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Our interest is the optimization problem of the form

min
x∈Rn

f (x)

subject to x>x = 1.

Assume that f is differentiable.



There exist two complementary views of

optimization with constraint x>x = 1

Rn

Lagrangian view Manifold optimization view

(An ant-on-manifold view:(Constrained viewpoint)
unconstrained viewpoint)



Optimization differ in what is the search space
Embedding constraint in the linear Euclidean space

min
x∈Rn

f (x)

subject to x>x = 1

is equivalent to solving the Lagrangian
max
λ∈R

min
x∈Rn

L(x , λ) = f (x)− λ(x>x − 1).

OR

Manifold optimization is on the nonlinear search space

min
x∈M

f (x),

where M =: {x ∈ Rn : x>x = 1} is a differentiable manifold.



Manifold optimization generalizes unconstrained

optimization to manifolds

Solving
min
x∈M

f (x),

where M =: {x ∈ Rn : x>x = 1}

is equivalent to

Unconstrained optimization over the manifold M.



Outline

• Applications

• Manifold algorithms

• Manopt: a toolbox of optimization on manifolds



Applications



The Euclidean space Rn is a manifold.

Manifold M is a generalization of Rn.

Not interesting, but trivially, all applications in Rn are on
manifolds.



Principal components analysis (PCA) is on

manifold of orthogonal matrices
Figure from Wikipedia.org.



Recommender system ≡ low-rank matrix

completion
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Set of fixed-rank matrices is a manifold.
X = GH>.
M =: {X ∈ Rn×m : rank(X) = r}.



Tensors are multiarray matrices which generalize

matrices

movie×user×time

Low-rank tensor decomposition / completion problem appears
in forecasting, prediction, and multitask problems.



Fixed-(multilinear)rank tensors form a manifold

Tensor decomposition

Set of fixed-rank tensors is a manifold.
X = G×1U1×2U2×3U3

M =: {X ∈ Rn1×n2×n3 : rank(X ) = (r1, r2, r3)}.



Many structured constraints are manifolds
Screenshots from https://Manopt.org.

From https://Manopt.org



Many structured constraints are manifolds



Many structured constraints are manifolds



Many structured constraints are manifolds



Applications

Manifold M Applications

Grassmann manifold Dimensionality reduction
Unit norm vector Independent comp. analysis
Orthonormal matrix Sparse and robust PCA
Rotation matrix SO(3) Synchronization of rotations
Positive definite matrix Diffusion tensor imaging
Fixed-rank matrix / tensor Recommender systems
Positive definite matrix Domain adaptation
SE(3) Robotic movements
Hyperbolic space NLP
. . .



Manifold algorithms



Optimization on manifold framework has gained

much attention lately

min
x∈M

f (x)

Geometric methods: Optimization on manifolds



A monograph on optimization on matrix manifolds

Optimization Algorithms on Matrix Manifolds
P.-A. Absil, R. Mahony, R. Sepulchre
Princeton University Press, January 2008



Manifold is a differentiable structure

• Manifold M is a differentiable structure that locally looks
like Euclidean.

• We work with with a metric or an inner product g at
every point.

• TxM is the linearization of M at x and is called the
tangent space.

• M and g together is called a Riemannian manifold.



Optimization on manifolds: algorithms

• A function f :M→ R, smooth in the sense of the
manifold structure.

• Task: Compute a first-order critical point of f on M.



Riemannian steepest descent on M
t is stepsize.

• Euclidean:
x+ = x − t∇x f .

• Manifold:
x+ = Rx(−tgradx f ).

gradx f is the Riemannian gradient and
Rx is the retraction operator to ensure x+ ∈M.

Guarantees:
Backtracking linesearch conditions exist.
Global convergence to first-order critical point exist.
Local rate analysis exists.



Riemannian manifold helps to derive concrete

formulas for steepest descent iterations

min
x∈M

f (x),

where M =: {x ∈ Rn : x>x = 1}.

The Riemannian gradient
gradx f = ∇x f − (x>∇x f )x ,
where ∇x f is the partial derivative of f at x .

Rx is “projection” onto manifold. Rx(ξ) = (x + ξ)/‖x + ξ‖.

Riemannian steepest descent method is the iteration
x+ = (x − tgradx f )/‖x − tgradx f ‖.



Riemannian Newton algorithm on M

• Euclidean:
x+ = x + ξ, where D2f [ξ] = −∇x f .

• Manifold:
x+ = Rx(ξ), where Hessx f [ξ] = −gradx f .

gradx f is the Riemannian gradient, Hessx f is the
Riemannian Hessian, and
Rx is the retraction operator.

Guarantees:
Local quadratic rate analysis exists.
Global convergence to first-order critical point exist.



Riemannian manifold helps to derive concrete

formulas for Newton iterations

min
x∈M

f (x),

where M =: {x ∈ Rn : x>x = 1}.

Expressions for gradx f and Rx are known.

Hessx f [ξ] = D2f [ξ]− (x>∇x f )ξ − (x>D2f [ξ])x .

Solve the linear system for ξ

D2f [ξ]− (x>∇x f )ξ − (x>D2f [ξ])x︸ ︷︷ ︸
Hessx f [ξ]

= − (∇x f − (x>∇x f )x)︸ ︷︷ ︸
gradx f

.

Riemannian Newton method is the iteration
x+ = (x + ξ)/‖x + ξ‖.



Computing the maximum eigenvalue value is

optimization on a hypersphere

min
x>x=1

f (x) = −x>Ax ,

A is a given symmetric matrix.

∇x f = −2Ax
D2f [ξ] = −2Aξ.

gradx f = −2Ax + 2(x>Ax)x
Hessx f [ξ] = −2Aξ + 2(x>Ax)ξ + 2(x>Aξ)x .

Rx(ξ) = (x + ξ)/‖x + ξ‖.



Most Euclidean optimization algorithms generalize

well to manifolds

• Conjugate gradients.

• BFGS and Quasi-Newton methods.

• Non-smooth optimization on manifolds.

• Stochastic gradients w/o variance reduction.

• Preconditioning on manifolds.



The Riemannian theory is not only theoretically elegant but
allows to write concrete numerical algorithms on both
manifolds.



Manifold optimization toolbox Manopt



Manifold optimization tools are independent of the

cost function

1. All the discussion revolves around manifolds and is fairly
independent of the cost function f .

2. The solvers need only manifold notions like metric,
tangent space characterization, retraction operations,
transport of vectors.

Leveraging these two points, we design a modular manifold
optimization toolbox Manopt.



https://Manopt.org
A Matlab toolbox to make optimization on manifolds feel as
simple as unconstrained optimizaiton.

Nicolas Boumal and BM
P.-A. Absil, Y. Nesterov and R. Sepulchre



Manopt has grown in popularity



Manopt has a modular structure

Basic codes structure of Manopt:

• Core tools

• Manifold definitions

• Manifold solvers.



Computing the maximum eigenvalue value is

optimization on a hypersphere

min
x>x=1

f (x) = −x>Ax ,

A is a given symmetric matrix.

Manopt requires:
f (x) = −x>Ax
∇x f = −2Ax
D2f [ξ] = −2Aξ
Mention that we enforce x>x = 1.

The Riemannian notions are handled internally by Manopt.



Computing the maximum eigenvalue value with

Manopt is optimization on a hypersphere





Manopt comes with a comprehensive list of solvers

and manifolds

• More than 35 manifold descriptions for different
structured constraints.

• 9 solvers both determinstic and stochastic solvers.

• We have a forum for discussions on Manopt and manifold
optimization.



Manopt aims not only to be a platform for researchers to
experiment with manifold optimization but also useful to have
large-scale problems.

Manopt can be used for general unconstrained optimization as
the Euclidean space is trivially a manifold.



There exist other independent toolboxes for

optimization on manifolds

• Pymanopt: a Python toolbox for manifold optimization.

• McTorch: a PyTorch extension to do manifold
optimization for deep learning applications.

• ROPTLIB: a C++ Library for optimization on manifolds
with Python, R, and Julia wrappers.

• Geomstats: a Python package for computations and
statistics on manifolds.
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