# **EXAMINATIONS COUNCIL OF ZAMBIA**

Joint Examination for the School Certificate and General Certificate of Education Ordinary Level

SCIENCE

5124/1

(CHEMISTRY, PHYSICS)
PAPER 1 Multiple Choice

Thursday •

**29 OCTOBER 2009** 

1 hour

Additional materials:
Mathematical tables(No calculators)
Multiple Choice answer sheet
Soft clean eraser
Soft pencil (types B or HB is recommended)

### **INSTRUCTIONS TO CANDIDATES**

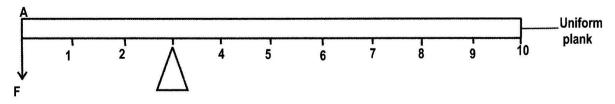
Do not open this booklet until you are told to do so.

Write your **name**, **centre** number and **candidate number** on the answer sheet in the spaces provided unless this has already been done for you.

There are **forty questions** in this paper. Answer all questions. For each question, there are four possible answers, **A**, **B**, **C** and **D**. Choose the one you consider correct and record your choice in soft pencil on the separate answer sheet.

Read very carefully the instructions on the answer sheet.

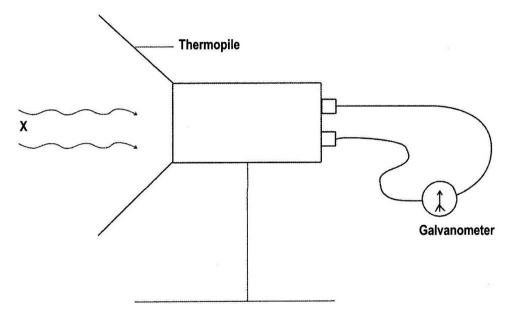
### **INFORMATION FOR CANDIDATES**


Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.

A copy of the **Periodic Table** is on page 10.

Cell phones are not allowed in the Examination Room.

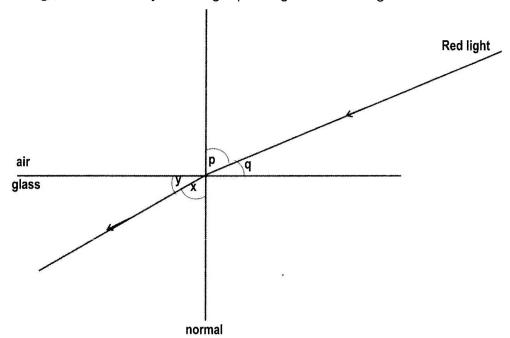
# Page 2 of 12


- 1 All measurable features or properties of objects are called •••
  - A SI units.
  - B measurements.
  - C physical quantities.
  - D images.
- 2 Which of the following numbers has four significant figures?
  - **A** 0.0002
  - **B** 0.0020
  - C 0.0200
  - **D** 0.2000
- 3 A motorist travels 320km at 80km/h and then 320km at 100km/h. What is the average speed of the motorist for the entire trip?
  - A 84km/h
  - **B** 89km/h
  - C 90km/h
  - **D** 91km/h
- A stone of mass 400g is lowered into a measuring cylinder containing water. The water level rises from 300cm<sup>3</sup> to 500cm<sup>3</sup>. What is the density of the stone?
  - **A** 0.50g/cm<sup>3</sup>
  - **B** 0.80g/cm<sup>3</sup>
  - **C** 1.33g/cm<sup>3</sup>
  - **D** 2.00g/cm<sup>3</sup>
- 5 A force acts on a mass of 1kg producing an acceleration of 1m/s<sup>2</sup>. This force is called
  - A tension (T)
  - B Newton (N)
  - C weight (W)
  - **D** friction (F)
- 6 A uniform plank of length 10cm is in equilibrium as shown in the figure below.



A force of 100N is applied at point A in the direction shown. What is the weight of the plank?

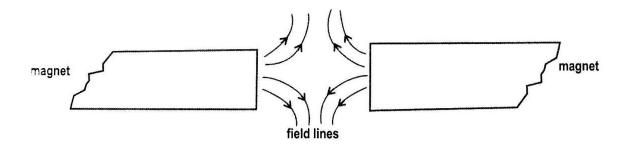
- **A** 50N
- **B** 100N
- **C** 150N
- **D** 200N


- 7 A ball of mass 5kg moves vertically upwards from ground level till it reaches a maximum height of 4m. What is its Kinetic energy when it is half way up? Assume  $g = 10 \text{m/s}^2$ .
  - **A** 5J
  - **B** 50J
  - C 100J
  - **D** 200J
- 8 The Kelvin temperature of a liquid is 300K. Its temperature in °C is •••
  - A 27
  - **B** 57
  - C 100
  - **D** 273
- 9 An experiment is arranged as shown below.



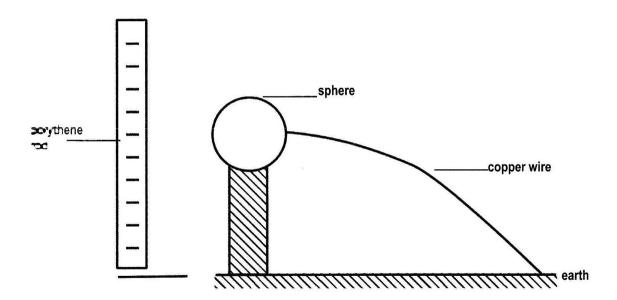
X is a radiation entering the thermopile. If the galvanometer needle shows a deflection,

- A X has a shorter wavelength than X-rays.
- **B** X has a longer wavelength than X-rays.
- C X has a lower frequency than Radio waves.
- D X has the same frequency as light.


10 The diagram shows a ray of red light passing from air into glass.



Which ratio gives the refractive index for red light?

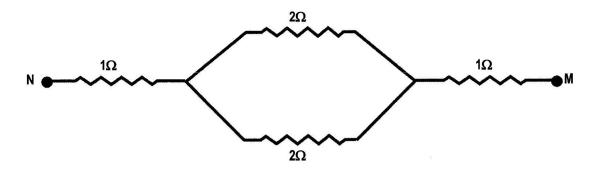

- $\mathbf{A} \qquad \frac{\sin \ p}{\sin \ x}$
- $\mathbf{B} \qquad \frac{\sin \ p}{\sin \ y}$
- $\mathbf{C} \qquad \frac{\sin \ q}{\sin \ x}$
- $\mathbf{D} \qquad \frac{\sin \ q}{\sin \ y}$
- 11 A loud sound is made in front of a tall building. An echo is heard 4 seconds after the sound is produced. If the speed of sound in air is 320m/s, how far away is the building?
  - **A** 80m
  - **B** 160m
  - **C** 640m
  - **D** 1280m

12 The figure below shows the magnetic field lines on two pieces of permanent magnets.



The field pattern is produced by ...

- A two north poles
- B two south poles
- C a north pole and a south pole
- D a south pole and an unmagnetized iron bar.
- 13 The figure below shows a negatively charged polythene rod getting closer to a metal sphere which is on an insulator. A copper wire connects the sphere to the Earth.




Which of the following is true?

- A Current flows from the Earth to the sphere
- **B** Current flows from the sphere to the Earth
- C The sphere is negatively charged
- **D** The Earth is at a positive potential

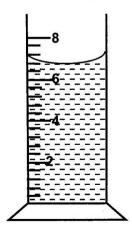
## Page 6 of 12

14 The figure below shows part of a circuit in which current is flowing.



If the p.d between N and M is 3V, the current is ...

- A 1A
- **B** 3A
- **C** 6A
- **D** 12A
- 15 A heater used on a 250V mains circuit has a 5A fuse in its plug. Which is the highest power rating for this heater?
  - **A** 50W
  - **B** 1000W
  - C 1250W
  - **D** 2000W
- 16 Induced current is such that it opposes the change which is causing it. This is ...
  - A Ohm's law
  - B Snell's law
  - C Faraday's law
  - D Lenz's law
- 17 Which of the following may not help to minimize the energy losses in a transformer?
  - A Using thicker copper wire
  - **B** Using thinner copper wire
  - C Using a laminated iron ore
  - D Ensuring an efficient core design
- 18 Which of the following is **not** a correct statement about cathode rays?
  - A They have a positive charge
  - B They travel in straight lines
  - C They are streams of electrons
  - D They are deflected by magnetic and electric fields


19 The radium nucleus,  $\frac{226}{86}$ Ra decays to Radon (Rn) as shown below

$${226 \atop 88}$$
Ra $\longrightarrow X + {222 \atop 86}$ Rn

X is ...

- A an X-ray
- B a gamma-ray
- C a Beta particle
- **D** an alpha particle
- 20 Compared to the charge and mass of a proton, an electron has ...
  - A the same charge and a smaller mass
  - B the same charge and the same mass
  - C an opposite charge and a smaller mass
  - **D** an opposite charge and the same mass
- 21 Which state(s) of matter exist(s) at the freezing point of a substance?
  - A Solid only
  - B Solid and liquid
  - C Liquid only
  - D Liquid and gas
- 22 A measuring cylinder below is used to measure the volume of a liquid.

What is the volume of the liquid contained in the cylinder?



- **A** 6.3cm<sup>3</sup>
- **B** 6.4cm<sup>3</sup>
- **C** 6.6cm<sup>3</sup>
- **D** 7.2cm<sup>3</sup>

### Page 8 of 12

- 23 The best and suitable method of collecting pure water from a solution of ink is ...
  - A chromatography.
  - **B** distillation
  - C crystallisation
  - **D** filtration
- 24 Which of the following is true about isotopes?
  - A Two or more elements belonging to the same Group of the Periodic Table.
  - B They have the same chemical properties.
  - C They have the same number of nucleons.
  - **D** They have the same physical properties.
- 25 Which of the following sets contain particles with the same number of electrons?
  - A Sodium, potassium and lithium ion
  - B Sodium ion, neon and oxide ion
  - C Helium, neon and argon
  - D Magnesium, calcium and beryllium
- 26 Limestone, CaCO<sub>3</sub> decomposes into lime, CaO according to the equation,

$$CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$$

What mass of limestone would produce 11.2g of lime?

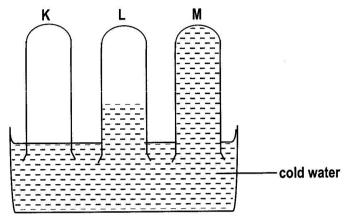
- A  $\frac{100 \times 11.2}{56}$  §
- **B**  $\frac{100 \times 56}{11.2}$  g
- **c**  $\frac{100 \times 56}{100}$  g
- **D**  $11.2 \times 56 \times 100g$
- 27 Below is a chemical equation.

$$\boldsymbol{a} \ C_2H_6 + \boldsymbol{b}O_2 \longrightarrow \boldsymbol{c} \ CO_2 + \boldsymbol{d} \ H_2O$$

What are the correct values of a, b, c and d?

|   | а | b | C | d |
|---|---|---|---|---|
| Α | 2 | 7 | 4 | 6 |
| В | 1 | 7 | 2 | 3 |
| С | 1 | 5 | 4 | 6 |
| D | 2 | 5 | 4 | 6 |

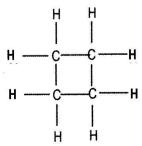
- 28 Which of the following is true about an exothermic reaction?
  - A Temperature of the surrounding decreases
  - **B** The enthalpy change,  $\Delta H$  is positive.
  - **C** Bonds formed are relatively stronger than bonds broken.
  - **D** Heat is absorbed from the surroundings.


29 Silver oxide and hydrogen peroxide react as follows:

$$Ag_2O + H_2O_2(\ell) \longrightarrow 2Ag + H_2O + O_2$$

In this reaction hydrogen peroxide acts as ...

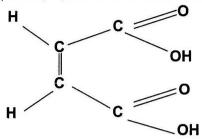
- A a catalyst
- B a base
- C a reducing agent
- D an oxidizing agent
- 30 Which of the following salts can be crystallized from an aqueous solution?
  - A Barium sulphate
  - B Lead (II) sulphate
  - C Silver chloride
  - D Ammonium sulphate
- 31 Solution R forms a white precipitate with little amount of aqueous ammonia. The precipitate dissolves in excess aqueous ammonia to form a colourless solution. Which cation is present in R?
  - A Ca<sup>2+</sup>
  - **B** Al<sup>3+</sup>
  - C NH<sub>4</sub><sup>+</sup>
  - $D Zn^{2+}$
- 32 Thermal stability of a metal nitrate depends on the reactivity of the metal. Which of the following represents the change when potassium nitrate is heated?
  - A  $4KNO_3 \longrightarrow 2K_2O + 4NO_2 + O_2$
  - **B**  $2KNO_3 \longrightarrow 2KNO_2 + O_2$
  - C KNO<sub>3</sub> → No change
  - **D**  $2KNO_3 \longrightarrow K_2O_2 + 2NO + O_2$
- 33 Which of the following is true about chlorine, bromine and iodine?
  - A They are good conductors of electricity.
  - B When in the gas phase, they have no smell.
  - C They are all coloured.
  - **D** They are non poisonous.
- 34 When hydrogen is fitted into the reactivity series of metals, it comes immediately after •••
  - A copper
  - B silver
  - C lead
  - D iron


- 35 Which of the following is used in the manufacturing of margarine?
  - A Oxygen
  - **B** Nitrogen
  - **C** Propane
  - D Hydrogen
- 36 Three similar test tubes containing the gases K, L and M are inserted as shown in the figure below.



The gases K, L, and M could be ...

|   | K      | L      | M      |
|---|--------|--------|--------|
| Α | CO     | $CO_2$ | $NH_3$ |
| В | $CO_2$ | $NH_3$ | $CO_2$ |
| С | $CO_2$ | CO     | $NH_3$ |
| D | $NH_3$ | $CO_2$ | CO     |


- A sample of air of volume 200cm<sup>3</sup> is enclosed in a tube containing moist iron filings. After the iron has stopped rusting, what volume of air would be remaining?
  - **A** 40cm<sup>3</sup>
  - **B** 200cm<sup>3</sup>
  - **C** 160cm<sup>3</sup>
  - **D** 200cm<sup>3</sup>
- 38 Cyclobutane has the structure •••



Which of the following is true about cyclobutane?

- A It is alkene
- **B** It is a saturated hydrocarbon
- C Its empirical formula is the same as that of all alkanes
- D It decolourizes bromine solution rapidly.

- •• hat is the reaction product when ethene is treated with steam using phosphoric acid as catalyst at 300°C?
  - A ethyl phosphate
  - **B** ethanol
  - C ethanoic acid
  - D ethyl ethanoate
- A compound, P, has the molecular structure as shown.



How can P be described?

- A Both as an alkane and as an acid.
- B Both as an alkene and as an acid.
- C Both as an alkane and as an alcohol.
- D Both as an alkene and as an alcohol.

Page 12 of 12

DATA SHEET

# The Periodic Table of the Elements

| Group                    |                                                     |                              |                                   |                                    |                                   |                             |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |                                   |                                  |                                   |                                  |                                     |                                  |                                    |
|--------------------------|-----------------------------------------------------|------------------------------|-----------------------------------|------------------------------------|-----------------------------------|-----------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------|----------------------------------|-----------------------------------|----------------------------------|-------------------------------------|----------------------------------|------------------------------------|
| _                        | =                                                   |                              | 24                                |                                    |                                   |                             |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                   | =                                | 2                                 | >                                | 5                                   | II/                              | 0                                  |
|                          |                                                     |                              |                                   |                                    |                                   |                             | 1<br>Hydrogen                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                   |                                  |                                   |                                  |                                     |                                  | Helium                             |
| 7<br>Li                  | 9<br><b>Be</b><br>Beryllium                         |                              |                                   |                                    |                                   | e.                          |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                   | 11 Boron                         | 12<br><b>C</b>                    | 14 Nitrogen                      | 16<br>Oxygen                        | 19<br>Fluorine                   |                                    |
| 3 23 Na Sodium           | A 24 Mg Magneslum                                   |                              |                                   |                                    |                                   |                             |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                   | _                                | Silicon                           | 31 P<br>Phosphorus               |                                     | - Paragraphia                    |                                    |
| 39<br>A Potassium        | Calcium 20                                          | Sc<br>Scandium               | 48<br><b>Ti</b><br>Tflanium<br>22 | 51<br><b>V</b><br>Vanadium<br>23   | 52<br><b>Cr</b><br>Chromium<br>24 | 55<br>Mn<br>Manganese<br>25 | 56<br><b>Fe</b><br>Iron<br>26       | Annual Control of the | Annual Control of the | Copper<br>Copper                     | 65<br>Znc<br>30                   | 70<br><b>Ga</b><br>Gallium<br>31 |                                   | As<br>Arsenic                    |                                     | 80<br><b>Br</b><br>Bromine<br>35 | 84 <b>Kr</b> Krypton 36            |
| 85 <b>Rb</b> Rubidhum 37 | Strontium                                           |                              | 91<br>Zr<br>Zirconium<br>40       | 93<br>Nb<br>Niobium<br>41          | 96<br>Mo<br>Moiybdenum<br>42      | Tc<br>Technetium            | 104<br><b>Ru</b><br>Ruthenium<br>44 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 108<br><b>Ag</b><br>Silver<br>47     | 112<br><b>Cd</b><br>Cadmium<br>48 | 115<br><b>In</b><br>Indium<br>49 | 119<br><b>Sn</b> Tin              | Sb<br>Antimony                   | 128<br><b>Te</b><br>Tellurium<br>52 | 127<br>                          | 131<br><b>Xe</b><br>Xenon          |
| Caemlum<br>Ab            | 137 <b>Ba</b> Bathum                                | 139 <b>La</b> Lanthanum 57 * | 178<br><b>Hf</b><br>Hafnium<br>72 | 181<br><b>Ta</b><br>Tantalum<br>73 | 184<br><b>W</b><br>Tungsten<br>74 | Re<br>Re<br>Rhenium<br>75   | 190<br><b>Os</b><br>Osmium<br>76    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 197<br><b>Au</b><br>Sold<br>79       | 201<br><b>Hg</b><br>Mecury<br>80  | 204 <b>T/</b> Thallium 81        | 207<br><b>Pb</b><br>lead          | 209<br><b>Bi</b><br>Bismuth      | Po<br>Potonium<br>84                | At<br>Astatine<br>85             | Radon 86                           |
| Franctum                 | 226<br><b>Ra</b><br>Kadkum<br>88                    | 227 Actinium 89              |                                   |                                    |                                   |                             |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                   | til                              |                                   |                                  |                                     |                                  |                                    |
| *58-71 Lan<br>+90-103 Ac | *58-71 Lanthanoid series<br>+90-103 Actinoid series | - <u>x</u>                   |                                   | 140<br><b>Ce</b><br>Cerium         | Pr<br>Praseodymium<br>59          | Neodymium<br>60             | Pm<br>Promethium<br>61              | Sm<br>Samarium<br>62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 152<br><b>Eu</b><br>Europium<br>63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 157<br><b>Gd</b><br>Gadolinium<br>64 | 159 <b>Tb</b> Terbium 65          | 162<br><b>Dy</b> Dysprosium 66   | 165<br><b>Ho</b><br>Holmium<br>67 | 167<br><b>Er</b><br>Erbium<br>68 | 169<br><b>Tm</b><br>Thulium<br>69   | Yb<br>Yttterbium<br>70           | 175<br><b>Lu</b><br>Lutetium<br>71 |

Mendelevium Fm Fermium Es Einsteinium Californium 98 **Bk** Berkelium Curium Curium Am Americium Pu Plutonium Np Neptunium 238 **U** Uranium Pa Protactinium 232 **Th** Thorium

a = relative atomic mass

X = atomic symbol

b = proton (atomic) number

m ×

Key

Lr Lawrencium 103

Nobelium 102

The volume of one mole of any gas is 24  $\mathrm{dm}^3$  at room temperature and pressure (r.t.p.).

# Science/5124/1/2009