
www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


Eclipse

www.allitebooks.com

http://www.allitebooks.org




Other Java™ resources from O’Reilly

Related titles Java™ in a Nutshell

Head First Java™

Head First EJB™

Programming Jakarta Struts

Tomcat: The Definitive Guide

Learning Java™

Java™ Extreme Programming
Cookbook

Java™ Servlet and JSP™

Cookbook™

Hardcore Java™

JavaServer™ Pages

Java Books
Resource Center

java.oreilly.com is a complete catalog of O’Reilly’s books on
Java and related technologies, including sample chapters and
code examples.

OnJava.com is a one-stop resource for enterprise Java develop-
ers, featuring news, code recipes, interviews, weblogs, and
more.

Conferences O’Reilly & Associates brings diverse innovators together to nur-
ture the ideas that spark revolutionary industries. We specialize
in documenting the latest tools and systems, translating the in-
novator’s knowledge into useful skills for those in the trenches.
Visit conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today with a free trial.

www.allitebooks.com

http://www.allitebooks.org


Eclipse

Steve Holzner

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

www.allitebooks.com

http://www.allitebooks.org


Eclipse
by Steve Holzner

Copyright © 2004 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media, Inc. books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Brett McLaughlin

Production Editor: Marlowe Shaeffer

Cover Designer: Ellie Volckhausen

Interior Designer: David Futato

Printing History:

April 2004: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The title of Eclipse, the images of ornate butterflyfish, and related trade dress are
trademarks of O’Reilly Media, Inc.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries. O’Reilly Media, Inc. is independent of Sun
Microsystems, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™,  a durable and flexible lay-flat binding.

ISBN:  978-0-596-00641-9

[C] [6/09]

www.allitebooks.com

http://www.allitebooks.org


v

Table of Contents

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. Essential Eclipse  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Eclipse and Java  1
Getting Eclipse  4
Understanding Eclipse  6
Views and Perspectives  9
Working with Eclipse  11
Using Quick Fix  22
A Word About Project Management  25

2. Java Development  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Developing Java Code  28
Building and Running Code  39
Creating Javadoc  46
Refactoring  47
Some Essential Skills  54
Customizing the Development Environment  57

3. Testing and Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Testing with JUnit  64
Debugging  74

4. Working in Teams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
How Source Control Works  93
Understanding CVS  93
Finding a CVS Server  95
Adding a Project to the CVS Repository  96

www.allitebooks.com

http://www.allitebooks.org


vi | Table of Contents

5. Building Eclipse Projects Using Ant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Working with Ant  115
JARing Your Output  118
Configuring Ant in Eclipse  124
Catching Errors in Build Files  127

6. GUI Programming: From Applets to Swing  . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Creating AWT Applications  133
Creating Swing Applications  135
Using Eclipse Plug-ins  142
Using the V4ALL Plug-in  142

7. SWT: Buttons, Text, Labels, Lists, Layouts, and Events  . . . . . . . . . . . . . . . . . 149
Java Graphics  149
An SWT Example  150
Working with Buttons  158
Working with Composites and Layouts  163
Working with Lists  165
Using V4ALL with SWT  167

8. SWT: Menus, Toolbars, Sliders, Trees, and Dialogs  . . . . . . . . . . . . . . . . . . . . . 170
Working with Menus  170
Working with Toolbars  175
Working with Sliders  179
Working with Trees  183
Working with Dialogs  186
Opening Internet Explorer in an SWT Window  191

9. Web Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Installing and Testing Tomcat  195
Creating a JSP  197
Creating a Servlet  199
Creating a Servlet in Place  202
Connecting to a JavaBean  205
Using the Sysdeo Tomcat Plug-in  207
Deploying Web Applications  215

www.allitebooks.com

http://www.allitebooks.org


Table of Contents | vii

10. Developing Struts Applications with Eclipse . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Struts and Eclipse  219
Creating the View  222
Creating the Controller  225
Creating the Model  229
Using the Easy Struts Plug-in  234

11. Developing a Plug-in: The Plug-in Development Environment,
Manifests, and Extension Points  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
All You Really Need Is plugin.xml  243
Using the Plug-in Development Environment  244
Using the Run-time Workbench  248
Creating a Standard Plug-in  250

12. Developing a Plug-in: Creating Editors and Views . . . . . . . . . . . . . . . . . . . . . 261
Creating a Multi-Page Editor  261
Creating a View  269
Deploying a Plug-in  275

13. Eclipse 3.0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
A Look at Eclipse 3.0  278
Creating a Java Project  279
Changes to the Eclipse Platform  282
Changes to the Java Development Tools  288
Other Changes  295

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

ix

Preface

Welcome to Eclipse, today’s premiere Java™ integrated development environment
(IDE). Eclipse is an extraordinary tool, and it fills a long-standing need among Java
developers—no longer do you have to suffer through pages of errors scrolling off the
screen while using command-line Java compilers. Now you’ve got an IDE that will
handle the details for you, letting you get on with writing code. If you’ve never used
Eclipse before, your productivity is about to take a giant jump.

We’re going to push the Eclipse envelope in this book, working from the basics up
through the advanced. This book has been designed to open up Eclipse and to be
more accessible than any other. It’s a programmer-to-programmer book, written to
bring you up to speed in Eclipse without wasting time.

If you’re a programmer, this book is written to give you exactly what you want to
see—the good stuff, and only the good stuff. There’s as much Eclipse crammed into
this book as you need to master the topic, and mastering Eclipse is our goal.

What’s Inside
From cover to cover, this book is pure Eclipse, covering hundreds of skills and tech-
niques. We start from the most basic Java development and work up to creating your
own plug-in editors for the Eclipse environment. Here are a few of the topics in this
book:

• Using Eclipse to develop Java code

• Working with JAR files

• Setting launch configurations

• Selecting Java runtimes

• Creating Javadoc

• Refactoring



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

x | Preface

• Extracting Interfaces

• Viewing type hierarchies

• Customizing Eclipse

• Testing code with JUnit

• Debugging

• Setting breakpoint hit counts

• Using hot code replacement

• Sharing projects with CVS

• Comparing code with local history

• Using Ant to build Eclipse projects

• GUI programming from applets to Swing

• Using the Standard Widget Toolkit (SWT)

• SWT buttons, text, labels, lists, layouts, and events

• SWT menus, toolbars, sliders, trees, and dialogs

• Developing web applications

• Writing servlet code in place

• Using the Sysdeo Tomcat plug-in

• Debugging and deploying web projects

• Developing Struts applications with Eclipse

• Using the Easy Struts plug-in

• Developing Eclipse plug-ins

• The Plug-in Development Environment (PDE)

• Plug-in manifests

• Extension points

• Using the Run-time Workbench

• Creating a standard plug-in

• Creating an action set

• Creating plug-in menus

• Creating a multipage editor plug-in

• Creating a plug-in wizard

• Creating an Eclipse view supported with a plug-in

We’re going to see all these topics and many more in the upcoming pages. Here’s an
overview of each chapter:



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Preface | xi

Chapter 1, Essential Eclipse
This chapter is all about the basics, including all the details on the Eclipse Work-
bench and an introduction to the Java Development Tools (JDT).

Chapter 2, Java Development
Using the JDT, we’re going to create Java projects, create code automatically,
implement syntax checking, and start developing significant Java applications.

Chapter 3, Testing and Debugging
An IDE wouldn’t be much use without a debugger. Eclipse and the JDT give you
all the power of a true debugger, including breakpoints, expression evaluators,
being able to change values on the fly, and more.

Chapter 4, Working in Teams
One of the valuable aspects of Eclipse is that it lets you develop in teams, some-
thing that any commercial developer can appreciate, since significant develop-
ment is usually done in teams. Using Concurrent Versions System (CVS), team
members do all of their work in their own workbenches, but they can share and
register their work using a CVS repository.

Chapter 5, Building Eclipse Projects Using Ant
Ant is a powerful Java build tool, and we’ll see in this chapter that you can do
things with Ant in Eclipse that Eclipse can’t do alone, such as copy and move
files.

Chapter 6, GUI Programming: From Applets to Swing
This chapter starts our work using Eclipse to handle GUI development with
Swing. We’ll also take a look at a Swing plug-in for Eclipse here—using this
plug-in, for example, you can drag and drop Swing controls.

Chapter 7, SWT: Buttons, Text, Labels, Lists, Layouts, and Events
In this chapter and the next, we’ll be covering the Standard Widget Toolkit
(SWT)—the GUI toolkit for Java developers that provides a portable API and
tight integration with the underlying native GUI platform. SWT—a 100% Java
alternative to the AWT and Swing—is another reason Eclipse has become so
popular, and we’re going to spend two chapters on it.

Chapter 8, SWT: Menus, Toolbars, Sliders, Trees, and Dialogs
This chapter completes our coverage of the SWT, including dialogs, toolbars,
sliders, trees, menus, and more.

Chapter 9, Web Development
This chapter gets us started with web development, creating both servlets and
JSP using Eclipse and the Tomcat server. We’ll also take a look at a Tomcat
Eclipse plug-in.

Chapter 10, Developing Struts Applications with Eclipse
We continue our web work in this chapter with applications constructed using
the Struts framework. We’ll also see how to use a Struts plug-in.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

xii | Preface

Chapter 11, Developing a Plug-in: The Plug-in Development Environment, Manifests,
and Extension Points

In this chapter, we’re going to start creating Eclipse plug-ins to extend Eclipse.
We’ll use the Plug-in Development Environment (PDE) and other tools in this
chapter to create working plug-ins.

Chapter 12, Developing a Plug-in: Creating Editors and Views
Here, we’re going to get the details on some more advanced aspects of plug-in
creation—editors, creating wizards, and how to support Eclipse views.

Chapter 13, Eclipse 3.0
In this chapter, we’re going to take a look at Eclipse Version 3.0. This will give
you a glimpse at the exciting things on the Eclipse horizon.

Conventions Used in This Book
There are some conventions we’ll use that you should know about. When we’ve
added a new piece of code and are discussing it, it’ll appear in bold face, and when
there’s more code to come, you’ll see three dots. Here’s what that looks like:

Listener listener = new Listener( ) {
    public void handleEvent(Event event) {
        ToolItem item = (ToolItem)event.widget;
        String string = item.getText( );
            .
            .
            .
    }
};

We’ll also use the standard convention for selecting menu items in this book; for
example, to create a new project in Eclipse, you use the File ➝ New ➝ Project menu
item.

The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators.

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, types, classes, namespaces,
methods, modules, properties, parameters, values, objects, events, event handlers,
and XML tags.

Constant width italic
Indicates text that should be replaced with user-supplied values.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Preface | xiii

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

What You’ll Need
All the software you’ll need in this book can be downloaded from the Internet for
free. You’ll need Eclipse—this book was written using Eclipse 2.1.1—and we’ll dis-
cuss where to get Eclipse in Chapter 1. Other software packages that we’ll be down-
loading throughout the book include the Tomcat web server and various CVS servers
(which will allow you to share Eclipse projects with others).

Eclipse is built to be extendible, and hundreds of Eclipse plug-ins are available for free
downloading. Plug-ins let you add functionality to Eclipse—new built-in editors,
code generators, software launchers, and more—and we’ll take a look at a number of
the most popular plug-ins in this book. And in Chapters 11 and 12, we’ll develop our
own Eclipse plug-ins.

Using Code Examples
All the code in this book is available for download from http://www.oreilly.com/
catalog/eclipse. See the file readme.txt in the download for installation instructions.

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Eclipse, by Steve Holzner. Copy-
right 2004 O’Reilly Media, Inc., 0-596-00641-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

xiv | Preface

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/eclipse

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

1

Chapter 1 CHAPTER 1

Essential Eclipse

If you’re reading this book, you’re most likely a Java programmer, and you know
how finicky Java can be at times. Missed import statements, forgotten variable decla-
rations, omitted semicolons, garbled syntax, typos—all these problems will cause the
Java command-line compiler, javac, to cough in your face and display pages of
annoying error messages. The error messages tell you that javac knows what the
error is, so why doesn’t it just fix the problem and let you get on developing?

Because javac can’t fix the problem; it isn’t an editor. That makes long streams of
errors scrolling off the page an all-too-common experience for Java developers, and
leaves them with the feeling that Java is too prickly about what can go wrong. To
change all that, you can use an integrated development environment (IDE), which
will not only catch errors before you try to compile, but also suggest solutions. Java
is badly in need of a good IDE, and a number of candidates are available, but the pre-
miere Java IDE these days is the one this book is all about: Eclipse. You can see
Eclipse in action in Figure 1-1.

Eclipse and Java
Although Eclipse can act as an IDE for many different languages—IDEs are available
from C/C++ to Cobol—its great popularity is as a Java IDE, and it comes with Java
support built-in. Eclipse refers to itself as a universal tool platform, capable of han-
dling IDEs for many different languages, but the Java IDE that comes with Eclipse is
going to be our main focus, as it is for the great majority of Eclipse users.

The whole Eclipse magic is that it will take the rough edges off Java development in
the way you’ve always imagined. The errors that would cause javac to stumble are
usually handled before you even try to compile, and if there is an issue, Eclipse will
suggest solutions. All you have to do is point and click—no need for serious head-
scratching. If you’re like most Java developers, you’re going to find yourself think-
ing, This is great!



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

2 | Chapter 1: Essential Eclipse

Some Background
Eclipse is free for the downloading, like a number of other Java IDEs, but Eclipse has
a serious advantage behind it: the power of IBM, which reportedly spent $40 million
in the development of the IDE. The first version, Version 1.0, appeared in Novem-
ber 2001 and gradually became popular (although—as with any developer tool—
there was a great deal of discussion of its faults).

In time, Eclipse has changed and improved, and the current version, 2.1.1, is getting
much praise. In fact, it’s become so popular that when Version 2.1 first appeared, the
servers at http://www.eclipse.org were so busy that it was almost impossible to down-
load a copy for the first few days.

Eclipse was created by IBM in a massive effort that has left Java programmers the
winners. It’s now an open source project, still largely under IBM’s development, but
part of a software consortium named eclipse.org. You can see the consortium’s page,
http://www.eclipse.org, in Figure 1-2.

The Eclipse consortium originally consisted of IBM’s subsidiary, Object Technolo-
gies International (OTI)—who developed Eclipse in the first place—along with Bor-
land, IBM, MERANT, QNX Software Systems, Rational Software3, Red Hat, SuSE,
TogetherSoft3, and Webgain2 in November 2001. Since then, the consortium has
grown to more than 45 members, including Sybase, Hitachi, Oracle, Hewlett-Packard,
Intel, and others.

Figure 1-1.  Eclipse



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Eclipse and Java | 3

OTI is not a new player either; it’s been around for quite some time, and it was
responsible for the foundations behind IBM’s Visual Age line of products (IBM
acquired OTI in 1996). Long ago, OTI created a Java tool written in the Smalltalk
language, Visual Age for Java—also called VA4J—that was well received. Eclipse
itself is more or less VA4J rewritten in Java and updated—many of VA4J’s idiosyn-
cratic features have been removed in favor of more standard ones, and a great deal of
development power has been added. In other words, although Eclipse itself is rela-
tively new, it already has considerable history.

The Eclipse project as a whole is divided into three subprojects:

• The Eclipse platform itself, which forms the backbone of the whole application

• The Java Development Toolkit (JDT)

• The plug-in development environment (PDE), which lets you develop your own
tools for Eclipse, called plug-ins

These various subprojects are themselves divided into other subprojects—the JDT
subproject, for example, is made up of the user interface (UI), core, and debug sub-
projects. You can learn more about these three subprojects at http://www.eclipse.org/
eclipse/, and of course you’ll learn a lot more about them in this book.

Figure 1-2. The Eclipse consortium’s web page



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: Essential Eclipse

A Word About the Common Public License (CPL)
Eclipse is open source software, which leaves some people uncertain about legal
rights when using it. Open source software gives users open access to the software’s
source code and the right to modify and distribute the software themselves. If you
want to modify that software, on the other hand, it’s often true that open source
licenses don’t allow distribution of the modified software unless the end user is also
given these rights (as opposed to a copyright, this is sometimes called a copyleft in
open source projects).

Some open source licenses insist that any software bundled with other open source
software also be open source. However, the open source license that Eclipse uses, the
Common Public License (CPL), is also designed to allow commercial interests. The
CPL allows software bundled with open source software to be distributed under
more restrictive licenses for commercial purposes.

If you ever plan to modify and distribute new versions of Eclipse, you can read about
the CPL at http://www.opensource.org (in particular, at http://www.opensource.org/
licenses/cpl.php). Among other things, the CPL says, “this license is intended to facili-
tate the commercial use of the Program.”

That’s it for the overview—let’s get this show on the road.

Getting Eclipse
How do you get and install Eclipse? Eclipse is free for the downloading—all you have
to do is navigate to http://www.eclipse.org/downloads and select one of the download
mirrors available on that page. When you do, you’ll be presented with a list of the
available downloads, which are of these types:

Release builds
The Eclipse team releases these versions for general use. Usually when you
download Eclipse, you’ll use one of the release versions. These builds have been
thoroughly tested, and the chance of coming across serious bugs is minimal.
This is a version of Eclipse comparable to the version that other companies
would sell—if Eclipse were for sale.

Stable builds
These are comparable to beta versions. A stable build is a step along the way
toward a release version. The Eclipse team considers this build to be relatively
stable, but there may be problems. This is where you’ll find the new features that
are upcoming in Eclipse.

Integration builds
These builds are made up of components that have been fairly well tested, but their
operation with other components may still have some issues. If things work out
OK and the integration build proves itself, it may be elevated to a stable version.

www.allitebooks.com

http://www.allitebooks.org


This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Getting Eclipse | 5

Nightly builds
These are the most experimental of all publicly available Eclipse builds. They’re
created nightly by the Eclipse team, and there’s really no guarantee that things
will work well. Some experience with these builds indicates that they can actu-
ally have substantial problems.

Normally, you’ll use the most recent release version of Eclipse. To get Eclipse, select
the most recent release download for your operating system and click the appropri-
ate link to download it.

Want to learn more about the current and upcoming versions of
Eclipse? See http://www.eclipse.org/eclipse/development/main.html.

Installing Eclipse is not difficult—all you’ve got to do is unzip or untar it, depending
on your operating system. Since you’ve downloaded the version of Eclipse targeted
to your operating system, you’ll find the executable file ready to run as soon as you
uncompress Eclipse.

Windows users will be pleased to learn that Eclipse doesn’t use the
Windows registry, so (re)installation is easy and trouble free.

You start Eclipse by running the Eclipse executable, such as eclipse.exe. When you
start the program the first time, it may ask you to wait while it completes the installa-
tion, which does not take long (Eclipse is creating the workspace directories it’ll be
using). When you first run Eclipse, you should see something like Figure 1-1, shown
earlier in this chapter.

You must have Java installed on your machine when you try to start
Eclipse. If you start Eclipse for the first time and see a dialog box with
the message that begins “A Java Runtime Environment (JRE) or Java
Development Kit (JDK) must be available in order to run Eclipse,”
you’ve got to download and install Java first. You can get Java for free
at http://java.sun.com/j2se/.

In the next chapter, we’ll see how to switch the local installation of
Java that Eclipse will use if you have multiple installations of Java (for
example, you might want to use a newly downloaded JDK instead of
the default JRE that comes with many browsers).

To make starting Eclipse easier, you can also connect various shortcuts to the Eclipse
executable. In Windows, right-click the executable file in the Windows Explorer and
select “Create Shortcut” from the context menu that opens, then drag the new short-
cut where you want it. In Linux or Unix, just add the Eclipse directory to your path,
or use ln -s to create a symbolic link to the Eclipse executable.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: Essential Eclipse

Understanding Eclipse
So what is Eclipse itself? Most people think of Eclipse as a Java IDE, and when you
download Eclipse, you get the Java IDE (this is the Java Development Toolkit, the
JDT) and the Plug-in Development Environment (the PDE) with it. If you only want
to develop Java, it’s easy to think of Eclipse as a Java IDE because that’s the main
tool you’ll be using.

Eclipse itself, however, is a universal tool platform. The JDT is really an addition to
Eclipse—it’s a plug-in, in fact. Eclipse itself is really the Eclipse platform, which pro-
vides support for tools beyond just the Java set you get on download. These tools are
implemented as plug-ins, so the platform itself only needs to be a relatively small
software package.

The platform provides the support the plug-ins need to run; if you want to develop
Java, you use the JDT plug-in that comes with Eclipse; if you want to develop in
other languages, you’ll need to get other plug-ins, such as the CDT, which lets you
develop C/C++ code. Installing a plug-in is easy, as we’re going to see—all you have
to do is drop it into the Eclipse plugins directory and restart Eclipse. Eclipse does
some checking on each plug-in when it starts, but the plug-ins are not loaded until
they’re needed in order to save processing time and memory space.

It’s also important to realize that although Eclipse is written in Java,
it’s intended to be language-neutral. To develop in any programming
language, all you need is the corresponding plug-in. In fact, Eclipse is
also intended to be spoken-language neutral, too—you can easily
change the language that Eclipse uses. To change languages, you can
use the same plug-in mechanism that supports plug-ins, except that
languages are supported with what are called plug-in fragments. OTI
has a language pack available that supports a number of languages—
Japanese, Korean, German, French, Italian, Portuguese, Spanish, even
traditional and simplified Chinese.

The Eclipse Platform
The Eclipse platform is made up of several components: the platform kernel, the
workbench, the workspace, the team component, and the help component. You can
see an overview of the platform in Figure 1-3.

The Platform Kernel
The kernel’s task is to get everything started and to load needed plug-ins. When you
start Eclipse, this is the component that runs first, and it loads the other plug-ins that
you normally think of as Eclipse itself, such as the workbench.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Understanding Eclipse | 7

The Eclipse Workbench
The Eclipse workbench is what you saw back in Figure 1-1—it’s the basic graphical
interface you work with when you use Eclipse. It’s got all kinds of toolbars and
menus for you to use, and its job is to present those items and the internal windows
you saw in Figure 1-1.

Next to the platform kernel, the workbench is Eclipse at its most basic. When you
start Eclipse, before working with any specific IDE like the JDT, the workbench dis-
plays a Welcome message. When you open another tool like the JDT, that tool takes
over.

The workbench looks like a native application, targeted to the operating system you
run it on, which is both a feature and a controversial point of Eclipse. The work-
bench itself—that is to say, Eclipse’s graphical user interface—is built using Eclipse’s
own Standard Widget Toolkit (SWT) and JFace (which is built on top of SWT). The
SWT uses the operating system’s native graphics support to give the look-and-feel of
a native application for the operating system. This is quite different from how most
Java applications have worked historically, even those that use Swing.

SWT has to be ported to each operating system that supports Eclipse, and that’s
been the source of some contention in the Eclipse community, with many people
saying that Eclipse, like Java, should be completely operating system–independent.
However, that’s the way that Eclipse has decided to go, and it’s already been ported
to most major operating systems, including Windows, Solaris, Mac OS X, Linux/
Motif, Linux/GTK2, HP-UX, and a number of others.

In fact, we’re going to see how to use SWT and JFace in this book to create Java
applications with a totally native look-and-feel. SWT provides some basic graphics
and control support, which JFace extends considerably. Eclipse is not only built
using SWT and JFace, but it lets you use them as well.

Figure 1-3. The Eclipse architecture

The Eclipse platform kernel

Workspace component Workbench component

Team component Help component

JDT plug-in PDE plug-in Additional
plug-in

Additional
plug-in



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 1: Essential Eclipse

The Eclipse Workspace
The workspace manages all your resources for you—that is, everything you store on
disk or connect to on other machines. When you write code in Eclipse, you work
with Eclipse projects. Each project is given its own folder in Eclipse’s workspace
directory, which makes it easy to keep track of them. Each project itself can contain
many subfolders. Usually, all of a project’s folders are subfolders of the main project
folder, but they don’t have to be—you can include folders anywhere in your machine
in a project, and you can include networked folders in a project as well.

When working with code, the workspace component is responsible for managing all
the resources connected to a project, which includes all the files in the project. It
saves the low-level changes to those resources as well, storing the history of each
resource’s changes and letting you undo those changes as needed. The workspace
informs the plug-ins of those changes.

The fact that all your Eclipse projects are stored in the same directory
has its advantages. For example, if you install a new version of Eclipse,
you can often simply copy the workspace directory from the old ver-
sion directly to the new workspace directory. (Check the new ver-
sion’s release notes to make sure there is no specific problem doing
things this way—for example, you can’t import Eclipse 1.0 projects
into Eclipse 2.0 or later workspaces. If there is a problem, you can
always simply delete the new installation and reinstall Eclipse by
unzipping or untarring it.)

The Team Component
The team component is the plug-in that supports version control in Eclipse. In ver-
sion control, program code is checked in to or out of a repository as needed so that
the changes to that software can be tracked. This is also done so team members
don’t overlap or obliterate changes made by other team members as they work on
different versions of the code at the same time.

This component acts like a Concurrent Versions System (CVS) client that interacts
with a CVS server. If you’re not familiar with CVS, don’t worry; we’ll take a look at
using CVS to support version control in Chapter 4. Using the team component,
you’ll be able to maintain version control over your software, which is a very useful
feature when working in teams.

The Help Component
The help component, as you can gather from its name, provides help to the user. It’s
actually an extensible documentation system for providing Help; plug-ins can pro-
vide HTML documentation with XML-formatted data to indicate how that help doc-
umentation should be navigated.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Views and Perspectives | 9

That covers the main components of Eclipse in overview. To actually use Eclipse,
you have to know about a few more concepts: views and perspectives.

Views and Perspectives
When you’re working with the workbench, you’ll see a number of different internal
windows, called views, and the idea is that they give you different “views” into your
projects. For example, one view may give you an overview of the Java classes in your
project, while another may let you navigate between projects. For example, back in
Figure 1-1, you can see the Navigator view at the upper left in Eclipse—this is the
view that will display all your projects and let you move from one to another.

Because screen space is always at a premium in GUIs, views are often stacked, one
on top of another, and you select the one you want to see using tabs that appear on
the edge of the stacked views.

If you ever want to reopen a view you’ve closed by mistake, select
Window ➝ Show View, and select the view you want from the menu
that appears.

The editor is one special type of window that usually appears in the center of the
workbench. When you open up documents, code, or resources, they’ll appear in an
editor. Eclipse automatically selects the correct type of editor for the item you’re
opening: the Java editor for a Java source code file, a GUI you’re developing using a
plug-in with the editor supplied by the plug-in, and so on. You can even open
Microsoft Word documents in the Editor (Eclipse displays an MS Word window in
the editor space using Windows Object Linking and Embedding, OLE). In Figure 1-1,
the space normally reserved for editors is showing the Eclipse Welcome text.

The editor window is where you do most of the work when developing your code;
for example, it’s where you enter and edit your code. As we’re going to see, the JDT
has an editor that is lavish with built-in details, such as syntax checking, code high-
lighting, and much more. You might have several editors open at once, in which case
they’ll be stacked with tabs showing at the top of the stack, and you can pick out the
one you want by clicking the corresponding tab (or with the Window ➝ Switch to
Editor menu item, which displays a list of editors you can switch to). You can close
an editor simply by clicking the X in its associated tab (or with the Window ➝ Hide
Editors menu item, which toggles to Window ➝ Show Editors after hiding an editor).
To sum up: views give you overviews of your projects, and editors let you develop
code and resources.

There’s one more concept to master here as well: perspectives. You don’t normally
decide what views and editors to display yourself; instead, they’re organized into
groups called perspectives (although it is easy to customize perspectives yourself).



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

10 | Chapter 1: Essential Eclipse

For example, when you create a Java application, you’ll use the Java perspective;
when you want to debug a Java program, you’ll use the Debug perspective.

Perspectives have a predefined set of views and editors built-in; when you select a
perspective, that set of views and editors appears automatically. For example, we’ll
take a look at the Java perspective here: to select a perspective, you use the Window
➝ Open Perspective menu item, which displays a submenu of the installed perspec-
tives. In this case, we’ll choose the Window ➝ Open Perspective ➝ Java menu item
to open the Java perspective, shown in Figure 1-4.

This perspective presents an editor, which appears in the center pane, that lets you
write Java code, as well as show several views. For example, the Package Explorer
view you see at left gives you an overview of the Java packages and classes in a
project, and it lets you move between them. When you debug a Java application, the
workbench makes the Debug perspective appear, which you see in Figure 1-5. This
perspective displays the code you’re debugging, where you are in the program, the
values of variables and expressions you want to watch, and so on, in various views.

Much of the time, the idea of views, editors, and perspectives is transparent to the
user, and that’s certainly the case when you master Eclipse and use it on a daily
basis. But they’re important concepts for us and ones we’ll be referring to by name
throughout the book.

Figure 1-4. The Java perspective



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Working with Eclipse | 11

Now that we’re fortified with the concepts and overview that we need, it’s time to
start actually working with Eclipse. Although Eclipse is a universal tool platform, its
great popularity comes from developing Java code, and we’re going to put it to work
doing that here. When you first start Eclipse, you’ll see the Resource perspective,
which is the default perspective for developing general resources. But when we put
Eclipse to work in this book, we’re going to switch to the Java perspective and start
developing some code.

Working with Eclipse
You use the Eclipse Java Development Tools (JDT), a series of six seamlessly inte-
grated plug-ins, for Java development in Eclipse. Even if you’ve written Java for
years, you’re about to have a whole new experience, one that makes Java develop-
ment so smooth that when you understand how to use the JDT, you’ll wonder what
took people so long to make this a reality.

Eclipse is all about code development, and the only way to really understand what’s
going on is by creating code, so we’re going to start by using the JDT to create and
run the amazingly useful application you see in Example 1-1. This Java application
just displays the message “No worries.” on the console.

Figure 1-5. The Debug perspective



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 1: Essential Eclipse

How can you create this application using Eclipse, and how is Eclipse going to make
your job easier? The answers are coming up right now. In Eclipse, all Java code must
be inside a Java project, so the first step is to create a Java project.

Creating a Java Project
To invoke the Java perspective, and enter the code for our first example, Ch01_01.
java, start Eclipse and select the Window ➝ Open Perspective ➝ Java menu item to
open the Java perspective using the JDT, as you see in Figure 1-6. This is the per-
spective you’ll use over and over as you start relying on Eclipse for Java development.

It’s worth getting to know the Java perspective before we start using it. At the top are
the standard menu bars and toolbars, populated with new items for the Java perspec-
tive, which we’ll become familiar with in the coming pages.

The left pane holds the Package Explorer and Hierarchy views, and you use the tabs
at the bottom of this pane to flip between these views. The Package Explorer view
gives you an overview of the package you’re working on and lets you navigate

Example 1-1. The Ch01_01.java example

public class Ch01_01
{
    public static void main(String[] args)
    {
        System.out.println("No worries.");
    }
}

Figure 1-6. The Eclipse Java perspective

Outline
view

Toolbar

Shortcuts

Package
Explorer Editor

Tasks and Console views



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Working with Eclipse | 13

through Java projects, selecting what files you want to open in the editor. The Hier-
archy view lets you examine type hierarchies—you select an item in a code editor,
right-click it, and select the Open Type Hierarchy context menu item. When you do,
the hierarchy view will display the hierarchy of that item, giving you a clickable
inheritance tree for the item, including all members. That can be a big help if you’re
trying to figure out the syntax of methods you want to override or which methods
are available.

The Outline view in the pane at right presents a structured, hierarchical view of the
contents of the file open in the main editor pane and lets you jump to elements in it.
This is great for developers who are accustomed to using a simple text editor to
develop long Java files, because this view organizes the main sections of long code
files, letting you move around at will (more on this view in the next chapter).

At the bottom of the Java perspective are the Tasks and Console views, which you
can select between using tabs. The Tasks view displays pending tasks, such as errors
that the compiler has noticed and which need to be fixed, and the Console view
shows you what’s going on in the output console—our sample application will write
to the Console view, for example.

Editors are stacked in the middle pane and are accessible with the tabs at upper left
in that pane. The JDT code editors give you an immense amount of power, far
beyond simply entering text. There are all kinds of hidden assets built-in here, most
of which are utterly unobtrusive until you decide you want to use them.

That gives us an overview; to create a new Java project in the Java perspective, select
the File ➝ New ➝ Project menu item now (alternately, right-click the Package
Explorer and select the New ➝ Project context menu item), opening the New Project
dialog box, as you see in Figure 1-7.

Figure 1-7. The New Project dialog box, first pane



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

14 | Chapter 1: Essential Eclipse

Select the Java and Java Project items and click Next to bring up the next pane of this
dialog box. Enter the name of this new project, Ch01_01, in the Project Name box,
and click Next, bringing up the next pane of the dialog, which you see in Figure 1-8.
As you can see in this pane, we’re about to create a new project named Ch01_01 in its
own folder. You can use the Projects tab here to include other projects in the build
path, something we’ll do as our projects become more involved. The Libraries tab
lets you browse to libraries and JAR files you want included in the build path; by
default, only the JRE System Library is included. The Order and Export tab lets you
specify the order of classes in your build path, and gives you the option of whether
you want to export the current projects so its code will be available to other projects.
In this case, just click Finish to create our new project, Ch01_01.

This adds the new Ch01_01 project to the Package Explorer, as you see in Figure 1-9.
The project is represented as a folder in your workspace, and, at this point, the folder
only contains the libraries we’ve included on the build path, the JRE System Library.

Projects like this organize your files, classes, libraries, and exports. We don’t even
have any code in this one yet, so the next step is to add a new public Java class to the
project.

Creating a Java Class
In our example, the public class is Ch01_01, and Eclipse stores public classes like this
one in their own files. There are several techniques for creating new classes in
Eclipse: you can use the toolbar item with the circled C icon, you can use the File
➝ New ➝ Class menu item, or you can right-click a project in the Package Explorer

Figure 1-8. The New Project dialog box, third pane

www.allitebooks.com

http://www.allitebooks.org


This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Working with Eclipse | 15

and select the New ➝ Class item in the context menu. Any one of these methods
opens the New Java Class dialog box you see in Figure 1-10.

Note the options in this dialog. You can set a class’s access specifier—public,
private, or protected; you can make the class abstract or final; you can specify the
new class’s superclass (java.lang.Object is the default); and you can specify which, if
any, interfaces it implements. We’re going to put our examples into Java packages to
avoid any conflict with other code; here, we’ll use packages named after the exam-
ple’s chapter, like org.eclipsebook.ch01. In this case, just enter the name of this new
class, Ch01_01, in the Name box, and enter the name of a new package we’ll create
for this class, org.eclipsebook.ch01, in the Package box, and click Finish to accept
the other defaults. Note, in particular, that under the question “Which method stubs
would you like to create?” we’re leaving the checkbox marked “public static void
main(String[] args)” checked. Doing so means that Eclipse will automatically create
an empty main method for us.

Clicking the Finish button creates and opens our new public class, Ch01_01, as you
see in Figure 1-11; note the package statement that creates the org.eclipsebook.ch01
package. This new class will be stored in its own file, Ch01_01.java, in the Eclipse
folder workspace\Ch01_01.

So far, so good; you can see the main method that Eclipse has added to our class
already. Now let’s enter some code of our own.

Figure 1-9. A new project in the Package Explorer



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

16 | Chapter 1: Essential Eclipse

Using Code Assist
You can type in code using the JDT’s editor as with any editor, as you’d expect, but
there’s a lot more utility here than in a standard text editor. For example, the JDT
also supports a facility named code assist that helps you by completing code you’ve
already started to type, and it’s a handy tool you’ll find yourself using over and over.

For example, say that you want to enter the code System.out.println("No worries."); in
the main method. To see code assist do its thing, move the mouse cursor inside the
main method’s body and type System., and then pause. Code assist will automati-
cally display the various classes in the System namespace, as you see in Figure 1-12.

When you highlight out in the list of possible classes with the mouse, code assist will
give you a rundown of what this class does, as you see at left in the figure. Double-
click out in the code assist list so that code assist will insert it into your code, and type
a period to give you System.out., and pause again. Code assist will display the meth-
ods of the out class. Double-click the code assist suggestion println(String arg0), and
code assist will insert this code into the main method:

Figure 1-10. Creating a new Java class



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Working with Eclipse | 17

Figure 1-11. A new Java class in Eclipse

Figure 1-12. Using code assist to create a method call



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

18 | Chapter 1: Essential Eclipse

public class Ch01_01
{
    public static void main(String[] args)
    {
        System.out.println( )
    }
}

Edit this now to display our “No worries.” text (you’ll see that code assist adds the
closing quotation mark automatically as you type):

public class Ch01_01
{
    public static void main(String[] args)
    {
        System.out.println("No worries.")
    }
}

However, Eclipse displays this new code with a wavy red line under it, which indi-
cates there’s a problem. To see what’s going on, rest the mouse cursor over the new
code, and a tool tip will appear, as you can see in Figure 1-13, indicating that there’s
a missing semicolon at the end of the line.

Add that semicolon now to give you the complete code and make the wavy red line
disappear:

Figure 1-13. Checking an error



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Working with Eclipse | 19

public class Ch01_01
{
    public static void main(String[] args)
    {
        System.out.println("No worries.");
    }
}

Our code is complete. In Figure 1-13, note that the Package Explorer is giving us an
overview of the project, showing the public class Ch01_01 and the main method in that
class. In this way, the Package Explorer view gives you access to all the items in a
project. To bring an item up in a code editor, just double-click it in the Package
Explorer view.

Another handy way to find all the members of a class or object is to
highlight an item’s name in a code editor, right-click the highlighted
name, and select the Open Type Hierarchy item from the context
menu. Doing so will open the item’s complete type hierarchy in the
Hierarchy view, and you’ll see all its members, the data types of fields,
the arguments you pass to methods, and more. In fact, the code where
the selected item is defined will also appear in a code editor (unless
that code is inaccessible, as when it’s in a JAR file—for example, the
System.out class is defined in rt.jar, so no source code is available—
although there are now ways to attach source directories to JAR files).

As you can see in this example, the coding was made a little easier because code
assist knew all the members of the System.out class and let you select from among
them. Code assist will automatically appear when you type a dot (.). You can also
make code assist appear at any time while you’re typing code—just type Ctrl+Space.

You can also turn code assist off. To configure code assist as you like,
select Window ➝ Preferences, then Editor in the left pane of the Pref-
erences dialog, and then the Code Assist tab.

Each time you edit the code in a file, as we’re doing here in Ch01_01.java, an aster-
isk appears in front of the filename file in its code editor tab, as you see in
Figure 1-13. This asterisk indicates that changes to the file have not yet been saved.
There are many ways to save your work: click the diskette icon (for Save) in the tool-
bar; click the diskette followed by an ellipsis (...) icon (for Save As...) in the tool-
bar; right-click the code itself and select the Save context menu item; or select the
Save, Save As, or Save All menu items in the File menu.

Alright, we’ve got our first code written and stored to disk. How about running it?



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

20 | Chapter 1: Essential Eclipse

Running Your Code
If you look closely at the Package Explorer view in Figure 1-13, you’ll see that the cir-
cled C icon for our Ch01_01 class also has a small running figure in it. That is
Eclipse’s way of indicating this class is runnable because it has a main method. To run
this code and see the output, select the Run ➝ Run As ➝ Java Application menu
item, or open the pull-down menu for the running figure icon in the toolbar and
select the Run As ➝ Java Application menu item. This runs our code (Eclipse will ask
you to save it first if the code has not been saved yet), and the System.out.println
method will write our message to the console. The text of that message, “No worries.”,
appears in the Console view at the bottom of the Java Perspective, as you see in
Figure 1-14.

Congratulations—now you’re an Eclipse developer.

Using the Scrapbook
There’s another way to run code in a Java Project, and you don’t need a main method
to do it: you can use a scrapbook page instead. Scrapbook pages give you a way of
executing code, even partial code, on the fly—a big help in the development pro-
cess. This is not an essential skill, but it’s a useful one.

Figure 1-14. Running our Ch01_01 example



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Working with Eclipse | 21

To create a scrapbook page, select the File ➝ New ➝ Scrapbook Page menu item to
open the New Scrapbook Page dialog box, enter the name Ch01_01Scrapbook in the
File name box, and click Finish to create the new scrapbook page, which will be
saved as Ch01_01Scrapbook.jpage. The new page appears in the Package Explorer
and is automatically opened in the editor view, as you see in Figure 1-15. You can
enter code or code snippets to run in this page, which helps when your code is get-
ting long and you just want to test part of it. For example, to run our example, enter
this code in the scrapbook page (as you see in Figure 1-15)—note that you must
include the package name here when referencing the main method in your code:

String[] args = {};
org.eclipsebook.ch01.Ch01_01.main(args);

To tell the scrapbook page what code to run, select all the code you’ve entered, as
you see in Figure 1-15, right-click it, and select the Execute context menu item (you
can also select the Run ➝ Execute menu item). The results appear in the Console
view as before, as you can see in Figure 1-15. In this way, you can execute Java code
using a scrapbook page, even snippets of code, and see the results as they’d appear in
the console. To close the scrapbook page, click the X button in the tab correspond-
ing to its editor in the workbench’s central pane.

If you select the Display item instead of the Execute item, you’ll see
the net return value of the code you’ve highlighted in the scrapbook,
which is useful for testing methods on the fly. Also, note that you can
set imports for the scrapbook page, importing other packages as
needed, by right-clicking the scrapbook’s code in the editor view and
selecting the context menu’s Set Imports menu item.

Figure 1-15. Using a scrapbook page



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

22 | Chapter 1: Essential Eclipse

As you can see, the JDT are very helpful. There’s also a lot more—for example, what
if you’ve got an error in your code? Eclipse can help here, too.

Using Quick Fix
Quick Fix lets the JDT suggest ways of fixing simple errors, and that’s one of the
things that Java should have had a long, long time ago. For example, say you change
the Ch01_01 code to display the “No worries.” message along with today’s date:

public class Ch01_01 {
    public static void main(String[] args) {
        outString = "No Worries on ";
        Calendar rightNow = Calendar.getInstance( );
        System.out.println(outString + rightNow.getTime( ));
    }
}

You can probably spot a few errors here. The variable outString is not declared,
which makes the first and last lines of code in main invalid, and the Calendar class has
not been imported, making the middle line of code invalid. If you were using javac,
you’d have to quit editing and run javac to catch those errors. But the second you
enter these lines into Eclipse, they’ll be flagged as errors with wavy red underlines, as
you see in Figure 1-16.

Figure 1-16. Quick Fix indicators



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Using Quick Fix | 23

Eclipse doesn’t let you down by just showing you the errors—it also suggests solu-
tions. Note the yellow light bulb and red X icons in the bar to the left of the code edi-
tor, which is called the marker bar. These icons tell you that Quick Fix is available
for all the errors. Note also the hollow red rectangles in the bar on the right of the
code editor view, called the overview ruler. These hollow red rectangles indicate
statements that Quick Fix can fix—solid red rectangles flag compiler errors—and
you can use these icons to navigate to problems to fix.

If you let the mouse cursor hover over the first light bulb icon in the marker bar,
you’ll see a tool tip appear with the description of the error (“outString cannot be
resolved”), as in Figure 1-17.

To activate Quick Fix and see what the JDT suggests to fix the problem, click the
light bulb icon on the affected line. Doing that displays a number of options, the first
of which is “Create local variable ‘outString’”, as you see in Figure 1-17. Quick Fix
also indicates what its suggested solution will look like in the context of your code,
as you see at the bottom of the figure. To fix the code, select the Create local vari-
able option by double-clicking it, which changes our code to this, declaring
outString as a variable of type String:

public class Ch01_01 {
    public static void main(String[] args) {
        String outString = "No Worries on ";

Figure 1-17. Using Quick Fix



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

24 | Chapter 1: Essential Eclipse

        Calendar rightNow = Calendar.getInstance( );
        System.out.println(outString + rightNow.getTime( ));
    }
}

Declaring outString also fixes the last line in the main method, which references that
variable, so the light bulb icon disappears from that line as well.

We’ve still got to fix the problem with the middle line of code in the main method,
which uses the Calendar class. You can see what Quick Fix suggests for this problem
in Figure 1-18—importing the java.util.Calendar class. (This aspect of Quick Fix
alone is worth the price of admission: you no longer have to hunt through entire
package hierarchies to find what package to import when you want to use a class
whose name—but not package—you remember.)

To use this suggested Quick Fix, double-click the “Import ‘java.util.Calendar’” line,
which imports java.util.Calendar and changes your code to this:

import java.util.Calendar;
        .
        .
        .
public class Ch01_01 {
    public static void main(String[] args) {
        String outString = "No Worries on ";
        Calendar rightNow = Calendar.getInstance( );

Figure 1-18. Using Quick Fix to import a package

www.allitebooks.com

http://www.allitebooks.org


This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

A Word About Project Management | 25

        System.out.println(outString + rightNow.getTime( ));
    }
}

After resolving these problems with Quick Fix, you can run the code as you see in
Figure 1-19. Now you’ll see that there are no worries, as the text message in the Con-
sole view indicates.

A Word About Project Management
As you create more projects like Ch01_01, you’ll find Eclipse getting more and more
crowded, since all your projects are displayed in the Java perspective’s Package
Explorer view, as well as the Navigator view (recall that the Navigator view is there
to let you navigate between projects). If you have 30 projects, there will be 30 entries
there. There are various ways to deal with this clutter (such as creating working sets,
as we’ll see in Chapter 2), but we’ll take a look at the simplest one here.

To remove a project from the Package Explorer and Navigator views, you can simply
delete it. This does not necessarily delete the actual files used for the project, and,
whenever you want, you can add the project back to these views. For example, to
remove the Ch01_01 project, just right-click its icon and select the Delete item. Eclipse
will display the Confirm Project Delete dialog box, as you see in Figure 1-20.

Figure 1-19. The fixed code at work



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

26 | Chapter 1: Essential Eclipse

In this case, make sure that the “Do not delete contents” radio button is selected and
click Yes to remove the project from Eclipse. The project will disappear from the
Package Explorer and Navigator views. Clicking the other radio button will make
Eclipse delete all the files and their contents in the project, so don’t do that if you
want to use the project again later.

When you want to work with the project again, you just import it. To do that, right-
click the Package Explorer or Navigator and select the Import context menu item, or
select the File ➝ Import menu item. This opens the Import dialog; select the “Exist-
ing Project into Workspace” item and click Next. In the next pane, click the Browse
button, select the Ch01_01 folder, and click OK, giving you results like those shown
in Figure 1-21.

Click Finish to import the Ch01_01 project again. Now the project is back and ready
for use. To run it, select the project in the Package Explorer and select the Run ➝

Run As ➝ Java Application menu item. That’s all you need; this is a crude but effec-
tive way of doing project management, and we’ll see others as we progress.

You can also close projects if you right-click them and select the Close
Project menu item. However, that doesn’t remove them from the
Package Explorer and Navigator views—it just closes the project
folder and changes its icon. The only real benefit of closing projects is
that it will allow Eclipse to start up a little faster later because it
doesn’t have to initialize closed projects.

Figure 1-20. Deleting a project



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

A Word About Project Management | 27

That’s it for this chapter. We got our start working with Eclipse here, and we’re com-
ing up to speed. In the next chapter, we’re going to get into more depth on Java
development and the JDT.

Figure 1-21. Importing a project



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

28

Chapter 2CHAPTER 2

Java Development

This chapter is where we get down to the business of developing Java using Eclipse.
We’re going to take a look at using Eclipse for Java development as well as project
management, going from the basics to the fairly serious. Nearly everything in this
chapter is essential knowledge for the Java developer using Eclipse, so let’s jump in.

Developing Java Code
If there’s anything that takes more time than it seems to be worth in Java, it’s creat-
ing code from scratch. While the logic inside a method, interface, or class is unique,
the modifiers of a method, the imports for a class, and the syntax involved with new
packages is the same over and over again. This often results in a lot of repetitive typ-
ing, wasted time, and in many cases, annoying little typo-related bugs. Eclipse can
help with all this and more.

Creating New Methods
Eclipse—through code assist—makes it easy to create new methods. As an example,
we’re going to create and call a new method named printer, which displays the mes-
sage “No worries.”, as you can see in Example 2-1.

Example 2-1. The Ch02_01.java example

public class Ch02_01
{
    public static void main(String[] args)
    {
        printer( );
    }

    private static void printer( )
    {
        System.out.println("No worries.");
    }
}



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Developing Java Code | 29

How do you create new methods? Start Eclipse now and create a new project named
Ch02_01. Then create a new Java class named Ch02_01, making it part of the org.
eclipsebook.ch02 package. Leave the checkbox for the creation of a stub for the main
method checked when you create this new class. This gives you the code:

public class Ch02_01 {

public static void main(String[] args) {
}

}

You could simply type in the printer method, of course, but Eclipse can also be of
assistance here. Move the cursor below the body of the main method and type
private to make this new method a private method, and then type Ctrl+Space to
open code assist, as you see in Figure 2-1.

Code assist lets you select the type of private method you want to create—private,
private static, and so on. Here, select the private static method, creating the new
method template you see in Figure 2-2. The placeholder return_type is highlighted,
ready for you to enter in a type; use void. Next, replace the name placeholder with the
name printer and delete the arguments placeholder.

Figure 2-1. Creating a private method



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

30 | Chapter 2: Java Development

This creates the new method in outline; all that’s left is to add the code that will dis-
play the message (as before, you can take advantage of code assist to pause after you
type each dot for suggestions):

public static void main(String[] args) {
}

private static void printer( )
{
    System.out.println("No worries.");
}

Then just add the call to printer from main:

public static void main(String[] args) {
    printer( );
}

private static void printer( )
{
    System.out.println("No worries.");
}

That’s all you need; now you can run the example with the Run As ➝ Java Applica-
tion menu item. You should see “No worries.” appear in the Console view—just as
before. But this time, we’re using a new custom method.

Figure 2-2. Setting the new method’s return type



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Developing Java Code | 31

Creating New Classes
We’ve created a new method and given it a name, but what if you want that new
method to be in a different class? For example, say that your main method is in a
class named Ch02_02, but the printer method is in a class named Ch02_02Helper:

Ch02_02
|
+--------main

Ch02_02Helper
|
+--------printer

In this case, you could create a new object of the Ch02_02Helper class in the main
method, and then you could call that object’s printer method, as you see in
Example 2-2.

The Ch02_02Helper class, with the printer method in it, appears in Example 2-3.

To implement this example with its two classes in Eclipse, create a new project
named Ch02_02 and add the new class Ch02_02Helper to the project. Make this class
public and put it into the org.eclipsebook.ch02 package (and make sure that you
don’t create a main method stub in this class). Next, add the printer method to this
class, as in Example 2-1.

Then save the file. This is an important step because if you don’t save the file, the
printer method won’t be available to the rest of your project’s code. This is essential
to know—whenever you want to work with items from file A in file B, you have to
save file A first because Eclipse compiles from the files, not what’s in its editors.

Having created the new Ch02_02Helper class, the next step is to create the class con-
taining code that will make use of it, the Ch02_02 class. Create that new class in the
project and add a stub for the main method to it. Now all you need to do in the main

Example 2-2. The Ch02_02.java example

public class Ch02_02 {
public static void main(String[] args) {

Ch02_02Helper helper = new Ch02_02Helper( );
helper.printer( );

}

Example 2-3. The Ch02_02Helper.java example

public class Ch02_02Helper {
public void printer( ) {

System.out.println("No worries.");
}

}



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

32 | Chapter 2: Java Development

method is add the code to create an object of the Ch02_02Helper class and call that
object’s printer method:

public class Ch02_02 {
public static void main(String[] args) {

Ch02_02Helper helper = new Ch02_02Helper( );
helper.printer( );

}
}

Then save all your work and run the application; Eclipse’s compiler handles locating
both classes in the same package for you. You should see the “No worries.” message
as shown in Figure 2-3. As you can see in the Package Explorer, we’re using multiple
classes in the same project.

And there’s more you can do with multiple classes here as well. Say you want to over-
ride the printer method and change the text it displays. You can do that by deriving a
new class based on the Ch02_02Helper class and overriding printer in this new class. To
do this, right-click the org.eclipsebook.ch02 package inside the Ch02_02 project and
select the New ➝ Class item, opening the New Java Class dialog you see in Figure 2-4.

Name the new class Ch02_02HelperHelper, enter the package name, and deselect the
main stub checkbox. To derive this class from Ch02_02Helper, type Ch02_02Helper in
the Superclass box (you can also implement interfaces by entering them into the
Interfaces box), and click Finish to create the new class. Here’s what you get—this
new class automatically extends the Ch02_02Helper class:

Figure 2-3. Using multiple classes



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Developing Java Code | 33

public class Ch02_02HelperHelper extends Ch02_02Helper {

}

Notice the “Enclosing type” box in the New Java Class dialog. If you
want to enclose one class within another, you can enter the name of
the enclosing class here. Note also that if you right-click the enclosing
class in the Package Explorer and select New ➝ Class, the enclosing
class’s name will appear in the Enclosing type text box when this dia-
log opens, although it won’t be used unless you select its checkbox.

We want to override the printer method from the base class’s version here, so open
the new class, Ch02_02HelperHelper, and select the Source ➝ Override/Implement
Methods menu item, opening the Override/Implement Methods dialog box you see
in Figure 2-5 (if you’re implementing an interface, you can also find the methods you
have to implement here).

This dialog shows a list of possible overrides; all you have to do is pick one. In this
case, select the printer method and click OK. When you do, you’ll see a stub for the
new version of the printer method in the Ch02_02HelperHelper class:

public class Ch02_02HelperHelper extends Ch02_02Helper {

/* (non-Javadoc)

Figure 2-4. Creating a derived class



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

34 | Chapter 2: Java Development

 * @see org.eclipsebook.ch02.Ch02_02Helper#printer( )
 */
public void printer( ) {

// TODO Auto-generated method stub
super.printer( );

}

}

In this overriding version, use this code to display a new message, “No problems.”:

public void printer( ) {
System.out.println("No problems.");

}

And that’s it—you’ve overridden a method in a derived class. As the final step here,
change the code in the main method to use your new class:

public class Ch02_02 {

public static void main(String[] args) {
Ch02_02HelperHelper helper = new Ch02_02HelperHelper( );
helper.printer( );

}
}

When you run this example, you should see the new message, “No problems.”, as in
Figure 2-6.

Figure 2-5. Overriding a method

www.allitebooks.com

http://www.allitebooks.org


This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Developing Java Code | 35

As you can see, automatic code generation can be a timesaver. In this case, you used
it to override a method, but there are other options available in the Source menu:

• Source ➝ Comment lets you comment out a section of code. This is great for
anyone who’s ever had to comment out a long set of lines. All you have to do is
select the lines to comment out and choose this menu item. A single-line com-
ment, //, will appear in front of all the lines. Want to uncomment them? Just
choose Source ➝ Uncomment.

• Source ➝ Generate Getter and Setter lets you generate standard Java getter and
setter methods for a field in a class. For example, if the field is named
temperature, the suggested getter and setter methods will be getTemperature and
setTemperature.

• Source ➝ Generate Delegate Methods lets you create delegate methods for other
methods automatically.

• Source ➝ Add Constructor from Superclass lets you create a constructor that will
include code to call the superclass’s constructor. (You can also create this con-
structor automatically when you create a class.)

• Source ➝ Surround with try/catch Block is a great one, and it will surround
selected text with a try/catch block for you. This option checks for any uncaught
exceptions automatically and adds code to catch them.

Figure 2-6. Using our derived class



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

36 | Chapter 2: Java Development

For example, say you’ve stored the message that the printer method displays in a
class field named message:

public class Ch02_02HelperHelper extends Ch02_02Helper {

/* (non-Javadoc)
 * @see org.eclipsebook.ch02.Ch02_02Helper#printer( )
 */

    String message = "No problems.";

public void printer( ) {
System.out.println(message);

}

Instead of simply storing this data in a class field, you can use getter and setter meth-
ods to access it (these methods are of the standard form used in JavaBeans™ to sup-
port properties). In this case, you can create getter and setter methods for the value
in message by selecting the Source ➝ Generate Getter and Setter menu item, which
opens the Generate Getter and Setter dialog box you see in Figure 2-7. Just select the
checkbox next to message and click OK.

Eclipse will create the new getter and setter methods getMessage and setMessage; we can
use getMessage when we want to display the message in the printer method this way:

public class Ch02_02HelperHelper extends Ch02_02Helper {

Figure 2-7. Creating Getter and Setter methods



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Developing Java Code | 37

/* (non-Javadoc)
 * @see org.eclipsebook.ch02.Ch02_02Helper#printer( )
 */

String message = "No problems.";

public void printer( ) {
System.out.println(getMessage( ));

}

/**
 * @return
 */
public String getMessage( ) {

return message;
}

/**
 * @param string
 */
public void setMessage(String string) {

message = string;
}

Another good timesaver is the Source ➝ Surround with try/catch Block menu item.
This one checks the code you’ve selected for uncaught exceptions and writes a try/
catch block for any that it finds—another great Eclipse feature worth the price of
admission.

Creating New Packages
Besides using multiple classes in the same project, it’s also easy to distribute your
code over multiple packages in the same project. For example, you can break up your
code into two packages, org.eclipse.ch02 and org.eclipse.ch02_2, as you can see in
the Package Explorer at left in Figure 2-8. Here, we’re putting the Ch02_03Helper
class, which contains the printer method, into an entirely new package, org.
eclipse.ch02_2.

If you want to access a class in another package, just remember to import it—in this
case, that means using the fully qualified name of the class you want access to, which
is org.eclipsebook.ch02_2.Ch02_03Helper. After you’ve imported the class, you can
create objects using it, like this:

import org.eclipsebook.ch02_2.Ch02_03Helper;

/**
 * @author Steven Holzner
 *
 * To change the template for this generated type comment go to
 * Window&gt;Preferences&gt;Java&gt;Code Generation&gt;Code and Comments
 */



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

38 | Chapter 2: Java Development

public class Ch02_03 {

public static void main(String[] args){
Ch02_03Helper helper = new Ch02_03Helper( );
helper.printer( );

}
}

And that’s all it takes; as you can see, multiple packages in the same project are no
problem at all.

What if the code you want to use is not only in a different package, it’s also in
another project? When you create a project, you have the option of adding other
projects to the build path. For example, if you want to create a new project that
works with the code in the org.eclipsebook.ch02_2 package from a new project,
Ch02_03, just click the Projects tab in the second pane of the New Java Project dialog
and add the Ch02_03 project to the build path, as you see in Figure 2-9.

Now the code in Ch02_03, including the org.eclipsebook.ch02_2 package, is accessible
to your new project. You can also add other projects to the build path after a project
has been created by selecting the project in the Package Explorer, right-clicking it, and
selecting the Properties context menu item. In the Properties dialog that opens, select
Java Build Path and click the Projects tab, giving you the same display as in Figure 2-9.

Figure 2-8. Using multiple packages



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Building and Running Code | 39

Building and Running Code
How do you create the Java .class files that are the end result of developing a project?
You use the items in the Project menu. The main menu item here is the Project ➝

Build Project menu item. This item will compile the source code files in your project
and leave the resulting .class files in the same folder as the source code files by
default. For example, if you are working with the Ch02_03 project and select Project
➝ Build Project, the .class files for this project will appear in the directory workspace/
Ch02_03/org/eclipsebook/Ch02 (recall that the classes in this project are in the org.
eclipsebook.Ch02 package, which the directory structure reflects). Once created,
these .class files are ready for use and distribution.

It often makes sense to store all your project’s source code in a folder named src and
the binary output in a folder named bin. If you want to set things up this way when
you create a new project, open the New Java Project dialog as usual, and, in the sec-
ond pane, click the Source tab followed by the Add Folder button. Doing so opens
the Source Folder Selection dialog; click the Create New Folder button and give the
new folder the name src. Then click OK twice. Eclipse will recognize that you’re cre-
ating a source code folder and automatically ask if you want to create a bin folder for
the binary output, as you see in Figure 2-10.

Configuring a project this way automatically stores your source code in the folder
named src and the binary output in a folder named bin (bin will not appear in the
Package Explorer because it doesn’t contain any source code).

Figure 2-9. Adding a project to the build path



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 2: Java Development

Using JAR and .class Files
Say that you’re writing a Java servlet (for more details on servlets, see Chapter 9),
shown in Example 2-4.

Figure 2-10. Creating source and bin folders

Example 2-4. The Ch02_04.java example

package org.eclipse.ch02;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/**
 * @author Steven Holzner
 *
 * To change the template for this generated type comment go to
 * Window&gt;Preferences&gt;Java&gt;Code Generation&gt;Code and Comments
 */

public class Ch02_04 extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException

{
response.setContentType("text/html");
PrintWriter out = response.getWriter( );



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Building and Running Code | 41

The code in this example relies on classes like HttpServlet that don’t come built into
the Java core libraries. Since Eclipse can’t find some of the required classes, you’ll see
plenty of wavy red underlines as you enter this code, as in Figure 2-11.

You can fix this easily by including the correct Java Archive (JAR) file in the class-
path, which, in this case, is servlet.jar. This JAR file comes with the web server we’re
going to use later in the book, Apache Tomcat. To add servlet.jar to the classpath,
right-click the project in the Package Explorer and select the Properties item, open-
ing the dialog you see in Figure 2-12.

In this case, you select the Libraries tab in this dialog, click Add External JARs, navi-
gate to servlet.jar, and click OK. Doing so adds servlet.jar to the classpath, as you see

out.println("<HTML>");
out.println("<HEAD>");
out.println("<TITLE>");
out.println("A Web Page");
out.println("</TITLE>");
out.println("</HEAD>");
out.println("Hello there!");
out.println("</BODY>");
out.println("</HTML>");

}
}

Figure 2-11. Plenty of import not found errors

Example 2-4. The Ch02_04.java example (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 2: Java Development

in Figure 2-12. Click OK to close the Properties dialog and build the project; when
you do, things work out fine, as you can see in Figure 2-13, because the needed JAR
file is now in the classpath—you can see the reference to servlet.jar in this project in
the Package Explorer at left.

If you know you’re going to be using a JAR file like servlet.jar when you first create
the project, you can add that JAR file to the project’s classpath in the third pane of
the New Project dialog. You’ll see the same tabs there as you do in Figure 2-12—just
click the Libraries tab and add any JAR files you want to the project.

If you add multiple JAR files to the classpath, you can also indicate the order in
which you want them searched—just select the Order and Export tab in the Proper-
ties dialog, as you see in Figure 2-14, and change the order of imported items with
the Up and Down buttons. You can also indicate which items to export by selecting
their checkboxes here; when you export an item, it becomes available to any project
dependent on the current project.

You can also add .class files to the classpath—just use the Add Class Folder button
in the Properties dialog to add a folder containing .class files.

Say that you’re going to be developing more than one servlet; in this case, you might
want to make things easier on yourself by creating a classpath variable correspond-
ing to servlet.jar. You can use that variable to add servlet.jar to the classpath. To cre-
ate a classpath variable, select Window ➝ Preferences, then select the Java item’s

Figure 2-12. The Properties dialog



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Building and Running Code | 43

Classpath Variables item, as you see in Figure 2-15. To create a new variable, click
New, enter the new variable’s name—we’ll use SERVLET_LIB here—and the path it
corresponds to, then click OK. You can see this new variable in Figure 2-15.

Figure 2-13. A new JAR file in the build path

Figure 2-14. Setting import order



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 2: Java Development

Now, when you want to add this classpath variable to a project’s classpath, just open
the project’s Properties dialog, click the Libraries tab, click the Add Variable button
that you see in Figure 2-12, and select the variable you want to add to the classpath.
Using classpath variables like this is not only convenient, but it also centralizes your
classpath references—for example, if you want to use a new version of servlet.jar, all
you’ve got to do is update the classpath variable.

Setting the Launch Configuration
Say that your code needs to read command-line arguments, as you see in
Example 2-5, where we’re displaying the first word passed on the command line to
our code. For example, you could start this program on the command line like this:
%java Ch02_05 Hello! (we’ll use % for a generic command-line prompt in this book),
and you’d expect the program to display the word “Hello!”

Figure 2-15. Creating a classpath variable

Example 2-5. The Ch02_05.java example

package org.eclipsebook.ch02;

/**
 * @author Steven Holzner
 *
 * To change the template for this generated type comment go to
 * Window&gt;Preferences&gt;Java&gt;Code Generation&gt;Code and Comments

www.allitebooks.com

http://www.allitebooks.org


This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Building and Running Code | 45

Unfortunately, when you run this code as is, you’ll get the error java.lang.
ArrayIndexOutOfBoundsException at org.eclipsebook.ch02.Ch02_05.main(Ch02_05.java:18)
in the console window because we haven’t supplied any command-line arguments to
be stored in the args array. You can supply command-line arguments in the launch
configuration for this project; to set that configuration, select the Run ➝ Run...
menu item, opening the Run dialog you see in Figure 2-16.

In this dialog, enter “Hello!” in the Program arguments box, as you see in
Figure 2-16. If you want to, you can also enter Java Virtual Machine options in the
VM arguments box here, as well as select what Java runtime environment you want
to work with by clicking the JRE tab. After you enter “Hello!” in the Program argu-
ments box, click Run and the code in your project will read that command-line argu-
ment and display it, as you see in Figure 2-17.

 */
public class Ch02_05 {

public static void main(String[] args) {
System.out.println(args[0]);

}
}

Figure 2-16. Setting a launch configuration

Example 2-5. The Ch02_05.java example (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 2: Java Development

Selecting the Java Runtime
When you run Eclipse for the first time, it searches for installed Java runtimes, and it
may not use the one you want it to use. For example, Eclipse may want to use the
outdated JRE that came with your browser instead of the brand new Java SDK
you’ve just downloaded. You can specify what Java runtime you want Eclipse to use
by selecting Window ➝ Preferences, selecting Installed JREs, and selecting the one
you want, as shown in Figure 2-18 (use the Add button to add JREs and SDKs).

Creating Javadoc
Eclipse also makes it easy to develop Javadoc documentation, the standard Java doc-
umentation that accompanies Java programs. You’ll notice that in the code it gener-
ates, Eclipse inserts some text for Javadoc, as you see in Ch02_05.java:

package org.eclipsebook.ch02;

/**
 * @author Steven Holzner
 *
 * To change the template for this generated type comment go to
 * Window&gt;Preferences&gt;Java&gt;Code Generation&gt;Code and Comments
 */

Figure 2-17. Supplying command-line arguments to a program



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Refactoring | 47

.

.

.

If you want to enter your own Javadoc, code assist helps you here, too; for example, if
you enter @param and invoke code assist with Ctrl+Space, code assist will list the
parameters a method takes. Typing @exception and using code assist will list the
exceptions a method throws, and so on. Typing @ in a comment and pausing will make
code assist display the Javadoc possibilities, like @author, @deprecated, and so on.

To generate Javadoc from your code, select the Project ➝ Generate Javadoc item,
opening the Generate Javadoc dialog, which lets you select the project for which you
want to create Javadocs. To browse a project’s Javadocs, select the Navigate ➝ Open
External Javadoc menu item. For example, you can see the generated Javadoc for the
Ch02_05 project in Figure 2-19.

Refactoring
One of the major advantages of using a good Java IDE like Eclipse is that it can let
you rename and move Java elements around, and it will update all references to
those items throughout your code automatically.

Figure 2-18. Selecting a JRE



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

48 | Chapter 2: Java Development

Renaming Elements
For example, take a look at the code in Example 2-6. Here, we’ve used code assist to
create a new method to display a simple message, but we forgot to change the default
name for the method that code assist supplied.

Figure 2-19. Browsing Javadoc

Example 2-6. The Ch02_06.java example

package org.eclipse.ch02;

/**
 * @author Steven Holzner
 *
 * To change the template for this generated type comment go to
 * Window&gt;Preferences&gt;Java&gt;Code Generation&gt;Code and Comments
 */
public class Ch0206 {

public static void main(String[] args) {
name( );

}

public static void name( ) {
System.out.println("No worries.");

}
}



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Refactoring | 49

This default name for the new method, name, is called in the main method, and it
could be called from other locations in your code as well. How can you change the
name of this method and automatically update all calls to it? Select name in the editor
and then select the Refactor ➝ Rename menu item, opening the Rename Method dia-
log you see in Figure 2-20.

Enter the new name for the method, printer in this case, and click OK. When you
do, the name of this method and all references to it will be updated throughout your
code, including all code in the project, as you see here:

package org.eclipse.ch02;

/**
 * @author Steven Holzner
 *
 * To change the template for this generated type comment go to
 * Window&gt;Preferences&gt;Java&gt;Code Generation&gt;Code and Comments
 */
public class Ch0206 {

public static void main(String[] args) {
printer( );

}

public static void printer( ) {
System.out.println("No worries.");

}
}

We’ve also misnamed the class in this example—Ch0206, instead of Ch02_06. To
rename the class, select Ch0206 in the editor and select the Refactor ➝ Rename menu
item, opening the Rename Type dialog you see in Figure 2-21. Enter the new name,
Ch02_06, and click OK to rename the class.

Clicking OK not only changes the name of the class in the code, it even changes the
name of the class’s file from Ch0206.java to Ch02_06.java, as you can see by check-
ing the Package Explorer. Here’s the new code:

package org.eclipse.ch02;

/**

Figure 2-20. Refactoring a method



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

50 | Chapter 2: Java Development

 * @author Steven Holzner
 *
 * To change the template for this generated type comment go to
 * Window&gt;Preferences&gt;Java&gt;Code Generation&gt;Code and Comments
 */
public class Ch02_06 {

public static void main(String[] args) {
printer( );

}

public static void printer( ) {
System.out.println("No worries.");

}
}

In fact, we’ve unaccountably managed to misname the package as well when creating
this example—org.eclipse.ch02 instead of org.eclipsebook.ch02. When you refactor
it, the name is changed both in the Package Explorer and throughout your code:

package org.eclipsebook.ch02;

/**
 * @author Steven Holzner
 *
 * To change the template for this generated type comment go to
 * Window&gt;Preferences&gt;Java&gt;Code Generation&gt;Code and Comments
 */
public class Ch02_06 {

public static void main(String[] args) {
printer( );

Figure 2-21. Refactoring a class



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Refactoring | 51

}

public static void printer( ) {
System.out.println("No worries.");

}
}

As you can see, it’s easy to rename Java elements in your code—Eclipse will handle
the details, making the changes throughout your code automatically.

If you simply type over a Java element in your code, no refactoring
happens. You’ve got to explicitly refactor if you want those changes to
echo throughout your code.

Moving Elements
Refactoring works automatically across files as well. Say, for example, that you want
to move the printer method to another class, Ch02_06Helper. To see how this works,
create that new class now, which Eclipse will put in its own file, Ch02_06Helper.java.
Then select the method you want to move, printer, by selecting the word “printer”
in the declaration of this method. Next, select the Refactor ➝ Move to open the dia-
log you see in Figure 2-22. To move this method to the Ch02_06Helper class, enter the
fully qualified name of that class, org.eclipsebook.ch02.Ch02_06Helper, in the dialog
and click OK. This moves the printer method to the Ch02_06Helper class like this:

package org.eclipsebook.ch02;

/**
 * @author Steven Holzner
 *
 * To change the template for this generated type comment go to
 * Window&gt;Preferences&gt;Java&gt;Code Generation&gt;Code and Comments
 */
public class Ch02_06Helper {

public static void printer( ) {
System.out.println("No worries.");

}
}

And the call to the printer method is automatically qualified as Ch02_06Helper.
printer back in the Ch02_06 class in the main method:

package org.eclipsebook.ch02;

/**
 * @author Steven Holzner
 *
 * To change the template for this generated type comment go to
 * Window&gt;Preferences&gt;Java&gt;Code Generation&gt;Code and Comments
 */



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 2: Java Development

public class Ch02_06 {

public static void main(String[] args) {
Ch02_06Helper.printer( );

}

}

Extracting Interfaces
You can also extract interfaces using refactoring. To see how this works, we’ll create
an interface for the Ch02_06Helper class (this class has the printer method in it). Con-
vert printer from a static to a standard method by deleting the keyword static in the
method declaration. Then select the name of the class, Ch02_06Helper, in the editor
and select Refactor ➝ Extract Interface to open the Extract Interface dialog you see in
Figure 2-23. Select the printer method to add that method to the interface, and then
enter the name of the new interface—Ch02_06HelperInterface—and click OK.

Clicking OK creates a new file, Ch02_06HelperInterface.java, where the interface is
declared:

package org.eclipsebook.ch02;

/**
 * @author Steven Holzner
 *

Figure 2-22. Moving a method between classes



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Refactoring | 53

 * To change the template for this generated type comment go to
 * Window&gt;Preferences&gt;Java&gt;Code Generation&gt;Code and Comments
 */
public interface Ch02_06HelperInterface {

public abstract void printer( );
}

The original class is now declared to implement this new interface, Ch02_
06HelperInterface:

package org.eclipsebook.ch02;

/**
 * @author Steven Holzner
 *
 * To change the template for this generated type comment go to
 * Window&gt;Preferences&gt;Java&gt;Code Generation&gt;Code and Comments
 */
public class Ch02_06Helper implements Ch02_06HelperInterface {

public void printer( ) {
System.out.println("No worries.");

}
}

Besides renaming and moving elements and extracting interfaces, there are other
operations you can perform with refactoring, such as converting anonymous classes
to nested classes, changing a method’s signature, and converting a local variable to a
class field. For these and other options, take a look at the items available in the
Refactor menu.

Figure 2-23. Extracting an interface



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 2: Java Development

Some Essential Skills
There are some additional skills that are good to know about. For example, if you
highlight an item in the JDT editor, right-click it, and select Open Declaration, the
declaration of that item will open. This is great for tracking down where and how
methods and fields were created. Several of those are detailed in this section and all
are worth adding to your Eclipse toolbox.

Viewing Type Hierarchies
Another menu item in the JDT editor’s context menu is the Open Type Hierarchy;
when you select an item in the editor and select this menu item, that item’s type hier-
archy appears in the Java perspective’s hierarchy view, as you see at left in
Figure 2-24.

This view acts like an object browser. It lets you explore a type’s Java complete hier-
archy, and double-clicking an item in this view opens its definition in the editor.
That’s useful if, for example, you want to see all the members of the System.out
class—just highlight System.out in your code and open its hierarchy. You can also
open this view by selecting an item in the editor and selecting the Navigate ➝ Open
Type Hierarchy item.

Figure 2-24. The hierarchy view

www.allitebooks.com

http://www.allitebooks.org


This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Some Essential Skills | 55

The hierarchy view is not dissimilar from the outline view, which you see at right in
Figure 2-24. However, the outline view is designed to show an automatic hierarchy
of your code rather than the hierarchy of items you specifically select. As you work in
the JDT editor, the outline view is updated automatically to show the hierarchy of
the current type you’re working with.

Browsing Java Code
There’s even another entire perspective dedicated to letting you browse through
projects in a Java-oriented way: the Java Browsing perspective. To open this perspec-
tive, select Window ➝ Open Perspective ➝ Java Browsing; you can see the results in
Figure 2-25.

This perspective presents the information you see in the standard Java perspective in
a new way, and it breaks type and member information into two new views (the
Members view here is much like the Outline view in the standard Java perspective).
As you’d expect, the views in this perspective are all coordinated—selecting an ele-
ment in the Projects views makes its packages appear in the Packages view, for exam-
ple. And selecting an item in the Members view makes that item appear in the editor,
and so on.

Figure 2-25. The Java browsing perspective



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 2: Java Development

Searching Code
Eclipse also has great facilities for searching through code in the Search menu. In
fact, the main menu items in the Search menu, Search ➝ Search, Search ➝ File,
Search ➝ Help, and Search ➝ Java, all open the Search dialog, although each item
corresponds to a different tab in that dialog. Searching is particularly powerful in
Eclipse—for example, not only can you search across multiple files, you can also
search using wildcards.

The File Search tab in the Search dialog lets you search across multiple files. For
example, in Figure 2-26, we’re searching for the word main through all .java files in
the workspace. The scope of the search is set with the radio buttons in the Scope
box, and the default is to search all matching files throughout the workspace (that is,
all your projects that appear in the Package Explorer). You can also restrict the
search to a working set (covered in a few pages) of projects. If you want to search
only the current project or just a restricted number of projects, you can select that
project or those projects in the Package Explorer, then open the Search dialog and
select the Selected Resources radio button in the Scope box.

Clicking Search makes Eclipse search for matches to the text you’ve entered, and you
can see the results in the Search Results view, which appears at the bottom in
Figure 2-27. Double-clicking a match in the Search Results view opens the match in
the JDT editor, as you can see in the figure, and both underlines the match and
points to it with an arrow.

Figure 2-26. Performing a file search



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Customizing the Development Environment | 57

You can also perform Java searches with the Java tab in the Search dialog. This lets
you search for Java elements by kind—types, methods, packages, constructors, and
fields—as you can see in Figure 2-28. You can also limit the search so that it only
matches declarations or references.

Being able to search across files and classes is one of the big advantages of using an
IDE—if you’ve been doing Java development using a text editor and javac, you’ll
find there’s no comparison when you start using the project management capabili-
ties like these in Eclipse.

Customizing the Development Environment
Our last topic in this chapter is all about customizing your development environ-
ment. Eclipse is easy to customize, starting from the most basic—you can move any
view, editor, or toolbar around simply by dragging it.

If you don’t like to work in an environment where things can move
around with mouse movements by mistake, you can lock the toolbars
with the Window ➝ Lock the Toolbars menu item. And if a perspec-
tive gets all scrambled by inadvertent mouse movements, use Win-
dow ➝ Reset Perspective to restore things.

Figure 2-27. Viewing search results



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

58 | Chapter 2: Java Development

You can also customize how Eclipse will generate code for you. For example, the
default code generation style doesn’t place opening curly braces on their own lines:

public void printer( ) {
System.out.println("No worries.");

}

However, your programming style might be more like this, where each curly brace
does get its own line:

public void printer( )
{

System.out.println("No worries.");
}

You can customize this with the Windows ➝ Preferences item, opening the Preferences
dialog you see in Figure 2-29. Select the Java ➝ Code Formatter item, which lets you
specify options for code generation. Here, select the “Insert a new line before an open-
ing brace” item, as you see in the figure; the sample code below will change to match.

Here’s another way you can customize how Eclipse generates code. When you cre-
ate a new file, this kind of comment is inserted automatically:

/*
 * Created on Oct 17, 2003
 *
 * To change the template for this generated file go to
 * Window&gt;Preferences&gt;Java&gt;Code Generation&gt;Code and Comments
 */

Figure 2-28. Performing a Java search



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Customizing the Development Environment | 59

As this text says, you can change this with the Window ➝ Preferences item, followed
by the Java ➝ Code Generation ➝ Code and Comments item (the &gt; you see in the
code is the HTML escaped version of >, which is used so the resulting Javadoc can be
opened in a browser; the comment actually reads, “To change the template for this
generated file go to Window ➝ Preferences ➝ Java ➝ Code Generation ➝ Code and
Comments”). When you open the Preferences dialog and select the Java ➝ Code
Generation ➝ Code and Comments ➝ Code ➝ New Java files item, as you see in
Figure 2-30, you can edit the template Eclipse uses to generate this comment.

You can even create new code assist items in Eclipse. For example, say you want to
create a shortcut for the code needed to print out the current date. To do that, select
Window ➝ Preferences, followed by the Java ➝ Editor ➝ Templates item. We’ll cre-
ate a new shortcut named ptd to print the date, as you see in the name box in
Figure 2-31. In this case, the template System.out.println("${date}"); will be
replaced by the code to print out the date. Besides ${date}, you can use other values,
such as ${cursor}, to indicate where to place the cursor after the insertion has been
performed (when you type ${, code assist will display all the possible values you can
use in code assist expressions).

Now when you type ptd in code, followed by Ctrl+Space, code assist will enter the
code needed to print out the current date, as you see in Figure 2-32. In fact, if you
type p, followed by Ctrl+Space, code assist will list all its options that begin with the
letter “p”—including ptd.

Figure 2-29. Customizing code generation



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

60 | Chapter 2: Java Development

Figure 2-30. Configuring comment templates

Figure 2-31. Creating a code assist shortcut



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Customizing the Development Environment | 61

Another way of customizing your development environment is to create working sets.
Working sets let you limit what appears in the Package Explorer. For example, to
create a working set consisting only of the projects Ch02_01 and Ch02_02, click the
Package Explorer’s pull-down menu (that’s the inverted black triangle at the top of
this view) and select the Select Working Set item, opening the Select Working Set
dialog. To create a new working set, click the New button and select the Java item in
the Working Set Type box in the New Working Set dialog. Then click the Next but-
ton. Now you can select the projects for this working set, as you see in Figure 2-33.
In this case, we’ll create a working set named 1And2Only and select only the Ch02_01
and Ch02_02 projects for this working set.

Clicking Finish creates the new working set and opens the Select Working Set dia-
log. Select the 1And2Only working set and click OK. When you do, only the Ch02_01
and Ch02_02 projects appear in the Package Explorer, as you see in Figure 2-34.

To restore all projects to the Package Explorer, select the Deselect Working Set item
from the Package Explorer’s pull-down menu.

In fact, you can customize entire perspectives as well. To do that, select the Window
➝ Customize menu item, opening the Customize Perspective dialog, as you see in
Figure 2-35. You can use this dialog to customize menu items available for the cur-
rent perspective; for example, you can specify what views the user can switch to with
the Window ➝ Show View menu item, as you see in the figure.

Figure 2-32. Customizing code assist



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

62 | Chapter 2: Java Development

After you’re done setting Eclipse preferences, you can export those
preferences so others can use them as well. To do that, use the Import
and Export buttons in the Window ➝ Preferences dialog.

Figure 2-33. Creating a working set

Figure 2-34. Using a working set



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Customizing the Development Environment | 63

And that completes our look at some of the extraordinary power that Eclipse places
at your fingertips for Java development. In the next chapter, we’re going to discuss
testing and debugging your Java code.

Figure 2-35. Customizing a perspective



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

64

Chapter 3CHAPTER 3

Testing and Debugging

Testing and debugging are a way of life in Java development. Eclipse comes with
built-in facilities for testing your code using its JUnit framework and some truly
exceptional debugging capabilities.

Testing with JUnit
JUnit is an open source testing framework that comes with Eclipse. You can create
JUnit-based classes in the same project as other classes, and use this JUnit code to
test the other classes in your project. Using JUnit in this way, you can construct a set
of standard tests for everyone working on an application, and if they change the
application’s code, all they’ll need is a few clicks to verify that the application still
passes the standard set of tests.

JUnit is designed to test your code, and it’s made up of assertion methods that can
test various conditions. Here they are:

assertEquals(a, b)
Tests if a is equal to b (a and b are either primitive values or must have an equals
method for comparison purposes)

assertFalse(a)
Tests if a is false, where a is a Boolean value

assertNotNull(a)
Tests if a is not null, where a is either an object or null

assertNotSame(a, b)
Tests if a and b both do not refer to the identical object

assertNull(a)
Tests if a is null, where a is either an object or null

assertSame(a, b)
Tests if a and b both refer to the identical object

assertTrue(a)
Tests if a is true, where a is a Boolean value



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Testing with JUnit | 65

You construct JUnit tests using these methods; when you run a JUnit application, it
opens its own view to give you an immediate indication of which tests have passed
and which have failed.

Creating a Test Application
We’ll use JUnit in an example here to show how it works by creating an application
that we can test, Ch03_01. This application’s purpose is simply to fill an array of inte-
gers with values and give you access to those values with get and set methods.

In particular, we’ll include three methods that return values that may be tested with
JUnit:

allocate
Allocates an array of integers and fills it with data; returns the newly allocated
array.

set
Sets a value in the array of integers; returns true if successful, false otherwise.

get
Gets a value from the array of integers; returns the requested value.

You can see a first attempt at this code in Example 3-1.

Example 3-1. The Ch03_01.java example

package org.eclipsebook.ch03;

public class Ch03_01 {

private int[] array;

public int[] allocate( ) {
array[0] = 0;
array[1] = 1;
array[2] = 2;
return array;

}

public int get(int index) {
return array[index];

}

public boolean set(int index, int value) {
if (index < array.length && index >= 0) {

array[index] = value;
return true;

} else {
return false;

}
}

}



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

66 | Chapter 3: Testing and Debugging

The allocate method allocates an integer array, fills it with data, and returns the
array:

private int[] array;

public int[] allocate( ) {
array[0] = 0;
array[1] = 1;
array[2] = 2;
return array;

}

The get method retrieves the integer at a given location in the array:

public int get(int index) {
return array[index];

}

The set method sets the integer at a given location, returning true or false as appro-
priate:

public boolean set(int index, int value) {
if (index < array.length && index >= 0) {

array[index] = value;
return true;

} else {
return false;

}
}

The next step is to test all these methods—allocate, set, and get—with JUnit.

Installing JUnit
To work with JUnit (see http://www.junit.org for more details), you have to add
junit.jar to your project’s classpath. In this case, we’ll create a new classpath vari-
able, JUNIT. Select the Window ➝ Preferences menu item to open the Preferences
dialog, expand the Java node, and select the Classpath Variables item. Then click the
New button to open the New Variable Entry dialog, enter the name of the new vari-
able, JUNIT, and the path to junit.jar. In Eclipse 2.1.1, you can find junit.jar in
eclipse/plugins/org.junit_3.8.1/junit.jar. Then click OK.

As is often the case in Eclipse, a task like adding a new classpath vari-
able can be done in more ways than one. Here’s another way, with a
few more steps: right-click the Ch03_01 project and select the Proper-
ties item to open the Properties for Ch03_01 dialog. Select the Java
Build Path item and the Libraries tab, then click the Add Variable but-
ton to open the New Variable Classpath Entry dialog. Click the Edit
button to open the Preferences dialog, and then the New button to
open the New Variable Entry dialog. Enter the name of the new vari-
able, JUNIT, the path to junit.jar, and click OK. If it can be done in
Eclipse, there’s usually more than one way to do it.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Testing with JUnit | 67

You may also want to add the JUnit package’s source code, for debugging purposes
(this is an optional step; we’re not going to use the JUnit source in our samples). You’ll
find the JAR files for many packages’ source code in the directory eclipse/plugins/org.
eclipse.jdt.source_2.1.1/src. To create a new variable for the JUnit source, follow the
directions for creating JUNIT, but name this variable JUNIT_SRC (you usually add the suf-
fix _SRC for source code variables) and connect that variable to eclipse/plugins/org.
eclipse.jdt.source_2.1.1/src/org.junit_3.8.1/junitsrc.zip. After creating this variable, right-
click the Ch03_01 project, select Properties to open the Properties for Ch03_01 dialog,
click the Java Build Path item and the Libraries tab, and then expand the node for the
JUNIT entry as you see in Figure 3-1.

When you expand a JAR file’s node in this way, you can specify where to find both
the associated source code and Javadoc. To use JUNIT_SRC for the source code here,
select the Source attachment item in the expanded node and click Edit to open the
Source Attachment Configuration dialog. Click the Variable button, double-click
JUNIT_SRC, and click OK to close this dialog. You can see the results in Figure 3-2,
where we’ve made the source for JUnit accessible to Eclipse. Click OK to close the
Properties for Ch03_01 dialog.

Figure 3-1. Making source code accessible



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

68 | Chapter 3: Testing and Debugging

Testing an Application with JUnit
We’re ready to test the Ch03_01 application. To do so, we’ll create a new class that
extends the JUnit TestCase class using the JUnit Wizard. To invoke this wizard, you
right-click the Ch03_01 class in the Package Explorer and select New ➝ Other to open
the New dialog you see in Figure 3-3.

At this point you should be able to expand the Java node in the left pane and select
the entry labeled JUnit. In the right pane, select the TestCase entry and click Next,
displaying the pane you see in Figure 3-4.

The usual practice is to name JUnit classes using the same name as the classes they
test and then adding the word Test at the end, so, in this dialog, enter the name
Ch03_01Test in the Test case box. Also, select the setUp and tearDown methods (as
you see in Figure 3-4). These methods let you set up and clean up after data and/or
objects in the test case (the JUnit term for these items is fixtures). Then click Next to
open the next pane, shown in Figure 3-5.

Figure 3-2. Using the JUNIT_SRC variable



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Testing with JUnit | 69

Figure 3-3. Creating a new TestCase-based class

Figure 3-4. Naming a JUnit application



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 3: Testing and Debugging

In this pane, select the methods you want to test so the JUnit Wizard can create
stubs for them. Since we want to test allocate, set, and get, select them as you see in
Figure 3-5 and click Finish to create the Ch03_01Test class, which you see in
Example 3-2. You can see one method stub in the Ch03_01Test class for each of the
allocate, set, and get methods: testAllocate, testSet, and testGet.

Figure 3-5. Selecting methods to test

Example 3-2. The Ch03_01Test.java example

import junit.framework.TestCase;
        .
        .
        .
public class Ch03_01Test extends TestCase {

/**
 * Constructor for Ch03_01Test.
 * @param arg0
 */
public Ch03_01Test(String arg0) {

super(arg0);
}

/*
 * @see TestCase#setUp( )
 */



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Testing with JUnit | 71

The next step is to add code to these stubs that will call the Ch03_01 class’s allocate,
set, and get methods so we can use the JUnit assertions on the results. We’ll need an
object of the Ch03_01 class to call those methods, which we’ll name testObject. To
create testObject, use the setUp method in the JUnit code. This method is called just
before a JUnit test starts, so we’ll create testObject from the class we want to test,
Ch03_01:

Ch03_01 testObject;
    .
    .
    .
protected void setUp( ) throws Exception {

super.setUp( );
testObject = new Ch03_01( );

}

Now we’re free to perform tests with this object. For example, the allocate method
is supposed to create an array of integers and return that array, so we can test to
make sure that array is not null using assertNotNull in testAllocate:

public void testAllocate( ) {
assertNotNull(testObject.allocate( ));

}

The get method is supposed to retrieve a value from the array, so we can test that
method using assertEquals with a test value in testGet:

public void testGet( ) {
assertEquals(testObject.get(1), 1);

}

protected void setUp( ) throws Exception {
super.setUp( );

}

/*
 * @see TestCase#tearDown( )
 */
protected void tearDown( ) throws Exception {

super.tearDown( );
}

public void testAllocate( ) {
}

public void testGet( ) {
}

public void testSet( ) {
}

}

Example 3-2. The Ch03_01Test.java example (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

72 | Chapter 3: Testing and Debugging

And the set method is supposed to return true if it’s been successful, so we can test
it with assertTrue like this:

public void testSet( ) {
assertTrue(testObject.set(2, 3));

}

After you’ve added this code, select the Ch03_01Test class in the Package Explorer
and the Run As ➝ JUnit Test menu item, opening the view you see at left in
Figure 3-6.

A red bar appears at the top of this view (displayed in glorious black and white in
Figure 3-6), indicating that there were failures. As you can see in the Failures tab of
the JUnit view, all three tests are marked with Xs, which means they’ve failed. We’ll
tackle the first test, testAllocate, which asserts that the created array not be null:

public void testAllocate( ) {
assertNotNull(testObject.allocate( ));

}

Taking a look at the allocate method reveals the problem—although the code tries
to add values to the array, it neglected to actually create the array in the first place.
We’ll fix that by adding this code to the Ch03_01 class:

private int[] array;
    .
    .
    .

Figure 3-6. Running a JUnit test



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Testing with JUnit | 73

public int[] allocate( ) {
array = new int[3];
array[0] = 0;
array[1] = 1;
array[2] = 2;
return array;

}

Now when you run Ch03_01Test, you see that only the testGet and testSet methods
have failed, as shown in Figure 3-7.

What’s wrong with the testGet and testSet tests? The problem here is that all JUnit
tests are performed independently. This means that even though the first test,
testAllocate, called the allocate method, that method has not been called as far as
the next two tests, testGet and testSet, are concerned. To initialize the array for
these two tests, then, we have to call the allocate method in both testGet and
testSet. Here’s the code we’ll add to do that:

public void testGet( ) {
testObject.allocate( );
assertEquals(testObject.get(1), 1);

}

public void testSet( ) {
testObject.allocate( );
assertTrue(testObject.set(2, 3));

}

Figure 3-7. Only two tests fail now



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

74 | Chapter 3: Testing and Debugging

And that’s all that was needed. Now when you run the tests they all pass, as you see
in Figure 3-8, where there are no failures. And although you can’t see it in the black-
and-white figure, the bar at the top of the JUnit view is green, which is Eclipse’s way
of telling you that all systems are go.

As you can see, JUnit provides a relatively simple way to create a standard set of tests
that can be applied with a few mouse clicks. Once the tests have been created, you
just have to run the JUnit class you’ve created. That, in itself, can be useful if you want
to make sure a number of developers working on your code all apply the same tests.

However, note that JUnit only tests compliance with a set of tests—if there’s a prob-
lem with your code and you don’t know what’s going on, you need to debug.

Debugging
Eclipse’s debugging capabilities are impressive, even for a fully featured IDE. To get
started, we’ll take a look at an example with a logic error that we can then track
down. After the example, we’ll look at more advanced debugging topics, like setting
debug launch configurations, using hot code replacement, suspending a running pro-
gram that isn’t terminating (such as when you have an infinite loop), and more.
Being able to interactively debug your code is something you should expect to find in
a good IDE—and it’s a brilliant improvement over trying to debug your code using
only the tools that come with Java—but Eclipse has gone above and beyond the call.

Figure 3-8. All three tests succeed now



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Debugging | 75

A Buggy Program
Our buggy program appears in Example 3-3. The debugger in Eclipse is especially
good at working with stack frames, which hold the local variable set for method calls.
To get a handle on debugging, we’re going to create an example that creates several
layers of stack frames: a factorial example (e.g., the factorial of 6, denoted 6!, is equal
to 6 * 5 * 4 * 3 * 2 * 1 = 720), which calls itself recursively in order to calculate factorials.

You calculate factorials like this: n! = n * (n - 1) * (n - 2) ... * 1. In our example,
to calculate factorial(n), the factorial method multiplies n by factorial(n - 1),
calling itself to determine the factorial of (n–1). To determine factorial(n - 1), the
factorial method multiplies (n–1) by factorial(n - 2), a process that continues all
the way down until the factorial has been fully calculated. Here’s the code we’re
using to do that:

public static int factorial(int value) {
if(value == 0){

return value;
}
else {

return value * factorial(value - 1);
}

}

In this example, we’re trying to find the factorial of 6, 6!, which is 720. Here’s what
the main method looks like:

public static void main(String[] args) {
System.out.println(factorial(6));

}

Example 3-3. The Ch03_02.java example

package org.eclipsebook.ch03;

public class Ch03_02 {

public static void main(String[] args) {
System.out.println(factorial(6));

}

public static int factorial(int value) {
if(value == 0){

return value;
}
else {

return value * factorial(value - 1);
}

}
}



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

76 | Chapter 3: Testing and Debugging

Unfortunately, the first time we run this example, it tells us that 6! = 0, as you can
see in the Console view in Figure 3-9.

Setting a Breakpoint
No exception was thrown, so we have a problem in the code’s logic, which means
it’s time to debug. We’ll start by examining our code as it’s running, halting execu-
tion with breakpoints. To set a breakpoint in the JDT editor, just double-click the
marker bar next to the line of executable code to which you want to add a break-
point (alternately, select the line and use the Run ➝ Add/Remove Breakpoint menu
item). To remove the breakpoint later, just double-click it again.

In this case, we’ll install a new breakpoint next to the code line return value *
factorial(value - 1) so we can watch the factorial being created during successive
calls to the factorial method. You can see this new breakpoint, which appears as a
blue dot in the marker bar, in Figure 3-10.

To debug the code, select the Run ➝ Debug As ➝ Java Application menu item, which
makes the debug perspective appear as you see in Figure 3-11.

Using Run ➝ Run will ignore all breakpoints.

Figure 3-9. First attempt with our buggy program



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Debugging | 77

Figure 3-10. Setting a breakpoint

Figure 3-11. The Debug perspective



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

78 | Chapter 3: Testing and Debugging

The code executes up to the breakpoint and stops; the line of code where execution
is paused appears in the Debug editor marked with an arrow.

The Debug perspective is worth examining in depth. You can see entries for the pro-
grams you’re debugging in the Debug view at the upper left. Note, in particular, the
stack frames here, marked with three horizontal bars. In this case, we can see we’re
in the factorial method, which has been called by the main method. The three but-
tons next to the word Debug in the Debug view are (from left to right) the Resume
(start executing code again), Suspend (pause code, as when you’ve got a runaway
infinite loop), and Terminate (stop debugging) buttons.

Successive debug sessions are added to the Debug view, which can
make it pretty crowded over time (these sessions are retained so you
can compare what’s going on now with what happened before). To get
rid of previous debug session’s entries in this view, click the Remove
All Terminated Launches button in this view’s toolbar (the button dis-
playing three overlapping rectangles).

To the right of the Debug view is a set of stacked views—Variables, Breakpoints,
Expressions, and Display. The Variables view lets you examine the value of local
variables. You can edit these values (as we’ll do later in this chapter) to change the
value of variables as you debug your code, allowing you to tinker with what’s going
on in your program interactively. Eclipse will also watch the value in these variables
and indicate when they have changed by changing the color of a variable’s entry to
red. The bottom part of the Variables view is called its detail pane, and it displays
data in a fuller format.

The Breakpoints view lets you manage the breakpoints in your code by right-clicking
a breakpoint in the list and selecting items like Disable, Enable, Remove, or Remove
All from the context menu.

The Expressions view lets you evaluate expressions, as we’ll see in a few pages.
When you select an expression in the editor, right-click it, and select Inspect—it’ll be
evaluated in the Expressions view. Similarly, when you select the Display item from
the context menu, the results will appear in the Display view.

The editor under the Debug perspective is essentially the same one you see in the
Java perspective, and it allows you to examine the values of variables simply by let-
ting the mouse hover over those variables. For example, in Figure 3-11, we’re exam-
ining the value variable, which we see holds the value 6, since the factorial method
was called with that value.

Next to the editor is the Outline view at the lower right (also seen in Figure 3-11),
which is the same as in the Java perspective. Below the editor is the Console view,
which displays program output just as in the Java perspective.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Debugging | 79

When you end a debug session, the perspective remains in the debug
perspective. You can switch back to the Java perspective with the
Window ➝ Open Perspective ➝ Java menu item, of course, but dur-
ing the debugging cycle, it’s easier to switch perspectives by clicking
the shortcut icons you see at the extreme left in Figure 3-11.

Stepping Through Code
The most fundamental way to move through paused code is by single-stepping.
Eclipse offers four options here, corresponding to the four arrow buttons you see in
the Debug view toolbar, beginning with the double-headed arrow and moving to the
right (these items are also accessible in the Run menu when you’re paused in a
debugging session):

Step With Filters (also Shift + F5)
Steps into the selected statement using defined filters. If that statement is a
method call, execution continues inside the called method unless you’ve filtered
the method out (see below).

Step Into (also F5)
Steps into the selected statement. If that statement is a method call, execution
continues inside the called method.

Step Over (also F6)
Steps over the selected statement. Does not step into method calls.

Step Return (also F7)
Executes until the end of the current method and then returns, pausing after the
method returns (or when a breakpoint is encountered).

For example, our debugging session is currently paused at the line return value *
factorial(value - 1). Pressing F5 single-steps into that line, which means we begin
executing the factorial(value - 1) call, as you can see in Figure 3-12, where the new
value in the value variable is 5.

So far, we can see that the factorial method is progressing as it should. When it was
first invoked, value was 6. In this second call to factorial, value is 5.

You can also use step filters to indicate what code you want to filter out while single-
stepping. When you filter out the code in a class or package, that code is not stepped
into when you use the Step With Filters option, which is great if you want to avoid
stepping through system code. To set step filters, you use Window ➝ Preferences to
open the Preferences dialog, then select the Java ➝ Debug ➝ Step Filtering item, as
you see in Figure 3-13. To filter out code, use the checkboxes next to the predefined
filters you see in the figure, or create a new filter by clicking the Add Filter button.

We could keep single-stepping through our code to try to find the problem with that
code. Or we could use the breakpoint we’ve already set to make things move faster.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

80 | Chapter 3: Testing and Debugging

Figure 3-12. Single-stepping

Figure 3-13. Setting step filters



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Debugging | 81

Resuming Execution Until Encountering a Breakpoint
We’ve been single-stepping through our code, and we can continue doing that, but
we’d have to keep going through each line of iteration of the factorial method,
which can be a little tedious. Instead, we can simply let our code keep executing
until it reaches our breakpoint. To do that, just click the Resume button in the
Debug view (the arrow button to the right of the word Debug in the Debug view).

Before doing that, however, we can also set up the Debug perspective to watch the
value in our value variable. That way, Eclipse will automatically display the value in
that variable, making life a little easier. To watch the value in the value variable, just
right-click that variable in the editor and select the Watch item. Doing so will add
value to the Expressions view.

Now click the Resume button; when you do, execution resumes until a breakpoint is
encountered, as you see in Figure 3-14. You can see that we’re still in the same call to
factorial by taking a look at the value of the value variable, which is 5. This is
apparent because we’re watching it in the Expressions view at the upper right.

Now all we need to do is keep resuming execution by clicking the Resume button
through all the iterations of factorial. But there’s an even easier way still!

Figure 3-14. Running to a breakpoint



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

82 | Chapter 3: Testing and Debugging

Setting Breakpoint Hit Counts
There are supposed to be six iterations of the factorial method, so we’d have to hit
the Resume button six times. That’s not too bad, but you can also configure break-
points in Eclipse with hit counts. When you use a hit count of n, the breakpoint
won’t be triggered until the nth time it’s encountered, which can save you time.

To set a breakpoint’s hit count, right-click the breakpoint in the Breakpoints view
and select the Properties item, opening the Java Line Breakpoint Properties dialog
you see in Figure 3-15. In this case, select the Enable Hit Count checkbox and enter
6 as the hit count. Then click OK to close this dialog.

Now restart the debugging session (end the session by clicking the Terminate button
or using the Run ➝ Terminate button and start the debugging session again). When
you do, execution will be suspended the sixth time our breakpoint is encountered, as
you can see in Figure 3-16. Note that value holds 1, as you see in the Expressions
view, and that you can see all the stack frames for the successive calls to factorial in
the Debug view at left.

Figure 3-15. Setting a breakpoint hit count



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Debugging | 83

To examine any of the stack frames in the Debug view, and the values of local vari-
ables in them, just double-click a frame to make it the active frame. The factorial
example generates plenty of stack frames—just double-click one and you’ll see that
all the local variables like value have been preserved frame-by-frame. In the current
stack frame, value = 1, in the next frame under this one, value = 2, and so on.

We’ve been able to skip to the final iteration of the factorial method just by setting
our breakpoint’s hit count, and everything still looks fine. We should be able to com-
fortably single-step to the end of the code at this point. However, when you click the
Step Into button, execution unexpectedly enters the factorial method once again,
and in the Expressions view you can see that value is set to 0, which is a problem
because it should never be set to 0; factorials only work with positive whole num-
bers (multiplying by 0 always results in 0, of course).

Looking at our code (note the highlighted line in Figure 3-17) reveals the problem—
we keep the iterations going until value is set to 0 instead of stopping at 1:

public static int factorial(int value) {
if(value == 0){

return value;
}
else {

return value * factorial(value - 1);
}

}

Figure 3-16. Using a breakpoint’s hit count



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

84 | Chapter 3: Testing and Debugging

We fix the problem like this:

public static int factorial(int value) {
if(value == 1){

return value;
}
else {

return value * factorial(value - 1);
}

}

You can see the new, debugged results in Figure 3-18, where we see that 6! is indeed
720.

And that’s all it takes—we’ve debugged the code. This example gave us a start with
debugging, but there’s much more available in the JDT.

Configuring Breakpoints
We’ve used a breakpoint hit count to make life easier. Besides using hit counts, you
can configure standard breakpoints in several other ways as well; to do that, right-click
a breakpoint, bringing up the Breakpoint Properties dialog shown in Figure 3-19. If you
select the Enable Condition checkbox, you can enter a condition in the Condition box
that will cause the breakpoint to suspend the program. For example, you might be hav-
ing problems every time a variable named inventory is set to 0; in that case, you might
use the condition inventory == 0 and select the “condition is ‘true’” checkbox.

Figure 3-17. Discovering the error



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Debugging | 85

Checking a condition

You can also break when the value of a condition changes—for example, if some
part of your code is changing the value in a variable named ipAddress and it
shouldn’t, you can type that variable name into the Condition box and click the
“value of condition changes” checkbox (you can use any valid expression in the Con-
dition box, of course, not just variable names).

Multithreaded debugging

You can also handle multithreaded debugging here—you can list the threads you
want to restrict a breakpoint to with the Restrict to Selected Thread(s) box, and you
can also set the suspending policy to either Suspend Thread (the default, which still
allows other threads in the application to continue) or Suspend VM (which sus-
pends the entire virtual machine that Eclipse has launched and connected to in order
to debug your code).

Watchpoints

The standard breakpoints we’ve been using are called line breakpoints, and besides
line breakpoints, the JDT supports other types of breakpoints—field (watchpoints),
method, and exception.

Figure 3-18. The fixed program



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

86 | Chapter 3: Testing and Debugging

Field breakpoints, also called watchpoints, suspend execution when your code is
going to access and/or modify the value of a field. Watchpoints may not be set on
local variables (such as those you declare inside methods), only on fields (data mem-
bers of objects). Using a watchpoint is often much easier than trying to catch all the
possible points in your code where the field you want to watch may be modified.

To set a watchpoint, select a field in a Java view and select Run ➝ Add/Remove
Watchpoint. The new watchpoint will appear in the Breakpoints view, and you can
configure it by right-clicking it and selecting Properties, opening the Java Watch-
point Properties dialog you see in Figure 3-20. Note, in particular, that you can select
two checkboxes here—Access and Modification—that let you indicate if you want to
suspend execution when the field is accessed and/or when it is modified. You can
also use a hit count, as with standard breakpoints.

Method breakpoints

Method breakpoints suspend execution when you enter or leave a method, depend-
ing on how you configure them, and you usually use these breakpoints on methods
you don’t have the source code for. To set a method breakpoint, highlight the call to
that method in a Java view and select the Run ➝ Add/Remove Method Breakpoint

Figure 3-19. Breakpoint properties



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Debugging | 87

menu item. You can configure these breakpoints by right-clicking them in the Break-
points view, opening the Java Method Breakpoint Properties dialog you see in
Figure 3-21. You can select whether the breakpoint happens on entry into the
method, exit from the method, or both, using the checkboxes in this dialog.

Exception breakpoints

You can also work with exception breakpoints, which let you suspend execution
when an exception happens. This is very useful if your code throws an exception,
such as a null pointer exception, and you don’t know where that exception is hap-
pening. You can suspend execution and see what’s going on with your code when a
thrown exception is caught (or not caught).

To set an exception breakpoint, select Run ➝ Add/Remove Exception Breakpoint,
opening the dialog you see in Figure 3-22, which allows you to select which break-
points you are interested in, as well as whether you want to break when they are
caught, not caught, or both.

You can configure the properties for an exception breakpoint as you can for any
other breakpoint; just right-click the breakpoint in the Breakpoints view and select
the Properties menu item. For example, you can see how we’re configuring a break-
point for uncaught java.lang.NullPointerException exceptions in Figure 3-23. You
can restrict the breakpoint to specific locations, and even use hit counts, but you
can’t specify any conditions for this breakpoint as you can with line breakpoints.

Figure 3-20. Configuring a watchpoint



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

88 | Chapter 3: Testing and Debugging

Figure 3-21. Configuring a method breakpoint

Figure 3-22. Configuring an exception breakpoint



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Debugging | 89

Evaluating Java Expressions and Changing Values
While you’re debugging, you can enter expressions into the detail pane of the
Expressions view (the detail pane is just above the lower horizontal scrollbar in the
Expressions view), selecting the expression, right-clicking it, and selecting the
Inspect menu item. For example, if the variable value holds 6, you can enter the
expression value + 1 in the detail pane, right-click it, and select the Inspect item.
Doing that adds value + 1 to the list of expressions in the Expressions view and dis-
plays the value of that expression, 7, in the detail pane, as you see in Figure 3-24.

And, as mentioned earlier, you can also edit the values of fields and variables while
debugging your code—just double-click a field or variable name in the Variables
view, opening the dialog you see in Figure 3-25. In this case, we’ve double-clicked
the variable named value in the Variables view; to change the value in this variable at
runtime, just enter a new value and click OK. It’s great if you want to check the
impact on your code of different test values—for example, to check what happens if
you set a variable named denominator to 0—or if you want to avoid known problem
values.

Figure 3-23. Configuring a Java exception breakpoint



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

90 | Chapter 3: Testing and Debugging

Figure 3-24. Evaluating an expression

Figure 3-25. Editing a variable’s value



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Debugging | 91

Using Hot Code Replacement
You can even edit your code as you’re debugging using the JDT debugger, as long as
you’re working with a JRE that supports it. This is called hot code replacement, and it
requires a JRE Version 1.4 or later.

The easiest way to use hot code replacement is to enable auto-building of your code
each time it’s saved (this is not necessary, it just rebuilds your code automatically
every time it’s been changed and saved). To do that, select the Window ➝ Prefer-
ences ➝ Workbench ➝ Perform build automatically on resource modification check-
box and click OK. Then debug your code until execution stops at a breakpoint.

Now you’re free to edit your code during a debugging session. After you’ve changed
the code, save it and resume execution (if you haven’t enabled auto-build, also select
the Project ➝ Rebuild Project or Project ➝ Rebuild All menu item to rebuild the
project). That’s all it takes.

You may at times end up with strange results when you edit your
code while debugging it; in that case, restart your debugging session.

For example, we can edit our factorial code while debugging (as you see in the high-
lighted line in Figure 3-26), by changing this line in the factorial method:

public static int factorial(int value) {
if(value == 1){

return value;
}
else {

return value * factorial(value - 1);
}

}

The new line is shown here:

public static int factorial(int value) {
if(value == 1){

return value;
}
else {

return 2 * value * factorial(value - 1);
}

}

Then just save the code if you have auto-build turned on. That’s all it takes—now
you’ve altered the code and you can keep debugging, as you see in Figure 3-26.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

92 | Chapter 3: Testing and Debugging

Targeting earlier JREs

What if you’re creating code that you want to let users with JREs all the way back to
Version 1.2 use, but you still want to use hot code replacement, which requires Ver-
sion 1.4 or later? You can use different JREs for running and debugging your code in
Eclipse. To set the debug launch configuration so it uses a different JRE than the
default, select Run ➝ Debug, then click the JRE tab and select the JRE you want to
use for debugging purposes.

And that’s it—that finishes our look at JUnit and JDT debugging. As you can see,
both are powerful tools. JUnit is good for creating a standard set of tests that can be
applied to code with a few clicks. Debugging in Eclipse offers many options: config-
urable breakpoints, watchpoints, exception breakpoints, expression evaluation, single-
stepping, variable and field modification, hot code replacement, and more. This is a
far cry from what you may be used to if you’ve been using javac for your code
development.

Figure 3-26. Using hot code replacements



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

93

Chapter 4 CHAPTER 4

Working in Teams

We’ve been programming solo with Eclipse up to this point, but it’s also designed to
be used in team environments, and it supports Concurrent Versions System (CVS) to
make teamwork go smoothly. Eclipse can be used by any Java developer, and devel-
opers often work in teams. This chapter is all about teamwork using Eclipse and CVS.

How Source Control Works
When you work in teams, you have to coordinate. That means discussing and plan-
ning, of course, but even with the best of intentions, you can still end up with con-
flicts. You may have made some brilliant changes to the code—only to find them all
wiped out by mistake when another programmer uploads his new version of a file.

Source control stops those kinds of problems by controlling access to code and by
maintaining a history of the changes that have been made so things aren’t destroyed
unintentionally. Storing a history of your code is very powerful—not only can you
compare a new (buggy) file against an older one, you can also revert to a previous
version in case things have gone awry.

Source control also gives you the ability to coordinate the simultaneous develop-
ment of several different versions of your software—for example, you might want to
work on both a release version and a new beta version. You can do that using
branches, as we’re going to see in this chapter.

Understanding CVS
CVS is an open source project; it started life as a set of Unix shell scripts in 1986 and
came into its own with dedicated software in 1989. Support for CVS is available on
many operating systems today—Unix, Linux, Windows, and others. For the full CVS
story, take a look at http://www.cvshome.org.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

94 | Chapter 4: Working in Teams

The idea behind CVS, as with any repository software, is to manage and record
changes to source code. In fact, there are many types of repository software avail-
able, and some are more powerful than CVS, but CVS is in the most widespread use
(perhaps because you can get it for free).

In CVS, a module is the basic equivalent of an Eclipse project. Modules are repre-
sented by directories in CVS. Standard projects correspond to physical modules,
while logical or virtual modules are collections of related resources.

The files you share are stored in the CVS repository. When you retrieve a file from
the repository, you check the file out. After you’ve modified the file, you commit the
changes to check it back in and send those changes to the repository. If you want to
refresh your own copy of a file, you update it from the repository.

In general, there are two models for source code repositories:

Pessimistic locking
Only one developer can check out a particular file at once—after the file is
checked out, the file is locked. It’s possible for someone else to check out read-
only copies of the file, but not to change it. Access is sequential.

Optimistic locking
Developers can check out and modify files freely. When you commit changed
files, the repository software merges your changes automatically. If it can’t do
that by itself, it’ll notify you that you have to resolve the issue yourself. Access is
random.

By default, CVS supports optimistic locking—although some CVS software also sup-
ports pessimistic locking. We’ll be using optimistic locking here, which is what
Eclipse supports.

Because each file needs to be kept track of, CVS gives each file a version number
automatically. Each time a file is committed, its version number is incremented.
When you first commit a file, its version number is 1.1; the next time, it’s 1.2, and so
on (this can depend on your CVS server; some will start with 1.0). When you com-
mit files to the repository, they’ll get a new version number automatically. We’ll see
these version numbers in the various views you work with when using source control.

When you update a file from the repository, your local version of the file is not over-
ridden. Instead, Eclipse will merge your local file and the one in the CVS repository.
If there are conflicts, the conflicting lines will be marked with special CVS markup
indicating potential problems. You get the chance to modify your code to handle any
conflicts that occurred during the merge operation, after which you can commit your
new version of the code. Usually, updating goes smoothly, especially if each devel-
oper working on the project has her own set area to work in, but sometimes you’ve
got to spend time resolving the conflicts that CVS points out to you manually.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Finding a CVS Server | 95

CVS also supports development branches. The main development stream of a project
is called the head, and CVS has a special tag name called HEAD that corresponds to
that stream. Branches are forks from the head, and, in a branch, you can make
changes that are independent of the main development stream, such as when you
want to work on a beta version of your project. You tag a branch with a name, and
CVS will keep track of the branches using their names. We’ll see how all this works
later in this chapter.

Finding a CVS Server
To work with CVS, you need access to a CVS server. If you have access to a CVS
server already, you’re all set. Otherwise, take a look at the overview that follows.

Most Linux and Unix installations already come with a CVS server built-in. To test if
you have a working CVS installation, type cvs --help at the prompt; you should see
a list of help items. If you can’t find a CVS server, you can download what you need
from http://www.cvshome.org.

In Windows, the story is a little more complex. There are a variety of CVS servers for
Windows, such as CVSNT, available for free from http://www.cvsnt.org. To install
CVSNT, just download the executable file and run it.

Creating a Repository
You’ll need to create a repository for your source code using the CVS server. In
Linux and Unix, you do that with the command cvs -d path init, where path gives
the location of the directory you want to use as the repository (the permissions and
ownership for path should be set so all members of your development team can
access it).

With CVSNT, you click the Repositories tab in the CVSNT control panel, click the
Add button, enter the path of the new repository directory, such as c:\repository, and
click OK.

Connecting to CVS
In Linux and Unix, you use one of two possible options to reach CVS: SSH (secure
shell) or pserver. We’ll use pserver here, but you can use either protocol; just make
sure that the correct protocol is running on your machine.

In Windows, CVSNT runs as a Windows service, which means it is accessible to
Eclipse as soon as you run it. You can start it from the Start menu by selecting the
Service control panel item from whatever program group you’ve added it to, which
opens the CVSNT control panel. Click the Start button in both the CVS Service and
CVS Lock Service boxes, which will make CVSNT display the message “Running” in
both those boxes, as you see in Figure 4-1.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

96 | Chapter 4: Working in Teams

With your CVS server running, it’s time to start using CVS with Eclipse.

Adding a Project to the CVS Repository
We’ll start using CVS by seeing how to add a new project, Ch04_01, to the CVS repos-
itory. After this project is in the CVS repository, anyone with access to the repository
can check it out and work on it. You can see this sample project in Example 4-1; this
sample code does nothing more than display the word “Hello”.

Creating a Repository Location
After you’ve created a project, how do you add it to the CVS repository? You first
have to let Eclipse know about the repository, so select Window ➝ Open Perspective
➝ Other, and select the CVS Repository Exploring perspective (after you do this the
first time, Eclipse will add this perspective to the Window ➝ Open Perspective, and
will add a shortcut for this perspective to the other perspective shortcuts at the
extreme left in Eclipse). When this perspective opens, right-click the blank CVS
repositories view that appears at left and select New ➝ Repository Location, opening
the Add CVS Repository dialog you see in Figure 4-2.

Figure 4-1. Starting CVSNT

Example 4-1. A sample project

package org.eclipsebook.ch04;

public class Ch04_01 {

public static void main(String[] args) {
System.out.println("Hello");

}
}



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Adding a Project to the CVS Repository | 97

Here, enter the name of the CVS server (usually the name of the computer that hosts
the server), the repository path, the username and password, and specify the connec-
tion type (here, we’ll be using the pserver protocol). Then click Finish to add the new
repository to the CVS Repositories view, as you see in Figure 4-3.

Congratulations—now you’ve connected a CVS repository to Eclipse. The next step
is to start sharing your new project.

There’s even a public CVS server for Eclipse and Eclipse code. You can
access that server’s repository by creating a repository location for
:pserver:anonymous@dev.eclipse.org:/home/eclipse.

Sharing Projects
To add the Ch04_01 project to the CVS repository, you can use the built-in support
for CVS in Eclipse. Open the Java perspective, right-click the project you want to
share, and select the Team ➝ Share Project item. This displays the Share Project with
CVS Repository dialog, as you see in Figure 4-4.

In this dialog, make sure the “Use existing repository location” radio button is
selected, and select the repository you’ve already created. Click Finish to add the
project to the CVS repository.

Figure 4-2. Connecting a CVS repository to Eclipse



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

98 | Chapter 4: Working in Teams

This gives the CVS module the same name as the project. If you want
to give the created CVS module a different name, click Next instead of
Finish, enter the name of the CVS module you want to create, enter a
new module name, and click Finish.

Figure 4-3. A new repository in the CVS Repositories view

Figure 4-4. Specifying which repository to use



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Adding a Project to the CVS Repository | 99

The Share Project operation adds the project to the CVS repository and also opens a
Synchronize view that overlaps with the Console view. The Synchronize view lets
you synchronize files, but it’s not of much use to us at this point; we’ll see how to
work with it later in this chapter when we synchronize our local code with code in
the repository that’s been changed by someone else.

If you want to see what commands Eclipse is sending to the CVS
server, you can open the CVS console by selecting Window ➝ Show
View ➝ Other ➝ CVS ➝ CVS Console. The CVS console will appear
overlapping the standard Console view.

Committing Files
So far, we’ve just added the Ch04_01 project to the CVS repository; now we’ve got to
start checking in some files. There are two steps here: first, you add the file to CVS
(which just notifies CVS of the file but doesn’t actually upload the file), then you
commit it (which makes the file appear in the CVS repository so it can be shared).

You can add individual files by right-clicking them and selecting the Team ➝ Add to
Version Control item. Then you can select the Team ➝ Commit menu item to com-
mit them.

However, there’s an easier way. Eclipse gives you a shortcut here—just right-click
the project in the Package Explorer, and select Team ➝ Commit. When you do,
Eclipse will display the Add to CVS Version Control dialog, listing the files that have
not yet been added to the CVS repository. Make sure all filenames are checked in this
dialog by clicking the Select All button and then clicking the Yes button. Eclipse will
prompt you for a comment for the set of files you’re committing, giving you the
chance to label that set of files and indicate what makes them different from other files
in the repository. In this case, just enter some text, such as Build 1.0, and click OK.

If you want to check in and check out projects as Eclipse projects, be
sure to commit the .project file itself.

To verify that the project is connected to the CVS repository, select Windows ➝ Pref-
erences ➝ Workbench ➝ Label Decorations, select the CVS checkbox, and click OK.
This displays a gold cylinder next to files in the CVS repository, as you see in the
Package Explorer in Figure 4-5. Files in the repository will also have a CVS version
number showing; that version is 1.1 here.

Switch to the CVS Repository Exploring perspective now, as you see in Figure 4-6.
You can see your entire project, now the Ch04_01 CVS module, in the repository’s
HEAD section, which is the main development stream. Also note the CVSROOT direc-
tory, which holds CVS administrative data, and the Branches node, which will hold
any files in other branches of development.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

100 | Chapter 4: Working in Teams

Figure 4-5. Verifying CVS connections

Figure 4-6. Examining files in the CVS repository



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Adding a Project to the CVS Repository | 101

Checking Projects Out
How does someone else check out your new CVS module? To check out a module,
he’d first create a connection to the repository in the same way as we have—by right-
clicking the CVS Repository view, selecting New ➝ Repository Location, and enter-
ing the name of the CVS server, the location of the repository, username, password,
and the type of the connection.

He can then open the Repository view to explore the files in the repository. To check
out the Ch04_01 module, right-click the module in the Repository view and select the
Check Out As item from the context menu, opening the Check Out dialog you see in
Figure 4-7.

In this case, clicking OK checks out the Ch04_01 project and tries to build it. If you’re
sharing an Eclipse project and each CVS module has its own Eclipse .project file, you
can simply select the Check Out As Project item from the Repository view’s context
menu, which will check out an Eclipse project and build it locally. If your code isn’t
in a project of a kind that Eclipse can recognize, it will ask you what type of project
to create; select the Java entry, followed by the Java Project entry.

Updating Code
So what if you and other members make changes to the files in the Ch04_01 project
and save them? For example, say you change the code from this, where we’re dis-
playing “Hello”:

public class Ch04_01 {

public static void main(String[] args) {
System.out.println("Hello");

}
}

Figure 4-7. Checking out a project



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

102 | Chapter 4: Working in Teams

to this, where we’re displaying the message “Hello there”:

public class Ch04_01 {

public static void main(String[] args) {
System.out.println("Hello there");

}
}

When you make these changes and save the file Ch04_01.java, you’ll see a “>”
appear in front of various files in the Package Explorer, as you see in Figure 4-8, indi-
cating there are outgoing changes that have yet to be committed.

You could commit your changes to the CVS repository, but, as a general rule, it’s a
good idea to first check and see how your changes will be received. Say, for example,
that someone else has already checked out the same code and modified it to display
the message “No worries.”:

public class Ch04_01 {

public static void main(String[] args) {
System.out.println("No worries.");

}
}

He’s committed the changes by right-clicking the file in his version of Eclipse and
selecting the Commit item, so his version of the file is now version 1.2. With changes
like this being made to the code, you can see why it’s a good idea to check what

Figure 4-8. Changing a file in the CVS repository



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Adding a Project to the CVS Repository | 103

other changes have been made before committing a file. To check on changes that
have already been made to the file you’ve checked out, right-click it and select the
Team ➝ Update menu item. Doing so imports Ch04_01.java version 1.2 into your
Eclipse, as you can see in the Package Explorer at left in Figure 4-9. And in this case,
it also indicates that there’s a conflict between your code and the code in the reposi-
tory, as you see in the editor.

If there was no conflict, any changes would simply have been merged into your ver-
sion of the file. But since both you and the other developer have changed the same
line, there is a conflict. The CVS support in Eclipse indicates that there’s a conflict by
listing both versions in your code with some added CVS markup:

public class Ch04_01 {

public static void main(String[] args) {
<<<<<<< Ch04_01.java

System.out.println("Hello there");
=======

System.out.println("No worries.");
>>>>>>> 1.2

}
}

To get more information, right-click the changed file, Ch04_01.java, and select the
Team ➝ Show in Resource History item. You’ll see the CVS Resource History view
appear, as you see in Figure 4-10, and you can see the comments for each version of
the code in that view.

Figure 4-9. Updating a changed file



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

104 | Chapter 4: Working in Teams

Comparing Code with Local History
To make it a little clearer as to what CVS-generated changes have been made in
longer files, you can check Ch04_01.java against its local history, which is a useful
thing to know. To compare a file against its history, right-click that file and select
Compare With ➝ Local History, opening the Compare with Local History dialog you
see in Figure 4-11. This dialog points out in a graphic way the changes that the CVS
support in Eclipse added to the code.

Committing Code
Before you commit a file, it’s up to you to resolve the conflict that the update has
revealed. In this case, we’re going to accept the other developer’s version of the code,
but with modifications—instead of “No worries.”, we’ll display “No worries at all.”:

public class Ch04_01 {

public static void main(String[] args) {
System.out.println("No worries at all.");

}
}

Now right-click Ch04_01.java and select Team ➝ Commit, which opens the Commit
dialog you see in Figure 4-12. This dialog asks for a new comment for the file you’re
about to commit; in this case, we’ll use the comment “No worries at all version.”

Figure 4-10. Looking at the resource history



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Adding a Project to the CVS Repository | 105

Click OK to commit your changes to the CVS repository. Doing so creates version 1.3
of the file. And that’s all you need—now you’ve committed a new version of your code
to the CVS repository. We’ve gone through the whole cycle now—checking code in,
checking it out, updating code to check on changes made by other developers, and
committing it. There’s also another way to update your code if the differences between
your version and the repository are fairly extensive: you can synchronize your code.

Figure 4-11. Checking a file’s local history

Figure 4-12. Committing a file



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

106 | Chapter 4: Working in Teams

Synchronizing Code
When the differences between your code and repository code are relatively minor, an
update is fine. But when the differences are substantial, it’s better to synchronize.
Synchronizing with the repository lets you compare changes that have been made
side-by-side in an easier format than the update merge format.

For example, say that someone else works on the same file that you’re working on,
Ch04_01.java, and adds a new line of code and then commits her file as version 1.4:

public class Ch04_01 {

public static void main(String[] args) {
System.out.println("No worries at all.");
System.out.println("Got any problems with that?");

}
}

To synchronize your code (version 1.3) with the new version of Ch04_01.java (now
at version 1.4 in the repository), right-click the Ch04_01 project and select Team ➝

Synchronize with Repository. You can see the results in Figure 4-13.

When you first synchronize with the repository, you’ll see the name of the files
where there are differences marked with a stubby red double arrow (which looks
almost like a diamond in Figure 4-13) in the Synchronize view. Double-clicking a file
so marked opens the full display you see in Figure 4-13, where you can compare the

Figure 4-13. Synchronizing a project



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Adding a Project to the CVS Repository | 107

repository version of the file (version 1.4) to your version (version 1.3) directly in the
Java Source Compare view at the bottom of the window.

Note, in particular, the line connecting the two code boxes in the Java Source Com-
pare view and the small white box in the middle of that line. If you let the mouse
hover over that box, it’ll change into a button with a left-pointing arrow. Clicking
that arrow will import the change into your version of the file, making the synchroni-
zation process a little easier. After you’ve synchronized your version of the code with
that in the repository, commit your changes back to the repository.

In this case, the repository file has been changed since the last time we synchronized/
updated with the repository, and the Synchronize view opened in incoming mode (as
you can see in this view’s title bar in Figure 4-13), which displays the changes in
repository code. There are three such modes in the Synchronize view:

Incoming
Displays those files that have changed in the repository since the last time you
synchronized, updated, or committed your code with the repository.

Outgoing
Displays those local files that you have changed since the last time you synchro-
nized, updated, or committed your code with the repository.

Incoming/outgoing
Displays the local or repository files that have changed since the last time you
synchronized, updated, or committed your code with the repository.

You can select the Synchronize mode with the buttons you see at right in the Syn-
chronize view’s title bar. In Figure 4-13, Eclipse saw some incoming changes and
automatically selected incoming mode, which means the incoming mode button is
down. To the right of that button is the outgoing mode button and to the right of
that button is the incoming/outgoing mode button.

For example, say that you’ve changed the local version of Ch04_01.java so that
instead of displaying the message “No worries at all.”, it displays “No worries at all
today!”:

public class Ch04_01 {

public static void main(String[] args) {
System.out.println("No worries at all today!");

}
}

Now when you save these changes locally and synchronize, selecting outgoing mode,
you’ll see your local changes compared to the repository version, as in Figure 4-14.

These modes are designed to let you filter the changes that have happened to make
synchronizing/updating more tractable. If there are a lot of changes going on, make
sure you synchronize/update frequently—although it can feel like an unpleasant
task, it’s necessary when you’re working in teams, and, if you wait too long, merging
with the repository code can become just about impossible.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

108 | Chapter 4: Working in Teams

Here’s something else to be careful about: although you can undo
changes in a file with Eclipse’s Edit ➝ Undo menu item, those changes
are local and not necessarily reflected in the code in the CVS reposi-
tory. So if you update and find that there are too many changes that
appear in the merged code, you can select Undo. But Eclipse will treat
that Undo operation as a local edit to the file, so when you then syn-
chronize with the repository version of the file, you may be presented
with different options than the ones we’ve discussed here. In general,
it’s not a big problem, and updating and merging your code is still the
best general policy before committing your code. However, if you sus-
pect there may be big changes, either synchronize instead of updating,
or back up the file you’re going to update first.

Creating a Patch
Not everyone you deal with is going to have access to your CVS repository. To
update those users without changing the version number of the software, you can
create a patch. For example, say that you added this line to your example code
locally but didn’t change the code in the repository:

public class Ch04_01 {

public static void main(String[] args) {
System.out.println("No worries at all.");
System.out.println("Got any problems with that?");

Figure 4-14. Outgoing mode



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Adding a Project to the CVS Repository | 109

System.out.println("Didn't think so.");
}

}

You can create a patch that will convert the standard code for this version to the new
form of the code. When you create a patch, Eclipse will compare your local code to
what’s in the repository and create a patch file holding the differences.

To create a patch to let users of your code come up to speed without needing access
to the CVS repository, save the modified file locally, right-click it, and select Team
➝ Create Patch, opening the dialog you see in Figure 4-15.

You can save the patch file where you want; in this case, we’ll save it as a file named
Ch04_01Patch in the workspace. That’s all you need; click the Finish button to save
the patch. This creates the file Ch04_01Patch with these contents—as you can see,
this is simple text, suitable even for emailing (note that the new line of code is
marked with a +, which means Eclipse will add it to the code you’re patching):

Index: Ch04_01.java
===================================================================
RCS file: c:/repository/Ch04_01/org/eclipsebook/ch04/Ch04_01.java,v
retrieving revision 1.4
diff -u -r1.4 Ch04_01.java
--- Ch04_01.java28 Oct 2003 21:13:46 -00001.4
+++ Ch04_01.java29 Oct 2003 17:34:54 -0000
@@ -17,5 +17,6 @@

Figure 4-15. Creating a patch



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

110 | Chapter 4: Working in Teams

public static void main(String[] args) {
System.out.println("No worries at all.");
System.out.println("Got any problems with that?");

+ System.out.println("Didn't think so.");
}

 }

To apply the new patch to code that has not yet been patched, right-click the file to
be updated in Eclipse and select the Team ➝ Apply Patch item, opening the dialog
you see in Figure 4-16.

Browse to the patch file and click Next, opening the dialog you see in Figure 4-17.
Here, you can review the changes the patch will create in your local version of the
file. As you can see, Eclipse is proposing to add the line System.out.println("Didn't
think so."); to your code. Click Finish to apply the patch.

Applying the patch adds the new line of code to the local version of the file, as you
see in Figure 4-18. The version number of the file wasn’t changed, but your code
was. Using Eclipse in this way automates the entire patching mechanism.

Tagging Versions
When you create a milestone version of your code, you can tag it with a version
label, which will make CVS store that version so that you can access it at will later.
To tag a project with a version label, right-click the project and select Team ➝ Tag
As Version, opening the dialog you see in Figure 4-19.

Figure 4-16. Applying a patch



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Adding a Project to the CVS Repository | 111

Figure 4-17. Configuring a patch

Figure 4-18. The new patch has been applied



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

112 | Chapter 4: Working in Teams

In this case, we’re going to tag the current version of the project as FirstSafeBuild,
so enter that name and click OK. Version labels must start with a letter, and they
may not include spaces or these characters: `$,.:;@|'. After tagging the current ver-
sion with this name, you can find it in the Versions node in the CVS Repositories
view, as you see in Figure 4-20.

You can check out a tagged version of a module by right-clicking it in the CVS
Repositories view and selecting context menu items such as Check Out as Project, as
with any other CVS module. Alternately, you can right-click a project in the Package
Explorer and select the Replace With ➝ Another Branch or Version item, opening
the dialog you see in Figure 4-21. Select the version you want to replace the current
project with and click OK.

Figure 4-19. Tagging a version

Figure 4-20. Examining a tagged version



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Adding a Project to the CVS Repository | 113

Tagging a project with a version label like this is very useful because it lets you store
a snapshot of the project that can be retrieved by name later.

Creating Branches
Besides storing versions, you can also create new branches, which act as alternate
streams of development. For example, you might want to create an Internet-enabled
branch of your software for testing, so you’d split a new branch off from the main
development tree to do that.

To create a branch, right-click a project and select Team ➝ Branch, opening the Cre-
ate a new CVS Branch dialog you see in Figure 4-22. Give the new branch a name—
we’ll use InternetEnabledBranch here (note that branch names have the same restric-
tions as version labels). You can also create a new version name that will act as the
start of the branch, giving Eclipse a starting point for merging the branch back into
the main development stream.

If you leave the “Start working in the branch” checkbox checked, you’ll start work-
ing with the branch’s code immediately. Alternately, you can check out a branch
from the CVS Repository view, as you see in Figure 4-23.

If you want to merge a branch back into the main development stream, right-click it
in the Package Explorer and select the Team ➝ Merge item, opening the Merge dia-
log. Select the merge starting point (this is the version name you gave when you cre-
ated the branch) and click Next. In the next pane, select the branch you want to
merge from, and click Finish.

Figure 4-21. Replacing the current project with another version



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

114 | Chapter 4: Working in Teams

This finishes our chapter on teamwork using CVS. A natural part of developing code
with Eclipse is to share that development with others in teams, and, as you can see,
Eclipse is up to the task.

Figure 4-22. Creating a new branch

Figure 4-23. Exploring branches



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

115

Chapter 5 CHAPTER 5

Building Eclipse Projects Using Ant

Eclipse is great for building your code. But for more advanced project development,
there’s still something missing. For example, what if you want not only to compile
several files at once, but also to copy files over to other build directories, create JAR
files and Javadoc, create new directories, delete previous builds, and create deploy-
ment packages all at once?

You can do that with a build tool like Apache’s Ant (http://ant.apache.org/). Ant is a
Java-based build tool that can perform all these tasks and much more. You can
download Ant and run it on the command line, automating your build tasks to not
only compile code, but to create JAR files, move and create classes, delete and make
directories, and a great deal more.

The good news here is that Ant comes built into Eclipse, ready to use. Ant is the pre-
mier build tool for Java development, and we’ll get an idea why in this chapter. As
your projects become more and more elaborate, Ant can automate dozens of tasks
that you’d otherwise need to perform manually. When you have things set up to run
with Ant, all you’ve got to do is point and click to perform a complete build without
having to take dozens of separate steps, which can save many steps omitted in error
over the development process.

The fact that Ant comes built into Eclipse means that it’s easier to use for us than for
all those developers who use it on the command line. To see how this works, we’ll
start with a quick example.

Working with Ant
To use Ant from Eclipse, create a new project, Ch05_01, and add a new class to it,
Ch05_01. In this class’s main method, we’ll just display the message “No worries.”, as
you see in Example 5-1.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

116 | Chapter 5: Building Eclipse Projects Using Ant

To work with Ant, we’ll need an Ant build file, which is named build.xml by default.
To create that file in this project, right-click the project and select New ➝ File. Enter
the name of the new file, build.xml, in the File name box and click Finish. You use
the XML in this file to tell Ant how to build your project. Although Eclipse can auto-
mate the connection to Ant, Ant needs this XML build file to understand what you
want it to do, which means that we will have to master the syntax in this file.

Eclipse recognizes that build.xml is an Ant build file and marks it with an ant icon, as
you see at left in Figure 5-1.

Enter this simple XML into build.xml—all we’re going to do here is have Ant echo a
message, “Ant at work!”, to the console:

<?xml version = "1.0" encoding="UTF-8" ?>
<project name = "Ch05_01" default = "Main Build">
    <target name = "Main Build">

Example 5-1. A sample project

package org.eclipsebook.ch05;

public class Ch05_01 {

public static void main(String[] args) {
System.out.println("No worries.");

}
}

Figure 5-1. Creating a build.xml file



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Working with Ant | 117

        <echo message = "Ant at work!" />
    </target>
</project>

This XML makes the target, which we’ve named “Main Build,” into the default target.
An Ant target specifies a set of tasks you want to have run, similar to a method in
Java. The default target is that which is executed when no specific target is supplied
to Ant. In this case, we’re just going to have this default target echo a message to the
console; nothing’s going to be compiled.

You can see this new XML in the Ant editor in Figure 5-2. The Ant editor uses syntax
highlighting, just as the JDT editor does, and you can see an outline of the build.xml
document in the Outline view at right.

Save build.xml and right-click it, selecting the Run Ant item. This opens the Ch05_01
build.xml dialog you see in Figure 5-3. You can see that the default target, Main Build,
is already selected.

Click the Run button in this dialog to run Ant. When you do, you’ll see something
like this in the Console view (note that your message was echoed here):

Buildfile: D:\eclipse211\eclipse\workspace\Ch05_01\build.xml

Main Build:
        [echo] Ant at work!
BUILD SUCCESSFUL
Total time: 430 milliseconds

Figure 5-2. Entering XML in build.xml



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

118 | Chapter 5: Building Eclipse Projects Using Ant

That’s exactly what we wanted this example to do. That’s a quick example to show
how to interact with Ant from Eclipse, but all it does is display the message “Ant at
work!” It doesn’t compile anything, it doesn’t create any JAR files, but it does give us
a start on using Ant in Eclipse. We’ll get more advanced in our next example.

JARing Your Output
Here’s another example; in this case, we’ll build an Eclipse project and store the
resulting class in a JAR file. You won’t need to be an Ant professional to follow along
because we’re interested in looking at Ant from an Eclipse point of view, not in the
details of Ant per se. This example is designed to give you the basics of creating a
working Ant build file in Eclipse; if you want more details on Ant itself, take a look
at the manual at http://ant.apache.org/manual/index.html.

Our goal here is to create a new Java project in Eclipse, use Ant to compile it, and
store the resulting .class file in a JAR file. To follow along, create a new Java project,
Ch05_02. To emulate a somewhat real-world project, we’re going to store the exam-
ple’s source code in a directory named src and its output in a directory named bin.
You can set those directories up when you create the project in the third pane of the
New Java Project dialog by clicking the Source tab, then clicking the Add Folder but-
ton, then the Create New Folder button to open the New Folder dialog. Enter the

Figure 5-3. Running Ant



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

JARing Your Output | 119

name src in the Folder name box and click OK twice. Eclipse will ask if you want to
remove the project as source folder and update the build output folder to Ch05_02/
bin. Click Yes, then click Finish to create the new project, which will be complete
with src and bin folders.

Next, add a new class, Ch05_02, in a package named org.eclipsebook.ch05, to the
project. Add code to the main method in this example to display the message “This
code was built using Ant.”, as you can see in Example 5-2.

Finally, add build.xml to the project by right-clicking the project in the Package
Explorer and selecting New ➝ File. Type build.xml in the File name box and click Fin-
ish, which creates the file and opens it in the Ant editor. We’ll start writing build.xml
with the standard XML declaration and a <project> element that identifies the Main
Build task as the default:

<?xml version="1.0" encoding = "UTF-8"?>
<project name="Ch05_02" default="Main Build" basedir=".">
        .
        .
        .
</project>

Next we’ll create the properties corresponding to the directories we’ll use—src, bin,
a directory for the JAR file, jardir (we’ll create a lib directory under the bin directory
to store JAR files), and the JAR file itself, jarfile (we’ll call this file Ch05_02.jar).
Setting up properties this way lets you access these directory names later in the build
file. We’ll also set the build.compiler property to the adapter for the JDT compiler,
org.eclipse.jdt.core.JDTCompilerAdapter, which Ant will use:

<?xml version="1.0" encoding = "UTF-8"?>
<project name="Ch05_02" default="Main Build" basedir=".">

    <property name="bin" location="bin"/>
    <property name="src" location="src"/>
    <property name="jardir" location="${bin}/lib"/>
    <property name="jarfile" location="${jardir}/Ch05_02.jar"/>
    <property name="build.compiler"
        value="org.eclipse.jdt.core.JDTCompilerAdapter"/>
        .
        .
        .
</project>

Example 5-2. A sample project

package org.eclipsebook.ch05;

public class Ch05_02 {

    public static void main(String[] args) {
        System.out.println("This code was built using Ant.");
    }
}



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

120 | Chapter 5: Building Eclipse Projects Using Ant

Now we’ll create the main task, Main Build. We’ll use three stages in this Ant file—
an initialization stage, a compile stage, and a JAR-creation stage—each with its own
task: Initialize, Compile, and Jar. To make sure that all those tasks are performed,
we’ll make the main, default task dependent on them using the depends attribute.
Then the main task only has to echo a message to the console indicating that Ant is
at work—Ant will take care of the details of running each needed task:

<?xml version="1.0" encoding = "UTF-8"?>
<project name="Ch05_02" default="Main Build" basedir=".">

    <property name="bin" location="bin"/>
    <property name="src" location="src"/>
    <property name="jardir" location="${bin}/lib"/>
    <property name="jarfile" location="${jardir}/Ch05_02.jar"/>
     <property name="build.compiler"
        value="org.eclipse.jdt.core.JDTCompilerAdapter"/>

    <target name="Main Build" depends="Initialize, Compile, Jar">
        <echo message="Ant at work!"/>
    </target>
        .
        .
        .
</project>

The Initialize task will delete everything in the output ${bin} and ${jardir} direc-
tories and then recreate them:

<target name="Initialize">
    <delete dir="${bin}"/>
    <delete dir="${jardir}"/>
    <mkdir dir="${bin}"/>
    <mkdir dir="${jardir}"/>
</target>

The Compile task will compile the source files in ${src} (which is just Ch05_02.java)
and put the resulting .class file into ${bin}:

<target name="Compile" depends="Initialize">
    <javac srcdir="${src}"
        destdir="${bin}">
    </javac>
</target>

Finally, the Jar task will compress Ch05_02.class into a JAR file and store that file as
${jarfile}—note that this task depends on the Initialize and Compile tasks:

<target name="Jar" depends="Initialize, Compile">
    <jar destfile="${jarfile}" basedir="${bin}"/>
</target>

That completes build.xml; you can see the whole file in Example 5-3.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

JARing Your Output | 121

Eclipse can generate Ant scripts for you under certain circumstances.
If your project already has an XML-based manifest file, as the plug-in
projects we’re going to create in Chapters 11 and 12 will have (the
plug-in manifest file is named plugin.xml), all you have to do is right-
click the manifest file and select the Create Ant Build File item.

When you enter this XML into build.xml, you can see its properties and tasks in the
Outline view, as in Figure 5-4.

To build the project, right-click build.xml in the Package Explorer and select Run Ant.
This opens the Ch05_02 build.xml dialog you see in Figure 5-5. You can see the vari-
ous Ant targets we’ve set up here, which you can build independently. The default
target, Main Build, is already selected, so just click Run now to build the project.

You can see the results in Figure 5-6—the build was successful, as you see in the
Console view.

Example 5-3. A sample Ant build file

<?xml version="1.0" encoding = "UTF-8"?>
<project name="Ch05_01" default="Main Build" basedir=".">

    <property name="bin" location="bin"/>
    <property name="src" location="src"/>
    <property name="jardir" location="${bin}/lib"/>
    <property name="jarfile" location="${jardir}/ch05_01.jar"/>
     <property name="build.compiler"
        value="org.eclipse.jdt.core.JDTCompilerAdapter"/>

    <target name="Main Build" depends="Initialize, Compile, Jar">
        <echo message="Ant at work!"/>
    </target>

    <target name="Initialize">
        <delete dir="${bin}"/>
        <delete dir="${jardir}"/>
        <mkdir dir="${bin}"/>
        <mkdir dir="${jardir}"/>
    </target>

    <target name="Compile" depends="Initialize">
        <javac srcdir="${src}"
            destdir="${bin}">
        </javac>
    </target>

    <target name="Jar" depends="Initialize, Compile">
        <jar destfile="${jarfile}" basedir="${bin}"/>
    </target>

</project>



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

122 | Chapter 5: Building Eclipse Projects Using Ant

Figure 5-4. Our new build.xml

Figure 5-5. Selecting which target to run



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

JARing Your Output | 123

Here’s the complete text that appears in the Console view—you can see the results of
each task as it runs:

Buildfile: D:\eclipse211\eclipse\workspace\Ch05_02\build.xml

Initialize:
      [delete] Deleting directory D:\eclipse211\eclipse\workspace\Ch05_02\bin
       [mkdir] Created dir: D:\eclipse211\eclipse\workspace\Ch05_02\bin
       [mkdir] Created dir: D:\eclipse211\eclipse\workspace\Ch05_02\bin\lib

Compile:
       [javac] Compiling 1 source file to D:\eclipse211\eclipse\workspace\Ch05_02\bin
       [javac] D:\eclipse211\eclipse\workspace\Ch05_02\src\org\eclipsebook\ch05\Ch05_
02.java
       [javac] Compiled 20 lines in 210 ms (95.2 lines/s)
       [javac] 1 .class file generated

Jar:
         [jar] Building jar: D:\eclipse211\eclipse\workspace\Ch05_02\bin\lib\ch05_01.
jar

Main Build:
        [echo] Ant at work!
BUILD SUCCESSFUL
Total time: 1 second

And that’s it—the project was built and Ch05_02.jar was created in the bin/lib direc-
tory. As you can see, Ant lets you go far beyond the normal Eclipse build process to
copy files, create directories, create JAR files, and so on.

Figure 5-6. A successful build



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

124 | Chapter 5: Building Eclipse Projects Using Ant

Configuring Ant in Eclipse
Eclipse also lets you configure its internal version of Ant. To configure how Ant will
run, select Window ➝ Preferences, followed by the Ant item, as shown in Figure 5-7.
In Eclipse, you don’t need to name your build file build.xml; Ant will try to guess
which file is the build file (the build file does need to be an XML file, with a name
that has the extension .xml). You can help Eclipse out by giving an alternate name,
or a list of names, in this dialog.

You can also set Ant runtime options by selecting the Runtime node, as shown in
Figure 5-8. For example, to use a more recent version of Ant in Eclipse (Eclipse 2.1.1
comes with Ant 1.5.3, but the latest version of Ant, as of this writing, is 1.5.4, and
Version 1.6 is out in beta; you can get alternate Ant versions directly from Apache at
http://ant.apache.org), select the Runtime item and change the JAR entries you see in
Figure 5-8 to the new versions of ant.jar and optional.jar. You can also set Ant vari-
ables like ANT_HOME in this dialog.

You can add new Ant tasks and types with the Tasks and Types tabs, which means
that those tasks and types will be available to build files without having to use Ant
taskdef or typedef elements. Eclipse also lets you set global Ant properties if you
select the Properties tab in this dialog. To add a new global property, click the Add
button in the Properties tab, and enter a name and value for the new property.

Figure 5-7. Configuring the build file



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Configuring Ant in Eclipse | 125

You also have limited control over the Ant editor’s options using the Preferences dia-
log and selecting the Ant ➝ Editor item. The Ant editor is actually little more than a
simple XML editor, but you can specify such items as the colors used in syntax high-
lighting, or whether the editor shows an overview ruler, as you see in Figure 5-9.

The Ant editor also offers code assist. For example, if you enter < and
then pause in typing, code assist will give you a list of possible Ant
build file elements. Entering additional letters narrows down the list—
for example, entering <p makes code assist give you the choice of
<path>, <patternset>, and <property>. Code assist will also list possi-
ble attributes of Ant elements; just click inside the opening tag of an
Ant element and press Ctrl+Space. Also, letting the mouse cursor rest
on one of the items in the code assist list makes Eclipse display an
explanation of what that item does. For example, the explanation for
the property element is “Sets a property by name, or a set of proper-
ties (from file or resource) in the project.”

Figure 5-8. Configuring Ant in Eclipse



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

126 | Chapter 5: Building Eclipse Projects Using Ant

You can also configure Ant when you’re about to run it, before selecting an Ant tar-
get to build. Right-click build.xml, select Run Ant, and click the Main tab in the dia-
log that opens, as shown in Figure 5-10. You can set the location of the build file you
want to use here, as well as the base directory for the build. You can also set Ant
arguments in the Arguments field.

You can also run Ant as an external tool: select Run ➝ External Tools
➝ External Tools, click Program, click New, and enter the name you
want to give to the external version of Ant. To fill in the Location field,
click Browse File System and find the correct file for your operating
system (for example, ant.bat in the Ant bin folder in Windows). In the
Working Directory field enter the directory of your build file, and click
to execute your build file.

In addition, there’s also an Ant view in Eclipse, which you open with Window ➝

Show View ➝ Other ➝ Ant. This view provides an Ant-based overview of build files;
to add a build file to this view, right-click the view, select Add Buildfile, and navi-
gate to the build file you want to display. The view will display a breakdown of the
build file, as you see in Figure 5-11, and you can run various Ant targets by right-
clicking them and selecting Run.

Figure 5-9. Configuring the Ant editor



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Catching Errors in Build Files | 127

Catching Errors in Build Files
Eclipse gives you some support for catching Ant errors before you run Ant, but not
much. The Eclipse Ant editor doesn’t handle syntax errors as the JDT editor does for
Java—for example, if you misspell the project element’s default attribute as
deefault, the Ant editor won’t have a problem. However, if the XML in your build
file has syntax errors, such as missing a closing tag or improper nesting (in XML
terms: if your XML is not well-formed), you’ll see the same wavy red line and hollow
red box you see in the JDT editor in the Ant editor, indicating a syntax error, as
shown in Figure 5-12. You can determine what error occurred by looking at the wavy
line’s tooltip, as shown in the figure, where we haven’t closed the mkdir element.

Figure 5-10. Setting the run configuration



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

128 | Chapter 5: Building Eclipse Projects Using Ant

Figure 5-11. The Ant view

Figure 5-12. Handling a syntax error



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Catching Errors in Build Files | 129

If you miss an XML error like this in the editor, you’ll see a message reminding you
of it as soon as you try to run Ant to build the project. The Ant editor doesn’t dis-
play non-XML syntax errors (like misspelling the project attribute as deefault), but
you’ll automatically see any syntax errors listed when you try to run Ant, as shown at
the top of Figure 5-13.

Unfortunately, that’s as much support as Eclipse gives you for handling Ant errors—
when Ant runs, it’ll display its own errors in the Console view, and it’s up to you to
take it from there (although Eclipse does hyperlink errors to the associated lines in
the build or Java file). Eclipse doesn’t support interactive debugging of Ant scripts
yet, which is a pity, given how complex those scripts can become. Perhaps we’ll see
that one day in Eclipse; in fact, given the popularity of Ant, it’s possible that future
versions of Eclipse may include an Ant wizard, invoked with File ➝ New, that will let
you set up build targets, directories, and Ant tasks as easily as creating a new Eclipse
project.

Figure 5-13. An error description



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

130

Chapter 6CHAPTER 6

GUI Programming: From Applets
to Swing

This chapter is all about creating GUIs with Java code in Eclipse. So far, our code has
just displayed text in the console. In this chapter, we’re going to start creating GUIs
using applets, the Abstract Windowing Toolkit (AWT), and Swing. We’ll also take a
look at using an Eclipse plug-in to create Swing code.

Our first topic is all about building applets. Java applets were Java’s first foray into
the Internet, and they were popular for quite a while. Browsers first started stocking
Java in order to support applets. In time, applets have become less popular because
they’re necessarily limited and have been superceded by glitzy packages like Flash
and Java Web Start. Nonetheless, Eclipse has special provisions for developing and
testing applets, so we’ll take a brief look here at how that support works.

Creating an applet is much like creating any other Java project in Eclipse. In this case,
our applet is just going to display the message “Hello from Eclipse!” Create a new Java
project named Ch06_01, and give it a new class, Ch06_01, in the org.eclipsebook.ch06
package. To create an applet, we’ll need to import java.applet.Applet and java.awt.*:

import java.applet.Applet;
import java.awt.*;

Then extend the Ch06_01 class from the Applet class:

public class Ch06_01 extends Applet {
        .
        .
        .

In an applet, the init method lets you initialize the applet, and we’ll set the background
color to white in that method. The start, stop, and destroy methods let you handle the
associated events in the applet’s life cycle. To draw our text in the applet’s window,
we’ll use the Graphics object passed to the paint method. Here’s the code to add:

public class Ch06_01 extends Applet {

    public void init( )
    {
        setBackground(Color.white);
    }



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

GUI Programming: From Applets to Swing | 131

    public void start( )
    {
    }

    public void paint(Graphics g)
    {
        g.drawString("Hello from Eclipse!", 60, 100);
    }

    public void stop( )
    {
    }

    public void destroy( )
    {
    }
}

And that’s all you need for the applet’s code. To test it, select Run As ➝ Java Applet,
and the applet should run. If Eclipse doesn’t recognize your applet, you can specifi-
cally set the launch configuration for this code. To do that, select the Ch06_01 project
in the Package Explorer and select Run ➝ Run to open the Run dialog you see in
Figure 6-1. Then double-click the Java Applet configuration in the Configurations
box and the Ch06_01 project will automatically be added as an applet. Click the Run
button to run the applet. After setting the launch configuration, you should be able
to select Run As ➝ Java Applet to run the applet.

Figure 6-1. Setting an applet’s launch configuration



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

132 | Chapter 6: GUI Programming: From Applets to Swing

You can see the results in the Java applet viewer in Figure 6-2. The applet is working
as it should.

To use this applet in a web page, use the generated class file, Ch06_01.
class, together with the <APPLET> HTML tag,  something like this:

<APPLET

    CODE = "Ch06_01.class"

    WIDTH = 300

    HEIGHT = 200

>

That’s all it takes; the applet is complete. You can see the entire code for the applet
in Example 6-1.

Figure 6-2. Running an applet

Example 6-1. A simple applet

package org.eclipsebook.ch06;

import java.applet.Applet;
import java.awt.*;

public class Ch06_01 extends Applet {
    public void init( )
    {
        setBackground(Color.white);
    }

    public void start( )
    {
    }

    public void paint(Graphics g)
    {
        g.drawString("Hello from Eclipse!", 60, 100);
    }

    public void stop( )
    {
    }



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating AWT Applications | 133

When you launch them, Java applets appear in the Java applet viewer by default.
That’s fine as far as it goes, but there’s more to GUIs than applets. The next step is
going to be creating our own windowed applications.

Creating AWT Applications
The Abstract Windowing Toolkit, or AWT, was Java’s early attempt at a GUI tool-
kit. It’s still supported and used, so we’ll take a look at an example here that will
launch its own window. The original AWT package only took six weeks to write,
and the controls, designed for use in applets, were modeled after HTML controls.
Since that time, Swing has taken over the standard Java interface—but even Swing is
built on top of AWT.

Our AWT example will just launch its own window and display the same message as
our applet. To follow along, create a new project, Ch06_02, and give it a new class
with a main method, Ch06_02, putting that class into the org.eclipsebook.ch06 pack-
age. We need to import java.awt.* for basic AWT support, and java.awt.event.* to
handle the window-closing event, so add this code:

import java.awt.*;
import java.awt.event.*;

The actual window this example will display will be based on the AWT Frame class
and will be called AppFrame, so add this code to Ch06_02.java:

class AppFrame extends Frame
{
        .
        .
        .
}

As in our applet, we’ll override the paint method and use the passed Graphics object
to display the text we want in the new window:

class AppFrame extends Frame
{
    public void paint(Graphics g)
    {
        g.drawString("Hello from Eclipse!", 60, 100);
    }
}

    public void destroy( )
    {
    }
}

Example 6-1. A simple applet (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

134 | Chapter 6: GUI Programming: From Applets to Swing

Now, in the Ch06_02 class’s main method, we’ll create a new window of the AppFrame
class and set its size:

public class Ch06_02 {

    public static void main(String [] args)
    {
       AppFrame f = new AppFrame( );

       f.setSize(200, 200);
        .
        .
        .
    }
}

All that’s left is to add the standard code to handle the window-close event that
occurs when the user clicks the X button in the window at the upper right, and to
show the window using its show method:

public class Ch06_02 {

    public static void main(String [] args)
    {
       AppFrame f = new AppFrame( );

       f.setSize(200, 200);

       f.addWindowListener(new WindowAdapter( ) { public void
           windowClosing(WindowEvent e) {System.exit(0);}});

       f.show( );
    }
}

To run this application, select Run As ➝ Java Application. This application will
launch the AWT window, complete with the message you see in Figure 6-3.

And that’s it—the code for this application appears in Example 6-2.

Figure 6-3. Running a windowed AWT application

Example 6-2. A basic AWT application

package org.eclipsebook.ch06;

import java.awt.*;



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating Swing Applications | 135

As you can see, launching windowed applications this way is no problem from
Eclipse—just set up your application to launch windows and run it. AWT is fine up
to a point, but Swing is where the action is today.

Creating Swing Applications
Our first Swing application will be simple, and it will only mimic the applet and
AWT applications we’ve seen by displaying the same message as they did. To put
together this application, create a project named Ch06_03 and add the class Ch06_03
with a main method to the org.eclipsebook.ch06 package. We’ll need these imports
in this example:

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;

In this example, we’ll derive a new class, Panel, from the Swing JPanel class to dis-
play the message in:

class Panel extends JPanel
{
        .
        .
        .
}

import java.awt.event.*;

public class Ch06_02 {

    public static void main(String [] args)
    {
       AppFrame f = new AppFrame( );

       f.setSize(200, 200);

       f.addWindowListener(new WindowAdapter( ) { public void
           windowClosing(WindowEvent e) {System.exit(0);}});

       f.show( );
    }
}

class AppFrame extends Frame
{
    public void paint(Graphics g)
    {
        g.drawString("Hello from Java!", 60, 100);
    }
}

Example 6-2. A basic AWT application (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

136 | Chapter 6: GUI Programming: From Applets to Swing

The JPanel class has a method named paintComponent and we’ll override that method
to display the text message like this:

class Panel extends JPanel
{

Panel( )
{

setBackground(Color.white);
}

public void paintComponent (Graphics g)
{

super.paintComponent(g);
g.drawString("Hello from Eclipse!", 60, 100);

}
}

The main class in this application, Ch06_03, will extend the Swing JFrame class:

public class Ch06_03 extends JFrame {
        .
        .
        .

In the Ch06_03 class constructor, we’ll create an object of the Panel class and add it to
the content pane of the current JFrame object:

Panel p;

public Ch06_03( )
{

super("Swing application");

Container contentPane = getContentPane( );
p = new Panel( );
contentPane.add(p);

}

All that’s left is to create a new object of the Ch06_03 class in the main method, dis-
play that object with the setVisible method, and handle the window closing with
the WindowAdapter class as we did in AWT. You can see how this works in the main
method in Example 6-3.

Example 6-3. A simple Swing application

package org.eclipsebook.ch06;

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class Ch06_03 extends JFrame {

Panel p;



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating Swing Applications | 137

You can see the results when you run this application in a Swing window in
Figure 6-4.

public Ch06_03( )
{

super("Swing application");

Container contentPane = getContentPane( );
p = new Panel( );
contentPane.add(p);

}

public static void main(String args[])
{

final JFrame f = new Ch06_03( );

f.setBounds(100, 100, 300, 300);
f.setVisible(true);
f.setDefaultCloseOperation(DISPOSE_ON_CLOSE);

f.addWindowListener(new WindowAdapter( ) {
public void windowClosing(WindowEvent e) {

System.exit(0);
}

});
}

}

class Panel extends JPanel
{

Panel( )
{

setBackground(Color.white);
}

public void paintComponent (Graphics g)
{

super.paintComponent(g);
g.drawString("Hello from Eclipse!", 60, 100);

}
}

Figure 6-4. A Swing application

Example 6-3. A simple Swing application (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

138 | Chapter 6: GUI Programming: From Applets to Swing

One of the original motivations behind Swing was to let developers tailor the “look-
and-feel” of their applications to various operating systems. That’s become a big
issue in Eclipse, which comes with IBM’s Standard Widget Toolkit (SWT), a replace-
ment toolkit for AWT and Swing, built-in. SWT is the focus of the next two chap-
ters, but before we get there, we’ll take a look at what Swing has to offer for
pluggable look-and-feels in a new example, Ch06_04.

To set a Swing program’s look-and-feel, you use the UIManager class’s setLookAndFeel
method. In this example, we’ll add three radio buttons to support the Metal (Sun’s
Java look-and-feel), Motif, and Windows look-and-feels. First, we’ll derive the Ch06_04
class from the Swing JFrame class and create the radio buttons:

public class Ch06_04 extends JFrame {
    JRadioButton b1 = new JRadioButton("Metal"),
    b2 = new JRadioButton("Motif"),
    b3 = new JRadioButton("Windows");

As in the previous example, we’ll use a JPanel object for display purposes. Here,
we’ll display an assortment of controls, buttons, text fields, labels, checkboxes, and
so on, and we’ll add an ActionListener to the Metal/Motif/Windows radio buttons:

class Panel extends JPanel implements ActionListener
{
    public Panel( )
    {
        add(new JButton("JButton"));
        add(new JTextField("JTextField"));
        add(new JCheckBox("JCheckBox"));
        add(new JRadioButton("JRadioButton"));
        add(new JLabel("JLabel"));
        add(new JList(new String[] {
            "JList Item 1", "JList Item 2", "JList Item 3"}));
        add(new JScrollBar(SwingConstants.HORIZONTAL));

        ButtonGroup group = new ButtonGroup( );
        group.add(b1);
        group.add(b2);
        group.add(b3);

        b1.addActionListener(this);
        b2.addActionListener(this);
        b3.addActionListener(this);

        add(b1);
        add(b2);
        add(b3);
        .
        .
        .

All that’s left is to call the UIManager class’s setLookAndFeel method inside the
actionPerformed method to switch the look-and-feel as needed. You can see how that
works in the full code, which appears in Example 6-4.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating Swing Applications | 139

Example 6-4. The Ch06_04.java Swing application with pluggable look-and-feel

package org.eclipsebook.ch06;

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;

public class Ch06_04 extends JFrame {
    JRadioButton b1 = new JRadioButton("Metal"),
    b2 = new JRadioButton("Motif"),
    b3 = new JRadioButton("Windows");

    public Ch06_04( ) {
        super("Swing application");

        Container contentPane = getContentPane( );
        contentPane.add(new Panel( ), BorderLayout.CENTER);
    }

    public static void main(String args[])
    {
        final JFrame f = new Ch06_04( );

        f.setBounds(100, 100, 300, 300);
        f.setVisible(true);
        f.setDefaultCloseOperation(DISPOSE_ON_CLOSE);

        f.addWindowListener(new WindowAdapter( ) {
            public void windowClosing(WindowEvent e) {
                System.exit(0);
            }
        });
    }

    class Panel extends JPanel implements ActionListener
    {
        public Panel( )
        {
            add(new JButton("JButton"));
            add(new JTextField("JTextField"));
            add(new JCheckBox("JCheckBox"));
            add(new JRadioButton("JRadioButton"));
            add(new JLabel("JLabel"));
            add(new JList(new String[] {
                "JList Item 1", "JList Item 2", "JList Item 3"}));
            add(new JScrollBar(SwingConstants.HORIZONTAL));

            ButtonGroup group = new ButtonGroup( );
            group.add(b1);
            group.add(b2);
            group.add(b3);



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

140 | Chapter 6: GUI Programming: From Applets to Swing

When you run this application, you’ll see a number of controls in the launched win-
dow, as seen in Figure 6-5. This figure shows the default “Metal” look that Sun
developed as a cross-platform look.

            b1.addActionListener(this);
            b2.addActionListener(this);
            b3.addActionListener(this);

            add(b1);
            add(b2);
            add(b3);
        }

        public void actionPerformed(ActionEvent e)
        {
            JRadioButton src = (JRadioButton)e.getSource( );

            try {
                if((JRadioButton)e.getSource( ) == b1)
                    UIManager.setLookAndFeel(
                      "javax.swing.plaf.metal.MetalLookAndFeel");
                else if((JRadioButton)e.getSource( ) == b2)
                    UIManager.setLookAndFeel(
                        "com.sun.java.swing.plaf.motif.MotifLookAndFeel");
                else if((JRadioButton)e.getSource( ) == b3)
                    UIManager.setLookAndFeel(
                        "com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
            }
            catch(Exception ex) {}

            SwingUtilities.updateComponentTreeUI(getContentPane( ));
        }
    }
}

Figure 6-5. The Metal look

Example 6-4. The Ch06_04.java Swing application with pluggable look-and-feel (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating Swing Applications | 141

On the other hand, selecting the Motif radio button changes the look-and-feel to
Motif, as you see in Figure 6-6.

And selecting the Windows radio button displays the Windows look-and-feel, as you
see in Figure 6-7.

As you can see, Swing makes an effort to stay up-to-date with various looks. Unfor-
tunately, the various operating systems that Swing emulates have changed faster than
Swing has, and Swing is substantially behind the times now, especially when it
comes to Windows.

We’ll talk more on this issue in the next chapter when we start deal-
ing with SWT.

Now that we’re designing GUIs, you may be asking yourself, wouldn’t it be great if
Eclipse came with visual tools that would let you simply drag and drop controls into
place? Many developers have asked for that, but it doesn’t appear likely that Eclipse
will include a drag-and-drop GUI toolbox soon. However, there are a number of
Eclipse plug-ins that provide this functionality—some are commercial, some are free.
Next, we’ll take a look at a free plug-in that lets you build Swing applications.

Figure 6-6. The Motif look

Figure 6-7. The Windows look



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

142 | Chapter 6: GUI Programming: From Applets to Swing

Using Eclipse Plug-ins
Many Eclipse plug-ins are available, and many are free. You can find over 400 plug-
ins at http://www.eclipse-plugins.2y.net/eclipse/, and the plug-in we’ll use for Swing is
available from that site. On the other hand, Eclipse plug-ins can change very fre-
quently, so we can’t base entire chapters on them—the plug-in you download would
be different from the one written about in this book.

But we can look at what specific plug-ins have to offer in general terms, and we’ll do
that here. In this chapter, we’ll take a look at the popular, free V4ALL plug-in to help
us write some Swing code, available from http://www.eclipse-plugins.2y.net/eclipse/.
Navigate to that page, click the plugins link, then the categories link, and then the UI
link to find the Eclipse V4ALL Swing & SWT plug-in. Stop Eclipse if it’s running and
download that compressed plug-in file to Eclipse’s eclipse directory (this is the direc-
tory that contains the workspace and plugins directories).

When you download plug-ins, you usually download them to the eclipse directory.
They’ll come zipped or tarred, and you usually uncompress them in the eclipse direc-
tory. When you uncompress them, the support files for plug-ins go automatically into
the plugins and features directories, which are subdirectories of the eclipse directory.

Plug-ins are not always designed to be uncompressed in the eclipse
directory—if possible, check the plug-in’s documentation first. When
you’re about to unzip a plug-in, open it in an unzip utility and see if
it’ll unzip files to the plugins directory. If so, unzipping it in the eclipse
directory is the right thing to do. Some plug-ins should be uncom-
pressed in the plugins directory directly, however.

Unzip or untar the V4ALL plug-in now, which should automatically load its files into
the plugins and features directories. That’s all the installation you need. Now start
Eclipse again. Eclipse may display a dialog indicating that there are pending configu-
ration changes and may ask you if Eclipse should restart. Restart Eclipse if you’re
asked.

Congratulations—you’ve just installed the V4ALL plug-in. It’s time to put it to work.

Using the V4ALL Plug-in
The V4ALL plug-in gives you a palette of Swing components that you can drag to a
“whiteboard” to design your application. To see how this works, we’ll create a Swing
application using this plug-in. Create a new Java project named Ch06_05, and give it a
source folder, src, in the third pane of the New Project dialog as we’ve done before.
Now create a new class, Ch06_05, in the org.eclipsebook.ch06 package.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Using the V4ALL Plug-in | 143

Adding a V4ALL Editor to a Project
To add a new V4ALL editor to the project, right-click the org.eclipsebook.ch06
package and select New ➝ Other, opening the New dialog you see in Figure 6-8.

You should see V4E Visual Editor as one of the options; select that item and click
Next to open the V4E dialog you see in Figure 6-9.

The V4E dialog lets you select the name of the V4ALL file that will contain the
design information V4ALL will use. Keep the default name, Gui_1.v4all, and click
Finish.

Designing the GUI
When you name your V4ALL file of design information and click Finish, the V4ALL
perspective that you see in Figure 6-10 will open. You can see the new entry, Gui_1.
v4all, in the Package Explorer at left. In the center, you see the V4ALL palette, from
which you can drag Swing containers and components. You create your application
in the whiteboard, which appears to the right of the palette. Under the palette is the
properties view, which lets you set various properties of items in the whiteboard.

Our Swing example will display a button and a text field in a Swing frame, so find
the Frame item in the Containers section of the palette and drag it to the whiteboard.
You can see the results in Figure 6-10.

Next, drag a button and a text field from the Components section of the palette to
the Swing frame, as you see in Figure 6-11 (note that we’ve also resized the frame to
fit better around these two controls).

Figure 6-8. The New dialog



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

144 | Chapter 6: GUI Programming: From Applets to Swing

Figure 6-9. The V4E dialog

Figure 6-10. Using V4ALL



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Using the V4ALL Plug-in | 145

The default caption for the button is “Button 100”; to change that, select the button
and click the Text property in the Properties view. Click the ellipsis (“...”) button
that appears in the Text property line, enter “Click Me” in the Text Input dialog that
appears, and click OK.

Creating a Method
In this application, our goal is to display a message in the text field when the user
clicks the button, so our next step is to create a method that will handle the button
click. To create a new method, drag a method item from the palette Beans & Factories
section (the method item’s icon is a pair of parentheses) to the whiteboard. Double-
click the new method item and edit its name to read processEvent( ), as you see in
Figure 6-12.

To connect the Click Me button to this method, select the Event to Method item in
the palette, then click the button. Next, move the mouse to the processEvent method
item and click that item. This connects the button with the method visually using an
arrow, as you see in Figure 6-12.

To indicate what event you want to handle, click Select at the top of the palette and
click the arrow that extends from the button to the method. Then select the Action
Performed item in the Events property in the Properties view. That’s all it takes.

Figure 6-11. Adding a button and a text field



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

146 | Chapter 6: GUI Programming: From Applets to Swing

Generating and Editing the Code
We’re ready to generate some code. To do that, right-click the whiteboard and select
the Code Generation ➝ Generate Code for Swing context menu item (or click the left-
most V4ALL button in the second toolbar beneath the menu bar, which you can see
in Figure 6-12). This creates Gui_1.java, which you can see opened in Figure 6-13.

This code was generated for us by V4ALL. The processEvent method we’ve created
will be called when the Click Me button is clicked. If you open the processEvent
method, you’ll see this generated code:

public void processEvent( ){
    // user code begin {1} Swing
    // user code end
    // user code begin {1} SWT
    // user code end
    // user code begin {1} HTML
    // user code end
    // user code begin {1} Eclipse
    // user code end
    // user code begin {1} C#
    // user code end
}

Figure 6-12. Creating a new method



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Using the V4ALL Plug-in | 147

As you can see by looking at the code, the text field is referred to as ivjTextField100,
so we can use that object’s setText method to display a message, “No worries!”, like
this (you can see this code entered in Figure 6-13):

public void processEvent( ){
    // user code begin {1} Swing
    ivjTextField100.setText("No worries!");
    // user code end
    // user code begin {1} SWT
    // user code end
    // user code begin {1} HTML
    // user code end
    // user code begin {1} Eclipse
    // user code end
    // user code begin {1} C#
    // user code end
}

Running the Result
That’s all we need. Save the Gui_1.java file now, select it in the Package Explorer,
and select the Run As ➝ Java Application menu item, launching the new Swing appli-
cation, as you see in Figure 6-14. When you click the button, the text field shows the
message, as we’ve designed it to do.

Figure 6-13. Working on V4ALL-generated code



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

148 | Chapter 6: GUI Programming: From Applets to Swing

And that’s it—everything works as planned. You’ve created and launched a Swing
application using the V4ALL plug-in.

Our V4ALL example is complete, as is our look at applets, AWT, and Swing in this
chapter. In the next chapter, we’re going to start working with the new GUI alterna-
tive, the Standard Widget Toolkit, that comes with Eclipse.

Figure 6-14. The new Swing application



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

149

Chapter 7 CHAPTER 7

SWT: Buttons, Text, Labels, Lists,
Layouts, and Events

SWT, the Standard Widget Toolkit, was created by IBM as a replacement for both the
Java Abstract Windowing Toolkit (AWT) and Swing. It’s a big topic, and it comes
with Eclipse, ready to use. Here’s how the Eclipse documentation describes SWT:

The Standard Widget Toolkit (SWT) is a widget toolkit for Java developers that pro-
vides a portable API and tight integration with the underlying native OS GUI platform.

Java Graphics
Graphics work in Java has a long and glorious past, and, let’s hope, a similar future.
It started with the very basic AWT, moved on through the powerful Swing package,
and now stands on the threshold of the SWT age.

AWT
The AWT, Java’s first attempt at a GUI toolkit, was written in a matter of weeks. It
lets Java developers display windows with various controls like text boxes and but-
tons. AWT GUIs were easy to develop, and they used the underlying operating sys-
tem’s controls themselves—for example, in Windows, you’d see a Windows text
box. On the Mac, you’d see a Mac text box. Some operating systems had a different
control set from other operating systems, which meant that Sun only implemented
those controls common to all operating systems Java was targeted to, and that lim-
ited AWT to a set of relatively simple controls.

Swing
To address the growing needs of developers, Java introduced Swing, which provides
non-native implementations of higher level controls like trees, tables, and text. This
provides a great deal of functionality, but it makes applications developed in Swing
stand out as being different and very Java-specific.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

150 | Chapter 7: SWT: Buttons, Text, Labels, Lists, Layouts, and Events

Sun added a “look-and-feel” emulation (which we saw at work in the previous chap-
ter) to help applications look more like the operating system they’re running on, but
they couldn’t keep up with all the operating system releases (such as Windows ME,
2000, XP, and so on). In addition, because the GUI was implemented in Java and not
natively in the operating system, Swing response time was poor compared to native
applications.

SWT
SWT addresses many of the issues here by providing a set of widgets that make use of
native controls (through the Java Native Interface, JNI) when such controls are avail-
able. Otherwise, SWT creates its own controls as needed for those that don’t have an
operating system counterpart. This does mean that native code is needed to support
each operating system, but so far, IBM has been able to provide that and stay up-to-
date. Additionally, SWT comes with Eclipse, so it is a fit topic for our discussion.

SWT is substantial and feature-rich, as you’d expect if it’s intended to replace AWT
and Swing. We’re going to get an introduction to SWT in this and the next chapter,
and it turns out that you really don’t need in-depth SWT knowledge to create power-
ful and useful SWT applications. All you need to know about are widgets (the user-
interface elements you use in SWT), SWT layouts (which let you position those wid-
gets), and SWT events. We’re going to see plenty of examples, starting immediately,
to see how all these work in SWT.

SWT is being ported to more and more graphical environments all the
time. Currently supported are: Windows, Linux GTK, Linux Motif,
Solaris Motif, AIX Motif, HPUX Motif, Photon QNX, and Mac OS X.

An SWT Example
Instead of talking about SWT in the abstract, let’s get this show on the road and see
some code at work. Coding an example is going to give us the SWT story and what it
takes to put together an SWT application. Our first example will be a simple one,
and it will just display the message “No worries!” in an SWT window.

To follow along, create a new project, Ch07_01, and add a class, Ch07_01, in the org.
eclipsebook.ch07 package. To work with SWT and SWT widgets, you typically start
with these two imports:

import org.eclipse.swt.widgets.*;
import org.eclipse.swt.*;

You’ll need to include swt.jar in the build path to make these imports work. Remem-
ber that SWT is operating system–dependent, so there’s going to be a different swt.jar
for different operating systems. To add swt.jar to the Ch07_01 project, select that
project in the Package Explorer, right-click it, and select Properties. In the Properties
for Ch07_01 dialog that opens, select the Java Build Path item and click the Add



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

An SWT Example | 151

External JARs button. Then navigate to swt.jar, which you’ll find in one of the fol-
lowing directories, depending on your operating system (note that INSTALLDIR is
the Eclipse installation directory; also note that you’ll have to update these paths for
your version of Eclipse, such as changing 2.1.1 to 2.1.2 or some other value):

Win32
INSTALLDIR\eclipse\plugins\org.eclipse.swt.win32_2.1.1\ws\win32\swt.jar

Linux GTK
INSTALLDIR/eclipse/plugins/org.eclipse.swt.gtk_2.1.1/ws/gtk/swt.jar

Linux Motif
INSTALLDIR/eclipse/plugins/org.eclipse.swt.motif_2.1.1/ws/motif/swt.jar

Solaris Motif
INSTALLDIR/eclipse/plugins/org.eclipse.swt.motif_2.1.1/ws/solaris/sparc/swt.jar

AIX Motif
INSTALLDIR/eclipse/plugins/org.eclipse.swt.motif_2.1.1/ws/aix/ppc/swt.jar

HPUX Motif
INSTALLDIR/eclipse/plugins/org.eclipse.swt.motif_2.1.1/ws/hpux/PA_RISC/swt.jar

Photon QNX
INSTALLDIR/eclipse/plugins/org.eclipse.swt.photon_2.1.1/ws/photon/swt.jar

Mac OS X
INSTALLDIR/eclipse/plugins/org.eclipse.swt.carbon_2.1.1/ws/carbon/swt.jar

After locating swt.jar, click Open, and then click OK to add it to the project’s build
path.

Some operating systems, such as Linux GTK, need more than one JAR
to run SWT (in Linux GTK, you use swt.jar and swt-pi.jar). In such
cases, you have to add all of the required JARs to the build path. (All
the required JAR files will be in the same folder.)

In the code, the next step is to create a Display object, which represents an SWT ses-
sion. This object acts as the connection between SWT and the operating system’s
GUI support. You use a Display object to start an event loop and control communi-
cation between the main user interface thread and other threads. Here’s how we cre-
ate the Display object in the main method of the Ch07_01 class:

import org.eclipse.swt.widgets.*;
import org.eclipse.swt.*;

public class Ch07_01 {

public static void main(String [] args) {
   Display display = new Display( );

        .
        .
        .
}



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

152 | Chapter 7: SWT: Buttons, Text, Labels, Lists, Layouts, and Events

Now that you’ve got a Display object, you can create the various windows you want to
work with by creating Shell objects. In SWT, a shell is a window that is managed by the
operating system’s window manager. A top-level shell is one that is a direct child of the
display and is a window the user can move, resize, minimize, and so on. You can also
have secondary shells, which are children of another shell, such as dialogs or message
boxes. Here’s how we create and size the shell we’ll be using—note that passing the
display object to the Shell constructor makes the shell a child of the display object:

import org.eclipse.swt.widgets.*;
import org.eclipse.swt.*;

public class Ch07_01 {

public static void main(String [] args) {
   Display display = new Display( );
   Shell shell = new Shell(display);
   shell.setSize(300, 200);

        .
        .
        .

}
}

We’re ready to add some widgets to our application. You’ll find that, in the SWT doc-
umentation, the term widget is used almost interchangeably with the terms control and
composite. Technically speaking, the formal—and somewhat circular—definition of a
widget in the SWT documentation is “the abstract class for any UI object that can be
placed inside another widget.” Practically speaking, widget is the general term for any
UI element in SWT. Composites are widgets that are designed to have children, such as
toolbars, trees, and canvases. Controls are widgets that have an operating system
counterpart, such as buttons, lists, and labels. You can see all the SWT controls in
Table 7-1. Note that we’re also listing the possible styles and events for each control.

Table 7-1. SWT controls and options

Widget Purpose Styles Events

Button A standard push button. BORDER, CHECK, PUSH, RADIO,
TOGGLE, FLAT, LEFT, RIGHT,
CENTER, ARROW (with UP,
DOWN)

Dispose, FocusIn, FocusOut, Help,
KeyDown, KeyUp, MouseDouble-
Click, MouseDown, MouseEnter,
MouseExit, MouseHover, MouseUp,
MouseMove, Move, Paint, Resize,
Selection

Canvas A composite control that
can contain other controls,
and also is a drawing sur-
face. Often the foundation
of custom controls.

BORDER, H_SCROLL,
V_SCROLL, NO_BACKGROUND,
NO_FOCUS, NO_MERGE_
PAINTS, NO_REDRAW_RESIZE,
NO_RADIO_GROUP

Dispose, FocusIn, FocusOut, Help,
KeyDown, KeyUp, MouseDouble-
Click, MouseDown, MouseEnter,
MouseExit, MouseHover, MouseUp,
MouseMove, Move, Paint, Resize

Caret The standard I-beam caret
used to indicate the inser-
tion point for text.

Dispose



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

An SWT Example | 153

Combo A standard combo box—
that is, the combination of
a text control and a drop-
down list.

BORDER, DROP_DOWN,
READ_ONLY, SIMPLE

Dispose, FocusIn, FocusOut, Help,
KeyDown, KeyUp, MouseDouble-
Click, MouseDown, MouseEnter,
MouseExit, MouseHover, MouseUp,
MouseMove, Move, Paint, Resize,
DefaultSelection, Modify, Selection

Composite Control that can contain
other widgets.

BORDER, H_SCROLL, V_SCROLL Dispose, FocusIn, FocusOut, Help,
KeyDown, KeyUp, MouseDouble-
Click, MouseDown, MouseEnter,
MouseExit, MouseHover, MouseUp,
MouseMove, Move, Paint, Resize

CoolBar A composite control that
allows users to reposition
contained items dynami-
cally.

BORDER Dispose, FocusIn, FocusOut, Help,
KeyDown, KeyUp, MouseDouble-
Click, MouseDown, MouseEnter,
MouseExit, MouseHover, MouseUp,
MouseMove, Move, Paint, Resize

CoolItem A UI element that repre-
sents a positionable area of
a cool bar.

DROP_DOWN Dispose

Group A composite control that
groups other widgets
together. Can enclose them
in an etched border and
display a label.

BORDER, SHADOW_ETCHED_
IN, SHADOW_ETCHED_OUT,
SHADOW_IN, SHADOW_OUT,
SHADOW_NONE

Dispose, FocusIn, FocusOut, Help,
KeyDown, KeyUp, MouseDouble-
Click, MouseDown, MouseEnter,
MouseExit, MouseHover, MouseUp,
MouseMove, Move, Paint, Resize

Label The standard label con-
trol—displays text or an
image.

BORDER, CENTER, LEFT, RIGHT,
WRAP, SEPARATOR (with
HORIZONTAL, SHADOW_IN,
SHADOW_OUT, SHADOW_
NONE, VERTICAL)

Dispose, FocusIn, FocusOut, Help,
KeyDown, KeyUp, MouseDouble-
Click, MouseDown, MouseEnter,
MouseExit, MouseHover, MouseUp,
MouseMove, Move, Paint, Resize

List The standard list con-
trol—allows the user to
choose items from a list of
items.

BORDER, H_SCROLL,
V_SCROLL, SINGLE, MULTI

Dispose, FocusIn, FocusOut, Help,
KeyDown, KeyUp, MouseDouble-
Click, MouseDown, MouseEnter,
MouseExit, MouseHover, MouseUp,
MouseMove, Move, Paint, Resize,
Selection, DefaultSelection

Menu The standard menu con-
trol—contains selectable
menu items.

BAR, DROP_DOWN,
NO_RADIO_GROUP, POP_UP

Dispose, Help, Hide, Show

MenuItem UI object that represents an
item in a menu.

CHECK, CASCADE, PUSH, RADIO,
SEPARATOR

Dispose, Arm, Help, Selection

ProgressBar The standard progress
bar—displays progress of
a task to the user, usually as
a bar graph.

BORDER, INDETERMINATE,
SMOOTH, HORIZONTAL,
VERTICAL

Dispose, FocusIn, FocusOut, Help,
KeyDown, KeyUp, MouseDouble-
Click, MouseDown, MouseEnter,
MouseExit, MouseHover, MouseUp,
MouseMove, Move, Paint, Resize

Table 7-1. SWT controls and options (continued)

Widget Purpose Styles Events



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

154 | Chapter 7: SWT: Buttons, Text, Labels, Lists, Layouts, and Events

Sash Allows the user to drag a
“rubber-banded” outline of
the sash within the parent
window to allow users to
resize child widgets by
moving their dividing lines.

BORDER, HORIZONTAL,
VERTICAL

Dispose, FocusIn, FocusOut, Help,
KeyDown, KeyUp, MouseDouble-
Click, MouseDown, MouseEnter,
MouseExit, MouseHover, MouseUp,
MouseMove, Move, Paint, Resize,
Selection

Scale Control that represents a
range of numeric values.

BORDER, HORIZONTAL,
VERTICAL

Dispose, FocusIn, FocusOut, Help,
KeyDown, KeyUp, MouseDouble-
Click, MouseDown, MouseEnter,
MouseExit, MouseHover, MouseUp,
MouseMove, Move, Paint, Resize,
Selection

ScrollBar The standard scrollbar—
represents a range of posi-
tive numeric values.

HORIZONTAL, VERTICAL Dispose, Selection

Shell A window that is managed
by the operating system
window manager.

BORDER, H_SCROLL,
V_SCROLL, CLOSE, MIN, MAX,
NO_TRIM, RESIZE, TITLE (see
also SHELL_TRIM,
DIALOG_TRIM)

Dispose, FocusIn, FocusOut, Help,
KeyDown, KeyUp, MouseDouble-
Click, MouseDown, MouseEnter,
MouseExit, MouseHover, MouseUp,
MouseMove, Move, Paint, Resize,
Activate, Close, Deactivate,
Deiconify, Iconify

Slider Control that represents a
range of numeric values,
which the user can select by
positioning a draggable
thumb.

BORDER, HORIZONTAL,
VERTICAL

Dispose, FocusIn, FocusOut, Help,
KeyDown, KeyUp, MouseDouble-
Click, MouseDown, MouseEnter,
MouseExit, MouseHover, MouseUp,
MouseMove, Move, Paint, Resize,
Selection

TabFolder Composite control that
groups controls into pages
that the user can select
using labeled tabs.

BORDER Dispose, FocusIn, FocusOut, Help,
KeyDown, KeyUp, MouseDouble-
Click, MouseDown, MouseEnter,
MouseExit, MouseHover, MouseUp,
MouseMove, Move, Paint, Resize,
Selection

TabItem Control corresponding to a
tab in a tab folder.

Dispose

Table Control that displays a list
of table items.

BORDER, H_SCROLL,
V_SCROLL, SINGLE, MULTI,
CHECK, FULL_SELECTION,
HIDE_SELECTION

Dispose, FocusIn, FocusOut, Help,
KeyDown, KeyUp, MouseDouble-
Click, MouseDown, MouseEnter,
MouseExit, MouseHover, MouseUp,
MouseMove, Move, Paint, Resize,
Selection, DefaultSelection

TableColumn UI object that represents a
column in a table.

LEFT, RIGHT, CENTER Dispose, Move, Resize, Selection

TableItem UI object that represents an
item in a table.

Dispose

Table 7-1. SWT controls and options (continued)

Widget Purpose Styles Events



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

An SWT Example | 155

In this example, we’re going to use an SWT label to display our “No worries!” mes-
sage. You can see the possible styles for labels and all SWT controls in Table 7-1;
here are more details for the label styles:

SWT.BORDER
Adds a border

SWT.CENTER
Centers text

SWT.LEFT
Left-justifies text

SWT.RIGHT
Right-justifies text

SWT.WRAP
Wraps text

SWT.SEPARATOR
Supports a separator

Text The standard text control,
which allows the user to
type text into it.

BORDER, SINGLE,  READ_ONLY,
LEFT, CENTER, RIGHT, WRAP,
MULTI (with H_SCROLL,
V_SCROLL)

Dispose, FocusIn, FocusOut, Help,
KeyDown, KeyUp, MouseDouble-
Click, MouseDown, MouseEnter,
MouseExit, MouseHover, MouseUp,
MouseMove, Move, Paint, Resize,
DefaultSelection, Modify, Verify

ToolBar The standard toolbar—a
composite control that con-
tains toolbar items.

BORDER, FLAT, WRAP, RIGHT,
SHADOW_OUT HORIZONTAL,
VERTICAL

Dispose, FocusIn, FocusOut, Help,
KeyDown, KeyUp, MouseDouble-
Click, MouseDown, MouseEnter,
MouseExit, MouseHover, MouseUp,
MouseMove, Move, Paint, Resize

ToolItem UI object that represents an
item in a toolbar.

PUSH, CHECK, RADIO,
SEPARATOR, DROP_DOWN

Dispose, Selection

Tracker UI object that implements
“rubber-banding” rectan-
gles.

LEFT, RIGHT, UP, DOWN, RESIZE Dispose, Move, Resize

Tree Control that displays a hier-
archical list of tree items.

BORDER, H_SCROLL,
V_SCROLL, SINGLE, MULTI,
CHECK

Dispose, FocusIn, FocusOut, Help,
KeyDown, KeyUp, MouseDouble-
Click, MouseDown, MouseEnter,
MouseExit, MouseHover, MouseUp,
MouseMove, Move, Paint, Resize,
Selection, DefaultSelection,
Collapse, Expand

TreeItem UI object that represents a
tree item in a tree.

Dispose

Table 7-1. SWT controls and options (continued)

Widget Purpose Styles Events



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

156 | Chapter 7: SWT: Buttons, Text, Labels, Lists, Layouts, and Events

Here’s how we create a label and set its text as appropriate—note that we’re center-
ing the label by setting its style to SWT.CENTER and setting the bounds of the label to
correspond to the entire client area of the shell:

import org.eclipse.swt.widgets.*;
import org.eclipse.swt.*;

public class Ch07_01 {

public static void main(String [] args) {
   Display display = new Display( );
   Shell shell = new Shell(display);
   shell.setSize(300, 200);
   Label label = new Label(shell, SWT.CENTER);
   label.setText("No worries!");
   label.setBounds(shell.getClientArea( ));

        .
        .
        .
}

Finally, you open the shell to display it and add the event-dispatching loop. That
loop usually keeps going until the user closes the main window. In the body of the
loop, we check if the display object needs to dispatch a message, and then make that
object sleep for a while. After the loop terminates, we dispose of the display object,
as you can see in the final listing for Example 7-1.

Note, in particular, that when we’re done with the display object, we dispose of it
with its dispose method. Disposing of resources like this is not necessary in AWT or
Swing, but it is in SWT because the operating systems under SWT require the

Example 7-1. The first SWT application, Ch07_01.java

import org.eclipse.swt.widgets.*;
import org.eclipse.swt.*;

public class Ch07_01 {

public static void main(String [] args) {
   Display display = new Display( );
   Shell shell = new Shell(display);
   shell.setSize(300, 200);
   Label label = new Label(shell, SWT.CENTER);
   label.setText("No worries!");
   label.setBounds(shell.getClientArea( ));
   shell.open( );
   while(!shell.isDisposed( )) {

  if(!display.readAndDispatch()) display.sleep( );
   }
   display.dispose( );
}

}



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

An SWT Example | 157

explicit allocation and disposing of resources. The upshot is that SWT requires you
to free any operating system resources that you have allocated, and you can use the
widget.dispose method to do that.

That completes the code, but this example is not yet ready to run; the next step is to
add the native code support JNI library in the path so the Java virtual machine can
find that native code. Recall that SWT uses native code support for display, which
means that you had to use some JNI code. To do that, select the class that you want
to run (Ch07_01 here) in the Package Explorer, and select Run ➝ Run to set up a
launch configuration.

In the Launch Configurations dialog that appears, select Java Application and click
the New button. The Name, Project, and Main class boxes should be filled in; if
they’re not, fill them in now. Then click the Arguments tab, and in the VM Argu-
ments box, insert the location of the SWT library, which depends on your operating
system (you’ll have to update these paths for your version of Eclipse, such as chang-
ing 2.1.1 to 2.1.2 or something similar):

Win32
-Djava.library.path=INSTALLDIR\plugins\org.eclipse.swt.win32_2.1.1\os\win32\
x86

Linux GTK
-Djava.library.path=INSTALLDIR/eclipse/plugins/org.eclipse.swt.gtk_2.1.1/os/linux/
x86

Linux Motif
-Djava.library.path=INSTALLDIR/eclipse/plugins/org.eclipse.swt.motif_2.1.1/os/
linux/x86

Solaris Motif
-Djava.library.path=INSTALLDIR/eclipse/plugins/org.eclipse.swt.motif_2.1.1/os/
solaris/sparc

AIX Motif
-Djava.library.path=INSTALLDIR/eclipse/plugins/org.eclipse.swt.motif_2.1.1/os/
aix/ppc

HPUX Motif
-Djava.library.path=INSTALLDIR/eclipse/plugins/org.eclipse.swt.motif_2.1.1/os/
hpux/PA_RISC

Photon QNX
-Djava.library.path=INSTALLDIR/eclipse/plugins/org.eclipse.swt.photon_2.1.1/
os/qnx/x86

Mac OS X
-Djava.library.path=INSTALLDIR/eclipse/plugins/org.eclipse.swt.carbon_2.1.1/
os/macosx/ppc



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

158 | Chapter 7: SWT: Buttons, Text, Labels, Lists, Layouts, and Events

Then click the Apply button, followed by the Run button. You should see this new
example at work, as in Figure 7-1.

That’s our first SWT application—not too involved, but now we’ve got the basics of
SWT applications down.

Working with Buttons
Our next step is going to be adding interactive widgets to SWT applications. In this
case, we’re going to add a button that, when clicked, will display text in a text con-
trol. We start off as before, except this time, we also import org.eclipse.swt.events.*
to handle button clicks and org.eclipse.swt.layout.* to set the layout of our con-
trols. And we can also embellish our example a little more by setting the text that
should appear in the shell’s titlebar, using the setText method:

package org.eclipsebook.ch07;

import org.eclipse.swt.widgets.*;
import org.eclipse.swt.SWT;
import org.eclipse.swt.events.*;
import org.eclipse.swt.layout.*;

public static void main(String [] args) {
   Display display = new Display( );
   Shell shell = new Shell(display);
   shell.setSize(300, 200);
   shell.setText("Button Example");

        .
        .
        .

Now we’re dealing with multiple controls, and we’re also going to set the SWT lay-
out of our shell to the row layout, which displays controls in rows:

public class Ch07_02 {

public static void main(String [] args) {
   Display display = new Display( );
   Shell shell = new Shell(display);
   shell.setSize(300, 200);
   shell.setText("Button Example");
   shell.setLayout(new RowLayout( ));

        .
        .
        .

Figure 7-1. The first SWT application



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Working with Buttons | 159

The row layout is only one of several layouts that lets you specify how controls are
arranged; we’ll see the others in the next section. Now we’ll add the button using the
Button class and the text control using the Text class. Here are the possible styles for
buttons:

SWT.BORDER
Adds a border

SWT.CHECK
Creates a check button

SWT.PUSH
Creates a push button

SWT.RADIO
Creates a radio button

SWT.TOGGLE
Creates a toggle button

SWT.FLAT
Creates a flat button

SWT.LEFT
Sets left alignment

SWT.RIGHT
Sets right alignment

SWT.CENTER
Sets center alignment

SWT.ARROW
Creates an arrow button

And here are the possible styles for text controls:

SWT.BORDER
Adds a border

SWT.SINGLE
Allows single selections

SWT.READ_ONLY
Supports only read-only text

SWT.LEFT
Sets left-alignment

SWT.CENTER
Sets center alignment

SWT.RIGHT
Sets right alignment

SWT.WRAP
Allows text to wrap

SWT.MULTI
Allows multiple selections



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

160 | Chapter 7: SWT: Buttons, Text, Labels, Lists, Layouts, and Events

Here’s how we add the button and text control in code:

public class Ch07_02 {

public static void main(String [] args) {
   Display display = new Display( );
   Shell shell = new Shell(display);
   shell.setSize(300, 200);
   shell.setText("Button Example");
   shell.setLayout(new RowLayout( ));

   final Button button = new Button(shell, SWT.PUSH);
        button.setText("Click Me");

   final Text text = new Text(shell, SWT.SHADOW_IN);
        .
        .
        .

To handle button clicks, you add a SelectionListener to the button, which you can
do with the addSelectionListener method. Listeners in SWT are much like listeners
in AWT; here are some of the most popular:

ControlListener
Handles moving and resizing

FocusListener
Handles the getting and losing of the focus

KeyListener
Handles key strokes

MouseListener, MouseMoveListener, MouseTrackListener
Handles the mouse

SelectionListener
Handles widget selections (including button clicks)

The SelectionListener interface has two methods that you have to implement:
widgetSelected, when a selection occurs in a control, and widgetDefaultSelected,
when a default selection is made in a control. Here, we’re just going to display the
text “No worries!” in a text control using an anonymous inner class:

button.addSelectionListener(new SelectionListener( )
{

public void widgetSelected(SelectionEvent event)
{

text.setText("No worries!");
}

public void widgetDefaultSelected(SelectionEvent event)
{

text.setText("No worries!");
}

});



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Working with Buttons | 161

All that’s left is to display the shell and implement the event loop, as you see in
Example 7-2.

You can see the results in Figure 7-2; when the user clicks the button, the text mes-
sage appears in the text control.

Although we’ve used a row layout here, you can also directly set the bounds of con-
trols with the setBounds(x, y, width, height) method. For example, if you want to
explicitly set the location and sizes of the button and text control here, you might

Example 7-2. Using SWT buttons

package org.eclipsebook.ch07;

import org.eclipse.swt.widgets.*;
import org.eclipse.swt.SWT;
import org.eclipse.swt.events.*;
import org.eclipse.swt.layout.*;

public class Ch07_02 {

public static void main(String [] args) {
   Display display = new Display( );
   Shell shell = new Shell(display);
   shell.setSize(300, 200);
   shell.setLayout(new RowLayout( ));
   shell.setText("Button Example");

   final Button button = new Button(shell, SWT.PUSH);
        button.setText("Click Me");

   final Text text = new Text(shell, SWT.SHADOW_IN);

   button.addSelectionListener(new SelectionListener( )
   {

  public void widgetSelected(SelectionEvent event)
  {

text.setText("No worries!");
  }

  public void widgetDefaultSelected(SelectionEvent event)
  {

text.setText("No worries!");
  }

   });

   shell.open( );
   while(!shell.isDisposed( )) {

  if(!display.readAndDispatch()) display.sleep( );
   }
   display.dispose( );
}

}



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

162 | Chapter 7: SWT: Buttons, Text, Labels, Lists, Layouts, and Events

omit the call to shell.setLayout(new RowLayout( )) and use the setBounds method
instead, like this:

public static void main (String [] args) {
   Display display = new Display ( );
   Shell shell = new Shell (display);
   shell.setSize(300, 200);
   shell.setText("Button Example");

   final Button button = new Button(shell, SWT.PUSH);
   button.setText("Click Me");
   button.setBounds(80, 80, 90, 20);

   final Text text = new Text (shell, SWT.SHADOW_IN);
   text.setBounds(180, 80, 90, 20);

Also, now that you’re adding interactive widgets to your applications, you should
know more about how widgets are handled with threads in SWT applications. In an
SWT application, the main thread, the UI thread, is responsible for handling events
and dispatching them to the correct widget. In AWT and Swing, you don’t have to
deal with the UI thread, but in SWT, the UI thread acts like a message pump that
dispatches events to widgets as needed (setting things up this way makes it possible
to use SWT plug-ins in Eclipse). The UI thread is the application’s main thread, so if
you want to perform a lot of heavy lifting, you should start other worker threads to
do the work. The UI thread is also the only thread that can interact with widgets and
not throw an SWTException exception.

If you do start other threads, you can update the user interface when their tasks are
done with the asyncExec and syncExec methods. You pass these methods a new
Runnable object that does the updating you want. For example, in a worker thread,
you could get the current Display object using the Display.getDefault method and
set the text in a label, like this:

Display.getDefault().asyncExec(new Runnable( )
{
    public void run( )
    {
        label.setText("No worries!");
    }
});

Figure 7-2. Using a button and text control



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Working with Composites and Layouts | 163

Working with Composites and Layouts
Selecting a layout lets you specify how to arrange your controls; there are four layout
classes built into SWT:

FillLayout
Lets you fill a shell’s client area.

GridLayout
Lays out control children in a grid.

RowLayout
Lays out controls in either horizontal rows or vertical columns.

FormLayout
Lets you position controls relative to the parent composite or another control. It
is the most precise of all the layouts.

For example, here’s how the grid layout works. We’re going to create a grid layout
with four columns and fill it with buttons. In this case, we’ll create a new Composite
control, which can contain other controls, and fill the composite with buttons. To
start, we create a new shell and use a row layout to display our composite control.
Then we create the composite control and a grid layout in it with four columns (the
SWT.NONE constant means we’re not setting any nondefault styles here):

public static void main (String [] args) {
Display display = new Display ( );
final Shell shell = new Shell (display);
shell.setSize(300, 200);
shell.setLayout(new RowLayout( ));

final Composite composite = new Composite(shell, SWT.NONE);
GridLayout gridLayout = new GridLayout( );
gridLayout.numColumns = 4;
composite.setLayout(gridLayout);

    .
    .
    .

All that’s left is to add the buttons to the composite control using a loop and to add
the event loop itself, as you see in Example 7-3.

Example 7-3. Using SWT layouts, Ch07_03.java

package org.eclipsebook.ch07;

import org.eclipse.swt.*;
import org.eclipse.swt.layout.*;



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

164 | Chapter 7: SWT: Buttons, Text, Labels, Lists, Layouts, and Events

You can see the results in Figure 7-3, where we’ve arranged our buttons using a grid
layout.

The form layout is relatively new and very powerful because it allows you to posi-
tion controls where you want them relative to other controls or the container.

import org.eclipse.swt.widgets.*;

public class Ch07_03 {

public static void main (String [] args) {
Display display = new Display ( );
final Shell shell = new Shell (display);
shell.setSize(300, 200);
shell.setLayout(new GridLayout( ));

final Composite composite = new Composite(shell, SWT.NONE);
GridLayout gridLayout = new GridLayout( );
gridLayout.numColumns = 4;
composite.setLayout(gridLayout);

for (int loopIndex = 0; loopIndex < 18; loopIndex++) {
Button button = new Button(composite, SWT.PUSH);
button.setText("Button " + loopIndex);

}

shell.open ( );
while (!shell.isDisposed( )) {

if (!display.readAndDispatch()) display.sleep( );
}
display.dispose ( );

}
}

Figure 7-3. Using a grid layout

Example 7-3. Using SWT layouts, Ch07_03.java (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Working with Lists | 165

Working with Lists
Another popular control is the list control, represented by the SWT List class. We’ll
take a look at an example using this control and how to recover selections made in
the control. Here are the styles you can use with lists:

SWT.BORDER

Adds a border

SWT.H_SCROLL

Adds a horizontal scrollbar

SWT.V_SCROLL

Adds a vertical scrollbar

SWT.SINGLE

Allows single selections

SWT.MULTI

Allows multiple selections

In this case, we’re going to fill the entire shell with a list control, using the fill layout.
Here’s what that looks like—note that we’re also using the List class’s add method
to add items to the list:

public class Ch07_04 {

public static void main (String [] args) {
Display display = new Display ( );
Shell shell = new Shell (display);
shell.setText("List Example");
shell.setSize(300, 200);
shell.setLayout(new FillLayout(SWT.VERTICAL));

final List list = new List (shell, SWT.BORDER | SWT.MULTI | SWT.V_SCROLL);

for (int loopIndex = 0; loopIndex < 100; loopIndex++){
    list.add("Item " + loopIndex);
}

        .
        .
        .

Now we can recover the selected items using a selection listener and the
getSelectionIndices method. This method returns an int array of the selected indi-
ces in the list control, and we can display those indices in the console, as you see in
Example 7-4.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

166 | Chapter 7: SWT: Buttons, Text, Labels, Lists, Layouts, and Events

Example 7-4. Using lists

package org.eclipsebook.ch07;

import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;
import org.eclipse.swt.layout.*;
import org.eclipse.swt.events.*;

public class Ch07_04 {

public static void main (String [] args) {
Display display = new Display ( );
Shell shell = new Shell (display);
shell.setText("List Example");
shell.setSize(300, 200);
shell.setLayout(new FillLayout(SWT.VERTICAL));

final List list = new List (shell, SWT.BORDER | SWT.MULTI | SWT.V_SCROLL);

for (int loopIndex = 0; loopIndex < 100; loopIndex++){
    list.add("Item " + loopIndex);
}

list.addSelectionListener(new SelectionListener( )
{

   public void widgetSelected(SelectionEvent event)
   {

int [] selections = list.getSelectionIndices ( );
String outText = "";
for (int loopIndex = 0; loopIndex < selections.length;

                       loopIndex++) outText += selections[loopIndex] + " ";
System.out.println ("You selected: " + outText);

   }

   public void widgetDefaultSelected(SelectionEvent event)
   {

int [] selections = list.getSelectionIndices ( );
String outText = "";
for (int loopIndex = 0; loopIndex < selections.length; loopIndex++)

                  outText += selections[loopIndex] + " ";
System.out.println ("You selected: " + outText);

   }
});

shell.open ( );
while (!shell.isDisposed ( )) {

if (!display.readAndDispatch ()) display.sleep ( );
}
display.dispose ( );

}
}



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Using V4ALL with SWT | 167

You can see the results in Figure 7-4, where we’re displaying the selections the user
made in the list control.

Using V4ALL with SWT
You can also use plug-ins like V4ALL to create SWT code, which can make things a lit-
tle easier because you can drag controls where you want them. In Figure 7-5, you can
see an example that works much as our Swing example worked in the previous chap-
ter. In this case, we’ve created a new V4ALL editor in a project named Ch07_05, just as
we did in Chapter 6—but here, we’re going to generate code for SWT, not Swing.

After creating the new V4ALL editor, add a button and a label to the new window,
change the caption of the button to Click Me, and clear the caption of the label. Next,
drag a method to the whiteboard, and name that method processEvent as you see in
Figure 7-5. Connect that method to the button and, using the properties view as we did
in Chapter 6, connect the processEvent method to the button’s Action Performed event.

To generate the code for an SWT application, start by adding swt.jar to the build
path, and select the Code Generation ➝ Generate Code for SWT menu item, creat-
ing Gui_1.java. In that file, Eclipse may have marked two imports as never used, so
remove those two imports:

import org.eclipse.swt.*;
import org.eclipse.swt.graphics.*;
import org.eclipse.swt.widgets.*;

Figure 7-4. Selecting items in a list



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

168 | Chapter 7: SWT: Buttons, Text, Labels, Lists, Layouts, and Events

import org.eclipse.swt.custom.*;
import org.eclipse.swt.layout.*;

Then add the code to the processEvent method to set the text in the label to “No
worries.” when the user clicks the button:

public void processEvent( ){
// user code begin {1} Swing
// user code end
// user code begin {1} SWT
    ivjLabel100.setText("No worries.");
// user code end
// user code begin {1} HTML
// user code end
// user code begin {1} Eclipse
// user code end
// user code begin {1} C#
// user code end
}

Figure 7-5. Designing an SWT application with V4ALL



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Using V4ALL with SWT | 169

Finally, create a launch configuration for the Gui_1 class in Gui_1.java, setting the
VM arguments to -Djava.library.path="d:\eclipse211\eclipse\plugins\org.eclipse.
swt.win32_2.1.1\os\win32\x86" as we’ve done throughout this chapter. And that’s
it—when you run this new SWT application, you should see the results in
Figure 7-6, where you can click the button and the text message will appear in the
label.

That completes our first chapter on SWT; we got our start with SWT and several
important controls. There’s a lot more to SWT, however, and we’re going to continue
our exploration in the next chapter with new controls, such as menus and sliders.

Figure 7-6. Running the V4ALL SWT application



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

170

Chapter 8CHAPTER 8

SWT: Menus, Toolbars, Sliders, Trees,
and Dialogs

SWT supports many more widgets than we had a chance to work with in the previ-
ous chapter, and we’ll get the details on a number of the most central SWT controls
here: menus, toolbars, sliders, trees, and custom dialogs.

Working with Menus
As you’d expect, SWT supports menus, as any GUI builder should. The process of
creating and supporting menus in your SWT applications is not necessarily easy, but
it’s not unduly difficult. To make this work in an example, we’re going to create a
menu system with a File menu and a Help menu and react to various menu selec-
tions, displaying text in a label to match the selected items.

To create a menu system in SWT, you create a Menu object, corresponding to the top
level of the menu system. As with all the SWT controls, you can see the allowed
styles back in Table 7-1; here are the possible styles for menus:

SWT.BAR
Sets menu bar behavior

SWT.DROP_DOWN
Creates a drop-down menu

SWT.POP_UP
Creates a pop-up menu

SWT.NO_RADIO_GROUP
Prevents the use of radio groups

SWT.LEFT_TO_RIGHT
Sets left-to-right orientation

SWT.RIGHT_TO_LEFT
Sets right-to-left orientation



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Working with Menus | 171

The File and Help menus are MenuItem objects associated with the Menu object, and
here are the possible styles for menu items:

SWT.CHECK
Creates a checkbox

SWT.CASCADE
Creates a cascading submenu

SWT.PUSH
Creates a push button

SWT.RADIO
Creates a radio button

SWT.SEPARATOR
Creates a menu separator

Note, in particular, how easy it is to add a menu separator to a
menu—just create a new menu item using the SWT.SEPARATOR style.

We begin by creating the File menu and setting its text this way—as in other GUI
support packages, the “&” before the “F” in File sets the shortcut for this menu
(allowing you, for example, to open the menu by pressing Alt+F in Windows, or
Apple+F in Mac OS X):

menuBar = new Menu(shell, SWT.BAR);
fileMenuHeader = new MenuItem(menuBar, SWT.CASCADE);
fileMenuHeader.setText("&File");

That adds the File menu item to the menu bar. The next step is to create a drop-
down menu that will display the File menu’s items, which works like this:

menuBar = new Menu(shell, SWT.BAR);
fileMenuHeader = new MenuItem(menuBar, SWT.CASCADE);
fileMenuHeader.setText("&File");

fileMenu = new Menu(shell, SWT.DROP_DOWN);
fileMenuHeader.setMenu(fileMenu);

In this example, we’re going to give the File menu two items, Save and Exit, and we
only have to create two new MenuItem objects to do that:

menuBar = new Menu(shell, SWT.BAR);
fileMenuHeader = new MenuItem(menuBar, SWT.CASCADE);
fileMenuHeader.setText("&File");

fileMenu = new Menu(shell, SWT.DROP_DOWN);
fileMenuHeader.setMenu(fileMenu);

fileSaveItem = new MenuItem(fileMenu, SWT.PUSH);
fileSaveItem.setText("&Save");



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

172 | Chapter 8: SWT: Menus, Toolbars, Sliders, Trees, and Dialogs

fileExitItem = new MenuItem(fileMenu, SWT.PUSH);
fileExitItem.setText("E&xit");

The File ➝ Save and File ➝ Exit items are handled with listeners. Here’s how you
connect those items to the SelectionListener objects fileSaveItemListener and
fileExitItemListener:

fileSaveItem.addSelectionListener(new fileSaveItemListener( ));
fileExitItem.addSelectionListener(new fileExitItemListener( ));

When the File ➝ Save item is selected, we’re going to display the message “Saved” in
a label:

class fileSaveItemListener implements SelectionListener
{
   public void widgetSelected(SelectionEvent event)
   {
    label.setText("Saved");
   }

   public void widgetDefaultSelected(SelectionEvent event)
   {
    label.setText("Saved");
   }
}

On the other hand, when the user selects the File ➝ Exit item, we want to exit the
application. You do that by closing the shell and disposing of the display object:

class fileExitItemListener implements SelectionListener
{
   public void widgetSelected(SelectionEvent event)
   {
      shell.close( );
      display.dispose( );
   }

   public void widgetDefaultSelected(SelectionEvent event)
   {
      shell.close( );
      display.dispose( );
   }
}

When you’ve got the menu system configured as you want it, you add the menuBar
object to the current shell with the setMenuBar method, and display the shell as usual:

shell.setMenuBar(menuBar);

shell.open( );
while(!shell.isDisposed( )) {
    if(!display.readAndDispatch()) display.sleep( );
}
display.dispose( );

That’s all it takes for the File menu. In this example, we also want to add the Help ➝

Get Help menu item; the additional code for the listing appears in Example 8-1.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Working with Menus | 173

Example 8-1. Using SWT menus

package org.eclipsebook.ch08;

import org.eclipse.swt.widgets.*;
import org.eclipse.swt.SWT;
import org.eclipse.swt.events.*;

public class Ch08_01 {

    Display display;
    Shell shell;
    Menu menuBar, fileMenu, helpMenu;
    MenuItem fileMenuHeader, helpMenuHeader;
    MenuItem fileExitItem, fileSaveItem, helpGetHelpItem;
    Label label;

    public Ch08_01( ){

        display = new Display( );
        shell = new Shell(display);
        shell.setText("Menu Example");
        shell.setSize(300, 200);

        label = new Label(shell, SWT.CENTER);
        label.setBounds(shell.getClientArea( ));

        menuBar = new Menu(shell, SWT.BAR);
        fileMenuHeader = new MenuItem(menuBar, SWT.CASCADE);
        fileMenuHeader.setText("&File");

        fileMenu = new Menu(shell, SWT.DROP_DOWN);
        fileMenuHeader.setMenu(fileMenu);

        fileSaveItem = new MenuItem(fileMenu, SWT.PUSH);
        fileSaveItem.setText("&Save");

        fileExitItem = new MenuItem(fileMenu, SWT.PUSH);
        fileExitItem.setText("E&xit");

        helpMenuHeader = new MenuItem(menuBar, SWT.CASCADE);
        helpMenuHeader.setText("&Help");

        helpMenu = new Menu(shell, SWT.DROP_DOWN);
        helpMenuHeader.setMenu(helpMenu);

        helpGetHelpItem = new MenuItem(helpMenu, SWT.PUSH);
        helpGetHelpItem.setText("&Get Help");

        fileExitItem.addSelectionListener(new fileExitItemListener( ));
        fileSaveItem.addSelectionListener(new fileSaveItemListener( ));
        helpGetHelpItem.addSelectionListener(new helpGetHelpItemListener( ));



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

174 | Chapter 8: SWT: Menus, Toolbars, Sliders, Trees, and Dialogs

        shell.setMenuBar(menuBar);
        shell.open( );
        while(!shell.isDisposed( )) {
            if(!display.readAndDispatch()) display.sleep( );
        }
        display.dispose( );
    }

    class fileExitItemListener implements SelectionListener
    {
       public void widgetSelected(SelectionEvent event)
       {
          shell.close( );
          display.dispose( );
       }

       public void widgetDefaultSelected(SelectionEvent event)
       {
          shell.close( );
          display.dispose( );
       }
    }

    class fileSaveItemListener implements SelectionListener
    {
       public void widgetSelected(SelectionEvent event)
       {
        label.setText("Saved");
       }

       public void widgetDefaultSelected(SelectionEvent event)
       {
        label.setText("Saved");
       }
    }

    class helpGetHelpItemListener implements SelectionListener
    {
       public void widgetSelected(SelectionEvent event)
       {
          label.setText("No worries!");
       }

       public void widgetDefaultSelected(SelectionEvent event)
       {
        label.setText("No worries!");
       }
    }

    public static void main(String [] args) {
        Ch08_01 menuExample = new Ch08_01( );
    }
}

Example 8-1. Using SWT menus (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Working with Toolbars | 175

You can see the results in Figures 8-1 and 8-2; when the user selects the File ➝ Save
item, the application catches the menu selection and displays the result in the label
that’s been added to the shell.

One of the most common items to support with menu systems is an
About dialog for the application, selected with Help ➝ About. To sup-
port a Help ➝ About item in your application, take a look at the work
we do with dialog boxes later in this chapter. All you’ve got to do is
launch a dialog box when this menu item is selected; the dialog can
contain all the controls you need to display application info.

Working with Toolbars
SWT also supports toolbars, using the Toolbar class. To create a toolbar, you just
associate the toolbar with the shell you’re working with and set its style:

SWT.BORDER
Creates a toolbar with a border

SWT.FLAT
Creates a flat toolbar

SWT.WRAP
Creates a wrappable toolbar

SWT.RIGHT
Aligns the toolbar on the right

SWT.SHADOW_OUT
Adds a shadow to the toolbar

SWT.HORIZONTAL
Creates a horizontal toolbar

Figure 8-1. Selecting an SWT menu item

Figure 8-2. The results of selecting a menu item



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

176 | Chapter 8: SWT: Menus, Toolbars, Sliders, Trees, and Dialogs

SWT.VERTICAL
Creates a vertical toolbar

Here’s how we’ll create a new toolbar (the constant SWT.NONE indicates we’re not set-
ting a custom style):

ToolBar toolbar = new ToolBar(shell, SWT.NONE);

Each item in the toolbar is a ToolItem object, and we’ll create four push buttons in an
example next, using the SWT.PUSH style and the ToolItem class. Here are the possible
styles for tool items:

SWT.PUSH
A push button

SWT.CHECK
A checkbox

SWT.RADIO
A radio button

SWT.SEPARATOR
A toolbar separator

SWT.DROP_DOWN
A drop-down item

You can set the text that will appear in the four buttons—in this case, the text will be
Now, is, the, time—this way:

ToolBar toolbar = new ToolBar(shell, SWT.NONE);
ToolItem item1 = new ToolItem(toolbar, SWT.PUSH);
item1.setText("Now");
ToolItem item2 = new ToolItem(toolbar, SWT.PUSH);
item2.setText("is");
ToolItem item3 = new ToolItem(toolbar, SWT.PUSH);
item3.setText("the");
ToolItem item4 = new ToolItem(toolbar, SWT.PUSH);
item4.setText("time");

If you want to, you can also display images, disabled images, and hot images (dis-
played when the mouse moves over a toolbar item) in a toolbar item using an SWT
Image object:

ToolItem item1 = new ToolItem(toolbar, SWT.PUSH);
item1.setImage(image);
item1.setDisabledImage(disabledImage);
item1.setHotImage(hotImage);

We’re also going to set the bounds of the toolbar in the shell and create a text con-
trol to display text matching the button the user has clicked:

toolbar.setBounds(0, 0, 200, 70);

final Text text = new Text(shell, SWT.BORDER);
text.setBounds(0, 100, 200, 25);



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Working with Toolbars | 177

You need to connect the various toolbar items to a listener to handle their events,
and, in this case, we’re going to use a generic Listener object. You can handle events
from toolbar items with the Listener class’s handleEvent method:

Listener listener = new Listener( ) {
    public void handleEvent(Event event) {
       .
       .
       .
   }
};

This method is passed an event object, and you can extract the widget that actually
caused the event with this object’s widget member. To determine which toolbar item
you’ve retrieved, you can recover the text in the toolbar item with the getText method,
which retrieves the text from any widget, from text controls to toolbar buttons:

Listener listener = new Listener( ) {
    public void handleEvent(Event event) {
        ToolItem item = (ToolItem)event.widget;
        String string = item.getText( );
            .
            .
            .
   }
};

To complete the listener, check what toolbar item was selected and display an appro-
priate message in text control—note that when you have recovered the text from the
button’s caption, you know which button was clicked:

Listener listener = new Listener( ) {
    public void handleEvent(Event event) {
        ToolItem item =(ToolItem)event.widget;
        String string = item.getText( );
        text.setText("You selected:" + string);
   }
};

That completes the listener, which you can add to each toolbar item with the
addListener method. In this case, we’re going to indicate that we want to handle the
SWT.Selection event, as you see in the listing for Example 8-2.

Example 8-2. Using SWT toolbars

package org.eclipse.ch08;

import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;

public class Ch08_02 {

        public static void main(String [] args) {



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

178 | Chapter 8: SWT: Menus, Toolbars, Sliders, Trees, and Dialogs

The results appear in Figure 8-3. Although the toolbar appears at the upper left, it’s
still a widget like any other. You can position the toolbar where you want it by using
the setBounds method or by using one of the SWT layouts.

That’s all you need—when the user clicks an item in the toolbar, the application
reports which items were clicked correctly, as you see in Figure 8-4.

It’s worth noting that you can elaborate toolbars to support other controls as well—
for example, to add a combo box to a toolbar, you can use this code:

Combo combo = new Combo(toolbar, SWT.READ_ONLY);

            Display display = new Display( );
            final Shell shell = new Shell(display);
            shell.setSize(300, 200);

            ToolBar toolbar = new ToolBar(shell, SWT.NONE);
            ToolItem item1 = new ToolItem(toolbar, SWT.PUSH);
            item1.setText("Now");
            ToolItem item2 = new ToolItem(toolbar, SWT.PUSH);
            item2.setText("is");
            ToolItem item3 = new ToolItem(toolbar, SWT.PUSH);
            item3.setText("the");
            ToolItem item4 = new ToolItem(toolbar, SWT.PUSH);
            item4.setText("time");

             toolbar.setBounds(0, 0, 200, 70);

            final Text text = new Text(shell, SWT.BORDER);
            text.setBounds(0, 100, 200, 25);

            Listener listener = new Listener( ) {
                public void handleEvent(Event event) {
                    ToolItem item =(ToolItem)event.widget;
                    String string = item.getText( );
                    text.setText("You selected:" + string);               }
            };

            item1.addListener(SWT.Selection, listener);
            item2.addListener(SWT.Selection, listener);
            item3.addListener(SWT.Selection, listener);
            item4.addListener(SWT.Selection, listener);

            shell.open( );

            while (!shell.isDisposed( )) {
                if (!display.readAndDispatch( ))
                    display.sleep( );
            }
            display.dispose( );
        }
}

Example 8-2. Using SWT toolbars (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Working with Sliders | 179

As with any serious GUI package, toolbars can also display drop-down menus. In
SWT, however, you support toolbar menus with context menus, setting their loca-
tion and making them visible as needed using code like this:

menu.setLocation(point.x, point.y);
menu.setVisible(true);

Working with Sliders
Another handy SWT control is the slider, which lets the user select a value from a
continuous numeric range. Sliders are easy to use; this next example will recover a
slider’s new position when the user moves the slider’s thumb (also called the slider’s
scrollbox). Here are the styles you can use when creating sliders:

SWT.BORDER
Adds a border

SWT.HORIZONTAL
Creates a horizontal slider

SWT.VERTICAL
Creates a vertical slider

We’ll add a prompt to the user in a label (“Move the slider”), a horizontal slider
using the style SWT.HORIZONTAL (use SWT.VERTICAL to create a vertical slider instead),
and a text control to display the new position of the slider:

final Label label = new Label(shell, SWT.NONE);
label.setText("Move the slider");
label.setBounds(0, 20, 150, 15);

Figure 8-3. A new toolbar

Figure 8-4. Recovering a toolbar event



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

180 | Chapter 8: SWT: Menus, Toolbars, Sliders, Trees, and Dialogs

final Slider slider = new Slider(shell, SWT.HORIZONTAL);
slider.setBounds(0, 40, 200, 20);

final Text text = new Text(shell, SWT.BORDER);
text.setBounds(0, 100, 200, 25);

That adds the slider; the next step is to handle user actions. Sliders support a num-
ber of events, each of which is given by an SWT constant:

SWT.ARROW_DOWN
The down/right arrow button was clicked.

SWT.ARROW_UP
The up/left arrow button was clicked.

SWT.DRAG
The thumb was dragged.

SWT.END
The slider reached the end of its range.

SWT.HOME
The slider reached the beginning of its range.

SWT.PAGE_DOWN
The down/right scrollbar was clicked.

SWT.PAGE_UP
The up/left scrollbar was clicked.

You use the event object’s detail member to determine which of these events
occurred, as here in a switch statement, where we’re displaying what event occurred
in the application’s text control:

slider.addListener(SWT.Selection, new Listener( ) {
public void handleEvent(Event event) {

String outString = "Event: SWT.NONE";
switch(event.detail) {

case SWT.ARROW_DOWN: outString = "Event: SWT.ARROW_DOWN";
break;
case SWT.ARROW_UP: outString = "Event: SWT.ARROW_UP";
break;
case SWT.DRAG: outString = "Event: SWT.DRAG";
break;
case SWT.END: outString = "Event: SWT.END";
break;
case SWT.HOME: outString = "Event: SWT.HOME";
break;
case SWT.PAGE_DOWN: outString = "Event: SWT.PAGE_DOWN";
break;
case SWT.PAGE_UP: outString = "Event: SWT.PAGE_UP";
break;

}



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Working with Sliders | 181

          .
          .
          .

}
});

To determine the slider’s current position, you use the getSelection method, as you
see in the listing for Example 8-3.

Example 8-3. Using SWT sliders

package org.eclipsebook.ch08;

import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;

public class Ch08_03 {

public static void main(String [] args) {
Display display = new Display( );
Shell shell = new Shell(display);
shell.setText("Sliders");
shell.setSize(300, 200);

final Label label = new Label(shell, SWT.NONE);
label.setText("Move the slider");
label.setBounds(0, 20, 150, 15);

final Slider slider = new Slider(shell, SWT.HORIZONTAL);
slider.setBounds(0, 40, 200, 20);

final Text text = new Text(shell, SWT.BORDER);
text.setBounds(0, 100, 200, 25);

slider.addListener(SWT.Selection, new Listener( ) {
public void handleEvent(Event event) {

String outString = "Event: SWT.NONE";
switch(event.detail) {

case SWT.ARROW_DOWN: outString = "Event: SWT.ARROW_DOWN";
break;
case SWT.ARROW_UP: outString = "Event: SWT.ARROW_UP";
break;
case SWT.DRAG: outString = "Event: SWT.DRAG";
break;
case SWT.END: outString = "Event: SWT.END";
break;
case SWT.HOME: outString = "Event: SWT.HOME";
break;
case SWT.PAGE_DOWN: outString = "Event: SWT.PAGE_DOWN";
break;
case SWT.PAGE_UP: outString = "Event: SWT.PAGE_UP";
break;

}



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

182 | Chapter 8: SWT: Menus, Toolbars, Sliders, Trees, and Dialogs

You can see the results in Figure 8-5, where the user is dragging the thumb in the
slider and the code is indicating that a drag event has occurred and the new location
of the slider thumb.

When the user clicks the scrollbar, a page up or page down event occurs, as shown in
Figure 8-6, and the thumb moves to a new position (the thumb’s page increment is
set to 10 by default).

outString += " Position: " + slider.getSelection( );
text.setText(outString);

}
});

shell.open( );
while(!shell.isDisposed( )) {

if(!display.readAndDispatch()) display.sleep( );
}
display.dispose( );

}
}

Figure 8-5. Dragging the thumb in a slider

Figure 8-6. Creating a page down event

Example 8-3. Using SWT sliders (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Working with Trees | 183

Besides using getSelection as we’ve done here, you can also use the setSelection
method to set the current location of the slider. For example, if the user selects a
page they want to jump to in a document, you can move the slider’s position to
match with the setSelection method.

By default, the slider range extends from 0 to 100 minus the thumb’s
width (which is 10 pixels by default). You can set the maximum and
minimum values for the slider range with the slider’s setMinimum and
setMaximum methods, the increment for the slider’s position when the
arrow buttons are clicked with the setIncrement method, and the page
increment when the scrollbar is clicked with the setPageIncrement
method. You can also set the current position in the slider with the
setPosition method.

Working with Trees
Trees are another standard SWT element; you use the Tree class to create trees and
the TreeItem class to add nodes to the tree. Here are the possible SWT styles for
trees:

SWT.BORDER
Adds a border

SWT.H_SCROLL
Adds a horizontal scrollbar

SWT.V_SCROLL
Adds a vertical scrollbar

SWT.SINGLE
Supports single selections

SWT.MULTI
Supports multiple selections

SWT.CHECK
Supports checkboxes

In this example, we’ll create a new tree with a border:

final Tree tree = new Tree(shell, SWT.BORDER);
tree.setSize(290, 290);
shell.setSize(300, 300);

To add nodes to the tree, use the TreeItem class, passing the tree object to the
TreeItem constructor. In this example, we’ll add five top-level items to the tree:

final Tree tree = new Tree(shell, SWT.BORDER);
tree.setSize(290, 290);
shell.setSize(300, 300);



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

184 | Chapter 8: SWT: Menus, Toolbars, Sliders, Trees, and Dialogs

for(int loopIndex1 = 0; loopIndex1 < 5; loopIndex1++) {
    TreeItem item0 = new TreeItem(tree, 0);
    item0.setText("Level 0 Item " + loopIndex1);
    .
    .
    .
}

Each tree node can have subnodes, and those subnodes can themselves have sub-
nodes, and so on; you just pass the node you’re adding children to to the TreeItem
constructor. For example, here’s how we add five children to every node and five
children to each of those children in turn:

for(int loopIndex1 = 0; loopIndex1 < 5; loopIndex1++) {
    TreeItem item0 = new TreeItem(tree, 0);
    item0.setText("Level 0 Item " + loopIndex1);
    for(int loopIndex2 = 0; loopIndex2 < 5; loopIndex2++) {
        TreeItem item1 = new TreeItem(item0, 0);
        item1.setText("Level 1 Item " + loopIndex2);
        for(int loopIndex3 = 0; loopIndex3 < 5; loopIndex3++) {
            TreeItem item2 = new TreeItem(item1, 0);
            item2.setText("Level 2 Item " + loopIndex3);
        }
    }
}

That creates the tree; all that’s left is to display the shell. You can see the whole list-
ing in Example 8-4.

Example 8-4. Using SWT trees

package org.eclipse.ch08;

import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;

public class Ch08_04 {

    public static void main(String [] args) {
        Display display = new Display( );
        Shell shell = new Shell(display);
        shell.setText("Trees");

        final Tree tree = new Tree(shell, SWT.BORDER);
        tree.setSize(290, 290);
        shell.setSize(300, 300);

        for(int loopIndex1 = 0; loopIndex1 < 5; loopIndex1++) {
            TreeItem item0 = new TreeItem(tree, 0);
            item0.setText("Level 0 Item " + loopIndex1);
            for(int loopIndex2 = 0; loopIndex2 < 5; loopIndex2++) {
                TreeItem item1 = new TreeItem(item0, 0);
                item1.setText("Level 1 Item " + loopIndex2);
                for(int loopIndex3 = 0; loopIndex3 < 5; loopIndex3++) {



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Working with Trees | 185

When the shell first opens, you can see the five top-level nodes in the tree, as in
Figure 8-7.

Clicking any of the + boxes opens the corresponding node, as you see in Figure 8-8.

                    TreeItem item2 = new TreeItem(item1, 0);
                    item2.setText("Level 2 Item " + loopIndex3);
                }
            }
        }

        shell.open( );
        while(!shell.isDisposed( )) {
            if(!display.readAndDispatch()) display.sleep( );
        }
        display.dispose( );
    }
}

Figure 8-7. A closed tree

Figure 8-8. Opening a tree

Example 8-4. Using SWT trees (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

186 | Chapter 8: SWT: Menus, Toolbars, Sliders, Trees, and Dialogs

As you can see, it’s relatively easy to add nodes to a tree. Trees are substantial con-
trols—you can also support checkmarks with the setChecked and getChecked meth-
ods, as well as images with the setImage method. You can handle selection events in
trees as well—TreeItem objects can handle selection events just as the ToolbarItem
objects we saw earlier; just add a selection listener to them.

Working with Dialogs
As our final SWT example, we’ll take a look at creating new SWT dialogs and recov-
ering data that the user entered in them. SWT comes with a number of prebuilt dia-
log classes, such as the FileDialog and DirectoryDialog classes, but in this example
we’re going to create our own custom dialog. We’ll display a custom dialog with the
message “OK to proceed?” along with OK and Cancel buttons and determine which
button the user clicked.

In the main application shell, we’ll display a button named opener that the user can
click to display the dialog, and a text control to display the selection the user made:

final Button opener = new Button(shell, SWT.PUSH);
opener.setText("Click Me");
opener.setBounds(20, 20, 50, 25);

final Text text = new Text(shell, SWT.SHADOW_IN);
text.setBounds(80, 20, 100, 25);

The dialog will also be a Shell object. Here are the styles you can use:

SWT.APPLICATION_MODAL
Makes a dialog box application modal

SWT.BORDER
Adds a border

SWT.H_SCROLL
Adds a horizontal scrollbar

SWT.V_SCROLL
Adds a vertical scrollbar

SWT.CLOSE
Adds a close button

SWT.DIALOG_TRIM
Styles a dialog box

SWT.MIN
Adds a minimize button

SWT.MAX
Adds a maximize button

SWT.NO_TRIM
Ensures no trimmings are used



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Working with Dialogs | 187

SWT.RESIZE
Handles moving and resizing

SWT.TITLE
Allows space for a title

To create our dialog, we’ll use the styles SWT.APPLICATION_MODAL | SWT.DIALOG_TRIM
when creating it. Making it application modal means that the user must dismiss the
dialog before working with any other window in the application:

final Shell dialog = new Shell(shell, SWT.APPLICATION_MODAL |
    SWT.DIALOG_TRIM);
dialog.setText("Dialog");
dialog.setSize(150, 100);

In this example, the dialog is designed to display a prompt to the user (“OK to pro-
ceed?”) in a label and two buttons, OK and Cancel. We’ll add these with this code:

final Label label = new Label(dialog, SWT.NONE);
label.setText("OK to proceed?");
label.setBounds(35, 5, 100, 20);

final Button okButton = new Button(dialog, SWT.PUSH);
okButton.setBounds(20, 35, 40, 25);
okButton.setText("OK");

Button cancelButton = new Button(dialog, SWT.PUSH);
cancelButton.setBounds(70, 35, 40, 25);
cancelButton.setText("Cancel");

To handle the OK and Cancel buttons, we’ll use a Listener object, creating that
object with an anonymous inner class, as usual. The difficulty here is in letting the
code in that inner class indicate which selection the user made, because it’s illegal for
inner class code to set the value of a variable in the enclosing class. However, you can
let code in an inner class set data in an array in the enclosing class, which is what
we’ll do here. Here’s how we determine which button was clicked and set the Bool-
ean response[0] accordingly in the application’s main code—note that we also close
the dialog here because the user clicked either the OK or Cancel button:

final boolean [] response = new boolean[1];
response[0] = true;

Listener listener = new Listener( ) {
public void handleEvent(Event event) {

if(event.widget == okButton){
response[0] = true;

}else{
response[0] = false;

}
dialog.close( );

}
};



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

188 | Chapter 8: SWT: Menus, Toolbars, Sliders, Trees, and Dialogs

Now you can assign this listener to the OK and Cancel buttons. We also need to
assign a listener to the opener button to open and display the dialog in the first place:

okButton.addListener(SWT.Selection, listener);
cancelButton.addListener(SWT.Selection, listener);

Listener openerListener = new Listener( ) {
public void handleEvent(Event event) {

dialog.open( );
}

};

opener.addListener(SWT.Selection, openerListener);

We also need a message loop for the dialog, which we’ll add as well. Finally, when
the dialog is closed, we’ll check the return value in response[0] and display a mes-
sage to indicate which button the user clicked:

while(!dialog.isDisposed( )) {
if(!display.readAndDispatch()) display.sleep( );

}

if(response[0]){
text.setText("You clicked OK");

} else {
text.setText("You clicked Cancel");

}

That completes the code; you can see the full listing in Example 8-5.

Example 8-5. Creating SWT dialogs

package org.eclipse.ch08;

import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;

public class Ch08_05 {

public static void main(String [] args) {
Display display = new Display( );
Shell shell = new Shell(display);
shell.setSize(200, 200);
shell.setText("Dialogs");
shell.open( );

final Button opener = new Button(shell, SWT.PUSH);
opener.setText("Click Me");
opener.setBounds(20, 20, 50, 25);

final Text text = new Text(shell, SWT.SHADOW_IN);
text.setBounds(80, 20, 100, 25);



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Working with Dialogs | 189

final Shell dialog = new Shell(shell, SWT.APPLICATION_MODAL |
             SWT.DIALOG_TRIM);

dialog.setText("Dialog");
dialog.setSize(150, 100);

final Label label = new Label(dialog, SWT.NONE);
label.setText("OK to proceed?");
label.setBounds(35, 5, 100, 20);

final Button okButton = new Button(dialog, SWT.PUSH);
okButton.setBounds(20, 35, 40, 25);
okButton.setText("OK");

Button cancelButton = new Button(dialog, SWT.PUSH);
cancelButton.setBounds(70, 35, 40, 25);
cancelButton.setText("Cancel");

final boolean [] response = new boolean[1];
response[0] = true;

Listener listener = new Listener( ) {
public void handleEvent(Event event) {

if(event.widget == okButton){
response[0] = true;

}else{
response[0] = false;

}
dialog.close( );

}
};

okButton.addListener(SWT.Selection, listener);
cancelButton.addListener(SWT.Selection, listener);

Listener openerListener = new Listener( ) {
public void handleEvent(Event event) {

dialog.open( );
}

};

opener.addListener(SWT.Selection, openerListener);

while(!dialog.isDisposed( )) {
if(!display.readAndDispatch()) display.sleep( );

}

if(response[0]){
text.setText("You clicked OK");

} else {
text.setText("You clicked Cancel");

}

Example 8-5. Creating SWT dialogs (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

190 | Chapter 8: SWT: Menus, Toolbars, Sliders, Trees, and Dialogs

Running this example displays the shell you see in Figure 8-9, with the button the
user can click to display the dialog and the text control to display the results.

When you click the button, the dialog appears, as shown in Figure 8-10. Because
we’re creating a dialog here, there’s no maximize or minimize buttons in the dialog,
and its border is not resizeable. The OK button is highlighted, making it the default
button; if the user closes the dialog by pressing Enter, the OK button is selected by
default.

Clicking one of the buttons in the dialog closes the dialog and displays the button
you’ve clicked in the text control in the main window, as you see in Figure 8-11. In
this way, we’ve been able to communicate between windows, catching the user’s
response and displaying it.

while(!shell.isDisposed( )) {
if(!display.readAndDispatch()) display.sleep( );

}
display.dispose( );

}
}

Figure 8-9. The Ch08_05 application

Figure 8-10. Displaying a dialog

Example 8-5. Creating SWT dialogs (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Opening Internet Explorer in an SWT Window | 191

Opening Internet Explorer in an
SWT Window
As you can see, SWT is dedicated to covering the bases when it comes to GUI devel-
opment, giving you the controls you’d expect to find in standard GUIs. That also
means SWT work can be pretty pedestrian, as you stock your GUI with standard
controls like sliders, text controls, and so on. So we’ll end the SWT discussion with
an SWT example that’s cooler than most—in this case, we’ll see how to open Inter-
net Explorer inside an SWT window and browse to a URL of our selection.

For example, the user may want to search for information on the Internet, in which
case you could open a search engine. In our example, we’ll assume the user needs
some good computer books, so we’ll browse to the site http://www.oreilly.com.

In this new project, Ch08_06, we’ll use Object Linking and Embedding (OLE) to open
Internet Explorer in an SWT window, which means this example will be Windows-
only. Unfortunately, there is no counterpart in Linux or Mac OS X—yet. Still, it’s
worth looking at how this works in Windows because it’s impressive.

On the other hand, browser widgets will be coming built-in to SWT in
Eclipse 3.0—see the discussion in Chapter 13.

To work with OLE, you import the org.eclipse.swt.ole.win32.* packages and cre-
ate an SWT OleControlSite object in the main method:

package org.eclipsebook.ch08;

import org.eclipse.swt.*;
import org.eclipse.swt.layout.*;
import org.eclipse.swt.widgets.*;
import org.eclipse.swt.ole.win32.*;

public class Ch08_06 {

public static void main(String[] args) {

final Display display = new Display( );

Figure 8-11. Recovering the result from a dialog



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

192 | Chapter 8: SWT: Menus, Toolbars, Sliders, Trees, and Dialogs

Shell shell = new Shell(display);
shell.setSize(600, 400);
shell.setLayout(new FillLayout( ));

OleControlSite oleControlSite;
        .
        .
        .

The window we’ll create will be an SWT OleFrame object, and we’ll have Internet
Explorer in place in that window. To do that, we’ll customize the OleControlSite
object to work with Internet Explorer, create a new OleFrame object, then execute the
OLE verb OLE.OLEIVERB_INPLACEACTIVATE to start Internet Explorer. We’ll also config-
ure an OleAutomation object we’ll call browser to let us interact with Internet
Explorer:

OleControlSite oleControlSite;

OleFrame oleFrame = new OleFrame(shell, SWT.NONE);
oleControlSite = new OleControlSite(oleFrame, SWT.NONE, "Shell.Explorer");
oleControlSite.doVerb(OLE.OLEIVERB_INPLACEACTIVATE);
shell.open( );

final OleAutomation browser = new OleAutomation(oleControlSite);

To work with the browser object, you can use the getIDsOfNames method to get the
OLE IDs for the browser’s navigation verb, and you simply invoke that verb to navi-
gate to http://www.oreilly.com, as you see in Example 8-6.

Example 8-6. Opening Internet Explorer, Ch08_06.java

package org.eclipsebook.ch08;

import org.eclipse.swt.*;
import org.eclipse.swt.layout.*;
import org.eclipse.swt.widgets.*;
import org.eclipse.swt.ole.win32.*;

public class Ch08_06 {

public static void main(String[] args) {

final Display display = new Display( );
Shell shell = new Shell(display);
shell.setSize(600, 400);
shell.setLayout(new FillLayout( ));

OleControlSite oleControlSite;

OleFrame oleFrame = new OleFrame(shell, SWT.NONE);
oleControlSite = new OleControlSite(oleFrame, SWT.NONE, "Shell.Explorer");
oleControlSite.doVerb(OLE.OLEIVERB_INPLACEACTIVATE);
shell.open( );



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Opening Internet Explorer in an SWT Window | 193

You can see the results in Figure 8-12, where we’ve opened Internet Explorer and
used it to navigate to http://www.oreilly.com. Pretty cool.

That completes this example, and it completes our look at SWT in these two chap-
ters. There’s a great deal more to the topic, of course, more than we could cover
here. But these two chapters give you a good handle on SWT and give you the tech-
nology you need to master the topic.

final OleAutomation browser = new OleAutomation(oleControlSite);

int[] browserIDs = browser.getIDsOfNames(new String[]{"Navigate", "URL"});
Variant[] address = new Variant[] {new Variant("http://www.oreilly.com")};
browser.invoke(browserIDs[0], address, new int[]{browserIDs[1]});

while (!shell.isDisposed( )) {
if (!display.readAndDispatch( ))

display.sleep( );
}

browser.dispose( );
display.dispose( );

}
}

Figure 8-12. Using Internet Explorer in an SWT window

Example 8-6. Opening Internet Explorer, Ch08_06.java (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

194 | Chapter 8: SWT: Menus, Toolbars, Sliders, Trees, and Dialogs

The general technique is pretty simple: you create a Display object and Shell objects
for the various windows you want to display, stock those shell objects with control,
display the windows, and set up a message loop to handle events. It’s a powerful
GUI builder that’s gaining popularity every day. For more on individual controls and
how to work with them, take a look at the SWT documentation that comes with
Eclipse.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

195

Chapter 9 CHAPTER 9

Web Development

Java has arrived on the Web with a vengeance in the form of JavaServer Pages (JSP)
and servlets, and we’ll take a look at how to create these using Eclipse in this chap-
ter. To do that, we’re going to use the Tomcat web server, which is the Sun Micro-
systems reference implementation for both JSP and servlets—and it’s free for the
downloading.

Even though we’re going to use Tomcat in this chapter, the Java code
we write and the XML files we edit are not Tomcat-specific. JSP and
servlets both must adhere to their respective specifications, which
means you can use what we develop here with other JSP/servlet web
containers.

Installing and Testing Tomcat
You can get the Tomcat web server at http://jakarta.apache.org/tomcat/; the current
release version as of this writing is 4.1.29. Downloading and installing Tomcat isn’t
hard—just unzip or untar it, which creates this directory structure:

jakarta-tomcat-4.1.29
|_ _bin                        Binary executable files
|_ _common                     Classes available to internal classes and web apps
|   |_ _classes                Common Java classes
|   |_ _endorsed               Endorsed Java classes
|   |_ _lib                    Common Java classes in Java Archive (JAR) format
|_ _conf                       Configuration files (such as passwords)
|_ _logs                       The server's log files
|_ _server                     Internal Tomcat classes
|_ _shared                     Shared files
|_ _temp                       Temporary files
|_ _webapps                    Directory for Web applications
|_ _work                       Scratch directory for holding temporary files



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

196 | Chapter 9: Web Development

For web developers, the most important directory here is the webapps directory,
which is where you store files to make them accessible to client browsers. We’re
going to see that directory at work throughout this chapter.

As we develop our web applications, we’re going to start by running Tomcat outside
Eclipse; later in this chapter, we’ll take a look at how to launch it while working
inside Eclipse. Our first goal is to get Tomcat working. Before running Tomcat from
the command line, you must set these two environment variables:

JAVA_HOME
Set to the installation directory of Java, the parent directory of the Java bin direc-
tory. For example, this might be C:\jdk1.4 in Windows.

CATALINA_HOME
Set to the installation directory of Tomcat, the parent directory of the Tomcat
bin directory. For example, this might be /usr/local/jakarta-tomcat-4.1.29 in
Linux.

You can set these environment variables from the command prompt as in this exam-
ple: set JAVA_HOME=C:\jdk1.4. (In the Unix tcsh shell, use setenv instead.) On most
operating systems, you can also set environment variables in a more permanent way
using control panel dialogs or by setting configurations.

You can find good instructions on setting environment variables for all
operating systems that run Java from the Java download page in the
installation notes. Here’s the URL with links for various operating sys-
tems: http://java.sun.com/j2se/1.4/install.html (for example, for Win-
dows, the URL is http://java.sun.com/j2se/1.4/install-windows.html),
These notes are all about setting the PATH environment variable, but
you can use them to set any environment variable.

After setting these two environment variables, you can run Tomcat by changing
directories to Tomcat’s bin directory and typing startup in Windows, or by running
startup.sh in Unix. In Windows, a new DOS window will open, displaying initial-
ization messages. When you want to shut Tomcat down, type shutdown in Windows
or run shutdown.sh in Unix.

You’ll find the specific directions for starting Tomcat in the running.txt
document that comes with Tomcat.

Now that Tomcat is running, open a browser and navigate to http://localhost:8080,
which should open Tomcat’s Welcome page, as you see in Figure 9-1. The “local-
host” part of this URL is what you use for local web servers (and it corresponds to an
IP address of 127.0.0.1), and 8080 is the port number; web servers usually use port
80, but Tomcat uses 8080 to avoid conflicts with other servers.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating a JSP | 197

Creating a JSP
The web server is running and now it’s time to put it to use. At its simplest, you can
use Eclipse to write JSP files, which don’t require compilation. These files can
enclose Java code in scriptlet, declaration, and expression elements. The most general
of these are scriptlets, which can enclose multiline Java code. Scriptlets are enclosed
with the markup <% and %>, as you can see in Example 9-1. You can use the out
object’s println method to send text back to the browser; in this case, we’re simply
sending the text “Using JSP” back to the browser in this JSP.

Figure 9-1. The Tomcat Welcome page

Example 9-1. A sample JSP

<HTML>
  <HEAD>
    <TITLE>A Web Page</TITLE>
  </HEAD>

  <BODY>
    <H1>Working With JSP</H1>
    <% out.println("Using JSP"); %>
  </BODY>
</HTML>



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

198 | Chapter 9: Web Development

An easy way to create this JSP file is just to enter it into Eclipse, as you can see in
Figure 9-2, where we’ve created a new project, Ch09_01, and a new file, Ch09_01.jsp,
to hold the JSP code. There’s no syntax checking going on here; Eclipse is just using
its standard default editor.

If you do want to check syntax of JSP documents, give the free XML
editor XML Buddy a try (available at http://www.xmlbuddy.com).

How can you install Ch09_01.jsp so Tomcat can serve it to client browsers? To han-
dle the examples from this chapter, we’re going to create a subdirectory of the Tom-
cat webapps directory, Ch09. This new directory must itself have a subdirectory
named WEB-INF, which must have two subdirectories, classes and lib:

webapps
|_ _Ch09                       The folder for Chapter 9 examples
    |_ _WEB-INF                Information about Chapter 9's web applications
         |_ _classes           Java classes used by Chapter 9's web applications
         |_ _lib               JAR files used by Chapter 9's web applications

At this point, the WEB-INF, classes, and lib directories are empty—but they must
exist, or Tomcat won’t consider Ch09 a valid directory for storing web documents.
After creating these directories, store Ch09_01.jsp in the Ch09 directory. Then shut
down Tomcat (if it’s running) and restart it.

Figure 9-2. Entering JSP code



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating a Servlet | 199

When you add a new directory to the webapps directory, or install
.class files anywhere in the webapps directory, you should shut down
Tomcat and start it again. By default, Tomcat copies over what’s in
the webapps directory to the work directory and actually uses what’s in
the work directory to run, which means you should restart Tomcat
when you make major changes in the webapps directory. Tomcat can
be configured to detect those changes so it won’t need to be restarted,
but we’re not going to do that here.

To see the JSP document at work, navigate to http://localhost:8080/Ch09/Ch09_01.jsp
in a browser, as you see in Figure 9-3. Tomcat translates the Java code in the JSP into
servlet form, compiles it, and runs it, and you can see the results in the figure.

That got us started with Tomcat and our first JSP, but as you can see, Eclipse wasn’t
very deeply involved. We created Ch09_01.jsp using Eclipse, but not much more. It’s
time to bring Eclipse to the forefront.

Creating a Servlet
JSPs were introduced to make Java web programming more appealing for the nov-
ice, letting you mix HTML and Java code. JSPs are actually based on Java servlets
(they’re translated into servlets before being run), which are pure Java code, and
which we’re going to focus on for the most part in this chapter. You can see an
example servlet in Example 9-2.

Figure 9-3. Viewing a JSP file

Example 9-2. A sample servlet

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

200 | Chapter 9: Web Development

Servlets like this one are based on the javax.servlet.http.HttpServlet class, and they
often simply override the doGet method, which is passed a request object that holds
data from the browser (including the browser type and the data from any HTML con-
trols) and a response object that lets you tailor your response to the client browser.

You override the doGet method to handle HTTP GET requests (as when
the METHOD attribute in an HTML form is set to GET) or default servlet
accesses. The doPost method, which takes the same arguments, han-
dles the POST method (as when the METHOD attribute in an HTML
form is set to POST). To handle either GET or POST requests, you can over-
ride the servlet service method, which also takes the same arguments
(and is actually the method responsible for calling doGet or doPost).

In this case, we’re tailoring our response to the browser by using the response
object’s getWriter method to get a PrintWriter object, and we’re using that object’s
println method to send HTML back to the browser. In this case, we’re just sending
back an HTML page with the text “Using servlets” in it.

To follow along, create a new project, Ch09_02, and enter the code in Ch09_02.java
into a new class, Ch09_02, in that project, using the package name org.eclipsebook.ch09.
To satisfy the imports we need for this code, include servlet.jar, which comes with
Tomcat, in the build path. You can find servlet.jar at jakarta-tomcat-4.1.29\common\
lib\servlet.jar; right-click the Ch09_02 project in the Package Explorer, select Proper-
ties, and then add servlet.jar to the build path.

public class ch09_02 extends HttpServlet
{
    public void doGet(HttpServletRequest request,
        HttpServletResponse response)
        throws IOException, ServletException
    {
        response.setContentType("text/html");
        PrintWriter out = response.getWriter( );

        out.println("<HTML>");
        out.println("<HEAD>");
        out.println("<TITLE>");
        out.println("A Servlet Example");
        out.println("</TITLE>");
        out.println("</HEAD>");
        out.println("<BODY>");
        out.println("<H1>");
        out.println("Working With Servlets");
        out.println("</H1>");
        out.println("Using servlets");
        out.println("</BODY>");
        out.println("</HTML>");
    }
}

Example 9-2. A sample servlet (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating a Servlet | 201

At this point, you should be able to build the servlet by selecting the Ch09_02 project
in the Package Explorer and selecting Project ➝ Build Project, creating Ch09_02.class.
Class files like this go into the Tomcat classes directory. Our servlet is in the org.
eclipsebook.ch09 package, and the directory structure must mirror the package struc-
ture, so put Ch09_02.class in webapps\Ch09\WEB-INF\class\org\eclipsebook\ch09:

webapps
|_ _ch09
    |_ _WEB-INF
         |_ _classes
         |   |_ _org
         |       |_ _eclipsebook
         |           |_ _ch09  Directory for the servlet code
         |_ _lib

To let Tomcat know that this new class is a servlet, you use a file named web.xml
that holds configuration data for web applications. In this file, we use two XML ele-
ments, servlet and servlet-mapping, to connect the URL Ch09_02 to the actual Java
code for the servlet, org.eclipsebook.ch09.Ch09_02. You can see what web.xml looks
like in Example 9-3.

Create this new document, web.xml, in Eclipse now, by right-clicking the project and
selecting New ➝ File. To open web.xml in Eclipse, right-click it and select the Open
With ➝ Text Editor item (if you just double-click it, your default XML editor—for
example, Internet Explorer in Windows—will open the file instead, unless you have
an XML plug-in like XMLBuddy installed). Enter the XML in Example 9-3, store the
file, and then copy it to the Ch09 directory’s WEB-INF directory:

webapps
|_ _ch09
    |_ _WEB-INF                Information about Chapter 9's web applications
         |_ _classes
         |_ _lib

Example 9-3. Updating web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
  <display-name>Example Applications</display-name>

  <servlet>
    <servlet-name>Ch09_02</servlet-name>
    <servlet-class>org.eclipsebook.ch09.Ch09_02</servlet-class>
  </servlet>

  <servlet-mapping>
    <servlet-name>Ch09_02</servlet-name>
    <url-pattern>/org.eclipsebook.ch09.Ch09_02</url-pattern>
  </servlet-mapping>

</web-app>



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

202 | Chapter 9: Web Development

Finally, shut Tomcat down and restart it. We’re ready to go; in the browser, navi-
gate to the URL http://localhost:8080/Ch09/org.eclipsebook.ch09.Ch09_02, and you
should see the results in Figure 9-4.

Not bad—we’ve used Eclipse to develop a new servlet. At this point, we’ve still been
developing our code and then copying it to the Tomcat directories, but Eclipse can
also handle the file handling for us.

Creating a Servlet in Place
The code we’re developing needs to be in the Tomcat directories to run, and storing
the compiled code we generate there is no problem with Eclipse. To see how this
works, create a new project, Ch09_03. Enter the name of the project in the New Java
Project dialog and click Next to bring up the second pane of this dialog. To set the
default output folder for compiled code, click the Browse button next to the Default
output folder box to open the Folder Selection dialog. Click the Create new folder
button, and click the Advanced button in the New Folder dialog. Now select the
Link to folder in the filesystem checkbox, and click the Browse button. Browse to the
jakarta-tomcat-4.1.29\webapps\Ch09\WEB-INF\classes directory—the root directory
for compiled servlet code—and click OK, bringing up the New Folder dialog again.
In that folder, give this new folder the name output, as you see in Figure 9-5, and
click OK.

Setting up the output folder this way means that the code we compile will automati-
cally be placed in the classes folder (or, in our case, in the classes\org\eclipsebook\ch09
folder, following the package name we’re using). Now create a new class, Ch09_03,
and enter the code for the servlet in Example 9-4 in it.

Figure 9-4. Viewing a new servlet



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating a Servlet in Place | 203

Finally, add servlet.jar to the build path as before. When you build this project,
Ch09_03.class will automatically be stored in the Tomcat webapps\WEB-INF\classes\
org\eclipsebook\ch09 directory, which is exactly where it should go.

We’ll also need to edit web.xml to install this new servlet. This can be done in
Eclipse using a linked folder. In this case, we’re going to link to the Ch09/WEB-INF
folder in the Tomcat installation, which holds web.xml. To create a linked folder,

Figure 9-5. Creating a new output folder

Example 9-4. A new servlet

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ch09_03 extends HttpServlet
{
    public void doGet(HttpServletRequest request,
        HttpServletResponse response)
        throws IOException, ServletException
    {
        response.setContentType("text/html");
        PrintWriter out = response.getWriter( );

        out.println("<HTML>");
        out.println("<HEAD>");
        out.println("<TITLE>");
        out.println("A Servlet Example");
        out.println("</TITLE>");
        out.println("</HEAD>");
        out.println("<BODY>");
        out.println("<H1>");
        out.println("Working With Servlets");
        out.println("</H1>");
        out.println("Developing servlets in place");
        out.println("</BODY>");
        out.println("</HTML>");
    }
}



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

204 | Chapter 9: Web Development

right-click the Ch09_03 project and select New ➝ Folder. Click the Advanced button
in the New Folder dialog, and select the Link to folder in the filesystem checkbox,
then click the Browse button and browse to jakarta-tomcat-4.1.29\webapps\Ch09\
WEB-INF. Then click OK to bring up the New Folder dialog again, enter the name
WEB-INF for this new folder in the Folder Name box, and click OK. This creates a new
linked folder named WEB-INF, and you can access the contents of this folder,
including web.xml, by opening it in the Package Explorer, as you see in Figure 9-6.

The web.xml to use in this project appears in Example 9-5 (note that servlet elements
must be grouped together, followed by the grouped servlet-mapping elements—those
elements should not be mixed, or Tomcat won’t be able to parse the file, which
means it won’t start).

Figure 9-6. Using a linked folder

Example 9-5. The new version of web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
  <display-name>Example Applications</display-name>

  <servlet>
    <servlet-name>Ch09_02</servlet-name>
    <servlet-class>org.eclipsebook.ch09.Ch09_02</servlet-class>
  </servlet>



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Connecting to a JavaBean | 205

Enter this new version of web.xml now, and restart Tomcat. Eclipse has taken care of
all the file handling for us, so there’s nothing to copy to the Tomcat directories—just
navigate to the new servlet’s URL, http://localhost:8080/Ch09/org.eclipsebook.ch09.
Ch09_03, as you see in Figure 9-7.

Getting better—now we’ve developed a servlet’s code entirely in Eclipse. Eclipse has
even done the file handling for us.

Connecting to a JavaBean
JSP files are able to connect to compiled Java code using JavaBeans, and developing
those applications are no problem now that you know how to use linked folders.
Here’s an example, the Ch09_04 project. In this case, we’ll use the bean in
Example 9-6, which supports a property named msg that returns the message “No
worries!”

  <servlet>
    <servlet-name>Ch09_03</servlet-name>
    <servlet-class>org.eclipsebook.ch09.Ch09_03</servlet-class>
  </servlet>

  <servlet-mapping>
    <servlet-name>Ch09_02</servlet-name>
    <url-pattern>/org.eclipsebook.ch09.Ch09_02</url-pattern>
  </servlet-mapping>

  <servlet-mapping>
    <servlet-name>Ch09_03</servlet-name>
    <url-pattern>/org.eclipsebook.ch09.Ch09_03</url-pattern>
  </servlet-mapping>

</web-app>

Figure 9-7. Developing a servlet in place

Example 9-5. The new version of web.xml (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

206 | Chapter 9: Web Development

This code’s output, Ch09_04.class (note that you don’t need servlet.jar in the build
path here), goes into the webapps\Ch09\WEB-INF\classes directory, so use that direc-
tory as the output directory. After entering the code, compile the project to create
Ch09_04.class.

In JSP, you can connect to the bean code in a variety of ways, including instantiating
an object of the Ch09_04 class using Java in a JSP scriptlet. The recommended way of
doing things, however, is to use the JSP jsp:useBean element to create a JavaBean
object. Then use the jsp:getProperty element to get the value of a bean property,
and use the jsp:setProperty element to set a bean property’s value. You can see how
this works in Example 9-7, where we’re reading the current property of the bean’s
msg property, setting it to a new value, and reading that new value.

Example 9-6. A JavaBean

package org.eclipsebook.ch09;

public class Ch09_04 {
private String message = "No worries!";

public void setMessage(String msg)
{

this.message = msg;
}

public String getMessage( )
{

return this.message;
}

public Ch09_04( )
{
}

}

Example 9-7. Connecting to a JavaBean

<HTML>
    <HEAD>
        <TITLE>Setting a Property Value</TITLE>
    </HEAD>

    <BODY>
        <H1>Setting a Property Value</H1>

        <jsp:useBean id="bean1" class="org.eclipsebook.ch09.Ch09_04" />

        The message is: <jsp:getProperty name="bean1" property="message" />
        <BR>
        <jsp:setProperty name="bean1" property="message" value="Hello again!" />

        Now the message is: <jsp:getProperty name="bean1" property="message" />
    </BODY>
</HTML>



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Using the Sysdeo Tomcat Plug-in | 207

This JSP displays the original message in the msg property and the new value after
it’s been set. Using a linked folder, store this new JSP file in the webapps\Ch09
directory, and navigate to http://localhost:8080/Ch09/Ch09_04.jsp, as you see in
Figure 9-8.

At this point, then, we’ve been able to develop online Java code in Eclipse and write,
compile, and install it in Tomcat. All that we’ve had to do outside Eclipse is start and
stop Tomcat. And it turns out that you can do that from inside Eclipse, too.

Using the Sysdeo Tomcat Plug-in
The Sysdeo plug-in lets you start and stop Tomcat from inside Eclipse, and we’ll
take a look at using that plug-in here. You can download this plug-in for free from
http://www.sysdeo.com/eclipse/tomcatPlugin.html. After expanding it in the plugins
directory, activate it by selecting Window ➝ Customize Perspective, opening the
Other node, and selecting the Tomcat item, as you see in Figure 9-9.

This adds a Tomcat menu to Eclipse (shown in Figure 9-10) and adds three Tomcat
buttons to the Eclipse toolbar that you can see under the Navigate menu; these but-
tons start, stop, and restart Tomcat.

To connect the Tomcat plug-in to the version of Tomcat you’re using, select Win-
dow ➝ Preferences and click the Tomcat node, as you see in Figure 9-11.

You use this dialog to connect the Tomcat plug-in to Tomcat itself. At this time, the
Sysdeo plug-in for Eclipse 2.1.1 is in beta and does not yet work smoothly with the
most recent version of Tomcat, Version 4.1.29, so for the next two examples, we’ll
use an earlier version of Tomcat (you can get earlier versions of Tomcat from the
Apache archives at http://archive.apache.org/dist/jakarta/; the archives for all Tomcat
4+ versions are at http://archive.apache.org/dist/jakarta/tomcat-4/archive/). By the

Figure 9-8. Connecting to a JavaBean



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

208 | Chapter 9: Web Development

Figure 9-9. Activating the Tomcat plug-in

Figure 9-10. New Tomcat buttons in the toolbar



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Using the Sysdeo Tomcat Plug-in | 209

time you read this, the Tomcat plug-in should be working with the current version of
Tomcat; if not, download and use an earlier version of Tomcat from the Tomcat site
if you want to use the plug-in.

In this dialog, you set the Tomcat home location, which is the parent directory of the
Tomcat bin directory (equivalent to the CATALINA_HOME environment variable, detailed
earlier). To set that location, click the Browse button next to the Tomcat home box,
browse to the Tomcat installation directory, and click OK (this also fills in the Con-
figuration file box automatically). Click OK to close the Preferences dialog.

Writing JSP with the Sysdeo Tomcat Plug-in
We’ll start using the Tomcat plug-in with a JSP project. To create a new Tomcat
project, select File ➝ New ➝ Project, select Java in the left box of the New Project
dialog, select Tomcat Project in the right, and click Next. Give this new project the
name Ch09_05 in the New Tomcat Project dialog and click OK. This creates a new
Tomcat project with a number of folders already built-in, as you can see in the Pack-
age Explorer in Figure 9-12.

Figure 9-11. Connecting the Tomcat plug-in to Tomcat



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

210 | Chapter 9: Web Development

To create a new JSP project, right-click the project and select New ➝ File, calling the
new file Ch09_05.jsp. Enter the JSP you see in Example 9-8. Then simply save the
file, and it’s ready to run—no file copying needed.

The Tomcat plug-in lets you edit files locally and sets a Tomcat context for them by
editing the Tomcat server.xml file in the Tomcat conf directory. In our example, here’s
what the plug-in adds to server.xml so Tomcat knows where to find our JSP file:

<Context path="/Ch09_05" reloadable="true"
docBase="D:\eclipse211\eclipse\workspace\Ch09_05"
workDir="D:\eclipse211\eclipse\workspace\Ch09_05\work\org\apache\jsp" />

This change to server.xml means that Tomcat can find our JSP, so start Tomcat by
clicking the Start Tomcat button and navigate to http://localhost:8080/Ch09_05/
Ch09_05.jsp in a browser (the URL here includes the project name, Ch09_05, not just
the Ch09 directory as the earlier non-plug-in examples did). You should see the
results shown in Figure 9-13.

Figure 9-12. Creating a new Tomcat project

Example 9-8. Creating a JSP with the Sysdeo plug-in

<HTML>
    <HEAD>
        <TITLE>A Web Page</TITLE>
    </HEAD>

    <BODY>
        <H1>Using JSP</H1>
        <% out.println("Using a Tomcat plug-in..."); %>
    </BODY>
</HTML>



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Using the Sysdeo Tomcat Plug-in | 211

The Debug perspective will appear when you run Tomcat; when
you’re done with this example, terminate the Debug session and click
the Remove All Terminated Launches button in the Debug view.

That’s it—this JSP is running. As you can see, the Tomcat plug-in lets you develop
code inside Eclipse, and it lets you start and stop Tomcat inside Eclipse as well.

Writing Servlets with the Sysdeo Tomcat Plug-in
The Sysdeo plug-in also helps write servlets, such as the one in Example 9-9. Up to
this point, we’ve had to set the output directory to store servlets in the Tomcat direc-
tories, but the Tomcat plug-in can handle the details automatically.

Figure 9-13. Creating a new JSP using the Sysdeo plug-in

Example 9-9. Creating a servlet with the Sysdeo plug-in

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class Ch09_06 extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException

{
response.setContentType("text/html");
PrintWriter out = response.getWriter( );

out.println("<HTML>");
out.println("<HEAD>");
out.println("<TITLE>");
out.println("A Web Page");



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

212 | Chapter 9: Web Development

To see this at work, create a new Tomcat project, Ch09_06. Add a new class, Ch09_06,
to the project, putting that class in the org.eclipsebook.ch09 package. The new class
is automatically stored in the WEB-INF/src directory, as you see in the Package
Explorer in Figure 9-14.

As before, the Tomcat plug-in edits the Tomcat server.xml document to let Tomcat
know where to look for your files:

<Context path="/Ch09_06" reloadable="true"
docBase="D:\eclipse211\eclipse\workspace\Ch09_06"
workDir="D:\eclipse211\eclipse\workspace\Ch09_06\work\org\apache\jsp" />

out.println("</TITLE>");
out.println("</HEAD>");
out.println("<BODY>");
out.println("<H1>");
out.println("Using Servlets");
out.println("</H1>");
out.println("Using a Tomcat plug-in...");
out.println("</BODY>");
out.println("</HTML>");

}
}

Figure 9-14. A Servlet project using the Tomcat plug-in

Example 9-9. Creating a servlet with the Sysdeo plug-in (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Using the Sysdeo Tomcat Plug-in | 213

There’s one more thing to do before running this servlet. The Tomcat plug-in doesn’t
create a local web.xml file to tell Tomcat that Ch09_06.class is a servlet, as we have
done in the earlier examples in this chapter. To let Tomcat run anonymous servlet
classes that have not been defined in a web.xml file, you can enable the Tomcat
“invoker” servlet by removing the comments around the servlet-mapping element in
the web.xml file in the Tomcat conf directory:

  <!-- The mapping for the invoker servlet -->
<!--
  <servlet-mapping>
    <servlet-name>invoker</servlet-name>
    <url-pattern>/servlet/*</url-pattern>
  </servlet-mapping>
-->

When you edit web.xml in the Tomcat conf directory, the servlet is ready to go; after
saving Ch09_06.java and building the project, start Tomcat with the Tomcat plug-
in’s buttons and navigate to http://localhost:8080/Ch09_06/servlet/org.eclipsebook.
ch09.Ch09_06. You should see the results that appear in Figure 9-15. Congratula-
tions—now you’re creating servlets with the Sysdeo Tomcat plug-in.

Alternatively, if you don’t want to edit web.xml in the Tomcat conf directory to
enable anonymous servlets, you can create a local web.xml for each project you cre-
ate with the Tomcat plug-in. To do this, right-click the WEB-INF folder in the Pack-
age Explorer, select New ➝ File, and enter the XML you see in Example 9-10.

Figure 9-15. Running a servlet with the Tomcat plug-in

Example 9-10. A web.xml file for use with the Sysdeo plug-in

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN" "http://
java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
  <display-name>Example Applications</display-name>



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

214 | Chapter 9: Web Development

If you create a local web.xml file like this on a project-by-project basis, you don’t
have to use the word “servlet” in the servlet’s URL—in this case, you’ll be able to
navigate to the servlet with the URL http://localhost:8080/Ch09_06/org.eclipsebook.
ch09.Ch09_06.

Debugging Web Projects
The Tomcat plug-in also lets you debug servlet code interactively. For example, say
you put a breakpoint in the code for the Ch09_06 servlet we just developed at this
line in the code:

out.println("<HTML>");
out.println("<HEAD>");
out.println("<TITLE>");
out.println("A Web Page");
out.println("</TITLE>");
out.println("</HEAD>");
out.println("<BODY>");
out.println("<H1>");
out.println("Using Servlets");
out.println("</H1>");
out.println("Using a Tomcat plug-in...");
out.println("</BODY>");
out.println("</HTML>");

When you start Tomcat and navigate to this servlet in a browser, execution will halt
when the breakpoint is reached, and the Eclipse debugger will come up, as you see in
Figure 9-16. You’re free to single-step through the servlet’s code at this point and
debug what’s going on.

You can also debug JSPs, but you have to work with the servlet code that the JSP is
translated into. For example, your JSP Ch09_04.jsp in the webapps/Ch09 directory is
translated into the servlet code Ch09_04_jsp.java (this name can vary by Tomcat ver-
sion) in the work/localhost/ch09 directory before it’s run (in the most recent versions
of Tomcat, that’s become the work/Standalone/localhost/ch09 directory). The servlet
file is the file that you actually debug.

  <servlet>
    <servlet-name>Ch09_06</servlet-name>
    <servlet-class>org.eclipsebook.ch09.Ch09_06</servlet-class>
  </servlet>

  <servlet-mapping>
    <servlet-name>Ch09_06</servlet-name>
    <url-pattern>/org.eclipsebook.ch09.Ch09_06</url-pattern>
  </servlet-mapping>

</web-app>

Example 9-10. A web.xml file for use with the Sysdeo plug-in (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Deploying Web Applications | 215

Deploying Web Applications
The last topic we’ll take a look at in this chapter is all about deploying web applica-
tions. This process is easy enough—all you’ve got to do is create a compressed Web
Archive (WAR) file of your application and drop it into the Tomcat webapps direc-
tory. The next time Tomcat is restarted, it’ll expand that WAR file automatically,
deploying the application.

As an example, we’re going to deploy the servlet you see in Example 9-11. To make
the WAR file creation easier, create this new project, Ch09_07, in its own folder,
Ch09_07, in the webapps directory. Make this project a standard Java project (not a
Tomcat project). Be sure you give the Ch09_07 folder its own WEB-INF directory
with the subdirectories classes and lib, and make the classes folder the output folder
for the project. Now create Ch09_07.java as we have before, and, after entering the
servlet’s code into Ch09_07.java, build the project.

Figure 9-16. Debugging a servlet interactively

Example 9-11. A servlet to deploy

package org.eclipsebook.ch09;

import javax.servlet.http.HttpServlet;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

216 | Chapter 9: Web Development

Also add the web.xml file you see in Example 9-12 to the project’s WEB-INF folder
to let Tomcat know about this servlet. That gets our servlet working, as you can
check by navigating to http://localhost:8080/Ch09_07/org.eclipsebook.ch09.Ch09_07.

The next step is to deploy this servlet by compressing it into a WAR file. An easy way
to do that in Eclipse is to use Ant, and that can be done with the build.xml file you
see in Example 9-13, which will compress all the files in the project into a WAR file
named Ch09_07war.war.

public class Ch09_07 extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws IOException, ServletException

{
response.setContentType("text/html");
PrintWriter out = response.getWriter( );

out.println("<HTML>");
out.println("<HEAD>");
out.println("<TITLE>");
out.println("A Web Page");
out.println("</TITLE>");
out.println("</HEAD>");
out.println("<BODY>");
out.println("<H1>");
out.println("Project Deployment!");
out.println("</H1>");
out.println("</BODY>");
out.println("</HTML>");

}
}

Example 9-12. web.xml for the servlet to deploy

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
  <display-name>Example Applications</display-name>

  <servlet>
    <servlet-name>Ch09_07</servlet-name>
    <servlet-class>org.eclipsebook.ch09.Ch09_07</servlet-class>
  </servlet>

  <servlet-mapping>
    <servlet-name>Ch09_07</servlet-name>
    <url-pattern>/org.eclipsebook.ch09.Ch09_07</url-pattern>
  </servlet-mapping>

</web-app>

Example 9-11. A servlet to deploy (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Deploying Web Applications | 217

To create the WAR file, add build.xml to the project. Then right-click build.xml,
select Run Ant, and click the Run button to create the WAR file Ch09_07war.war.

You can deploy the entire web application with this one file—just drop it into the
Tomcat webapps directory on the user’s machine and restart Tomcat. Taking its cue
from the name of the WAR file, Tomcat will install the web application in a direc-
tory named Ch09_07war (note that we didn’t name this WAR file Ch09_07.war
because when Tomcat expanded that WAR file it would have overwritten the exist-
ing Ch09_07 directory).

When the application has been deployed and installed by Tomcat this way, you can
run it by navigating to http://localhost:8080/Ch09_07war/org.eclipsebook.ch09.Ch09_07
in a browser, as you see in Figure 9-17. The servlet has been completely deployed.

Example 9-13. build.xml for the servlet to deploy

<?xml version="1.0" encoding = "UTF-8"?>
<project name="Ch09_07" default="Main Build" basedir=".">

<property name="bin"
        location="d:/tomcat/jakarta-tomcat-4.1.29/webapps/ch09_07"/>

<property name="wardir"
        location="d:/tomcat/jakarta-tomcat-4.1.29/webapps/ch09_07"/>

<property name="warfile" location="${wardir}/Ch09_07war.war"/>
<property name="build.compiler"

        value="org.eclipse.jdt.core.JDTCompilerAdapter"/>

<target name="Main Build" depends="War">
<echo message="Ant at work!"/>

</target>

<target name="War" >
<jar destfile="${warfile}" basedir="${bin}"/>

</target>

</project>

Figure 9-17. Deploying a project



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

218 | Chapter 9: Web Development

That completes this chapter on Eclipse and web development—as you can see, using
Eclipse for web development is natural. Creating JSPs, creating servlets, installing
files, starting and stopping Tomcat, creating web deployment packages—all of these
tasks are no problem with Eclipse.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

219

Chapter 10 CHAPTER 10

Developing Struts Applications
with Eclipse

In this chapter we’re going to take a look at using Eclipse to write Struts-based web
applications. This is going to give us experience not only using Struts, but also creat-
ing large-scale web applications, including handling build dependencies (where one
file needs to be built before another), avoiding deleting files in the output folders
when doing a full build (deleting all files in the output folder is called “scrubbing,”
which Eclipse does by default—and scrubbing a Struts application would delete
needed files), organizing your source code files into a folder after the project has
already been created, and other issues. We’re also going to take a look at a popular
Struts plug-in, Easy Struts, to help create Struts applications in Eclipse.

Although we’re going to discuss Struts in overview here, we’ll assume that if you
want to follow the programming in detail, you already have some experience with
Struts—in this book, our focus is on Eclipse, not Struts.

Struts is built on Model-View-Controller (MVC) architecture that has become popular
in servlet/JSP programming. The original servlet/JSP programming architecture (some-
times called Model 1) was somewhat ad-hoc, using servlets, JSPs, and beans in a way
that was completely up to the programmer. Since that time, web applications have
become more large-scale, and the MVC architecture (sometimes called Model 2) has
been adopted. In MVC programming, the view (often a JSP) handles the visual inter-
face with the user, the model (often a JavaBean) handles the internal logic of the appli-
cation, and the controller (often a servlet) handles the overall communication between
the view and the model as well as forwarding user reqests as needed to other code.

In Struts terminology, the view is constructed using forms and the controller with
actions. The model is often implemented with form beans.

Struts and Eclipse
We’ll start by taking a look at the Struts example we’re going to create using Eclipse,
using the latest version of Tomcat available (Version 4.1.29 as of this writing), and
the latest version of Struts (Version 1.1). When you navigate to the opening JSP,



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

220 | Chapter 10: Developing Struts Applications with Eclipse

http://localhost:8080/Ch10_01/Ch10_01.jsp, you’ll see a menu with a number of
HTML controls, as appears in Figure 10-1.

The user can order a pizza or sandwich using the controls here and can also include
his email address. Clicking the “Place your order” button sends the data in the form
to an underlying bean and to the application’s controller servlet, which displays a
summary of the order, as you see in Figure 10-2.

Although these results look pretty simple, that’s not to say that the implementation
of this application is easy. Struts is not a lightweight framework; to create this exam-
ple, you use these files, arranged in the Tomcat webapps/Ch10_01 directory:

webapps
|
|_ _Ch10_01
   |   Ch10_01.jsp [View: Starting form]
   |   Ch10_05.jsp [View: Summary form]
   |
   |_ _WEB-INF
      |   struts-config.xml [Struts Configuration File]
      |   Ch10.tld  [Custom Tag Definitions]
      |   Struts TLD files [Struts Tag Definitions]
      |   web.xml  [Application Descriptor File]
      |

Figure 10-1. The opening view of the Struts application



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Struts and Eclipse | 221

      |_ _lib
      |      struts.jar  [Java Archive of Struts Classes]
      |
      |_ _classes
         |   ApplicationResources.properties [Contains property data]
         |
         |_ _org
            |
            |_ _eclipsebook
               |
               |_ _ch10
                  |_ _Ch10_02.class  [Custom Tag 1 Implementation]
                     Ch10_03.class  [Custom Tag 2 Implementation]
                     Ch10_04.class  [Controller: Action servlet]
                     Ch10_06.class  [Model: Form bean]

The next step is to create this application using Eclipse. To follow along, create a
simple Java project named Ch10_01, and create a new folder in the Tomcat webapps
directory, Ch10_01. To get access to this folder in Eclipse, create a new folder by
right-clicking the project and selecting New ➝ Folder; name this folder deployment,
and link it to the webapps\Ch10_01 folder. Now, in Eclipse, create the folders you
need for Java web applications—WEB-INF, lib, and classes—which will also create
these folders in the Tomcat webapps\Ch10_01 folder:

deployment
   |
   |_ _WEB-INF
      |

Figure 10-2. The Struts application’s summary



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

222 | Chapter 10: Developing Struts Applications with Eclipse

      |_ _lib
      |
      |_ _classes

To handle the compiled output of this project, select the Project ➝ Properties menu
item, click the Browse button next to the Default output folder box, create a new
folder named output linked to the classes directory, make sure that folder is selected
in the Folder Selection dialog, and click OK. Doing so ensures that the compiled
code will go into this directory (actually into classes\org\eclipsebook\ch10, following
the name of the package we’ll create here).

In this case, we purposely didn’t create a src directory to hold the source code when
creating this project as we have in the past, in order to demonstrate that it’s easy
enough to create a source code folder after a project has been created. To create a
new source code folder, right-click the project and select New ➝ Source Folder.
Name the new source folder src.

Now add servlet.jar to the build path (it’s in the Tomcat common\lib directory), as
well as the Struts support JAR file, struts.jar. You can get struts.jar free at http://
jakarta.apache.org/struts/ in compressed format (the current version is 1.1). Unzip or
untar the download to get struts.jar, and place that file in the application’s lib direc-
tory. Besides struts.jar, we’ll also need these JAR files from the download in this
example, so place them in the lib directory as well:

• commons-beanutils.jar

• commons-collections.jar

• commons-digester.jar

You’ll also need these Struts .tld (Tag Library Definition files) from the download in
the application’s WEB-INF directory; these files support the custom tags that Struts
uses:

• struts-bean.tld

• struts-html.tld

• struts-logic.tld

• struts-template.tld

To get started with the code for this example, right-click the new folder and select
New ➝ Package to add a new package, org.eclipsebook.ch10, to the src folder. That
sets up the build environment in Eclipse. Now it’s time to write some code.

Creating the View
The first file that the user navigates to is the view file Ch10_01.jsp. In this file, we use
various custom Struts tags to implement the display you see in Figure 10-1. For
example, the <html:form> tag creates a Struts-enabled form that can display controls,



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating the View | 223

as you see in Example 10-1; we’re setting the form’s action attribute to the name
we’ll give the controller, Ch10_04.do, so when the user clicks the Submit button
(with the caption “Place your order”), the data in the form will be forwarded to the
controller.

Example 10-1. A sample JSP

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>
<%@ taglib uri="/Ch10" prefix="Ch10" %>

<HTML>
    <HEAD>
        <TITLE>Here's the menu...</TITLE>
    </HEAD>

    <BODY>
        <H1>Here's the menu...</H1>
        <html:errors/>
        <Ch10:type/>
        <Ch10:items/>

        <html:form action="Ch10_04.do">
            <TABLE>
                <TR>
                    <TD ALIGN="LEFT" VALIGN="TOP">
                        <bean:message key="items"/>
                        <BR>
                        <logic:iterate id="items1" name="items">
                            <html:multibox property="items">
                                <%= items1 %>
                            </html:multibox>
                            <%= items1 %>
                            <BR>
                        </logic:iterate>
                    </TD>
                    <TD ALIGN="LEFT" VALIGN="TOP">
                        <bean:message key="type"/>
                        <BR>
                        <html:select property="type">
                            <html:options name="type"/>
                        </html:select>
                    </TD>
                </TR>
                <TR>
                    <TD ALIGN="LEFT">
                        <BR>
                        <bean:message key="email"/>
                        <html:text property="email"/>
                    </TD>
                <TR>
            </TABLE>



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

224 | Chapter 10: Developing Struts Applications with Eclipse

Create this file by right-clicking the deployment folder in Eclipse and selecting New
➝ File, which automatically stores Ch10_01.jsp in the webapps/Ch10_01 folder.

As you see in Figure 10-1, the drop-down list we’re presenting holds the items Pizza,
Calzone, and Sandwich, and you can see the list of ingredients—Sausage, Cheese,
Pepperoni, Meatballs, and Peppers—represented with a list of checkboxes. To make
the items in these lists available to Struts HTML control in the view, we’ll use two
custom JSP tags, <Ch10:type> to return items like Pizza and Calzone, and <Ch10:items>
to return items like Sausage, Cheese, and Pepperoni. As you can see in Example 10-1,
we use the Struts <logic:iterate>, <html:multibox>, and <html:options> tags to create
the needed HTML controls from those lists of items. You can see the implementa-
tion of these custom tags in Example 10-2 and Example 10-3. In Eclipse, create these
files and store them in the src folder by right-clicking that folder and selecting New ➝

Class, placing the new classes, Ch10_02 and Ch10_03, in the org.eclipsebook.ch10
package.

                  <BR>
            <html:submit value="Place your order"/>
        </html:form>
    </BODY>
</HTML>

Example 10-2. A custom tag class for order types

package org.eclipsebook.ch10;

import javax.servlet.jsp.tagext.TagSupport;

public class Ch10_02 extends TagSupport
{
    public int doStartTag( )
      {

        String[] typeArray = {"", "Pizza", "Calzone", "Sandwich"};

        pageContext.setAttribute("type", typeArray);

        return SKIP_BODY;
    }
}

Example 10-3. A custom tag class for pizza toppings

package org.eclipsebook.ch10;

import javax.servlet.jsp.tagext.TagSupport;

public class Ch10_03 extends TagSupport
{

Example 10-1. A sample JSP (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating the Controller | 225

To make these custom tags work, we need a tag library descriptor file, which you can
see in Example 10-4. This file, named Ch10.tld, goes into deployment\WEB-INF.

Creating the Controller
We’ve set things up in the view so the data in the HTML controls is sent to Ch10_04.do.
That’s the controller, or action servlet, in our application. We’ll connect the exten-
sion .do to the action servlet for the application in web.xml. You can see how that’s
done in web.xml in Example 10-5, using the <servlet> and <servlet-mapping> ele-
ments, much as we did in the previous chapter.

    public int doStartTag( )
      {
        String[] itemsArray = {"Sausage", "Cheese", "Pepperoni", "Meatballs", "Peppers"};

        pageContext.setAttribute("items", itemsArray);

        return SKIP_BODY;
    }
}

Example 10-4. The TLD for the custom tags

<?xml version="1.0"?>
<!DOCTYPE taglib PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
    "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<taglib>
    <tlibversion>1.0</tlibversion>
    <jspversion>1.2</jspversion>
    <shortname>StrutsExample</shortname>
    <info>
        Supports the Struts Example
    </info>

    <tag>
        <name>type</name>
        <tagclass>org.eclipsebook.ch10.Ch10_02</tagclass>
        <bodycontent>empty</bodycontent>
   </tag>

    <tag>
        <name>items</name>
        <tagclass>org.eclipsebook.ch10.Ch10_03</tagclass>
        <bodycontent>JSP</bodycontent>
    </tag>
</taglib>

Example 10-3. A custom tag class for pizza toppings (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

226 | Chapter 10: Developing Struts Applications with Eclipse

This file, web.xml, goes in the deployment\WEB-INF directory in the Eclipse project.
That connects the extension .do to the action servlet in our application, but we haven’t
yet specified the actual code for that servlet. You do that in the struts-config.xml file,

Example 10-5. web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
  PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
  "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>
<display-name>Struts Example Application</display-name>

  <!-- Action Servlet Configuration -->
  <servlet>
    <servlet-name>action</servlet-name>
    <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
    <init-param>
      <param-name>application</param-name>
      <param-value>ApplicationResources</param-value>
    </init-param>
    <load-on-startup>2</load-on-startup>
  </servlet>

  <!-- Action Servlet Mapping -->
  <servlet-mapping>
    <servlet-name>action</servlet-name>
    <url-pattern>*.do</url-pattern>
  </servlet-mapping>

  <taglib>
    <taglib-uri>/Ch10</taglib-uri>
    <taglib-location>/WEB-INF/Ch10.tld</taglib-location>
  </taglib>

  <taglib>
    <taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>
    <taglib-location>/WEB-INF/struts-bean.tld</taglib-location>
  </taglib>

  <taglib>
    <taglib-uri>/WEB-INF/struts-html.tld</taglib-uri>
    <taglib-location>/WEB-INF/struts-html.tld</taglib-location>
  </taglib>

  <taglib>
    <taglib-uri>/WEB-INF/struts-logic.tld</taglib-uri>
    <taglib-location>/WEB-INF/struts-logic.tld</taglib-location>
  </taglib>

</web-app>



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating the Controller | 227

which also goes in the deployment\WEB-INF directory. For this example, the action
servlet’s code is to be Ch10_04.class, the summary page that should be displayed if
there was no problem with the data entered by the user is Ch10_05.jsp, and the bean
that will store the data from the user is Ch10_06.class. You can see how this works in
Example 10-6.

Now the data in the view will be sent to the Ch10_06 bean, and control will pass to the
controller, Ch10_04. In the controller, we’re passed an object of the bean class that
holds the data the user entered into the view’s HTML controls, and we’ll check that
data in the controller’s code, as you see in Example 10-7. If the user hasn’t entered
some of the needed data, we’ll display an error message; if the data is OK, we’ll for-
ward it on to the summary page, Ch10_05.jsp. This file, Ch10_04.java, goes into the
src folder, as do all the other Java source files in the project.

Example 10-6. struts-config.xml

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE struts-config PUBLIC
          "-//Apache Software Foundation//DTD Struts Configuration 1.1//EN"
          "http://jakarta.apache.org/struts/dtds/struts-config_1_1.dtd">

<struts-config>

  <form-beans>
    <form-bean name="Ch10_06" type="org.eclipsebook.ch10.Ch10_06"/>
  </form-beans>

  <action-mappings>
    <action path="/Ch10_04"
      type="org.eclipsebook.ch10.Ch10_04"
      name="Ch10_06"
      scope="request"
      input="/Ch10_01.jsp">
      <forward name="OK" path="/Ch10_05.jsp"/>
    </action>

  </action-mappings>

</struts-config>

Example 10-7. A forwarding class for Struts

package org.eclipsebook.ch10;

import org.eclipsebook.ch10.Ch10_06;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.apache.struts.action.*;

public class Ch10_04 extends Action
{



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

228 | Chapter 10: Developing Struts Applications with Eclipse

The error messages referenced in the action servlet’s code are stored in the file Appli-
cationResources.properties, which goes in the deployment\WEB-INF\classes directory
in the Eclipse project. You can see this file in Example 10-8 (and it’s connected to the
action servlet in web.xml, Example 10-5).

    public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)

throws Exception {

        ActionErrors actionerrors = new ActionErrors( );

        Ch10_06 orderForm = (Ch10_06)form;

        String email = orderForm.getEmail( );
        if(email.trim( ).equals("")) {
            actionerrors.add(ActionErrors.GLOBAL_ERROR, new
                ActionError("error.noemail"));
        }

        String type = orderForm.getType( );
        if(type.trim( ).equals("")) {
            actionerrors.add("ActionErrors.GLOBAL_ERROR", new
                ActionError("error.notype"));
        }

        String[] items = orderForm.getItems( );
        if(items == null) {
            actionerrors.add("ActionErrors.GLOBAL_ERROR", new
                ActionError("error.noitems"));
        }

        if(actionerrors.size( ) != 0) {
            saveErrors(request, actionerrors);
            return new ActionForward(mapping.getInput( ));
        }

        return mapping.findForward("OK");
    }
}

Example 10-8. ApplicationResources.properties

email=<b>Your email:</b>
type=<b>Type:</b>
items=<b>Items:</b>

error.noemail=<li><font color="red">Please enter your email address.</font></li>
error.notype=<li><font color="red">Please select a type.</font></li>
error.noitems=<li><font color="red">Please select at least one item.</font></li>

Example 10-7. A forwarding class for Struts (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating the Model | 229

If the user omits some data in the view, he’ll see one of the error messages in Applica-
tionResources.properties, as you see in Figure 10-3.

Creating the Model
We’re almost done with the code for the project; the final two code files are the sum-
mary page that displays the data the user entered, Ch10_05.jsp, and the bean that
acts as the model and stores the data the user entered, Ch10_06.java. In the sum-
mary page, Ch10_05.jsp, we use the data passed on to us in a bean object and vari-
ous Struts tags to display that data, as you see in Example 10-9. This file goes into
the deployment directory, the same as the original view, Ch10_01.jsp.

errors.header=<font color="red">Please correct the following error(s):<ul>
errors.footer=</ul>

Figure 10-3. Handling an error

Example 10-9. The JSP to display order information

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>

Example 10-8. ApplicationResources.properties (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

230 | Chapter 10: Developing Struts Applications with Eclipse

Ch10_06.java, the bean that stores the data the user entered, supports properties
corresponding to that data to make it accessible to the controller and the summary
page. You can see how this works in Example 10-10. This file, like all the other .java
files in the project, goes into the src folder.

<HTML>
    <HEAD>
        <TITLE>Here is what you ordered...</TITLE>
    </HEAD>

    <BODY>
        <H1>Here is what you ordered...</H1>
        <bean:message key="type"/>
        <bean:write name="Ch10_06" property="type"/>
        <BR>
        <BR>
        <bean:message key="items"/>
        <BR>
        <logic:iterate id="items1" name="Ch10_06" property="items">
            <%= items1 %>
            <BR>
        </logic:iterate>
        <BR>
        <bean:message key="email"/>
        <bean:write name="Ch10_06" property="email"/>
        <BR>
    </BODY>
</HTML>

Example 10-10. Form handler

package org.eclipsebook.ch10;
import org.apache.struts.action.ActionForm;

public class Ch10_06 extends ActionForm
{

    private String email = "";
    private String type = "";
    private String[] items;

    public String getEmail( )
      {
        return email;
    }

    public void setEmail(String email)
      {
        this.email = email;
    }

Example 10-9. The JSP to display order information (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating the Model | 231

That completes the entire application—our first large-scale Eclipse project—but it’s
still just about the minimum you need for a Struts application. Here’s what the
project looks like in overview in Eclipse:

Ch10_01
   |_ _src
   |  |_ _org.eclipsebook.ch10
   |     |_ _ Ch10_02.java
   |     |_ _ Ch10_03.java
   |     |_ _ Ch10_04.java
   |     |_ _ Ch10_06.java
   |
   |_ _JRE System Library
   |_ _servlet.jar
   |_ _struts.jar
   |
   |_ _deployment
      |
      |_ _WEB-INF
      |  |
      |  |_ _classes
      |  |  |_ _ApplicationResources.properties
      |  |
      |  |_ _lib
      |  |  |_ _commons-beanutils.jar
      |  |  |_ _commons-collections.jar
      |  |  |_ _commons-digester.jar
      |  |  |_ _struts.jar
      |  |
      |  |_ _Ch10.tld
      |  |_ _struts-bean.tld
      |  |_ _struts-config.xml
      |  |_ _struts-html.tld

    public String getType( )
      {
        return type;
    }

    public void setType(String type)
      {
        this.type= type;
    }

    public String[] getItems( ) {
        return items;
    }

    public void setItems(String[] items) {
        this.items = items;
    }
}

Example 10-10. Form handler (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

232 | Chapter 10: Developing Struts Applications with Eclipse

      |  |_ _struts-logic.tld
      |  |_ _struts-template.tld
      |  |_ _web.xml
      |
      |_ _Ch10_01.jsp
      |_ _Ch10_05.jsp

Before building, there’s one thing to note: the code for the action servlet, Ch10_04.
java, uses objects of the Ch10_06 class to hold the data the user passed to us:

public class Ch10_04 extends Action
{
    public ActionForward execute(ActionMapping mapping,

ActionForm form,
HttpServletRequest request,
HttpServletResponse response)

throws Exception {

        ActionErrors actionerrors = new ActionErrors( );

        Ch10_06 orderForm = (Ch10_06)form;

        String email = orderForm.getEmail( );
        .
        .
        .

That dependency could be a problem if Ch10_04.java were built before Ch10_06.
java. Although this would be an issue using a build tool like Ant, it’s not a problem
here. It turns out that Eclipse checks build dependencies like this automatically and
resolves them by compiling files in the correct order.

On the other hand, if you have circular dependencies, where file A depends on file B,
which in turn depends on file A, you’ll get an error. You can enable or disable circu-
lar dependencies for a project (the default is disabled) with the Window ➝ Prefer-
ences ➝ Java ➝ Compiler ➝ Build Path page, as you see in Figure 10-4. In that dialog,
select the Use project settings radio button; then you can set the Circular dependen-
cies item to Error or Warning.

Note also that we’ve deselected the “Scrub output folders on full build” checkbox in
Figure 10-4. To see why that’s important, build the project now using either the
Project ➝ Build Project or Project ➝ Rebuild Project menu items. When you select
the Project ➝ Rebuild Project menu item, which builds everything from scratch,
you’ll get the expected result, which means all our .class files will appear in the
org\eclipsebook\ch10 folder under the classes folder, which is what we want:

deployment
   |
   |_ _WEB-INF
      |
      |_ _classes



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating the Model | 233

         |_ _org
            |_ _eclipsebook
               |_ _ch10
                  |_ _Ch10_02.class
                  |_ _Ch10_03.class
                  |_ _Ch10_04.class
                  |_ _Ch10_06.class

However, there’s a problem: by default, Eclipse scrubs—deletes the contents of—the
output folder, which we’ve linked to the classes folder. And that folder held the file
ApplicationResources.properties, which has now been deleted (scrubbing happens by
default if you select the Project ➝ Rebuild Project menu item but not if you select the
Project ➝ Build Project item).

Accidental scrubbing is the kind of issue we haven’t had to deal with when creating
smaller projects, but in a larger project with many files, it can be a problem. To solve
it, deselect the “Scrub output folders on full build” checkbox, as you see in

Figure 10-4. Setting compiler options



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

234 | Chapter 10: Developing Struts Applications with Eclipse

Figure 10-4. Now if you rebuild the project, ApplicationResources.properties will be
preserved and the .class files will be built:

deployment
   |
   |_ _WEB-INF
      |
      |_ _classes
         |_ _ApplicationResources.properties
         |_ _org
            |_ _eclipsebook
               |_ _ch10
                  |_ _Ch10_02.class
                  |_ _Ch10_03.class
                  |_ _Ch10_04.class
                  |_ _Ch10_06.class

Now that the project is built, you can run it as you saw in Figures 10-1 and 10-2.

As you can see, there was a lot of code and folder-juggling here, as there usually is
when creating Struts applications. There’s an Eclipse plug-in that can make life
somewhat easier, the Easy Struts plug-in, and we’ll take a look at using it next.

Using the Easy Struts Plug-in
The Easy Struts plug-in is available for free from http://sourceforge.net/projects/
easystruts. This plug-in adds Struts support to a project and has a number of code-
generation wizards that let you create actions, forms, and so on.

To use this plug-in, Easy Struts recommends that you start by creating a Tomcat
project using the Sysdeo Tomcat plug-in we looked at in Chapter 9 (which means
that we’ll use an older version of Tomcat in this example, as we did when using the
Tomcat plug-in in the previous chapter). Call this Tomcat project Ch10_02.

To work with Easy Struts, you start by configuring the plug-in. Select Window ➝

Preferences, then select the Easy Struts item and the Struts 1.1 tab. Add the Struts
JAR files and TLD files so the plug-in knows where to find them, as you see in
Figure 10-5. Accept the other defaults by clicking OK.

To add Struts support to the Ch10_02 project, right-click that project and select New
➝ Other, then select the Easy Struts item in the left list and Add Easy Struts support
in the right list, as shown in Figure 10-6.

Clicking Next brings up the next pane in the dialog, shown in Figure 10-7, where you
can select Struts options; set the package to org.eclipsebook.ch10 and click Finish.

With the current version of the plug-in, you must also select Project ➝ Properties,
click the Java Build Path item, followed by the Order and Export tab, then select the
TOMCAT_HOME item, and move it, using the Up button, above the TOMCAT_HOME/common/
lib/servlet.jar and TOMCAT_HOME/lib/jasper-runtime.jar items so that TOMCAT_HOME



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Using the Easy Struts Plug-in | 235

Figure 10-5. Configuring the Easy Struts plug-in

Figure 10-6. Adding EasyStruts support



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

236 | Chapter 10: Developing Struts Applications with Eclipse

will be defined before being used. Making this change removes the warning sign
Eclipse displays in the project’s icon in the Package Explorer.

Adding Easy Struts support adds the Struts JAR files to the project automatically. To
create an input form and a corresponding bean to hold the input form’s data, right-
click the project and select New ➝ Other, select the Easy Struts item in the left list
and the Easy Form item in the right list (you can see this item in Figure 10-6), and
click Next to open the dialog you see in Figure 10-8.

Give this new form bean the name Ch10_06 to match the name of our bean in the
project we just developed, select the (Create JSP) input checkbox so that Easy Struts
will create a JSP form connected to this form bean, and name the JSP form Ch10_01.
jsp, as in our earlier project.

Easy Struts gives you some rudimentary support for creating properties in the form
bean, along with associated HTML controls in the JSP page. To do that, you click the
Add button next to the Form properties box. The only one of our controls that is sim-
ple, however, is the text box where the user can enter his email address (the other con-
trols are a more advanced checkbox list and a select control, which Easy Struts can’t
help us with), so click the Add button, enter the name of the property to add, email,
leave its type as java.lang.String, and select the HTML text control as the associated
control to create in the JSP form. When done, click Finish to add the new property to
the form and click Finish to create Ch10_01.jsp and Ch10_06.java. You can see the
resulting Ch10_01.jsp in Example 10-11 and Ch10_06.java in Example 10-12. They’re
good starts, but a lot of programming is required to make them match our earlier code.

Figure 10-7. Configuring Struts support



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Using the Easy Struts Plug-in | 237

Figure 10-8. Creating a form

Example 10-11. Generated JSP file

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean"%>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html"%>
<html>

<head>
<meta name = "Generator" content = "Easy Struts Xslt generator for Eclipse

         (http://easystruts.sf.net).">

<title>Struts Form for Ch10_06</title>
</head>
<body>

<html:form action="/[ACTION_PATH]">
email : <html:text property="email"/><html:errors

                  property="email"/></br>
<html:submit/><html:cancel/>



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

238 | Chapter 10: Developing Struts Applications with Eclipse

</html:form>
<body>

</html>

Example 10-12. Generated Java file

package org.eclipsebook.ch10;

import javax.servlet.http.HttpServletRequest;

import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionMapping;

/**
 * Ch10_06.java created by EasyStruts - XsltGen.
 * http://easystruts.sf.net
 * created on 12-02-2003
 *
 * XDoclet definition:
 * @struts:form name="Ch10_06"
 */
public class Ch10_06 extends ActionForm {

// --------------------------------------------------------- Instance Variables

/** email property */
private String email;

// --------------------------------------------------------- Methods

/**
 * Method validate
 * @param ActionMapping mapping
 * @param HttpServletRequest request
 * @return ActionErrors
 */
public ActionErrors validate(

ActionMapping mapping,
HttpServletRequest request) {

throw new UnsupportedOperationException(
             "Generated method 'validate(...)' not implemented.");

}

/**
 * Returns the email.
 * @return String
 */
public String getEmail( ) {

return email;
}

Example 10-11. Generated JSP file (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Using the Easy Struts Plug-in | 239

To create an action servlet, right-click the project, select New ➝ Other, select Easy
Struts in the list on the right as before, select Easy Action in the list on the right, and
click Next. This opens the dialog you see in Figure 10-9.

/**
 * Set the email.
 * @param email The email to set
 */
public void setEmail(String email) {

this.email = email;
}

}

Figure 10-9. Creating an action

Example 10-12. Generated Java file (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

240 | Chapter 10: Developing Struts Applications with Eclipse

Clicking the Next button takes you to the next pane, where you can create forwards
to other servlets and JSPs; in this case, just click Finish to generate the action servlet
skeleton for Ch10_04.java you see in Example 10-13. As you can see, the backbone
of an action servlet is there, but it will take a lot of work to add all the code we had
in our earlier version of this file.

Example 10-13. Generated servlet code

package org.eclipsebook.ch10;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.apache.struts.action.Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

/**
 * Ch10_04.java created by EasyStruts - XsltGen.
 * http://easystruts.sf.net
 * created on 12-02-2003
 *
 * XDoclet definition:
 * @struts:action path="/Ch10_04" name="Ch10_06" input="/form/.jsp" validate="true"
 */
public class Ch10_04 extends Action {

// --------------------------------------------------------- Instance Variables

// --------------------------------------------------------- Methods

/**
 * Method execute
 * @param ActionMapping mapping
 * @param ActionForm form
 * @param HttpServletRequest request
 * @param HttpServletResponse response
 * @return ActionForward
 * @throws Exception
 */
public ActionForward execute(

ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)
throws Exception {
Ch10_06 Ch10_06 = (Ch10_06) form;
throw new UnsupportedOperationException(

             "Generated method 'execute(...)' not implemented.");
}

}



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Using the Easy Struts Plug-in | 241

As you can see, Easy Struts provides skeletal code for the various parts of a Struts
program, and it’s up to you to fill in the details. We’re not going to go through the
whole process here, but if you’re interested, the Ch10_02 file in the download for this
book is the resulting application—the same as the one we created earlier in this
chapter—but it’s based on Easy Struts.

That completes our look at Eclipse and building Struts projects manually and with a
plug-in. Struts applications need a lot of code and multiple files, but that’s been use-
ful to us since it gave us a look at developing larger scale applications with Eclipse. In
the next two chapters, we’re going to take a look at developing our own plug-ins.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

242

Chapter 11CHAPTER 11

Developing a Plug-in: The Plug-in
Development Environment,
Manifests, and Extension Points

In this chapter and the next, we’re going to start modifying Eclipse itself. So far,
we’ve been using it as we’ve downloaded it, adding a few prebuilt plug-ins as
needed. Now we’re going to start creating our own plug-ins. Eclipse was built as an
extensible IDE, and we’re going to extend it.

As you know, plug-ins are stored in folders in the plugins directory, and that’s where
the ones we create will go. These folders typically have names like org.eclipse.swt.
win32_2.1.1 or org.junit_3.8.1, where the folder name is the plug-in name, followed
with an underscore and a version number. When Eclipse loads a plug-in that has sev-
eral folders in the plugins directory, it checks the version number in order to load
only the most recent version.

You’ll typically find the following files in every plug-in’s folder:

*.jar
Java code for the plug-in

about.html
Displayed when the user asks for info about the plug-in

plugin.properties
Holds string data used by plugin.xml

plugin.xml
Plug-in manifest that describes the plug-in to Eclipse

lib
Holds additional JAR files

icons
Directory for icons (GIF format is standard)

We’ll see these various files as we develop plug-ins, but we’ll start with the mini-
mum needed. The plugin.xml file is the plug-in manifest, which tells Eclipse about
the plug-in. In fact, that’s the only file you really need to create a plug-in as far as
Eclipse is concerned.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

All You Really Need Is plugin.xml | 243

All You Really Need Is plugin.xml
Creating a very simple plug-in is easy enough—all you need is a working plugin.xml.
To show how this works, you can use a text editor to create a new plug-in manifest,
plugin.xml, for a fictional plug-in named org.eclipsebook.first. In this case, we’ll
set the plug-in’s name, ID, version number, and the name of its provider like this:

<?xml version="1.0" encoding="UTF-8"?>
<plugin
    id="org.eclipsebook.first"
    name="First Plug-in"
    version="1.0.0"
    provider-name="Steve">
</plugin>

Just store plugin.xml in plugins\org.eclipsebook.first_1.0.0 and restart Eclipse. You
can find the new plug-in in the plug-in registry, which is where Eclipse holds data
about all current plug-ins. To see that data, select Help ➝ About Eclipse Platform
and click the Plug-in Details button, opening the About Eclipse Platform Plug-ins
dialog you see in Figure 11-1.

You can see the new, fictional plug-in in the registry, near the bottom.

Figure 11-1. The plug-in registry



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

244 | Chapter 11: Developing a Plug-in: The Plug-in Development Environment, Manifests, and Extension Points

If an Eclipse project has a plug-in manifest, it’s considered a plug-in
project.

That’s a nice exercise but it doesn’t go very far in extending Eclipse. Developing a
real plug-in involves creating multiple files, including multiple code files. The good
news is that Eclipse has built-in wizards to help you out.

Using the Plug-in Development
Environment
The Eclipse platform is already a conglomeration of over a hundred plug-ins, and
they build on each other using extension points. An extension point lets one plug-in
build on what another plug-in exports. In this chapter, we’re going to use extension
points to add new menus, buttons, and so on to Eclipse in a plug-in.

Plug-ins can only make use of classes exported by other plug-ins,
which makes extension points especially important. For example, to
let a plug-in make use of prebuilt Java code, you can wrap JAR files
inside plug-ins and let other plug-ins depend on it. Much support for
custom plug-ins is already built into several standard plug-ins that
come with Eclipse.

Using the Eclipse Plug-in Development Environment (PDE), you can build plug-ins
that will build on the standard extension points available. Here are the types of plug-
in projects that the PDE will create for you:

Plug-in projects
A standard plug-in

Fragment projects
An add-on or addition to a plug-in (sometimes used for internationalization)

Feature projects
Projects that contain one or more plug-ins

Update site projects
Web site that can automatically install features

The PDE has a number of built-in Wizards, and we’re going to make use of that sup-
port in our next example. This example will create a simple plug-in that supports
both a menu item and a button in the toolbar. To create the plug-in project, select
File ➝ New ➝ Project. Select Plug-in Development in the left box of the New Project
dialog and Plug-in Project in the right box, as shown in Figure 11-2. Then click Next.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Using the Plug-in Development Environment | 245

In the next pane, name the project org.eclipsebook.ch11.Ch11_01, as you see in
Figure 11-3, and click Next. This project name will also be the ID of the plug-in
when it comes time to use it in Eclipse.

In the next pane, make sure the “Create a Java project” radio button is selected, as
you see in Figure 11-4, and click Next.

The next pane is the Plug-in Code Generators pane, shown in Figure 11-5. We’re
going to select the built-in “Hello, World” example here, so select the “Hello, World”
item in the left box and click Next. (This pane also allows you to create other types
of plug-in projects, such as plug-ins with editors, views, and so on.)

Figure 11-2. Creating a plug-in project

Figure 11-3. Naming the project



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

246 | Chapter 11: Developing a Plug-in: The Plug-in Development Environment, Manifests, and Extension Points

Figure 11-4. Setting the project type

Figure 11-5. Creating a Hello, World example



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Using the Plug-in Development Environment | 247

In the following pane you can configure the plug-in. Enter a provider name—we’ll
use Eclipse Book—and accept the other defaults, which appear in Figure 11-6. Click
Finish to create the code for this plug-in (clicking Next here would let you set the
text the plug-in displays in its message box, but the default text is fine).

Clicking Finish opens the plug-in manifest editor, as you see in Figure 11-7, where
it’s displaying a Welcome page. You can open the editor later yourself by double-
clicking plugin.xml in the Package Explorer.

The plug-in manifest editor looks simple, but there’s a lot going on here. Note, in
particular, the tabs at the bottom of the editor:

Welcome
The Welcome page you see in Figure 11-7, describing the plug-in

Overview
Holds summary information for the plug-in, such as name, version, provider
name, and so on

Dependencies
Indicates the plug-ins required for this plug-in

Runtime
Indicates the libraries needed to run this plug-in

Figure 11-6. Configuring the plug-in



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

248 | Chapter 11: Developing a Plug-in: The Plug-in Development Environment, Manifests, and Extension Points

Extensions
Indicates the extensions points used by the plug-in

Extension Points
Indicates the extension points defined by the plug-in

Source
An XML editor that lets you edit the source code for plugin.xml

The manifest editor lets you edit plugin.xml, either directly by clicking the Source
button, or by using the various tabs in the editor. For example, to build on the stan-
dard extension points, you can click the Extensions tab and use the Add button to
add functionality to your plug-in, as we’ll do later in this chapter. When you make
changes this way, the PDE edits plugin.xml for you automatically, saving you the
trouble of editing raw XML.

Using the Run-time Workbench
At this point, you could create Ch11_01.jar, and install that JAR file, plugin.xml, and
so on in the plugins directory and you’d be ready to go—the new plug-in would sup-
port a menu item and a toolbar button. But for testing purposes, Eclipse offers a
shortcut: the Run-time Workbench. This is a workbench that you can launch from
Eclipse and use to test plug-ins.

Figure 11-7. The plug-in manifest editor



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Using the Run-time Workbench | 249

To run the Run-time Workbench, select the plug-in project in the Package Explorer,
select Run ➝ Run, open the Run-time Workbench node in the left box, and select the
Run-time Workbench item under that node, as you can see in Figure 11-8. Then
select the JRE you want to use when working with the Run-time Workbench (you
don’t need to do this step if you have an installed JRE you’ve named JRE2, which is
what the Run-time Workbench seaches for by default). Then click Run. (The next
time, you can simply select Run ➝ Run As ➝ Run-time Workbench.)

This starts the Run-time Workbench, but we’re not done yet. To see the results of
this plug-in, select Window ➝ Customize Perspective ➝ Other and select the check-
box for the Sample Action Set item, which is defined by our plug-in, and click OK.
This adds the menu defined by the new plug-in, Sample Menu, to the menu bar and
a button with the Eclipse icon to the toolbar just under that menu, as you can see in
the Run-time Workbench in Figure 11-9.

When you select the Sample Menu ➝ Sample Action item or click the New button,
the plug-in displays a message box with the message “Hello, Eclipse World”, as you
see in Figure 11-10.

Congratulations—you’ve created a working Eclipse plug-in that’s running. To end
the example, close the Run-time Workbench.

Figure 11-8. Setting a launch configuration for the Run-time Workbench



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

250 | Chapter 11: Developing a Plug-in: The Plug-in Development Environment, Manifests, and Extension Points

You can debug your code as you would any other. Just select Run ➝

Debug As ➝ Run-time Workbench.

In this case, the PDE wizards created the needed code for this sample plug-in. In the
next example, we’re going to build the code ourselves.

Creating a Standard Plug-in
In this example, we’re going to be responsible for creating our own plug-in. Like the
previous example, this plug-in is going to have its own menu item and toolbar but-
ton, but this time, we’re going to do the legwork ourselves.

Figure 11-9. The Run-time Workbench

Figure 11-10. The plug-in’s message box



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating a Standard Plug-in | 251

Start by selecting File ➝ New ➝ Project. In the New Project dialog, select Plug-in
Development and Plug-in Project, and click Next. In the next pane, enter the new
project’s name, org.eclipsebook.ch11.Ch11_02, and click Next to open the Plug-in
Project Structure pane. Click Next again to accept the defaults.

In the Plug-in Code Generators pane, select the Default Plug-In Structure item as
shown in Figure 11-11, and click Next.

In the following pane, the Simple Plug-in Content pane shown in Figure 11-12, set
the provider name—we’ll use Eclipse Book in this example. We won’t need the con-
venience methods the wizard can generate for us, so deselect the checkboxes in the
“Plug-in code generation options” box. Then click Finish.

This should generate the Ch11_02 plug-in, and open the manifest editor in Eclipse.
Click the Source page, which displays the XML in plugin.xml:

<?xml version="1.0" encoding="UTF-8"?>
<plugin
   id="org.eclipsebook.ch11.Ch1102"
   name="Ch11_02 Plug-in"
   version="1.0.0"
   provider-name="Eclipse Book"
   class="org.eclipsebook.ch11.Ch11_02.Ch11_02Plugin">

Figure 11-11. Setting the plug-in’s code wizard



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

252 | Chapter 11: Developing a Plug-in: The Plug-in Development Environment, Manifests, and Extension Points

   <runtime>
      <library name="Ch1102.jar"/>
   </runtime>
   <requires>
      <import plugin="org.eclipse.core.resources"/>
      <import plugin="org.eclipse.ui"/>
   </requires>

</plugin>

That’s our new plug-in’s manifest. Our goal in this plug-in is to add a new menu
item and a button in the toolbar. To make things happen in a plug-in, you define
actions and action sets.

An action represents a command that the user can trigger. To implement what goes
on in an action, you extend the Action class. You can work with the same Action
object in a variety of situations, as when the user selects a menu item or clicks a tool-
bar button—the action object will make the same thing happen in either case. In this
way, the same action can be initiated by different user-interface elements.

As you can guess from the name, an action set is a set of actions. You tie actions to
user-interface elements like menus and toolbars with an action set (the <actionSet>
element in plugin.xml typically contains both <menu> elements and <action> elements).
An action is a Java object defining what you want to have happen when the user issues
a specific command, and an action set ties actions to user-interface elements.

Figure 11-12. Setting code options



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating a Standard Plug-in | 253

You create action sets as extensions of the org.eclipse.ui.actionSets extension
point, which is how you implement menu items or buttons in a plug-in. You could
implement this extension in the XML in plugin.xml directly, but it’s much easier to
use the manifest editor.

Creating an Action Set
To see how to create an action set to tie a menu and toolbar button to an action,
click the Extension tab in the manifest editor and click Add to open the New Exten-
sion wizard you see in Figure 11-13. Select the Generic Wizards item in the left box,
the Schema-based Extension in the right box, and click Next.

The next pane is the Extension Point Selection pane, which you can see in
Figure 11-14. In this case, we want to add support for a menu item and a toolbar
button, which is all handled together in our action set, so select the org.eclipse.ui.
actionSets extension point, and click Finish.

This adds the base extension we’ll need for toolbar and menu support. To create the
action set that we’ll use, right-click the org.eclipse.ui.actionSets item in the All
Extensions box and select the New ➝ actionSet item, creating a new action set as you
see in Figure 11-15.

Figure 11-13. The New Extension wizard



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

254 | Chapter 11: Developing a Plug-in: The Plug-in Development Environment, Manifests, and Extension Points

To set the properties of this new action set, select it and, in the Properties view, set
the label property to New Action Set and the visible property to true. Using the
manifest editor in this way lets you edit the XML in plugin.xml automatically; here’s
the new XML we’ve created, indicating that this extension contains an action set:

<extension
      point="org.eclipse.ui.actionSets">
   <actionSet
         label="New Action Set"
         visible="true"
         id="org.eclipsebook.ch11.Ch11_02.actionSet1">
   </actionSet>
</extension>

Figure 11-14. Selecting an extension point



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating a Standard Plug-in | 255

Creating a Menu
To create a new menu, right-click New Action Set in the Extensions tab and select
New ➝ menu. In the Properties view, set the id property of the new menu to new-
Menu, and the label property to New Menu, as you see in Figure 11-16.

To add a menu item here, we’ll create a menu separator, which acts as a placeholder
and will allow us to add items to this menu at runtime. To add the menu separator,
right-click New Menu and select New ➝ separator. In the Properties view, set the
separator’s name property to newGroup, as you see in Figure 11-17.

Our action set has a new menu at this point, and the next step is to tie an action to
that menu. If you have multiple menus and multiple toolbar buttons, they could all
go into the same action set (which would group your toolbar buttons next to each
other in the toolbar).

Creating an Action
Now we’ll add a new action to connect Java code to the menu and toolbar handling
supported by the action set. To create a new action, right-click the New Action Set
item in the All Extensions box and select New ➝ action.

Figure 11-15. Creating an action set



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

256 | Chapter 11: Developing a Plug-in: The Plug-in Development Environment, Manifests, and Extension Points

Figure 11-16. Creating a new menu

Figure 11-17. Creating a menu separator



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating a Standard Plug-in | 257

To customize this action, we’ll create a menu item and toolbar item that will display
the message “No worries.” To do that, select the new action in the Extensions box.
In the Properties view, set the label property to New Action and the toolTip prop-
erty to No worries. Next, set the menubarPath property to newMenu/newGroup and
the toolbarPath property to newGroup.

Now we need to connect this action to Java code. To do that, select the action, New
Action, in the All Extensions box, and click the ellipsis (“...”) button that appears
when you select the class property in the Properties view. This opens the Java
Attribute Editor you see in Figure 11-18. Click the Generate a new Java class radio
button, enter org.eclipsebook.ch11.Ch11_02 in the Package name box (or click the
Browse button and select that package), and name the class NewAction, as you see in
the figure. Then click Finish.

This will create a new <action> element in plugin.xml:

<action
      label="New Action"
      tooltip="No worries."
      class="org.eclipsebook.ch11.Ch11_02.NewAction"
      menubarPath="newMenu/newGroup"
      toolbarPath="newGroup"
      id="org.eclipsebook.ch11.Ch11_02.action1">
</action>

Figure 11-18. Creating an action class



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

258 | Chapter 11: Developing a Plug-in: The Plug-in Development Environment, Manifests, and Extension Points

In addition, a new Java file, NewAction.java, has been created and added to the
project. The framework of the plug-in is in place; all that’s left is to write the code
that will actually display a message box when the toolbar button or menu item is
selected.

Writing the Code
Open NewAction.java now. To display a message box, we’ll need an object imple-
menting the Workbench window interface, IWorkbenchWindow. The object we need is
passed to the init method in NewAction.java, so begin by creating a private class
variable, workbenchWindow, to hold it:

public class NewAction implements IWorkbenchWindowActionDelegate {
private IWorkbenchWindow workbenchWindow;

        .
        .
        .

We’ll store the workbench window passed to us in the init method in this variable
this way:

public void init(IWorkbenchWindow window)  {
workbenchWindow = window;

}

Now use this variable and the openInformation method of the MessageDialog class to
display a message box with the message “No worries.” in the run method:

public void run(IAction action)  {
MessageDialog.openInformation(
workbenchWindow.getShell( ),
"New Plug-in",
"No worries.");

}

Then save all files. That completes the plug-in development; to test this new plug-in,
launch the Run-time Workbench. Select Window ➝ Customize Perspective as
before, and select the box next to the New Action Set item. Doing so should give you
the result you see in Figure 11-19, where you can see the default square button icon
Eclipse uses for toolbar buttons and the new menu, New Menu.

When you select the New Menu ➝ New Action menu item or click the new button,
you should see the New Plug-In message box, shown in Figure 11-20. Congratula-
tions—the new plug-in is doing exactly what it should.

Automatically Customizing a Perspective
The business of having to customize the perpective every time you launch a new
plug-in using Window ➝ Customize Perspective is a little cumbersome. There’s a
way around it if you use the extension point org.eclipse.ui.perspectiveExtensions
in plugin.xml, which can add the plug-in to a perspective automatically. It’s easy



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating a Standard Plug-in | 259

enough to make this change simply by editing the XML in plugin.xml to use the
extension point org.eclipse.ui.perspectiveExtensions. For example, to automati-
cally add our plug-in to the Java perspective, you can use the org.eclipse.ui.
javaPerspective class like this in plugin.xml:

<?xml version="1.0" encoding="UTF-8"?>
<plugin
   id="org.eclipsebook.ch11.Ch1102"
   name="Ch11_02 Plug-in"
   version="1.0.0"
   provider-name="Eclipse Book"
   class="org.eclipsebook.ch11.Ch11_02.Ch11_02Plugin">

   <runtime>
      <library name="Ch1102.jar"/>
   </runtime>

Figure 11-19. Using the new plug-in

Figure 11-20. The message from the new plug-in



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

260 | Chapter 11: Developing a Plug-in: The Plug-in Development Environment, Manifests, and Extension Points

   <requires>
      <import plugin="org.eclipse.core.resources"/>
      <import plugin="org.eclipse.ui"/>
   </requires>

   <extension
         point="org.eclipse.ui.actionSets">
      <actionSet
            label="New Action Set"
            visible="true"
            id="org.eclipsebook.ch11.Ch11_02.actionSet1">
         <menu
               label="New Menu"
               id="newMenu">
            <separator
                  name="newGroup">
            </separator>
         </menu>
         <action
               label="New Action"
               tooltip="No worries."
               class="org.eclipsebook.ch11.Ch11_02.NewAction"
               menubarPath="newMenu/newGroup"
               toolbarPath="newGroup"
               id="org.eclipsebook.ch11.Ch11_02.action1">
         </action>
      </actionSet>
   </extension>
   <extension
      point = "org.eclipse.ui.perspectiveExtensions">
      <perspectiveExtension
          targetID="org.eclipse.ui.javaPerspective">
         <actionSet
             id="org.eclipsebook.ch11.Ch11_02.actionSet1">
         </actionSet>
      </perspectiveExtension>
   </extension>
   </plugin>

To automatically add the plug-in to the Resource perspective, use the class
org.eclipse.ui.resourcePerspective instead. Save plugin.xml after you make these
changes and restart the Run-time Workbench. The plug-in should be installed on
startup.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

261

Chapter 12 CHAPTER 12

Developing a Plug-in: Creating
Editors and Views

In this chapter, we’re going to create custom editors and views in plug-ins. Plug-in
development is a huge topic by itself, and it can take dozens of files to create a com-
mercial plug-in. Fortunately, the Eclipse PDE comes with a number of wizards that
will write up the plug-in’s code framework for you, saving significant time. We’ll see
how to use those wizards in this chapter, rewriting the code they generate to make
the plug-in do what we want.

Creating a Multi-Page Editor
The first example in this chapter is going to create a multi-page editor associated
with the file extension we’re going to specify: .xyz. When the user double-clicks a file
with that extension in the Package Explorer, Eclipse will use our editor to open and
edit it. That editor will have two tabs corresponding to its two pages—the default
tab will display the text contents of the file, and the Sorted tab will display those con-
tents sorted in alphabetical order. You can create files with the .xyz extension using
the New ➝ File menu item, but this plug-in example is also going to have a built-in
wizard that will create .xyz files for the user and place default text in them.

Creating the Code
To create the code skeleton for this example, select New ➝ Project, and in the New
project dialog, select Plug-in Development in the left box, Plug-in Project in the right
box, and click Next. Give the name of the project as org.eclipsebook.ch12.Ch12_01
in the following pane, and click Next. Leave the defaults selected in the Plug-in
Project Structure pane to make this a Java project, and click Next again to bring up
the Plug-in Code Generators pane shown in Figure 12-1.

Select the Plug-in with a multi-page editor item, as you see in the figure, and click
Next. In the following pane, set the Provider name to Eclipse Book and click Next
again. In the next pane that appears, set the File Extensions item to xyz to associate
the plug-in with that extension, as you see in Figure 12-2, and click Next again.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

262 | Chapter 12: Developing a Plug-in: Creating Editors and Views

Figure 12-1. Creating a plug-in with a multi-page editor

Figure 12-2. Configuring the plug-in’s editor



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating a Multi-Page Editor | 263

In the next pane, set the file extension to xyz, and give file.xyz as the initial file
name, as shown in Figure 12-3. Then click Finish to create the code skeleton for this
plug-in.

Here are the files the PDE wizard creates and adds to the src folder in the org.
eclipsebook.ch12.Ch12_01 project:

src
|_ _org.eclipsebook.ch12.Ch12_01
|   |_ _Ch12_01Plugin.java                The standard plug-in file
|
|_ _org.eclipsebook.ch12.Ch1201.editors
|   |_ _MultiPageEditor.java              The editor's code
|   |_ _MultiPageEditorContributor.java    The editor actions (menus/toolbar items)
|
|_ _org.eclipsebook.ch12.Ch1201.wizards
|   |_ _SampleNewWizard.java              The wizard's code
|   |_ _SampleNewWizardPage.java          The code for the wizard's page
|
|__ _plugin.xml

Dissecting the Wizard
This plug-in supports both a wizard and a multi-page editor. We’re going to focus on
the editor, but it’s instructive to take a brief look at the wizard as well. The job of the
wizard is to create a new file, file.xyz, and to add it to the project. The Java code that

Figure 12-3. Configuring the plug-in’s wizard



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

264 | Chapter 12: Developing a Plug-in: Creating Editors and Views

does this is the SampleNewWizard class, which extends the Eclipse Wizard class. The
visual page that the wizard displays to the user is supported in the
SampleNewWizardPage class; that class constructs a composite SWT object that displays
the controls the user will interact with. Here’s how code in SampleNewWizard creates
the page the wizard will display:

public class SampleNewWizard extends Wizard implements INewWizard {
private SampleNewWizardPage page;
private ISelection selection;

public SampleNewWizard( ) {
super( );
setNeedsProgressMonitor(true);

}

public void addPages( ) {
page = new SampleNewWizardPage(selection);
addPage(page);

}
        .
        .
        .

After the user has filled in the data the wizard asks for (which is the project to add
the new file to and the name of the file) and clicked Finish, the SampleNewWizard
class’s doFinish method is called. This method is passed both the name of the project
to add the new file to and the name of the file. Take a look at this method’s code,
which shows how to create a new file, add it to an Eclipse project, and open that file
in Eclipse—some of the most impressive things you can do in a plug-in:

private void doFinish(
String containerName,
String fileName,
IProgressMonitor monitor)
throws CoreException {
// create a sample file
monitor.beginTask("Creating " + fileName, 2);
IWorkspaceRoot root = ResourcesPlugin.getWorkspace().getRoot( );
IResource resource = root.findMember(new Path(containerName));
if (!resource.exists( ) || !(resource instanceof IContainer)) {

throwCoreException("Container \"" + containerName +
          "\" does not exist.");

}
IContainer container = (IContainer) resource;
final IFile file = container.getFile(new Path(fileName));
try {

InputStream stream = openContentStream( );
if (file.exists( )) {

file.setContents(stream, true, true, monitor);
} else {

file.create(stream, true, monitor);
}



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating a Multi-Page Editor | 265

stream.close( );
} catch (IOException e) {
}
monitor.worked(1);
monitor.setTaskName("Opening file for editing...");
getShell().getDisplay().asyncExec(new Runnable( ) {

public void run( ) {
IWorkbenchPage page =

PlatformUI.getWorkbench( )
                    .getActiveWorkbenchWindow().getActivePage( );

try {
page.openEditor(file);

} catch (PartInitException e) {
}

}
});
monitor.worked(1);

}

The default text in the new file is set when doFinish opens a new input stream to
read the contents it should place in the file. That’s done in the openContentStream
method, which we’re going to modify in order to place our own text, “Here is the
sample text.”, into the new file by default. Here’s the new code to add to this
method:

private InputStream openContentStream( ) {
String contents =
"Here is the sample text.";
return new ByteArrayInputStream(contents.getBytes( ));

}

That modifies the wizard to fill the new file with the default text we’ve specified.

Coding a Multi-Page Editor
The real action in this example takes place in MultiPageEditor.java, the Java support
for the editor that edits .xyz files. (MultiPageEditorContributor.java is also part of the
editor, but it is peripheral to this discussion since it provides the support for menu
and toolbar actions, which we discussed in Chapter 11.) The goal here is to add two
pages to this editor: a simple text-editing page that displays the text in an .xyz file
and a second page that displays the text sorted in alphabetical order. To set up those
two pages, we’re going to adapt the code written for us by the PDE wizard.

In MultiPageEditor.java, the MultiPageEditor class supports the editor we’re creating
(this class extends the MultiPageEditorPart class, which is an Eclipse class that uses
an SWT tab folder control to display editor pages). To display the text in the first
page of the editor, this example uses an org.eclipse.editors.ui.text.TextEditor
object named editor; to display the sorted text in the second page, it uses an org.
eclipse.editors.custom.StyledText object named text. After creating those objects,
you can use the MultiPageEditorPart class’s addPage method to add the two new



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

266 | Chapter 12: Developing a Plug-in: Creating Editors and Views

pages to the editor. To do that, you override the MultiPageEditor class’s createPages
method, which is responsible for creating the pages in the editor and is called auto-
matically when the editor starts. Here’s how that looks in our modified code:

public class MultiPageEditor extends MultiPageEditorPart {

private TextEditor editor;

private StyledText text;

public MultiPageEditor( ) {
super( );

}

void createPage0( ) {
try {

editor = new TextEditor( );
int index = addPage(editor, getEditorInput( ));
setPageText(index, editor.getTitle( ));

} catch (PartInitException e) {
ErrorDialog.openError(

getSite().getShell( ),
"Error creating nested text editor",
null, e.getStatus( ));

}
}

void createPage1( ) {
Composite composite = new Composite(getContainer( ), SWT.NONE);
FillLayout layout = new FillLayout( );
composite.setLayout(layout);
text = new StyledText(composite, SWT.H_SCROLL | SWT.V_SCROLL);
text.setEditable(false);

int index = addPage(composite);
setPageText(index, "Sorted");

}

protected void createPages( ) {
createPage0( );
createPage1( );

}

That creates and adds the two pages we’re going to use in this editor. The next step
is to enable actions like File ➝ Save or File ➝ Save As when the user selects them in
the standard Eclipse menu system or toolbar. To do that, you override the doSave
and doSaveAs methods, using the getEditor method to get the IEditorPart object
that does the actual work, and calling that object’s methods of the same names. This
code has been provided for us by the PDE wizard already:

public void doSave(IProgressMonitor monitor) {
getEditor(0).doSave(monitor);

}



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating a Multi-Page Editor | 267

public void doSaveAs( ) {
IEditorPart editor = getEditor(0);
editor.doSaveAs( );
setPageText(0, editor.getTitle( ));
setInput(editor.getEditorInput( ));

}

public boolean isSaveAsAllowed( ) {
return true;

}

We still need to sort the words to be displayed in the sorted editor. You can catch
page changes by overriding the pageChange method, and if the new page holds the
sorted editor (the standard text editor is page 0, the sorted text editor is page 1),
we’ll sort the words before displaying them with a custom method named sort:

protected void pageChange(int newPageIndex) {
super.pageChange(newPageIndex);
if (newPageIndex == 1) {

sort( );
}

}

In the sort method, we get access to the unsorted text in the plain text editor (the
editor object) like this: String unsortedText = editor.getDocumentProvider( ).
getDocument(editor.getEditorInput()).get( ). The next step is to sort that text by
breaking it up into an ArrayList of words using the StringTokenizer class, breaking
on spaces, tabs, new lines, and carriage returns. Here’s what that looks like:

void sort( ) {
String unsortedText = editor.getDocumentProvider( )

         .getDocument(editor.getEditorInput()).get( );

StringTokenizer stringTokenizer =
new StringTokenizer(unsortedText, " \t\n\r");

ArrayList wordArrayList = new ArrayList( );
while (stringTokenizer.hasMoreTokens( )) {

wordArrayList.add(stringTokenizer.nextToken( ));
}

    .
    .
    .

After breaking the words up into an ArrayList, the next step is to sort those words
and reassemble them. The final step is to put the result into the StyleText control,
text, which displays the sorted text in the editor’s second page. Here’s the code:

void sort( ) {
String unsortedText = editor.getDocumentProvider( )

         .getDocument(editor.getEditorInput()).get( );

StringTokenizer stringTokenizer =
new StringTokenizer(unsortedText, " \t\n\r");



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

268 | Chapter 12: Developing a Plug-in: Creating Editors and Views

ArrayList wordArrayList = new ArrayList( );
while (stringTokenizer.hasMoreTokens( )) {

wordArrayList.add(stringTokenizer.nextToken( ));
}

Collections.sort(wordArrayList, Collator.getInstance( ));
StringWriter sortedText = new StringWriter( );
for (int loopIndex = 0; loopIndex < wordArrayList.size( ); loopIndex++) {

sortedText.write(((String) wordArrayList.get(loopIndex)));
sortedText.write(System.getProperty("line.separator"));

}

text.setText(sortedText.toString( ));
}

That sorts and displays the text in file.xyz in the Sorted tab’s editor, which com-
pletes our custom version of MultiPageEditor.java. We’ve set up our new editor and
handled its text in code. To see this editor at work, start the Run-time Workbench
and create a new Java project, testProject. Now right-click on testProject and select
New ➝ Other to open the New dialog you see in Figure 12-4. Select the Sample Wiz-
ards item in the left box and the Multi-page Editor file item on the right and click
Next to open the new wizard.

Your new wizard indicates the name of the new file, file.xyz by default, and asks you
to specify a container for the file, as shown in Figure 12-5. Browse to testProject with
the Browse button and click Finish to create the file.

That creates file.xyz and opens it for editing with the sample text we specified, as
shown in Figure 12-6. Note that you can also see file.xyz in the Package Explorer.

Our multi-page editor has two tabs: file.xyz and Sorted. Clicking the Sorted tab dis-
plays the second editor, containing the sorted text as you see in Figure 12-7.

Figure 12-4. Invoking the new wizard



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating a View | 269

Our customized editor is working as it should—it’ll open any .xyz file you double-
click in the Package Explorer. You can make changes to the text in that file in the
editor’s first page, and save the new text with Eclipse’s File ➝ Save or File ➝ Save As
menu items or the corresponding toolbar buttons. We’ve added our own editor to
Eclipse—not bad!

Creating a View
In the next example, we’re going to use a plug-in to create a new view. Start by creat-
ing a new plug-in project named org.eclipsebook.ch12.Ch12_02. In the Plug-in Code
Generators pane, which you see in Figure 12-8, select the “Plug-in with a view” wiz-
ard and click Next.

Figure 12-5. Using the new wizard

Figure 12-6. Editing file.xyz



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

270 | Chapter 12: Developing a Plug-in: Creating Editors and Views

Figure 12-7. Viewing the sorted text

Figure 12-8. Creating a plug-in with a view



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating a View | 271

In the following pane, give Eclipse Book as the provider’s name and click Next again
to bring up the Main View Settings dialog you see in Figure 12-9. In this pane, you
set the name of the view and its category—we’ll stick with the defaults, which will
make this a table-based view (i.e., the items in the view will be displayed in a table
control) named Sample View in the category Sample Category. Click Next again to
bring up the final pane of this wizard.

The last pane, shown in Figure 12-10, lets you configure the view’s actions, such as
responding when the user double-clicks an item in the view. Leave the defaults
selected and click Finish to create the framework for this plug-in.

Here are the files created and added to the project’s src folder:

src
|_ _org.eclipsebook.ch12.Ch12_02
|   |_ _Ch12_02Plugin.java               The standard plug-in file
|
|_ _org.eclipsebook.ch12.Ch1202.views
|   |_ _SampleView.java                  The view file
|
|__ _plugin.xml

Figure 12-9. Configuring the view



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

272 | Chapter 12: Developing a Plug-in: Creating Editors and Views

Adding Items to the View
The new view is supported in SampleView.java, which we’re going to adapt so that it
will display four clickable items. In SampleView.java, the SampleView class extends
the ViewPart class, which is the abstract class you base views on in plug-ins:

public class SampleView extends ViewPart {
private TableViewer viewer;
private Action action1;
private Action action2;
private Action doubleClickAction;

        .
        .
        .

Eclipse gets the content displayed in the view by calling methods in an object that
implements the IStructuredContentProvider interface. We’re going to adapt the code
in the class used to create that object, the ViewContentProvider class, to make the
view display a set of four items, “Item 1” to “Item 4” in this example. Here’s the
code:

class ViewContentProvider implements IStructuredContentProvider {
public void inputChanged(Viewer v, Object oldInput, Object newInput) {
}
public void dispose( ) {
}
public Object[] getElements(Object parent) {

return new String[] { "Item 1", "Item 2", "Item 3", "Item 4" };
}

}

Figure 12-10. Configuring the view’s actions



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating a View | 273

The view is created when Eclipse calls the createPartControl method. Here’s how
the code uses our ViewContentProvider class to get the content for the view:

public void createPartControl(Composite parent) {
viewer = new TableViewer(parent, SWT.MULTI | SWT.H_SCROLL | SWT.V_SCROLL);
viewer.setContentProvider(new ViewContentProvider( ));
viewer.setLabelProvider(new ViewLabelProvider( ));
viewer.setSorter(new NameSorter( ));
viewer.setInput(ResourcesPlugin.getWorkspace( ));
makeActions( );
hookContextMenu( );
hookDoubleClickAction( );
contributeToActionBars( );

}

That sets up our four new items, “Item 1” to “Item 4”, in the view. These items will
appear in a table, one on top of the other. The next step is to actually do something
when the user wants to work with one of these items.

Configuring View Actions
The rest of the code in SampleView.java supports the view’s actions when you click,
double-click, or right-click items in the view. We’ll change the code in the
makeActions method to customize the view’s actions to display an appropriate mes-
sage when an item is selected or double-clicked; you get access to the object corre-
sponding to the item that was selected or double-clicked this way: Object obj =
((IStructuredSelection)selection).getFirstElement( ). Here’s the modified code
that will determine which item the user wants to work with and display a message
that indicates the item by name:

private void makeActions( ) {
action1 = new Action( ) {

public void run( ) {
ISelection selection = viewer.getSelection( );
Object obj =

                   ((IStructuredSelection)selection).getFirstElement( );
showMessage("You selected " + obj.toString( ));

}
};
action1.setText("Action 1");
action1.setToolTipText("Action 1 tooltip");
action1.setImageDescriptor(PlatformUI.getWorkbench().getSharedImages( ).

getImageDescriptor(ISharedImages.IMG_OBJS_INFO_TSK));

action2 = new Action( ) {
public void run( ) {

showMessage("Action 2 executed");
}

};
action2.setText("Action 2");
action2.setToolTipText("Action 2 tooltip");
action2.setImageDescriptor(PlatformUI.getWorkbench().getSharedImages( ).



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

274 | Chapter 12: Developing a Plug-in: Creating Editors and Views

getImageDescriptor(ISharedImages.IMG_OBJS_TASK_TSK));
doubleClickAction = new Action( ) {

public void run( ) {
ISelection selection = viewer.getSelection( );
Object obj =

                   ((IStructuredSelection)selection).getFirstElement( );
showMessage("You double-clicked " + obj.toString( ));

}
};

}

As you can see, the code that the PDE wizard creates is designed to be relatively eas-
ily modified. To see this new view at work, start the Run-time Workbench and select
Window ➝ Show View ➝ Other. Select the Sample View item in the Sample Cate-
gory folder, as you see in Figure 12-11, and click OK to display the new view.

The new view appears in Figure 12-12, where you can see the four sample items we
created at the bottom of Eclipse. Very cool—we’ve added a new, functional view to
Eclipse.

Right-clicking an item and selecting the Action Item 1 executes the code we’ve added to
display the message box you see in Figure 12-13, where the selected item is identified.

Similarly, double-clicking an item displays the message box you see in Figure 12-14,
where the double-clicked item is identified in a message box.

That’s what we wanted to do—create a new view and handle user actions with the
items in the view. We’ve been able to create plug-ins with views, editors, and even
wizards. Now that you’ve gotten the basics of plug-in creation under your belt, our
last topic in this chapter will be about how to deploy your plug-ins.

Figure 12-11. Showing the new view



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Deploying a Plug-in | 275

Deploying a Plug-in
Eclipse makes it relatively simple to create deployment packages for plug-ins. To
deploy a plug-in, select File ➝ Export, selecting the “Deployable plug-ins and frag-
ments” item in the Export dialog, as you see in Figure 12-15.

Figure 12-12. The new view

Figure 12-13. Selecting an item

Figure 12-14. Double-clicking an item



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

276 | Chapter 12: Developing a Plug-in: Creating Editors and Views

Click Next to open the “Deployable plug-ins and fragments” pane you see in
Figure 12-16. You can deploy plug-ins as either .jar or .zip files; here, we’ll deploy
both plug-ins in a .zip file. Enter the fully qualified name of the .zip file to create—
plugins.zip—in the File name box and select both plug-in projects from this chapter.

Figure 12-15. Deploying plug-ins

Figure 12-16. Creating a plug-in .zip file



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Deploying a Plug-in | 277

This packages both plug-ins (including a plugin.xml and a .jar file for each) in the
plugins.zip file. Unzipping that file in the Eclipse distribution directory installs the
plug-ins—the two files for the first plug-in will be installed in eclipse\plugins\
org.eclipsebook.ch12.Ch1201_1.0.0, and the files for the second plug-in will be
installed in eclipse\plugins\org.eclipsebook.ch12.Ch1202_1.0.0.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

278

Chapter 13CHAPTER 13

Eclipse 3.0

Eclipse 3.0 is on the way, and we’ll get a look at what’s coming in this chapter. As of
this writing, 3.0 is still in beta version.

This chapter is going to use the most recent beta of Eclipse 3.0, mile-
stone build 6. Eclipse 3.0 is being designed to be as compatible as pos-
sible with Versions 2.0 and 2.1, and the update team says, “We will
provide a comprehensive Eclipse 3.0 Porting Guide that covers all
areas of breaking API changes, and describes how to port existing 2.1
plug-ins to 3.0.” You’ll also be able to import 2.0 and 2.1 projects into
3.0, but you’ll get a dialog saying that the project needs to be modi-
fied and probably won’t work with earlier versions after that, so make
sure you copy your projects first.

A Look at Eclipse 3.0
At this point, Eclipse 3.0 looks a lot like Eclipse 2.1, as you can see in Figure 13-1.

As we’re going to see, some new buttons, menu choices, and views have appeared,
but fundamentally, Eclipse 2.0 users will have no difficulty slipping right into this
new version of Eclipse.

On the other hand, the Eclipse team has been experimenting with the
look of views, editors, and perspectives in Eclipse 3.0, and there’s no
guarantee that Eclipse 3.0 will keep looking like Figure 13-1.

Some of the changes the Eclipse team is contemplating include round-
ing view tabs instead of the square ones currently in use, only present-
ing a single editor tab at once instead of stacking them (you can reach
other editor tabs with arrow buttons), and displaying icons for per-
spectives at top right, not at left.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating a Java Project | 279

Creating a Java Project
For Java programmers, the fundamental Eclipse task is creating a Java project. As
you’re going to see, the process is (so far) virtually identical to working in Eclipse 2.1.

To create a new project, right-click the Navigator view and select New ➝ Project,
opening the New Project dialog. Select the Java item in the pane on the left and Java
Project in the pane on the right and click Next. These dialogs you see in Figure 13-2
are just as we’ve seen before. Name this new project Ch13_01 and click Next.

Figure 13-1. The current build of Eclipse 3.0

Figure 13-2. Naming the new project



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

280 | Chapter 13: Eclipse 3.0

This brings up the familiar dialog you see in Figure 13-3, where you can set project
settings, such as the source folder and the import and export order—all items we’re
already familiar with. Click Finish to create the project.

Eclipse 3.0 will ask if you want to switch to the Java perspective; click OK. The new
Java perspective looks much like what we’ve seen before, except that the Tasks view
has now been renamed the Problems view, as you see in Figure 13-4.

To create a new class, right-click the project and select New ➝ Class, opening the
New Java Class dialog you see in Figure 13-5. This is the same dialog we’ve worked
with throughout this book, so just enter the new class’s name, Ch13_01, and package,
org.eclipsebook.ch13, and click Finish.

Opening the new Java file in the Java editor reveals some changes—for example, the
new shape of the cursor, as you see in Figure 13-6. That’s the smart insert cursor,
which is covered a little later in this chapter—see the upcoming section “Smart Insert
Mode.” Note also the two new buttons in the Outline view—Hide Local Types and
Link With Editor.

At left in the new JDT editor is the Quick Diff bar, which lets you track differences to
particular lines as compared to what’s been saved on disk (or, if you configure it, to
what’s in a CVS repository).

Figure 13-3. Setting project options



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Creating a Java Project | 281

To see how Quick Diff works, enter System.out.println("Hello"); in the main
method, and save the file (only the Save diskette icon appears in the toolbar now, not
the Save All diskette icon). Next, change the line to System.out.println("Hello from
Eclipse 3.0"); and let the mouse hover over the Quick Diff bar as you see in
Figure 13-7. The original version of the code will appear, and you can restore it by
clicking it.

Quick Diff is also being made available to plug-ins.

To run this code, select Run ➝ Run As ➝ Java Application (note the new Run ➝ Run
As ➝ JUnit Plug-in Test menu item as well), giving the results you see in the Console
view in Figure 13-8. That’s it; you’ve created and run a Java application in Eclipse 3.0.
As you can see, the procss is very similar to what you would see in Eclipse 2.1.

Note the new buttons in the Console view: Pin Console, Display
Selected Console, and Remove All Terminated Launches.

That recreates a familiar task for us in Eclipse 3.0, and, as you can see, it works much
as we’ve seen before.

Figure 13-4. The Eclipse 3.0 Java perspective



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

282 | Chapter 13: Eclipse 3.0

Perhaps the biggest change in Version 3.0 is that the Eclipse platform has been
broadened for use as a general hosting tool, designed to work with general applica-
tions, not just IDEs. Now general applications will be able to populate the menu bar
and toolbars, and the assumed data model will no longer be necessarily centered on
the workspace. We’ll be seeing more on that as Eclipse 3.0 nears launch.

There are also specific changes to the various parts of Eclipse—the Eclipse platform
itself, the JDT, SWT, and so on—and we’ll examine them on a case-by-case basis.

Changes to the Eclipse Platform
There are a number of changes to the Eclipse platform in Eclipse 3.0. Many of the
changes take place behind the scenes—for example, when resources are changed,
auto-builds now occur in the background so you don’t have to wait, and there’s a
new Progress view that lets you keep track of those changes. Disabled features can
now be uninstalled to free disk space (select Help ➝ Software Updates ➝ Manage
Configuration, turn off the disabled feature filter, and select Uninstall from the con-
text menu of the disabled feature to uninstall it).

Figure 13-5. Creating a new class



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Changes to the Eclipse Platform | 283

Figure 13-6. Using the Java editor

Figure 13-7. Using Quick Diff



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

284 | Chapter 13: Eclipse 3.0

Now you can have Eclipse automatically check for updates—check
out the Window ➝ Preferences ➝ Install/Update ➝ Automatic
Updates preference page.

Some of the changes are more evident, however. One of the most handy changes is that
you can now use regular expressions in the File search page. Select Search ➝ File to
open the dialog you see in Figure 13-9—note the new “Regular expression” checkbox.

Not familiar with regular expressions? Click the “Regular expression”
checkbox and press F1 for an overview of how to use regular expres-
sions to match text.

You can also edit files outside the workspace now, using the new File ➝ Open Exter-
nal File menu item, which opens the dialog you see in Figure 13-10. Select a file and
click Open to open it in an external editor.

The annotations that appear in various editors are also being elaborated in Eclipse
3.0. In Eclipse 2.1, there are 6 such annotation types that can be customized (such as
problems and warnings), but in the Eclipse 3.0 Window ➝ Preferences ➝ Editors ➝

Text Editor preference page, there are now 12, as you can see in Figure 13-11.

Figure 13-8. Running the code



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Changes to the Eclipse Platform | 285

Figure 13-9. Searching with regular expressions

Figure 13-10. Opening an external file



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

286 | Chapter 13: Eclipse 3.0

Besides using underlining and squiggly underlining for annotations,
you can also now display annotations using background highlighting.

There are new editing functions built into all text editors as well. You
can now move lines up and down with Alt+Arrow Up and Alt+Arrow
Down, you can insert a new line above or below the current line with
Ctrl+Shift+Enter and Shift+Enter. You can convert selected text to
lowercase or uppercase with Ctrl+Shift+Y or Ctrl+Shift+X. And you
can toggle the Quick Diff bar with Ctrl+Shift+Q (as well as the Win-
dow ➝ Preferences ➝ Workbench ➝ Editors ➝ Text Editor ➝ Quick
Diff preference page).

A major focus in Eclipse 3.0 is greater usability. A number of dialogs are being rede-
signed to make them easier to use; for example, the new Customize Perspective dia-
log (Window ➝ Customize Perspective) appears in Figure 13-12. The checkboxes
and display in this dialog make working with it far simpler than before.

Figure 13-11. Customizing annotations



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Changes to the Eclipse Platform | 287

The Eclipse team is also tackling the Eclipse learning curve. It’s not clear how this
will shake out, but here’s what they’re saying now:

Users who are new to an Eclipse-based product can find their first experiences with it
overwhelming, even daunting. The initial experience would be improved if a product
could preconfigure the workbench to show only the subset of function that a new user
really needs; welcome pages could be personalized for particular users roles or levels of
experience.

The Eclipse team is definitely recognizing that the Eclipse learning
curve is steep. In Version 3.0, there’s a new emphasis on having
Eclipse train new users with active help links and F1 help.

There are many other proposed changes to the Eclipse platform as well—here’s a
sampling:

• Support splitting in text editors to let users view two sections of text at once.

• Store user settings and preferences independently of workspaces so they can be
used across many workspaces.

• Allow plug-ins to be added and removed dynamically, without having to restart
Eclipse.

• Allow plug-in deactivation to lessen the load on system resources.

• Add a security model that can be used by all plug-ins, including user authentica-
tion.

• Use the XML support in J2SE 1.4 instead of the Xerces plug-in.

• Port SWT to 64-bit operating environments.

Figure 13-12. The new Customize Perspective dialog



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

288 | Chapter 13: Eclipse 3.0

Changes to the Java Development Tools
The major enhancements in Eclipse 3.0 are to the JDT, as you might expect. The
changes so far are mostly for usability and convenience, and they’re designed to help
you program Java better. It’s not clear which ones will be around in the final release
of Eclipse 3.0, but we’ll take a look at what’s available now.

Quick Hierarchy Views
You can now select a type, method, or package reference in the JDT editor and press
Ctrl+T to see a quick type hierarchy view, as appears in Figure 13-13.

You can also now open a view that shows a method call hierarchy by selecting Navi-
gate ➝ Open Call Hierarchy (or by pressing Ctrl+Alt+H) in the JDT editor (or, for
that matter, any of the Java views that show methods).

Creating Constructors from Fields
You can also create a constructor that fills various fields easily in Eclipse 3.0. For
example, say you added a String field to a class this way:

public class Ch13_01 {

private String text;

public static void main(String[] args) {
System.out.println("Hello from Eclipse 3.0");

}

}

To create a constructor that fills this field in Eclipse 3.0, select Source ➝ Generate
Constructor Using Fields, opening the dialog you see in Figure 13-14.

Figure 13-13. Showing a quick hierarchy



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Changes to the Java Development Tools | 289

You select fields you want to fill in the constructor and click OK; in this case, here’s
the constructor created:

public class Ch13_01 {

private String text;

public static void main(String[] args) {
System.out.println("Hello from Eclipse 3.0");

}

/**
 * @param text
 */
public Ch13_01(String text) {

super( );
this.text = text;

}
}

Figure 13-14. Creating a constructor using a field



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

290 | Chapter 13: Eclipse 3.0

Creating Factory Methods
You can go further as well—you can convert your constructor into a factory method
with the new Refactoring ➝ Introduce Factory item. Just select a constructor declara-
tion or a call to the constructor in the JDT editor and select that menu item. For
example, say you added this call to the Ch13_01 constructor in your code:

public class Ch13_01 {

private String text;

public static void main(String[] args) {
Ch13_01 ch13_01 = new Ch13_01("Hello");
System.out.println("Hello from Eclipse 3.0");

}

/**
 * @param text
 */
public Ch13_01(String text) {

super( );
this.text = text;

}
}

Selecting the constructor call and the Refactoring ➝ Introduce Factory item opens
the dialog you see in Figure 13-15.

Clicking OK creates a new factory method, createCh13_01, replaces the call to the
constructor with a call to that method, and makes the original constructor private:

public class Ch13_01 {

private String text;

public static void main(String[] args) {
Ch13_01 ch13_01 = createCh13_01("Hello");
System.out.println("Hello from Eclipse 3.0");

}

Figure 13-15. Creating a factory method



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Changes to the Java Development Tools | 291

public static Ch13_01 createCh13_01(java.lang.String text) {
return new Ch13_01(text);

}

/**
 * @param text
 */
private Ch13_01(String text) {

super( );
this.text = text;

}
}

More on refactoring: now you can also move public static final fields
between classes and interfaces, as well as static inner types between
classes. The Refactoring ➝ Change Method Signature now lets you
rename parameters in overridden methods as well.

This is the general trend in Eclipse 3.0—giving you more control over tasks you
already perform. For example, the dialog for the JDT editor’s Source ➝ Add Con-
structors from Superclass command now displays a dialog that lets you select which
of the superclass’s constructors should be added to the current class. Other com-
mands now give you considerably more control, such as the code generation dialogs
for the Source ➝ Generate Getter and Setter, Source ➝ Override/Implement Meth-
ods, and Source ➝ Generate Delegate Methods. You can indicate where the gener-
ated method will be inserted and—for getters and setters—the sort order.

While discussing getter/setter generation, it’s worth noting that you
can find new templates for getters and setters in the Window ➝ Prefer-
ences ➝ Java ➝ Code Generation ➝ Code and Comments preference
page.

Smart Insert Mode
There’s a new typing mode in the JDT editor—smart insert mode—in addition to the
standard overwrite and insert mode. Smart insert mode adds functionality for Java
programmers, such as automatically wrapping Java strings to code lines as you type
them. You can toggle between these three modes by repeatedly clicking the Insert
key and watching the status bar indicator (set to Smart Insert in Figure 13-8).

To configure smart insert mode, select Window ➝ Preferences ➝ Java ➝ Editor ➝

Typing, opening the dialog you see in Figure 13-16. Besides the options you see in
that dialog, there are others being considered for smart insert, such as automatically
inserting semicolons at the end of lines.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

292 | Chapter 13: Eclipse 3.0

Creating Block Comments
Besides commenting out blocks of code using single-line comments, you can also
comment out code using Java block comments. For example, if you select this code:

public class Ch13_01 {

private String text;

public static void main(String[] args) {
System.out.println("Hello from Eclipse 3.0");

}
}

and then select the Source ➝ Add Block Comment (note that the Source ➝ Com-
ment item is still available for commenting out blocks with single-line comments),
you’ll get this result:

Figure 13-16. Configuring smart insert mode



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Changes to the Java Development Tools | 293

public class Ch13_01 {

private String text;

/* public static void main(String[] args) {
System.out.println("Hello from Eclipse 3.0");

}
*/}

To uncomment a block, select it and then select Source ➝ Remove Block Comment.

New Views
Eclipse 3.0 also comes with some new views: Javadoc, Error log, and Declaration.
You can show these as you would any view, using Window ➝ Show View. For exam-
ple, the Error log view, which holds errors in the Eclipse .log file, appears in
Figure 13-17.

Figure 13-17. The Error log view



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

294 | Chapter 13: Eclipse 3.0

Additional Changes
Besides the changes to the JDT already discussed, there are plenty of other smaller
changes. Here’s an overview of the most significant of these:

• When you select a local variable in the JDT editor and press F3 (or select Navi-
gate ➝ Open Declaration), the JDT editor displays the variable’s declaration.

• The JDT compiler now adds more checks to find and mark styling issues. To
turn them on, see Window ➝ Preferences ➝ Java ➝ Compiler ➝ Style.

• Instead of adding a closing brace as soon as an opening brace has been entered,
the JDT editor now waits until a new line is added after the opening brace.

• There are some new Quick Assists in the JDT editor—Split and join variable
declaration, and Create field from parameter.

• The launch configuration page now lets you set environment variables.

• The JDT compiler can now indicate when projects are compiled against a binary
library whose version is incompatible with what is being generated. For exam-
ple, you might be trying to generate 1.1-compatible class files while compiling
using a Java 1.3 library. See Window ➝ Preferences ➝ Java ➝ Compiler ➝ Build
Path.

• You can now implement searches to include projects that enclose the current
project.

• The JDT editor’s Go To Next/Previous Error toolbar buttons were replaced by
Go To Next/Previous Annotation drop-down style buttons, which allow you to
choose which annotations you want to move to.

• The JDT compiler can find and mark unused exceptions that are declared but
not thrown. Enable this with Window ➝ Preferences ➝ Java ➝ Compiler ➝

Unused Code.

There are plenty of plans for new improvements to Eclipse 3.0 in upcoming releases.
Here’s a sampling:

• Generalize the JDT editor to handle other Java-like source files, such as SQLj
and JSP.

• Mark overridden methods with override indicators.

• Handle new J2SE 1.5 functionality and extensions to Java, such as generic types,
autoboxing, static imports, and so on. The final version of Eclipse 3.0 will prob-
ably ship before J2SE 1.5 does, but the Eclipse team is working on including
support for it already.



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Other Changes | 295

Other Changes
There are some other changes to various other subprojects in Eclipse 3.0, including
CVS and Ant control as well as the PDE and SWT.

Eclipse now ships with the latest version of Ant, which is Version 1.5.4. The Ant
launch configuration is all new, letting you work with Ant in a separate Java VM
(you can set the options for choosing the Ant JRE on the JRE tab of the Ant launch
configuration).

As far as CVS goes, you can now use the Team ➝ Show Annotation item to open the
CVS Annotation view. If you select a line in the JDT editor, the CVS Annotation
view will indicate who released the change—which means you can track who
released a bug.

There have been a couple of improvements to SWT as well. SWT now lets you
embed Swing and AWT widgets inside SWT on other platforms besides Windows.
As of this writing, however, this only works in Windows with JDK 1.4 and above,
and on GTK and Motif with early versions of Sun JDK 1.5.

SWT shells can now have irregular shapes as well. You can define these shapes with
combinations of rectangles and polygons. And SWT has a new browser widget that
can display HTML documents. As of this writing, however, this widget is only sup-
ported in Windows (and uses Internet Explorer 5.0 or above) and Linux GTK (where
it uses Mozilla 1.4 GTK2).

There aren’t many changes to the PDE in the current milestone build of Eclipse 3.0.
Two significant ones are that the PDE now supports JUnit testing for plug-in devel-
opment, and that there is also a special build configuration editor that lets you edit a
plug-in’s build.properties file.

Other changes that are being contemplated include improvements to the PDE edi-
tors and debuggers, as well as supporting context-sensitive help for plug-ins.

That’s it for our look at Eclipse 3.0. There’s little question that there will be other
changes before the final version is released, so keep your eyes peeled.





This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

297

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
& (ampersand), 171
* (asterisk), 19
@ (at sign), 47
{} (braces), 58, 294
$ (dollar sign), 59
. (dot), 19, 30
+ (plus sign), 109, 185
" (quotation marks), 18
; (semicolon), 18, 291
<%...%> tags, 197
// (single-line comment), 35

A
About dialog box, 175
About Eclipse Platform Plug-ins dialog

box, 243
about.html, 242
Abstracting Windowing Toolkit (see AWT)
action attribute (forms), 223
Action class, 252
<action> element, 252, 257
Action Performed item (Events

property), 145
action servlets

ActionResources.properties file, 228
class folder, 227
creating, 239
creating controllers, 225–229
.do extension and, 225, 226

Easy Struts plug-in, 239, 240
Struts example, 232

action sets
creating, 253, 254
defined, 252
grouping multiple items, 255

actionPerformed method (UIManager), 138
actions

configuring for views, 271
controllers and, 219
creating, 255–258
defined, 252
menus and, 255
MultiPageEditorContributor.java, 265

<actionSet> element, 252
Add CVS Repository dialog box, 96
add method (List), 165
Add to CVS Version Control dialog box, 99
addListener method, 177
addPage method (MultiPageEditorPart), 265
addSelectionListener method, 160
AIX Motif, 150, 151, 157
allocate method

depicted, 70
purpose, 65, 66, 71
testing, 73

Alt+ArrowDown, 284
Alt+ArrowUp, 284
Alt+F shortcut, 171
ampersand (&), 171
Annotation view (CVS), 295



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

298 | Index

anonymous classes, 53, 213
Ant build tool

build.xml file, 216
catching errors in files, 127–129
configuring, 124–126
Eclipse 3.0 and, 295
functionality, 115–118
JAR files and, 118–123

Ant view, 126
ANT_HOME variable, 124
Apache Ant (see Ant build tool)
AppFrame class, 133, 134
Apple+F shortcut, 171
Applet class, 130
<APPLET> HTML tag, 132
applets, 130–133
ApplicationResources.properties file, 228,

229, 233
applications

Eclipse 3.0 and, 282
testing with JUnit, 64, 68–74
web-based, 215–218

arguments
Ant build tool, 126
command-line, 44
methods and, 19

assertEquals method (JUnit), 64
assertFalse method (JUnit), 64
assertNotNull method (JUnit), 64
assertNotSame method (JUnit), 64
assertNull method (JUnit), 64
assertSame method (JUnit), 64
assertTrue method (JUnit), 64
asterisk (*), 19
asyncExec method, 162
at sign (@), 47
attributes, code assist and, 126
@author (Javadoc), 47
autoboxing, 294
auto-builds, 91, 282
AWT (Abstract Windowing Toolkit)

Eclipse 3.0, 295
GUI and, 133–135
SWT and, 149

AWT Frame class, 133

B
beta versions

Eclipse, 4
Eclipse 3.0, 278
source control and, 93

bin directory, 118, 196
block comments, 292, 293
Borland, 2
bounds, setting, 162, 176
braces ({}), 58, 294
branches

Branches node, 99
code versions and, 93
creating, 113
CVS support, 95
merging, 113

Breakpoint Properties dialog box, 84
breakpoints

configuring, 84–87
debugging web projects, 214
executing until, 81
hit counts, 82–84, 86
ignoring, 76
managing, 78
removing, 76
setting, 76–78
stepping through code, 79

Breakpoints view
exception breakpoints and, 87
functionality, 78
setting hit counts, 82
as stacked view, 78
watchpoints in, 86

browsers
Java and, 130
navigation verb, 192
object browsers, 54
sending text to, 197
Tomcat web server and, 198
webapps directory and, 196
widgets and, 191, 295

build dependencies, 232
build files, 127–129
build path

projects and, 14, 38
servlet.jar file, 200, 203, 222
SWT and, 150, 151

build tools (see Ant build tool)
build.compiler property, 119
build.properties file, 295
build.xml file

Ant and, 116, 117, 216
projects and, 119, 121

Button class (SWT), 159
Button (SWT control), 152



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 299

buttons
action sets and, 253
adding, 158–163
as controls, 152
dialog boxes and, 186, 190
Easy Struts plug-in, 236
Eclipse 3.0 and, 280, 281
extension points and, 244
radio, 176

C
Canvas (SWT control), 152
Caret (SWT control), 152
case conversion, 284
CATALINA_HOME environment

variable, 196, 209
CDT plug-in, 6
Check Out As menu item, 101
Check Out As Project menu item, 101, 112
checkboxes, 176, 236
checkmarks, 186
children, tree nodes, 184
Circular dependencies item, 232
.class files, 40–44
classes

anonymous, 53, 213
build path order, 14
creating, 14, 15, 31–37, 280
finding all members, 16, 19
importing, 37
JUnit-based, 64, 68
nested, 53
plug-ins and, 244
renaming, 49
as servlets, 201
static final fields and, 291
storing new, 212

classes directory
build dependencies and, 232
class files and, 201
code output in, 202
Struts example, 221
WEB-INF directory and, 198

classpath, 41, 42
classpath variables, 42, 66, 67
Close Project menu item, 27
code

actions and, 257
auto-building, 91
branches and, 113

code assist and, 16
committing, 102, 104, 105
comparing with history, 104
customizing, 58
debugging, 76, 78, 79, 91
editing, 9, 146–147
folders for, 222
generating, 35, 58, 146–147
hot code replacement, 91–92
Java projects, 11–14
multi-page editors, 261–263, 265–269
Package Explorer view, 20
for plug-ins, 258
repositories for, 95
scrapbook pages and, 20
searching, 56–57
source control, 93
synchronizing, 106–108
updating, 101–103
workspace and, 8
(see also Java)

code assist
Ant editor and, 126
creating new items, 59
Javadoc and, 47
overview, 16–19
punctuation and, 19, 30
shortcut, 29, 47, 59
toggle, 19

Code Generation ➝ Generate Code for Swing
menu item, 146

Code Generation ➝ Generate Code for SWT
menu item, 167

combo boxes, 178
Combo (SWT control), 152
command-line arguments, 44
comments

at sign and, 47
creating block comments, 292, 293
customizing code generation, 58
single-line (//), 35

Commit dialog box, 104
committing

code, 102, 104, 105
files, 99

Common Public License (see CPL)
Compare with Local History dialog box, 104
compliance testing, 74
Composite (SWT control), 152
composites, 152, 163–165

(see also widgets)



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

300 | Index

Concurrent Versions System (see CVS)
conditions

exception breakpoints and, 87
setting, 84

conf directory (Tomcat), 210, 213
configuring

Ant build tool, 124–126
breakpoints, 84–87
launch configurations, 157
plug-ins, 247
smart insert mode, 291
view actions, 271

Confirm Project Delete dialog box, 25
conflicts

committing code and, 104
CVS and, 102

Console view
Ant and, 117, 129
building projects, 123
CVS console and, 99
Debug perspective, 78
Eclipse 3.0 and, 281
factorial method example, 76
Java perspective, 13
Quick Diff, 281
scrapbook pages, 21
Synchronize view and, 99

constructors, 35, 57, 288–290
controllers (see action servlets)
ControlListener event (SWT), 160
controls

adding buttons, 158–163
composites and layouts, 163–165
dialog boxes as, 186–190
Easy Struts and, 236
lists and, 165–167
menus as, 170–175
positioning, 163
SampleNewWizardPage class, 264
setting bounds, 162
sliders as, 179–183
Struts-enabled forms and, 222, 224
SWT options, 152–155
toolbars as, 175–179
trees as, 183–186
widgets and, 150, 152
(see also text controls)

CoolBar (SWT control), 152
CoolItem (SWT control), 152
copyleft, 4
CPL (Common Public License), 4
Create a new CVS Branch dialog box, 113

Create Ant Build File item, 120
createPages method (MultiPageEditor), 265
createPartControl method, 273
Ctrl+Alt+H shortcut, 288
Ctrl+Shift+Enter, 284
Ctrl+Shift+Q, 284
Ctrl+Shift+X, 284
Ctrl+Shift+Y, 284
Ctrl+Space (code assist)

Ant element attributes, 126
depicted, 29, 59
method parameters, 47
as shortcut, 19

Ctrl+T shortcut, 288
Customize Perspective dialog box, 61, 286
CVS Annotation view, 295
cvs command, 95
CVS (Concurrent Versions System)

administrative data location, 99
connecting to, 95
Eclipse 3.0 and, 295
modules in, 94, 99
as open source, 93
team component as, 8

CVS Repositories view, 112
CVS repository

adding location, 96, 97
checking projects out, 101
committing files, 99
creating branches, 113
creating patches, 108, 110
file storage, 94
sharing projects, 97–99
synchronizing code, 106–108
tagging versions, 110–113
updating code, 101–103

CVS Repository Exploring perspective, 96,
99

CVS Repository view, 101, 113
CVS Resource History view, 103
CVS servers, 95, 97, 99
CVSNT, 95
CVSROOT directory, 99

D
Debug perspective

editors, 78
overview, 78
running Tomcat and, 211
watching values, 81
workbench and, 10



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 301

Debug view
breakpoint hit counts, 82
buttons in, 78, 81, 211
overview, 78
stepping through code, 79

debugging
breakpoint hit counts, 82–84
breakpoints and, 76–78, 84–87
Eclipse 3.0 and, 295
evaluating expressions, 89
example, 75, 76
hot code replacement, 91–92
JSPs, 214
multithreaded, 85
overview, 74
perspectives and, 9
resuming execution, 81
stepping through code, 79
terminating, 78
web projects, 214

Declaration view, 293
declarations

JSP files and, 197
local variables, 294
opening, 54
searching for, 57

delegate methods, 35
dependencies, build, 232
depends attribute, 120
Deployable plug-ins and fragments

pane, 276
@deprecated (Javadoc), 47
Deselect Working Set item, 61
destroy method, 130
detail pane (Variables view), 78
dialog boxes, 186–190
directories

modules and, 94
setting up properties, 119
Tomcat web server and, 195, 198
(see also folders)

DirectoryDialog class (SWT), 186
disk space, freeing, 282
Display menu item, 22
Display object

getDefault method, 162
SWT and, 151, 152, 156

Display view, 78
dispose method, 156
.do extension, 225, 226
doFinish method (SampleNewWizard), 264,

265

doGet method, 200
dollar sign ($), 59
doPost method, 200
doSave method, 266
doSaveAs method, 266
dot (.), 19, 30
double-clicking, 274
drag-and-drop GUI, 141
drop-down menus, 179

E
Easy Struts plug-in, 234–241
Eclipse 3.0

creating Java projects, 279–282
depicted, 278
JDT and, 288–294
platform changes, 282–287
subproject changes, 295

eclipse directory, 142
Eclipse platform, 1–9
Edit ➝ Undo menu item, 108
editors

annotations elaborated, 284
Ant build tool, 117
Debug perspective and, 78
Eclipse 3.0 and, 287
editing functions, 284
files and, 31, 284
Java perspective, 13
manipulating window, 9
multi-page, 261–269
Package Explorer view, 19
plug-in manifest, 247, 248
V4ALL editor, 143
workbench and, 9
XML Buddy, 198
(see also JDT editor)

elements
code assist and, 126
moving, 51
renaming, 48–51
searching for, 57

environment variables
CATALINA_HOME, 196, 209
Eclipse 3.0 and, 294
JAVA_HOME, 196
PATH, 196

equals method, 64
error handling, 127–129
Error log view, 293
Event object, 177, 180



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

302 | Index

events
sliders and, 180
toolbar items and, 177
UI thread and, 162
(see also listeners)

Events property (Properties view), 145
@exception (Javadoc), 47
exception breakpoints, 87
exceptions

breakpoints and, 85, 87
Javadoc and, 47
JDT compiler and, 294

Execute menu item, 21
execution

breakpoints and, 86, 87
resuming while debugging, 81

Export dialog box, 275
exporting

preferences, 63
projects, 14
sorting items, 42

expressions
debugging and, 10, 89
Eclipse 3.0 and, 284
Expressions view and, 78
JSP files and, 197

Expressions view
Debug perspective, 78
debugging and, 89
functionality, 78
watching values, 81, 83

Extension Point Selection pane, 253
extension points

action sets and, 253
building on, 248
plug-ins and, 244, 258

Extract Interface dialog box, 52

F
F3 (Navigate ➝ Open Declaration), 294
F5 (Step Into), 79, 83
F6 (Step Over), 79
F7 (Step Return), 79
factorial method, 75–78
factory methods, 290, 291
features directory, 142
fields

breakpoints and, 85
constructors from, 288–290
data types of, 19

Eclipse 3.0, 291
editing values while debugging, 89
local variables and, 53
searching for, 57

File ➝ Export menu item, 275
File ➝ Import menu item, 26
File ➝ New ➝ Class menu item, 14
File ➝ New ➝ Project menu item

creating Java projects, 13
creating plug-ins, 251
new Tomcat projects, 209
plug-in projects, 244

File ➝ New ➝ Scrapbook Page menu
item, 21

File ➝ Open External File menu item, 284
File ➝ Save As menu item, 269
File ➝ Save menu item, 269
FileDialog class (SWT), 186
fileExitItemListener event, 172
files

adding to projects, 264
build files, 127–129
committing, 99
CVS repository and, 94
editing outside workspace, 284
parsing, 204
refactoring across, 51
saving, 31
searching across, 56
synchronizing, 99

fileSaveItemListener event, 172
FillLayout class (SWT), 163
filters, 79, 107
Flash, 130
FocusListener event (SWT), 160
Folder Selection dialog box, 202, 222
folders

.class files and, 39
linked, 203, 205, 207
projects and, 8, 14
source code, 222
(see also directories; output folder)

form beans, 219, 236
FormLayout class (SWT), 163
forms

displaying controls, 222
Struts and, 219

Frame class (AWT), 133



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 303

G
Generate Getter and Setter dialog box, 36
Generate Javadoc dialog box, 47
get method

depicted, 70
purpose, 65, 66, 71

GET requests (HTTP), 200
getChecked method, 186
getDefault method (Display), 162
getEditor method, 266
getFirstElement method, 273
getIDsOfNames method, 192
getMessage method, 36
getProperty element (JSP), 206
getSelection method, 181
getSelectionIndices method, 165
getter methods, 35, 36, 291
getText method, 177
getWriter method, 200
GIF format, 242
graphical user interface (see GUI)
GridLayout class (SWT), 163
Group (SWT control), 152
GUI (graphical user interface)

AWT and, 133–135, 149
drag-and-drop, 141
Eclipse workbench and, 7
Java applets and, 130–133
plug-ins and, 142
Swing applications, 135–141
SWT window and, 191
V4ALL plug-in, 142–148
views and, 9

H
handleEvent method (Listener), 177
HEAD tag, 95
Help ➝ About Eclipse Platform menu

item, 243
Help ➝ About item, 175
Help ➝ Software Updates ➝ Manage

Configuration menu item, 282
help component (Eclipse), 8
Hewlett-Packard, 2
Hierarchy view

depicted, 12, 54
Eclipse 3.0 and, 288
finding class members, 19

history
comparing code with, 104
resource changes and, 8

hit counts, 82–84, 86
Hitachi, 2
hot code replacement, 91–92
HPUX Motif

launch configuration, 157
SWT and, 150, 151

HP-UX operating system, 7
HTML

AWT and, 133
browser widgets and, 295
help component and, 8
Java and, 199
JSP pages and, 236
METHOD attribute, 200

<html:form> tag (Struts), 222
<html:multibox> tag (Struts), 224
<html:options> tag (Struts), 224
HTTP GET requests, 200
HTTP POST requests, 200
HttpServlet class, 41, 200

I
IBM

Eclipse and, 2
OTI and, 3
Standard Widget Toolkit, 138, 149

icons directory, 242
id property (menus), 255
IDE (integrated development

environment), 1, 242
IEditorPart objects, 266
images, toolbars and, 176
Import dialog box, 26
Import menu item, 26
importing

AWT support, 133
classes, 37
projects, 26
scrapbook pages, 22
sorting items, 42

infinite loops, 78
inheritance trees, 13
init method, 258
Inspect menu item, 89
installing

Eclipse, 4, 5
JUnit, 66, 67
plug-ins, 6
problems, 5
Tomcat web server, 195–197

instantiating objects, 206



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

304 | Index

integrated development environment
(IDE), 1, 242

integration builds, 4
Intel, 2
interfaces

extracting, 52–53
implementing, 32
static final fields and, 291

Internet Explorer, 191–194, 201
Internet, Java applets and, 130
IStructuredContentProvider interface, 272
IStructuredSelection interface, 273
IWorkbenchWindow interface, 258

J
J2SE, 287, 294
JAR (Java Archive) files

Ant build tool and, 118–123
code accessibility and, 19
creating projects and, 14
lib directory and, 242
location of, 67
overview, 40–44
plug-ins and, 242, 244, 276
Struts and, 222, 234, 236
SWT and, 151

Java
AWT and, 149
creating classes, 31–37
creating methods, 28–30
creating packages, 37–38
customizing environment for, 57–63
Eclipse 3.0 and, 280
Eclipse and, 1–6
editor window, 9
environment variables and, 196
HTML and, 199
JAR and .class files, 40–44
Javadoc and, 46, 47, 67
JRE and, 46
launch configuration, 44–45
perspectives and, 9
refactoring, 47–53
searching code, 56–57
Swing and, 149, 150
SWT and, 150
viewing type hierarchies, 54

Java ➝ Code Formatter item, 58

Java ➝ Code Generation ➝ Code and
Comments item, 59

Java ➝ Debug ➝ Step Filtering item, 79
Java ➝ Editor ➝ Templates item, 59
Java applets, 130–133
Java Build Path item, 234
Java classes (see classes)
Java Development Toolkit (see JDT)
.java file, 230
Java IDE (see Eclipse 3.0; Eclipse platform;

JDT)
Java Line Breakpoint Properties dialog

box, 82
Java Method Breakpoint Properties dialog

box, 86
Java Native Interface (JNI), 150, 157
Java perspective

adding plug-ins to, 259
depicted, 12, 13
hierarchy view, 54
selecting, 9
sharing projects, 97
switching from debugging, 79

Java projects
creating, 11–14, 118–123
Eclipse 3.0 and, 279–282
scrapbook pages and, 20, 22

Java Runtime Environment (see JRE)
Java Source Compare view, 106
Java Virtual Machine, 45, 157
Java Watchpoint Properties dialog box, 86
Java Web Start, 130
java.applet.Applet, 130
java.awt package, 130, 133
JavaBeans

connecting to, 205–207
getter/setter methods, 36
MVC architecture and, 219
Struts example, 230

Javadoc, 46, 47, 67
Javadoc view, 293
JAVA_HOME environment variable, 196
java.lang.ArrayIndexOutOfBoundsException,

45
java.lang.NullPointerException

exception, 87
java.lang.Object class, 15
JavaServer Pages (see JSP)
javax.servlet.http.HttpServlet class, 200



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 305

JDK (Java Development Kit), 5, 295
JDT editor

button replacements, 294
closing brace and, 294
CVS Annotation view and, 295
local variables and, 294
method call hierarchy, 288
Open Declaration, 54
Open Type Hierarchy, 54
Quick Assists, 294
Quick Diff bar, 280
Search Results view, 56
setting breakpoints, 76
smart insert mode, 280, 291, 292
Source ➝ Add Constructor from

Superclass command, 291
syntax errors, 127

JDT (Java Development Toolkit)
Eclipse 3.0 and, 288–294
Eclipse and, 3, 6, 11
editor for, 9
JDT compiler, 119, 294
JDT debugger, 91
Quick Fix and, 22–25

JFace, 7
JFrame class (Swing), 136, 138
JNI (Java Native Interface), 150, 157
JPanel class (Swing), 135
JRE (Java Runtime Environment)

changing default used, 92
Eclipse and, 5
hot code replacement and, 91
Run-time Workbench, 249
selecting, 46

JSP files, 294
JSP (JavaServer Pages)

creating, 197–199
debugging, 214
Easy Struts plug-in and, 236
JavaBeans and, 205–207
MVC architecture, 219
servlets and, 199
Sysdeo Tomcat plug-in and, 209, 211

jsp:getProperty element, 206
jsp:setProperty element, 206
jsp:useBean element, 206
JUnit, testing with, 64–74, 295
JUnit view, 72
JUnit Wizard, 68, 70
junit.jar file, 66

K
kernel (platform), 6
KeyListener event (SWT), 160

L
label property

action sets, 254
actions, 257
menus, 255

Label (SWT control), 152
labels (see text labels)
languages, changing, 6
launch configuration, 44–45, 157, 169
Launch Configurations dialog box, 157
layouts

overview, 163–165
SWT and, 158

lib directory
JAR files and, 242
Struts example, 221
struts.jar file, 222
WEB-INF directory and, 198

libraries, creating projects and, 14
licensing, 4
line breakpoints, 85, 87
lines, manipulating, 284
linked folders, 203, 205, 207
Linux environment

CVS and, 93, 95
Eclipse shortcuts, 5
OLE and, 191
SWT and, 150

Linux GTK environment
browser widgets and, 295
launch configuration, 157
SWT and, 150, 151, 295

Linux GTK2 environment, 7
Linux Motif environment

launch configuration, 157
porting Eclipse, 7
SWT and, 150, 151, 295

List class (SWT), 165
List (SWT control), 152
Listener class, 177
Listener object, 187
listeners

buttons and, 160
lists and, 165
menus and, 172
selection, 186
toolbar items and, 177



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

306 | Index

lists, 152, 165–167
local variables

converting to class fields, 53
debugging, 78, 83
JDT editor and, 294
stack frames and, 75
watchpoints and, 86

logical modules, 94
<logic:iterate> tag (Struts), 224
look-and-feels

setting, 138
Sun platform, 140
Swing, 150

lowercase conversion, 284

M
Mac environment, 149
Mac OS X operating system

Apple+F shortcut, 171
launch configuration, 157
OLE and, 191
porting Eclipse, 7
SWT and, 150, 151

main method
creating automatically, 15
stubbing, 29, 31

Main View Settings dialog box, 271
makeActions method, 273
marker bar, 23
Members view, 55
<menu> element, 252
Menu object, 170
menu separators, 171, 255
Menu (SWT control), 152
menuBar object, 172
menubarPath property (actions), 257
MenuItem object, 171
MenuItem (SWT control), 152
menus

action sets and, 253
actions and, 252, 255
creating, 255
Eclipse 3.0 and, 282
extension points and, 244
MultiPageEditorContributor.java, 265
overview, 170–175
SWT and, 179
workbenches and, 7

MERANT, 2
Merge dialog box, 113
merging branches, 113

MessageDialog class, 258
Metal (look-and-feel), 138, 140
METHOD attribute (HTML forms), 200
method breakpoints, 86
method calls

hierarchy of, 288
recursive, 75
stepping through code, 79
updating, 49

method signatures, 53
methods

arguments and, 19
assertion, 64
breakpoints and, 85, 86
changing signatures, 53
code assist, 29
creating, 28–30, 145
delegate methods, 35
exceptions for, 47
factory methods, 290, 291
getter/setter, 35, 36
moving, 51
opening declarations, 54
overriding, 32–34, 291, 294
parameters for, 47, 291
saving files and, 31
searching for, 57
testing on the fly, 22

Microsoft Word, 9
Model 1 architecture, 219
Model 2 architecture, 219
models

creating, 229–234
form beans and, 219

Model-View-Controller (MVC)
architecture, 219

modules (CVS), 94
modules, CVS and, 94, 99
Motif (look-and-feel), 138, 141
mouse, clicking, 274
MouseListener event (SWT), 160
MouseMoveListener event (SWT), 160
MouseTrackListener event (SWT), 160
Mozilla, 295
msg property (JSP), 206, 207
multi-page editors, 261–269
MultiPageEditor class, 265
MultiPageEditorContributor.java, 265
MultiPageEditor.java, 265, 268
MultiPageEditorPart class, 265
MVC (Model-View-Controller)

architecture, 219



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 307

N
name property

actions, 257
menu, 255

Navigate ➝ Open Call Hierarchy menu
item, 288

Navigate ➝ Open Declaration menu
item, 294

Navigate ➝ Open External Javadoc menu
item, 47

Navigate ➝ Open Type Hierarchy item, 54
Navigator view, 9, 25, 279
nested classes, 53
New ➝ actionSet item, 253
New ➝ Class menu item

creating classes, 224, 280
enclosing class, 33
multiple classes and, 32

New ➝ File menu item
Ant build file, 116
build.xml file, 119
creating documents, 201
new JSP projects, 210

New ➝ Folder menu item, 204
New ➝ Other menu item, 68, 234, 239
New ➝ Package menu item, 222
New ➝ Project menu item, 261
New ➝ Repository Location menu item, 96,

101
New ➝ Source Folder menu item, 222
New dialog box, 68
New Extension wizard, 253
New Folder dialog box, 202, 204
New Java Class dialog box

creating classes, 14, 280
“Enclosing type”, 33
multiple classes, 32

New Java Project dialog box
creating projects, 38, 118
creating servlets, 202

New Menu ➝ New Action menu item, 258
New Project dialog box

adding JAR files to classpaths, 42
creating multi-page editors, 261
creating plug-ins, 244
creating projects, 13, 142, 279
Plug-in Development and Plug-in

Project, 251
selecting projects, 209

New Scrapbook Page dialog box, 21

New Tomcat Project dialog box, 209
New Variable Classpath Entry dialog box, 67
New Variable Entry dialog box, 66, 67
New Working Set dialog box, 61
nightly builds, 5
nodes, 184–186

O
object browsers, 54
Object Linking and Embedding (OLE), 9,

191
Object Technologies International (OTI), 2,

3, 6
objects

creating, 37, 38
instantiating, 206

OLE (Object Linking and Embedding), 9,
191

OleAutomation object, 192
OleControlSite object (SWT), 191
OleFrame object (SWT), 192
OLE.OLEIVERB_INPLACEACTIVATE

verb, 192
Open Declaration menu item, 54
open source

copyleft, 4
Eclipse and, 2, 4
testing framework, 64

Open Type Hierarchy menu item, 12, 19, 54
Open With ➝ Text Editor item, 201
openContentStream method, 265
openInformation method

(MessageDialog), 258
operating systems

AWT and, 149
CVS support, 93
setting environment variables, 196
Swing, 138
SWT and, 7, 150
window manager, 152
workbench and, 7

optimistic locking, 94
Oracle, 2
ordering (sorting), 42, 267
org.eclipse.editors.custom.StyledText

object, 265
org.eclipse.editors.ui.text.TextEditor

object, 265
org.eclipse.swt.events package, 158
org.eclipse.swt.layout package, 158



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

308 | Index

org.eclipse.swt.ole.win32 package, 191
org.eclipse.ui.actionSets extension

point, 253
org.eclipse.ui.javaPerspective class, 259
org.eclipse.ui.perspectiveExtensions

extension point, 258, 259
org.eclipse.ui.resourcePerspective class, 260
OTI (Object Technologies International), 2,

3, 6
Outline view

build.xml file, 117, 121
Debug perspective, 78
depicted, 13, 55
Eclipse 3.0 and, 280

output folder
classes folder as, 215
scrubbing and, 219, 233
setting default, 202
Struts example, 222

overriding methods, 32–34, 291, 294
overview ruler, 23

P
Package Explorer view

bin folder and, 39
branches and, 113
build path and, 38
build.xml file and, 119
classes and, 14, 33, 49, 212
code and, 20, 21, 102
code assist and, 19
depicted, 12
editors and, 261, 268
files and, 99
JAR files and, 41
JUnit Wizard, 68
launch configuration, 157
packages and, 37, 50
plugin.xml, 247
projects and, 13, 25–26, 38, 61, 121
purpose, 10
Run-time Workbench, 249
searching and, 56
servlet.jar file, 200
swt.jar file, 150
testing and, 72, 131
Tomcat projects, 209
V4ALL and, 143, 147
versions and, 112
web.xml file, 204
working sets, 61

packages
creating, 37–38
deploying plug-ins, 275
importing, 22
Quick Fix suggestions, 24
renaming, 50, 51
scrapbook pages and, 21
searching for, 57
selecting, 222
viewing, 12

Packages view, 55
pageChange method, 267
paint method (Graphics), 130, 133
paintComponent method (JPanel), 136
Panel class (Swing), 136
panes, 9
@param (Javadoc), 47
parameters, 47, 291
parsing files, 204
patches, creating, 108, 110
PATH environment variable, 196
PDE (Plug-in Development Environment)

Eclipse 3.0 and, 295
Eclipse and, 3
multi-page editor and, 261–269
overview, 244–248
Run-time Workbench, 248–250

PDE wizard, 274
perspectives

adding shortcuts, 96
customizing, 61, 258–260
default, 11
Eclipse 3.0, 278
overview, 9–11
restoring, 57
selecting, 10
switching, 79
V4ALL perspective, 143

pessimistic locking, 94
Photon QNX, 151, 157
physical modules, 94
platform kernel, 6
Plug-in Code Generators pane, 245, 251,

261, 269
Plug-in Development Environment (see PDE)
plug-in fragments, 6
plug-in manifest editor, 247, 248
plug-in manifests (see plugin.xml file)
Plug-in Project Structure pane, 251, 261
plug-in registry, 243
plugin.properties file, 242



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 309

plug-ins
action sets and, 253, 254
actions and, 255–258
CDT as, 6
classes and, 244
configuring, 247
creating, 250–253
creating views, 269–274
customizing perspectives, 258–260
deploying, 275–277
Easy Struts plug-in, 234–241
Eclipse 3.0 and, 287
Eclipse and, 3, 6
editor window, 9
extension points and, 244
GUI and, 142
installing, 6
JAR files and, 244
JDT as, 6
JUnit testing, 295
kernel and, 6
menus and, 255
multi-page editors, 261–269
Quick Diff, 281
Run-time Workbench, 248–250
Sysdeo Tomcat plug-in, 207–214, 234
team component as, 8
version numbers and, 242
wizards for, 244
workspace and, 8
writing code for, 258
(see also PDE; V4ALL plug-in)

plugins directory, 142, 207, 242
plugin.xml file

<action> element, 257
<actionSet> element, 252
creating, 243
editing, 247, 248
extension points, 258
plugin.properties file, 242
plugins directory and, 242
XML code, 251

plus sign (+), 109, 185
port numbers, 196
POST requests (HTTP), 200
Preference dialog box, 125
Preferences dialog box

adding classpath variables, 67
Ant ➝ Editor item, 125
code assist toggle, 19
customizing code generation, 58

installing JUnit, 66
step filters, 79
Tomcat home location, 209

preferences, exporting, 63
println method, 197, 200
Problems view, 280
processEvent method, 145, 146
Progress view, 282
ProgressBar (SWT control), 152
Project ➝ Build Project menu item

building code, 39
building servlets, 201
scrubbing and, 232, 233

Project ➝ Generate Javadoc item, 47
Project ➝ Properties menu item, 222, 234
Project ➝ Rebuild All menu item, 91
Project ➝ Rebuild Project menu item, 91,

232, 233
.project file, 99
projects

build path and, 14, 38
checking out, 101
classes and, 31
classpaths and, 42
closing, 27
CVS modules and, 94
CVS repository and, 96–114
debugging and, 214
Easy Struts plug-in, 234
Eclipse and, 8
exporting, 14
files and, 264
importing, 26
JAR files and, 42
JDT compiler and, 294
JSP, 210
managing, 25–27
multiple packages in, 38
navigating, 12
PDE and, 244
plug-in manifests and, 244
restoring, 61
searching, 56, 294
selecting, 209
settings and, 280
sharing, 97–99
V4ALL editor, 143
views and, 9, 25
web.xml file, 213
(see also Java projects)

V413HAV
Typewritten Text
V413HAV



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

310 | Index

Projects view, 55
properties

Ant build tool, 124, 126
form beans and, 236
setting up, 119

Properties dialog box
Add Class Folder button, 42
adding JAR files, 41
adding projects to build path, 38
classpath variables and, 44
Order and Export tab, 42

Properties menu item, 87
Properties view

action sets and, 254
creating actions, 257
Events property, 145
menus, 255
Text property, 145
whiteboard and, 143

pserver protocol, 95, 97

Q
QNX Software Systems, 2
Quick Assists (JDT editor), 294
Quick Diff, 281, 284
Quick Fix, 22–25
quotation marks ("), 18

R
radio buttons, 176
Rational Software3, 2
Red Hat, 2
Refactor ➝ Extract Interface, 52
Refactor ➝ Move menu item, 51
Refactor ➝ Rename menu item, 49
refactoring, 47–53, 291
Refactoring ➝ Change Method Signature

item, 291
Refactoring ➝ Introduce Factory item, 290
references

searching for, 57
updating automatically, 47

registry, 5, 243
regular expressions (see expressions)
release versions, 4, 93
Remove All Terminated Launches button

(Debug), 211
Rename Method dialog box, 49
Rename Type dialog box, 49
renaming elements, 48–51

Replace With ➝ Another Branch or Version
item, 112

repositories (see CVS repository)
Resource perspective, 11, 260
resources

disposing of, 156
Eclipse workspace and, 8
editors and, 9
freeing disk space, 282
perspectives and, 11

right-clicking, 274
row layout, 158
RowLayout class (SWT), 163
Run ➝ Add/Remove Breakpoint menu

item, 76
Run ➝ Add/Remove Exception

Breakpoint, 87
Run ➝ Add/Remove Method Breakpoint

menu item, 86
Run ➝ Add/Remove Watchpoint, 86
Run ➝ Debug As ➝ Java Application menu

item, 76
Run ➝ Debug As ➝ Run-time Workbench

item, 249
Run ➝ Debug menu item, 92
Run ➝ External Tools ➝ External Tools

item, 126
Run ➝ Run As ➝ Java Application menu

item, 26, 281
Run ➝ Run As ➝ JUnit Plug-in Test menu

item, 281
Run ➝ Run As ➝ Run-time Workbench, 249
Run ➝ Run menu item, 45, 76, 249
Run As ➝ Java Applet menu item, 131
Run As ➝ Java Application menu item

AWT application, 134
creating methods, 30
running code, 20
V4ALL application, 147

Run As ➝ JUnit Test menu item, 72
Run dialog box, 45, 131
Run-time Workbench, 248–250, 258, 274

S
Sample Menu ➝ Sample Action item, 249
SampleNewWizard class, 263, 264, 265
SampleNewWizardPage class, 264
SampleView class, 272
SampleView.java, 272, 273
Sash (SWT control), 152
Scale (SWT control), 152



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 311

scrapbook pages, 20, 22
scriptlets, 197, 206
ScrollBar (SWT control), 152
scrollbars

dialog boxes and, 186
list styles, 165
sliders and, 180, 182
trees and, 183

scrubbing, 219, 233
Search ➝ File menu item, 56, 284
Search ➝ Help menu item, 56
Search ➝ Java menu item, 56
Search ➝ Search menu item, 56
Search dialog box, 56, 57
search engines, 191
Search Results view, 56
searching/searches, 56–57, 294
security, Eclipse 3.0 and, 287
Select Working Set dialog box, 61
Selection event (SWT), 177
SelectionListener event (SWT), 160
SelectionListener object, 172
semicolon (;), 18, 291
server.xml file, 210, 212
servlet element (XML), 201, 204, 225
servlet.jar file

adding to classpath, 41, 42
build path and, 203, 222
classpath variables and, 42
creating servlets, 200

servlet-mapping element (XML)
controllers, 225
grouping, 204
Tomcat and, 201, 213

servlets
as controllers, 219
creating, 199–202
creating in place, 202–205
debugging, 214
developing multiple, 42
MVC architecture, 219
Sysdeo Tomcat plug-in and, 211–214
WAR files and, 215, 216

set command, 196
Set Imports menu item, 22
set method

depicted, 70
purpose, 65, 66, 72

setBounds method, 162, 178
setChecked method, 186
setenv command, 196

setImage method, 186
setIncrement method, 183
setLayout method (shell), 162
setLookAndFeel method (UIManager), 138
setMaximum method, 183
setMenuBar method, 172
setMessage method, 36
setMinimum method, 183
setPageIncrement method, 183
setPosition method, 183
setProperty element (JSP), 206
setSelection method, 183
setter methods, 35, 36, 291
setText method, 158
setUp method, 68, 71
setVisible method, 136
Share Project with CVS Repository dialog

box, 97
Shell object, 152, 186
Shell (SWT control), 152
shells

dialog boxes, 186, 190
menuBar object, 172
SWT and, 152
toolbars and, 175
tree example, 184, 185

Shift+Enter, 284
Shift+F5 (Step With Filters), 79
shortcuts

ampersand and, 171
code assist, 19, 29, 47, 59, 126
committing files, 99
creating, 59
declarations, 294
editing functions, 284
method call hierarchy, 288
perspectives and, 79, 96
Quick Diff, 284
quick hierarchy views, 288
starting Eclipse and, 5
stepping through code, 79, 83

show method, 134
shutdown command (Windows), 196
shutdown.sh command (Unix), 196
Simple Plug-in Content pane, 251
single-stepping, 79
Slider (SWT control), 152
sliders, 179–183
smart insert mode (JDT editor), 280, 291,

292
Solaris Motif, 150, 151, 157



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

312 | Index

Solaris operating system, 7
sort method, 267
sorting (ordering), 42, 267
Source ➝ Add Block Comment item, 292
Source ➝ Add Constructor from Superclass

item, 35, 291
Source ➝ Comment item, 35, 292
Source ➝ Generate Constructor Using Fields

item, 288
Source ➝ Generate Delegate Methods

item, 35, 291
Source ➝ Generate Getter and Setter

item, 35, 36, 291
Source ➝ Override/Implement Methods

item, 33, 291
Source ➝ Remove Block Comment item, 293
Source ➝ Surround with try/catch Block

menu item, 35, 37
Source ➝ Uncomment item, 35
Source Attachment Configuration dialog

box, 67
source code (see code)
source control, 93
spaces (blanks), 112
splitting, text editors and, 287
SQLj files, 294
src directory

contents, 118
creating views and, 271
.java file, 230
PDE wizard and, 263
Struts example, 222, 224, 227

_SRC suffix, 67
SSH (secure shell) protocol, 95
stable builds, 4
stack frames, 75, 78, 83
Standard Widget Toolkit (see SWT)
start method, 130
startup command (Windows), 196
startup.sh command (Unix), 196
step filters, 79
Step Into (F5), 79, 83
Step Over (F6), 79
Step Return (F7), 79
Step With Filters (Shift+F5), 79
stop method, 130
StringTokenizer class, 267
Struts framework

background, 219
creating controllers, 225–229
creating models, 229–234

creating views, 222–225
Easy Struts plug-in, 234–241
Eclipse and, 219–222
scrubbing applications, 219

struts-config.xml file, 226
struts.jar file, 222
Sun Microsystems

AWT and, 149
Java look-and-feel, 138, 140
JDK, 295
look-and-feel, 150
Tomcat web server, 195

superclasses, 35
SuSE, 2
Swing

AWT and, 133
GUI and, 135–141
Java and, 149, 150
plug-ins for, 142
SWT and, 149
V4ALL plug-in and, 142, 148

Swing JFrame class, 136, 138
Swing JPanel class, 135
SWT Button class, 159
SWT DirectoryDialog class, 186
SWT FileDialog class, 186
SWT FillLayout class, 163
SWT FormLayout class, 163
SWT GridLayout class, 163
SWT List class, 165
SWT OleControlSite object, 191
SWT OleFrame object, 192
SWT RowLayout class, 163
SWT sessions, 151
SWT (Standard Widget Toolkit)

build paths, 151
buttons, 158–163
composites and layouts, 163–165
controls and options, 152–155
dialog boxes, 186–190
disposing of resources, 156
Eclipse 3.0 and, 287, 295
Java and, 150
label styles, 155
launch configurations, 157
lists, 165–167
look-and-feel, 138
menus, 170–175
opening IE, 191–194
purpose, 149
sliders, 179–183



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 313

toolbars and, 175–179
trees, 183–186
V4ALL and, 167–169
widgets and threads, 162
workbench and, 7

SWT Text class, 159
SWT Toolbar class, 175
SWT Tree class, 183
SWT.APPLICATION_MODAL style, 186
SWT.ARROW button style, 159
SWT.ARROW_DOWN constant, 180
SWT.ARROW_UP constant, 180
SWT.BAR menu style, 170
SWT.BORDER style

buttons, 159
dialog boxes, 186
labels, 155
lists, 165
sliders, 179
text controls, 159
toolbars, 175
trees, 183

SWT.CASCADE menu item style, 171
SWT.CENTER style

buttons, 159
labels, 155
text control, 159

SWT.CHECK style
buttons, 159
menu items, 171
tool items, 176
trees, 183

SWT.CLOSE style, 186
SWT.DIALOG_TRIM style, 186
SWT.DRAG constant, 180
SWT.DROP_DOWN style

menus, 170
tool items, 176

SWT.END constant, 180
SWTException exception, 162
SWT.FLAT style

buttons, 159
toolbars, 175

SWT.HOME constant, 180
SWT.HORIZONTAL style

sliders, 179
toolbars, 175

SWT.H_SCROLL style
dialog boxes, 186
lists, 165
trees, 183

swt.jar file, 150, 167
SWT.LEFT style

buttons, 159
labels, 155
text controls, 159

SWT.LEFT_TO_RIGHT menu style, 170
SWT.MAX style, 186
SWT.MIN style, 186
SWT.MULTI style

lists, 165
text controls, 160
trees, 183

SWT.NONE constant, 163, 176
SWT.NO_RADIO_GROUP menu style, 170
SWT.NO_TRIM style, 186
SWT.PAGE_DOWN constant, 180
SWT.PAGE_UP constant, 180
swt-pi.jar file, 151
SWT.POP_UP menu style, 170
SWT.PUSH style

buttons, 159
menu items, 171
tool items, 176

SWT.RADIO style
buttons, 159
menu items, 171
tool items, 176

SWT.READ_ONLY text control style, 159
SWT.RESIZE style, 187
SWT.RIGHT style

buttons, 159
labels, 155
text controls, 160
toolbars, 175

SWT.RIGHT_TO_LEFT menu style, 170
SWT.Selection event, 177
SWT.SEPARATOR style

labels, 155
menu items, 171
tool items, 176

SWT.SHADOW_OUT toolbar style, 175
SWT.SINGLE style

lists, 165
text controls, 159
trees, 183

SWT.TITLE style, 187
SWT.TOGGLE button style, 159
SWT.VERTICAL style

sliders, 179
toolbars, 176



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

314 | Index

SWT.V_SCROLL style
lists, 165
trees, 183

SWT.WRAP style
labels, 155
text controls, 160
toolbars, 175

Sybase, 2
symbolic links, 5
syncExec method, 162
Synchronize view, 99, 107
synchronizing

code, 106–108
files, 99

syntax highlighting, 117
Sysdeo Tomcat plug-in, 207–214, 234
System.out.println method, 20

T
TabFolder (SWT control), 152
TabItem (SWT control), 152
Table (SWT control), 152
TableColumn (SWT control), 152
TableItem (SWT control), 152
tag library descriptor files, 225
taskdef element (Ant), 124
Tasks view, 13, 280
tcsh shell (Unix), 196
Team ➝ Add to Version Control item, 99
Team ➝ Apply Patch item, 110
Team ➝ Branch item, 113
Team ➝ Commit menu item, 99, 104
Team ➝ Create Patch item, 109
Team ➝ Merge item, 113
Team ➝ Share Project item, 97
Team ➝ Show Annotation item, 295
Team ➝ Show in Resource History item, 103
Team ➝ Synchronize with Repository

item, 106
Team ➝ Tag As Version item, 110
Team ➝ Update menu item, 102
team component (Eclipse), 8
tearDown method, 68
templates

creating, 29
editing, 59
getters/setters, 291

testing
applets, 131
compliance, 74
creating test applications, 65, 66
JUnit and, 64, 65, 68–74

methods on the fly, 22
open source framework, 64
plug-in development and, 295
Run-time Workbench, 248–250, 258
Tomcat web server, 195–197

text boxes, 236
Text class (SWT), 159
text controls

buttons and, 158
dialog boxes, 190
sliders, 179
styles for, 159
Text class, 159
toolbars and, 176

text editors (see editors)
Text Input dialog box, 145
text labels

as controls, 152
menu example, 175
sliders, 179
SWT styles, 155

Text property (Properties view), 145
Text (SWT control), 152
threads, widgets and, 162
thumb (slider), 179, 182
.tld (Tag Library Definition) files, 222, 234
TogetherSoft3, 2
Tomcat web server

directory structure, 198
installing and testing, 195–197
parsing files, 204
port number, 196
servlet.jar file, 200
Sysdeo plug-in, 207–214
web development and, 195

TOMCAT_HOME item, 234
tool tips

Ant editor, 127
code assist and, 18
Quick Fix and, 23

Toolbar class (SWT), 175
toolbar separators, 176
ToolBar (SWT control), 152
toolbarPath property (actions), 257
toolbars

action sets and, 253
actions and, 252
Eclipse 3.0 and, 282
Eclipse workbench and, 7
locking, 57
MultiPageEditorContributor.java, 265
SWT and, 175–179



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 315

ToolItem class, 176
ToolItem (SWT control), 152
toolTip property (actions), 257
Tracker (SWT control), 152
Tree class (SWT), 183
Tree (SWT control), 152
TreeItem class, 183, 186
TreeItem (SWT control), 152
trees, SWT and, 183–186
troubleshooting build files, 127–129
type hierarchies, 54
typedef element (Ant), 124

U
UI element (SWT), 152
UI thread, 162
UIManager class, 138
universal platform tool (see Eclipse 3.0;

Eclipse platform)
Unix environment

CVS and, 93, 95
Eclipse shortcuts, 5
Tomcat web server, 196

updates, checking for, 284
uppercase conversion, 284
useBean element (JSP), 206
user authentication, 287

V
V4ALL editor, 143
V4ALL perspective, 143
V4ALL plug-in, 142–148, 167–169
V4E dialog box, 143
V4E Visual Editor, 143
VA4J (Visual Age for Java), 3
variables

classpath variables, 42, 66, 67
debugging, 10, 78, 81
editing values while debugging, 89
source code suffix, 67
(see also local variables)

Variables view, 78, 89
versions

Ant build tool, 124
beta versions, 4
branches and, 113
CVS and, 94
Eclipse, 2, 5
Eclipse 3.0, 278
label guidelines, 112

patches and, 110
plug-ins and, 242
release versions, 4, 5
tagging, 110–113
team component and, 8

ViewContentProvider class, 272
ViewPart class, 272
views

creating, 269–274
Eclipse 3.0, 278
Eclipse 3.0 and, 293
MVC architecture and, 219
overview, 9–11
removing projects from, 25
reopening, 9
specifying, 61
Struts and, 222–225

virtual modules, 94
visible property (action sets), 254
Visual Age for Java (VA4J), 3

W
WAR (Web Archive) files, 215, 216
Watch item, 81
watchpoints, 85
web development

connecting to JavaBeans, 205–207
creating controllers, 225–229
creating JSPs, 197–199
creating models, 229–234
creating servlets, 199–202
creating servlets in place, 202–205
creating views, 222–225
debugging and, 214
deploying applications, 215–218
Easy Struts plug-in, 234–241
Struts and Eclipse, 219–222
Sysdeo Tomcat plug-in, 207–214
Tomcat web servers and, 195–197

Web documents, 198
web pages, applets and, 132
web servers (see Tomcat web server)
webapps directory

deploying web applications, 217
Struts example, 221
Tomcat server and, 196, 199
WAR files, 215

Webgain2, 2
WEB-INF directory

creating servlets, 201, 204
Struts example, 221



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

316 | Index

WEB-INF directory (continued)
tld files, 222
Tomcat and, 198
web.xml file in, 216

web.xml file
creating local, 213, 214
depicted, 201
deploying web applications, 216
editing, 203
servlets and, 213
Struts example, 225

well-formed (XML), 127
whiteboard, 142, 143, 146
widgetDefaultSelected method

(SelectionListener), 160
widgets

browsers and, 191, 295
defined, 152
Eclipse 3.0 and, 295
native controls and, 150
threads and, 162
(see also controls)

widgetSelected method
(SelectionListener), 160

wildcards, 56
Win32 environment, 151, 157
Window ➝ Customize menu item, 61
Window ➝ Customize Perspective ➝ Other

item, 249
Window ➝ Customize Perspective item, 207,

258, 286
Window ➝ Hide Editors menu item, 9
Window ➝ Lock the Toolbars menu

item, 57
Window ➝ Open Perspective ➝ Java

Browsing item, 55
Window ➝ Open Perspective ➝ Java menu

item, 10, 12, 79
Window ➝ Open Perspective ➝ Other

item, 96
Window ➝ Open Perspective menu item, 10
Window ➝ Preferences

Classpath Variables item, 42
code assist and, 19, 59
configuring Ant, 124
customizing code generation, 58
Easy Struts plug-in, 234
JUnit and, 66
selecting JRE, 46

step filters, 79
Tomcat plug-in, 207

Window ➝ Preferences ➝ Editors ➝ Text
Editor page, 284

Window ➝ Preferences ➝ Install/Update ➝

Automatic Updates page, 282
Window ➝ Preferences ➝ Java ➝ Code

Generation ➝ Code and Comments
page, 59, 291

Window ➝ Preferences ➝ Java ➝ Compiler
➝ Build Path page, 232, 294

Window ➝ Preferences ➝ Java ➝ Compiler
➝ Style item, 294

Window ➝ Preferences ➝ Java ➝ Editor ➝

Typing item, 291
Window ➝ Preferences ➝ Workbench ➝

Editors ➝ Text Editor ➝ Quick Diff
page, 284

Window ➝ Preferences ➝ Workbench ➝

Label Decorations item, 99
Window ➝ Preferences ➝ Workbench ➝

Perform build automatically on
resource modification
checkbox, 91

Window ➝ Reset Perspective item, 57
Window ➝ Show Editors item, 9
Window ➝ Show View ➝ Other ➝ Ant

item, 126
Window ➝ Show View ➝ Other ➝ CVS ➝

CVS Console item, 99
Window ➝ Show View ➝ Other item, 274
Window ➝ Show View item, 9, 61, 293
Window ➝ Switch to Editor menu item, 9
window manager, 152
WindowAdapter class, 136
windows

panes in, 9
shells as, 152

Windows environment
Alt+F shortcut, 171
AWT and, 149
browser widgets and, 295
CVS and, 93, 95
Eclipse shortcuts, 5
look-and-feel, 138, 141
OLE and, 9, 191
porting Eclipse, 7
SWT and, 150
Tomcat web server, 196



This is the Title of the Book, eMatter Edition
Copyright © 2009 O’Reilly & Associates, Inc. All rights reserved.

Index | 317

Wizard class, 263
wizards

creating multi-page editors, 261–269
creating plug-ins, 244
creating views, 269–274
New Extension wizard, 253
PDE and, 244

workbenches
Eclipse 3.0 and, 287
editor window, 9
overview, 7
views and, 9
(see also Run-time Workbench)

working sets, 56, 61
workspace

Eclipse 3.0, 287
editing files outside, 284
overview, 8
patch files and, 109
projects as folders in, 14

workspace directory, 142

X
Xerces plug-in, 287
XML

Ant build file, 116, 117
Eclipse 3.0 and, 287
help component and, 8
plug-in xml code, 251
servlet elements, 201, 204, 213
syntax errors and, 129
well-formed, 127

XML Buddy, 198, 201
XML editors, 125, 198
XML files, 124

Z
ZIP files, 276





About the Author
Steve Holzner is an award-winning author who has been writing about Java topics
since Java first appeared. He’s a former PC Magazine contributing editor whose
many books have been translated into 18 languages around the world. His books
have sold more than 1.5 million copies, and many of his bestsellers have been on
Java.

Steve graduated from MIT and got his Ph.D. from Cornell; he’s been a very popular
member of the faculty at both MIT and Cornell, teaching thousands of students over
the years and earning an average student evaluation over 4.9 out of 5.0. He also runs
his own software company and teaches week-long classes on Java to corporate
programmers around the country.

Colophon
Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animals on the cover of Eclipse are ornate butterflyfish (Chaetodon ornatis-
simus). Ornate butterflyfish are easily recognized by their white skin marked with
orange diagonal, parallel stripes. A black eye-band runs vertically down the head to
conceal the eye—an adaptation that confuses predators as to the direction the fish
will flee when attacked. Butterflyfish have laterally compressed bodies that enable
them to swim stealthily through coral crevices. These reef-dwelling fish are native to
the tropical marine waters of the Indo-Pacific, inhabiting both shallow lagoons and
seaward reefs.

Mature butterflyfish are characteristically monogamous and travel in mated pairs.
During the day, the home-ranging pairs search for food; at night, they sleep hidden
in reef recesses. Adults usually spawn at dusk, rising 30 to 50 feet above their habi-
tats into the water column, where they release a white cloud of gametes before
quickly returning to the bottom. The abandoned, tiny, buoyant, fertilized eggs are
dispersed by the currents. Once hatched, usually within 30 hours of fertilization, the
larvae are protected by bony armor, which is shed during the juvenile stage. Juve-
niles are solitary until they reach sexual maturity, about a year after birth.

Ornate butterflyfish have short jaws and brush-like teeth for nipping off the coral
polyps that sustain their diets. Because they are corallivorous, ornate butterflyfish do
not survive well away from the reef. These highly sensitive fish are more susceptible
to diseases, bacterial infections, and starvation when kept in a home aquarium.

Marlowe Shaeffer was the production editor and proofreader for Eclipse . Jane Ellin
was the copyeditor. Reg Aubry and Mary Anne Weeks Mayo provided quality
control. Lucie Haskins wrote the index.



Ellie Volckhausen designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from the Dover Pictorial
Archive. Emma Colby produced the cover layout with QuarkXPress 4.1 using
Adobe’s ITC Garamond font.

David Futato designed the interior layout. This book was converted by Julie Hawks
to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIn-
tosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font
is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is
LucasFont’s TheSans Mono Condensed. The illustrations that appear in the book
were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand
9 and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher
Bing. This colophon was written by Marlowe Shaeffer.


	Table of Contents
	Preface
	What’s Inside
	Conventions Used in This Book
	What You’ll Need
	Using Code Examples
	We’d Like to Hear from You

	Essential Eclipse
	Eclipse and Java
	Some Background
	A Word About the Common Public License (CPL)

	Getting Eclipse
	Understanding Eclipse
	The Eclipse Platform
	The Platform Kernel
	The Eclipse Workbench
	The Eclipse Workspace
	The Team Component
	The Help Component

	Views and Perspectives
	Working with Eclipse
	Creating a Java Project
	Creating a Java Class
	Using Code Assist
	Running Your Code
	Using the Scrapbook

	Using Quick Fix
	A Word About Project Management

	Java Development
	Developing Java Code
	Creating New Methods
	Creating New Classes
	Creating New Packages

	Building and Running Code
	Using JAR and .class Files
	Setting the Launch Configuration
	Selecting the Java Runtime

	Creating Javadoc
	Refactoring
	Renaming Elements
	Moving Elements
	Extracting Interfaces

	Some Essential Skills
	Viewing Type Hierarchies
	Browsing Java Code
	Searching Code

	Customizing the Development Environment

	Testing and Debugging
	Testing with JUnit
	Creating a Test Application
	Installing JUnit
	Testing an Application with JUnit

	Debugging
	A Buggy Program
	Setting a Breakpoint
	Stepping Through Code
	Resuming Execution Until Encountering a Breakpoint
	Setting Breakpoint Hit Counts
	Configuring Breakpoints
	Checking a condition
	Multithreaded debugging
	Watchpoints
	Method breakpoints
	Exception breakpoints

	Evaluating Java Expressions and Changing Values
	Using Hot Code Replacement
	Targeting earlier JREs



	Working in Teams
	How Source Control Works
	Understanding CVS
	Finding a CVS Server
	Creating a Repository
	Connecting to CVS

	Adding a Project to the CVS Repository
	Creating a Repository Location
	Sharing Projects
	Committing Files
	Checking Projects Out
	Updating Code
	Comparing Code with Local History
	Committing Code
	Synchronizing Code
	Creating a Patch
	Tagging Versions
	Creating Branches


	Building Eclipse Projects Using Ant
	Working with Ant
	JARing Your Output
	Configuring Ant in Eclipse
	Catching Errors in Build Files

	GUI Programming: From Applets to Swing
	Creating AWT Applications
	Creating Swing Applications
	Using Eclipse Plug-ins
	Using the V4ALL Plug-in
	Adding a V4ALL Editor to a Project
	Designing the GUI
	Creating a Method
	Generating and Editing the Code
	Running the Result


	SWT: Buttons, Text, Labels, Lists, Layouts, and Events
	Java Graphics
	AWT
	Swing
	SWT

	An SWT Example
	Working with Buttons
	Working with Composites and Layouts
	Working with Lists
	Using V4ALL with SWT

	SWT: Menus, Toolbars, Sliders, Trees, and Dialogs
	Working with Menus
	Working with Toolbars
	Working with Sliders
	Working with Trees
	Working with Dialogs
	Opening Internet Explorer in an SWT Window

	Web Development
	Installing and Testing Tomcat
	Creating a JSP
	Creating a Servlet
	Creating a Servlet in Place
	Connecting to a JavaBean
	Using the Sysdeo Tomcat Plug-in
	Writing JSP with the Sysdeo Tomcat Plug-in
	Writing Servlets with the Sysdeo Tomcat Plug-in
	Debugging Web Projects

	Deploying Web Applications

	Developing Struts Applications with Eclipse
	Struts and Eclipse
	Creating the View
	Creating the Controller
	Creating the Model
	Using the Easy Struts Plug-in

	Developing a Plug-in: The Plug-in Development Environment, Manifests, and Extension Points
	All You Really Need Is plugin.xml
	Using the Plug-in Development Environment
	Using the Run-time Workbench
	Creating a Standard Plug-in
	Creating an Action Set
	Creating a Menu
	Creating an Action
	Writing the Code
	Automatically Customizing a Perspective


	Developing a Plug-in: Creating Editors and Views
	Creating a Multi-Page Editor
	Creating the Code
	Dissecting the Wizard
	Coding a Multi-Page Editor

	Creating a View
	Adding Items to the View
	Configuring View Actions

	Deploying a Plug-in

	Eclipse 3.0
	A Look at Eclipse 3.0
	Creating a Java Project
	Changes to the Eclipse Platform
	Changes to the Java Development Tools
	Quick Hierarchy Views
	Creating Constructors from Fields
	Creating Factory Methods
	Smart Insert Mode
	Creating Block Comments
	New Views
	Additional Changes

	Other Changes

	Index



