I Semester Diploma Examination, November 2011

E & C BOARD

DIGITAL ELECTRONICS

[Max. Marks: 100]

Instructions:
(1) Section – A is compulsory.
(2) Answer any two full questions from each of the remaining Sections – B, C & D.

SECTION – A

(a) Fill in the blanks with appropriate answers:
(i) The number that comes immediately after $(\text{FFEF})_{16}$ is ________.
(ii) A logic gate which outputs a high only when the two inputs are different is ________.
(iii) A high when logically ANDed with a high results in ________.
(iv) Combinational logic circuit does not have ________ capability.
(v) Number of Flip Flops required for Mod-13 counter are ________.

(b) Compare TTL logic family with CMOS.

$5 \times 1 = 5$

SECTION – B

2. (a) Convert $(11001.0101)_2$ to decimal.
(b) Explain the concept of 2’s complement for a decimal number.
(c) Explain the 2-input exclusive or gate with truth table.

3. (a) Find out the octal equivalent of $(2F.C4)_{16}$ and $8AB$.
(b) Implement NOT and or gate using universal (NAND) gate.
(c) Perform the following operations.
 (i) Multiply 11.110 and 100.1
 (ii) Subtract 1011 from 1100 using 2’s complement
 (iii) BCD equivalent of 83.
4. (a) Mention the steps involved in Binary to Gray code conversion with an example.
(b) List & explain any 3 laws of Boolean Algebra.
(c) Define Fan-Out, Propagation delay.

SECTION – C

5. (a) Define a combination circuit.
(b) Explain a half adder circuit with truth table.
(c) Design a two bit magnitude comparator with its relevant Boolean expression.

6. (a) Define a multiplexer. Explain the gate level circuit operation of a 2:1 multiplexer.
(b) What is an encoder? And define priority encoder.
(c) Compare & contrast sequential logic & combinational logic circuit.

7. (a) Explain the operation of a BCD to Decimal Decoders with truth table.
(b) Explain the working of Binary Decimal Encoder.
(c) Compare serial adder with parallel adder.

SECTION – D

8. (a) Mention some of the applications of flip flops.
(b) Define:
 (i) Propagation delay in ripple counter.
 (ii) Modulus of a counter.
(c) Explain a 4-bit SISO shift register using flip-flop with its timing diagram & truth table.

9. (a) Mention the differences between synchronous & asynchronous counter.
(b) What is shift register? List some of its applications.
(c) Explain the operation of a decade counter with the truth table.

10. (a) List out the applications of counters.
 (b) Explain the operation of Mod-5 counter with timing diagram.
 (c) Draw the gate level circuit of J.K. flip-flop with preset & clear inputs & explain its operation with the help of truth table.