eVED ª ¥ fi
–8 –16 10 sDw ª ¥

Since  w0 ª 1.55 ¥ 1016 s–1, we get

0

Dw

w
ª 4 ¥ 10–8

Thus, in general, Dw << w0, showing the spectral purity of the
source. We introduce the normalized line shape function g(w)
such that

• Number of spontaneous emissions per unit time per
unit volume with emitted frequency lying between w

and w + dw = N2A21g(w)dw

• Number of stimulated emissions per unit time per unit
volume with emitted frequency lying between w and
w + dw = N2B21u(w)g(w)dw

• Number of stimulated absorptions per unit time per unit
volume with absorbed frequency lying between w and
w + dw = N1B12u(w)g(w)dw

Obviously

0
( ) = 1g d

•

w wÚ
Thus the total number of stimulated emissions per unit time
per unit volume is given by

W21 = N2  210
( ) ( )B u g d

•

w w wÚ

= N2 
2 3

3 30
sp 0

( )
( )

c u
g d

t n

•p w

w w

w
Ú

�

where we have used Eqs. (27) and (20). Now, for a near mono-
chromatic radiation field (as is indeed the case for the laser),
u(w) is very sharply peaked at a particular value of w (say,
w¢), and in carrying out the above integration, g(w)/w3 can
be assumed to be essentially constant over the region where
u(w) is appreciable, to give

W21 ª N2

2 3

3 3
sp 0

( )c g
U

t n

p w¢

w¢�
(29)

where g(w¢) represents the value of the line shape function
evaluated at the radiation frequency w¢ and U  represents the
energy density associated with the radiation field.10

U  = 
0

( )u d
•

w wÚ (30)

Now the energy density U and the intensity I
w
 are related

through the following equation11 [see Eq. (78) of Chap. 23]

I
w
 = vU = 

0

c
U

n
(31)

where v (= c/n0) represents the velocity of the radiation field
in the medium, n0 being its refractive index. (The quantity I

w

represents  energy per unit area per unit time, so the mks units
of I

w
 are therefore J m–2 s–1; the quantity U is denoted by

u in Sec. 23.5.) Thus the total number of stimulated emis-
sions per unit time per unit volume is given by

W21 = N2 
2 2

2 3
sp 0

( )c g
I

t n
w

p w

w�
(32)

where we have dropped the prime on w. Similarly, the number
of stimulated absorptions per unit time per unit volume is
given by

W21 = N1 
2 2

2 3
sp 0

( )c g
I

t n
w

p w

w�
(33)

We next consider a collection of atoms and let a near mono-
chromatic beam of frequency w be propagating through it
along the z direction. To obtain an expression for the rate of
change of the intensity of the beam as it propagates, we con-
sider two planes of area S perpendicular to the z direction at
z and z + dz (see Fig. 26.32).  The volume of the medium be-
tween planes P1 and P2 is S dz, and hence the number of

10 The argument essentially implies
u(w) ª Ud(w – w¢)

where d(w – w¢) represents the Dirac-delta function.
11 This is analogous to the equation J = rv, where r represents the number of particles per unit volume (all propagating with velocity v)

and J represents the number of particles crossing a unit area perpendicular to the direction of propagation per unit time. This can be
easily seen from the fact that the number of particles crossing a unit area per unit time is those contained in a cylinder of length v
units with unit area of cross section.

P1

P2

z

dz

z dz+

z

Iw( )z

Iw( + )z dz

Fig. 26.32 Electromagnetic wave propagating along the z

direction through a collection of atoms.
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stimulated absorptions per unit time is W12S dz.  Since each
photon has an energy w� , the energy absorbed per unit time
in the volume element S dz is

12W S dzw�

Similarly, the corresponding energy gain (because of stimu-
lated emissions) is

21W Sdzw�

where we have neglected the radiation arising out of sponta-
neous emissions, because such radiation propagates in
random directions and is, in general, lost from the beam.
Thus, the net amount of energy absorbed per unit time in the
volume element S dz is

12 21( – )W W Sdzw�

If I
w
(z) represents the intensity of the beam in plane P1, then the

total energy entering the volume element S dz per unit time is

I
w

 (z) S

Similarly, if I
w
(z + dz) represents the intensity in plane P2,

then the total energy leaving the volume element per unit
time is

I
w
(z + dz)S = I

w
(z)S + 

I
dz S

z
w

∂

∂

Hence the net amount of energy leaving the volume element
per unit time is

I
dz S

z
w

∂

∂

This must be equal to the negative of the energy absorbed by
the medium between z and z + dz. Thus,

I
S dz

z
w

∂

∂
 = – 12 21( – )W W S dzw�

( ) ( )
2 2

1 23 2
sp 0

= –
c

g I S dz N N
t n

w

p

w w -

w

�
�

or

1
=

I

I z
w

w

∂
g

∂ (34)

where

( ) ( )
2 2

2 12 2
sp 0

=
c

N N g
t n

p
g - w

w
(35)

Since the line shape function g(w) is very sharply peaked
(see Sec. 26.7), the function g is also sharply peaked. Equa-
tion (34) can be readily integrated to give12

( ) ( )= 0 zI z I eg
w w

(36)

Thus if N1 > N2, then g is negative and the intensity of the
beam decreases exponentially with z, with the intensity de-
creasing to 1/e of its value at z = 0 in a distance 1/g. Hence at
thermal equilibrium, since the number of atoms in the lower
level is greater than that in the upper level, the intensity of the
beam (as it propagates through the medium) decreases expo-
nentially. On the other hand, if there are more atoms in the
excited level than in the lower level (i.e., there is a population
inversion), then g > 0 and there will be an exponential increase
in intensity of the beam; this is known as light amplification.

26.6.2   Cavity Lifetime

In an actual laser system, the active medium (which is ca-
pable of amplification) is placed between a pair of mirrors,
forming what is known as a resonator (see Sec. 26.5). In or-
der that oscillations be sustained in the cavity, it is essential
that the net losses suffered by the beam be compensated for
by the gain of the medium. At threshold and under steady-
state operation, the two are exactly compensated. To obtain
the threshold condition, we first calculate the passive cavity life-
time tc, which is the time in which the energy W(t) in the
(passive) cavity decreases by a factor 1/e in the absence of
the amplifying medium:

W(t) = W(0)  / ct te- (37)

Let d represent the length of the active medium. In one round
trip the beam traverses a distance 2d through the active
medium and gets attenuated by a factor

R1R2 
2 cde- a

where R1 and R2 are the reflectivities of the mirrors at the two
ends of the resonator and the term 2 cde- a  represents losses
caused by absorption, scattering, diffraction, etc. Now the time
taken for one round trip is given by

0

2
=

/

d
t

c n

Thus

   ( )0

2
exp

/ c

d

c n t

È ˘
-Í ˙
Í ˙Î ˚

= R1R2 e
–2acd (38)

12 In obtaining Eq. (36) from Eq. (34), it has been assumed that N1 – N2 (and hence g) is independent of I
w
.  Such an approximation is

valid only for small values of I
w
.  For intense light beams (when I

w
 becomes very large) saturation of the levels sets in and the

attenuation is linear rather than exponential (see, for example, Ref. 4, Sec. 4.2 and 4.3).
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giving the following expression for the passive cavity lifetime:

0/1
=

2c

c n

t d
[2ac d – ln (R1R2)] (39)

The cavity lifetime can also be expressed as

02
=

[ln(1/1– )]c
n d

t
c x (40)

where
2

1 2= 1 cdx R R e- a

-

(41)

is the fractional loss per round trip.

26.6.3  Threshold Condition

Now, because of population inversion, in one round trip, the
beam gets amplified by a factor e2gd, and therefore, for the
laser oscillation to begin, we must have

22
1 2 1cdde R R e- ag È ˘ ≥Î ˚ (42)

which can be rewritten in the form

( )
2

0

2
exp 1

/
d

c

d
e

c n t
g

È ˘
- ≥Í ˙
Í ˙Î ˚

i

or

( )0

1

/ cc n t
g ≥ (43)

Substituting for g from Eq. (35), we get

N2 – N1 ≥ 

2 3
0 sp

2 3 ( )c

n t

c t g

w

p w

(44)

The equality sign in the above equation gives the threshold
population inversion required for the oscillation of the laser.
Thus, for the frequency w, the threshold population inver-
sion is given by

(N2 – N1)th =
2 3

0 sp
2 3 ( )c

n t

c t g

w

p w

(45)

Now, as we will show in the next section, for a He-Ne laser,
g(w) is given by

( )

( )

21/2
0

2

2 ln 2
( ) = exp 4ln 2

D D

g d d
È ˘w -wÊ ˆ Í ˙w w - wÁ ˜Ë ¯Dw p Í ˙DwÎ ˚

(46)

where

1/2

0 2

2
= 2 ln 2B

D
k T

Mc

Ê ˆDw w Á ˜Ë ¯ (47)

represents the FWHM (full width at half maximum) of the
line; in Eq. (47), T represents the absolute temperature of the

gas, and M represents the mass of the atom responsible for
the lasing transition (neon in the case of a He-Ne laser).
Equation (47) describes the line shape function due to the
Doppler effect and is shown in Fig. 26.33. Figure 26.34
shows the actual spectrum of a helium-neon laser; the figure
shows the very high spectral purity intrinsic to most lasers.

We note that

• The minimum threshold value of N2 – N1  corresponds
to the center of the line where g(w) is a maximum, and
for the case of Doppler broadening the maximum value
is given by

 g(w0) = 
1/2

2 ln 2

D

Ê ˆ
Á ˜Ë ¯Dw p

(48)

Thus smaller values of DwD will give rise to a smaller
threshold value of (N2 – N1). Further, as the laser medium
is pumped harder and harder, the population inversion
between the two levels goes on increasing. The mode
that lies nearest to the resonance frequency of the atomic
system reaches threshold first and begins to oscillate. As
the pumping is further increased, the nearby modes may
also reach the threshold and start oscillating.

• From Eq. (45) it also follows that for smaller values of the
threshold population inversion N2 – N1, one must have a
small value of tsp, implying strongly allowed transitions;
however, for strongly allowed transitions, larger pumping
power will be required. In general, for a large value of  tsp,
population inversion is more easily obtained.

g
(

)
w

w0

DwD

w

Fig. 26.33 The Gaussian line shape function correspond-
ing to a He-Ne laser; DwD represents the FWHM
and usually Dw/w

0 
<<< 1.
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Example 26.6 Typical parameters for a He-Ne laser
We consider a  He-Ne laser; we assume T ª 300 K. Thus, for the
l0 ª 6328 Å radiation

1/2
212 2

= ln 2B
D

k T

c M

w Ê ˆDw Á ˜Ë ¯
1/223 1

27
0

4 2 1.38 10 J K 300 K 0.693
=

20 1.67 10 kg

- -

-

Ê ˆp ¥ ¥ ¥ ¥
Á ˜l ¥ ¥Ë ¯

8230 MHzª

implying

=
2

D
D

Dw
Dn

p

310 MHzª1

where we have assumed

MNe ª 20MH ª 3.34 ¥ 10–26 kg

The frequency variation of g(w) is shown in Fig. 26.33. For
l0 = 6328 Å,

15

0

2
= 2.98 10

cp
w ª ¥

l
 s–1

Thus

62.8 10D -

Dw
ª ¥

w

showing that the line shape function is usually a very sharply
peaked function. Further,

g (w0) = 
1/2

102 ln 2
1.1 10

D

-

Ê ˆ ª ¥Á ˜Ë ¯Dw p
s (49)

(In Sec. 26.7.4 we will show that for a He-Ne laser, the Doppler
broadening dominates over natural broadening and collisional broad-
ening). If we assume a cavity with the following values of various
parameters

d = 60 cm n0 ª 1 R1 ª 1 R2 ª 0.98 ac ª 0
we would get

tc ª 2 ¥ 10–7 s

Further, for the He-Ne laser

           tsp ª  10–7 s n0 ª 1 l0 ª 6328 Å

giving
(N2 – N1)th ª  1.5 ¥ 108 cm–3

For a given value of N2 – N1 (which is greater than the threshold value),
a typical gain curve g (n) (which has a bandwidth of about 1300 MHz)
is shown in  Fig. 26.35. The horizontal line represents the value of

0

1

( / ) cc n t (50)

For n0 ª 1 and  tc ª  2 ¥ 10–7 s, the above value is ª 1.7 ¥ 10–4 cm–1.
If we assume a 60 cm long He-Ne laser, then the longitudinal mode
spacing is given by

= 250
2

c

d
dn ª MHz (51)

and, as shown in Fig. 26.35, there will be seven longitudinal modes
for which gain will exceed loss and which will oscillate. On the
other hand, if d is only 10 cm, then

  dn = 1500 MHz
and we may have single mode oscillation; (the value of tc and hence the
position of the horizontal line in Fig. 26.35 would have changed slightly).
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Fig. 26.34  Spectrum of a helium-neon laser showing the very high spectral purity intrinsic to most lasers.
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26.7 THE LINE SHAPE FUNCTION

Since the line shape function g(w) determines the threshold
population inversion [see Eq. (45)], we digress here to dis-
cuss some of the typical forms of g(w) corresponding to
different conditions.

We first consider the Doppler broadening which is due to
the thermal motion of gas atoms. Also, in the He-Ne laser
(which is probably the most popular laser), the line broaden-
ing mechanism is mainly due to Doppler broadening.

26.7.1 Doppler Broadening

In astronomy, we can determine how fast the stars or galaxies
are moving (either directly away from or directly toward us) by
measuring the Doppler shift of spectral lines. For v/c << 1,

0 0=
c

w -w ±w

v
(52)

the + sign corresponds to when the source of light is moving
toward the observer and the – sign corresponds to when the
source of light is moving away from the observer (see
Sec. 31.3). Thus when the star is moving away from the ob-
server, the measured frequency is slightly less than the
actual value, leading to the well-known red shift of spectral
lines. Now, the probability that an atom has a z component of
velocity lying between vz and vz + dvz is given by the Maxwell
distribution

1/2 2

( ) = exp
2 2

z
z z z

B B

MM
P d d

k T k T

Ê ˆÊ ˆ
-Á ˜Á ˜pË ¯ Ë ¯

v
v v v (53)

where M is the mass of the atom and T the absolute tempera-
ture of the gas. Obviously

( ) = 1z zP d
+•

-•

Ú v v

as indeed it should be. Now, the probability g(w)dw that the
transition frequency lies between w and w + dw is equal to
the probability that the z component of the velocity of the
atom lies between vz and vz + dvz, where [using Eq. (52)]

0

0

=z c
w -w

w

v (54)

Thus

 

1/2 22
0

2
0 0

( )
( ) = exp

2 2B B

c M Mc
g d d

k T k T

È ˘Ê ˆ w -w
w w - wÍ ˙Á ˜w pË ¯ wÍ ˙Î ˚

(55)
which corresponds to a Gaussian distribution. The line shape
function peaks at w0, and the FWHM is given by

1/2

0 2

2
= 2 ln 2B

D
k T

Mc

Ê ˆ
Dw w Á ˜Ë ¯ (56)

where the subscript D implies that we are considering Dop-
pler broadening. In terms of DwD, Eq. (55) can be written as

1/2 2
0

2

( )2 ln 2
( ) = exp 4ln 2

( )D D

g d d
È ˘w -wÊ ˆw w - wÍ ˙Á ˜Ë ¯Dw p DwÍ ˙Î ˚

 (57)

A typical plot of the Gaussian line shape function corre-
sponding to the He-Ne laser is shown in Fig. 26.33. Since
g(w) is a very sharply peaked around w = w0

0
( ) ( ) = 1g d g d

• +•

-•

w w ª w wÚ Ú

26.7.2 Natural Broadening

The frequency spectrum associated with spontaneous emission
is described by the Lorentzian line shape function

2
0 2

1 1
( ) =

12 ( )
4

sp

sp

g
t

t

w

p
w -w +

i (58)

where

sp
21

1
=t

A (59)

represents the spontaneous emission lifetime. The FWHM of
the Lorentzian is

21
sp

1
= = A

t
Dw (60)

Thus, in terms of  Dw, Eq. (58) can be written in the form

2 2
0

1
( ) =

2 ( ) + ( /2)
g

Dw
w

p w -w Dw
         (61)

n0
n

DnD = 1300 MHz

dn = 250 MHzg n( )

Fig. 26.35 For a given value of (N2 – N1) a typical varia-
tion of the gain curve g (n). The vertical lines
show the longitudinal modes of the cavity.

gha80482_ch26_423-454.PMD 2/3/2009, 8:06 PM446



Lasers: An Introduction 447
�

giving

0
2

( ) =
( )

g w
p Dw

(62)

Further

0
( ) ( ) = 1g d g d

• +•

-•

w w ª w wÚ Ú (63)

26.7.3 Collisional Broadening

In a gas, random collisions occur between the atoms. In such
a collision process, when the atoms are very close to one
another, the energy levels of the atoms change due to their
mutual interaction. This leads to a Lorentzian line shape func-
tion given by

0
2 2

0 0

1
( ) =

1 ( )
g

t
w

p + w -w t
(64)

where t0 represents the mean time between collisions;
the derivation of Eq. (64) is given in many places—see, e.g.,
Sec. 8.8.2 of Ref. 17. The FWHM will be

0

2
=cDw
t

In a typical gas laser t0 ~ 10–6 s, giving

Dwc ª 2 MHz

or
Dnc ª 0.3 MHz

For the He-Ne laser, the Doppler line width is about 1300 MHz
(see Example 26.6); on the other hand, the natural broaden-
ing is about 20 MHz, and the collision broadening at 0.5 torr
is about 0.64 MHz.  Thus, for He-Ne laser parameters, the
Doppler broadening dominates over natural broadening and
collision broadening.

The various line broadening mechanisms can be broadly
classified under homogeneous and inhomogeneous broad-
ening. Certain line broadening mechanisms, such as collision
broadening or natural broadening, act to broaden the re-
sponse of each atom in an identical fashion; such
broadening mechanisms come under the class of homoge-
neous broadening. On the other hand, Doppler broadening
or broadening produced due to local inhomogeneities in a
crystal lattice act to shift the central frequency of the re-
sponse of individual atoms by different amounts and thereby
lead to an overall broadening of the response of the atomic
system. Such a form of broadening is referred to as inhomo-
geneous broadening. If the effects which cause the
inhomogeneous broadening are random in origin, then the

broadened line is Gaussian in shape. In contrast, homoge-
neous broadening in general results in a Lorentzian line
shape.

We return to Eq. (45) and notice that to have a low threshold
value of population inversion:

1. The value of tc should be large; i.e., the losses in the
cavity must be small.

2. The value of g(w) at the center of the line is ª 0.64/Dw

for a Lorentzian line and ãª 0.94/Dw for a Gaussian line
[see Eqs. (62) and (48)]. Thus, smaller the value of Dw

(the width of the line), the smaller the threshold popu-
lation inversion.

3. Smaller values of tsp (i.e., strongly allowed transitions)
also lead to smaller values of threshold inversion.
Note that, for shorter relaxation rates, larger pumping
power is required to maintain a given amount of popu-
lation inversion. In general, population inversion is
more easily obtained on transitions that have longer
relaxation times.

4. The value of g(w) at the center of the line is inversely
proportional to Dw, which, for example, in the case of
Doppler broadening is proportional to w [see Eq. (47)].
Thus, the threshold population inversion increases
approximately in proportion to the third power of w

(apart from the frequency dependence of the other
terms). Hence it is much easier to obtain laser action at
infrared wavelengths than in the ultraviolet region.

26.8 TYPICAL PARAMETERS

FOR A RUBY LASER

To get an idea of the magnitude of population inversion re-
quired for oscillation, we consider a ruby laser (see Sec. 26.3).
Let us consider the laser to be oscillating at the frequency
corresponding to the peak of the emission line. We assume a
concentration of 0.05% of Cr3+  ions in the crystal; this cor-
responds to a population of N = 1.6 ¥ 1019 Cr3+  ions cm–3.
For the case of ruby, the line is homogeneously broadened,
and the value of g(w) at the peak of the line is 2/(pDw).
Hence the threshold population inversion density is

(N2 – N1)th = 
2 3

0 sp

2 3 ( )c

n t

c t g

w

p w

= 
2 3

sp0
3
0

4

c

tn

t

p Dw

wl

i i (65)

where l0 is the free space wavelength, tsp is the spontaneous
relaxation time of the upper laser level, and tc is the cavity
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lifetime. For ruby laser transition, one has

l0 = 6943 Å fi w ª 2.715 ¥ 1015 s–1

Dw ª 9.4 ¥ 1011 s–1 tsp ª 3 ¥ 10–3 s n0 ª 1.76

where n0 (= 1.76) represents the refractive index of ruby. If
we assume a cavity length of 5 cm and a loss per round trip
of 10%, then x = 0.1 and using Eq. (40), we get

tc ª 6 ¥ 10–9 s

Substituting all these values in Eq. (65), we get for the
threshold population inversion density

(N2 – N1 )th ª 1.1 ¥ 1017   Cr3+ ions cm–3

Since the total density of Cr3+ ions in ruby is about 1.6 ¥
1019 cm–3, the fractional excess population required is very
small.

We will next calculate approximately the minimum power
required to maintain population inversion. Since tsp repre-
sents the spontaneous relaxation time of the upper laser level,
the number of atoms decaying per unit time from the upper
laser level is approximately N2/tsp. For each atom lifted to
level 2, one has to supply at least an amount of energy given
by hnp, where np represents the average pump frequency.
Hence to maintain N2 atoms in level 2, the minimum power P to
be spent (per unit volume of the active material) is given by

2

sp

= pN h
P

t

n

(66)

Now, since (N2 – N1)th << N (where N represents the total
number of atoms per unit volume), we may write

2 2

N
N ª (67)

Thus, the minimum pumping power per unit volume required
to maintain population inversion in a three-level laser sys-
tem is

th
sp2

phN
P

t

n

ª (68)

Taking the average pumping frequency as np ª 6.25 ¥ 1014 Hz
(which is averaged over the green and violet absorption bands),
we obtain

19 34 14

th 3

1.6 10 6.6 10 6.25 10

2 3 10
P

-

-

¥ ¥ ¥ ¥

ª ¥

¥

ª 1100 W cm–3

If we assume that the efficiency of the pumping source is
25% and also that only 25% is absorbed in passage through
the ruby rod, then the electrical threshold power comes out
to be about 18 kW cm–3 of the active material. This is consis-
tent with the threshold powers determined experimentally.

The threshold power calculation is particularly simple for
the ruby laser where only three levels are involved. In gen-
eral, to calculate the steady-state population difference
between the actual levels involved in the laser transition (for
a given pumping rate) and to know whether an inversion of
population is achievable in a transition—and if so, what
would be the minimum pump power required to maintain a
steady population inversion for continuous wave operation
of the laser—it is necessary to solve equations that govern
the rate at which populations of various levels change under
the action of a pump and in the presence of laser radiation.
These equations are referred to as rate equations and have
been discussed at many places; see, for example, Refs. 4, 9,
16, and 17. Even for a three-level laser system, the equation
N2 = N/2 [see Eq. (67)] is only approximately valid, and to
obtain a more accurate expression, it is necessary to solve
the rate equations.

26.9 MONOCHROMATICITY

OF THE LASER BEAM

Figure 26.36 shows the various line widths associated with a
laser. The broad solid curve represents the spectral width
due to Doppler broadening of the laser medium. As an ex-
ample, if we consider the He-Ne laser operating at 6328 Å,
the Doppler broadened line width is about 1300 MHz. Inside
the broad curve the cavity modes are shown as sharp peaks.
The frequency separation between two adjacent cavity
modes is c/2d [see Eqs. (6) and (51)] which for a typical laser
cavity 60 cm long corresponds to 250 MHz; this is much less
than the Doppler width (see Example 26.6). As we discussed
earlier, the cavity modes are also broadened due to the various
losses in the cavity. Thus, for a 60 cm long cavity specified
by a fractional loss per round trip of 4 ¥ 10–2, the width of the

Doppler Width

Laser Output
Width of Fabry

Perot Resonance

Fig. 26.36 The solid curve represents a typical Doppler
broadened spectral line. The closely spaced cavity
modes are shown as narrow peaks inside the
curve. The sharp line represents the output of
the laser (Ref. 21).
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cavity mode is about 1.5 MHz. This is much smaller than the
spacing between adjacent cavity modes. When the losses in
the cavity are compensated for by the active medium placed
inside the cavity, the resultant emission becomes extremely
narrow and is limited due to the presence of spontaneous
emissions (which are random) and the fluctuations in the reso-
nator parameters. The ultimate line width of an oscillating laser
determined solely by random spontaneous emissions can be
shown to be given by (see, e.g., Ref. 22)

( )
2

0
sp 0

2
( )

p h

P

p Dn n
dn ª

where n0 is the frequency of oscillation, P0 is the output
power, and

1
=

2p
ct

Dn
p

is known as the passive cavity line width, tc being the cavity
lifetime (see Sec. 26.6.2). The subscript “sp” refers to the fact
that the line width is due to spontaneous emissions. The
decrease in (dn)sp with an increase in power output is due to
the fact that for a given mirror transmittance, an increase in
P0 corresponds to an increase in laser power inside the reso-
nator cavity, and this leads to the dominance of stimulated
emissions over spontaneous emission.

As a typical example, Dnp ª 1 MHz, P0 = 1 mW  = 10–3 W,
and hn = 2 ¥ 10–19 J (corresponding to the red region of the
spectrum) so that

(dn)sp ª 10–3 Hz

an extremely small quantity indeed! Thus the ultimate mono-
chromaticity is determined by the spontaneous emissions
occurring inside the cavity because the radiation coming
out due to spontaneous emission is incoherent. However, in
practice, the monochromaticity is limited by external factors
such as temperature fluctuations, mechanical vibrations
of the optical cavity, etc. For example, if we assume the os-
cillation frequency of a mode is given by Eq. (4), then the
change in frequency Dn caused by a change in length Dd is
given by

=
d

d

Dn D

n

Thus for d ª 50 cm, if we assume a stability of  Dd ª 1 Å then
for  n ª 5 ¥ 1014 Hz

Dn ª 105 Hz

which is much much larger than (dn)sp. Note that  Dn ª 105 Hz
corresponds to Dl ª 10–6 Å. Indeed, for a single-mode He-Ne
laser, we can have  Dn ª 105 Hz. On the other hand, for a
multimode He-Ne laser Dl ~ 0.02 Å, implying a coherence
length of about 20 cm.

26.10 RAMAN AMPLIFICATION

AND RAMAN LASER

We will first discuss the physics of Raman effect. When a
monochromatic light beam gets scattered by a transparent
substance, one of the following may occur:

1. Over 99% of the scattered radiation has the same
frequency as that of the incident light beam; this is
known as Rayleigh scattering, discussed in Sec. 7.6.
The sky looks blue because of Rayleigh scattering, and
the light that comes out from the side of the optical fiber
(see Fig. 27.2) is also due to Rayleigh scattering.

2. A very small portion of the scattered radiation has a fre-
quency different from that of the incident beam—this
may arise due to one of the following three processes:

(i) The incident radiation may lead to translatory motion
of the molecules–this would result in shift of fre-
quency which is usually very small and difficult to
measure. This is known as Brillouin scattering.

(ii) A part of the energy hn of the incident photon is
taken over by the molecule in the form of rotational
(or vibrational) energy, and the scattered photon
has a smaller energy hn¢. This leads to what are
known as Raman–Stokes lines [see Figs. 26.37(a)
and 26.38].

(iii) On the other hand, the photon can undergo scat-
tering by a molecule which is already in an excited
state. The molecule can de-excite to one of the
lower energy states, and in the process, the inci-
dent photon can take up this excess energy and
come out with a higher frequency. This leads to
what are known as Raman anti-Stokes lines [see
Figs. 26.37(b) and 26.38].

Raman Scattering
Rotation-vibration energy

levels of the molecule

hv

Raman scattered
photon of lower
energy (Stokes
line)

E3
+

E1
Molecule in a

higher energy state
Molecule in the

ground state

+

Molecule in a
higher energy state

hv
+

(a)

(b)

Molecule in a
lower energy state

Raman scattered
photon of higher
energy (anti-
Stokes line)

E3

E1

+

hv ¢

hv ¢

hv E E¢= – ( – )3hv 1

hv E E¢= + ( – )3hv 1

Fig. 26.37 The generation of the Raman–Stokes and the
Raman anti-Stokes lines.
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The difference energy, which is hn – hn¢ for the Raman–
Stokes line and hn¢ – hn for the Raman anti-Stokes line,
would therefore correspond to the energy difference between
the rotational (or vibrational) energy levels of the molecule
and would therefore be a characteristic of the molecule itself.

The quantity hn – hn¢ or hn¢ – hn is usually referred to as
the Raman shift (see Fig. 26.38) and is independent of the
frequency of the incident radiation. Through a careful analysis
of the Raman spectra, one can determine the structure of
molecules; there lies the tremendous importance of the
Raman effect. The intensity distribution of a typical Raman
spectrum for the CCl4 molecule is shown in Fig. 26.38.

In spectroscopy, the energy levels of atoms or molecules
and also the energy of a photon are measured in wave num-
ber units which are obtained by dividing the energy by hc,
where h (ª 6.56 ¥ 10–27 erg s)  is Planck’s constant and
c (ª 3 ¥ 1010 cm s–1) is the speed of light in free space—in
spectroscopy everyone uses cgs units! In the case of mo-
lecular (or atomic) energy levels, these are usually denoted
by the symbol Tn:

Tn = nE

hc
The photon's energy is hn and therefore, in wave number

units

h

hc

n

= 
c

n
 = 

1

l

is just the inverse of the wavelength and is usually denoted
by the symbol n . Thus

n = 
1

l

Now, the energy levels of the hydrogen atom in wave
number units are given by

 Tn = 
E
hc

n  = – R
n2 n = 1, 2, 3, . . .

where R (ª 109,678 cm–1) is known as the Rydberg constant
and n (= 1, 2, 3, . . .) is the total quantum number of the state.
Thus corresponding to the n = 3 to n = 2 transition (one of the
lines of the Balmer series) we will get a photon of wave number

n  = - -

F
H

I
KR 1

9
1
4

 = 5
36

 ¥ 109,678 ª 15,233 cm–1

The inverse of the above number (ª 6.56 ¥ 10–5 cm)
represents the wavelength of the emitted photon.

Figure 26.38 shows the intensity distribution of the Raman
spectrum of CCl4 molecule13 when the incident radiation
corresponds to the argon-ion laser line having a wavelength
of 5.145 ¥ 10–5 cm; in wave number units the value is
19,436.3 cm–1. The central peak in the figure corresponds to
this wavelength and is due to Rayleigh scattering. The
Raman shift for the Stokes lines is the same as for the anti-
Stokes lines although the latter is much weaker. This is so
because at room temperature, the number of molecules in the
ground state is much larger than the molecules present in
excited states. This leads to very low intensities of the Raman
anti-Stokes lines. The actual Raman spectrum of the CCl4

molecule for the 4046 Å lines of mercury lamp is shown in
Fig. 26.39. The photograph is adapted from the 1930 Nobel
lecture of C. V. Raman. On February 28, 1928, K. S. Krishnan

Rayleigh scattering
(no frequency change)

Raman–Stokes lines

Raman Anti-Stokes
lines

S
ca

tte
re

d
In

te
ns

ity

20,000 19,000

0 500 Raman shift
Δv (cm )–1

v (cm )–1

19,436.3 cm–1

(corresponding to
= 514.5 nm)

l

Fig. 26.38 Raman spectra of CCl
4
 excited by 514.5 nm line

of an Argon-ion laser.

13 The Raman spectrum from a mixture of hydrogen and deuterium molecules (when the mixture is illuminated by a laser beam at
l = 488 nm) is discussed in Ref. 23.

4046
Å

4358
Å

Fig. 26.39 The observed Raman spectra of CCl
4
 for the

4046Å and 4358Å lines of mercury lamp. The
photograph is adapted from the 1930 Nobel
lecture of C.V.Raman.
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and C. V. Raman observed the Raman effect in several organic
vapors such as pentane, which they called “the new scat-
tered radiation.” Raman made a newspaper announcement on
February 29 and on March 8, 1928; he communicated a paper
entitled “A Change of Wavelength in Light Scattering” to
Nature; the paper was published on April 21, 1928. Although
in the paper, he acknowledged that the observations were
made by K. S. Krishnan and himself, the paper had Raman as
the author and therefore the phenomenon came to be known
as the Raman effect although many scientists (particularly in
India) kept on referring it as the Raman–Krishnan effect. Sub-
sequently, several papers were written by Raman and
Krishnan. Raman got the Nobel Prize in 1930 for “his work on
the scattering of light and for the discovery of the effect
named after him.” At about the same time, Landsberg and
Mandel¢shtam (in Russia) were also working on light scatter-
ing, and according to Mandel’shtam, they observed the
“Raman lines” on February 21, 1928. But the results were pre-
sented in April 1928, and it was only on May 6, 1928, that
Landsberg and Mandel’shtam communicated their results to
the journal Naturwissenschaften. But by then it was too late!
Much later, scientists from Russia kept referring to Raman
scattering as Mandel’shtam–Raman scattering. For a very nice
historical account of the Raman effect, we refer the reader to a
book by G. Venkataraman, Journey into Light: Life and
Science of C.V. Raman, published by Penguin Books (1994).

In 1958, thirty years after  the discovery of the Raman ef-
fect, Raman wrote an article on the Raman effect in
Encyclopaedia Britannica. In that article he wrote, “The ro-
tations of the molecules in gases give more readily observable
effects, viz., a set of closely spaced but nevertheless discrete
Raman lines located on either side of the incident line. In liq-
uids, only a continuous wing or band is usually observed in
the same region, indicating that the rotations in a dense fluid
are hindered by molecular collisions. The internal vibrations
of the molecules, on the other hand, give rise in all cases to
large shifts of wave length. The Raman lines attributed to
them appear well separated from the parent line and are there-
fore easily identified and measured.”

In stimulated Raman emission, the radiation emitted in the
ordinary Raman effect is made to stimulate further Raman
emission. This can lead to what is usually referred to as the
Raman amplification of the beam.

Now, in fused silica, because of interaction between adja-
cent SiO2 molecules, the vibrational bands are very broad; this
leads to a very broad Raman shift lying between 430 and
470 cm–1 [this corresponds to a Raman frequency shift between
13 and 14 THz (1 THz = 1012 Hz)]. Thus if we have a pump laser
at 1450 nm ( n  = 6897 cm–1), then an incoming beam at 1550 nm
( n  = 6452 cm–1) will get amplified by stimulated Raman scattering

(D n  = 445 cm–1) as shown in Fig. 26.40(a). In an actual commer-
cially available single-mode fiber of length about 30 km, one can
obtain a Raman gain of about 15 dB (i.e., a power amplification
by a factor of about 30) by using a pump laser of 500 mW power.

Similarly, if we want to amplify an incoming beam at
1300 nm ( n  = 7692 cm–1), then we must use a pump laser
at about 1230 nm wavelength ( n  = 8130 cm–1) as shown in
Fig. 26.40(b). This is the great advantage of the Raman fiber
amplifier. One can amplify signal at any wavelength provided
we choose the pump laser frequency separated by about
13.5 THz (equivalent  to a wave number shift of about
450 cm–1). On the other hand, as we may recall, in erbium-
doped fiber amplifiers (EDFAs), one can amplify signals only
around 1550 nm wavelength; however, the laser power re-
quired is much smaller.

The above principle can be used to build the cascaded
Raman laser (see Fig. 26.41). The vertical bars represent
FBGs (fiber bragg gratings) which are strongly reflecting at
the wavelengths written on the top (see Sec. 15.6.1 for a brief
account on FBGs). Thus the input wavelength of 1100 nm
( òª 9091 cm–1) produces Raman scattered line at 1155 nm
(ª 8658 cm–1, implying a Raman shift of about 433 cm–1); this
resonates between two FBGs having peak reflectivity at
1155 nm. Now, this 1155 nm (ª 8658 cm–1) beam produces
Raman scattered line at 1218 nm (ª 8210 cm–1 implying a
Raman shift of about 448 cm–1) which resonates between two

Input signal
1550 nm

Raman amplified
signal at 1550 nm

Signal mode fiber

Pump laser at
1450 nm

(a)

Signal mode fiber Raman amplified
signal at 1300 nm

Input signal
1300 nm Pump laser at

1230 nm
(b)

Fig. 26.40 Raman fiber amplifiers at 1550 and 1300 nm
wavelengths [Figure adapted from Ref. 23].
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FBGs having peak reflectivity at 1218 nm etc. This way laser
output can be generated anywhere from 1100 to 1600 nm (see
Fig. 26.41).

Summary

� LASER is an acronym for light amplification by stimulated
emission of radiation. The light emitted from a laser often
possesses some very special characteristics. Some of these
are (1) directionality: because of which a laser beam can be
focused to areas ~ few (mm)2 leading to applications in surgery,
material processing, compact discs, etc.; (2) high power: con-
tinuous wave lasers having power levels ~ 105 W and pulsed
lasers having a total energy ~ 50,000 J have applications in
welding, cutting, laser fusion etc.; and (3) spectral purity: la-
ser beams can have an extremely small spectral width Dl,
because of which lasers find applications in holography, op-
tical communications, spectroscopy etc.

� As put forward by Einstein, when an atom is in the excited
state, then, in addition to the spontaneous emission, it can
make a transition to a lower energy state by what is known as
stimulated emission in which an incident signal of appropriate

frequency triggers an atom in an excited state to emit radia-
tion. This results in the amplification of the incident beam. If
we are able to create a state of population inversion in which
there are a larger number of atoms in the upper state, then
the number of stimulated emissions will exceed the number
of stimulated absorptions, resulting in the (optical) amplifi-
cation of the beam.

� The three main components of any laser are

(i) The active medium which consists of a collection of
atoms, molecules, or ions (in solid, liquid, or gaseous
form), which is capable of amplifying light waves,

(ii) The pumping mechanism which allows us to obtain a
state of population inversion between a pair of energy
levels of the atomic system,

(iii) The optical resonator, which provides the feedback.

� Through a pumping mechanism, one creates a state of popu-
lation inversion in the laser placed inside the resonator
system. The spontaneous emission occurring inside the reso-
nator cavity excites the various modes of the cavity. The
modes for which the gain is higher than the losses get ampli-
fied by drawing energy from the laser medium. The
amplitude of the mode increases rapidly until the upper level
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Fig. 26.41 The cascaded  Raman laser;  output can be generated  anywhere from 1100 to 1600 nm [Adapted
from the lecture notes of K. Rottwitt on "Raman Amplification Using Optical Fibers,” CGCRI,
Kolkata].
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population reaches a value when the gain equals the losses
and the mode oscillates in steady state.

� Two mirrors facing each other form a resonant cavity. The
discrete frequencies of the resonator modes are given by n =
nm = m c/2d. Different values of m lead to different oscillation
frequencies, which constitute the longitudinal modes of the
cavity. For example, for an optical resonator of length d ª

60 cm operating at an optical frequency of n ª 5 ¥ 1014 Hz
(corresponding to l ª 6000 Å), we obtain m ª 2 ¥ 106.

� The first successful operation of a laser device (l ~ 0.684 mm)
was demonstrated by Theodore Mainman in 1960 using a
ruby crystal. Within a few months of the operation of the ruby
laser, Ali Javan and his associates constructed the first gas
laser (l ~ 0.633 mm), namely, the helium-neon laser.

� If we put a fiber (doped with erbium or neodymium) between
two mirrors (which act as a resonator), then with an appro-
priate pump we would have a fiber laser. In 1961, the first
fiber laser (barium crown glass doped with Nd3+ ions) was
fabricated by Elias Snitzer.

� The threshold population inversion required for the oscilla-
tion of the laser is given by

(N2 – N1)th = 
2 3

0 sp
2 3 ( )c

n t

c t g

w

p w

where tsp is the spontaneous emission lifetime, tc is the pas-
sive cavity lifetime, and g(w) is the line shape function. For
a He-Ne laser

g(w) = 
1/2 2

D D

2 ln 2 ( )
exp 4 ln 2

È ˘w - wÊ ˆ -Í ˙Á ˜Ë ¯Dw p DwÎ ˚

where DwD = 2w0
2 1/2(2 / ) ln 2Bk T Mc represents the FWHM

(full width at half maximum) of the line kB the Boltzmann
constant, T represents the absolute temperature of the gas,
and M represents the mass of the atom responsible for the
lasing transition (neon in the case of a He-Ne laser). Notice
that the minimum threshold value of N2 – N1  would corre-
spond to the center of the line where g(w) is a maximum and
for  He-Ne laser at T = 300 K, DwD ª 8230 MHz giving
g(w0) ª 1.1 ¥ 10–10 s. Assuming M = 20MH ª 3.3 ¥ 10–23 g,
tc ª 10–7 s ª tsp, n0 ª 1, we get (N2 – N1)th ª 4 ¥ 108 cm–3.

Problems

26.1 Determine the mks units of u(w), u
w
, A, and B.

 [Ans: J s m–3; m–3; s–1; m–3 J–1 s–2]

26.2 For the 2P Æ 1S  transition in the hydrogen atom, calculate
w. Assuming the spontaneous emission lifetime of the
2P state to be 1.6 ns, calculate the Einstein B coefficient.
Assume n0 ª 1.

[Ans: w ª 1.5 ¥ 1016 Hz;  B21  ª 4.2 ¥ 1020 m–3 J–1 s–2]

26.3 (a) Consider a He-Ne laser with cavity lifetime tc ª 5 ¥ 10–8 s.
If R1 = 1.0 and R2 = 0.98, calculate the cavity length d;
assume n0 ª 1.

(b)  Calculate  Dnp  and compare with the longitudinal mode
spacing dn.

[Ans: (a)  d ª 15 cm;  (b) Dnp ª 3.2 MHz; dn ª 1 GHz]
26.4 In a typical He-Ne laser (l = 6328 Å) we have d  ª 20 cm,

R1 ª R2 ª 0.98,  ac ª 0, tsp ª 10–7 s,   DnD  ª 1.3 ¥ 109 Hz,
and  n0 = 1. Calculate tc and (N2 – N1)th.

[Ans: 33 ns; 8.8 ¥ 108 cm–3]

26.5 Consider the D1 line of Na (l ª 5890 Å).
(a) The spontaneous emission lifetime tsp ª 16 ns. Calcu-

late DnN and DlN.
(b) Assume T = 500 K. Calculate  DnD and DlD. (kB  ª 1.38 ¥

10–23 J K–1, MNa ª 23MH; MH  ª 1.67 ¥ 10–27 kg).
[Ans: DlN ª 10–4 Å;  DlD ª 0.02 Å]

26.6 In a  CO2 laser (l0 ª 10.6 mm), the laser transition occurs
between the vibrational states of the CO2 molecule. At
T ª 300 K, calculate the Doppler line width DnD and  DlD

(
2COM ª 44MH).

[Ans: DnD ª 53 MHz;  DlD ª 0.2 Å]
26.7 Consider a light beam of all frequencies lying between

n = n0 =  5.0 ¥ 1014 Hz and n = 5.00002 ¥ 1014 Hz incident
normally on a resonator  (see  Fig. 26.23)  with R = 0.95,
n0 = 1, and d = 25 cm. Calculate the frequencies (in the
above frequency range) and the  mode number which will
correspond to transmission resonances.

[Ans: n = n0 + 400 MHz (m = 833,334), n0 + 1000 MHz
(m = 833,335)  and n0 + 1600 MHz (m = 833,336)]

26.8 Referring to Fig. 26.26, if d  = 2R1 = 2R2, show that all rays
passing through the common center of curvature of the
mirrors will retrace their path and hence be trapped inside
the cavity.

26.9 Consider a He-Ne laser (l0 = 0.6328 mm) with d = 30 cm,
n0 ª 1, R1 ª 1, and R2 ª 0.99. Calculate the passive cavity line
width Dnp and the passive cavity lifetime tc. Assume ac ª 0.

[Ans: 0.8 MHz, 0.2 ms]
26.10 (a) For the He-Ne laser described in Prob. 26.9, if the power

level is 0.5 mW,  calculate the ultimate line width (dn)sp.
(b) Discuss the stability of the mirror position Dd to

obtain the ultimate line width.
[Ans: (a) (dn)sp ª 2.5 ¥ 10–3 Hz;

(b) Dd £ 1.6 ¥ 10–6 m]

26.11 The spot size of a propagating Gaussian beam is given by
2 2

2 2 1
1 0 2 2

0

( ) = +
z

w z w
w

l

p

Substitute the expressions for w0
2 [see Eq. (12)], and using the results

derived in Sec. 26.5, show that the spot sizes at the mirrors are
given by

and
( )
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2 1
2

2 1 2
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1 A nice historical account of the development of the optical fiber has been given in Ref. 1. Some of the dates given above are as given
in Refs. 1 and 2.

I have heard a ray of light laugh and sing. We may talk by light to any visible distance without any
conducting wire.

—Alexander Graham Bell (1880),
after succeeding in transmitting a

voice signal over 200 m using light as the signal carrier

FIBER OPTICS I: BASIC

CONCEPTS AND RAY

OPTICS CONSIDERATIONS

Chapter
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Seven

OPTICAL WAVEGUIDES I:
OPTICAL FIBER BASICS

USING RAY OPTICS

Chapter

Twenty-

Seven

Important Milestones1

1841 Daniel Colladon demonstrates (in Geneva) light guiding in water jets.

1842 Jacques Babinet demonstrates (in Paris) light guiding in water jets and also in bent glass rods.

1854 John Tyndall demonstrates light guiding in water jets, duplicating but not acknowledging Babinet.

1880 Alexander Graham Bell invents the Photophone in Washington.

1926 C. W. Hansell outlines the principles of fiber-optic imaging bundle.

1930 Heinrich Lamm, a medical student in Munich, first assembled a bundle of transparent fibers to transmit an

image. van Heel in the Netherlands and Hopkins and Kapany in the United Kingdom suggest a cladding will

improve transmission characteristics.

1960 Maiman fabricates the first laser.

1961 Snitzer publishes the theory of single-mode fibers and also fabricates the first fiber laser (barium crown glass

doped with Nd 
3+

 ions).

1966 Kao and Hockham predict that if it were possible to produce optical fibers with attenuation of less than 20 dB km
-1

,

it could compete effectively with the conventional communication systems.

1970 Kapron, Keck, and Maurer (at Corning Glass in the United States) were successful in producing silica fibers

with a loss of about 17 dB km
-1

.

1970 Alferov in Leningrad and Panish and Hayashi at Bell Labs demonstrate room-temperature operation of

Semiconductor Lasers.

1975 Continuous-wave semiconductor laser operating at room temperature commercially available.

1975 Payne and Gambling show very small pulse dispersion at 1.27 mm.

1976 Bell Labs tests parabolic index fiber-optic communication system transmitting 45 Mbits s
-1

.

1978 NTT (Japan) transmits 32 Mbits s
-1

 through 53 km of graded index fibers at 1.3 mm.

1987 Payne, Mears, and Reekie (at University of Southampton) and Desurvire, Becker, and Simpson (at AT&T Bell

Laboratories) develop EDFAs (erbium-doped fiber amplifiers) operating at 1.55 mm.

1988 First transatlantic fiber cable, using single-mode fibers, was made operative at 1.3 mm.

1996 Fujitsu, NTT Labs, and Bell Labs independently report sending over 1 Tbits s
-1

 through one single-mode fiber

using WDM techniques.
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27.1 INTRODUCTION

The dramatic reduction of transmission loss in silica optical fi-
bers coupled with equally important developments in the area
of light sources and detectors has brought about a phenomenal
growth of the fiber-optic industry during the past three decades.
The birth of optical fiber communication coincided with the
fabrication of low-loss silica fibers and room-temperature opera-
tion of semiconductor lasers in 1970. Since then, the scientific
and technological progress in this field has been phenomenal.
Recent developments in optical amplifiers and wavelength
division multiplexing (WDM) are taking us to a communica-
tion system with extremely small loss and an unbelievably
large bandwidth. Optical fiber communication systems are ful-
filling the increased demand on communication links especially
with the proliferation of the Internet. Major advantages of
silica optical fibers are their insensitivity to electromagnetic in-
terference, small size and weight, low cost, and capability of
carrying information at extremely high bit rates.  Although the
most important application of optical fibers has been in the
area of telecommunications, many new related areas such as
fiber-optic sensors, nonlinear fiber optics, fiber-optic devices
and components, and integrated optics have witnessed con-
siderable growth.2 Because of all this, light wave propagation
through optical fibers has recently become an extremely impor-
tant subject in both teaching and research.

This chapter is an introduction to the basics of the optical
fiber, discussing especially the characteristics of optical fibers
as regard to their application to fiber-optic communication
systems and to fiber-optic sensors. Following a historical
introduction, we will use ray optics to discuss the basic
principle of light guidance in an optical fiber and  its two
important characteristics: attenuation and pulse dispersion. We
will also briefly discuss plastic optical fibers and very simple
fiber-optic sensors. Fiber amplifiers and fiber lasers were very
briefly discussed in Chap. 26. In single-mode fibers, it is
necessary to use the concept of modes which we will discuss in
the following two chapters. The ray optics treatment used in this
chapter is applicable to what are known as multimode fibers.

27.2 SOME HISTORICAL

REMARKS

Communication implies transfer of information from one point
to another. When it is required to transmit some information
such as speech, images, data, etc. over a distance, one generally
uses the concept of carrier wave communication. In such a

system, the information to be sent modulates an electromagnetic
wave such as a radio wave or microwave which acts as a carrier.
This modulated wave is then transmitted to the receiver through
a channel, and the receiver receives the modulated wave and
demodulates it to retrieve the signal. For example, the amplitude-
modulated (AM) broadcast band usually ranges from about
600 kHz to about 2 MHz. If we assume that the highest fre-
quency associated with music is about 20 kHz (= 0.02 MHz),
then at a carrier frequency of 1.5 MHz, the spectral range of the
AM wave must vary from 1.48  to 1.52 MHz—a bandwidth of
40 kHz. Thus in the entire AM broadcast range from about
600 kHz to about 2 MHz we can have at most about 30 chan-
nels; indeed we will have fewer  channels if we use greater
bandwidth for each channel. On the other hand, in TV transmis-
sion since we have to scan pictures, more information needs to
be sent, and we require much greater bandwidth (about 5 MHz),
necessitating higher carrier frequency; the carrier frequencies
associated with the TV broadcast range from about 500 to about
900 MHz.

Since optical beams have frequencies in the range of 1014

to 1015 Hz, the use of such beams as the carrier would imply
a tremendously large increase in the information transmis-
sion capacity of the system compared to systems employing
radio waves or microwaves. It is this large information-
carrying capacity of a light beam that has generated interest
among communication engineers to develop a communica-
tion system using light waves as carrier waves.

Now, in a conventional telephone hookup, voice signals
are converted to equivalent electric signals by the micro-
phone and are transmitted as electric currents through
metallic (copper or aluminum) wires to the local telephone
exchange. Thereafter, these signals continue to travel as elec-
tric currents through metallic wire cable (or for long-distance
transmission as radio/microwaves to another telephone ex-
change) usually with several repeaters in between. From the
local-area telephone exchange at the receiving end, these sig-
nals travel to the receiver telephone via metallic wire pairs
where they are converted back to corresponding sound
waves. Through such cabled wire-pair telecommunication
systems, one can send at most 48 simultaneous telephone
conversations intelligibly. On the other hand, in an optical
communication system, which utilizes glass fibers as the trans-
mission medium and light waves as carrier waves, it has been
possible (in 2001) to send over 1 Tbit of information in 1 s (which
is roughly equivalent to transmission of about 15 million simul-
taneous telephone conversations) through one hair-thin
optical fiber. This is certainly one of the extremely important
technological achievements of the twentieth century.

2 Reference 3 is a comprehensive treatise on recent developments in guided wave optical components and devices.
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The idea of using light waves for communication can be
traced as far back as 1880 when Alexander Graham Bell in-
vented the Photophone (see Fig. 27.1) shortly after he
invented the telephone3 in 1876. In this remarkable experi-
ment, speech was transmitted by modulating a light beam,
which traveled through air to the receiver. The transmitter
consisted of a flexible reflecting diaphragm which could be
activated by sound and which was illuminated by sunlight.
The reflected light was collimated by a lens, and the reflected
beam was received by a parabolic reflector placed at a distance.
The parabolic reflector concentrated the light on a photo-
conducting selenium cell, which forms a part of a circuit with a
battery and a receiving earphone. Sound waves present in
the vicinity of the diaphragm vibrate the diaphragm which
leads to a consequent variation of the light reflected by the
diaphragm. The variation of the light falling on the selenium
cell changes the electrical conductivity of the cell, which in
turn changes the current in the electric circuit. This changing
current reproduces the sound on the earphone. To quote
from Ref. 4:

The Photophone was invented jointly by Alexander
Graham Bell and his assistant Charles Sumner
Tainter on February 19, 1880. . . .  The device allowed
for the transmission of sound on a beam of light. On
June 3, 1880, Bell transmitted the first wireless tele-
phone message on his newly-invented Photophone.

The Photophone used crystalline selenium cells as
the receiver. This material’s electrical resistance var-
ies inversely with the illumination, i.e., its resistance
is higher when it is in the dark, and lower when it is
lighted. The idea of the Photophone was thus to
modulate a light beam: the resulting varying illumi-
nation of the receiver would induce corresponding
varying resistance in the selenium cells, which could
be used by a telephone to regenerate the sounds
captured at the receiver. The modulation of the light
beam was done by a vibrating mirror: a thin mirror
would alternate between concave and convex forms,
thus focussing or dispersing the light from the light
source. The Photophone functioned similarly to the
telephone, except the Photophone used light as a
means of projecting the information, while the tele-
phone relied on electricity.

To quote from Ref. 5;

In 1880 he (Graham Bell) produced his “Photo-
phone”  which to the end of his life, he insisted was
“. . . the greatest invention I have ever made,
greater than the telephone.”  Unlike the telephone
it had no commercial value.

The modern impetus for telecommunications with carrier
waves at optical frequencies owes its origin to the discovery
of the laser in 1960. Earlier, there was no suitable light source
available that could reliably be used as the information
carrier.4 On the other hand, around the same time telecommu-
nications traffic was growing so rapidly that it was felt that
conventional telecommunication systems based on, say, co-
axial cables, radio and microwave links, and wire-pair cable
could soon reach a saturation point. The advent of lasers
thus immediately triggered a great deal of investigation
aimed at examining the possibility of building optical analogs
of conventional communication systems. The very first such
modern optical communication experiments involved laser
beam transmission through the atmosphere. However, it was
soon realized that laser beams could not be sent in open at-
mosphere through reasonably long distances to carry signals,
unlike, for example, microwave or radio systems operating at
longer wavelengths. This is so because a light beam (of
wavelength about 1 mm) is severely attenuated and distorted
owing to scattering and absorption by the atmosphere. Thus

3 Actually according to recent newspaper reports (published in June 2002), an Italian immigrant named Antonio Meucci was the in-
ventor of the telephone. According to this report, Antonio Meucci demonstrated his “teletrfono” in New York in 1860. Alexander
Graham Bell took out his patent 16 years later. This has apparently been recognized by the U.S. Congress.

4 Although incoherent sources such as light-emitting diodes (LEDs) are often used in present-day optical communication systems, it was
the discovery of the laser which triggered serious interest, for the first time, in the development of optical communication systems.

Fig. 27.1 The diagram of the Photophone; this has been

taken from Alexander Graham Bell’s 1880 paper

“On the Production and Reproduction of Sound

by Light,” American Journal of Sciences, Third

Series, Vol. XX, No. 118, pp. 305–324, October

1880. In this system, sunlight was modulated by

a diaphragm and transmitted through a distance

of about 200 m in the air to a receiver containing

a selenium cell connected to the earphone.
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for reliable light wave communication, it would be necessary
to provide a transmission medium that can protect the sig-
nal-carrying light beam from the vagaries of the terrestrial
atmosphere. This guiding medium is the optical fiber (having
core dimensions from a few micrometers to about 50 mm)
which guides the light beam from one place to another (see
Figs. 27.2 and 27.3); the guidance of the light beam through
the optical fiber takes place because of the phenomenon of
total internal reflection which we will discuss in the following
section.

In addition to the capability of carrying a huge amount of
information, optical fibers fabricated with recently devel-

oped technology are characterized by extremely low losses5

(< 0.25 dB km-1) as a consequence of which the distance be-
tween two consecutive repeaters (used for amplifying and
reshaping the attenuated signals) could be as large as 250 km.
It was the important paper of Kao and Hockham in 1966
(Ref. 7) that suggested that optical fibers based on silica
glass could provide the necessary transmission medium if
metallic and other impurities could be removed. To quote
from the 1966 paper of  Kao and Hockham:

Theoretical and experimental studies indicate that a
cladded glass fiber with a core diameter of about l0

and an overall diameter of about 1000 l0  represents
a possible practical optical waveguide with impor-
tant potential as a new form of communication
medium. The refractive index of the core needs to be
about 1% higher than that of cladding. However, the
attenuation should be around 20 dB/km which is
much higher than the lower limit of loss figure im-
posed by fundamental mechanisms.

Indeed this 1966 paper triggered the beginning of serious
research in purifying silica and developing low-loss optical
fibers. In 1970, Kapron, Keck, and Maurer (at Corning Glass in
the United States) were successful in producing silica fibers
with a loss of about 17 dB km-1 at a wavelength of 0.633 mm
(Ref. 8). Since then, the technology has advanced with tre-
mendous rapidity. By 1985 glass fibers were routinely pro-
duced with extremely low losses (< 0.25 dB km-1). Figure 27.4
shows a typical optical fiber communication system. It consists
of a transmitter which could be either an LED or a laser

5 The attenuation is usually measured in decibels (dB)—we will define this in Sec. 27.8. A loss of 0.25 dB km–1 would imply that the
power will decrease by a factor of 2 in traversing a distance of about 12 km.

Fig. 27.3 A step index multimode fiber illuminated by

He-Ne laser with bright output light spot. The

light coming out of the optical fiber is prima-

rily due to Rayleigh scattering. A color

photograph appears in the insert at the back of

the book. [The fiber was produced at the fiber

drawing facility at CGCRI, Kolkata; Photograph

courtesy Dr. Shyamal Bhadra and Ms. Atasi Pal.]

Fig. 27.2 (a) Guidance of light beam through optical fibers; the light scattered out of the fiber is due to Rayleigh scattering.

(b) Optical fibers held by a hand. Color photographs appear in the insert at the back of the book.

(a) (b)
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diode, the light from which is coupled into an optical fiber.
Along the path of the optical fiber, there are splices which
are permanent joints between sections of fibers and also re-
peaters which boost the signal and correct any distortion
that may have accumulated along the path of the fiber. At the
end of the link, the light is detected by a photodetector and
electronically processed to retrieve the signal.

27.3 TOTAL INTERNAL

REFLECTION

At the heart of an optical communication system is the opti-
cal fiber that acts as the transmission channel carrying the
light beam from one place to the other; and as mentioned ear-
lier, the guidance of the light beam (through the optical fiber)
takes place because of the phenomenon of total internal re-
flection (often abbreviated TIR). Now, if a ray is incident at
the interface of a rarer medium  (n2 < n1), then the ray will
bend away from the normal [see Fig. 27.5(b)]. The angle of
incidence, for which the angle of refraction is 90o, is known
as the critical angle and is denoted by fc. Thus, when

f1 = fc = sin–1 2

1

n

n

Ê ˆ
Á ˜Ë ¯

(1)

the angle of refraction f2 = 90o. When the angle of incidence
exceeds the critical angle (i.e., when f1 > fc), there is no re-
fracted ray and we have what is known as total internal
reflection.6 See Fig. 27.5(b).

Example 27.1 For the glass-air interface, n1 = 1.5 and n2 = 1.0,
and the critical angle is given by

fc = sin–1 1.0

1.5
Ê ˆ
Á ˜Ë ¯

 ª 41.8°

On the other hand, for the glass-water interface, n1 = 1.5, n2 = 4/3,
and

fc = sin–1 4 3

1.5
Ê ˆ
Á ˜Ë ¯

 ª 62.7°

The phenomenon of total internal reflection can be very easily
demonstrated through a simple experiment as shown in Fig. 27.6.
A thick semicircular glass disc is immersed in a glass vessel filled
with water. A laser beam from a He-Ne laser or simply a laser

S
R

CCT
D 

Fig. 27.4 Typical optical fiber communication system. It consists of a transmitter T which could be ei-

ther a laser diode or an LED, the light from which is coupled into an optical fiber by means

of a connector C. Along the path of the optical fiber, there are splices (denoted by S) which

are permanent joints between sections of fibers and also repeaters (denoted by R) which boost

the signal and correct any distortion that may have accumulated along the path of the fiber. At

the end of the link, a coupler C is used to couple the light to a photodetector D and processed

to retrieve the signal.

6 As shown in Example 24.4, energy does penetrate into the rarer medium, resulting in what is known as an evanescent wave; in any
case, the reflection coefficient is unity—see also Sec. 28.2.

f1

f2

f1
n1 n1

n1

n2 n2 n2

(a) (b) (c)

Fig. 27.5 (a) For a ray incident on a denser medium (n
2
 > n

1
), the angle of refraction is less than the

angle of incidence. (b) For a ray incident on a rarer medium (n
2
 < n

1
), the angle of refraction

is greater than the angle of incidence. (c) If the angle of incidence is greater than critical angle,

it will undergo total internal reflection.
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pointer is directed toward the center of the semicircular disc
so that it is incident normally on the glass surface and goes
undeviated as shown in the figure. The angle of incidence
(at the glass-water interface) is increased by rotating the glass
disc about point O; eventually when the angle of incidence
exceeds the critical angle (ª 62.7o), the laser beam undergoes
total internal reflection which can be clearly seen when viewed
from the top. If one puts in a drop of ink in the water (to
induce scattering of the beam), the light path becomes very
beautiful to look at! The experiment is very simple, and we urge
the reader to carry it out by using a laser pointer.

The first experimental demonstration of total internal reflec-
tion was carried out by sending a light beam in a water jet; this
was first demonstrated by Daniel Colladon in 1841 and by
Jacques Babinet  in 1842. A schematic of this demonstration is
shown in Fig. 27.7; light undergoes total internal reflection at

the water-air interface and  travels along the curved path of
water emanating from an illuminated vessel. John Tyndall is
usually credited with the first demonstration of light guidance
in water jets; however, he demonstrated light guiding in water
jets only in 1855, duplicating but not acknowledging Babinet;
for a nice historical survey, we refer the reader to Ref. 1.

27.4 THE OPTICAL FIBER

Figure 27.8(a) shows an optical fiber, which consists of a (cy-
lindrical) central dielectric core cladded by a material of slightly
lower refractive index. The corresponding refractive index

O

Fig. 27.6 A simple laboratory experiment to demonstrate

the phenomenon of total internal reflection.

Fig. 27.7 Light guidance through a water jet demonstrating

the phenomenon of total internal reflection; this

was first demonstrated by Daniel Colladon in 1841.

Core (   = )n n1

Cladding (   = )n n2

Cladding
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Cladding

Cladding

Core
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(b)

(c)

1

n2

n1

n r( )
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Cladding

Air

a b r

2 125 mb ª m

Fig. 27.8 (a) A glass fiber consists of a cylindrical central core cladded by a material of slightly lower refractive

index. (b) Light rays incident on the core-cladding interface at an angle greater than the critical angle are

trapped inside the core of the fiber. (c) Refractive index distribution for a step-index fiber. The diameter of

the cladding is almost always 125 mm. For multimode fibers, the core diameters are usually in the range

of 25 to 50 mm. For single-mode fibers, the core diameters are usually between 5 and 10 mm.
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absence of the cladding, light can leak through from one
fiber to another. The idea of adding a second layer of glass
(namely, the cladding) came in 1955 from Hopkins and
Kapany in the United Kingdom; however, during that time
the use of optical fibers was mainly in image transmission
rather than in communications. Indeed, the early pioneer-
ing works in fiber optics (in the 1950s) were by Hopkins
and Kapany in the United Kingdom and by Van Heel in
Holland; these works led to the use of the fiber in optical
devices.

The retina of the human eye consists of a large number of
rods and cones which have the same kind of structure as the
optical fiber; i.e., they consist of dielectric cylindrical
rods surrounded by another dielectric of slightly lower
refractive index. The core diameters are in the range of a few
micrometers. The light absorbed in these “light guides”
generates electric signals, which are then transmitted to the
brain through various nerves.

27.5 WHY GLASS FIBERS?

Why are optical fibers made of glass? To quote Prof. W. A.
Gambling, who is one of the pioneers in the field of fiber optics
(Ref. 2): “We note that glass is a remarkable material which has
been in use in “pure” form for at least 9000 years. The
compositions remained relatively unchanged for millennia and its
uses have been widespread. The three most important properties
of glass which makes it of unprecedented value are:

1. First, there is a wide range of accessible temperatures
where its viscosity is variable and can be well con-
trolled unlike most materials, like water and metals
which remain liquid until they are cooled down to their
freezing temperatures and then suddenly become solid.
Glass, on the other hand, does not solidify at a discrete
freezing temperature but gradually becomes stiffer and
stiffer and eventually becoming hard. In the transition
region it can be easily drawn into a thin fiber.

2. The second most important property is that highly
pure silica is characterized with extremely low-loss; i.e.,
it is highly transparent. Today, in most commercially
available silica fibers 96% of the power gets transmit-
ted after propagating through 1 km of optical fiber. This
indeed represents a truly remarkable achievement.

3. The third most remarkable property is the intrinsic
strength of glass. Its strength is about 2,000,000 lb/in2

so that a glass fiber of the type used in the tele-
phone network and having a diameter (125 mm) of
twice the thickness of a human hair can support a
load of 40 lb.”

distribution (in the transverse direction) is given by

1

2

0
=

n r a
n

n r a

< <Ï
Ì

>Ó
(2)

where n1 and n2 (< n1) represent, respectively, the refractive
indices of core and cladding and a represents the radius of the
core. We define a parameter D through the following equations.

D ∫ 
2 2
1 2

2
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n n

n

-
(3)

When n1 ª n2, i.e., when D<< 1 (as is true for most silica
fibers),

D = 1 2 1 2 1 2 1 2

1 1 2 12

n n n n n n n n

n n n n

- + - -

ª ª (4)

For a typical (multimoded) fiber, a ª 25 mm, n2 ª 1.45 (pure
silica), and D ª 0.01, giving a core index of n1 ª 1.465. The
cladding is usually pure silica while the core is usually silica
doped with germanium; doping by germanium results in an
increase of refractive index.

Now, for a ray entering the fiber, if the angle of incidence
(at the core-cladding interface) is greater than the critical
angle fc, then the ray will undergo TIR at that interface. Thus,
for TIR to occur at the core-cladding interface

1 2

1

sinc
n

n
-

Ê ˆ
> = Á ˜Ë ¯

φ φ (5)

or q should be less than qc:

1 2

1

= cosc
n

n
-

Ê ˆ
< Á ˜Ë ¯

θ θ (6)

Further, because of the cylindrical symmetry in the fiber
structure, the ray will suffer TIR at the lower interface also
and therefore get guided through the core by repeated total
internal reflections. Even for a bent fiber, light guidance can
occur through multiple total internal reflections (see Figs. 27.2
and 27.7). Figures 27.2 and 27.3 show the actual guidance of
a light beam as it propagates through a long optical fiber; in
the photograph, the light emerging from the side of the
fiber is mainly due to Rayleigh scattering, the same
phenomenon that is responsible for the blue color of the
sky and the red color of the rising or the setting Sun.

A cladded fiber (Fig. 27.8) rather than a bare fiber, i.e.,
without a cladding, was necessary because for transmis-
sion of light from one place to another, the fiber must be
supported, and supporting structures may considerably
distort the fiber, thereby affecting the guidance of the
light wave. This can be avoided by choosing a suffi-
ciently thick cladding. Further, in a fiber bundle, in the
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27.6 THE COHERENT BUNDLE

If a large number of fibers are put together, it forms what is
known as a bundle. If the fibers are not aligned, i.e., they are
all jumbled up, the bundle is said to form an incoherent
bundle. However, if the fibers are aligned properly, i.e., if the
relative positions of the fibers in the input and output ends
are the same, the bundle is said to form a coherent bundle.
Now, if a particular fiber is illuminated at one of its ends, then
there will be a bright spot at the other end of the same fiber;
thus a coherent bundle will transmit the image from one end
to another (see Fig. 27.9).

Perhaps the most important application of a coherent
bundle is in a fiber-optic endoscope where it can be put in-
side a human body, and the interior of the body can be
viewed from outside; for illuminating the portion that is to be
seen, the bundle is enclosed in a sheath of fibers which carry
light from outside to the interior of the body (see Fig. 27.10). A

typical fiber scope can have about 10,000 fibers which would
form a bundle of about 1 mm in diameter capable of resolving
objects 70 mm across.

In an incoherent bundle the output image will be
scrambled.  Because of this property, an incoherent bundle
can be used as a coder; the transmitted image can be de-
coded by using a similar bundle at the output end.  In a
bundle, since there can be hundreds of thousands of fibers,
decoding without the original bundle configuration should be
extremely difficult. Incoherent bundles are also used in illumi-
nation such as in traffic lights or road signs (see, e.g., Ref. 9).
They can also be used as cold light sources (i.e., light
sources giving only light and no heat) by cutting off the heat
radiation, using a filter at the input to the fiber bundle. The
light emerging from the bundle is also free from UV radiation
and is suitable for illumination of paintings etc. in museums.

27.7 THE NUMERICAL

 APERTURE

We return to Fig. 27.8 and consider a ray which is incident on
the entrance aperture of the fiber, making an angle i with the
axis. Let the refracted ray make an angle q with the axis. As-
suming the outside medium to have a refractive index n0

(which for most practical cases is unity), we get

sin

sin

i

q
= 1

0

n

n
(7)

Obviously if this ray has to suffer total internal reflection at
the core-cladding interface,
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In most cases, the outside medium is air, i.e., n0 = 1; and therefore
the maximum value of sin i for a ray to be guided is given by
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Thus, if a cone of light is incident on one end of the fiber,
it will be guided through it provided the semiangle of the

Fig. 27.9 A bundle of aligned fibers. A bright (or dark) spot

at the input end of the fiber produces a bright (or

dark) spot at the output end. Thus an image will

be transmitted (in the form of bright and dark

spots) through a bundle of aligned fibers.

(a) (b)

Fig. 27.10 (a) An optical fiber medical probe called an

endoscope enables doctors to examine the inner

parts of the human body, (b) A stomach ulcer as

seen through an endoscope. A color photograph

appears in the insert at the back of the book.

[Photographs courtesy United States Information

Service, New Delhi]
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cone is less than im. The quantity sin im is known as the
numerical aperture (NA) of the fiber and is a measure of
the light-gathering power of the fiber.

In almost all practical situations, n2
1 < n2

2 + 1, and therefore
one defines the numerical aperture of the fiber by the follow-
ing equation:

2 2
1 2NA = -n n (12)

Example 27.2 For a typical step index (multimode) fiber with
n1 ª 1.45 and D ª 0.01, we get

sin im ª 0.205 fi im ª 12°

Now, in a short length of an optical fiber, if all rays between
i = 0 and im are launched, then, the light coming out of the
fiber will also appear as a cone of semiangle im emanating
from the fiber end. If we now allow this beam to fall nor-
mally on a white paper (see Fig. 27.11) and measure its
diameter, we can easily calculate the NA of the fiber. This
allows us to estimate the NA of the optical fiber by a very
simple experiment. The procedure is as follows:

Several concentric circles of increasing radii, say, starting
from 0.5 to 1.5 cm, are drawn on a small paper screen, and the
screen is positioned in the far field such that the axis of the
fiber, at the output end, passes perpendicularly through the
center of these circles on the screen. The fiber end, which is
mounted on a XYZ-stack, is moved slightly towards or away
from the screen so that one of the circles just circumscribes the
far-field radiation spot. The distance z between the fiber end and
the screen and the diameter D of the coinciding circle are mea-
sured accurately. The NA is calculated using the following
equation:

NA = sin im = sin 1tan
2

D

z
-

È ˘Ê ˆ
Í ˙Á ˜Ë ¯Î ˚

(13)

27.8 ATTENUATION IN

OPTICAL FIBERS

Attenuation and pulse dispersion represent the two most
important characteristics of an optical fiber that determine the
information-carrying capacity of a fiber-optic communication
system. Obviously, the lower the attenuation (and similarly,
the lower the dispersion), the greater the required repeater
spacing and therefore the lower will be the cost of the com-
munication system. Pulse dispersion will be discussed in the
next section, while in this section, we will briefly discuss the
various attenuation mechanisms in an optical fiber.

The attenuation of an optical beam is usually measured in
decibels (dB). If an input power P1 results in an output power
P2, then the loss in decibels is given by

a = 10 log input

output

Ê ˆ
Á ˜
Ë ¯

P

P
(14)

Thus
• If the output power is the same as the input power,

then the loss is = 0 dB.
• If the output power is only one-tenth of the input

power, then the loss is = 10 dB.
• If the output power is only one-hundredth of the in-

put power, then the loss is = 20 dB.
• If the output power is only one-thousandth of the in-

put power, then the loss is = 30 dB.

Similarly, if the output power is only half of the input power,
then the loss is 10 log 2 ª 3 dB. On the other hand, if 96% of
the light is transmitted through the fiber, the loss is about
0.18 dB. In a typical fiber amplifier, a power amplification by a
factor of 100 implies a power gain of 20 dB.

Figure 27.12(a) shows the variation of the loss coefficient
(i.e., loss per unit length) as a function of wavelength of a
typical silica optical fiber. One can notice two important low-
loss windows at 1300 and 1550 nm. Typical losses at these
wavelengths are 0.3 to 0.4 dB km-1 and about 0.25 dB km-1,
respectively. This is the reason why most fiber-optic systems
operate in either the 1300 or 1550 nm window. The latter win-
dow has become extremely important in view of the
availability of optical amplifiers (see Sec. 26.1.3).

The losses are caused by various mechanisms such as
Rayleigh scattering, absorption due to metallic impurities,
and water and by intrinsic absorption of silica molecule it-
self. Even 1 ppm (part per million) of iron can cause a loss of
about 0.68 dB km-1 at 1100 nm. Similarly a concentration of
1 ppm of OH- ion can cause a loss of 4 dB km-1 at 1380 nm.
This shows the level of purity that is required to achieve very
low-loss optical fibers. In Fig. 27.12(a) the two peaks are due

D

z

Multimode fiber

Fig. 27.11 Measurement of the diameter D of the spot on

a screen placed at a far-field distance z from the

output end of a multimode fiber can be used to

measure the NA of the fiber.
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to traces of water (and other impurities) present in the fiber.
However, with sophisticated fabrication techniques it is pos-
sible to remove these impurities, and one can obtain very low
loss in the entire wavelength region from 1200 to 1650 nm;
see Fig. 27.12(b). For 0l >

�

 1650 nm, the loss increases be-
cause of the occurence of the infrared absorption band in
silica.

It is possible to demonstrate the wavelength depen-
dence of Rayleigh scattering by using a long optical
fiber. White light (from a lamp such as a tungsten halo-
gen lamp) is coupled into approximately a 1 km long
multimode optical fiber, and we look into the output and
notice the color of the light. Next, we cut the fiber, leav-
ing about 1 m from the input end of the fiber, and repeat
the experiment with this 1 m of the fiber. In the former
case, the emerging light looks reddish while in the latter
case it looks white. This difference is due to the decrease
of loss with increase in wavelength due to Rayleigh scat-
tering; light wavelengths toward the blue region have
suffered greater scattering out of the fiber than those of
the red region. Thus although at the input end all wave-
lengths are coupled, there is more power in the red part
at the output giving it a reddish color.

Example 27.3 Calculation of losses using the decibel scale
becomes very easy. For example, if we have a 40 km fiber link
(with a loss of 0.4 dB km-1), having three connectors in its path
and if each connector has a loss of 1.8 dB, then the total loss will
be 0.4 dB km-1 ¥ 40 km + 3 ¥ 1.8 dB = 21.4 dB.

Example 27.4 Let us assume that the power of a 5 mW
laser beam decreases to 30 mW after traversing through 40 km
of an optical fiber. The attenuation of the fiber is therefore

11 5 mW
10 log = 0.56dB km

40 0.03mW
-

È ˘Ê ˆ
Í ˙Á ˜Ë ¯Î ˚

It is often very convenient to measure the power level of
a beam in dBm, which is defined as

P (dBm) = 10 log P (mW) (15)

Thus

1 mW ¤ 0 dBm
1 W ¤ 30 dBm

1 mW ¤ –30 dBm
1 nW ¤ –60 dBm

Similarly,

0.2 W = 200 mW ¤ ª 2.3 dBm

Using the dBm scale, Eq. (8) becomes

a = Pinput(dBm) – Poutput(dBm) (16)

or,

Poutput(dBm) = Pinput(dBm) – a(dB) (17)

Because of the above equation, calculation of power
level losses using the dBm scale become very easy as shown
in the examples below.
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Fig. 27.12 (a) Typical wavelength dependence of loss for a silica fiber. The peaks in the attenuation curve in

the wavelength regions of 1.25 and 1.40 mm are due to the presence of minute amounts of water and

other impurities. Notice that the lowest loss occurs at 1550 nm (adapted from Ref. 12). (b) Using

sophisticated techniques, it is possible to remove the trace amount of water and other impurities.

The loss is less than 0.4 dB km
-1

 in the entire wavelength range from 1250 nm to 1650 nm. The

diagram corresponds to the fiber fabricated by Sterlite Industries at Aurangabad and  is courtesy

S. Bhatia of Sterlite Industries.
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Example 27.5 Consider a 5 mW laser beam passing through
a 40 km fiber link of loss 0.5 dB km-1. The total loss is 20 dB.
Since the input power is 6.99 dBm, the power at the output is
–13.01 dBm which is equal to 0.05 mW.

Between a source and a detector, let Ns represent the number
of splices and in each splice, the loss (in dB) is ls; a splice rep-
resents the point where one fiber is joined to the other.

Similarly, let Nc represent the number of connectors, and
in each connector the loss (in dB) is lc. Thus the power re-
ceived (in dBm) at the detector is given by

Preceived = Pinput – Nclc – Nsls – La

where a = fiber loss (dB km-1) and L presents the fiber
length (km).

Example 27.6 Let Pinput = 1 mW ¤ 0 dBm; lc = 1 dB/
connector, Nc = 2; ls = 0.5 dB/splice, Ns = 4; a = 0.5 dB km-1, L =
40 km. Thus the loss in the fiber is 20 dB and

Preceived = 0 – 2 – 2 – 20 = –24 dBm ¤ ª 4 mW

Example 27.7 In a typical optical communication system,
let the available components be as given below:

Laser output 1.5 mW (1.76 dBm)
Laser wavelength 1300 nm
Fiber loss 1 dB km-1

Required length of link 20 km
Loss in fiber 20 ¥ 1 dB km-1 20 dB
Splice (every 5 km) loss 0.5 dB/splice
Splices 3 ¥ 0.5 dB 1.5 dB
Laser-to-fiber coupling loss 8 dB
Fiber-to-detector loss 2 dB

Total loss 31.5 dB

Since the laser power is 1.76 dBm, the power available at the de-
tector is -29.74 dBm (ª 1.06 mW) and if the detector  margin is
-40 dBm [i.e., the detector is able to detect -40 dBm of power
(= 0.1 mW)], then there is an excess power margin of 10.26 dBm
at the detector. The above represents a typical power budget
calculation.

27.8.1 The Attenuation Limit

Let Np represent the minimum number of photons (per bit of
information) required for the pulse to be detected. The corre-
sponding average optical power received by the detector is
given by

Pmin = 1
2 NpBE (18)

where E = hn = energy of each photon and B represents the
bit rate (the number of bits per second) in the communication
system. Typically Np ª 1000 and B ª 2.5 Gbits s-1.

Example 27.8 For l0 ª 1300 nm,

E = hn = 
0

ch

l
 ª 1.53 ¥ 10–19 J

where h is Planck’s constant and we have assumed h ª 6.626 ¥

10-34 J. S. Thus

Pmin = 1
2  Np BE ª 1

2  ¥ 1000 ¥ (2.5 ¥ 109) ¥ (1.53 ¥ 10–19) W
ª 0.19 mW (ª –37.2 dBm)

Thus if Pin ª 1 mW (= 0 dBm), then the system can have a maxi-
mum loss of about 38 dB. If we neglect the splice and connector
losses, then for a fiber loss of a = 0.5 dB km–1, Lmax ª 93 km.

Example 27.9 For l0 ª 1550 nm,

E = hn = 
0

ch

l
 ª 1.28 ¥ 10–19 J

fi Pmin = 1
2  Np BE ª 1

2  ¥ 1000 ¥ (2.5 ¥ 109) ¥ (1.28 ¥ 10–19) W
ª 0.16 mW (ª –38 dBm)

Thus if Pin ª 1 mW (= 0 dBm), then the system can have a maxi-
mum loss of about 37 dB. If we neglect the splice and connector
losses, then for a fiber loss of a = 0.2 dB km–1, Lmax ª 190 km.

27.9 MULTIMODE FIBERS

In the next section we will discuss broadening of an optical
pulse as it passes through a multimode optical fiber. The ob-
vious question is, What do we understand by a multimode
optical fiber? The concept of modes will be discussed in
Chaps. 28 and 29; it will suffice here to say that if we solve
Maxwell’s equations for an optical waveguide, then we ob-
tain discrete modes that represent transverse field
distributions that suffer only a phase change as they propa-
gate through the waveguide along z. Each mode has a
specific transverse field distribution and also a specific ve-
locity (see Secs. 28.3 to 28.5). Now, while studying the
propagation of rays in an optical fiber [see Fig. 27.8(b)], we
assumed that all rays characterized by q > qc will be guided
through the optical fiber. In Sec. 28.3, we will show by solv-
ing Maxwell’s equations that each mode of the waveguide
may be assumed to correspond to a “discrete” value of q,
which would imply discrete ray paths; thus, qualitatively
speaking, we may say that only discrete values of q are pos-
sible. When the number of such discrete ray paths becomes
very large, we have what is known as a multimode fiber and
may assume the validity of geometrical optics.

27.9.1 Power Law Profile

A broad class of multimode graded index fibers can be
described by the following refractive index distribution
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(see Fig. 27.13):
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where r corresponds to a cylindrical radial coordinate, n1

represents the value of the refractive index on the axis (i.e.,
at r = 0), n2 represents the refractive index of the cladding,
and a represents the radius of the core. Equation (19)
describes what is usually referred to as a power law profile
or a q profile; q = 1, q = 2, and q = • correspond to the linear,
parabolic, and step index profiles, respectively (see Fig. 27.13).
One defines the normalized waveguide parameter as

2 2
1 2

0

2
V a n n

p
= -

l
 (20)

where l0 is the free space wavelength of operation. The total
number of modes in a highly multimode graded index optical
fiber characterized by Eq. (19) is approximately given by
[Ref. 13 (see also Ref. 14)]

( )
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2 2

q
N V

q
ª

+
(21)

Thus, a parabolic index fiber (q = 2) with V = 10 will support
approximately 25 modes. Similarly, a step index fiber (q = •)
with V = 10 will support approximately 50 modes. When the
fiber supports such a large number of modes, the fiber is said
to be a multimode fiber. Each mode travels with a slightly
different group velocity, leading to what is known as
intermodal dispersion. In Ref. 13 (see also Ref. 14) it has
been shown that for a highly multimode graded index optical
fiber, the value of intermodal dispersion is very nearly the

same as obtained from ray analysis. Thus in highly multi-
mode fibers ( 10),V ≥  one is justified to use the ray optics
result for intermodal (or ray) dispersion. For a given fiber
(i.e., for given values of  n1, n2, and a), the value of V
depends on the operating wavelength l0. Thus, as the wave-
length becomes smaller, the value of  V (and hence the
number of modes) increases; and in the limit of  the operating
wavelength  becoming very small, we have the geometric
optics limit. Also, as will be shown in Chap. 29, a step index
fiber (q = •) has only one mode when  V < 2.4048 and we
have what is known as a single-mode fiber. For a given step
index fiber, the wavelength at which V becomes equal to
2.4048 is known as the cutoff wavelength, and for all wave-
lengths greater than the cutoff wavelength the fiber is said to
be single-mode (see Sec. 29.3.1). In all that follows we will
assume the V number to be large ( 10),≥  so that we may use
ray optics to calculate pulse dispersion. Analysis of single-
mode fibers will require solution of the wave equation which
we will do in Chap. 29.

27.10 PULSE DISPERSION IN

MULTIMODE OPTICAL

FIBERS

In digital communication systems, first information to be sent
is coded in the form of pulses, and then these pulses of light
are sent from the transmitter to the receiver where the infor-
mation is decoded. The larger the number of pulses that can
be sent per unit time and still be resolvable at the receiver
end, the larger the transmission capacity of the system. A
pulse of light sent into a fiber broadens in time as it propa-
gates through the fiber; this phenomenon is known as pulse
dispersion and occurs primarily because of the following
mechanisms:

1. In multimode fibers, different rays take different times
to propagate through a given length of the fiber; we
will discuss this for a step index fiber and for a para-
bolic index fiber in this and the following sections. In
the language of wave optics, this is known as
intermodal dispersion because it arises due to differ-
ent modes traveling with different group velocities.

2. Any given light source emits over a range of wave-
lengths, and because of the intrinsic property of the
material of the fiber, different wavelengths take dif-
ferent amounts of time to propagate along the same
path. This is known as material dispersion, and ob-
viously, it is present in both single-mode and
multimode fibers.

2 4 8

q = 1

•
n1

2

n2
2

n2( )r

0 a
r

Fig. 27.13 Power law profiles for the refractive index dist-

ribution given by Eq. (19).
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3. In single-mode fibers since there is only mode, there is
no intermodal dispersion; however, we have what is
known as waveguide dispersion which is due to the
geometry of the fiber. We will discuss single-mode
fibers and waveguide dispersion in Chap. 29. Obvi-
ously, waveguide dispersion is present in multimode
fibers also, but the effect is very small and can be
neglected.

27.10.1 Ray Dispersion in Multimode

Step Index Fibers

We first consider ray paths in a SIF (Step Index Fiber) as
shown in Fig. 27.8. As can be seen, rays making larger angles
with the axis (those shown as dotted rays) have to traverse a
longer optical path length and therefore take a longer time to
reach the output end.

We will now derive an expression for the intermodal dis-
persion for a step index fiber. Referring to Fig. 27.8, for a ray
making an angle q with the axis, the distance AB is traversed
in time

1 1

+ /cos
= =

/ /AB
AC CB AB

t
c n c n

q
(22)

or
1=
cosAB

n AB
t

c q
(23)

where c/n1 represents the speed of light in a medium of
refractive index n1, with c being the speed of light in free
space. Since the ray path will repeat itself, the time taken by
a ray to traverse a length L of the fiber is

1=
cosL
n L

t
c q

(24)

The above expression shows that the time taken by a ray is a
function of the angle q made by the ray with the z axis, which
leads to pulse dispersion. If we assume that all rays lying
between q = 0 and q = qc = cos–1(n2/n1) [see Eq. (6)] are
present, then the time taken by these extreme rays for a fiber
of length L is given by

tmin = 
n L

c
1 corresponding to q = 0 (25)

tmax = 
n L
cn
1
2

2
corresponding to q = qc = cos–1 2

1

n

n

Ê ˆ
Á ˜Ë ¯ (26)

Hence if all the input rays were excited simultaneously, the rays
would occupy a time interval at the output end of duration

Dti = tmax – tmin = 1 1

2

1
n L n

c n

Ê ˆ
-Á ˜Ë ¯

(27)

or

21

1

(NA)
2i

n L L

c n c
Dt @ D ª

where D has been defined earlier [see Eqs. (3) and (4)] and
we used Eq. (12). Assuming the validity of  ray optics, Eq. (27)
is exact; however, in writing Eq. (28) we have assumed
Δ << 1, which is true for almost all commercially available
fibers. The quantity Δτi represents the pulse dispersion due
to different rays taking different times in propagating
through the fiber which, in wave optics, is nothing but the
intermodal dispersion and hence the subscript  i. Note that
the pulse dispersion is proportional to the square of NA.
Thus to have a smaller dispersion, one must have a smaller
NA, which of course reduces the acceptance angle and
hence the light-gathering power. Now if at the input end of
the fiber we have a pulse of width τ1, then after propagating
through a length L of the fiber the pulse will have a width τ2

given approximately by

t 2
2 = t 1

2 + Dt i
2 (29)

Consequently, the pulse broadens as it propagates through
the fiber (see Fig. 27.14). Hence, even though two pulses may
be well resolved at the input end, because of the broadening
of the pulses they may not be so at the output end.

Example 27.10 For a typical (multimode) step index fiber,
if we assume n1 = 1.5, D = 0.01, and  L = 1 km, we get

Dti = 
1 5 1000

3 108
. ×

×
 ¥ 0.01 = 50 ns km–1 (30)

i.e., a pulse after traversing through the fiber of length 1 km
will be broadened by 50 ns. Thus two pulses separated by, say,
500 ns at the input end would be quite resolvable at the end of
1 km of the fiber. However, if consecutive pulses are separated

100 ns

100 ns

1 km

2 km

Resolvable

Not resolvable

Fig. 27.14 Pulses separated by 100 ns at the input end

would be resolvable at the output end of 1 km

of the fiber. The same pulses would not be re-

solvable at the output end of 2 km of the same

fiber [Figure adapted from Ref. 11].

intermodal dispersion
in multimode SIF (28)
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by, say, 10 ns at the input end, they will be absolutely
unresolvable at the output end. Hence in a 1 Mbit s–1 fiber-
optic system, where we have one pulse every 10–6 s, a 50 ns km–1

dispersion will require repeaters to be placed every 3 to 4 km.
On the other hand, in a 1 Gbit s–1 fiber-optic communication
system, which requires the transmission of one pulse every 10–9 s,
a dispersion of 50 ns km–1 will result in intolerable broadening
even within 50 m or so which would be highly inefficient and
uneconomical from a system point of view.

Where the output pulses are not resolvable, no informa-
tion can be retrieved. Thus, the smaller the pulse dispersion,
the greater the information-carrying capacity of the system.

From the discussion in Example 27.10 it follows that for a
very high information-carrying system, it is necessary to
reduce the pulse dispersion. Two alternative solutions exist:
one involves the use of near parabolic index fibers, and the
other involves single-mode fibers.

27.10.2 Parabolic index Fibers (PIFs)

In a step index fiber such as that pictured in Fig. 27.8, the
refractive index of the core has a constant value. By
contrast, in a PIF (Parabolic Index Fiber), the refractive index
in the core decreases continuously (in a quadratic fashion)
from a maximum value at the center of the core to a constant
value at the core-cladding interface. The refractive index
variation given by

( )

2
2
12

2 2
2 1

1 2 0 core
( ) =

= 1 2 cladding

r
n r a

an r

n n r a

Ï È ˘Ê ˆÔ - D < <Í ˙Á ˜Ô Ë ¯Í ˙Ì Î ˚
Ô

- D >ÔÓ

(31)

with  Δ as defined in Eq. (4). In Sec. 3.4.1 we showed that
the ray paths in a parabolic waveguide are sinusoidal (see
Fig. 27.15). For a typical (multimode) parabolic index silica
fiber Δ ≈ 0.01, n2 ≈ 1.45, and a ≈ 25 μm.

Now, even though rays making larger angles with the
axis traverse a larger path length, they do so in a region
of lower refractive index (and hence greater speed). The
longer path length is almost compensated for by a greater
average speed such that all rays take approximately the
same amount of time in traversing the fiber. In Sec. 3.4.2
we made a detailed calculation of the time taken by a
particular ray to propagate through a parabolic index
waveguide; the final result for the intermodal dispersion
is given by (see also Sec. 27.12)

2
2 1 2

2

=
2i

n L n n

c n

Ê ˆ-
Dt Á ˜Ë ¯

When Δ << 1, the above equation can be written as

( )
422

3
1

NA
2 8

i
n L L

c cn
Dt ª D ª (33)

Note that compared to a step index fiber, the pulse dispersion
is proportional to the square of Δ. For a typical (multimode
parabolic index) fiber with n2 ≈ 1.45 and Δ ≈ 0.01, we get

Dt i ª 0.25 ns km–1 (34)

Comparing it with Eq. (30), we find that for a parabolic index
fiber, the pulse dispersion is reduced by a factor of about
200 in comparison to the step index fiber. For this reason
first- and second-generation optical communication systems
used near-parabolic index fibers. To further decrease the
pulse dispersion, it is necessary to use single-mode fibers
because there will be no intermodal dispersion. In almost all
long-distance fiber-optic communication systems, one uses
single-mode fibers; nevertheless, in many local-area com-
munication systems (such as intra-office networks), one still
uses parabolic index multimode fibers. In  Sec. 27.12 we will
give the general expression for pulse dispersion corres-
ponding to the power law profile.

Now, in addition to the intermodal dispersion discussed
above, in all fiber-optic systems we will have material
dispersion which is a characteristic of the material itself and
not of the waveguide.

27.10.3 Material Dispersion

Previously we considered the broadening of an optical pulse
due to different rays taking different amounts of time to
propagate through a certain length of the fiber.  However,
every source of light has a certain wavelength spread which
is often referred to as the spectral width of the source.  Thus
a white light source (such as the Sun) has a spectral width
of about 300 nm; on the other hand, an LED would have a
spectral width of about 25 nm and a typical laser diode (LD)
operating at 1300 nm has a spectral width of about 2 nm or

20

0

–20
zp

x
(

m
)

m

10
z (mm)

q1 = 4°

q1 = 8.13°

q1 = 20°

Core

Cladding

Fig. 27.15 Ray paths in a parabolic index fiber.

pulse dispersion in
multimode PIF (32)

gha80482_ch27_455-474.PMD 1/28/2009, 3:01 PM468



Optical Waveguides I: Optical Fiber Basics Using Ray Optics 469
�

less. In Chap. 10 we said that the refractive index of the
medium (and hence the group velocity vg) depends on the
wavelength. Thus, each wavelength component (of the
pulse) will travel with a slightly different group velocity
through the fiber, resulting in a broadening of a pulse. In
Chap. 10 we showed that the pulse broadening (due to
wavelength dependence of the refractive index) is given by

Dtm
 = –

2
20
0 2

0 0

L d n

c d

Ê ˆDl
lÁ ˜l lË ¯

(35)

where L is the length of the fiber, Dl0 is the spectral width of
the source, and c is the speed of light in free space; the sub-
script m in Eq. (35) refers to the fact that we are considering
material dispersion. We also defined the material dispersion
coefficient (which is measured in ps km–1 nm–1) as

Dm = 
0

m

L

Dt

Dl
 = – 

4 2
2
0 2

0 0

10

3

d n

d

Ê ˆ
lÁ ˜l lË ¯

ps km–1 nm–1 (36)

where we used c ≈ 3 × 10 – 7 km ps–1 and l0 is measured
in μm and the quantity inside the parentheses is dimen-
sionless. Thus Dm represents the material dispersion in
picoseconds per kilometer length of the fiber per nanometer
spectral width of the source. At a particular wavelength, the
value of Dm is a characteristic of the material and is (almost)
the same for all silica fibers. The values of Dm for different
wavelengths (for pure silica) are tabulated in Table 10.1.
When Dm is negative, it implies that the longer wavelengths
travel faster; similarly, a positive value of Dm implies that
shorter wavelengths travel faster.

Example 27.11 The LEDs used in the earlier optical commu-
nication systems had a spectral width Dl0 of about 20 nm around
l0 = 0.85 mm (= 850 nm); at this wavelength (see Table 10.1).

2 2
2 2

02 2
0 0

0.0297 ( m)
d n d n

d d
-

È ˘
ª m fi lÍ ˙

l lÍ ˙Î ˚

0.85 0.85 0.0297 0.02146ª ¥ ¥ ª

Thus

4 2
2
0 2

0 0

4
1 1

10

3

10
0.02146 84.2 ps km  nm

3 0.85

m
d n

D
d

- -

Ê ˆ
ª - lÁ ˜l lË ¯

ª - ¥ ª -
¥

Thus a pulse will broaden by (disregarding the sign)

Δτm = Dm ¥ L ¥ Δl

= 84.2 ps km–1 nm–1 ¥ 1 km  ¥ 20 nm ~ 1700 ps = 1.7 ns

in traversing 1 km length of the fiber. On the other hand, if we carry out a
similar calculation around l0 ª 1.3 mm (where Dm ª 2.4 ps km–1 nm–1),
we will obtain a much smaller value of Dtm; thus

Dtm = Dm ¥ L ¥ Dl = 2.4 ps km–1 nm–1 ¥ 1 km ¥ 20 nm ~ 0.05 ns

in traversing 1 km length of the fiber. The very small value of
Dtm is due to the fact that ng is approximately constant around
l0 = 1300 nm, as shown in Fig. 10.6. Indeed the wavelength
l0 ª 1270 nm is usually referred to as the zero material dispersion
wavelength, and it is because of such low material dispersion that
the optical communication systems shifted their operation to around
l0 ª 1300 nm.

Example 27.12 In the optical communication systems in
operation today, one uses LDs (laser diodes) with l0 ª 1550
nm having a spectral width of about 2 nm. At this wavelength,
Dm ª  21.5 ps km–1 nm–1 (see Table 10.1).  Thus for a 1 km length
of the fiber, the material dispersion Dtm becomes

Dtm = Dm ¥ L ¥ Dl = 21.5 ps km–1 nm–1 ¥ 1 km ¥ 2 nm ~ 43 ps

the positive sign indicating that higher wavelengths travel slower
than lower wavelengths. (Notice from Table 10.1 that for l0 ≥

1300 nm, ng increases with l0).

27.11 DISPERSION AND

MAXIMUM BIT RATES

In a digital communication system employing light pulses,
pulse broadening results in an overlap of pulses, resulting in
loss of resolution and leading to errors in detection. Thus
pulse broadening is one of the mechanisms (other than attenu-
ation) that limits the distance between two repeaters in a
fiber-optic link. It is obvious that the larger the pulse broaden-
ing, smaller the number of pulses per second that can be sent
down a link. Different criteria based on slightly different con-
siderations are used to estimate the maximum permissible bit
rate Bmax for a given pulse dispersion. However, it is always of
the order of 1/t. In one type of extensively used coding
[known as NRZ (Non Return to Zero)] we have

Bmax ª 
0.7

Dt
(37)

The above formula takes into account (approximately) only
the limitation imposed by the pulse dispersion in the fiber.
In an actual link, the source and detector characteristics are
also taken into account while estimating the maximum bit
rate. Note that in a fiber, the pulse dispersion is caused, in
general, by intermodal dispersion, material dispersion, and
waveguide dispersion. However, waveguide dispersion is
important only in single-mode fibers and may be neglected
in carrying out analysis for multimode fibers. Thus (consid-
ering multimode fibers), if Dti and Dtm are the dispersion
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due to intermodal and material dispersions respectively,
then the total dispersion is given by

Dt = 2 2( ) ( )i mDt + Dt (38)

Example 27.13 We consider a step index multimode fiber
with n1 = 1.46, and D = 0.01 operating at 850 nm. For such a fiber,
the intermodal dispersion (for a 1 km length of the fiber) is

Dti = 1n L

c

D
 ª 

8

1.46 1000 0.01

3 10

¥ ¥

¥

 ª 49 ns

which is usually written as

Dti ª 49 ns km–1

If the source is an LED with Dl = 20 nm, then using Table 10.1 the
material dispersion Dtm is 1.7 ns km–1 (see Example 27.11). Thus in
step index multimode fibers, the dominant pulse broadening mecha-
nism is intermodal dispersion, and the total dispersion is given by

Dt = 2 2( ) ( )i mDt + Dt  = 49 ns km–1 = 49 ¥ 10–9 s km–1

Using Eq. (37), this gives a maximum bit rate of about

Bmax ª 
0.7

Dt
 = 

9

0.7

49 10-

¥

 bits km–1 s–1 ª 14 Mbits km s–1

Thus a 10 km link can at most support only 1.4 Mbits s–1.

Example 27.14 Let us now consider a parabolic index mul-
timode fiber with n1 = 1.46 and D = 0.01 operating at 850 nm with
an LED of spectral width 20 nm. For such a fiber, the intermodal
dispersion, using Eq. (28), is

Dti = 1

2

n

c
D2L ª 0.24 ns km–1

The material dispersion is again 1.7 ns km–1. Thus in this case the
dominant mechanism is material dispersion rather than intermodal
dispersion. The total dispersion is

Dt = 0 24 1 72 2. .+  = 1.72 ns km–1

This gives a maximum bit rate of about

Bmax ª 0 7

1 72 10 9
.

. × −  bits km s–1 ª 400 Mbits km s–1

giving a maximum permissible bit rate of 20 Mbits s–1 for a 20 km link.

Example 27.15 If we now shift the wavelength of opera-
tion to 1300 nm and use the parabolic index fiber of Example 27.14, we
see that the intermodal dispersion remains the same as 0.24 ns km–1

while the material dispersion (for an LED of Dl0 = 20 nm) becomes
0.05 ns km–1 (see Example 27.11). The material dispersion is now
negligible in comparison to intermodal dispersion. Thus the total
dispersion and maximum bit rate are, respectively, given by

Dt = 
2 20.24 0.05+  = 0.25 ns km–1

fi Bmax = 2.8 Gbits km s–1

We reiterate that in the examples discussed above the
maximum bit rate has been estimated by considering the fiber
only. In an actual link, the temporal response of the source
and detector must also be taken into account.

We end this section by mentioning that around 1977, we
had the first-generation optical communication systems
which used graded index multimode fibers, and the source
used was the LED operating at 850 nm wavelength; the loss
was ª3 dB km–1, the repeater spacing was ª10 km, and the
bit rate was ª45 Mbits s–1. Around  1981, we had the
second-generation optical communication systems which
again used graded index multimode fibers but  now operating
at 1300 nm wavelength (so that the material dispersion is
very small); the bit rate was almost the same (ª45 Mbits s–1)
but since the loss was ª1 dB km–1 and the dispersion was
also less, the repeater spacing increased to ª30 km. The
third- and fourth-generation optical communication systems
used single-mode fibers operating at 1300 and 1550 nm wave-
lengths, respectively.

27.12 GENERAL EXPRESSION

FOR RAY DISPERSION

CORRESPONDING TO A

POWER LAW PROFILE

The time taken to propagate through a length L of a multi-
mode fiber described by a q-profile [see Eq. (19)] is
given by

( )
B

A L
Ê ˆ

t b = b +Á ˜bË ¯
� �

�

(39)

where
2
12

(2 ) (2 )

qn
A B

c q c q
= =

+ +
(40)

and for rays guided  by the fiber n2 < b
~ 

< n1. In the ray optics
approximation Eq. (39) is rigorously correct [see Refs. 14 and
15 for derivation of Eq. (39)]. Using the above equations, we
can calculate the ray dispersion in fibers with different q values.
For the step profile, q = • and

2
10

n
A B

c
= = fi

2
1( )

n
L

c
t b =

b

�
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(41)

Thus,
2
1

max 2
2

( )
n

n L
cn

t = t b= =
�

and

1
min 1( )

n
n L

c
t = t b= =

� (42)
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giving

1 1 2
max min

2

n n n
L

c n

-
Dt= t - t = (43)

which is the same expression as given by Eq. (27). For the
parabolic  profile, q = 2 and

2
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= = fi
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Thus,
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giving
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2 1 2
max min

22

n n n
L

c n

Ê ˆ-
Dt= t - t = Á ˜Ë ¯

(46)

which is the same expression as given by Eq. (32). The  cal-
culation of the optimum value of q (which gives minimum ray
dispersion) requires a plot of t (b� ) as a function of b� for
different values of q. The details are given in Refs. 14 and 15,
and the minimum dispersion occurs for q ª 2 - 2D where the
pulse dispersion is given by

2

1 1 2

2

(optimumprofile)
8

n n n
L

c n

Ê ˆ-
Dt = Á ˜Ë ¯

(47)

However, because in a given fiber the profile itself depends
on wavelength (because the refractive changes slightly with
wavelength), most graded index fibers used in optical com-
munication systems correspond to q ª 2.

27.13 PLASTIC OPTICAL FIBERS

Plastic optical fibers (usually abbreviated as POFs) are fibers
made from plastic materials such as PMMA (poly methyl
methacrylate) (n = 1.49), polystyrene (n = 1.59), polycarbon-
ates (n = 1.5–1.57), fluorinated polymers, etc. These fibers
share the same advantages as glass optical fibers in terms of
insensitivity to electromagnetic interference, small size and
weight, low cost, and potential capacity to carry information
at high rates. The most important attribute of POFs is their

large core diameters of around 1 mm compared to glass fibers
with core diameters around  50 mm. Such a large diameter (in
POFs) results in easy alignments at joints. They are also
more durable and flexible than glass fibers. In addition, they
usually have a large numerical aperture and therefore much
larger light-gathering power. Thus coupling to a POF is much
easier than for a normal silica-based optical fiber. One of the
major disadvantages of the POFs is their having much higher
losses compared to silica-based fibers. The low-loss win-
dows of POFs are around 570, 650, and 780 nm. For example, a
graded index PMMA fiber will have a loss of about 110 dB km-1

around the wavelength of 650 nm. This value is much much
larger than for silica fibers. Because of such high losses, POFs
are never used in long-distance communication systems but
are being used in intra-office communication systems where
one requires only a few hundred meters of the fiber. Thus,
although silica-based optical fibers dominate the long-
distance optical communication systems, POFs are providing
low-cost solutions to short-distance applications such as
local-area networks (LANs), high-speed Internet access, etc.

27.14 FIBER-OPTIC SENSORS
7

Although the most important application of optical fibers is
in the field of transmission of information, optical fibers ca-
pable of sensing various physical parameters and generating
information are finding widespread use as fiber-optic sen-
sors. The use of optical fibers for such applications offers
the same advantages as in the field of communication, i.e.,
lower cost, smaller size, greater  accurately, greater flexibility
and reliability. Compared to conventional electrical sensors,
such fiber-optic sensors are immune to external electromag-
netic interference and can also be used in hazardous and
explosive environments. A very important attribute of fiber-
optic sensors is the possibility of having distributed or
quasi-distributed sensing geometries which would otherwise
be too expensive or complicated using conventional sensors.
Using fiber-optic sensors it is possible to measure pressure,
temperature, electric current, rotation, strain, chemical and
biological parameters, etc., with greater precision and speed.
These advantages are leading to increased integration of
such sensors into civil structures such as bridges and tunnels,
process industries, medical instruments, aircrafts, missiles, and
even cars.

Fiber-optic sensors can be broadly classified into two cat-
egories: extrinsic and intrinsic. In the case of extrinsic
sensors, the optical fiber simply acts as a device to transmit

7 Adapted from the unpublished lecture notes of Prof. K. Thyagarajan.
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and collect light from a sensing element, which is external to the
fiber. The sensing element responds to the external perturbation,
and the change in the characteristics of the sensing element
is transmitted by the return fiber for analysis. The optical fi-
ber here plays no role other than that of transmitting the light
beam. On the other hand, in the case of intrinsic sensors, the
physical parameter to be sensed directly alters the properties
of the optical fiber, which in turn leads to changes in a char-
acteristic such as intensity, polarization, phase, etc., of the
light beam propagating in the fiber.

A large variety of fiber-optic sensors have been demon-
strated in the laboratory, and some are already being installed in
real systems. In Sec. 15.6.1 we discussed temperature sensors
(using fiber Bragg gratings) used on a power conductor at an
electric power substation. Fiber Bragg gratings are also used in
strain measurements in bridges and tunnels. In Sec. 22.15 we
discussed fiber-based sensors for measuring large currents.

An interesting sensor is the liquid level sensor shown in
Fig. 27.16. Light propagating down an optical fiber is total
internally reflected from a small glass prism and couples back
to the return fiber. As long as the external medium is air, the
angle of incidence inside the prism is greater than the critical
angle, and hence light suffers total internal reflection. As
soon as the prism comes in contact with a liquid, the critical
angle at the prism-liquid interface reduces and the light gets
transmitted into the liquid, resulting in a loss of signal. By a
proper choice of prism material, such a sensor can be used
for sensing levels of various liquids such as water, gasoline,
acids, oils, etc. More details about fiber-based sensors can
be found in Refs. 14 and 16–17.

Problems

27.1 Consider a step index fiber with n1 = 1.5, D = 0.015, and
a = 25 mm placed in air. Calculate n2 and the maximum
acceptance angle im. If the fiber tip is immersed in water
(n = 1.33), calculate the maximum acceptance angle im.

[Ans.: 1.477; 0.26; 15o; 11.3o]

27.2 A step index optical fiber with n1 = 1.46, n2 = 1.44, and
core radius a = 50 μm is placed in  air. Calculate the maxi-

mum acceptance angle. If the fiber is now immersed in wa-
ter (n = 1.33), calculate the maximum acceptance angle.

[Ans.: 13.9o; 10.4o]

27.3 A step index fiber with n1 = 2, and 2 3n = is placed in
air. What is the maximum angle an incident ray can make
with the axis of the fiber at the input end in air, so that it
is guided after entering the fiber?

 [Ans.: 90o]

27.4 Consider a bare fiber with: n1 = 1.46 (pure silica), n2 = 1.0
(air), and core radius a = 30 mm.

(a) Show that all rays (inside the core) making an angle
q < 46.77o with the z axis will be guided through the fiber.

(b) Assume q = 30o and calculate the number of reflec-
tions that will occur in propagating through 1 km
length of the fiber. Assume only a 0.01% decrease in
power at each reflection; calculate the power loss at
each reflection and in propagating through 1 km length
of the fiber.

[Ans.: 9.6 ¥ 106, 4.34 ¥ 10-4 dB, 4179 dB km-1]

27.5 The power of a 2 mW laser beam decreases to 15 mW after
traversing through 25 km of a single-mode optical fiber.
Calculate the attenuation of the fiber.

[Ans.: 0.85 dB km-1]

27.6 A 5 mW laser beam passes through a 26 km fiber of loss
0.2 dB km-1. Calculate the power at the output end.

[Ans.: 1.5 mW]

27.7 Consider a 15 mW laser beam passing through a 40 km fi-
ber link of loss 0.5 dB km-1. Calculate the output power in
dBm and then in mW.

[Ans.: 0.15 mW]

27.8 The power of a 10 mW laser beam decreases to 40  mW
after traversing through 40 km of an optical fiber. Calculate
the attenuation of the fiber in dB km-1.

            [Ans.: 0.6 dB km-1]

27.9 Consider a 50 km fiber link (with a loss of 0.25 dB km-1)
having four connectors in its path. If each connector
has a loss of 1.8 dB, then calculate the total loss. The
loss at the source to the fiber is 2 dB, and the loss from
the fiber to the detector is 2.5 dB. The input laser
power is 10 mW; calculate the output power in dBm
and in mW.

27.10 (a) Consider a step index fiber with n1 = 1.46,  n2 = 1.44,
and a =  50 mm. Assume that the operating wavelength
l0 = 0.85 mm, calculate the V  value and show that it
is a multimode fiber. Calculate the ray dispersion in
ns km-1.

(b) Next consider a bare step index fiber with n1 = 1.46,
n2 = 1.0, and a = 50 mm. Assume that the operating
wavelength l0 = 0.85 mm, calculate the V value and

Detector DetectorLED LED

Total internal reflection No total internal reflection

Fig. 27.16 A liquid level sensor based on changes in the

critical angle due to liquid level moving up.
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show that it is a multimode fiber. Calculate the ray
dispersion.

[Ans.: (a) 67.6 ns km-1; (b) 2239 ns km-1]

27.11 Assume that the material dispersion coefficient Dm is
given by

4 2
2
0 2

0 0 0

10

3
m

m
d n

D
L d

Ê ˆDt
= = - lÁ ˜Dl l lË ¯ ps km-1 nm-1

where l0 is measured in mm. For silica fibers 2 2
0/d n dl ª

0.0297 (mm)-2 at l0 = 0.85 mm; ª 0.0120  (mm)-2 at l0 = 1.0 mm;
ª -0.00055 (mm)-2 at l0 = 1.30 mm; and ª -0.00416 (mm)-2 at l0 =
1.55 mm.
(a) At l0 = 0.85, 1.0, 1.30, and 1.55 mm, calculate the ma-

terial dispersion (in ns km-1) when Dl0 (the spectral
width of source) is 50 nm (LED) and 2.5 nm (LD),
respectively.

(b) Consider a SIF with n1 = 1.5, a = 40 mm, and D = 0.015
operating at 850 nm with a spectral width of 50 nm.
Is this a single-mode fiber or a multimode fiber? Calcu-
late the material dispersion, ray dispersion, total pulse
dispersion, and hence the maximum bit rate.

(c) Next, consider a parabolic index fiber with n1 = 1.5, a =
40 mm, and D = 0.015 operating at 850 nm with a spectral
width of 50 nm. Is this a single-mode fiber or a multimode
fiber? Calculate the material dispersion, ray dispersion,
total pulse dispersion, and hence the maximum bit rate.

(d) Finally, consider a parabolic index fiber with n1 = 1.5,
a = 40 mm, and D = 0.015 operating at 1300 nm with a
spectral width of 50 nm. Calculate the material disper-
sion, ray dispersion, total pulse dispersion, and hence
the maximum bit rate.

[Ans.: (b) 4.2, 75, 75.1 ns km-1;
(c) 4.2, 0.6, 4.2 ns km-1]
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28.1 INTRODUCTION

In the design of an optical communication system, it is nec-
essary to have a good understanding of the propagation
characteristics of the optical fiber. In Chap. 27 we used ray
optics to understand the propagation characteristics of the
optical fiber. Such an analysis is valid when the fiber sup-
ports a large number of modes. However, today single-mode
fibers are extensively used in optical communication systems.
And in single-mode fibers, ray optics is not applicable and
one has to solve Maxwell’s equations to determine the
modes of the waveguide. Thus the first thing to do is to under-
stand the concept of modes, which we plan to do in this
chapter. And to understand the concept of modes, it is prob-
ably best to consider the simplest planar optical waveguide
that consists of a thin dielectric film sandwiched between
materials of slightly lower refractive indices which is character-
ized by the following refractive index variation (see Fig. 28.1):

n(x) = 
1

2

| |
2

| |
2

d
n x

d
n x

Ï
<ÔÔ

Ì
Ô >
ÔÓ

(1)

with n1 > n2. Equation (1) describes what is usually referred
to as a step index profile. The waveguide is assumed to

OPTICAL WAVEGUIDES II:

BASIC WAVEGUIDE THEORY

AND  CONCEPT OF MODES

Chapter

Twenty-

Eight

extend to infinity in the y and z directions. To start, we con-
sider a more general case of the refractive index depending
only on the x coordinate:

n2 = n2(x) (2)

When the refractive index variation depends only on the
x coordinate, we can always choose the z axis along the di-
rection of propagation of the wave, and we may, without any
loss of generality, write the solutions of Maxwell’s equations
in the form

E = E(x)ei(wt–bz) (3)

H = H(x)ei(wt–bz) (4)

The above equations define the modes of the system. Thus

Modes represent transverse field distributions that
suffer a phase change only as they propagate through
the waveguide along z.

The transverse field distributions described by E(x) and H(x)
do not change as the field propagates through the waveguide.
The quantity b represents the propagation constant of the
mode. If we substitute the above solutions in Maxwell’s
equations, we obtain two independent sets of equations (see
App. E). The first set of equations corresponds to nonvan-
ishing values of Ey, Hx, and Hz with Ex, Ez, and Hy vanishing,
giving rise to what are known as TE modes because the elec-
tric field has only a transverse component. The second set
of equations corresponds to nonvanishing values of Ex, Ez,
and Hy with Ey, Hx, and Hz vanishing, giving rise to what are
known as TM modes because the magnetic field now has
only a transverse component.

For TE modes, we show in App. E that Ey(x) satisfies the
following differential equation

2

2

yd E

d x
 + [k0

2n2(x) – b 2]Ey = 0 (5)

Fig. 28.1 A planar dielectric waveguide of thickness d

(along x direction) but infinitely extended along

the y direction. Light propagates along the z

direction.
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where

k 0 = 0 0w e m  = 
c

w

(6)

is the free space wave number and c ( )0 0= 1 e m  is the

speed of light in free space. Once Ey(x) is known, we can de-
termine Hx and Hz from the following equations (see App. E):

Hx = 
0

b
-
wm

Ey(x) and Hz = 
0

ydEi

dxwm

(7)

Equations (3) to (7) are rigorously correct as long as the re-
fractive index distribution depends only on the x coordinate.
Equation (5) is an eigenvalue equation with b2 representing
the eigenvalue. By applying the appropriate boundary condi-
tions, we will show that b2 can have a set of discrete values
(corresponding to guided modes of the waveguide) and also
a continuum of values corresponding to the radiation modes
of the waveguide.

28.2 TE MODES OF A

SYMMETRIC STEP INDEX

PLANAR WAVEGUIDE
1

Until now our analysis has been valid for an arbitrary
x-dependent profile. We now assume that the refractive index
variation is given by Eq. (1) (see Fig. 28.1). Substituting for
n(x) in Eq. (5), we obtain

2

2

yd E

dx
 + (k0

2n1
2 – b 2)Ey = 0 |x| < d

2
film (8)

2

2

yd E

dx
 + (k0

2n2
2 – b 2)Ey = 0 |x| > d

2
cover (9)

We will solve Eqs. (8) and (9) subject to the appropriate
boundary and continuity conditions. Since Ey and Hz repre-
sent tangential components on the planes x = ±d/2, they
must be continuous at x = ±d/2; and since Hz is proportional
to dEy/dx [see Eq. (7)], we must have

Ey and ydE

dx
 continuous at x = 

2

d
± (10)

The above represents the continuity conditions that have to
be satisfied.2 Now, guided modes are those modes that are

mainly confined to the film, and hence their field should de-
cay in the cover, i.e., the field should decay in the region
x > d/2, so that most of the energy associated with the

modes lies inside the film. Thus, we must have

b 2 > k0
2n2

2 (11)

When b 2 < k0
2n2

2, the solutions are oscillatory in the
region x > d/2 and they correspond to what are known as
radiation modes of the waveguide. These radiation modes
correspond to rays that undergo refraction (rather than total
internal reflection) at the film-cover interface, and when these
are excited, they quickly leak away from the core of the
waveguide. Furthermore, we must also have b2 < k0

2n1
2; other-

wise, the boundary conditions cannot be satisfied3 at x = ±d/2.
Thus, for guided modes we must have

n2
2 < 

2

2
0k

b
 < n1

2 guided modes (12)

One often defines the effective index of the mode as

eff
0

n
k

b
∫ (13)

giving

n2 < neff < n1 (14)

Recall the discussion in Sec. 3.4 where we said that for an
optical waveguide, guided rays correspond to

n2 < b�  < n1 guided rays (15)

and refracting rays correspond to b� < n2; further, there cannot
be any ray with b� > n1. Thus, b� (in ray optics) can be said to
correspond to β /k0 in wave optics:

 eff
0

= n
k

b
b¤� (16)

In Sec. 3.4, we defined the parameter b� as equal to n(x) cos q(x),
where q(x) was the angle that the ray makes with the z axis.
For the step index waveguide b� = n1 cos q where the angle q
(that the ray makes with the z axis) remains constant within
the core of the waveguide. In Sec. 28.3 we will show that in a
step index waveguide, a mode can be represented as a
superposition of two plane waves propagating at angles

1 1
0 1 eff 1cos ( / ) [ cos ( / )]k n n n- -

± b = ± with the z axis. Since neff

will be shown to take a set of discrete values, each discrete
value of neff will therefore correspond to a discrete value of q
(see also Sec. 28.3).

1 More details about waveguide modes can be found in Refs. 1 to 4.
2 The very fact that Ey satisfies Eq. (5) also implies that Ey and dEy /dx are continuous unless n2(x) has an infinite discontinuity. The

follows from the fact that if dEy /dx is discontinuous, then d2Ey /dx2 will be a delta function (see Prob. 9.2) and Eq. (5) will lead to
an inconsistent equation.

3 It is left as an exercise for the reader to show that if we assume b2 > k0
2n1

2 and also assume decaying fields in the region |x | > d/2, then
the boundary conditions at x = +d/2 and at x = – d/2 can never be satisfied simultaneously.
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We use Eq. (12)  to write Eqs. (8) and (9) in the form
2

2
2

0 film
2

y
y

d E d
E x

dx
+ k = < (17)

2
2

2
– 0 cover

2
y

y

d E d
E x

dx
g = > (18)

where
2 2 2 2

0 1= –k nk b (19)
and

2 2 2 2
0 2= – k ng b (20)

Now, when the refractive index distribution is symmetric
about x = 0, that is, when

n2(–x) = n2(x) (21)
the solutions are either symmetric or antisymmetric functions
of x (see Prob. 28.8; see also pp. 126–127 of Ref. 2)4; thus we
must have

Ey (–x) = Ey(x) symmetric modes (22)

Ey (–x) = –Ey(x) antisymmetric modes (23)

For the symmetric mode, we must have

–

cos < –
2( ) =

>
2

y x

d
A x x

E x d
Ce xg

Ï
kÔ

Ì
Ô
Ó

(24)

where we have neglected the exponentially amplifying solu-
tion in the region |x | > d/2. Continuity of Ey(x) and dEy /dx at
x = ±d/2 gives

Acos
2

dk
= Ce–gd/2 (25)

and –k A sin
2

dk
= –g Ce–gd/2 (26)

respectively. Dividing Eq. (26) by Eq. (25), we get

x tan x = 
2

dg
(27)

where

x ∫ 
2

dk
(28)

Now, if we add Eqs. (19) and (20), we get

( ) ( )
2

2 2 2 2 2 2 2
0 1 2

1 1
+ = – =

4 4 4

d
k d n n VÈ ˘k g
Î ˚ (29)

where

V = k0
2 2
1 2–d n n (30)

is known as the dimensionless waveguide parameter, which
is an extremely important parameter in waveguide theory.
Using Eqs. (28) and (29), we can write

2 21
4= –

2

d
V

g
x (31)

and Eq. (27) can be put in the form

2 21
4tan = –Vx x x (32)

Similarly, for the antisymmetric mode we have

–

sin < –
2

( ) = >
2

– < –
2

x
y

x

d
B x x

d
E x De x

d
De x

g

g

Ï
kÔ

ÔÔ
Ì
Ô
Ô
ÔÓ

(33)

and following an exactly similar procedure, we get

2 21
4– cot = –Vx x x (34)

Thus, we have

x tan x = 
2

2–
2

VÊ ˆ xÁ ˜Ë ¯
for symmetric modes (35)

and

–x cot x = 
2

2–
2

VÊ ˆ xÁ ˜Ë ¯
for antisymmetric modes (36)

Since the equation

h = 
2

2–
2

VÊ ˆ xÁ ˜Ë ¯
(37)

(for positive values of x) represents a circle (of radius V/2)
in the first quadrant of the xh plane,5 the numerical evalua-
tion of the allowed values of x (and hence of the propagation
constants) is quite simple. In Fig. 28.2 we have plotted the
functions x tan x (solid curve) and –x cot x (dashed curve)
as a function of x. For a given value of V, the points of inter-
section of these curves with the quadrant of the circle
determine the allowed (discrete) values of x. The two circles
in Fig. 28.2 correspond to V/2 = 2 and V/2 = 5. Obviously, as
can be seen from the figure, for V = 4 we will have one sym-
metric and one antisymmetric mode, and for V = 10 we will
have two symmetric and two antisymmetric modes.6

4 The same situation arises in quantum mechanics—see, e.g., pp. 155–157 of Ref. 5.
5 This follows from the fact that if we square Eq. (37), we get h2 + x2 = (V/2)2, which represents a circle of radius V/2.
6 Those who are familiar with basic quantum mechanics will notice that the procedure for determining the discrete TE modes in a
planar waveguide is almost identical to the one used in obtaining the discrete energy eigenvalues of the one-dimensional Schrödinger
equation. Similarly, the modal analysis of the parabolic index planar waveguide is almost identical to the linear harmonic oscillator
problem in quantum mechanics (see Sec. 28.6).
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( ) ( )1 1 1
2 2 2– 1– cot 1– =V b V b V b for antisymmetric

modes (42)
Obviously, because of Eq. (12), for guided modes we will
have

0 < b < 1 (43)

For a given value of V, solutions of Eqs. (41) and (42) will give
us discrete values of b; the mth solution (m = 0, 1, 2, 3, . . . )
is referred to as the TEm mode. In Table 28.1, we have tabu-
lated the discrete values of b for various values of V; these
discrete values have been obtained by using the software in
Ref. 7. The universal curves describing the dependence of b
on V are shown in Fig. 28.3. For any given (step index)
waveguide we just have to calculate V and then obtain the
corresponding value of b either by solving Eqs. (41) and (42)
or by using Table 28.1. From the values of b, one can obtain
the propagation constants by using the following equation
[see Eq. (36)]:

( )2 2 2
2 1 2

0

= + – n b n n
k

b
(44)

Figure 28.4 shows typical field patterns of some of the low-
order TEm modes of a step index waveguide.

Example 28.1 We consider a step index planar waveguide
with d = 3 mm, n1 = 1.5, and n2 = 1.49153. The value of n2 is chosen

It is often very convenient to define the dimensionless
propagation constant

2 2 2 2 2
0 2 eff 2

2 2 2 2
1 2 1 2

– –
=

– –

k n n n
b

n n n n

b
∫ (38)

Thus

( )

2 2 2 2 2
0 2

22 2 2
0 1 2

– 
= =

–

k n d
b

Vk n n

b g

giving

1
=

2 2

d
V b

g
(39)

Further, using Eqs. (29) and (39), we can write

2 2
21

= = –
2 4 4

d d
V

k g
x

= 
1

1 –
2

V b (40)

Thus Eqs. (35) and (36) can be written in the form

( ) ( )1 1 1
2 2 21 – tan 1 – =V b V b V b

for symmetric modes (41)

10 2 3 4 5 6 7 8 9
– 4

–2

0

2

4

6

x xtan - x xcot

25 – 2x

4 – 2x

x

Fig. 28.2 Variation of x tan x (solid curve) and -x cot x
(dashed curve) as a function of x. The points of

intersection of these curves with the quadrant of a

circle of radius V/2 determine the discrete propa-

gation constants of the waveguide.

0
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b

 = 1.4
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n2

Fig. 28.3 Dependence of b on V for a step index planar

waveguide. For the TE modes, the b–V curves are

universal; however, for the TM modes, the b–V

curves require the value of n
1
/n

2
. For the curves

shown in the figure n
1
/n

2
 = 1.4; calculations cour-

tesy of Triranjita Srivastava.
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of b/k0 are ª 1.4990, 1.49606, and 1.49205, respectively. Notice
that all the values of b/k0 lie between n1 and n2. Note that in
each case, the waveguide will support an equal number of TM
modes (see Sec. 28.4). Further, as the wavelength is made smaller,
the waveguide will support a larger number of modes, and in the
limit of the wavelength tending to zero, we will have a continuum
of modes which is nothing but the ray optics limit.

Example 28.2 We next consider a step index planar
waveguide with d = 2.5 mm, n1 = 1.5, and n2 = 1.47. Assuming the
operating wavelength l0 = 1.0 mm, we get V = 4.6888. If we carry
out linear interpolation, we obtain for the TE0 mode

b = 0.780563 + 0.788321 – 0.780563

0.125
 ¥ 0.0638 ª 0.78452

We therefore get b/k0 ª 1.49359. Similarly for the TE1 mode,

b = 0.213390 + 
0.235151 – 0.213390

0.125
 ¥ 0.0638 ª 0.22450

and the corresponding value of b/k0 will be ª 1.47679.

Table 28.1 Values of the normalized propagation constant (corresponding to TE modes) for a symmetric planar
waveguide; the values are generated by using the software in Ref. 7. Notice that for V < p we will have
only one TE mode which will be symmetric in x, and for p < V < 2p we will have two TE modes; one of
them will be symmetric in x and the other antisymmetric in x.

such that 2 2
1 2– = 1/ 2n n p so that

2 2
1 2

0 0 0

2 3
= – = =

d
V d n n

p

l l l

where l0 is measured in mm

and

2
2 2

0

= +
4

b
n

k

b

p

For l0 = 1.5 mm, V is equal to 2.0 and from Table 28.1 we see that there
will be only one TE mode with b = 0.453753; the corresponding value
of b/k0 ª 1.49538. The same waveguide operating at l0 = 1.0 mm
will have V = 3.0, and from Table 28.1 we see that there will be
again only one TE mode with b = 0.628017; the corresponding
value of b/k0 ª 1.49686. However, for l0 = 0.6 mm, V = 5.0 and
there will be two TE modes with b = 0.802683 (the TE0 mode) and
the other with b = 0.277265 (the TE1 mode). The corresponding
values of b/k0 ª 1.49833 and 1.49389. Finally, for l0 = 0.4286 mm,
V = 7.0 and there will be three TE modes with b = 0.879298 (TE0),
0.533727 (TE1), and 0.061106 (TE2). The corresponding values

V b(TE0) b(TE1)

1.000 0.189339
1.125 0.225643
1.250 0.261714
1.375 0.297049
1.500 0.331290
1.625 0.364196
1.750 0.395618
1.875 0.425479
2.000 0.453753
2.125 0.480453
2.250 0.505616
2.375 0.529300
2.500 0.551571
2.625 0.572502
2.750 0.592169
2.875 0.610649
3.000 0.628017
3.125 0.644344
3.250 0.659701 0.002702
3.375 0.674151 0.011415
3.500 0.687758 0.024612
3.625 0.700579 0.041077
3.750 0.712667 0.059875
3.875 0.724073 0.080292
4.000 0.734844 0.101775

V b(TE0) b(TE1) b(TE2)

4.000 0.734844 0.101775
4.125 0.745021 0.123903
4.250 0.754647 0.146349
4.375 0.763756 0.168864
4.500 0.772384 0.191259
4.625 0.780563 0.213390
4.750 0.788321 0.235151
4.875 0.795686 0.256461
5.000 0.802683 0.277265
5.125 0.809335 0.297523
5.250 0.815663 0.317210
5.375 0.821689 0.336310
5.500 0.827429 0.354817
5.625 0.832902 0.372731
5.750 0.838123 0.390056
5.875 0.843107 0.406800
6.000 0.847869 0.422976
6.125 0.852420 0.438596
6.250 0.856772 0.453676
6.375 0.860938 0.468231 0.001845
6.500 0.864926 0.482278 0.008819
6.625 0.868748 0.495834 0.019189
6.750 0.872412 0.508916 0.031806
6.875 0.875926 0.521541 0.045942
7.000 0.879298 0.533727 0.061106
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28.3 PHYSICAL UNDERSTANDING

OF MODES

To have a physical understanding of modes, we consider the
electric field pattern inside the film (–d/2 < x < d/2). For ex-
ample, for a symmetric TE mode, this is given by [see Eq. (22)]
Ey (x) = A cos k x. Thus the complete field inside the film is
given by

Ey(x) = A cos kxei(wt–b z)

( – – ) ( – + )1 1
2 2= +i t z x i t z xAe Aew b k w b k (45)

Now

ei(w t – k.r) = ei(wt – kxx – ky y – kzz)

represents a wave propagating along the direction of k
whose x, y, and z components are kx, ky, and kz, respectively.
Thus, for the two terms on the RHS of Eq. (45) we will have

k x = k ky = 0 kz = b (46)
and

kx = –k ky = 0 kz = b (47)

which represent plane waves with propagation vectors paral-
lel to the xz plane making angles +q and –q with the z axis
(see Fig. 28.5) where

tan q = x

z

k

k
 = 

k

b

or

cos q = 
2 2

b

b + k
 = 

0 1k n

b
(48)

Thus, a guided mode can be considered to be

A superposition of two plane waves propagating at

angles ± cos–1

0 1k n

b
 with the z axis

(see Fig. 28.5). Referring to the waveguide discussed in
Example 28.1, at l0 = 0.6 mm, V will be 5.0 and we will have
two TE modes with b/k0 ª 1.49833 and 1.49389. Since n1 = 1.5,
the values of cos q will be 0.99889 and 0.99593 and therefore

q ª 2.70∞ and 5.17∞

corresponding to the symmetric TE0 mode and the antisym-
metric TE1 mode, respectively. Each mode is therefore
characterized by a discrete angle of propagation qm. Accord-
ing to ray optics, the angle q could take all possible values
from 0 (corresponding to a ray propagating parallel to the
z axis) to cos–1(n2/n1) (corresponding to a ray incident at the
critical angle on the core-cladding interface). However, we
now find that according to wave optics, only discrete values
of q are allowed, and each “discrete” ray path corresponds
to a mode of the waveguide. This is the basic principle of the
prism film-coupling technique for determining the (discrete)
propagation constants of an optical waveguide (see Fig. 28.6).
The method consists of placing a prism (whose refrac-
tive index is greater than that of the film) close to the
waveguiding film. In the presence of the prism, the rays
undergo refraction and leak away from the waveguide. The
direction at which the light beam emerges from the prism is
directly related to qm. From the measured values of qm one

d

TE0

TE2

Ey

Ey

d

TE3

TE1

x

x

Fig. 28.4 Typical mode field distributions for TE modes

in a step index planar waveguide with n
1
 = 1.49,

n
2
 = 1.56, a = 4 mm, and l = 0.6328 mm. TE

0
 and

TE
2
 are symmetric in x and are known as even

modes, while TE
1
 and TE

3
 are antisymmetric in

x and are known as odd modes.

–q

Fig. 28.5 A guided mode in a step index waveguide corre-

sponds to the superposition of two plane waves

propagating at particular angles ±q with the z axis.
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Screen

Screen

(b)(a)

Fig. 28.6 The prism film-coupling technique for determining the (discrete) propagation constants of an

optical waveguide.

7 Actually for V < p, the waveguide will support one TE and one TM mode (see Sec. 28.4), and when n1 has a value very close to n2,
the two modes will have very nearly the same propagation constants.

can obtain the discrete values of the propagation constant b
by using the formula

b = k0n1cos q (49)

As mentioned in Sec. 27.9, for a given waveguide, if l0 is
made to go to 0, the value of V becomes very large and the
waveguide will support a very large number of modes. In this
limit, we can assume all values of q to be allowed, and it will
be quite appropriate to use ray optics in studying the propa-
gation characteristics of the waveguide.

From Fig. 28.3 we can derive the following conclusions
about TE modes (similar discussion can be had for TM
modes, which are discussed in the next section):

1. If 0 < V/2 < p/2, that is, when

0 < V < p (50)

we have only one discrete (TE) mode of the waveguide
and this mode is symmetric in x. When this happens,
we refer to the waveguide as a single-mode waveguide.
In Example 28.1, the waveguide will be single-mode for
l0 > 0.955 mm; this wavelength (for which V becomes
equal to p) is referred to as the cutoff wavelength.7

2. From Fig. 28.2, it is easy to see that if p/2 < V/2 < p
(or p < V < 2p), we will have one symmetric and one
antisymmetric TE mode. In general, if

2mp < V < (2m +1)p (51)

we will have m + 1 symmetric modes and m antisym-
metric modes, and if

(2m +1)p < V < (2m +2)p (52)

we will have m + 1 symmetric modes and m + 1 anti-
symmetric modes where m = 0, 1, 2, . . .. Thus, the total
number of modes will be the integer closest to (and
greater than) V/p.

3. When the waveguide supports many modes (i.e., when
V >> 1), the points of intersection (in Fig. 28.2) will be
very close to x = p/2, 3p/2, . . .; thus, the propagation
constants corresponding to the first few modes can be
approximately determined by the following equation:

x = xm = 2 2 2
0 1 –

2m
d

k n b  ª (m + 1) 
2

p
V >> 1 (53)

where

m = 0, 2, 4, . . . correspond to symmetric modes

and

m = 1, 3, 5, . . . correspond to antisymmetric modes

28.4 TM MODES OF A

SYMMETRIC STEP INDEX

PLANAR WAVEGUIDE

In the above discussion we considered the TE modes of the
waveguide. A very similar analysis can also be performed for
the TM modes. In App. D we show that for TM modes Hy(x)
satisfies the following equation:

2 2 2 2
02

1
( ) + ( ) – ( ) = 0

( )

y
y

dHd
n x k n x H x

dx dxn x

È ˘
È ˘bÍ ˙ Î ˚Í ˙Î ˚

(54)

For a step index waveguide [see Eq. (1)], n2(x) will be con-
stant in each region, and therefore Hy(x) will also satisfy
Eqs. (15) and (16) in the regions /2x d<  and > /2x d , respec-
tively. Now Hy(x) is a tangential component, and hence it will
be continuous at the core-cladding interface. Further, since

2
0

1
=

( )

y
z

dH
E

dxi n xwe
(55)
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(see App. E) and since Ez(x) is a tangential component, the
continuity conditions are now

2

1
and

y
y

dH
H

dxn
 continuous at x = ±d/2 (56)

If we incorporate these continuity conditions and use the
same procedure as in Sec. 28.2, we get the following transcen-
dental equations:

2 2
21

2

tan = – 
2

n V

n

Ê ˆ Ê ˆx x xÁ ˜Á ˜ Ë ¯Ë ¯

for symmetric TM modes (57)
A similar derivation gives us

2 2
21

2

– cot = – 
2

n V

n

Ê ˆ Ê ˆx x xÁ ˜Á ˜ Ë ¯Ë ¯

for antisymmetric TM modes (58)

where x and V have been defined earlier. One can again use
a graphical method to determine the discrete propagation
constants for TM modes. In terms of  the parameters b and
V, we have

2
1

2

1 1 1
1 – tan 1 – =

2 2 2

n
V b V b V b

n

Ê ˆÊ ˆ Ê ˆ
Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

for symmetric TM modes (59)

2
1

2

1 1 1
– 1 – cot 1 – =

2 2 2

n
V b V b V b

n

Ê ˆÊ ˆ Ê ˆ
Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

for antisymmetric TM modes (60)

One now requires the value of (n1/n2)
2 to obtain the b–V curves

(see Fig. 28.3). Obviously if n1 has a value very close to n2, then
(n1/n2)

2 is very close to 1 and the propagation constants for
TM modes will be very close to the propagation constants
for TE modes—this is the weakly guiding approximation.

28.5 TE MODES OF A PARABOLIC

INDEX PLANAR WAVEGUIDE

As another example, we consider parabolic variation of
refractive index (see Sec. 3.4.1)

2 2 2 2
1( ) = –n x n xg (61)

Thus Eq. (5) takes the form

( )
2

2 2 2 2 2 2
0 1 02

+ – – = 0
y

y

d E
k n k x E

dx
È ˘b g
Î ˚ (62)

which can be written in the form

( )
2

2
2

+ – = 0
y

y

d E
E

d
L x

x
(63)

where x = ax and we have chosen 
0= .ka g  Further,

2 2 2 2 2 2
0 1 0 1

2
0

– –
= =

k n k n

k

b b
L

ga
(64)

For the wave function not to blow up at x = ±• (which repre-
sents the boundary condition), L must be equal to an odd
integer (see App. F); i.e.,

2 2 2
0 1

0

–
= = 2 + 1 = 0,1, 2, 3,

k n
m m

k

b
L

g
. . . (65)

For those who are familiar with quantum mechanics, Eq. (63) is
identical to the one obtained while solving the one-dimensional
Schrödinger equation for the linear harmonic oscillator prob-
lem (see, e.g., Refs. 5 and 6). Equation (65) gives the following
expression for the discrete propagation constants:

1/2

0 1 2
0 1

(2 + 1)
= = 1 – = 0, 1, 2, 3,m

m
k n m

k n

È ˘g
b b Í ˙

Í ˙Î ˚
. . . (66)

The corresponding modal patterns are Hermite Gauss functions
(see Appendix F):

21
( ) = ( ) exp – = 0, 1, 2, 3,

2y mE x NH m
Ê ˆx xÁ ˜Ë ¯

. . . (67)

where N is a constant and Hm(x) are the Hermite polynomials:

2
0 1 2

3
3

( )=1 ( )= 2 ( )= 4 – 2

( ) =8 –12 . . .

H H H

H

x x x x x

x x x
(68)

Notice that the modes corresponding to even values of m
are symmetric in x, and modes corresponding to odd values
of m are antisymmetric in x. This is so because the refractive
index variation n2(x) is symmetric in x. Equations (66) and (67)
represent rigorously correct propagation constants and field
profiles (corresponding to TE modes) in an infinitely extended
parabolic index medium; of course the refractive index distri-
bution is itself unrealistic. A more realistic distribution is given
by (see Sec. 3.4.1)

2
2 2

1( ) = 1 – 2 | |
x

n x n x a
a

È ˘Ê ˆD <Í ˙Á ˜Ë ¯Î ˚
core

2 2
2 1= = (1 – 2 )n n D | | >x a cladding

(69)

The region |x | < a is known as the core of the waveguide,
and the region |x | > a is referred to as the cladding. Thus

1 2
=

n

a

D
g (70)

The waveguide parameter is given by

2 2
0 1 2 0 1= – = 2V k a n n k an D (71)

In a typical parabolic index medium,

n1 ª 1.5 D ª 0.01 a ª 20 mm (72)
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giving n2 ª 1.485 and g ª 1.0607 ¥ 104 m–1. For discrete
guided modes we must have

2
2 2
2 12

0

< <n n
k

b
(73)

and therefore the maximum value of m will correspond to
b = bm = bmin = k0n2. Indeed, when the waveguide supports
a very large number of modes, the low-order modes are accu-
rately given by Eq. (66). Now when 2

0 1/ 1k ng <<  and for not
too large values of m, we may carry out a binomial expansion
in Eq. (66) to obtain

  0 1
1

1

2m k n m
n

gÊ ˆb = b ª - +Á ˜Ë ¯

1
1

1
– + = 0,1, 2, 3,

2
n m m

c n

w gÊ ˆª Á ˜Ë ¯
. . . (74)

Thus the group velocity vg of the mode will be given by [see
Eqs. (6) and (41) of Chap. 10]:

11
=

g

nd

d c

b
ª

wv (75)

independent of the mode number! Thus, in this approxima-
tion, all modes travel with the same group velocity. Indeed,
using ray optics, we showed in Sec. 3.4 that all rays take ap-
proximately the same time to propagate through a certain
distance of a parabolic index waveguide. It is for this reason
that parabolic index waveguides are often used in fiber-optic
communication systems.

For a cladded waveguide, if we assume the validity of
Eq. (66), we can easily calculate the total number of modes.
Since the minimum value of b is  k0n2, we will have

( )2 2 2
0 1 2

max
0

(2 1)
k n n

m
k

-

= +
g

(76)

where mmax represents the maximum value of m. Thus the total
number of modes is given by

 N ª 2mmax ª V (77)
where we have used Eqs. (70) and (71) and the fact that there
would be an equal number of TM modes. For the parameters
given by Eq. (72) we obtain  N ª 27. Some exact solutions for
TM modes in graded index slab waveguides are given in Ref. 8.

28.6 WAVEGUIDE THEORY AND

QUANTUM MECHANICS

In Sec. 28.3, we showed that for a given waveguide, if l0 is
made to go to 0, the value of V becomes very large and the
waveguide will support a very large number of modes. In this
limit, we can assume all values of q to be allowed, and it will be
quite appropriate to use ray optics to study the propagation
characteristics of the waveguide.

In this section, we will show that for a given quantum well
structure, if �  is made to go to 0, the quantum well structure
will have a very large number of bound states, and in this
limit, we can assume all values of energy to be allowed and it
will be quite appropriate to use classical mechanics. Further,
the one-dimensional Schrödinger equation is very similar to
the wave equation for TE modes; the former leads to the
bound states of a quantum mechanical problem, and the lat-
ter leads to guided modes of a waveguide problem.
Obviously, the methodology of solving either of the equa-
tions is the same. Indeed the modal analysis of the step index
planar waveguide is almost identical to the procedure used
for solving the one-dimensional Schrödinger equation corre-
sponding to the symmetric potential well. Similarly, the modal
analysis of the parabolic index planar waveguide is almost
identical to the linear harmonic oscillator problem in quantum
mechanics (see, e.g., Refs. 5 and 6). Thus, it is often easier to
understand a concept in quantum mechanics through fiber
optics and vice versa. Further, we can say that

The relationship between geometric and wave optics
is very similar to the relation between classical and
quantum mechanics. In the limit of l0 Æ 0,
wave optics goes over to ray optics and in the limit
of �  Æ 0, quantum mechanics goes over to classical
mechanics.

Now, for a particle of mass m the one-dimensional
Schrödinger equation is given by

2

2 2

2d

dx

y m
+
�

[E – V(x)]y (x) = 0 (78)

We consider a potential energy function given by [cf. Eq. (1)]

V(x) = 

0

0 | |
2

| |
2

d
x

d
V x

Ï
<ÔÔ

Ì
Ô >
ÔÓ

(79)

Thus the Schrödinger equation can be written in the form

2

2

d

dx

y  + k 2 y(x) = 0 | x| < d
2

(80)

2

2

d

dx

y  – g 2y(x) = 0 | x| > d
2

(81)

where

k 2 = 
2

2 Em

�
(82)
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and

g 2 = 
2

2m

�
(V0 – E) (83)

As in the waveguide problem, we will solve Eqs. (80) and (81)
subject to the appropriate boundary and continuity condi-
tions. The continuity conditions are

y and 
d

dx

y
 continuous at x = ±

2

d (84)

Now, for a bound state, the wave function is mainly confined
to the region |x | < 2

d  and hence its field should decay in the
region |x | < 2

d , so that there is a large probability of finding
the particle inside the well. Thus, we must have

E < V0

When E > V0, the solutions are oscillatory in the region
|x | > /2d  and they correspond to what are known as scatter-
ing states. Furthermore, E cannot be less than the minimum
value of V(x) (in this case the minimum value is zero); other-
wise, the boundary conditions cannot be satisfied at x = ±d/2.
Thus, for bound states we must have

0 < E < V0 bound states (85)

Now, when the potential energy variation is symmetric about
x = 0, that is, when

V (-x) = V(x) (86)

the solutions are either symmetric or antisymmetric functions
of x (see Prob. 28.8; see also pp. 126–127 of Ref. 2); thus we
must have

y (–x) = y (x) symmetric states (87)
y (–x) = –y (x) antisymmetric states (88)

Carrying out an analysis identical to that in Sec. 28.2, we find
that the wave function for symmetric states is given by Eq. (24)
and the wave function for antisymmetric states is given by
Eq. (33). Continuity of y and /d dxy  at x = ±d/2 gives the
following equations:

x tan x = 2 2
a - x for symmetric states (89)

–x cot x = 2 2
a - x for antisymmetric states (90)

where

a ∫ 
2

0
2

2 V dm

�
(91)

For a given value of a, the solutions of Eqs. (89) and (90) will
give the bound states for the potential well problem given by
Eq. (79). Obviously, for a < p/2 we will have only bound

state—similar to the condition we had for a single-mode
waveguide. For given values of V0, m, and d, as �  Æ 0, the
value of a will become large and we will have a continuum of
states, implying that all energy levels are possible. Thus in the
limit of �  Æ 0, we have the results of classical mechanics.

Now, when E < V0, there is a finite probability of finding the
particle in the region x > d/2; this region is forbidden in classi-
cal mechanics because the total energy E is less than the
potential energy (= V0) and therefore the kinetic energy will be
negative. Similarly, in the waveguide problem the ray under-
goes total internal reflection at the core-cladding interface, and
a geometrical ray is not possible in the rarer medium; on the
other hand, while solving Eq. (18), we had the evanescent
wave in the region |x| > d/2. Indeed when a light beam is inci-
dent on a layer of lower refractive index at an angle of
incidence greater than the critical angle, then a part of the
beam “tunnels through” the rarer medium and appears in the
third medium, as shown in Fig. 28.7(a); this phenomenon is
known as frustrated total internal reflection (usually abbrevi-
ated as FTIR) and is a consequence of the evanescent wave
present in the rarer medium. Such tunneling is not allowed in
geometrical optics because the beam will undergo total inter-
nal reflection at the first interface. An almost identical situation
arises in quantum mechanics when a particle of energy E (< V0),
incident on a potential barrier (of height V0), has a finite prob-
ability of tunneling through as shown in Fig. 28.7(b). Such
tunneling is not possible in classical mechanics, and as shown
in almost all textbooks in quantum mechanics, the tunneling
probability will go to zero when �  Æ 0.

Finally we consider the linear harmonic oscillator problem
in quantum mechanics where the potential energy function is
given by

V(x) = 1
2 mw 2x2 (92)

V = 0

V V= 0
E

n1

n2

Fig. 28.7 (a) When a light beam is incident on a layer of

lower refractive index at an angle of incidence

greater than the critical angle, a part of the beam

tunnels through to the third medium; this phe-

nomenon is known as frustrated total internal

reflection (usually abbreviated as FTIR) and is a

consequence of the evanescent wave present in

the rarer medium. (b) A particle of energy E (<V
0
),

incident on a potential barrier (of height V
0 

), has a

finite probability of tunneling through the potential

barrier.
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and the Schrödinger equation [Eq. (78)] becomes

2

2

d

d

y

x
 + (L – x 2)y = 0 (93)

where x = a x and we have chosen

a = 
mw

�
so that L ∫ 

2 E

w�
(94)

For the wave function not to blow up at x = ±• (which repre-
sents the boundary condition), L must be equal to an odd
integer (see App. F); i.e.,

L = 
2E

w�
 = 2m + 1 m = 0, 1, 2, 3, . . . (95)

The above equation gives the following expression for the
discrete energy eigenvalues:

E = Em = 
1

2
m

Ê ˆ+Á ˜Ë ¯
�w m = 0, 1, 2, 3, . . . (96)

The relationship of the quantum mechanical oscillator with clas-
sical oscillator is discussed in detail in Ref. 6, and the
relationship of ray optics in a parabolic index waveguide with
the results obtained in modal theory is discussed in Ref. 2.

Problems

28.1 Consider a symmetric step index waveguide [see Eq. (1)]
with n1 = 1.50, n2 = 1.46, and d = 4 mm operating at
l0 = 0.6328 mm. Calculate the number of TE and TM
modes.

28.2 Consider TE modes in a step index planar waveguide with
d = 2.0 mm, n1 = 1.5, and the value of n2 chosen such that

2 2
1 2 = 1/ .n n- p

 For l0 = 1, 0.8, and 0.66667 mm, calculate

(using Table 28.1) the values of b and the corresponding value
of  b/k0. Show that the values of  b/k0 lie between n1 and  n2.

28.3 Consider now a parabolic index waveguide [see Eq. (60)] with
n1 = 1.50, n2 = 1.46, and a = 2 mm operating again at
l0 = 0.6328 mm. Assuming the validity of Eq. (57) and that for

discrete guided modes we must have n2
2 < 2 2

0/kb  < n1
2, calcu-

late the maximum value of m and the total number of TE
modes.

28.4 Consider a step index symmetric waveguide with n1 = 1.50
and n2 = 1.48 operating at l0 = 0.6328 mm. Calculate the
value of d so that V = 6. Using Table 28.1, calculate the
values of b, the corresponding propagation constants 0/ ,kb  and
the angles that the component waves make with the z axis.

[Ans: d = 2.4752 mm]
28.5 We consider the same waveguide as in Prob. 28.4. At what

wavelength will the value of V be equal to 3. Using Table 28.1,
calculate the value of b and the corresponding propagation
constant 0/kb .

28.6 (a) Consider a symmetric step index waveguide [see
Eq. (1)] with n1 = 1.49, n2 = 1.46, and d = 4 mm oper-
ating at l0 = 0.6328 mm. Use Table 28.1 and linear
interpolation to calculate the values of 0/kb .

(b) Calculate the corresponding values of qm.
[Ans: (a) The values of 0/kb  are 1.4885, 1.4839,

1.4765, and 1.4668;
(b) q1 ª 2.6º, q2 ª 5.2º, q

3
 ª 7.7º, q4 ª 10.1º]

28.7 (a) Consider a step index symmetric waveguide with n1 =
1.503, n2 = 1.500, and d = 4 mm. For l0 = 1 mm, calculate
the value of V and use linear interpolation of the numbers
given in Table 28.1 to calculate the value of 0/kb .

(b) If the operating wavelength is changed to 0.5 mm, show
that V = 4.771, and by linear interpolation of the num-
bers given in Table 28.1, calculate the discrete values
of 0/kb  and the corresponding angles that the waves
make with the z axis.

[Ans: (a) 
0k

b
 ª 1.5016; (b) 

0k

b
 ª 1.5024 and

1.5007]
28.8 In Eq. (5), make the transformation x Æ –x, and assuming

n2 (–x) = n2 (x), show that Ey (–x) satisfies the same equation
as Ey (x); hence we must have Ey (–x) = l Ey(x). Make the
transformation x Æ –x again to prove that the solutions are
either symmetric or antisymmetric functions of x [i.e., prove
Eqs. (20) and (21)].

1. A. W. Snyder and J. D. Love, Optical Waveguide Theory,
Chapman and Hall, London, 1983.

2. A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics,
Cambridge University Press, Cambridge, United Kingdom,
1998; reprinted in India by Foundation Books, New Delhi.

3. D. K. Mynbaev and L. L. Scheiner, Fiber-Optic Communications
Technology, Prentice-Hall, Englewood Cliffs, N. J., 2001.

4. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics,
Wiley, New York, 1991.

5. B. H. Bransen and C. J. Joachain, Introduction to Quantum
Mechanics, Longman Group, United Kingdom, 1989.

REFERENCES AND SUGGESTED READINGS

6. A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and
Applications, 5th ed., Macmillan India, New Delhi, 2004.
reprinted by Kluwer Academic Publishers, Dordrecht, 2004.

7. A. Ghatak, I. C. Goyal, and R. Varshney, FIBER OPTICA :
A Software for Characterizing Fiber and Integrated-Optic
Waveguides, Viva Books, New Delhi, 1999.

8.  J. D. Love, and A. Ghatak, Exact Solutions for TM modes in
Graded-Index Slab Waveguides, IEEE J. Quant. Electr. QE15,
pp. 14–16, 1979.

gha80482_ch28_475-486.PMD 1/28/2009, 9:34 PM485



gha80482_ch28_475-486.PMD 1/28/2009, 9:34 PM486



29.1 INTRODUCTION

At the heart of an optical communication system is the optical
fiber that acts as the transmission channel carrying the light
beam loaded with information. According to ray optics, the light
beam gets guided through the optical fiber due to the phenom-
enon of total internal reflection (often abbreviated as TIR); we
discussed this in Chap. 27. However, for a single-mode fiber
(which is now extensively used in optical communication sys-
tems), the core diameter is very small (few micrometers) and ray
optics does not remain valid, and one has to use Maxwell’s elec-
tromagnetic theory to study the propagation characteristics of
the (single-mode) fiber. In Chap. 28 we carried out modal
analysis of planar waveguides which enabled us to understand
the concept of modes. In this chapter we carry out modal analysis
of the step index fiber to help us in the design of a fiber-optic
communication system. In a single-mode fiber, there is no
intermodal dispersion and we will show that by appropriately
tailoring the transverse refractive index profile, the total disper-
sion can be made extremely small. This would lead to very large
information carrying capacity systems.

29.2 BASIC EQUATIONS

The simplest refractive index variation is that of a step index
fiber which is characterized by the following refractive index
distribution (see Fig. 29.1):

n(r)
n1 0 < r < a core

= n2 r > a cladding
(1)

OPTICAL WAVEGUIDES III:

SINGLE-MODE FIBERS

Chapter

Twenty-

Nine

A new era is dawning in the West, the era of light. Under city streets and beneath oceans, in
commercial skyscrapers . . . ,  a host of new technologies based on lasers, ultrapure glass fibers
and exotic new materials are challenging the wonders of conventional electronic gadgetry . . . . With
growing speed, the new technology promises to turn the electronic age into the age of optics, in
which gadgetry built around beams of light becomes virtually indispensable.

—Time Magazine, October 6, 1986

where we are using the cylindrical system of coordinates
(r, f, z). In actual fibers

1 2

2

–
0.01

n n

n
£ (2)

and this allows use of the so-called scalar wave approxima-
tion (also known as the weakly guiding approximation1). In

1 For more details about the weakly guiding approximation see, e.g., Refs. 1 and 2.

Cladding

Core

(a)

n1

n2

Core
Cladding

n1

n2

a
r

n r( )

(b)

Fig. 29.1 (a) A step index fiber is a cylindrical structure in
which the refractive index is n

1
 for 0 < r < a and

n
2
 for r > a. (b) The refractive index variation of a

step index fiber.
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this approximation, the modes are assumed to be nearly trans-
verse and can have an arbitrary state of polarization. Thus,
the two independent sets of modes can be assumed to be
x-polarized and y-polarized, and in the weakly guiding ap-
proximation they have the same propagation constants. These
are usually referred to as LP modes; LP stands for linearly
polarized. We may compare this with the discussion in Sec. 28.5
where we mentioned that when n1 ª n2, the modes are nearly
transverse and the propagation constants of the TE and TM
modes are almost equal. In the weakly guiding approxima-
tion, the transverse component of the electric field (Ex or Ey)
satisfies the scalar wave equation [see Eq. (51) of Chap. 23]:

2 2 2
2 2

0 0 2 2 2
= =

n
n

t c t

∂ Y ∂ Y
— Y e m

∂ ∂
(3)

where 0 0(= 1/ )c e m ª 3 × 108 m s–1 is the speed of light in

free space. In most practical fibers n2 depends only on the
cylindrical coordinate r, and therefore it is convenient to
use the cylindrical system of coordinates (r, f, z,) and write
the solution of Eq. (3) in the form

Y(r, f, z, t) = y(r, f)ei(w t–b z) (4)

where w  is the angular frequency and b  is known as the
propagation constant. The above equation defines the modes
of the system. Since y(r, f) depends only on the transverse
coordinates r and f,

The modes represent transverse field configurations
that do not change as they propagate through the
optical fiber except for a phase change.

In the cylindrical system of coordinates (r, f, z) we have

—2 Y = 
2 2 2

2 2 2 2

1 1
+ + +

r rr r z

∂ Y ∂Y ∂ Y ∂ Y

∂∂ ∂f ∂
(5)

Now, from Eq. (4) it readily follows that

and

2

2t

∂ Y

∂
= –w2 Y = –w2 y(r, f)ei(w t–b z) (6)

2

2z

∂ Y

∂
= –b 2 Y = –b 2 y(r, f)ei(w t–b z) (7)

Substituting Eq. (4) in Eq. (3) and using Eqs. (5) to (7), we
obtain

2 2

2 2 2

1 1
+ +

r rr r

∂ y ∂y ∂ y

∂∂ ∂f
 + [k0

2n2(r) – b 2]y = 0 (8)

where

k 0 = 
c

w

 = 
0

2p

l

is the free space wave number. Because the medium has cy-
lindrical symmetry, i.e., n2 depends only on the cylindrical
coordinate r, we can solve Eq. (8) by the method of separa-
tion of variables:

y(r, f) = R(r) F(f)

On substituting and dividing by y (r, f)/r2, we obtain

2 2 2
2 2 2 2 2

02 2

1 1
+ + ( ) – = – = +

r d R dR d
r n r k l

R r drdr d

Ê ˆ FÈ ˘bÁ ˜ Î ˚ F fË ¯
  (9)

Thus the variables have separated out, and we have set each
side equal to a constant (= l 2). Solving the equation depend-
ing only on f, we find that the f dependence will be of the
form cos lf or sin lf, and for the function to be single-valued
[i.e., for F(f + 2p) = F(f)] we must have

l = 0, 1, 2, . . .

Negative values of l correspond to the same field distribu-
tion. Thus the complete transverse field is given by

( ) ( ) ( – ) cos
, , , =

sin
i t z l

r z t R r e
l

w b
fÏ ¸

Y f Ì ˝
fÓ ˛

l = 0, 1, 2, . . . (10)

where R(r) satisfied the radial part of the equation

{ }
2

2 2 2 2 2 2
02

+ + ( ) – – = 0
d R dR

r r k n r r l R
drdr

È ˘bÎ ˚ (11)

Equation (11) is an eigenvalue equation with b2 representing
the eigenvalue. By applying the appropriate boundary condi-
tions, we will show that b2 can have a set of discrete values
(corresponding to guided modes of the waveguide) and also
a continuum of values corresponding to radiation modes of
the waveguide.

Since for each value of l there can be two independent
states of polarization, modes with l ≥ 1 are fourfold degener-
ate (corresponding to two orthogonal polarization states and
to the f dependence being cos lf or sin lf). Modes with l =
0 are f independent and have twofold degeneracy.2 We can-
not set the right-hand side of Eq. (9) equal to a negative
constant, because then the f dependence of the field will not
be single-valued. In the next section we give the solution of

2 The word degeneracy means that for the same value of the propagation constant there is more than one field profile. For l = 0 we will
have two independent states of polarization; thus the mode is said to be twofold degenerate. On the other hand, for l = 1, 2, 3, . . . the
mode will be fourfold degenerate because (for the same value of b2) we will have two field profiles, one proportional to cos lf  and
the other to sin lf, and for each field profile, we will again have two independent states of polarization.
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Eq. (11) for a step index profile. However, for an arbitrary
cylindrically symmetric profile having a refractive index that
decreases monotonically from a value n1 on the axis to a con-
stant value n2 beyond the core-cladding interface r = a (see
Fig. 29.2), we can make the general observation that the solu-
tions of Eq. (11) can be divided into two distinct classes
(compare with the discussions in Sec. 28.2). The first class of
solutions corresponds to

2
2 2
2 12

0

< <n n
k

b
guided modes (12)

For  b2 lying in the above range, the fields R(r) are oscillatory
in the core and decay in the cladding and b2 assumes only
discrete values; these are known as the guided modes of the
waveguide. For a given value of l, there will be a finite number
of guided modes, these are designated as LPlm modes
(m = 1, 2, 3, . . .). The second class of solutions corresponds to

2 2 2
0 2< k nb radiation modes (13)

For such b values, the fields are oscillatory even in the clad-
ding and b can assume a continuum of values. These are
known as the radiation modes. For more details about radia-
tion modes and also excitation of leaky modes, see, e.g., Refs. 1
and 3.

29.3 GUIDED MODES OF A

STEP INDEX FIBER

In this section, we obtain the modal fields and the corre-
sponding propagation constants for guided modes in a step
index fiber for which the refractive index variation is
given by Eq. (1).

For such a fiber, for guided modes (for which
2 2 2 2
2 0 1< / <n k nb ), Eq. (11) can be written in the form

2 2
2 2 2

2 2
+ + – = 0 0 < <

d R dR r
r r U l R r a

drdr a

Ê ˆ
Á ˜Ë ¯ (14)

and

2 2
2 2 2

2 2
+ – + = 0 >

d R dR r
r r W l R r a

drdr a

Ê ˆ
Á ˜Ë ¯ (15)

where

2 2 2
0 1 –U a k n∫ b (16)

and

2 2 2
0 2–W a k n∫ b (17)

Because of Eq. (12), both U and W are real. The normalized
waveguide parameter V is defined by

2 2 2 2
0 1 2= + = –V U W k a n n (18)

In terms of the wavelength

2 2
1 2

0

2
= –V a n n

p

l
(19)

The waveguide parameter V is an extremely important quan-
tity characterizing an optical fiber. It is convenient to define
the normalized propagation constant

2 2 2 2
0 2

2 2 2
1 2

/ –
= =

–

k n W
b

n n V

b
(20)

Thus

=W V b (21)

and

= 1 –U V b (22)

From Eq. (12) we find that for guided modes 0 < b < 1. The two
independent solutions of Eq. (14) are Jl(Ur/a) and Yl(Ur/a)
(see, e.g., Refs. 4 to 6]; however, the solution Yl(Ur/a) has to be
rejected since it diverges as r Æ 0. The solutions of Eq. (15)
are the modified Bessel functions Kl(Wr/a) and Il(Wr/a); the
solution Il(Wr/a) has to be rejected since it diverges as r Æ •.
Thus, for guided modes, the transverse dependence of the
modal field is given by

        

cos
<

sin( )
( , ) =

cos
>

sin( )

l
l

l
l

lA Ur
J r a

lJ U a
r

lA Wr
K r a

lK W a

Ï fÈ ˘Ê ˆ
Ô Í ˙Á ˜Ë ¯ fÔ Î ˚y f Ì fÈ ˘Ê ˆÔ Í ˙Á ˜Ë ¯Ô fÎ ˚Ó

(23)

n1

n2

a
r

Core
Cladding

n r( )

Fig. 29.2 A cylindrically symmetric refractive index profile
having a refractive index that decreases mono-
tonically from a value n

1
 on the axis to a constant

value n
2
 beyond the core-cladding interface r = a.
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where A is a constant and we have assumed the continuity
of y at the core-cladding interface (r = a). Continuity of
∂y/∂r at r = a and use of identities involving Bessel
functions [see, e.g.,  Ref. 3] give the following transcen-
dental equations which determine the allowed discrete
values of the normalized propagation constant b of the
guided LPlm modes:

–1 –11
1 = – ; 1

1

l l

l l

J V b K V b
V b V b l

J V b K V b

È ˘ È ˘-Î ˚ Î ˚
- ≥

È ˘ È ˘-Î ˚ Î ˚

(24)

and

1 1

0 0

1
1 = ; = 0

1

J V b K V b
V b V b l

J V b K V b

È ˘ È ˘-Î ˚ Î ˚
-

È ˘ È ˘-Î ˚ Î ˚

(25)

The solution of the above transcendental equations will give
universal curves describing the dependence of b (and therefore
of U and W) on V. For a given value of l, there will be a finite
number of solutions, and the mth solution (m = 1, 2, 3, . . . ) is
referred to as the LPlm mode. The variation of b with V forms a
set of universal curves, which are plotted in Fig. 29.3. Table 29.1
gives the numerical values of b (corresponding to the LP0m

mode) for values of V lying between 1.0 and 2.5.

29.3.1 Cutoff Frequencies

From Fig. 29.3 we see that the value of b decreases as we
decrease the value of V. For every mode, there is a value
of V when b becomes zero (i.e., when b/k0 becomes equal

to n2), and the mode ceases to be a guided mode. The
value of V for which b becomes zero is known as the cut-
off frequency of the mode. Now, for a given step index
fiber, the value of V decreases as we increase the wave-
length [see Eq. (19)], and the value of the wavelength at
which b becomes zero is known as the cutoff wavelength
for that mode.

We can see from Eq. (25) that the cutoff frequencies of the
LP0m modes will occur at the zeros of J1(V ), i.e., when
V = 0 (LP01), 3.8317 (LP02), 7.0156 (LP03), 10.1735 (LP04), . . . .

Similarly, we can see from Eq. (24) that

• Cutoff frequencies of the LP1m modes will occur at the
zeros of J0(V), i.e., when V = 2.4048 (LP11), 5.5201 (LP12),
8.6537 (LP13), 11.7915 (LP14), . . . .

• Cutoff frequencies of the LP2m modes occur at the zeros
of J1(V ) (excluding the value V = 0), i.e., when V = 3.8317
(LP21), 7.0156 (LP22), 10.1735 (LP23), . . . .

For l ≥ 1, cutoff frequencies of the LPlm modes will occur
at the zeros of Jl–1(V) (excluding the value V = 0); thus3

• Cutoff frequencies of the LP3m modes occur when
V = 5.1356 (LP31), 8.4172 (LP32), 11.6198 (LP33), . . . .

• Cutoff frequencies of the LP4m modes occur when
V = 6.3802 (LP41), 9.7610 (LP42), 13.015 (LP43), . . . .

• Cutoff frequencies of the LP5m modes occur when
V = 7.5883 (LP51), 11.0647 (LP52), . . . .

• Cutoff frequencies of the LP6m modes occur when
V = 8.7715 (LP61), 12.3386 (LP62), . . . .

3 The values of the zeros of the Bessel functions are taken from Ref. 9.

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

b

V

LP01

LP11 LP21

LP02

LP12

LP22

Fig. 29.3 Variation of the normalized propagation con-
stant b with normalized waveguide parameter
V corresponding to a few lower-order modes;
calculations courtesy of Dr. Sunil Khijwania.

Table 29.1 Values of  b, (bV)¢, and V(bV)≤ versus V for a
step index fiber; the values in the second,
fourth, and fifth columns are generated by
solving Eq. (25) for a step index fiber, using
the software given in Refs. 7 and 8.

V b b [using Eq. (30)]
d

dV
(bV) V(bV)≤

1.5 0.229248 0.229249 0.849 1.063
1.6 0.270063 0.270712 0.913 0.919
1.7 0.309467 0.310157 0.965 0.785
1.8 0.347068 0.347471 1.006 0.664
1.9 0.382660 0.382653 1.039 0.556
2.0 0.416163 0.415767 1.065 0.462
2.1 0.447581 0.446911 1.086 0.380
2.2 0.476969 0.476200 1.102 0.309
2.3 0.504416 0.503754 1.114 0.248
2.4 0.530026 0.529693 1.124 0.195
2.5 0.553915 0.554131
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Example 29.2 We consider a step index fiber with  n1 = 1.5,
n2 = 1.48, and core radius a = 6.0 mm. Assuming the operating wave-
length l0 = 1.3 mm, we get V = 7.0796. Thus we will have two each
of LP01, LP02, and LP03 modes; four each of LP11, LP12, LP21, LP22,
LP31, and LP41 modes; and we will have a total of 30 modes. Now
the total number of modes in a highly multimode (V ≥ 10) step index
fiber is approximately given by (see Sec. 27.9.1)

21

2
N Vª (26)

For V = 7.0796, we get N ª 25. For higher values of V the values given
by Eq. (26) will become closer to the exact value (see Prob. 29.2).

29.4 SINGLE-MODE FIBER

The LP01 mode (for which l = 0 and m = 1) is known as the fun-
damental mode. As mentioned earlier, for a step index fiber when
0 < V < 2.4048, we will only have the fundamental mode. When
this happens, the fiber is referred to as a single-mode fiber which
is extensively used in optical fiber communication systems. For
the fundamental mode, the actual numerical values of b for vari-
ous values of V are tabulated in Table 29.1. Thus for a given step
index fiber operating at a particular wavelength, we just have to
calculate the value of V and then use simple interpolation to cal-
culate the value of b from Table 29.1. From the value of b, we can
obtain the corresponding propagation constant by using the fol-
lowing equation [see Eq. (20)]:

( )2 2 2
2 1 2 2

0

= + – 1 +(2 )n b n n n b
k

b
ª D (27)

where in the last step we have assumed n1 ª n2.

Example 29.3 We consider a step index fiber with n2 = 1.447,
D = 0.003, and a = 4.2 mm, giving V = 2.958/l0, where l0 is mea-
sured in mm. Thus for  l0 > 1.23 mm, the fiber will be single-mode.
The cutoff wavelength lc (for which V = 2.4045) is 1.23 mm. We
assume the operating wavelength l0 = 1.479 mm so that V = 2.0
and therefore (from Table 29.1)

b ª 0.4162 fi 2
0

1 + (2 ) 1.4488n b
k

b
ª D ª       (28)

fi b ª 6.1549 ¥ 106 m–1

Example 29.4 In continuation of Example 29.3, we consider the
same step index fiber (n2 = 1.447, D = 0.003 and a = 4.2 mm) now oper-
ating at l0 = 1.55 mm. Thus V ª 1.908 and we again have a single-mode
fiber. Using Table 29.1 and linear interpolation, we get

b ª 0.382660 + 
0.416163 – 0.382660

0.1
 ¥ 0.008 ª 0.38534

fi

0k

b
 ª 2 1 + (2 )n bD ª 1.4487

fi b ª 5.8725 ¥ 106 m–1

Thus, as can also be seen from the figure:

• For 0 < V < 2.4048 we will only have the LP01 mode (which
is referred to as the fundamental mode); V = 2.4048 repre-
sents the cutoff of the LP11 mode where (for the LP11

mode) b becomes 0, i.e., b /k0 becomes equal to n2.

• For 2.4048 < V < 3.8317 we will only have LP01 and LP11

modes; V = 3.8317 represents the cutoff of the LP02 and
the LP21 modes where (for the LP02 and the LP21 modes) b
becomes 0, i.e., b/k0 becomes equal to n2.

• For 3.8317 < V < 5.1356 we will only have LP01, LP02, LP11, and
LP21 modes; V = 5.1356 represents the cutoff of the LP31 mode.

Thus at a particular V value the fiber can support only a
finite number of modes. Note that each LP0m mode is twofold
degenerate; i.e., there are two independent modes with the same
value of b, corresponding to two independent states of polar-
ization. Further each LPlm mode (l > 1) is fourfold degenerate;
i.e., there are four independent modes with the same value of b,
corresponding to f dependence of cos lf and sin lf with each
mode having two independent states of polarization.

Example 29.1 We consider a step index fiber with n1 = 1.5,
n2 = 1.49, and the core radius a = 3.0 mm. Thus

2 2
1 2

0 0

2 3.2594
= – =V a n n

p

l l

where l0 is measured in mm. Thus
• Cutoff wavelength of the LP11 mode will be 1.355 mm.
• Cutoff wavelengths of the LP21 and LP02 modes will be 0.8506 mm.
• Cutoff wavelength of the LP31 mode will be 0.6347 mm.

The LP01 mode has no cutoff. Thus for l0 > 1.355 mm, we will only
have the LP01 mode; and for 0.8506 mm < l0 < 1.355 mm, we will
have LP01 and LP11 modes. For 0.6347 mm < l0 < 0.8506 mm, we
will have LP01, LP11, LP21, and LP02 modes.

In the data sheet of a single-mode fiber, the manufacturer al-
ways specifies the cutoff wavelength of the fiber—that
cutoff wavelength  corresponds to that of the LP11 mode. In
the above example, the cutoff wavelength is 1.355  mm be-
cause for all wavelengths greater than this, the fiber will be
single-mode, supporting only the LP01 mode. Thus,

The minimum wavelength for which we will have
only the LP01 mode (which, for a step index fiber, will
correspond to V = 2.4045) is known as the cutoff
wavelength and is denoted by lc.

It is  lc that is almost always mentioned in the data sheet of
a silica fiber (see, e.g., Ref. 11). For a parabolic index fiber
[see Eq. (31) of Chap. 27], the cutoff of the LP11 mode occurs
at V = 3.518, and therefore for the same values of n1, n2, and
a, the cutoff wavelength (for a parabolic index fiber) is smaller
than that for a step index fiber.
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where w is referred to as the spot size of the mode field pat-
tern and 2w is called the mode field diameter (MFD). MFD is
a very important characteristic of a single-mode optical fiber.
For a step index fiber one has the following empirical expres-
sion for w (see Ref. 13):

3/ 2 6

1.619 2.879
0.65 + + ; 0.8 2.5

w
V

a V V
ª £ £ (32)

where a is the core radius. Many single-mode fibers used in
optical communication systems do not have a step variation
of refractive index—in fact, they often have very special
refractive index distribution. Nevertheless, the modal field is
very nearly Gaussian, and one usually describes the fiber
though the  mode field diameter (MFD). We may mention
here that the light coming out of a He-Ne laser (or of a laser
pointer) has a transverse intensity distribution very similar
to that coming out of a single-mode fiber except that the spot
size is much larger.

Example 29.6 Consider a step index fiber (operating at
1300 nm) with n2 = 1.447, D = 0.003, and a = 4.2 mm (see
Example 29.2). Thus V ª 2.28, giving w ª 4.8 mm. The same fiber
will have a V value of 1.908 at l0 = 1550 nm, giving a value of the
spot size ª 5.5 mm. Thus the spot size increases with wavelength.

Example 29.7 For a step index fiber (operating at 1550 nm)
with n2 = 1.444, D = 0.0075, and a = 2.3 mm (see Example 29.5),
V ª 1.65, giving w ª 3.6 mm. The same fiber will have a V value of
1.97 at l0 = 1300 nm, giving a value of the spot size ª 3.0 mm.

29.4.3 Splice Loss Due to Transverse

Misalignment

The most common misalignment at a joint between two simi-
lar fibers is the transverse misalignment similar to that shown
in Fig. 29.4. Corresponding to a transverse misalignment of u,
the loss in decibels is given by (see Prob. 29.7)

2

 (dB) 4.34
u

w
Ê ˆa ª Á ˜Ë ¯ (33)

Thus a larger value of w will lead to a greater tolerance to
transverse misalignment. For w ª 5 mm and a transverse
offset of 1 mm, the loss at the joint will be approximately
0.17 dB; on the other hand, for w ª 3 mm, a transverse offset
of 1 mm will result in a loss of about 0.5 dB.

Example 29.5 For reasons that will be discussed later, the
fibers used in fourth-generation optical communication systems
(operating at 1.55 mm) have a small value of core radius and a large
value of D. A typical fiber (operating at l0 ª 1.55 mm) would have
n2 = 1.444, D = 0.0075, and a = 2.3 mm. Thus at l0 = 1.55 mm

V = 
2

1.55

p

 ¥ 2.3 ¥ 1.444 ¥ 0 015.  ª 1.649

The fiber will be single-mode at 1.55 mm, and

0.309467 – 0.270063
0.270063 + 0.049 0.28937

0.1
b ª ¥ ª

fi 2
0

1 +(2 ) 1.44713n b
k

b
ª D ª

Further, for the given fiber we may write

0

2.556
=V

l
    (29)

and therefore the cutoff wavelength will be
lc = 2.556/2.4045 ª 1.06 mm.

29.4.1 Empirical Formula for the

Normalized Propagation Constant

For a single-mode step index fiber, a convenient empirical for-
mula for b(V ) is given by

b(V ) = A
B
V

−F
H

I
K

2

1.5 �  V � 2.5 (30)

with A ª 1.1428 and B ª 0.996. The above formula gives
values of b which are within about 0.2% of the exact values
(see Table 29.1).

29.4.2 Spot Size of the Fundamental Mode

As mentioned earlier, a single-mode fiber supports only one
mode that propagates through the fiber; this is also referred
to as the fundamental mode of the fiber. The transverse field
distribution associated with the fundamental mode of a
single-mode fiber is an extremely important quantity, and it
determines various important parameters such as splice loss
at joints, launching efficiencies, and bending loss. For a step
index fiber one has an analytical expression for the funda-
mental field distribution in terms of Bessel functions (see
Sec. 29.3). For most single-mode fibers, the fundamental
mode field distributions can be well approximated by a
Gaussian function, which may be written in the form

2 2 2

2 2

+
– –

( , ) = =
x y r

w wx y A e A ey
(31)

Fig. 29.4 A transverse alignment between two fibers
would result in a loss of the optical beam.
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Example 29.8 For a single-mode fiber operating at 1300 nm,
w = 5  mm, and if the splice loss is to be below 0.1 dB, then from
Eq. (18) we obtain u < 0.76  mm. Thus, for a low-loss joint, the trans-
verse alignment is very critical, and connectors for single-mode fibers
require precision matching and positioning for achieving low loss.

Many data sheets describing a commercially available single-
mode fiber do not always give the actual refractive index profile.
They instead give the MFD, maybe at more than one wave-
length. They also give the cutoff wavelength (see, for example,
Ref. 11). For example, the standard single-mode fiber designated
as G.652 fiber when operating at 1.3  mm has a MFD of 9.2 ±
0.4 mm; the same fiber when operating at 1.55  mm has a MFD
of 10.4 ± 0.8 mm.

29.5 PULSE DISPERSION IN

SINGLE-MODE FIBERS

In single-mode fibers since there is only one mode, there is
no intermodal dispersion. However, we have (in addition to
material dispersion) waveguide dispersion which is charac-
teristic of the transverse refractive index variation.4 In
Sections 10.2 and 27.10.3 we already discussed material dis-
persion. In this section we will show that even if n1 and n2

are independent of wavelength (i.e., even if there is no mate-
rial dispersion), the group velocity of a particular mode will
depend on the wavelength. This leads to what is known as
the waveguide dispersion.

Since b represents the propagation constant, the group
velocity of a particular mode is given by (see the analysis in
Secs. 10.2 and 10.3)

1
=

g

d

d

b

wv
(34)

Now from Eq. (20)

0 2 0 2

1 2 1 2

/ – / +
=

– +

k n k n
b

n n n n

b b
(35)

Since for a guided mode b/k0 lies between n1 and n2, and since
for all practical single-mode fibers n1 is very close to n2 (see
Examples 29.6 and 29.7), we may write the above equation as

0 2

1 2

/ –

–

k n
b

n n

b
ª (36)

Thus

( ) ( )2 1 2= + –n n n b V
c

w
È ˘b Î ˚ (37)

We will assume that n1 and n2 are independent of w and cal-
culate the group velocity:

( ) ( ) ( )2 1 2 1 2
1 1

= = + – + –
g

d db dV
n n n b V n n

d c c dV d

b wÈ ˘Î ˚w wv (38)

Now

2 2 2 2
1 2 1 2

0

2
= =V a n n a n n

c

p w
- -

l
(39)

Thus

=
dV V

dw w

(40)

implying

( ) ( ) ( )2 1 2 1 2
1 1 1

= + – + –
g

db
n n n b V n n V

c c dV
È ˘Î ˚v

(41)

or,

( )2 1 2–1
= +

g

n n n d
bV

c c dV
È ˘
Í ˙Î ˚v (42)

Thus, the time taken by a pulse to traverse length L of the
fiber is given by

( )2= = 1 +
g

L L d
n bV

c dV
È ˘

t DÍ ˙Î ˚v (43)

where

2 2
1 2 1 2

2
212

n n n n

nn

- -
D∫ ª (44)

and we have assumed n1 ª n2. From Eq. (43) we see that even
if n1 and n2 are independent of wavelength (i.e., if there is no
material dispersion), the group velocity (and hence t) will
depend on w because, as is obvious from Fig. 29.3 [and
Eq. (30)], b depends on V. This leads to what is known as the
waveguide dispersion. Physically this arises due to the
fact that the spot size depends on the wavelength (see
Examples 29.6 and 29.7). For a source having a spectral
width Dl0, the corresponding waveguide dispersion is given
by [see Eqs. (16) and (17) of  Chap. 10]

( )
2

0 2 02
0 0

=w
d L d dV

n bV
d c ddV

t
Dt Dl @ D Dl

l l
(45)

From Eq. (37) we find

0 0

= –
dV V

dl l
(46)

4 At very high bit rates, we also have what is known as polarization mode dispersion (abbreviated as PMD). This may arise due to
many factors; for example, if there is slight ellipticity in the core of the fiber, then the two states of polarization travel with slightly
different group velocities, leading to what is known as PMD. However,  this phenomenon becomes important at very high bit rates—
above 40 Gbits s–1. For a nice overview of PMD, see Ref. 14; for more details see references therein.
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Thus

2
0= – ( )w

L n
f V

c

D
Dt Dl (47)

where

( )
2

2
( )

d
f V V bV

dV
∫ (48)

For a step index fiber, b as a function of V is a universal curve
[in fact this is true for a fiber with a power law profile given
by Eq. (27)]; therefore the variation of f (V ) with V will also
be universal (see Table 29.1). A convenient empirical formula
for a step index fiber is given by (Ref. 15)

( )
2

( ) 0.080+0.549 2.834 – 1.3 < < 2.4f V V Vª (49)

A comparison between the above empirical values and the
exact values has been made in Ref. 3. Thus

( )
2 0

2
0

= – 0.080 + 0.549 2.834 –w
L

n V
c

DlÈ ˘Dt D
Î ˚ l

for 1.3 < V < 2.4 (50)

As in Sec. 10.2, we assume Dl0 = 1 nm = 10–9 m and
L = 1 km = 1000 m, and we define the dispersion coefficient as

 ( )
272

0 0

× 10 0.080 + 0.549 2.834 –
3

w
w

n
D V

L

Dt D È ˘∫ ª -
Î ˚Dl l

              ps km–1 nm–1 (51)

where  l0 is measured in nanometers and we have assumed
c = 3 ¥ 10–4 m ps–1. The quantity Dw is referred as the
waveguide dispersion coefficient (because it is due to the
waveguiding properties of the fiber), hence the subscript w
on D. In the single-mode regime, the quantity within the
brackets in Eq. (51) is usually positive; hence the waveguide
dispersion is negative, indicating that longer wavelengths
travel faster.  Since the sign of material dispersion depends
on the operating wavelength region, it is possible that the
two effects, namely, material and waveguide dispersions, can-
cel each other at a certain wavelength. Such a wavelength,
which is a very important parameter of single-mode fibers, is
referred to as the zero dispersion wavelength lZD.

The total dispersion is given by the sum of material and
waveguide dispersions5:

Dtot = Dm + Dw (52)

Let us consider the two single-mode fibers discussed in
Examples 29.6 and 29.7.

29.5.1 Conventional Single-Mode (G 652)

Fibers

We consider the fiber discussed in Example 29.6 for which
n2 = 1.447, D = 0.003, and a = 4.2 mm so that V = 2958/l0,
where l0 is measured in nanometers. Substituting in Eq. (51),
we get

    

24

0 0

1.447 10 2958
= – 0.080+0.549 2.834 –wD

È ˘Ê ˆ¥ Í ˙Á ˜l lÍ ˙Ë ¯Î ˚

                            ps km–1 nm–1

Elementary calculations show that at l0 ª 1300 nm,
Dw = – 2.8 ps km–1 nm–1. The variations of Dm, Dw, and Dtot

with  l0 are shown in Fig. 29.5; the variation of Dm is calcu-
lated by using Eq. (36) of Chap. 27 and Table 10.1. The total
dispersion passes through zero around l0 ª 1300 nm which
is the zero total dispersion wavelength and represents an
extremely important parameter. Such fibers that have zero dis-
persion around  l0 ª 1300 nm are known as conventional
single-mode (or G 652) fibers and are extensively used in
optical communication systems.

5 Strictly speaking, material and waveguide dispersions are not additive. For a given variation of n2(r), one really should solve Eq. (11)
at different wavelengths, taking into account the wavelength dependence of the refractive index, and determine b as a function of l0.
This is indeed done in the software developed in Ref. 8.
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for a typical conventional single-mode fiber
(CSF) with parameters as given in Example 29.3.
The total dispersion passes through zero around
l
0
 ª 1300 nm which is known as zero dispersion

wavelength.
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29.5.2 Dispersion Shifted (G 653) Fibers

We next consider the fiber discussed in Example 24.7 for which
n2 = 1.444, D = 0.0075, and a = 2.3 mm, so that V = 2556/l0,
where, once again, l0 is measured in nanometers. Substituting
in Eq. (49) we get

     

24

0 0

3.61 10 2556
= – 0.080 + 0.549 2.834wD

È ˘Ê ˆ¥ Í ˙-Á ˜l lÍ ˙Ë ¯Î ˚
ps km–1 nm–1

Thus at l0 ª 1550 nm,

Dw = –20 ps km–1 nm–1

On the other hand, the material dispersion at this wavelength
is given by (see Table 10.1)

Dm = +20 ps km–1 nm–1

We therefore see that the two expressions are of opposite
sign and almost cancel each other.  Physically, because of
waveguide dispersion, longer wavelengths travel slower than
shorter wavelengths; and because of material dispersion,
longer wavelengths travel faster than shorter wavelengths.
The two effects compensate each other, resulting in zero to-
tal dispersion around 1550 nm. The corresponding variation
of Dm, Dw, and Dtot with wavelength is shown in Fig. 29.6. As
can be seen from the figure, we have been able to shift the
zero dispersion wavelength by changing the fiber param-
eters; these are known as the dispersion shifted fibers. Thus
dispersion shifted fibers are those fibers whose total disper-
sion becomes zero at a shifted wavelength. Commercially
available dispersion shifted fibers (which are abbreviated as
DSF and referred to as G 653 fibers) do not usually have a

step variation of refractive index; the refractive index varia-
tion is bit complicated and is such that the total dispersion
passes through zero around 1550 nm wavelength.

29.6 DISPERSION

COMPENSATING FIBERS

In many countries there already exist millions of kilometers of
conventional single-mode fibers (of the type discussed in Ex-
ample 29.6)  in the underground ducts operating at 1310 nm;
and as mentioned in Sec. 29.5.1, these fibers have very low
dispersions around 1310 nm. One could significantly increase
the transmission capacity of these systems by operating
these fibers at 1550 nm (where the loss is extremely small),
and we can have the added advantage of using EDFAs
(erbium-doped fiber amplifiers) for optical amplification in
this wavelength range (see Sec. 26.1.3). However, if we oper-
ate the conventional single-mode fibers at 1550 nm, we will
have a significant residual dispersion; and as discussed in
Sec. 29.5.1, this residual dispersion is about 20 ps km–1 nm–1.
Such a large dispersion will result in a significant decrease in
the information-carrying capacity of the communication sys-
tem. On the other hand, replacing the existing conventional
single-mode fibers by dispersion shifted fibers (DSFs) in-
volves huge costs. As such, in recent years there has been a
considerable amount of work in upgrading of the installed
1310 nm optimized optical fiber links for operation at 1550 nm.
This is achieved by developing fibers with very large nega-
tive dispersion coefficients, a few hundred meters to a
kilometer of which can be used to compensate for dispersion
over tens of kilometers of the fiber in the link.

In Secs. 29.5.1 and 29.5.2 we have seen that by chang-
ing the refractive index profile, we can alter the waveguide
dispersion and hence the total dispersion. Indeed, it is
possible to have specially designed fibers whose disper-
sion coefficient Dtot is large and negative at 1550 nm. A
typical refractive index profile, which is characterized by
Dtot ª –1800 ps km–1 nm–1 at 1550 nm, is shown in Fig. 29.7
(Ref. 16)6. These types of fibers are known as dispersion
compensating fibers (DCFs). A short length of DCF can be
used in conjunction with the 1310 nm optimized fiber link
so as to have a small total dispersion value at the end of
the link (see Fig. 29.8).

To understand this phenomenon, we have plotted in Fig. 29.9
(as a solid curve) a typical variation of the group velocity vg

with wavelength for a conventional single-mode fiber (CSF)
with zero dispersion around 1300 nm wavelength. As can be
seen from the figure, vg attains a maximum value at the zero
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for a typical dispersion shifted fiber (DSF) with
parameters as given in Example 29.4. The zero
dispersion wavelength is around 1550 nm.

6 The refractive index variation used in Ref. 16 is based on the refractive index profile suggested in Ref. 17.
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dispersion wavelength, and on either side it monotonically
decreases with wavelength. Thus, if the central wavelength
of the pulse is around 1550 nm, then the red components of
the pulse (i.e., longer wavelengths) will travel slower than the
blue components (i.e., smaller wavelengths) of the pulse.
Because of this the pulse will get broadened.  Now, after
propagating through a CSF for a certain length L1, the pulse
is allowed to propagate through a length L2 of the DCF in
which the group velocity vg varies as shown by the dashed
curve in Fig. 29.9. The red components (i.e., longer wave-
lengths) will now travel faster than the blue components, and
the pulse will tend to reshape itself into its original form.
Indeed, if the lengths of the two fibers L1 and L2 are such
that

D1L1 + D2L2 = 0 (53)

then the pulse emanating from the second fiber will be almost
identical to the pulse entering the first fiber as shown in Fig. 29.9.

The latest trend in optical communication has been to
use DWDM (dense wavelength division multiplexed) sys-
tems in which many closely spaced wavelengths (in the
wavelength region 1530 to 1565 nm) are simultaneously
propagated and amplified by erbium-doped fiber amplifiers.
Now, if the fiber is operated at the zero dispersion wave-
length, then all nearby wavelengths will travel with the
same group velocity because of which they interact with
each other to create new frequencies—this is known as four
wave mixing usually abbreviated as FWM. To overcome
this difficulty, the use of small dispersion fiber has been
suggested, where the dispersion is typically in the range of
2–8 ps km–1 nm–1. Because of this, different wavelengths
travel with different velocities, and the unwanted frequen-
cies are not generated. In the inset of  Fig. 29.10, we have
given typical refractive index variations of a small disper-
sion fiber named the small residual dispersion fiber
(SRDF). The figure also shows the corresponding total
dispersion DN as a function of wavelength; the tolerance
of the dispersion characteristics on the refractive index
profile is shown by dotted lines. However, if one wants
repeaterless transmission over very large distances, the re-
sidual dispersion (2–8 ps km–1 nm–1) in these fibers will go
on accumulating and will limit the number of bits that can
be sent at each wavelength. To overcome this difficulty, one
has to use a DCF which will compensate the accumulated
dispersion at all wavelengths simultaneously. The design of
the DCF, therefore, has to be compatible with the small re-
sidual dispersion fibers. In the inset of Fig. 29.11, we have
given typical refractive index variations of the correspond-
ing DCF; the corresponding wavelength dependence of the

D1 (> 0)

D2 (< 0)

L1

L2

Principle of dispersion compensation

D L D L1 1 2 2+ = 0

Fig. 29.8 A short length of a DCF can be used in conjunction
with the conventional single mode fiber so as to
have small dispersion value at the end of the link.
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Fig. 29.9 The wavelength variation of group velocity for
a typical dispersion compensating fiber and a
typical conventional single-mode fiber.

Fig. 29.7 The refractive index profile of a typical disper-
sion compensating fiber (DCF) characterized by
D
tot

 ª –200 ps km–1 nm–1 at 1550 nm [Adapted
from Ref. 12].
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total dispersion DC has also been shown. The dispersion
slopes are so adjusted that a small length of the DCF will
approximately compensate the accumulated dispersion in
SRDF simultaneously at all wavelengths. In Fig. 29.12 we
have plotted

1 2

1 2

 + 
=

+
N C

E
L D L D

D
L L

for L1 = 36.74L2, where DN and DC represent the dispersions
associated with the SRDF and DCF, respectively. Note that
the maximum value of the effective dispersion is less than
0.08 ps km–1 nm–1.

Problems

29.1 Consider a step index fiber with n1 = 1.474 and n2 = 1.470
and having a core radius a = 4.5 mm. Determine the cutoff
wavelength.

[Ans: lc = 1.28 mm]

29.2 Consider a step index fiber with n1 = 1.5 and n2 = 1.48 and
having a core radius a = 6.0 mm. Determine the operating
wavelength l0 for which V = 8.

[Ans: l0 = 1.15 mm]

29.3 In continuation of Prob. 29.2, (a) calculate the total number
of modes for V = 8 and (b) compare with the approximate
value given by Eq. (21) of Chapter (27).

[Ans: (a) 34; (b) 32]

29.4 Consider a single-mode fiber with a = 3 mm operating with a
V number of 2.3. Calculate the spot size of the fundamental
mode.

[Ans: 3.4 mm]

29.5 Assume the single-mode fiber to have a Gaussian spot size
w = 4.5 mm. Calculate the splice loss at a joint between two
such identical fibers with a transverse misalignment of 1, 2,
and 3 mm.

[Ans: 0.21, 0.86, and 1.93 dB]

29.6 The modal field is said to be normalized if

ÚÚ |y (x, y)|2dxdy = 1

Show that the normalized Gaussian field is given by

y (x, y) = 
2 2 2/2 1 x y we

w
- +

p
= 

2 2/2 1 r we
w

-

p
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Fig. 29.10 Variation of the total dispersion D
N

 of the
SRDF as a function wavelength. The solid and
dashed curves correspond to the proposed
and the perturbed refractive index profiles
(shown schematically in inset), respectively
[Figure adapted from Ref. 18].
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Fig. 29.11 Variation of the total dispersion D
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as a function of wavelength. The solid and
dashed curves correspond to the proposed and
the perturbed refractive index profiles (shown
schematically in inset), respectively [Figure
adapted from Ref. 18].
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29.7 Consider two identical single-mode fibers joined together
with a transverse misalignment of u (along the x axis). The
fractional power that is coupled to the fundamental mode of
the second fiber is given by the overlap integral

T = 
2

1 2( , ) ( , )x y x y dx dyy yÚÚ
Show that

T = exp
2

2

u

w

Ê ˆ
-Á ˜Ë ¯

Thus

Loss in dB  = 10 log T = 4.34
2

u

w
Ê ˆ
Á ˜Ë ¯

29.8 Using the results derived in Sec. 28.5 (and using the method
of separation of variables), solve the scalar wave equation

1. A. W. Snyder and J. D. Love, Optical Waveguide Theory,

Chapman & Hall, London, 1983.
2. D. Gloge, “Weakly Guiding Fibers,” Appl. Opt., Vol. 10,

p. 2252, 1971.
3. A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics,

Cambridge University Press, Cambridge, 1998.
4. J. Irving and N. Mullineux, Mathematics in Physics and

Engineering, Academic Press, New York, 1959.
5. G. Arfken, Mathematical Methods for Physicists, 2d ed.,

Academic Press, New York, 1970.
6. A. K. Ghatak, I. C. Goyal, and S. J. Chua, Mathematical Physics,

Macmillan India, New Delhi, 1985.
7. A. Ghatak, A. Sharma, and R. Tewari, Fiber Optics on a PC,

Viva Books, New Delhi, 1994.
8. A. Ghatak, I. C. Goyal, and R. Varshney, FIBER OPTICA: A

Software for Characterizing Fiber and Integrated-Optic
Waveguides, Viva Books, New Delhi, 1999.

9. M. Abramowitz and I. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Washington, 1965.

10. T. I. Lukowski and F. P. Kapron, “Parabolic Fiber Cutoffs: A
Comparison of  Theories,” J. Opt. Soc. Am., Vol. 67, p. 1185, 1977.

REFERENCES AND SUGGESTED READINGS

11. D. K. Mynbaev and L. L. Scheiner, Fiber-Optic Communica-
tions Technology, Prentice-Hall, Englewood Cliffs, N.J., 2001.

12. D. Gloge and E. A. J. Marcatili,  “Multimode Theory of
Graded-Core Fibers,” Bell. Syst. Tech. J., Vol. 52, p. 1563, 1973.

13. D. Marcuse, “Gaussian Approximation of the Fundamental
Modes of a Graded Index Fiber,” J. Opt. Soc. Am., Vol. 68,
p. 103, 1978.

14. Arun Kumar, “Polarization Effects in Single Mode Optical
Fibers,” in Guided Wave Optics (Ed. Anurag Sharma), Viva
Books, New Delhi, 2005.

15. D. Marcuse, “Interdependence of Waveguide and Material
Dispersion,” Appl. Opt., Vol. 18, pp. 2930–2932, 1979.

16. J. L. Auguste et al., Electron. Lett., Vol. 36, p. 1689, 2000.
17. K. Thyagarajan, R. Varshney, P. Palai, A. Ghatak, and I. C.

Goyal, “A Novel Design of a Dispersion Compensating Fiber,”
Photon. Tech. Letts.,Vol. 8, p. 1510, 1996.

18. I. C. Goyal, R. K. Varshney, and A. K. Ghatak, “Design of a
Small Residual Dispersion Fiber and a Corresponding Dis-
persion Compensating Fiber for DWDM Systems,” Optical
Engineering, 42, pp. 977–980, 2003.

for an infinitely extended parabolic index fiber  characterized
by the following refractive index variation

2 2 2
2 2 2

1 1 2( ) 1 2 1 2
r x y

n r n n
a a

È ˘ È ˘+Ê ˆÍ ˙= - D = - DÍ ˙Á ˜Ë ¯ Î ˚Í ˙Î ˚
Derive the expression for propagation constants and show
that (for low order modes and for D << 1) the group velocity
is approximately independent of the mode number. Also,
using a method similar to that discussed in Sec. 28.5, calcu-
late approximately the number of modes for a given value of
V and compare with the one obtained by using Eq. (21) of
Chapter (27).

[Ans: 2 2 2 2
0 1 0β β 2( 1)γ ;mn k n m n k= ª - + +

, 0,1,2,3,....m n = where 1 2n

a

D
g = ]
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Special Theory of

Relativity
This part consists of two short chapters, Chaps. 30 and 31, discussing the postulates and applications of
the special theory of relativity.
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30.1 INTRODUCTION

A train is moving past a platform. For a person on the
platform, the train is moving at a speed of say 50 km h–1. I
am inside the train, and if I throw a tennis ball horizontally
(along the length of the train) at a speed of 10 km h–1, then
for a person on the platform the ball will move away at a
speed of about 60 km h–1. I next hold a laser pointer (I am
still inside the moving train); for the person on the platform,
the laser pointer is also moving with the speed of the moving
train. Now, when I switch on the laser pointer, the light
emitted by the laser pointer travels with the same speed with
respect to me as well as for the observer on the platform.
Thus the speed of light in vacuum (which is denoted by c)
does not depend on the speed of the source of light. This
was the remarkable statement that was made by Albert
Einstein in his famous 1905 paper (Ref. 1). To quote from the
English translation of this paper:

Light always propagates in empty space with a defi-
nite velocity V that is independent of the state of
motion of the emitting body. . . .

(The quantity V in Einstein’s paper is now usually denoted
by c.) That the speed of light does not depend on the speed
of the source of light has since been verified in many
experiments. The most important experiment was carried out

Towards the end of the 19th century scientists believed they were close to a complete description
of the universe. They imagined that space was filled everywhere by a continuous medium called
the ether. Light rays and radio signals were waves in this ether just as sound is pressure waves
in air. All that was needed to complete the theory was careful measurements of the elastic
properties of the ether; once they have those nailed down, everything else would fall into place.
Soon, however, discrepancies with the idea of an all pervading ether begin to appear. You would
expect light to travel at a fixed speed through the ether. So if you were traveling in the same
direction as the light, you would expect that its speed would appear to be lower, and if you were
traveling in the opposite direction to the light, that its speed would appear to be higher. Yet a series
of experiments failed to find any evidence for differences in speed due to motion through the ether.

 —Stephen Hawking, in A Brief History of Relativity in
the December 31, 1999, issue of Time Magazine

in 1964 by Alvager (and his colleagues) (Ref. 2). In this
experiment, neutral pi mesons traveling with speeds very
close to that of light were produced; neutral pi mesons
(denoted by p0) have a mass of about 264 times the mass of an
electron and decay (with a mean lifetime of about 8 ¥ 10–17 s)
to two gamma ray photons:

 p0 Æ g + g
The photons (from the decay of very fast moving neutral

pi mesons) were found to travel at a speed c. The measurement
of the speed of the gamma ray photons was difficult, but it
was unambiguously established that their speed was equal
to c. Why do we require a fast-moving p0 meson as a source
of photon? Because it would be extremely difficult (and would
require an enormous amount of energy) to make an object
such as an ordinary light source travel with a speed close to
that of light—see Example 31.1. There are other experiments
which also show that the speed of light in vacuum does not
depend on the speed of the source of light (see, e.g., Ref. 3).

In the year 1905 Einstein, while working at the Swiss
Patent Office, published five outstanding papers; the year
1905 is therefore referred to as Einstein’s year of miracles.
All five papers appeared in the journal Annalen der Physik
published from Germany, and English translations of the
original papers appear in the book (Ref. 4) with the very
appropriate title Einstein’s Miraculous Year: Five Papers
That Changed the Face of Physics.

SPECIAL THEORY OF
RELATIVITY I: TIME DILATION
AND LENGTH CONTRACTION

Chapter
Thirty
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Before we state the postulates of the special theory of
relativity, it is necessary to define an inertial system:

An inertial system is one in which Newton’s first
law holds.

That raises the question, “What is Newton’s first law?”
Newton wrote his famous laws in his incredible book
entitled Principia.1 The book was in Latin, and according to
the English translation of this book, the first law is (quoted
from Ref. 5)

Every body perseveres in its state of rest, or of
uniform motion in a straight line, unless it is com-
pelled to change that state by forces impressed
thereon.

Feynman writes Newton’s first law as follows (Ref. 6):

If something is moving, with nothing touching it
and completely undisturbed, it will go on forever,
coasting at a uniform speed in a straight line. (Why
does it keep on coasting? We do not know, but that
is the way it is.)

Feynman further writes, “Newton modified this idea, saying
that the only way to change the motion of a body is to use
force. If the body speeds up, a force has been applied in the
direction of motion.”

Further, any system moving with constant velocity with
respect to an inertial system is also an inertial system. And
Newton had written that the laws of mechanics (which
determine the motion of bodies) are the same in all inertial
systems. This implies, for example, that (to quote Feynman)
“if a space ship is drifting along at a uniform speed, all
experiments performed in the space ship will appear the same
as if the ship was not moving, provided of course, that one
does not look outside. That is the meaning of the principle
of relativity.” Einstein found that for the laws of electricity
and magnetism (described by Maxwell’s equations) to
remain the same in a moving spaceship, the speed of light in
vacuum should not depend on the speed of the source of
light. This led Einstein to put forward (in 1905) the following
two postulates of the special theory of relativity:

1. The first postulate states that the laws of physics are
the same in all inertial systems.

2. The second postulate states that the speed of light in
vacuum (which is denoted by c) does not depend on
the speed of the source of light.

The first postulate was known much before Einstein. Isaac
Newton, in one of his corollaries to the laws of motion, had
written:2

The motions of bodies included in a given space are
the same among themselves, whether that space is
at rest or moves uniformly forward in a straight line.

The first postulate is also known as the principle of relativity,
and in 1904 the famous French mathematician Henri Poincaré
stated this very precisely.3

According to the principle of relativity, the laws of
physical phenomena must be the same for a fixed ob-
server as for an observer who has a uniform motion of
translation relative to him, so that we have not, nor can
we possibly have, any means of discerning whether or
not we are carried along in such a motion.

30.2 SPEED OF LIGHT FOR
A MOVING SOURCE

Let us consider two coordinate systems S and S¢ which are
in uniform relative motion along the x axis as shown in
Fig. 30.1. We have two persons A and B; A is at rest in the

1 The full title of Newton’s book (in Latin) is Philosophiæ Naturalis Principia Mathematica.
2 The author found this in Ref. 6; see also Ref. 5.
3 The author found this in Ref. 6. Poincaré was the first to present the Lorentz transformations in their modern symmetric form.

x

S

A

B

S�

u

O�
x�

Fig. 30.1 Person A is on the platform, and person B is in-
side a train moving with velocity u in the +x
direction. According to A, person B is moving in
the x direction with a constant velocity u. On the
other hand, according to B, person A is moving in
the –x direction with the same speed u. Person A
is holding a light source (such as a laser), and both
A and B measure the same speed of light.
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coordinate system S and B is at rest in the coordinate
system S¢; thus according to A,  person B is moving in the
+x direction with a constant velocity u. On the other hand,
according to B, person A is moving in the –x direction with
the same speed u. Figure 30.1 shows A holding a light
source (such as a laser), and of course, according to A the
speed of light is c. Now, according to observer B, the laser
pointer is moving in the –x direction with speed u, and
therefore according to the second postulate of Einstein, B
must also measure the same speed of light. Thus we infer that

A person moving with respect to a light source mea-
sures the same speed of light as the person who is
stationary with respect to the light source.

30.3 TIME DILATION

Consider an observer B inside a train moving with speed u
on a railway track. Inside the train (which is our reference
frame S¢), B produces a light pulse (by switching on a bulb
and very quickly switching it off ), allows the light beam to
get reflected by a mirror M (which is right above the bulb),
and detects the reflected light by a detector D (see Fig. 30.2).
We have therefore two events: the first event is the switching
on of the bulb, producing a light pulse, and the second
event is its subsequent detection by the detector. Person B

measures the time interval Dt¢ between the two events; this
time is obviously given by

Dt¢ = 
2

 
H

c
(1)

where H is the distance between the floor and the mirror as
shown in Fig. 30.2. For an observer A on the platform (which
is our reference frame S), the whole train is moving with
speed u, and therefore the light beam will take a diagonal
path which is longer than observed by B (see Fig. 30.3).
Since the velocity of light is always the same, the time
interval between the two events (as observed by A) will take
a longer time by his clock. If Dt represents the time interval
measured by A, then

Dt =  
PM MD

c

+

(2)

where we have used the fact that the speed of light for the
observer outside the train will be the same as observed by
the person inside the train. The time taken by the light ray
to traverse the path PM (or the path MD) is Dt/2, and
therefore

 (PM )2 = (MD)2 = H 2 + 
2

 
2

u tDÊ ˆ
Á ˜Ë ¯

or

    PM = MD = 
2

2   
2

u t
H

DÊ ˆ+ Á ˜Ë ¯

Substituting in Eq. (2), we get

Dt = 
2

22
  

2

u t
H

c

DÊ ˆ+ Á ˜Ë ¯ (3)

x

S

A

B
H

D
Bulb

S�

u

O�
x�

M

Fig. 30.2 An observer B is inside a train which is moving
with speed  u on a railway track. Inside the train
(which is our reference frame S¢), B switches on a
bulb, allows the light beam to get reflected by a
mirror M (which is right above the bulb), and
detects the reflected beam by a detector D.

x

S t = 0

O

A

H

t = Dt

P
D

u

uDt

M

Fig. 30.3 According to A (who is on the platform), when
the light reaches the detector D (via the mirror
M),  it has moved through a distance uDt.
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or (Dt)2 = 

22

2

4
  +  

H u t

cc

DÊ ˆ
Á ˜Ë ¯  = (Dt¢)2 + 

2
2

2
( )

u
t

c
D (4)

or  Dt¢ = 
2

2
1

u

c
- Dt (5)

For the observer B on the train, the lightbulb and the
mirror on the roof are stationary so that the two events
(switching on the bulb and its subsequent detection by the
detector) occur at the same place. The time interval between
two events occurring at the same position is known as the
proper time; thus Dt¢ represents the proper time between
the two events. To quote from Ref. 8,

The proper time interval between two events is the
time interval measured in the reference frame in
which the two events occur at the same position.
Time intervals that occur at different positions are
called improper.

On the other hand, for the observer A (outside the train)
both the lightbulb and the mirror are moving with velocity u,
and the two events occur at different places.

Thus Eq. (5) represents this important result:
The time interval between two events occurring at the

same place in a particular reference frame S¢ (referred to as
the proper time)

2

2
= 1

u

c
- ¥

Equation (5) is often written in the form
Dt =  g Dt¢ (7)

where 2 2

1
=

1 /u c
g

- (8)

is known as the Lorentz factor.

30.4 THE MU MESON
EXPERIMENT

A mu meson (also known as muon) is a negatively
charged elementary particle which has exactly the same
charge as the electron but has a mass about 207 times the
mass of the electron. In 1937, mu mesons were first
detected in cosmic rays by S. H. Neddermeyer and C. D.
Anderson. These particles are created at the top of our
atmosphere. It is believed that when high-energy protons
(from outer space) collide with molecules in the outer
region of the atmosphere, many particles (including the
mu mesons) are created. Mu mesons have also been

created in the laboratories. Mu mesons are radioactive
and undergo the following decay

Mu meson Æ electron + neutrino + antineutrino

The mean lifetime of the above process is about 2.2 ms. Thus
if there are N0 muons at t = 0 (at rest in the laboratory), then
at a later time t, the number of muons which would not have
undergone decay is given by

N (t) = N0
exp

tÊ ˆ-Á ˜Ë ¯t (9)

where t (ª 2.2 ms) represents the mean lifetime of the muon.
For example, to start, if we have 1000 muons, then after
about 2.2 ms we will have about N0 /e (ª 368) muons which
did not undergo decay. The quantity (ln 2)t (ª 0.693t ª 1.525 ms)
represents the half-life of the muon. In this time, one-half the
number of muons will not have undergone decay:

1.525 µs
1000 exp 500

2.2 µs
Ê ˆ- ªÁ ˜Ë ¯

In 1941 Rossi and Hall carried out an experiment at the top
of Mt. Washington which is about 6300 ft (or about 1920 m)
above sea level. It was found that about 568 mu mesons were
detected in about 1 h (the numbers taken from Ref. 10). The
velocities of mu mesons were about 0.995c, and therefore for
an observer on the Earth, it would take about

8

1920m
6.4

0.995 3 10 m/s
sª m

¥ ¥

to traverse the distance of 1920 m [see Fig. 30.4(a)]. In this
time, the number of mu mesons that should reach the surface
of the Earth is about

2.96.4 µs
568 exp 568 31

2.2 µs
e-

Ê ˆ
- ª ªÁ ˜Ë ¯ (10)

Thus in traversing the distance of 1920 m, about 537 mu
mesons should have undergone decay and only 31 of them
should have reached the surface of the Earth. However,
when the experiment was performed, it was found that about
412 muons were detected. This will correspond to a mean
lifetime of t¢ where

6.4 µs
568 exp 412 20 s

Ê ˆ- ª fi t ª m¢Á ˜Ë ¯t¢ (11)

Thus detection of 412 muons on the surface of the Earth
would imply a muon mean lifetime of about 20 ms.

We may understand the above experiment by noting that
in the muon reference frame [i.e., inside the spaceship where
the muon is at rest; see Fig. 30.4(b)], the position of the

time interval between two events
in any reference frame S moving
with relative speed u

(6)
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muon does not change and the events occur at the same
place. Therefore if

Dt¢ = time interval in reference frame of muon
and

Dt = time interval in reference frame of Earth

then
2

2
= 1

u
t t

c
D - D¢

where u is the velocity of the mu meson as seen by an
observer on the Earth. For u ª 0.995c,

2

2
1 0.1

u

c
- ª

giving
Dt¢ ª 0.1 ¥ 6.4 ms = 0.64 ms (12)

and therefore the number of muons that will undergo decay
in 0.64 ms is

0.64 µs
568 exp 425

2.2 µs

Ê ˆ
ª - ªÁ ˜Ë ¯ (13)

which agrees very well with the observed value. Thus

Whereas in the reference frame of the Earth, the time
elapsed is 6.6 ms, in the reference frame of the muon
(which is moving at a speed of 0.995c with respect
to the Earth), the time elapsed is only 0.64 ms.

In an experiment at CERN (in Geneva) by Bailey and
coworkers, muons of velocity 0.9994c were created by
accelerating them in a circular path and were found to have
a lifetime about 29 times the laboratory lifetime. This follows
from the relation

2 2 2
= = 29

1 /   1 (0.9994)   

t t
t t

u c

D D¢ ¢
D ª D ¢

- -

Thus if we create two muon twins in the laboratory, one of
them remains at rest and the other is accelerated to a speed
of 0.9994c, then the muon (moving with a speed of 0.9994c)
would come back to find its “twin” had undergone decay
long, long time ago!

30.5 THE LENGTH
CONTRACTION

We again consider two coordinate systems S and S¢ which
are in uniform relative motion along the x axis as shown in
Fig. 30.5. We have two persons A and B; person A is at rest
in the coordinate system S, and person B (inside a moving
train) is at rest in the coordinate system S¢. Consider a rod
RR¢ (of length L0) at rest in the reference frame S. Now,

The length of the rod L0, measured in an inertial
frame in which the rod is at rest, is known as the
proper length.

1920 m

(a)

(b)

Top of Mt.
Washington

Mu meson

0.995c

0.995c

192 m

Fig. 30.4 (a) For an observer on the Earth, a mu meson
(moving with a velocity of about 0.995c) would
take about 6.4 ms to traverse the distance of 1920 m.
(b) Inside the spaceship, the mu meson is at rest,
and an observer inside the spaceship sees the
Earth moving toward him with a speed 0.995c
and a contracted distance of 192 m which is cov-
ered in 0.64 ms.

x

S

A
R

G

L0
R �

B
S�

O�
x�

u

Fig. 30.5 Person A is on the platform and B is inside a train
moving with velocity u in the +x direction. A rod
RR¢ (of length L0) is at rest in the reference frame
S. In the inertial frame S¢ (moving with velocity u
with respect to the frame S), we have an observer B
and an arrow G.
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In the inertial frame S¢ (moving with velocity u with
respect to the frame S), we have an observer B and an arrow
G as shown in Fig. 30.5. We have two events: the first event
is when the arrow G is in front of the end R of the rod, and
the second event is when the arrow G is in front of the end
R¢ of the rod.

Observer A in the inertial frame S sees the arrow move
with velocity u, and if Dt is the time elapsed (as measured by
A) for the arrow to go from the end R of the rod to the end
R¢, then

L0 = u Dt (14)
In the inertial frame S¢, observer B sees the rod moving with
speed u in the –x direction. Thus the length L of the rod as
measured by B is given by

 L = u Dt¢ (15)
where Dt¢ is the time elapsed (as measured by B) as the ends
R and R¢ of the rod cross the arrow. Now, Dt¢ represents the
time interval of the two events occurring at the same place
G, and therefore it is the proper time and

2

2
= 1

u
t t

c
D - D¢

[see Eq. (6)]. Thus

2

02
= 1

u
L L

c
-

(16)

Thus observer B measures a contracted length given by the
above equation.

30.6 UNDERSTANDING
THE MU MESON
EXPERIMENT VIA
LENGTH CONTRACTION

We revisit the mu meson experiment. For observer A (in the
reference frame S at rest on Earth) the mu meson moves with
velocity 0.995c and traverses the distance of 1920 m (the
height of Mt. Washington) in about 6.6 ms [see Fig. 30.4(a)].

We next consider the mu meson inside a spaceship which
is same velocity as the mu meson [see Fig. 30.4(b)]. Thus the
mu meson is at rest inside the spaceship. For an observer B
inside the spaceship, the Earth is moving toward it with
velocity u = 0.995c. Because of length contraction, for the
observer inside the spaceship, the distance between the top
of Mt. Washington and the Earth is not 1920 m but the
contracted distance of

2

2
1  

u

c
-  ¥ 1920 m ª 0.1 ¥ 1920 m = 192 m

This distance is traversed (by the Earth) in only

6
8 1

192 m 192 m
 = 0.64 10 s =  0.64 µs

0.995 0.995 3 10 m sc
-

-

= ¥

¥ ¥

And in this time, the number of muons that will undergo
decay is

0.64 µs
568 exp 425

2.2 µs

Ê ˆ
ª - ªÁ ˜Ë ¯

which is the same as Eq. (13) and agrees well with the
observed value.

30.7 LENGTH CONTRACTION
OF A MOVING TRAIN

Consider a mirror M placed inside a train (moving with speed u)
as shown in Fig. 30.6. A pulse of light emitted from the light
source P gets reflected by the mirror and is detected at D.
Obviously, the time interval (as measured by observer B in
the moving train) between the emission of light and its
subsequent detection is given by

02
=

L
t

c
D ¢ (17)

where L0 is the distance between the light source and the
mirror as measured by observer B in the moving train.

We next consider the events as seen by a person on the
platform; for him, the speed of light is the same, and we
assume that the distance between point P and mirror M is L.

x

S

A

B

L0

S�

O�
x�

P

D

u

M

Fig. 30.6 A mirror M is placed inside a moving train.
A pulse of light emitted from the light source P
gets reflected by the mirror and is  detected at D.
For observer B, the mirror and the source of light
are stationary and are at a distance L0 from each
other.
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If Dt1 represents the time interval (as observed by person A
on the platform) for light to travel to the mirror, then

1
1 1=  

(1 / )

L u t L
t t

c c u c

- D
D fi D =

+
(18)

where we have taken into account the fact that in time Dt1 the
mirror has moved through a distance u Dt1 (see Fig. 30.7).
Similarly, if Dt2 represents the time interval (as observed by
person A on the platform) for light to travel from the mirror
to the detector, then (see Fig. 30.8).

( )1 1 2
2 2 (1 / )

L u t u t t L
t t

c c u c

- D + D + D

D = fi D =

-
(19)

Thus if Dt represents the time interval (as observed by the
person on the platform) between the emission of light and
its subsequent detection, then it is given by

Dt = Dt1 + Dt2 = 2 2

2

(1 / )

L

c u c-

(20)

Now, since

02
=

L
t

c
D ¢ (21)

represents the time interval between two events occurring
at the same place inside the moving train, Dt¢ and Dt are

related by

2

2
= 1

u
t t

c
D - D¢ (22)

Using Eqs. (20) to (22), we immediately get

2

02
= 1

u
L L

c
- (23)

Thus because the speed of light is the same in all inertial
frames, the observer on the platform will calculate a shorter
length of the train.

30.8 SIMULTANEITY OF TWO
EVENTS

We next consider an atom (at rest in the moving train)
emitting simultaneously two photons. Two detectors D1 and
D2 are at the same distance (= L0) from the atom, therefore,
for observer B in reference frame S¢, the photons are
detected simultaneously (see Fig. 30.9). For observer A on
the platform, let Dt1 and Dt2 represent the time taken by the
two photons to reach the two detectors D1 and D2,
respectively. Using the arguments given in the previous
section

1 =  
(1 / )

L
t

c u c
D

+
(24)

x

S

O

A

u

P

D

M
t =

 0

t =
 0

M
'

t =
 D

t 1

L�u Dt1

L

Fig. 30.7 Observer A on the platform sees a contracted dis-
tance L between P and the mirror (inside the
moving train).  The pulse of light emitted from
the light source P reaches the mirror at
t = Dt1, and by then the mirror has moved through
the distance uDt1.

x

S

O

A

P

D

u

t =
 D

t 1
�

 D
t 2

t =
 0

t =
 D

t 1

L�uDt1 � u(Dt1� Dt2) 

Fig. 30.8 For observer A on the platform, the light beam
reflected from the mirror reaches the detector D
at t = Dt1 + Dt2.
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and 2 (1 / )

L
t

c u c
D =

-
(25)

where L is the contracted distance between the atom and
either of the detectors. Thus in the reference frame S, the
time difference between the two events will be

2 1

1 1

L L
t t t

u u
c c

c c

D = D - D = -
Ê ˆ Ê ˆ- +Á ˜ Á ˜Ë ¯ Ë ¯

02

2u
L

c

g
=

where we have used Eq. (23). Thus whereas the two events
are simultaneous in the reference frame S¢, they are not
simultaneous in the reference frame S. We will re-derive this
result again in Example 31.6.

30.9 THE TWIN PARADOX

The star closest to us is Proxima Centauri, and it is about 4.2
light-years away; i.e., a light beam will take about 4.2 years
to travel from Earth to the star. Now

1 yr = 365 ¥ 24 ¥ 60 ¥ 60 s ª 3.15 ¥ 107 s
Thus the distance of the star is

D ª 4.2 ¥ 3.15 ¥ 107 ¥ 3 ¥ 108 m
ª 4 ¥ 1016 m = 40 trillion km

We consider the following experiment:
A (say Arjun) and B (say Bob) are twins. Bob enters a

spacecraft (see Fig. 30.10) and synchronizes his watch with
Arjun (t = t¢ = 0). The spacecraft closes and quickly
accelerates to a velocity 0.995c. Bob is at rest inside the
aircraft. According to Arjun (who is on Earth), Bob will take

16
8

8

4 10
1.3 10

0.995 3 10

¥
ª ¥

¥ ¥

s ª 4.2 years

to reach the Proxima Centauri star. According to Bob, the
star is moving toward him with a velocity 0.995c, and he will
see the contracted distance given by

2

2
1

u

c
− ¥ D = 21 (0.995)-

D ª 0.1D ª 0.42 light-year

Thus according to Bob, he will reach the star in 0.42 yr
which is one-tenth of the time recorded by Arjun (see
Fig. 30.11). Bob returns to Earth at the same speed. On
his return journey, he finds that the Earth is moving
towards him with a velocity 0.995c and the contracted
distance is be ª0.42 light-year. When Bob’s spaceship stops,
he finds that his clock shows only 0.84 yr whereas Arjun’s
clock would show 8.4 yr (see Fig. 30.12).

We can understand the above situation from another
point of view. The first event corresponds to when the
spaceship starts moving (with velocity u) from the Earth, and
the second event corresponds to when the spaceship
reaches the star. In the moving frame (i.e., inside the

x

S

A

B

S�

u

D1

O�

O

x�

D2

Fig. 30.9 For observer B on the moving train, the atom is
at rest and emits two photons simultaneously in
opposite directions. The two detectors D1 and D2
are equidistant from the atom and detect the pho-
tons simultaneously; however, the two events are
not simultaneous for observer A.

u

t = 0

x

S

O

A

t = 0

x

S

O

B

4.2 light-years

Proxima Centauri

Fig. 30.10 Person A is on the Earth  and B is inside a space-
ship; when O coincides with O¢, the clocks are
synchronized so that t¢ = t = 0. Person B quickly
accelerates, attains the velocity u, and moves
toward the star Proxima Centauri.
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spaceship) both events occur at the same space point. Thus
the time interval Dt¢ measured by Bob is the proper time and
will be less than the time measured by Arjun by a factor

2 21 /u c-  (see the discussion in Sec. 30.2).
We next consider the case when the star was 42 light-years

away and the spaceship was traveling with the same speed. Let
us assume that, to start, both Arjun and Bob were 20 years old.
When Bob returns to Earth, Arjun will be about 104 years old
and Bob will be only 28.4 years old. Thus Arjun would have aged
significantly!

t = 4.2 yr

x

S

O

A

t� = 0.42 yr

x�

S�

O�

B

4.2 light-years

Proxima Centauri

Fig. 30.11 When B reaches Proxima Centauri, to him it has
been only 0.42 yr, but for the observer A it would
be 4.2 yr.

t = 8.4 yr

x

S

O

A

t = 0.84 yr

x

S

O

B

4.2 light-years

Proxima Centauri

Fig. 30.12 Person B returns to Earth at the same speed. When
his spaceship stops, he finds that his clock shows
only 0.84 yr. On the other hand, A’s clock shows a
lapse of 8.4 yr.

The above experiment has led to a lot of controversy—
scientists have argued that according to Arjun, Bob was
moving with a velocity 0.995c and according to Bob,
Arjun was moving with a velocity 0.995c (in the
opposite direction). But there is really no controversy
when we consider that we must always be careful to
define the “proper time,” and when Bob returns from his
space journey, he will be younger to Arjun. Also it is
Bob who undergoes acceleration (and deceleration) and
because of this the motions of Arjun and Bob are not
symmetrical.

30.10 THE MICHELSON–MORLEY
EXPERIMENT

In the beginning of the nineteenth century, a few very
beautiful experiments were carried out which demonstrated
the interference and diffraction phenomena of light. Both
interference and diffraction phenomena could only be
explained by assuming a wave model of light. However, it was
believed that a wave would always require a medium and
since light could propagate through vacuum, the presence of
an “all pervasive” medium called the ether was assumed.

If we assume the existence of this “all pervasive” ether,
then the observed velocity of light would change if we move
with respect to the ether. We know that the Earth moves
around the Sun in an approximately circular orbit with a
speed of about 30 km/s (see Fig. 30.13). Thus we should
expect that, whatever may be the motion of the solar system,
during a certain period of time in a year, the Earth will be
moving with respect to the ether with a speed of at least
30 km/s  and experience what is often referred as “the
ether wind.”

Sun

Earth 30 km/s

Fig. 30.13 The Earth rotates around the Sun in an approximately
circular orbit with a speed of about 30 km/s.
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The experiment involved the famous Michelson inter-
ferometer shown in Fig. 30.14 (see Sec. 15.11). The beam
splitter (shown as BS in the figure) splits the light beam into
two beams traveling at right angles to each other.
Subsequently the beams get reflected by M1  and M2 and
the beam reflected from M1 gets reflected by the beam
splitter and superposes with the beam reflected from M2 to
form an interference pattern. We assume the positions of the
two mirrors to be such that the distance of the beam splitter
to each of the mirrors is exactly the same and equal to L.

If the whole interferometer is at rest with respect to the
ether then the light would travel with the same velocity in all
directions and therefore the light reflected by the mirrors  M1

and M2 would reach the detector D at the same time.
We next assume that the apparatus moving through the

ether so that with respect to the interferometer, the ether is
moving to the left with velocity u as shown in Fig. 30.14.
Thus as the light beam travels from P to R, it is opposed by
the ether wind and its velocity is c –  u. On the other hand,
when the light beam travels from to R to P, it is carried by
the ether wind4 and its velocity is c + u. Thus if tPR and tRP

are the time taken for the outward and return trips then

                     PR RP= and =
L L

t t
c u c u- +

Therefore the total time for the light beam to travel from P to
R and back will be given by

1 PR RP 2

2

2 1
= =

1

L
t t t

c u

c

+

-
(26)

We next consider the light beam reflected by the mirror M2.
This case is similar to a ship trying to cross from the point A to
the point B when there is current in the river (see Fig. 30. 15).
Obviously the ship must point slightly to the right so that
its trajectory is straight. In the absence of the current if the
speed was V then the actual speed will be 2 2V u- . Thus
the effective speed of the light beam for the path PQ will
be 2 2 .c u-

 Similarly, the effective speed of the light beam
for the return path QP will also be 2 2 .c u-  Thus
if  tPQ and tRP are the time taken for the outward and return
trips then

PQ 2 2
=  

L
t

c u-

and  QR 2 2
=

L
t

c u-

Therefore the total time for the light beam to travel from P to
Q and back will be given by

2 PQ QR 2 2 2

2

2 2 1
= + = =

1

L L
t t t

cc u u

c

-

-

(27)

Thus

2

2 12
= 1

u
t t

c
- (28)

and t2 will always be less than t1. The time difference t1 – t2

will be given by

1 2 2 2

2 2

2 1 1
= =

1 1

L
t t t

c u u
c c

È ˘
Í ˙
Í ˙D - -Í ˙
Í ˙- -
Í ˙Î ˚

(29)

M2

M1

Ether wind

u

u

D

L

P

BS

S

Q

L
R

Fig. 30.14 The Michelson interferometer arrangement. An
observer at rest with the interferometer, experi-
ences the ether wind as shown above.

B

A

u

V

u

Fig. 30.15 There is a current in the river. A swimmer is try-
ing to cross from the point A to the point B. The
swimmer must try to swim slightly to the right
so that his trajectory is straight.

4 The easiest way to understand this is to first consider a ship which travels with a certain velocity V  in still water. We next assume
that there is a current in the water moving with speed u. If the ship travels along the current, its velocity will increase to V + u. On
the other hand,  if the ship travels against the current, its velocity will decrease to V – u.
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When 1,
u

c
<< the quantity within the square brackets will be

          

1
12 2 2

2 2 22

2 2

1 1
1 1

1 1

u u

u c cu
c c

- -

Ê ˆ Ê ˆ
- = - - -Á ˜ Á ˜Ë ¯ Ë ¯

- -

2 2 2

2 2 2

1 1
1 1

2 2

u u u

c c c

Ê ˆ Ê ˆ
ª + - + =Á ˜ Á ˜Ë ¯ Ë ¯

Thus, when 1,
u

c
<<

2

3

Lu
t

c
D ª (30)

This will correspond to a path difference of

2

2

Lu
c t

c
D ª (31)

If we now rotate the interferometer by exactly 90°, the two
beams will exchange their time of traversals and therefore
the fringe shift will correspond to twice the path difference
given above. Thus the effective path difference will be

2

2

2
2

Lu
c t

c
D ª (32)

Now a path difference of  l results in shift of one fringe;
thus the fractional fringe shift will be

2

2

2 2c t Lu

c

D
ª

l l

In one of the experiments carried by  Michelson and Morley

11 m,L ª  76 10 m-

l ª ¥  and if we assume that the relative

velocity of the ether is at least the velocity of the Earth (i.e.,
43 10 km/su ª ¥ ), we get

 
( ) ( )

( ) ( )

242

2 27 8

2 11 m 3 10 m/s2
0.4

6 10 m 3 10 m/s

Lu

c -

¥ ¥ ¥
ª ª

l ¥ ¥ ¥

Thus a shift of about 0.4 fringe should have been observed.
During 1881–1887, Professor Michelson (along with his
colleague Edward Morley) carried out a series of very
careful measurements for different orientations of the
interferometer and they always got a null result; their
apparatus was capable of detecting 0.01 fringe shift.
These came to be known as the famous Michelson–Morley
experiments which proved that the ether did not exist. David
Park (in his book The Fire within the Eye: A Historical

Essay on the Nature and Meaning of Light) has written
“He (Michelson) was 34 when he established that ether
cannot be found; he made delicate optical measurements
for 44 more years and to the end of his days did not believe
there could be a wave without some material substance to
do the waving.”

30.11  BRIEF HISTORICAL
REMARKS

When Einstein wrote the famous 5 papers in 1905, he was
working in Swiss Patent office and did not have much
discussion with other physicists—he studied on his own
and it appears he was not aware of the Michelson–Morley
experiments. Casper and Noer (Ref. 8) have made a careful
study of the history and they write:

Einstein was then an unknown physicist, largely
self-taught in this area of physics, and in his patent
office job somewhat cutoff from the discussions
and ideas current in the physics community. He
was apparently only vaguely aware of the ether
experiments . . . and he did not know of the later pa-
pers of Lorentz and Poincaré. . . .

Einstein was of course aware of Maxwell’s equations and
laws of electricity and magnetism and the fact that Maxwell’s
equations were not invariant under Galilean transformation.
Physically this implies that if Galilean transformation was
correct then (to quote from Ref. 6)

in a moving space ship the electrical and optical
phenomena should be different from those in a sta-
tionary ship. Thus one could use these optical
phenomena to determine the speed of the ship; in
particular one could determine the absolute speed
of the ship by making suitable optical and electri-
cal measurements

Thus, for Einstein, the fundamental question was (to quote
from Ref. 8)

“Why should the laws of electromagnetism and
light, alone among the laws of physics, allow the
possibility of detecting the motion of an inertial ref-
erence frame?”

Einstein started his 1905 paper by writing

It is well known that Maxwell’s electrodynamics—
as usually understood at present—when applied to
moving bodies, lead to asymmetries that do not
seem to be inherent in the phenomena.

gha80482_ch30_499-512.PMD 2/5/2009, 10:01 PM511



Optics512
�

He further wrote (in the same paper)

The same laws of electrodynamics and optics will
be valid for all coordinate systems . . . We shall
raise this conjecture to the status of a postulate and
shall also introduce another postulate, namely
that light always propagates in free space with a
definite velocity V that is independent of the state
of motion of the emitting body.

The null result of the Michelson–Morley experiment is
consistent with Einstein’s postulates. Indeed Einstein
wrote

The introduction of a ‘light ether’ will prove to be
superfluous inasmuch as the view to be developed
here will not require a ‘space at absolute rest’ en-
dowed with special properties.

Problems

30.1 At a height of about 3 km above sea level, about 1000
mu mesons were detected in 1 h. Calculate the number
that will decay before they reach sea level. Assume that
the mean lifetime of the mu meson is about 2.2 ms and
that its velocity is about 0.9c.

30.2 A spacecraft of  “proper length” 10 meters is passing by
with a speed of 30 km s–1. (a) Calculate the contracted
length observed by a person on the Earth. (b) Calculate the
contracted length if the velocity of the spacecraft was 0.99 c.

[Ans: (a) 9.99999995 m (b) 1.41 m]
30.3 A and B are twins. Person B enters a spacecraft (see Fig. 30.10)

and synchronizes his watch with A (t = t¢ = 0). The spacecraft
closes and quickly accelerates to a velocity given by

15
  0.9682

16
u c c= ª

The spacecraft goes to a nearby star 10 light-years away
and promptly returns to Earth with the same speed. What
will be the age difference between A and B?

30.4 A and B are twins. Person B enters a spacecraft (see Fig. 30.10)
and synchronizes his watch with A (t = t¢ = 0). The spacecraft
closes and quickly accelerates to the same velocity as in
Prob. 30.3 (ª 0.9682c). The spacecraft goes to the Moon
(which is about 384,000 km away) and promptly returns to
Earth with the same speed. What will be the age difference
between A and B?

30.5 Consider an atom (at rest inside a spaceship moving with
velocity 3 km s–1) emitting simultaneously two photons;
the two detectors D1 and D2 are at the same distance (= 10 m)
from the atom, and therefore for an observer B inside the
spaceship, the photons are detected simultaneously (see
Fig. 30.7). For the observer A on Earth, calculate the time
difference between the two events and compare with the
result obtained by using the formulas developed in Chap. 31.
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Politics is for the moment, . . . . while an equation is for eternity.
—Albert Einstein

SPECIAL THEORY OF
RELATIVITY  II: MASS-ENERGY

RELATION AND LORENTZ
TRANSFORMATIONS

Chapter
Thirty-

one

31.1 INTRODUCTION

In this chapter we will continue our discussions on the con-
sequences of the two postulates of the special theory of
relativity and derive the famous equation describing the
mass-energy relationship

2=E mc                                                                                                                                (1)

We will also derive expressions for Doppler shift and what
are known as Lorentz transformations. Using the equations
describing Lorentz transformations, we will rederive some of
the results obtained in Chap. 30.

31.2 MASS-ENERGY RELATION

In this section we will carry out a very simple and
straightforward derivation of the mass-energy relation. The
analysis is somewhat similar to that given in Ref. 1 (see also
Refs. 2 to 4).

A1 and  A2  are  in reference frame S,  and B is in reference
frame S ¢ which is moving with respect to reference frame S
with velocity u. An atom is at rest in reference frame S¢. The
atom emits two photons (of the same frequency n0) in oppo-
site directions as shown in Fig. 31.1. Thus, in reference frame
S¢, the total momentum of the two photons will be zero, and
from the law of conservation of momentum, the atom will re-
main at rest (in reference frame S¢) . The change in the energy
of the atom (as observed by B in reference frame S¢) will be
given by

( ) 02
S

E h
¢

D = n � (2)

A1 and A2  are both in reference frame S; for A1 the source is
moving away from the observer, and for A2 the source is
moving toward the observer. As such, A1 and A2 will observe
different Doppler shifted frequencies n1 and n2 given by (see
Sec. 31.3)

1 0
1– /

=  
1 + /

u c

u c
n n (3)

and

 2 0
1 + /

=  
1– /

u c

u c
n n                                                                                          (4)

Thus, the change in the energy of the atom (as observed in
reference frame S ) will be given by

( ) 0
1 2 2 2

2
= + =

1– /
S

h
E h h

u c

n
D n n (5)

S �

B

A2A1

S

x�

x

u

Fig. 31.1 A1 and A2 are at rest in reference frame S. B is at
rest in reference frame S¢ which is moving with
speed u with respect to frame S. In reference
frame S¢ , an atom is at rest and emits two
photons of the same frequency n0.
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As mentioned earlier, in reference frame S¢, the atom (after the
emission of two photons) will remain at rest. Thus, for an ob-
server in reference frame S, the atom will be moving with velocity
u before and after the emission of photons. In  reference frame S,
since n2 > n1, the momentum of the two photons is different.
Therefore if we use the law of conservation of momentum in ref-
erence frame S, the atom (which is moving with the same velocity
u ) must have a slightly lesser mass given by

( ) 02 1
22 2

2
= – =

1– /
S

hh h u
m u

c c cu c

nn n
D

          
( )

2
= S

E u

c

D

(6)

Thus we get the relation

                                         
( ) ( ) 2=

S S
E m cD D

                                                                            (7)
In the above equation, DE and Dm need not be infinitesimal amo-
unts, and therefore we get the mass-energy relation (see Ref. 2)

2=E mc

In his 1905 paper entitled “Does the Inertia of a Body
Depend on Its Energy Content?” Einstein wrote (Ref. 4):

If a body emits the energy L in the form of radiation,
its mass diminishes by L/c2. . . .  The mass of a body
is a measure of its energy content.

Thus when a hydrogen atom makes a transition from an excited
state to the ground state with the emission of a photon, the
mass of the hydrogen atom (which still consists of one proton
and one electron) will decrease by a small amount. In general,
whenever a loosely bound system goes over to a tightly bound
system, a small amount of mass gets converted to energy.

Further, if we write

( ) ( ) 2=
S S

E m c
¢ ¢

D D
                                                                                                                    (8)

then from Eqs. (2) and (5) we get

( )
( )

2 2
=

1– /

S
S

m
m

u c

¢

D
D (9)

Thus the mass varies with velocity according to the  follow-
ing equation:

0
0 2 2

= =
1– /

m
m m

u c
g (10)

where m0 is the mass of the body when it is at rest and is
usually referred to as the rest mass and

  2 2

1
=

1 – /u c
g   (11)

is the Lorentz factor. About Eq. (10), Feynman has written

For those who want to learn just enough about it so
that they can solve problems, that is all there to the
theory of relativity—it just changes Newton’s laws
by introducing a correction factor to the mass.

The momentum of a body of rest mass m0 moving with veloc-
ity u will be given by

0

2 2
= =

1– /

m u
p mu

u c
(12)

Further the kinetic energy of a particle of rest mass m0 will be
given by

2 2
0= –T mc m c

     
2

0 2 2

1
= –1

1– /
m c

u c

Ê ˆ
Á ˜
Ë ¯ (13)

When    1,
u

c
<<

2

22 2

1
= 1+

21 /

u

cu c
g ª

-
(14)

and

       
2

2 2
0 02

1
1 + – 1 =

22

u
K m c m u

c

Ê ˆ
ª Á ˜Ë ¯ (15)

which is the nonrelativistic expression for the kinetic energy
of a particle.

 Example 31.1 Consider a body with rest mass 50 kg. If we
have to make it move with a velocity 0.9c, the Lorentz factor will
be ª 2.3 and therefore the kinetic energy will be

T ª (50 kg) ¥ (3 ¥ 108 m s–1 )2
 ¥ 1.3 ª 6 ¥ 1018 J

This is an enormous amount of energy; for example, a 100 MW
power station will generate 6 ¥ 1018 J of energy in about
2000 years.1 Even if we have to make the mass move with a

1 (100 ¥ 106 W) ¥  (2000 ¥  3.1 ¥  107 s) ª 6 ¥ 1018 Joules where we have assumed 1 year ª 3.1 ¥ 107 s
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velocity 0.5c, the factor 1.3 will be replaced by 0.15 and the kinetic
energy will be

T   ª  0.7 ¥ 1018  J
which is also an enormous amount of energy! Thus it would require
a tremendously large amount of energy to make a spacecraft (which
would have a much larger rest mass) move close to the speed of light.

 Example 31.2 The rest mass of the proton is mp ª 1.67 ¥

10–27 kg, thus the rest mass energy of the proton is given by

mpc
2 ª (1.67 ¥ 10–27kg) ¥ (3 ¥ 108  m/s )2

 ª 1.5 ¥ 10–10 J ª 938 MeV

In the large hadron collider (LHC), the protons are accelerated to
about  99.9999991% of the speed of light (see, e.g., Ref. 5). Thus

0.999999991
u

c
ª

and the Lorentz factor will be given by

2 2

1
= 7500

1– /u c
g ª

Thus the kinetic energy of the proton will be
T ª 7000 GeV

 Example 31.3 Energy from the Sun The outer periphery
of Earth’s atmosphere receives, from the Sun, about
1.4 kW m–2 of energy; this would imply that about 1400 J of radia-
tion is received (per second) on 1 m2 of area placed perpendicularly
to the light beam coming from the Sun. The distance between the
Earth and the Sun is about 1.5 ¥ 1011 m (it takes about 8.5 min for
the light to travel from Sun to Earth). If we assume that the solar
energy spreads out uniformly in all directions, then the total energy
liberated from the Sun is about2 1400  ¥  p  ¥  (1.5  ¥ 1011)2  @ 4  ¥
1026 J s–1. If we now use Einstein’s mass-energy relation
E = mc2, we get the result

26 –1
9 –1

2 8 –1 2

4×10 J s
=   4 × 10  kg s

(3×10 m s )

E
m

c
= ª (16)

Thus every second about 4 billion kg of mass is continuously get-
ting converted to energy.

31.3 THE DOPPLER SHIFT

In astronomy, we can determine how fast the stars or galax-
ies are moving (either directly away or directly toward us) by
measuring the Doppler shift of spectral lines. When the star
is moving away from the observer, the measured frequency is
slightly less than the actual value leading to the well-known
red shift of spectral lines. It is this Doppler shift that we cal-
culate in this section.

We will follow the method put forward by Feynman (see
Sec. 34-6 of Ref. 5). Let us consider a light source which is at
rest with respect to observer A. Instead of a continuous wave,
we assume that the light source emits n0 pulses in 1 s. We as-
sume that the first pulse is sent at t = 0 and the nth  pulse is
sent at t =  t1; thus n =  n0t1. The time taken by each pulse to
reach A is assumed to be t; thus the first pulse is received at
t = t, and the nth  pulse is received at t = t + t1; obviously, the
distance  between the source and observer is ct  (see Fig. 31.2).

We next assume the source to be moving with velocity u to-
ward the observer as shown in  Fig. 31.3. In time t1, observer A
will now receive a larger number of pulses because as the source
moves toward the observer, the light pulse takes less time to

Stationary
source of light

L
Observer

A

The first pulse is
sent at t = 0.

The n th pulse is
sent at t = t1.

The first pulse is
received at t = τ

The n th pulse is
received at t = τ + t1.

c τ

Fig. 31.2 Here L is a stationary light source. Light takes
time t to reach observer A.

The (n + m) th pulse
is sent at t = t2.

 

The first pulse is
sent at t = 0  

The (n + m ) th pulse
is received at t = τ + t1. 

c (τ + t1 - t2)ut2

The first pulse is
received at t = τ.  

Moving
source of light

L
Observer

A

c τ
u

Observer
A

u

Fig. 31.3 The light source L is moving toward observer A
with velocity u. The first pulse is sent at t = 0
which is received by  A at t = t. According to A, the
(n + m)th pulse is sent at t = t2 which is received by A
at t = t + t1.

2 (This is indeed an enormous amount of energy and is equivalent to the detonation of about 100 billion megatons of TNT every
second; one  ton of TNT is a unit of energy equal to 1 billion ( = 109 ) calories equal to about 4.2  ¥  109 J. One of the largest power
plants on earth produces about 6000 MW ( =  6 ¥ 109 J s–1 ) of energy—thus a total of 2  ¥  1017 J of energy is given out every year
(1 yr is about 31 million s); this would imply that about 2 billion such power plants would produce about the same energy in one year
that the Sun produces in 1 s!
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reach the observer. If in time t1 the observer receives n + m pulses,
and if the source has moved through the distance ut2 when the
source emits the (n + m)th pulse at  t  = t2 (see Fig. 31.3), then

1
1 2

2

= + ( +  – ) = 1 –2
t u

c ut c t t
t c

fiτ τ (17)

Both t1 and t2 are as measured by observer A. Now an observer
B (who is moving with the atom) will observe the duration t2 as

 
2

2 2 2
= 1–

u
t t

c
¢  (18)

Thus the number of pulses received by observer A (during
the time interval t  = t and t  =  t  +  t1) is n

0
t
2
¢, and therefore

the observed frequency will be

2 2
0 2 2

1 0
1 1

1– /
= =

t t u c

t t

¢n
n n

Using Eq. (17), we get

 
2 2

1 0 0
1– / 1+ /

= =
1– / 1– /

u c u c

u c u c
n n n  (19)

which is the Doppler shifted frequency observed by A. Thus
we may write for the Doppler shifted (DS) frequency

DS 0

1±
=

1m

u

c
u

c

n n
(Longitudinal Doppler Effect) (20)

where the upper sign corresponds to the source moving to-
ward the observer and the lower sign corresponds to the
source moving away from the observer. The corresponding
Doppler shifted wavelengths are given by

 DS 0

1m
=

1±

u

c
u

c

l l
(21)

Equations (20) and (21) correspond to what is known as the
longitudinal Doppler effect because the source is moving
along the line joining the source and the observer. When

1
u

c
<<

we get the nonrelativistic expressions for the Doppler shift:

DS 0 1
u

c
Ê ˆl ª l ±Á ˜Ë ¯ (22)

The fractional change in the wavelength is approximately
given by

0

u

c

Dl
ª ±

l
(23)

If a star is moving away from us, we must take the lower sign
and the wavelength increases—this is known as the red shift
of spectral lines.

 Example 31.4 A distant galaxy is moving away from us at
a speed of about  60,000 km s–1. Thus

0.2
u

c
ª

and the Doppler wavelength will be red shifted  by about 22%.

Example 31.5 According to Hubble’s law, the greater the
distance of the galaxy, the greater the velocity of the galaxy moving
away from us. Thus if u  represents the velocity of the galaxy, then

u  ª HD (24)
where D is the distance from the galaxy; the parameter H  is known
as the Hubble parameter and

 H ª 15–30 km s–1 per million light-years

There is a lot of controversy on the validity of Hubble’s law.
However, if we assume H ª 20 km s–1 per million light-years, the
above equation implies that if a galaxy is about 150 million light-
years away, then it will be moving away from us with a speed of
about 3000 km s–1 and

0.01
u

c
ª

Thus the fractional increase in the Doppler shifted wavelength is
about 1%.

As mentioned earlier, Eqs. (20) and (21) correspond to what is
known as the longitudinal Doppler effect because the source is mov-
ing along the line joining the source and the observer. On the other
hand, if the source is moving in a direction perpendicular to the line
joining the source and the observer, we have what is known as the
transverse Doppler effect. There is then only time dilation, and we
have for the Doppler shifted frequency

2

TDS 0 2= 1–
u

c
n n transverse Doppler effect (25)

31.4 THE LORENTZ
TRANSFORMATION

Observer A is on the platform, and observer B is inside a train
which is moving with velocity u in the +x direction with re-
spect to A. Let t and t¢ be the times measured by A and B,
respectively, and we assume that the two clocks are synchro-
nized such that at t = t¢ = 0,  the origin O coincides with the
origin O¢  (see Fig. 31.4).

A certain event occurs at point P; the event could be the
switching on of a lightbulb.  For A the event occurs at time t
at a distance of  x from the origin (see Fig. 31.5). In this time
(according to A), O¢  has moved through a distance ut.  Now,
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according to B, the distance of point P  from her origin is x¢,
which A observes as the contracted distance x¢ 2 21– /u c .
Thus according to A,

x = ut + x¢ 
2

2
1 –

u

c
(26)

or ( )=x x utg -¢ (27)

where g is the Lorentz factor [see Eq. (11)]. For B, observer A
is moving with speed u in the -x direction and  the event oc-
curs at time at a distance x¢   from O¢ . In this time (according
to B), the origin O has moved through a distance -ut¢ . Since
the distance x is measured by A, observer B will measure the
contracted distance x 2 2 .1 u c-  Thus (see Fig. 31.6)

x¢  = x 
2

2
1 –

u

c
- ut¢  (28)

In the above equation, we substitute for x¢  from Eq. (27) and
simplify to obtain

2
= –

ux
t t

c

Ê ˆg¢ Á ˜Ë ¯  (29)

Equation (28) can also be written as

( )= +x x utg ¢ ¢  (30)

If we substitute for x from Eq. (30) in Eq. (27), we obtain

2
= +

ux
t t

c

¢Ê ˆg ¢Á ˜Ë ¯ (31)

The following equations

( )= –x x utg¢ (32)

  2
= –

ux
t t

c

Ê ˆg¢ Á ˜Ë ¯ (33)

   ( )= +x x utg ¢ ¢ (34)

     2
= +

ux
t t

c

¢Ê ˆg ¢Á ˜Ë ¯ (35)

along with the equations

y¢  = y and z¢ = z (36)
describe what are known as Lorentz transformations. All the
results derived in Chap. 30 can be derived using the above
equations, as illustrated below.

x

S

A

B

S�

t�= 0

t = 0

O�

O

x�

u

Fig. 31.4 Observer A is on the platform, and B is inside a
train moving with velocity u in the + direction.
When O coincides with O¢ the clocks are
synchronized so that t¢  = t = 0.

Fig. 31.5 An event occurs at point P; for A, the event occurs
at time t at a distance x from O. For B, the event
occurs at a distance x¢  from O¢  which A sees as a
contracted distance, as shown in the figure.

x

S

A

B

S�

O�

O

x�

ut

x

u

Px¢ 1 
u2

c2�

Fig. 31.6 For B, observer A is moving with speed u in
the -x direction. For B the event occurs at time
t¢  at a distance x¢  from O. For A, the event
occurs at a distance x from O which B sees as a
contracted distance, as shown in the figure.

x

S

A

B

S�

O�
x�

ut�

u

x¢ P

x 1 
u2

c2�
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Example 31.6 We consider two events. In the reference
frame S the two events occur at (x1, t1) and (x2, t2), and in the refer-
ence frame S¢  the two events occur at (x¢ 1, t¢ 1) and (x¢ 2, t¢ 2). Thus

( )1 1 1= –x x utg¢ and ( )2 2 2= –x x utg¢

and therefore
( )2 1= – = –x x x x u tD g D D¢ ¢ ¢ (37)

(a) If the two events take place at the same place in the S¢  frame, then
Dx¢  =  0 (see Fig. 30.2) and therefore Dx  =  u Dt (see Fig. 30.3).

Now, if we use Eq. (35) for the two events, we readily get

2= +
u x

t t
c

D ¢Ê ˆD g D ¢Á ˜Ë ¯ (38)

If we now assume that the two events take place at the same
place in the Sí¢  frame, then Dx¢ = 0 and we obtain

2

2

1
= = 1 –

u
t t t

c
D D D¢

g
(39)

which tells us the following:
The time interval between two events occurring at the same

place in a particular reference frame S í¢ (referred to as the
proper time)

2

2

time interval between two events in any
= 1 – × referenc frame  moving with relative

speed  

u
S

c u
(40)

which is the same as Eq. (5) of Chap. 30.

(b) We next consider two events which occur at the same time in the
reference frame Sí¢  but at points separated by 2L0 (see Fig. 30.9).
Thus in Eq. (38) we must substitute Dt¢ = 0 and Dx¢ = 2L0 to
obtain

0 2

2
=

u
t L

c
D γ (41)

Thus whereas the two events are simultaneous in reference
frame Sí¢, they are not simultaneous in reference frame S. We will
get the same result if we use Eqs. (24) and (25) of Chap. 30.

Equations describing Lorentz transformations were derived
by Lorentz much before Einstein. Lorentz (and later Poincaré)
had shown that Maxwell’s equations are invariant under
Lorentz transformations; in App. F we show the invariance of
the wave equation under Lorentz transformations. In his 1905

paper, Einstein (using his two postulates) derived Eqs. (32)
and (33), but he made no mention of Lorentz’ work. Many feel
that Einstein was probably not aware of the work of  Lorentz.
Even the length contraction (discussed in Sec. 30.4) was first
suggested by Fitzgerald in 1889 and shortly later by Lorentz
independently; that is why length contraction is often
called the Fitzgerald–Lorentz contraction or Lorentz–
Fitzgerald contraction.

31.5  ADDITION OF VELOCITIES

Once again we consider the situation when observer A is on
the platform and observer B is inside a train which is moving
with velocity u in the +x direction with respect to A. Let t and t¢
be the times measured by A and B, respectively, and we assume
that the two clocks are synchronized such that at t =  t¢  = 0, the
origin O coincides with the origin O¢  (see Fig. 31.4). Inside the
train a tennis ball (which is initially at the origin) is moving
with velocity v in the +x direction. The displacement of the
tennis ball in reference frame S¢  is given by

x¢  = vt¢ (42)

Substituting in Eq. (37), we get

( )= +x u tg ¢v (43)

We substitute Eq. (42) in  Eq. (35), to get

2 2
= + = 1 +

ux u
t t t

c c

¢Ê ˆ Ê ˆg g¢ ¢Á ˜ Á ˜Ë ¯ Ë ¯
v

(44)

We divide Eq. (43) by  Eq. (44) to obtain the following ex-
pression for the velocity of the tennis ball as seen by the
observer in reference frame S:

+
= =

1 +

x u
V

t u c2/

v
v (45)

This is the rule for addition of velocities. If 1
3= cv  and

1
3=u c , we get 3

5=V c ; thus 31 1
3 3 5+ is . On the other hand, if

v = c and 1
2=u c, we get V = c, showing that the speed of

light remains constant.
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We will first show that

2x xe dx
+•

-a + b

-•

Ú = 
2

exp
4

Ê ˆp b
Á ˜a aË ¯

Re a > 0 (1)

We consider the integral

I = 
2xe dx

+•

-

-•

Ú (2)

Thus

I2 = 
2 2x ye dx e dy

+• +•

- -

-• -•

Ú Ú

= 
2 2( )x ye dxdy

+• +•

- +

-• -•

Ú Ú

Transforming to polar coordinates, we get

I2 = 
2

0 0

re r dr d
+• p

-
qÚ Ú

= 
2

0

1
2

2
re

•

-
È ˘
- ¥ pÍ ˙
Î ˚

= p

Thus

I = 
2xe dx

+•

-

-•

Ú  = p (3)

Now

2x xe dx
+•

-a + b

-•

Ú = exp
2

4

Ê ˆb
Á ˜Ë ¯a

exp
+•

-•

Ú
2

2
x

È ˘Ê ˆbÍ ˙- a -Á ˜aË ¯Í ˙Î ˚
dx

GAMMA FUNCTIONS AND
INTEGRALS INVOLVING
GAUSSIAN FUNCTIONS

Appendix
A

= exp 
2

4

Ê ˆb
Á ˜aË ¯

2
+

–

–

ze dz
•

a

•

Ú

where z = x – 2b a. Using Eq. (3), we get

2
+

–

–

ze dz
•

a

•

Ú = 
p
a

(4)

using which we obtain Eq. (1). We also get

p = 2
2

0

xe dx
+•

-

Ú

= 1/ 2

0

yy e dy
+•

- -

Ú

Thus

( )1
2G = p (5)

where G(z) is defined through the equation

G(z) = 
0

+•

Ú x z–1e–x dx Re z  > 0 (6)

For Re z >1, if we integrate by parts, we obtain

G(z) = (z – 1)G(z – 1) (7)

Since

G(1) = 
0

+•

Ú e– x dx = 1

we obtain

G(n + 1) = n! n = 0,1,2, . . . (8)
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Further since ( )1
2G  = p , we obtain

3 1 1 1
= =

2 2 2 2

5 3 3 3 1
= =

2 2 2 2 2

7 5 3 1
=

2 2 2 2

Ê ˆ Ê ˆG G pÁ ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ Ê ˆG G ◊ pÁ ˜ Á ˜Ë ¯ Ë ¯

Ê ˆG ◊ ◊ pÁ ˜Ë ¯

(9)

etc. Finally for n = 0, 1, 2, . . . .

22n xx e dx
+•

-

-•

Ú = 
1

2
n

Ê ˆG +Á ˜Ë ¯
 = 

. . .. .1 3 5 (2 1)

2n

n - p

(10)

and

2
+

2 +1 –

–

n xx e dx
•

•

Ú = 0 (11)
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The Laplace transform of a function f (x) is defined by the
equation

F( p) = L[ f (x)] = 
0

•

Ú e–px f (x) dx (1)

Now,

s

•

Ú F( p) dp = 
0s

• •

Ú Ú e–px f(x) dx dp

=
0

•

Ú dx f(x) – p x

s

e dp
•È ˘
Í ˙
Í ˙Î ˚
Ú

Carrying out the integration over p, we get

s

•

Ú F( p) dp = 
0

( )f x

x

•

Ú e–sx dx (2)

In the limit of s Æ 0, we obtain

0

•

Ú F( p) dp = 
0

( )f x

x

•

Ú dx (3)

We next assume

f(x) = sin gx g > 0 (4)

then

F(p) = 
0

•

Ú sin gx e–px dx

= ( )–( – ) –( + )

0

1
–

2
p ig x p ig xe e dx

i

•

Ú

Appendix
B

= 
1 1 1

–
2i p ig p ig

Ê ˆ
Á ˜- +Ë ¯

= 
2 2

g

p g+

Thus,

0

•

Ú F( p) dp = g
2 2

0 +

dp

p g

•

Ú

= 
2

0 1 +

dx

x

•

Ú x = 
p
g

= –1
0

tan x
•

 =
2

p
for g > 0 (5)

Obviously, for g < 0, the above integral is –p/2. Thus, using
Eq. 3, we get

0

for  > 0
2

sin
0 for  = 0

– for  < 0
2

g

gx
dx g

x
g

•

pÏ
Ô
Ô

= Ì
Ô p
Ô
Ó

Ú (6)

 

The integrand is an even function of x; thus

sin gx

x

+•

-•
p

Ú dx = 
0

2 sin gx
dx

x

•

p
Ú = 1 g > 0 (7)

EVALUATION OF

THE INTEGRAL
sin gx

x
dx

•

-•

Ú
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In the core of a single-mode optical fiber, we assume a small
z-dependent periodic variation of the refractive index; thus
the complete refractive index variation is assumed to be
given by

n(r, z) = n0 + Dn sin Kz (1)
where Dn << n0,

2
=

Λ
K

p

(2)
and L represents the period of the z-dependent variation (see
Fig. 15.12). The complete expression for the reflectivity is
given by

2 2

2 2 2

κ sinh α

κ cosh α – 4

L
R

L
ª

G
(3)

where L is the length of the FBG,

G = 4p n0
0

1 1
–

λ λB

Ê ˆ
Á ˜Ë ¯

(4)

2
2 Γ

= κ –
4

a (5)

lB = 2L n0 (6)

is the Bragg wavelength and

0

npD
k =

l
(7)

is known as the coupling coefficient. The maximum re-
flectivity occurs when l0 = lB (thus G = 0), and one obtains

THE REFLECTIVITY OF A
FIBER BRAGG GRATING

Appendix
C

the following expression for the peak reflectivity [see Eq. (47)
of Chap. 15].

2tanh
B

n L
R

p D
=

l
(8)

When G > 2k, a becomes imaginary and Eq. (3) takes the
form

2 2

2 2 2

κ sin γ
=

–κ cos γ + 4

L
R

L G
(9)

where

2
2Γ

= – κ
4

g (10)

Thus R = 0 when gL = np (n = 1, 2, 3, . . .). The wavelengths
at which R = 0 [see Fig. 15.13(c)] are given by

( )
2 1/ 22 2 2 2

0
0

λ
± κ π

2π
B

B L n
n L

l ª l + (11)

We define the bandwidth of the reflection spectrum as half
of the wavelength difference between the first minima on
either side of the central peak, then it would be given by

22 22 2

0 2
0 0

1 + = 1 +
2 2

B B

B

L nL

n L n L

Ê ˆl lk D
D ª Á ˜lË ¯p

λ (12)

or

2
0

0

1 +
2

B

B B

n L

n L

Ê ˆDl l D
ª Á ˜l lË ¯

(13)
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If the amplitude and phase distribution on the plane z = 0 is
given by A(x, h), then the diffraction pattern is given by [see
Eq. (23) of Chap. 20]

    u(x, y, z) ª –
i

zl
 exp(ikz) Ú Ú A(x, h)

 ¥ exp 2 2+ [( – ) + ( – ) ]
2

ik
x y

z

Ï ¸
x hÌ ˝

Ó ˛
dx dh (1)

We consider a Gaussian beam propagating along the z
direction whose amplitude distribution on the plane z = 0 is
given by

A(x, h) = a exp
2 2

2
0

+
–

w

Ê ˆx h
Á ˜
Ë ¯

(2)

implying that the phase front is plane at z = 0. Thus at a distance w0

from the z axis, the amplitude falls by a factor 1/e (i.e., the
intensity reduces by a factor 1/e2). This quantity w0 is called
the spot size of the beam. Substituting Eq. (2) in Eq. (1), we
obtain

 u(x, y, z) ª – ia

zl
eikz 

2
2

2
0–

exp ( – ) –
2

ik
x

z w

•

•

È ˘x
xÍ ˙

Í ˙Î ˚
Ú  dx

¥
2

2
2
0–

exp ( – ) –
2

ik
y

z w

•

•

È ˘h
hÍ ˙

Í ˙Î ˚
Ú  dh

or

u(x, y, z) ª –
i k ziae

zl
 

2 2( + )
2

ik
x y

ze  
2

1

+
– +

–

e d
•

ax b x

•

xÚ

¥ 
2

2

+
– +

–

e d
•

ah b h

•

hÚ (3)

DIFFRACTION OF A
GAUSSIAN BEAM

Appendix
D

where

a = 2
0

1
–

2

ik

zw
 = –

2

ik

z
(1 + ig ) (4)

g = 
2
0

z

w

l

p
(5)

b1 = –
ikx

z
b2 = –

iky

z

If we now use the integral

2
+

– +

–

x xe dx
•

a b

•

Ú = 
p

a

exp
2

4

Ê ˆb
Á ˜aË ¯

(6)

we get

u(x, y, z) ª 
2 2

2

+
exp –

1 + ( )
ia x y

e
i w z

F
È ˘
Í ˙

g Í ˙Î ˚
(7)

where

w(z) = w0(1 + g 2)1/2 = w0

1/22 2

2 4
0

1 +
z

w

Ê ˆl
Á ˜pË ¯

(8)

and

F = kz + 
2

k

z
(x2 + y2) –

2 2

2

( + )

2 (1 + )

k x y

z g

= kz + 
2 ( )

k

R z
(x2 + y2) (9)

where

R(z) ∫ 
2

1
1 +z
Ê ˆ
Á ˜gË ¯

 = 
2 4

0
2 2

1 +
w

z
z

Ê ˆp
Á ˜lË ¯

(10)
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In this appendix, we will derive the equations that are starting
points for modal analysis. We start with Maxwell’s equations,
which for an isotropic, linear, nonconducting, and nonmagnetic
medium take the form

— ¥ E = –
t

∂

∂

B
 = –im0 t

∂

∂

H
(1)

— ¥ H = 
t

∂

∂

D
 = e0n2

t

∂

∂

E
(2)

— ◊ D = 0 (3)
— ◊ B = 0 (4)

where we have used the constitutive relations

B = m0 H (5)
D = e E = e0 n

2 E (6)

in which E, D, B, and H represent the electric field, electric
displacement, magnetic induction, and magnetic intensity,
respectively; m0 (= 4p ¥ 10–7 N s2 C–2) represents the free
space magnetic permeability, e (= e0 n

2) represents the dielec-
tric permittivity of the medium, n is the refractive index, and
e0 (= 8.854 ¥ 10–12 C2 N–1 m–2) is the permittivity of free space.
If the refractive index varies only in the x direction, that is,

n 2 = n2(x) (7)

then we can always choose the z axis along the direction of
propagation of the wave and we may, without any loss of
generality, write the solutions of Eqs. (1) and (2) in the form

E = E(x)ei(w t–b z) (8)

H = H(x)ei(w t–b z) (9)

where b is known as the propagation constant. Equations (8)
and (9) define the modes of the system. Thus modes repre-
sent transverse field distributions that suffer a phase change
only as they propagate through the waveguide along z; the
transverse field distributions described by E(x) and H(x) do
not change as the field propagates through the waveguide.
The quantity b represents the propagation constant of the
mode. We rewrite the components of Eqs. (8) and (9):

TE AND TM MODES IN
PLANAR WAVEGUIDES

Appendix
 E

Ej = Ej(x)ei(w t–bz) j = x, y, z (10)

Hj = Hj(x)ei(w t–b z) j = x, y, z (11)

Substituting the above expressions for the electric and
magnetic field in Eqs. (1) and (2) and taking their x, y, and
z components, we obtain

ibEy = –iwm0Hx (12)

ydE

dx
= –iwm0Hz (13)

– ibHx – zdH

dx
= iwe0n

2(x)Ey (14)

ibHy = iwe0n2(x)Ex (15)

ydH

dx
= iwe0n2(x)Ez (16)

–ibEx – zdE

dx
= –iwm0Hy (17)

As can be seen, the first three equations involve only Ey,
Hx, and Hz, and the last three equations involve only Ex, Ez,
and Hy. Thus, for such a waveguide configuration, Maxwell’s
equations reduce to two independent sets of equations. The
first set corresponds to nonvanishing values of Ey, Hx, and
Hz with Ex, Ez, and Hy vanishing, giving rise to what are
known as TE modes because the electric field has only a
transverse component. The second set corresponds to
nonvanishing values of Ex, Ez, and Hy with Ey, Hx, and Hz van-
ishing, giving rise to what are known as TM modes because the
magnetic field now has only a transverse component. The
propagation of waves in such planar waveguides may thus
be described in terms of TE and TM modes.

TE Modes
We first consider TE modes: we substitute for Hx and Hz from
Eqs. (12) and (13) in Eq. (14) to obtain

2

2
yd E

dx
 + [k0

2 n2(x) – b
2]Ey = 0 (18)
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where

k 0 = 0 0w e m  = 
c

w
(19)

is the free space wave number and c 0 0(= 1/ )e m is the
speed of light in free space. For a given refractive index pro-
file n2(x), the solution of Eq. (18) (subject to appropriate
boundary and continuity conditions) gives the field profile
corresponding to the TE modes of the waveguide. Since
Ey(x) is a tangential component, it should be continuous at
any discontinuity; further since dEy /dx is proportional to
Hz(x) (which is a tangential component), it should also be
continuous at any discontinuity. Once Ey(x) is known, Hx(x)
and Hz(x) can be determined from Eqs. (12) and (13), respec-
tively. In Secs. 28.2 and 28.4 we solved Eq. (18) for a
symmetric step index waveguide and for a parabolic index
waveguide, respectively.

TM Modes
The TM modes are characterized by field components Ex, Ez,
and Hy [see Eqs. (15) and (16)]. If we substitute for Ex and Ez

from Eqs. (15) and (16) in Eq. (17), we get

n2(x) 2

1

( )
ydHd

dx dxn x

È ˘
Í ˙
Î ˚

 + [k0
2 n2(x) – b 2]Hy(x) = 0 (20)

The above equation is of a form that is somewhat different
from the equation satisfied by Ey for TE modes [see Eq. (18)].
However, for the step index waveguide shown in Fig. 28.1,
the refractive index is constant in each region, and we have

2

2
yd H

dx
 + (k0

2ni
2 – b 2) Hy(x) = 0 (21)

At at each discontinuity

Hy and 2

1 yd H

d xn
(22)

should be continuous. This follows from the fact that since
Hy(x) is a tangential component, it should be continuous at
any discontinuity; further since

2

1 ydH

dxn

is proportional to Ez(x) (which is a tangential component), it
should also be continuous at any discontinuity.
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In this appendix we show that for the solution of the equation

( )
2

2
2

( ) 0
d

d

y
+ L - x y x =

x
(1)

to be well behaved, we must have L = 1, 3, 5, 7, . . . ; i.e.,
L  must be an odd integer. These are the eigenvalues of
Eq. (1). We introduce the variable

2
h = x (2)

Thus

2
d d d d

d d d d

y y h y
= = x

x h x h
(3)

and

2 2

2 2
4 2

d d d

dd d

y y y
= h +

hx h
(4)

Substituting in Eq. (1), we obtain

2

2

1 1
( ) 0

2 4 4

d d

dd

Ê ˆy y L
+ + - y h =Á ˜Ë ¯h h hh (5)

To determine the asymptotic form, we let hÆ • so that the
above equation takes the form

2

2

1
( ) 0

4

d

d

y
- y h =

h

the solution of which is 
1

2e
± h

. This suggests that we try out
the following solution:

( ) ( )
1
2y e

- h

y h = h (6)

Thus
1
21

2

d dy
y e

d d

- hÊ ˆy
= -Á ˜h hË ¯

(7)

SOLUTION FOR THE
PARABOLIC INDEX

WAVEGUIDE

Appendix
F

and

     

12 2
2

2 2

1
( )

4

d d y d y
y e

dd d

- hÊ ˆy
= - + hÁ ˜hh hË ¯

(8)

Substituting Eqs. (7) and (8) in Eq. (5), we get

   
2

2

1 1
( ) 0

2 4

d y d y
y

dd

L -Ê ˆh + - h + h =Á ˜Ë ¯ hh
(9)

Now the confluent hypergeometric equation is given by (see, e.g.,
Refs. 1 and 2)

( )
2

2
( ) 0

d y dy
x c x ay x

dxdx
+ - - = (10)

where a and c are constants. For 0, 1, 2, 3, 4,c π ± ± ± ± . . . the

two independent solutions of the above equation are

( )1 1 1( ) , ,y x F a c x=   (11)

and

( )1
2 1 1( ) = 1, 2 ,cy x x F a c c x-

- + - (12)

where ( )1 1 , ,F a c x  is known as the confluent hypergeometric

function and is defined by

( )
2 3

1 1
( 1) ( 1)( 2)

, , 1
1! ( 1) 2! ( 1)( 2) 3!

a x a a x a a a x
F a c x

c c c c c c

+ + +
= + + + +

+ + +
. . .

(13)
Obviously, for a = c we will have

         ( )
2 3

1 1 , , 1 . . .
1! 2! 3!

xx x x
F a a x e= + + + + = (14)

Thus although the series given by Eqs. (13) and (14) are con-
vergent for all values of x, they would blow up at infinity.
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Indeed the asymptotic form of 1 1 ( , , )F a c x  is given by

( )1 1
( )

, ,
( )

a c x

x

c
F a c x x e

a
-

Æ•

G
Æ

G
(15)

The confluent hypergeometric series ( )1 1 , ,F a c x  is very easy
to remember, and its asymptotic form is easy to understand.
Returning to Eq. (9), we find that ( )y h satisfies the confluent
hypergeometric equation with

1 1
and

4 2
a c

- L

= = (16)

Thus the two independent solutions of Eq. (1) are

1
2

1 1
1 1

( ) , ,
4 2

F e
- h- LÊ ˆy h = hÁ ˜Ë ¯ (17)

and

1
2

2 1 1
3 3

( ) , ,
4 2

F e
- h- LÊ ˆy h = h hÁ ˜Ë ¯ (18)

We must remember that 2.h = x  Using the asymptotic form of
the confluent hypergeometric function [Eq. (15)], we can
readily see that if the series does not become a polynomial,
then  as ,hÆ• ( )y h  will blow up as 1

2e h . To avoid this, the
series must become a polynomial. Now 1( )y h  becomes a
polynomial for L = 1, 5, 9, 13, . . . and 2 ( )y h  becomes a poly-
nomial for L = 3, 7, 11, 15. Thus only when

L = 1, 3, 5, 7,  9, . . . (19)

we will have a well-behaved solution of Eq. (1) — these are
the eigenvalues of Eq. (1). The corresponding wave functions
are the Hermite-Gauss functions

   
21

( ) ( ) exp 5 0,1, 2, 3, . . .
2n n nN H n

Ê ˆ= - =Á ˜Ë ¯
ψ ξ ξ ξ

(20)
where

1/ 2
1

2 !
n n

N
n

È ˘
= Í ˙

pÎ ˚

is the normalization constant so that

                       
2

0

( 1.| |n d
+•

-

=yÚ x) x

Further,

/ 2 2
1 1

! 1
( ) ( 1) , , for 0, 2, 4, . . .

( /2)! 2 2
n

n
n n

H F n
n

Ê ˆx = - - x =Á ˜Ë ¯

(21)
and

( 1) / 2 2
1 1

! 1 3
( ) ( 1) 2 , ,

[( 1)/2]! 2 2
for 1, 3, 5, . . .

n
n

n n
H F

n
n

-

-Ê ˆx = - x - xÁ ˜Ë ¯-
=

(22)
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In this appendix we show that the scalar wave equation

2
2

2 2

1

c t

∂ y
— y =

∂
   (1)

is invariant under Lorentz transformation. In Cartesian
coordinates

2 2 2
2

2 2 2x y z

∂ y ∂ y ∂ y
— y = + +

∂ ∂ ∂
(2)

The equations describing the Lorentz transformations are given
by (see Sec. 31.3)

( )x x ut= g -¢ (3)

2

ux
t t

c

Ê ˆ= g -¢ Á ˜Ë ¯ (4)

                            y y=¢                                      (5)

and

z z=¢  (6)
where

2 2

1

1 /u c
g =

-
 (7)

is the Lorentz factor. Since y y′ = and ,z z=¢

2 2 2 2

2 2 2 2
and

y y z z

∂ y ∂ y ∂ y ∂ y
= =

∂ ∂ ∂ ∂¢ ¢
 (8)

From Eqs. (3) and (4)

                   x

x

∂ ¢
= g

∂
 

2

t u

x c

∂ g¢
= -

∂
 (9)

Now

    
x y z t

x y x z x t xx x

∂y ∂y ∂ ∂y ∂ ∂y ∂ ∂y ∂¢ ¢ ¢ ¢
= + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂¢ ¢ ¢∂ ∂ ¢
(10)

Using Eq. gives (9)

2

u

x tx c

∂y ∂y g ∂y
= g -

∂ ∂¢ ¢∂
(11)

INVARIANCE OF THE WAVE
EQUATION UNDER LORENTZ

TRANSFORMATION

Appendix
G

and

2 2 2 2 2

2 2 2 2

2 2 2 2 2 2
2

2 2 4 2

2

x t u x t

x x x t x xx x x t c t

u u

x c x t c t

Ê ˆ Ê ˆ∂ y ∂ y ∂ ∂ y ∂ g ∂ y ∂ ∂ y ∂¢ ¢ ¢ ¢
= g + - +Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂¢ ¢∂ ∂ ∂ ∂ ∂¢ ¢ ¢ ¢Ë ¯ Ë ¯

∂ y g ∂ y g ∂ y
= g - +

∂ ∂ ∂ ∂¢ ¢ ¢ ¢
(12)

From Eqs. (3) and (4)

and
x t

u
t t

∂ ∂¢ ¢
= - g = g

∂ ∂
(13)

Thus

x y z t

t x t y t z t t t

u
x t

∂y ∂y ∂ ∂y ∂ ∂y ∂ ∂y ∂¢ ¢ ¢ ¢
= + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂¢ ¢ ¢ ¢

∂y ∂y
= -g + g

∂ ∂¢ ¢

(14)

2 2 2 2 2

2 2 2

2 2 2
2 2 2 2

2 2
2

x t x t
u

t x t t x t t tt x t

u u
x tx t

Ê ˆ Ê ˆ∂ y ∂ y ∂ ∂ y ∂ ∂ y ∂ ∂ y ∂¢ ¢ ¢ ¢
= - g + + g +Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂¢ ¢ ¢ ¢∂ ∂ ∂¢ ¢Ë ¯ Ë ¯

∂ y ∂ y ∂ y
= + g - g + g

∂ ∂¢ ¢∂ ∂¢ ¢

      

2 2 2 2 2 2 2 2
2

2 2 2 2 2 4 2

2 2 2 2 2 2 2

2 2 2 2 2

2 2

2 2 2

1 2

2

1

u u

x tx c t x c c t

u u

x tc x c c t

x c t

∂ y ∂ y ∂ y g ∂ y g ∂ y
- = g - +

∂ ∂¢ ¢∂ ∂ ∂ ∂¢ ¢

g ∂ y g ∂ y g ∂ y
- + -

∂ ∂¢ ¢∂ ∂¢ ¢

∂ y ∂ y
= -
∂ ∂¢ ¢

=

where we have used Eq. (7). Thus

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

1 1
0

x y z c t x y z c t

∂ y ∂ y ∂ y ∂ y ∂ y ∂ y ∂ y ∂ y
+ + - = + + - =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂¢ ¢ ¢ ¢

(15)
which proves the invariance of the wave equation under Lorentz
transformation.
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A
Aberrations

astigmatism,  88–89
chromatic,  79–81
coma,  87–88
defined,  79
distortion,  89–90
observing,  60
spherical,  82–87

Achromatic doublets,  80–81
Active media,  427
Addition of velocities,  518
Adiabatic compressibility of gases,  151
Airy patterns

aberrations versus,  86–87
intensity distributions,  258–60
resolution limits and,  265–66

All-dielectric structures,  230
Ampere’s law,  387
Amplification in lasers,  427, 428–30,

431, 440–45
Amplitude

defined,  145
division,  177, 195, 221
simple harmonic motion,  96

Amplitude-modulated (AM) broadcast
band,  456

Amplitude resonance,  102
Angular diameter of stars,  238–39
Angular momentum of photons,  418–20
Anisotropic media

basic properties,  44, 347
plane wave propagation,  359–63
refraction at isotropic interface,  44–47

Antinodes,  170
Antireflective coatings,  199, 200
Antisymmetric modes,  477
Aplanatic lenses,  61–62
Aplanatic points of spheres,  60–63, 84
Astigmatism,  88–89
Atmosphere

diffraction in,  13
effects on laser beams,  457–58
ionosphere reflections,  42–44, 105
refractive indices,  34–39, 105

Attenuation,  463–65. See also Losses
Axes of lenses,  56

SUBJECT INDEX

B
Babinet’s principle,  309
Back waves,  158
Bandpass filters,  297
Barrel distortion,  90
Beam waist,  438
Beats,  239–41
Bending lenses,  85
Bessel functions,  258
Biprism,  189–90
Bit rate maxima,  469–70
Blackbody radiation,  16
Black holes,  418
Blooming,  200
Blue shifting,  137
Blu-Ray technology,  282, 284
Body-centered cubic structures,  277–78
Boltzmann’s law, 441
Book of Optics (Alhazen),  1–2
Bragg condition,  203, 278
Bragg’s law,  6, 277, 278, 279
Bragg wavelength,  203
Brewster angle,  394
Brewster’s law,  341, 394
Brillouin scattering,  449
Bundles of fiber,  462
Burning mirrors,  53

C
Camera obscura,  2
Cartesian oval,  49, 62
Cascaded Raman lasers,  451–52
Catoptrica (Hero),  1
Cauchy formula,  275
Cauchy relation, 104, 140
Cavity lifetime,  443–44
CD-ROMs,  282, 283–84
Cerenkov radiation,  165
Chirping,  135–37, 138
Chromatic aberrations,  79–81
Circle of least confusion,  82, 89
Circular-aperture diffraction,  258–60, 293–94, 305–6, 308–9
Circularly polarized waves,  337, 344–45, 354
Cladding in optical media,  40, 460–61
Coaxial optical systems,  71–73
Coders,  462
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Coefficient of Finesse,  222
Coefficient of reflection,  171
Coherence

basic principles,  181–82, 233–35
complex degree,  243–44
line width and,  235–36
optical beats and,  239–41
requirements in holography,  330
spatial,  236–38

Coherence length,  233, 234–35, 330
Coherence time

basic principles,  233–35
Fourier analysis,  241–43
relation to spectral width,  236

Coherent bundles,  462
Collisional broadening,  447
Colors in thin films,  211–12
Color vision,  13
Coma,  87–88
Communications systems,  456–59. See also Fiber-optic

communications
Compact discs,  282, 283–84
Complex degree of coherence,  243–44
Compound microscope, 2. See also Microscopes
Compton effect,  6, 16, 409, 414–18
Concave-convex resonators,  439
Concentric resonators,  439
Conducting media, reflection by,  404–5
Confocal resonators,  439
Constructive interferences. See also Interference patterns

defined,  173
in thin films,  196
on water surface,  178–79

Continuity conditions,  385–86
Converging lenses,  57, 58
Convolution theorem,  123–24
Cores in optical media,  40, 460–61
Cornu’s spiral,  314, 315, 317
Corpuscular model

basic principles,  11–13, 16–17
Compton effect supporting,  414–18
of Descartes,  3
photoelectric effect supporting,  412–14

Cosine law,  197–98
Coupling length,  358
Critical damping,  101
Critical power,  281–82
Crystals

polarization by,  342, 347–51
X-ray diffraction study with,  276–80

Cubic structures,  277–78
Current

measuring with Faraday rotation,  368
in photoelectric effect,  412–13
production of magnetic fields,  387–88

Curvature of field,  89
Cutoff frequencies,  490–91
Cutoff voltage,  413
Cutoff wavelength,  466, 481, 490, 491

D
Damped simple harmonic motion,  99–101
Data storage technology,  282–84

de Broglie hypothesis, 6
Debye-Scherrer rings,  17, 278, 280
Degeneracy,  488, 491
Depth of focus,  264
Destructive interferences. See also Interference patterns

defined,  173
in thin films,  196
on water surface,  178, 179

Dichroism,  342
Dielectric constant,  377
Dielectric film,  406–7
Dielectric permittivity,  103, 387
Dielectrics

plane wave propagation,  375–78
reflection and refraction of plane waves with electric vector

parallel to interface between,  392–98
reflection and refraction of plane waves with electric vector

perpendicular to interface between,  398–404
three-dimensional wave equation for,  378–79

Diffraction
aberrations versus,  86–87
in aperture arrays,  294–95
basic principles,  253–54
with circular apertures,  258–60, 293–94, 305–6, 308–9
Fresnel formula,  289–90
Gaussian beam propagation,  310–12
Grimaldi’s discovery,  3
in laser beams,  260–64
N-slit Fraunhofer patterns,  269–72
by opaque discs,  306, 309
particle model explanation,  18–19
rectangular apertures,  292–93
relation to wavelength,  29
resolution limits and,  264–67
self-focusing phenomenon and,  280–82
single-slit Fraunhofer patterns,  254–58, 291–92
single-slit Fresnel patterns,  318–20
by straight edge,  312–17
two-slit Fraunhofer patterns,  267–69
X-ray,  276–80

Diffraction gratings,  272–76
Diffraction-limited beams,  262
Diffraction loss,  437–38, 440
Diffuse reflection,  161–62
Dimensionless waveguide parameter,  477
Dioptrique (Descartes),  3
Dirac delta function,  119–21
Directionality of laser beams,  260–64
Directionality of sound waves,  260
Dirichlet’s conditions,  111
Dispersion

defined,  104
material,  129–31, 466, 469, 470
of pulses in multimode fiber,  466–71

Dispersion compensating fibers,  495–97
Dispersion shifted fibers,  495
Dispersive media, wave propagation in,  132–35
Displacement current,  388
Distortion,  89–90
Diverging lenses,  57–58
Doppler broadening,  446
Doppler shift,  515–16
Double-exposure holographic interferometry,  330–31
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Double refraction
discovery,  3
plane wave propagation in anisotropic media,  359–63
polarization by,  342, 347–51
ray velocity and refractive index,  363–65

Doublets, achromatic,  80–81
Down-chirped pulses,  136, 137
DVD-ROM,  282, 284

E
Eccentricity,  84
EDFA (erbium–doped fiber amplifier),  9, 428–30,

431, 451
Eigenvalue equations,  420
Einstein coefficients,  440–45
Electric susceptibility,  103, 105
Electromagnetic spectrum,  378
Electromagnetic waves

continuity conditions,  385–86
energy density and intensity,  107, 382
field vectors,  339, 376, 377
free space,  132
Maxwell’s equations,  14, 375, 386–88
Maxwell’s predictions,  4–5, 14–15, 379
measuring reflection,  170–71
plane waves in a dielectric,  375–78
Poynting vector,  363, 379–82
radiation pressure,  382–84
reflection and refraction with electric vector parallel to

interface of two dielectrics,  392–98
reflection and refraction with electric vector perpendicular to

interface of two dielectrics,  398–404
superposition when linearly polarized,  344–47
three-dimensional wave equation in dielectric,  378–79
transverse nature,  146, 339
wave equation in conducting medium,  384–85

Electrons,  5, 17, 103
Electrostriction,  280
Ellipses, eccentricity,  84
Ellipsometry,  401
Elliptically polarized waves,  345, 346–47, 354
Elliptical reflectors,  32–33
Endoscopes,  462
Energy-mass relationship,  513–15
Erbium-doped fiber amplifier (EDFA),  9, 428–30, 431, 451
Ether,  6, 14, 509–11
Evanescent waves,  398
Extraordinary rays,  44, 347
Extraordinary refractive indices,  360
Extrinsic sensors,  472
Eye damage,  262, 263–64, 426

F
Fabry–Perot etalon,  222, 223–25
Fabry–Perot interferometer

basic features,  225–26
interference filters with,  230
optical resonators versus,  436
resolving power,  227–29

Face-centered cubic structures,  278
Faraday isolators,  367–68
Faraday law of induction,  387

Faraday rotation,  367–68, 370–71
Fermat’s principle

applied to ray paths in inhomogeneous media,  34–44
applied to refraction at isotropic/anisotropic

interface,  44–47
elements of,  29–31
reflection and refraction laws,  31–34

Fiber Bragg gratings,  204–6, 432
Fiber lasers,  431–32, 451
Fiber-optic communications. See also Optical fiber

development of,  8–9, 455, 456–59, 470
pulse dispersion,  466–71
ray path and transit time calculations,  40–42

Fiber-optic sensors,  471–72
Finesse, coefficient of,  222
First principal focus,  57–59
Fitzgerald–Lorentz contraction,  518
Flatness, optical,  213
Flattening of Sun,  38–39
Focal length,  58–59
Foci, principal,  57–59
Force constant,  97
Forced vibrations,  101–3, 115–16
4f correlator,  297
Fourier integral,  116–17, 121
Fourier series,  111–16
Fourier transform

basic applications,  121–23
coherence time analysis,  241–43
defined,  117
in spatial frequency filtering,  296–97, 298
thin lens properties,  298–300
two- and three-dimensional,  123–24

Fourier transformed pulses,  130–31
Fourier transform plane,  296–98
Fourier transform spectroscopy,  244–49
Four wave mixing,  496
Fraunhofer approximation,  291
Fraunhofer diffraction

in aperture arrays,  294–95
with circular apertures,  258–60, 293–94
elements of,  253–54
grating spectra,  272–74
N-slit patterns,  269–72
oblique incidence,  275–76
rectangular apertures,  292–93
single-slit patterns,  254–58, 291–92
two-slit patterns,  267–69

Free space wavelength,  129, 130–31
Free spectral range,  226
Frequency,  96, 111, 145–46
Frequency spectrum,  117
Fresnel biprism,  189–90
Fresnel diffraction

with circular apertures,  305–6, 308–9
elements of,  253, 254, 289–90
Gaussian beam propagation,  310–12
half-period zones,  304–8, 309, 313–14
by long, narrow slit,  318–20
by opaque discs,  306, 309
by straight edge,  312–17

Fresnel diffraction integral,  290
Fresnel equations,  400
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Fresnel integrals,  290, 314, 316
Fresnel number,  291, 309, 437
Fresnel’s two-mirror arrangement,  189
Fringe patterns. See Interference patterns
Fringes of equal thickness,  209
Frustrated total internal reflection,  484
Fundamental frequency,  111
Fundamental mode,  114, 491, 492

G
Galilean transformation,  511
Gases, longitudinal wave propagation,  150–51
Gaussian beam propagation,  310–12
Gaussian formula for single spherical surfaces,  55
Gaussian functions,  121, 122–23
Geometrical optics,  13, 29–31, 261
Geometrical shadows,  253
Giant Metrewave Radio Telescope,  32
Glancing angle,  277
Glass properties,  461
Graded index media,  38–39, 470
Gradient index lenses,  41
Graphical methods in superposition studies,

173–75
Grating equation,  272
Grating spectra,  272–74
Gravitational red shift,  418
Grazing incidence,  395, 396
GRIN lenses,  41
Group index,  129
Group velocity

basic principles,  127–31
of wave packets,  131–37

Guided modes,  476, 480, 489–91

H
Haidinger fringes,  208
Half-period zones,  304–8, 309, 313–14
Half wave plates,  352, 353
Heisenberg uncertainty principle,  7, 18–19, 24
Helium-neon lasers,  434–36, 445, 447
Hemispherical resonators,  439
High currents, measuring with Faraday rotation,  368
High-reflectivity films,  201–2
History of optics,  1–9
Holey fibers,  139
Holography

applications,  330–32
basic principles,  325–26
invention,  7
to produce diffraction gratings,  272
theory,  327–30

Homogeneous broadening,  447
Hubble’s law,  516
Huygens–Fresnel principle,  159, 303
Huygens eyepiece,  86
Huygens’ principle

in inhomogeneous media,  165
rectilinear propagation,  158–59
refraction and reflection applications,  159–65
wave front description,  157–58

Hydrogen
demonstrating uncertainty principle,  24
energy levels,  441–42, 514
refractive index,  104

I
Ideal crystals,  276
Incoherent bundles,  462
Incoherent wave sources,  181, 182
Inertial systems, defined,  502
Inhomogeneous broadening,  447
Inhomogeneous media,  34–44, 165
Intensity distributions,  184–89
Interference

constructive and destructive,  173
diffraction versus,  253
of polarized light,  351–54

Interference experiments,  21–23
Interference filters,  230
Interference patterns

changing,  191–93
coherence,  181–82, 234, 236–38
colors in,  211–12
cosine law,  197–98
of film with nonparallel reflecting surfaces,  208–11
intensity distributions,  184–89
line width in,  235–36
measuring with Fabry–Perot interferometer,

223–29
measuring with Michelson interferometer,  216–19
in multiple reflections from plane parallel film,

221–23
Newton’s rings,  212–15
of nonreflecting films,  198–201
observing in light waves,  177, 182–84
optical beats,  239–41
in periodic media,  202–6
of plane film illuminated by plane wave,  196–97
of plane film illuminated by point source,  206–8
production by Fresnel,  189–90
on water surface,  178–81
from white light,  190–91

Interferometers
Fabry–Perot,  223–28
of Michelson,  6, 21–22, 244–45
use of holography with,  330–31

Intermodal dispersion,  466
Internal reflection. See Total internal reflection
Intrinsic sensors, 472
Ionosphere,  42–44, 105
Isotropic media,  44–47, 147
Ives’ experiment,  172

J
Jones’ calculus,  365–67
Joule loss,  380, 381, 385

K
Kerr effect,  280
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L
Lasers

basic principles,  425–27
coherence time and length,  234–35
directionality,  260–64
fiber type,  431–32, 451
helium-neon type,  434–36, 445, 446, 447
importance to fiber-optic communications,  457
intensity at focal plane,  382
main components,  427–31, 436–45
milestones in development,  7–8, 9, 425
Raman effect and,  449–52
ruby type,  432–34, 447–48
spectral width,  426, 448–49
use in media technology,  282–84

Lateral coherence width,  237–38
Lateral magnification,  59–60
Lateral spherical aberration,  82, 84
Laue method,  278, 279
Laws of reflection,  31, 161
Left circularly polarized waves,  345, 354–55
Length contraction,  505–7, 518
Lenses. See also Thin lenses

aplanatic,  61, 62
principal foci and focal lengths,  57–59
system matrices for varying thicknesses,  72–73
thin-lens Fourier transforming properties,  298–300
thin-lens image formation,  56–57

Light amplification,  443
Light properties

corpuscular model,  11–13, 16–17, 412
early views,  3, 53
wave model,  13–15, 157–58, 379
wave-particle duality,  17–19, 414

Light speed,  502–3, 506–7. See also
Special relativity

Light waves. See also Interference patterns
intensity distributions,  184–89
observing interferences,  177, 182–84

Linearly polarized waves,  337, 354
Line shape function,  446–47
Liquid level sensors,  468, 472
Liquids, refractive indices,  107
Lloyd’s mirror arrangement,  192, 193
Longitudinal Doppler effect,  516
Longitudinal modes,  436
Longitudinal spherical aberration,  82, 83, 84
Longitudinal waves,  146, 149–51
Looming,  37
Lorentzian line shape function,  446–47
Lorentzian pulse,  144
Lorentz transformations,  516–18
Losses. See also Reflection

attenuation,  463–65
due to misaligned fibers,  492–93
Joule,  380, 381, 385
minimizing in glass fiber,  456, 458, 464
in optical instruments,  198
in plastic fiber,  471
in resonators,  431, 437–38, 440

Low-reflectivity films,  198–201

LP modes,  488
Lummer–Gehrcke plate,  229–30

M
Magnetic fields,  387–88
Magnetism, Faraday’s discoveries,  4
Magnification, lateral,  59–60
Malus’ law,  23, 343–44
Masers,  8, 425
Mass-energy relationship,  6, 513–15
Master oscillator power amplifier (MOPA), 431–32
Material dispersion,  129–31, 466, 469, 470
Material dispersion coefficient,  130
Matrix method

basic principles,  68–73
nodal planes in,  74–75
for thin lens pairs,  75–77
unit planes in,  73–74

Matrix multiplication principles,  67–68
Matter, wave nature,  17, 19–21
Maxwell’s equations,  375, 386–88, 475
Media technology,  282–84, 285
Meridional plane,  88–89
Meridional rays,  55
Metastable state,  433
Method of separation of variables,  152, 153
Michelson interferometers

basic principles,  216–19
Fourier transform spectroscopy using,  244–49
invention,  6, 21–22
stellar measurement with,  238–39
use in Michelson–Morley experiment,  510–11

Michelson–Morley experiment,  6, 509–11
Microscopes,  2, 61–62, 266–67
Miller indices,  276–78
Mirages,  34, 35–37, 38
Modes

basic principles,  465–66, 475–76
LP type,  488
phase retarders,  366
physical understanding of,  480–81
TE type,  475–79, 480, 482–83
TM type,  475, 481–82

Moiré fringes,  188–89, 239
Monochromatic aberrations

astigmatism,  88–89
coma,  87–88
defined,  79
distortion,  89–90
spherical,  82–87

Monochromaticity of laser beams,  448–49
Moon, shadows on,  13
MOPA (master oscillator power amplifier),  431–32
Motion, light speed and,  502–3, 506–7
Mount Washington,  504
Multimode optical fiber,  465–71
Multiple-beam interferometry

basic principles,  221–23
Fabry–Perot interferometer,  223–29
Lummer–Gehrcke plate,  229–30

Mu meson experiment,  504–5, 506
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N
Natural broadening,  446–47
Negative crystals,  348
Newtonian lens formula,  59
Newton’s first law,  502
Newton’s rings,  14, 212–15
Nichol prisms,  342, 343
Nodal lines,  179
Nodal planes,  74–75
Nodes,  170
Nondispersive media, wave propagation in,  132, 134
Nonlinear phenomena,  280–82
Nonreflecting films,  198–201
Normal dispersion,  104
Normal spectra,  273
N-slit Fraunhofer diffraction patterns,  269–72
Numerical aperture,  462–63

O
Object waves,  326, 327, 331
Oil immersion objectives,  61–62, 267
One-dimensional wave equation

applications to different media,  148–51
elements of,  147–48
general solution,  151–54

Opaque discs, diffraction by,  306, 309
Open resonators,  430
Optical amplification,  428–30, 431, 440–45
Optical beats,  239–41
Optical fiber. See also Waveguides

advantages,  137, 456
attenuation in,  463–65
bundles,  462
development of,  8–9, 455, 458–59, 461
guided modes of,  476, 480, 489–91
holey,  139
mode basics,  475–76
multimode types,  465–66
numerical aperture,  462–63
plastic,  471
pulse dispersion,  466–71, 493–97
single-mode wave propagation,  491–93
state changes in light polarization,  356–58
step index basic equations,  487–89
structure,  204, 460–61
total internal reflection,  459–60

Optical flatness,  213
Optically active media, polarized light in, 354–56, 369–71
Optical media technology,  282–84, 285
Optical path length,  64
Optical pumping,  433
Optical resonators,  427, 430–31, 436–40
Optical reversibility principle,  192
Optical waveguides, 41. See also Waveguides
Optic axes

defined,  347
effects on ray velocities,  347–48, 349–50
effects on refractive indices,  44–46, 47, 349
of Rochon prisms,  359
of Wollaston prisms,  358

Optics (Kepler),  2
Optics (Ptolemy),  1

Optics history,  1–9
Order of diffraction,  277
Ordinary rays,  44, 347
Ordinary refractive indices,  360
Oscillating dipoles,  381–82
Overdamped motion,  100

P
Parabolic index media

number of potential modes,  466
pulse dispersion,  468
ray paths and transit times in,  40–42
TE modes,  482–83

Paraboloid reflectors,  32
Paraxial approximation,  40–41, 54, 60, 298
Paraxial focus,  82
Paraxial optics

basic principles,  54, 55, 79
matrix method,  68–77
thin lens,  56–57, 59

Pass axis,  339
Passive cavity lifetime,  443–44
Passive cavity line width,  449
Pendulums,  97–99
Penetration depth,  385
Periodic media,  202–6
Periodic motions,  95
Phase

changes in reflected light,  192–93
defined,  96, 145
recording in holography,  325
relation to wavelength,  145–46

Phase-coherent amplification,  427
Phase retarders,  366
Phase velocity,  128
Photoelectric effect,  5, 16, 412–14
Photography,  325
Photons

Compton effect,  414–18
diffraction,  18–19
interference experiments,  21–23
mass and angular momentum,  418–20
momentum calculation,  383
polarization,  23–24

Photon theory,  16, 414
Photophone,  5, 457
Photosensitivity,  204
Pinhole camera,  2, 286
Planar resonators,  439
Planck’s law,  441
Planck’s constant,  18
Plane polarized waves,  337
Plane waves defined,  157
Planoconvex lenses,  88
Plasma frequency,  105, 109, 110
Plastic optical fiber,  471
Poisson spot,  4, 306
Polarization of light

angular momentum of photons,  418–20
basic methods of producing,  340–43
basic principles,  337–40
determining state of,  354
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discovery,  4
by double refraction,  342, 347–51
Faraday rotation,  367–68, 370–71
interference with,  351–54
Jones’ calculus,  365–67
Malus’ law,  23, 343–44
photon behavior,  23–24
state changes in optical fiber,  356–58
superposition with,  344–47
through optically active media,  354–56, 369–71
by Wollaston and Rochon prisms,  358–59

Polaroids
basic principles,  339–40
Land’s invention,  337
molecular structure,  341
with reflected light,  341–42

Population inversion
basic principles,  427
calculations,  441–43
origin of concept,  428
in ruby lasers,  432–34, 447–48
threshold condition,  444–45

Positive crystals,  348
Powder method,  278
Power law profile,  465–66, 470–71
Power of refracting surface,  69
Poynting vector,  363, 379–82
Principal axis system,  360
Principal dielectric permittivities,  360
Principal foci,  57–59
Principal maxima,  271, 272
Principal refractive indices,  360
Prism film-coupling technique,  480–81
Prisms

polarization by,  342, 343, 358–59
resolving power,  274–75

Propagation constant,  488
Proper length,  505
Proper time,  504, 506, 518
Proxima Centauri,  508
Pulse broadening,  129, 134, 469
Pulse dispersion,  466–71, 493–97
Pumps (laser),  427, 429–30

Q
Quantum mechanics, waveguide theory and,  483–85
Quantum theory

Compton effect,  414–18
Einstein’s contributions,  6, 413–14
experimental support,  17–23
Heisenberg and Dirac’s contributions,  7
Planck’s blackbody radiation theory,  16

Quarter wave plates,  352, 353
Quartz crystals, optical activity,  370
Quasi-conductors,  385

R
Radiation. See Electromagnetic waves
Radiation modes,  476
Radiation pressure,  382–84
Radiation’s particle nature,  15–17
Raman anti-Stokes lines,  449–50

Raman effect,  7, 449–52
Raman shift,  450
Raman-Stokes lines,  449–50
Rate equations,  448
Ray dispersion in step index fibers,  467–68
Ray equation,  39–44
Rayleigh criterion of resolution,  265, 274
Rayleigh scattering,  5, 107–8, 343, 449
Rays

basic principles,  29
effects of inhomogeneous media,  34–39
equation for inhomogeneous media,  39–44
ordinary and extraordinary,  44
in reflection and refraction laws,  31–32
refraction at isotropic/anisotropic interface,  44–47

Ray velocity surfaces,  348, 365
Reconstruction waves,  326, 327–28, 330
Rectangular-aperture diffraction,  292–93
Rectilinear propagation,  158–59
Red shifting,  137, 446, 515, 516
Reference waves,  326
Reflection. See also Total internal reflection

coefficient,  171
by conducting media,  404–5
films enhancing,  201–2
films reducing,  198–201
Huygens’ principle applied,  161–62
from ionosphere,  42–44
laws,  31, 161
multiple, from plane parallel film,  221–23
in periodic media,  202–6
phase changes with,  192–93
polarization by,  341–42, 394–95
of waves with electric vector parallel to interface of two

dielectrics,  392–98
of waves with electric vector perpendicular to interface of two

dielectrics,  398–404
Reflectivity of dielectric film,  406–7
Refraction

basic principles,  11–12
effects of inhomogeneous media,  34–39
Huygens’ principle applied,  159–61
at isotropic/anisotropic interface,  44–47
laws,  31–32
matrix method of calculating effects,  69–70
polarization by,  342, 347–51
ray equation for,  39–44
of spherical waves by spherical surface,  162–65
of waves with electric vector parallel to interface of two

dielectrics,  392–98
of waves with electric vector perpendicular to interface of two

dielectrics,  398–404
Refractive indices

of dielectrics,  377
effect of optic axes,  44–46, 47, 349
effects of inhomogeneous media,  34–39
Huygens’ principle applied,  160–61
origins,  103–7
principal,  360
ray equation for,  39–44
relation to modes,  475
variation in,  137
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Resolving power
calculating,  264–67
diffraction gratings,  274
interferometry,  226–29, 247–48
prisms,  274–75
requirements in holography,  330

Resonance,  102–3, 106
Resonant cavities,  436
Resonators (laser),  427, 430–31, 436–40
Rest mass,  514
Retinal damage,  262, 263–64, 426
Right circularly polarized waves,  344–45, 354–55
Rochon prisms,  359
Rotating crystal method,  278
Ruby lasers,  432–34, 447–48
Ruled gratings,  272
Rydberg constant,  450

S
Sagittal focus,  89
Sagittal plane,  88–89
Sawtooth functions,  112–13
Scalar wave approximation,  487–88
Scanning Fabry–Perot interferometer,  225–28
Scattering

polarization by,  342–43
Rayleigh,  5, 107–8, 343, 449

Scattering states,  484
Schwarschild radius,  418
Secondary maxima in Fraunhofer diffraction,  271
Secondary wavelets,  157, 158–59
Second principal focus,  58–59
Seed lasers,  432, 433
Seidel aberrations, 79. See also

Monochromatic aberrations
Selective absorption,  342
Self-focusing phenomenon,  280–82
Self phase modulation,  137–39
Semiconductor lasers,  9
Sensors,  205–6, 471–72
Separated doublets,  81
Separation of variables,  152, 153
Shadow regions,  36, 37
Shape factor,  84–85
Shock wave fronts,  165
Sign convention,  54–55
Silica, group velocities in,  129, 130
Silica optical fiber. See Optical fiber
Simple cubic structures,  277
Simple harmonic motion,  95–99
Simple pendulums,  97–99
Simultaneous events, in special relativity,  507–8
Sinc function,  122
Sine condition,  63–65
Single-mode fiber

cutoff wavelength for,  466, 481
minimizing dispersion with,  468
pulse dispersion,  493–97
waveguide mode determination,  475–76, 481
wave propagation,  491–93

Single-slit diffraction experiment,  18–19

Single-slit diffraction patterns
Fraunhofer intensity distributions,  254–58, 291–92
Fresnel intensity distributions,  318–20
uncertainty principle and,  18–19

Sinusoidal waves,  145–46, 233
Skew rays,  55
Small residual dispersion fiber, 496
Snell’s law

equation,  32, 160, 392
origins and development,  2, 3, 12–13

Sodium, refractive index,  105, 106
Solar energy,  515
Sound waves

diffraction,  260
as longitudinal waves,  146
propagation in gases,  150–51
propagation in solids,  149–50

Spatial coherence,  236–38
Spatial frequency, in Fourier analysis,  117, 123
Spatial frequency filtering,  296–97, 298
Special relativity

addition of velocities,  518
Doppler shift,  515–16
length contraction,  505–7
light speed and motion,  502–3
Lorentz transformations,  516–18
mass-energy relationship,  513–15
Michelson–Morley experiment,  509–11
mu meson experiment,  504–5, 506
overview,  501–2, 511–12
simultaneity of events,  507–8
time dilation,  503–4
twin paradox,  508–9

Spectral range,  226, 229
Spectral width

defined,  129
of laser beams,  426, 448–49
measuring,  130–31
relation to temporal coherence,  236
of various light sources,  469

Spectrographs,  229
Spectroscopy,  4, 244–49
Spectrum, electromagnetic,  378
Specular reflection,  161
Spherical aberrations,  82–87
Spherical lenses,  56
Spherical surfaces

aplanatic points,  60–63
matrix method of calculating refraction,  70–71
reflection from single surfaces,  55–56
separating two differently refracting media,  33–34, 54–55
sine condition,  63–65
spherical wave refraction,  162–65

Spherical waves
Huygens’ principle,  157–59
refraction by spherical surface,  162–65
wave equation general solution,  153–54

Spiking,  434
Splice loss,  492–93
Spontaneous emission,  426, 440–41
Spot size,  260, 310, 492
Square-aperture diffraction,  292–93
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Stars, angular diameter,  238–39
Stationary light waves,  172
Stellar interferometers,  238–39
Step index fibers

basic equations for,  487–89
basic principles,  475
guided modes of,  489–91
number of potential modes,  466
ray dispersion in,  467–68
structure,  460–61
TE modes,  476–79, 480
TM modes,  481–82

Stimulated absorption,  426, 442
Stimulated emission,  426, 427, 441, 442
Straightedge diffraction patterns,  312–17
Strings

simple harmonic motion,  99
stationary waves on,  169–72
transverse vibrations,  113–15, 143–45, 148–49

Sun’s energy,  515
Superior mirage,  37, 38
Superposition of waves,  169–75, 344–47
Surface waves,  398
Susceptibility,  387
Symmetric modes,  477
System matrices,  70

T
Tangential focus,  89
Telecommunications development,  456–59. See also Fiber-optic

communications; Optical fiber
Telephone systems,  456–57
Telescopes,  2
TE modes

defined,  475–76
parabolic index planar waveguide,  482–83
symmetric step index planar waveguide,  476–79

Temporal coherence,  236. See also Coherence
Thermal effect,  280
Thick lenses,  72–73, 74
Thin films

colors,  211–12
high reflectivity with,  201–2
interference patterns,  196–98, 206–8
low reflectivity with,  198–201
multiple reflections from,  221–23
with nonparallel reflecting surfaces,  208–11

Thin lenses
chromatic aberration in,  80
focal lengths,  58–59
Fourier transforming properties,  298–300
matrix method applied to pairs,  75–77
minimizing spherical aberration with pairs,  85–86
paraxial image formation,  56–57, 59
system matrices,  72–73

Thin lens formula,  57, 58–59
Three-dimensional Fourier transform,  123
Three-dimensional wave equation,  152–53, 378–79
Threshold condition for population inversion,  444–45
Time dilation,  503–4
Time-energy uncertainty relation,  24
Time period of wave,  145

TM modes,  475, 481–82
Total internal reflection. See also Reflection

elements of,  161, 396, 459–60
frustrated,  484
use in interferometry,  229

Traite de la Lumière (Huygens),  3
Transit times for rays in parabolic media,  41–42
Translation,  68–69
Transverse Doppler effect,  516
Transverse electric polarization,  399
Transverse magnetic polarization,  399
Transverse misalignment of fibers,  492–93
Transverse modes,  438
Transverse vibrations

Fourier series applications,  113–15
light waves as,  339, 340
wave properties,  145–46, 148–49

Turning point,  36
Twin paradox,  508–9
Two-dimensional Fourier transform,  123–24
Two-hole interference experiments,  21–23
Two-slit diffraction patterns,  267–69
Tyndall scattering,  108

U
Uncertainty principle,  7, 18–19, 24
Uniaxial crystals,  347, 362–63, 364–65
Uniform waveguide like propagation,  281
Unit planes in matrix method,  73–74
Unpolarized waves,  338–39
Up-chirped pulses,  137

V
Vibrations. See also Waves

damped simple harmonic motion,  99–101
forced,  101–3, 115–16
simple harmonic motion,  95–99
transverse,  113–15, 143–45, 148–49

Visible light,  276

W
Wave equation

in conducting medium,  384–85
three-dimensional,  152–53, 378–79

Wave fronts,  157–58, 177
Waveguide dispersion,  467, 493
Waveguide dispersion coefficient,  494
Waveguides. See also Optical fiber

guided modes of,  476, 480, 489–91
mode basics,  465–66, 475–76, 480–81
quantum mechanics and,  483–85
ray paths and transit times in,  40–42
single-mode parameters,  491–93
step index basic equations,  487–89
TE modes,  475–79, 480, 482–83
TM modes,  475, 481–82

Wavelength
defined,  145
free space,  129, 130–31
relation to diffraction,  29, 253
relation to frequency,  145–46
visible light and X-rays,  276
zero material dispersion,  131, 469
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Wave nature of light. See also Light waves
basic principles,  13–15
Huygens’ theory,  3, 157–58
Maxwell’s predictions,  4–5
Young’s demonstration,  3–4

Wave nature of matter,  17, 19–21
Wave packets,  131–37
Wave-particle duality,  17–19, 414
Waves. See also Group velocity; Light waves; Polarization

of light
basic principles,  143–46
basic types,  146
energy transport,  146–47
one-dimensional equation,  147–54
rectilinear propagation,  158–59
superposition,  169–75, 344–47

Weakly guiding approximation,  487–88
White light,  190–91

Wiener’s experiment,  172
Wire grid polarizers,  340–41
Wollaston prisms,  358–59

X
X-ray diffraction,  276–80

Y
Young’s interference apparatus,  182–83, 236–37, 243–44
Young’s modulus,  331–32

Z
Zeeman effect,  240
Zero material dispersion wavelength,  131, 469, 494
Zero total dispersion wavelength,  494
Zone plate,  306–8
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PHOTOGRAPHS

Photographs on the Moon. Because the Moon does not have any

atmosphere, the sky and shadows are very dark. In (a) we can also see the Earth.

Chapter 3—Fig. 3.8 Fully steerable 45 m paraboloidal dishes

of the Giant Metrewave Radio Telescope (GMRT) in Pune, India.

The GMRT consists of 30 dishes of 45 m diameter with

14 antennas in the central array. Photograph courtesy: Professor

Govind Swarup, GMRT, Pune.

Chapter 3—Fig. 3.16 A typical mirage as seen on a hot road on a

warm day. The photograph was taken by Professor Piotr Pieranski of

Poznan University of Technology in Poland; used with permission

from Professor Pieranski.

Inferior Mirage

Chapter 3—Fig. 3.7 A paraboloidal satellite dish.
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Chapter 3—Fig. 3.19 If we are looking at the ocean on a cold day,

then the air near the surface of the water is cold and gets warmer

as we go up. Thus, as we go up, the refractive index decreases

continuously; and because of curved ray paths, one will observe an

inverted image of the ship as shown in the figure above.

Warm Air

Cool Air

Superior Mirage

Chapter 3—Fig. 3.20 A house in the archipelago with a superior

mirage. Figure adapted from http:/virtual.finland.fi/netcomm/

news showarticle.asp?intNWSAID=25722. The photograph was

taken by Dr. Pekka Parviainen in Turku, Finland; used with

permission from Dr. Parviainen.

Chapter 3—Fig. 3.17 This is actually not a reflection in the ocean, but the miraged (inverted) image of the Sun’s lower edge. A few seconds

later (notice the motion of the bird to the left of the Sun!), the reflection fuses with the erect image. The photographs were taken by Dr. George

Kaplan of the U.S. Naval Observatory and are on the website http://mintaka.sdsu.edu/GF/explain/simulations/infmir/Kaplan

_photos.html created by Dr. A Young; photographs used with permissions from Dr. Kaplan and Dr. A Young.

Chapter 3—Fig. 3.21 The noncircular shape of the Sun at sunset.
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Chapter 7 Full moon over landscape at dusk. Notice the blue sky and the red glow of the setting sun. Both phenomena

are due to Rayleigh scattering. [(c) Alamy Images RF]

Chapter 15—Fig. 15.8 Comparison between an eyeglass lens

without antireflective coating (top) and a lens with anti-

reflective coating (bottam). Note the reflection of the

photographer in the top lens and the tinted reflection in the

bottam. The photograph was taken by Justin Lebar; used with

permission from Mr. Lebar.

Sensor 1

Sensor 2

Splice
housing box

Chapter 15—Fig. 15.14 FBG-based temperature sensor system

on 400 kV power conductor at Subhashgram substation (near

Kolkata) of Powergrid Corporation of India. Photographs cour-

tesy of Dr. Kamal Dasgupta and Dr. Tarun Gangopadhyay,

CGCRI, Kolkata.
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Chapter 15—Fig. 15.15 The substation of Powergrid Corporation

of India (near Kolkata, India) where the FBG temperature sensors

have been installed. In the photograph, the author is with Dr. Tarun

Gangopadhyay and Dr. Kamal Dasgupta of CGCRI, Kolkata.

Photo courtesy of Dr. Kamal Dasgupta and Dr. Tarun

Gangopadhyay, CGCRI, Kolkata.

Chapter 18—Fig. 18.15 A laser beam. Notice the nondivergence of

the beam.

Chapter 18—Fig. 18.58 A CD-ROM substrate is made of

optically clear polycarbonate over which the data marks are

made through injection molding. The inner hole has a diameter

of 15 mm while the overall diameter of the disc is 120 mm and

the thickness is 1.2 mm. The top of the disc is covered with a

very thin layer of silver or gold to form a reflective layer that

reflects the laser beam so as to be read back. The reflected light

is incident on a quadrant photodetector, which converts the light

to suitable electrical pulses, which are subsequently processed

to extract relevant data. Details are given in the text. Figure

kindly provided by Dr. Rajeev Jindal and Mr. Giriraj Nyati of

Moser Bear India in Greater Noida, India.

Focusing
lens

Semi-
silvered
mirror

Semiconductor
laser

Protective acrylic Land Label

Aluminum

Pit
LaserPolycarbonate

plastic

Photodiode
array

Chapter 18—Fig. 18.57 The pits and lands are essentially

physical features (protrusions) on the disc surface, which are

put there through injection molding. The heights of the pits from

the surface are not arbitrary; rather they are fixed, being equal

to l/4 where l is the wavelength of the laser used. Figure kindly

provided by Dr. Rajeev Jindal and Mr. Giriraj Nyati of Moser

Bear India in Greater Noida, India.
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Chapter 18—Fig. 18.61 (a) Infrared diode laser (l = 780 nm)
with a simple objective lens with NA = 0.45. (b) Red laser

(l = 650 nm) with increase aperture objective  with NA = 0.60.
(c) Blue laser (l = 405 nm) with further increase in NA = 0.85.
Figure kindly provided by Dr. Rajeev Jindal and Mr. Giriraj

Nyati of Moser Bear India in Greater Noida, India.

(a) (b) (c)

CD: 0.7 GB DVD: 4.7 GB BD: 25 GB

Bearn Spot Bearn Spot1.2mm Substrate 0.62mm Substrate Bearn Spot 0.1mm Cover Layer

Chapter 22—Fig. 22.30 Schematic of an actual Wollaston
prism. The prism separates an unpolarized light beam into two
linearly polarized beams. It typically consists of two properly

oriented calcite prisms (so that the optic axes are perpendicular
to each other), cemented together typically with Canada balsam.
A commercially available Wollaston prism has divergence

angles from 15° to about 45°.

Chapter 22—Fig. 22.11 If the sunlight is incident on the water
surface at an angle close to the polarizing angle, then the reflected

light will be almost polarized. (a) If the Polaroid allows the
(almost polarized) reflected beam to pass through, we see the
glare from the water surface. (b) The glare can be blocked by

using a vertical polarizer, and one can see inside the water. Figure
adapted from the website www.polarization.com/water/water
.html©J. Alcoz, 2001; used with permission of Dr. Alcoz.

(a)

(b)

Chapter 22—Fig. 22.19 A calcite crystal showing double
refraction.
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Chapter 22 As experimental setup to measure Faraday rotation in optical fibers because of large current passing through a

conductor. Photograph courtesy: Professor Chandra Sekhar and Professor K Thyagarajan, IIT Delhi.

Chapter 23—Fig. 23.4  The electromagnetic spectrum; visible light occupies a very small portion of the spectrum.
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Chapter 26—Fig. 26.17 The first ruby laser.

Chapter 26—Fig. 26.21 A helium-neon laser demonstration at the Kastler-Brossel Laboratory at Univ. Paris 6. The glowing

ray in the middle is an electric discharge producing light in much the same way as a neon light. It is the gain medium

through which the laser passes, not the laser beam itself, which is visible there. The laser beam crosses the air and marks a

red point on the screen to the right. Photograph by Dr. David Monniaux; used with kind permission of Dr. Monniaux.

Chapter 26 A 2-kW fiber laser-mounted to a robotic system

cutting mild steel. [Photograph (c) Getty Images RF]
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Chapter 27—Fig. 27.3 A step index multimode fiber illumina-

ted by He-Ne laser with bright output light spot. The light

coming out of the optical fiber is primarily due to Rayleigh

scattering. The fiber was produced at the fiber drawing facility at

CGCRI, Kolkata; Photograph courtesy Dr. Shyamal Bhadra and

Ms. Atasi Pal.

Chapter 27—Fig. 27.10(b) A stomach ulcer as seen through an

endoscope. (Photograph courtesy United States Information

Service, New Delhi)

Chapter 27—Fig. 27.2a (a) Guidance of light beam through optical fibers; the light scattered out of the fiber is due to Rayleigh

scattering. (b) Optical fibers held by a hand.
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