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The classical literature on optimal liquidation, rooted in Almgren—Chriss models,
tackles the optimal liquidation problem using a trade-off between market impact and
price risk. It answers the general question of optimal scheduling but the very question
of the actual way to proceed with liquidation is rarely dealt with. Our model, which
incorporates both price risk and nonexecution risk, is an attempt to tackle this question
using limit orders. The very general framework we propose to model liquidation with
limit orders generalizes existing ones in two ways. We consider a risk-averse agent,
whereas the model of Bayraktar and Ludkovski only tackles the case of a risk-neutral
one. We consider very general functional forms for the execution process intensity,
whereas Guéant, Lehalle and Fernandez-Tapia are restricted to exponential intensity.
Eventually, we link the execution cost function of Almgren—Chriss models to the
intensity function in our model, providing then a way to see Almgren—Chriss models
as a limit of ours.
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1. INTRODUCTION

Since the late nineties and the first papers on the impact of execution costs on trading
strategies (e.g., Bertsimas and Lo 1998), an important literature has developed to tackle
the problem of optimal liquidation. This literature, often rooted in the seminal papers by
Almgren and Chriss (1999, 2001), has long been characterized by a trade-off between,
on the one hand, market impact that encourages to trade slowly and, on the other hand,
price risk that provides an incentive to trade fast.

The first family of models, following Almgren and Chriss, considered general in-
stantaneous price impact (sometimes called execution cost) and linear permanent
price impact. Several generalizations have been proposed such as an extension to ran-
dom execution costs Almgren (2003), or stochastic volatility and stochastic liquidity
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(Almgren 2009, 2012). Also, many objective functions to design optimal strategies have
been proposed and discussed in order to understand the assumptions under which op-
timal strategies are deterministic (as opposed to adaptive). The initial mean-variance
framework has been expressed in an expected utility setting (using a CARA utility func-
tion) in Schied, Schéneborn, and Tehranchi (2010), Schied and Schoneborn (2007), and
Guéant (2012), a mean-quadratic-variation framework has been considered (Forsyth
et al. 2012), an initial-time mean variance criterion has been discussed (Almgren and
Lorenz 2007; Lorenz and Almgren 2011), and the very interesting case of a general
utility function has recently been considered in Schied and Schoneborn (2009) to justify
aggressive-in-the-money or passive-in-the-money strategies. Slightly different approaches
have been proposed in this first generation of models (see, e.g., He and Mamaysky 2005;
Huberman and Stanzl 2005; Bouchard et al. 2011; and Kharroubi and Pham 2010). They
all derive from the initial models by Almgren and Chriss since market impact is either
permanent or instantaneous. In other words, they do not take into account explicitly the
resilience of the underlying order book.

Another family of models appeared following a paper by Obizhaeva and Wang (2005).
In these models, the limit order book is directly modeled and the authors consider its
resilient dynamic after each trade. This second generation of optimal liquidation models,
based on transient market impact, has developed in recent years (Alfonsi, Fruth, and
Schied 2008; Alfonsi, Fruth, and Schied 2010; Alfonsi and Schied 2010; and Predoiu,
Shaikhet, and Shreve 2011). It raises the theoretical question of the functional forms for
the transient market impact that are compatible with the absence of price manipulation
(see Alfonsi, Schied, and Slynko 2012; Gatheral 2010; and Gatheral, Schied, and Slynko
2012).

All these models only make use of market orders, and hence only consider liquidity-
taking strategies. They do not consider the possible use of limit orders that provide
liquidity, nor the possible use of dark pools. Notwithstanding the preceding criticism,
models a la Almgren—Chriss provide a rather acceptable answer to the macroscopic
question of the optimal scheduling of liquidation—at least once the instantaneous market
impact function has been replaced by an execution cost function modeling the ability
to trade over short periods of time, with all possible means including limit orders, dark
pools, and market orders. However, they do not answer the question of the optimal way
to proceed in practice and the methods currently used in the industry are seldom based
on optimal control models at the microscopic level. This paper provides such a model of
optimal liquidation using limit orders, and can be used, either to liquidate a portfolio as
a whole over a few hours, or on shorter periods of time to follow a trading curve, be it a
TWAP curve, a VWARP curve, or an Almgren—Chriss (Implementation Shortfall) trading
curve.

In our approach, a trader posts limit orders (thus providing liquidity instead of taking
it) and does not know when his orders are going to be executed, if at all. As a consequence,
the classical trade-off between market impact/execution cost and price risk is not central
in our model. In our setting, a new risk is borne by the trader because execution is now
a random process. This nonexecution risk is very different, in its nature, from price risk.
This new risk characterizes the recent literature on optimal liquidation, which focuses on
the optimal way to liquidate rather than on optimal scheduling. The recent literature on
optimal liquidation focuses indeed on alternatives to the use of market orders. Kratz and
Schoneborn (2014) proposed an approach inspired from models of the first family, but
with both market orders and access to dark pools. Although they did not consider risk
aversion with respect to the new risk borne by the trader, their model is one of the first
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in this new family of models. The optimal split of large orders across liquidity pools has
then been studied by Laruelle, Lehalle, and Pagés (2011a). Liquidation with limit orders
has been developed by Bayraktar and Ludkovski (2014) for general intensity functions
but only in a risk-neutral framework. Guéant, Lehalle, and Fernandez-Tapia (2012)
considered in parallel the specific case of an exponential intensity for a risk-averse agent
(see also Laruelle, Lehalle, and Pages 2011b). More recently, Huitema (2012) considered
liquidation involving market orders and limit orders, and Guilbaud and Pham (2015)
also propose a liquidation model in a pro-rata microstructure.

One should also note that many models dealing with high-frequency market making
have been developed that can be adapted to deal with optimal liquidation. Building on
the model proposed by Ho and Stoll (1981) and then modified by Avellaneda and Stoikov
(2008),' Cartea, Jaimungal, and Ricci (2014) considered a model with exponential inten-
sity, market impact on the limit order book, adverse selection effects, and predictable «.
Cartea and Jaimungal (2015) use a similar model to introduce risk measures for high-
frequency trading. Earlier, the same authors proposed a model Cartea and Jaimungal
(2013) in which the reference price is modeled by a hidden Markov model. Eventually,
Guilbaud and Pham (2013) also used a model including both market orders and limit
orders at best (and next to best) bid and ask together with stochastic spreads. As it is
shown in Appendix B, our model can be used to model trading on both sides of the
market. Our choice to focus on optimal liquidation is mainly justified by practitioners’
needs.

In this paper, we generalize both Bayraktar and Ludkovski (2014) and Guéant et al.
(2012). We indeed consider both general shapes for the intensity functions, and an investor
with a CARA utility function. Moreover, we present a limiting case in which the size
of the orders tends to 0 and we show that this limiting case is intrinsically linked to the
usual continuous framework of Almgren and Chriss, although the latter framework only
considers market orders. This limiting case helps to understand the meaning of intensity
functions for quotes corresponding to marketable limit orders.

In Section 2, we present the setting of the model and the main hypotheses on execution.
The third section is devoted to solving the partial differential equations arising from the
control problem. Then, in Section 4, we provide illustrations of the model and we exhibit
the asymptotic behavior of the quotes, generalizing therefore a result presented in Guéant
et al. (2012). Section 5 is dedicated to the study of a limit regime that corresponds to
orders of small size. This fifth section leads to results linked to those obtained for the
Sfluid limit in Bayraktar and Ludkovski (2014), here in a risk-averse setting. This result is
exploited in Section 6 that draws parallels between our model and the usual Almgren-
Chriss framework.

2. OPTIMAL EXECUTION WITH LIMIT ORDERS: THE MODEL
2.1. Setup of the Model

Let us fix a probability space (2, F, P) equipped with a filtration (F,);>¢ satisfying
the usual conditions. We assume that all random variables and stochastic processes are
defined on (2, F, (F)i>0, P).

We consider a trader who has to liquidate a portfolio containing a quantity ¢y > 0 of
a given stock. We suppose that the reference price of the stock (that can be considered

See Guéant, Lehalle, and Fernandez-Tapia (2013) for the solution of the Avellaneda-Stoikov equations.
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the best bid quote for example) follows a Brownian motion with a drift:

ds, = pdt +odW,.

To model limit orders and the execution process, we first introduce the set of admissible
strategies:

A= {(8,),6[0ﬂ|(8,), predictable process , 8~ € L™(Q2 x [0, T])} .

The trader under consideration continuously proposes an ask quote S’ = §; + §,. He
will sell shares according to the rate of arrival of liquidity-taking orders at the price he
quotes.

His inventory ¢°, which is the number of shares he holds, evolves according to the
following dynamics:

dq; = —AdN;,

where N? is a point process giving the number of executed orders, each order being of
size A—we suppose that A is a fraction of ¢y. The intensity process (1), of the point
process N° that is the arrival rate of liquidity-taking orders depends on both the (ask)
price quoted by the trader and the size of its orders:

Ay = AA(S;I - Sf)qu,>0 = AA(ST)L],‘&,>0!

where A : R — R, satisfies the following assumptions:

A is strictly decreasing—the cheaper the order price, the faster it will be executed,
lisz%Jroo Aa(8) =0,

Ax € CH(R),

AAB)NL(S) < 20" (8).

As a consequence of his trades, the trader’s cash account X° has the following
dynamics:

dX} = (S +8)AdN;.

Now, coming to the liquidation problem, the trader has a time horizon T to liquidate
his shares and his goal is to optimize the expected utility of his P&L at time 7. We
focus on CARA utility functions so that the trader considers the following optimization
problem:

iEEE [—exp (—y (X7 + a7 (Sr—£(47))))]-

where y > 0 is the absolute risk aversion parameter characterizing the trader, where X?.
is the amount of cash at time 7 and where ¢? is the remaining quantity of shares at time
T. In this setting, the trader can sell the shares remaining at time 7 in his portfolio at a
price below the reference price, namely S — £(¢3.), the function ¢ being a positive and
increasing penalization function, measuring execution cost.

We associate to this stochastic control problem the value function V, defined by:

Va(t, x,q,5) = sup E [— exp (—V (fwr’x’(S + qu.,q,s (‘S{T'S —¢ (‘1?”))))] )

Se A1)
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where A(7) is the set of predictable processes on [¢, T], bounded from below and where:

dS”* = pdt + odW,, S =,

dX0¥ = (S +8)AdN,, X’ =x,

dgl®® = —AdN,, /" =q.

the point process N having stochastic intensity (A;). with A; = Ax(8:)1,, so.

This setting deserves several remarks. First, orders are of constant size A. This is
a modeling choice corresponding to the way practitioners proceed with liquidation, A
being then a fraction of the average trade size (ATS). Also, we implicitly assume that
our orders are either entirely filled or not filled at all. In other words, there is no partial
fill in this model. This hypothesis is a questionable one since partial fills are common
in practice. When using the model in practice, one can always consider a convex com-
bination of optimal quotes between two multiples of A. Allowing for partial fills would
make the model more realistic. However, it is complicated from a mathematical point of
view.

A second important point regards negative §s. We indeed assume that A » is defined on
the entire real line and not only on R, . Our model allows to post orders at a price below
the reference price. If the reference price is the first bid quote, these orders correspond
to marketable limit orders. One may then wonder why there is execution uncertainty
associated to these orders. An answer is linked to high-frequency traders whose capacity
to rapidly cancel trades forces practitioners to use fill and/or kill orders or other types
of marketable limit orders and not market orders. Also, considering the entire real line
allows to introduce indirectly execution costs for liquidity-taking orders. We shall see in
Section 6 that there is a link between the execution cost functions of Almgren—Chriss
models and the intensity functions on {§ < 0}. It is noteworthy that if one wants to
avoid negative 8, adding a hard constraint § > 0 is also possible and does not raise any
difficulty. This constrained framework is discussed later in this paper (see Section 3.3).
To avoid negative 8, some authors (see, for instance, Bayraktar and Ludkovski 2014)
considered an intensity function that blows up at § = 0. A natural consequence of this
modeling choice is that there is unlimited liquidity available at § = 0. This is not a correct
approach in our view.

The third and last point regards the structural assumption A, (8)A;(8) < 2A’A(8)?.
This hypothesis, already present in Bayraktar and Ludkovski (2014), is a sufficient condi-
tion to guarantee uniqueness of the optimal trading quote. To understand the intuition,
let us consider the expected PnL. when posting an order at a distance § from the ref-
erence price. This expected PnL is proportional to §AA(8): § is the premium over the
reference price and A(8) is the instantaneous probability that a trade takes place at
a distance § from the reference price. A natural condition for this expression to have
a unique maximizer is: AyA\ < 2A/2A. In our case, the inequality can be binding be-
cause of risk-aversion. It is noteworthy that our framework can be used even if this
hypothesis is relaxed.”> However, the consequence is that there may be multiple optimal
quotes. For the sake of exposition, we chose to present the model under this structural
assumption.

2The same is true for the assumption A, € C2.
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2.2. A System of ODEs for the Value Function

The optimization problem set up in the preceding paragraphs can be solved using
classical Bellman tools. To this purpose, we introduce the Hamilton—Jacobi-Bellman
(HJB) equation associated to the optimization problem, where the unknown u, is going
to be equal to the value function ¥, defined above:

1
(HJB) 0=0,un(t, x,q,s)+ ndun(t, x,q,s) + EUZB‘iMA(l, X, q,S5)

+sup Aa(s? —s)[ualt, x+ As?, g — A, s5) —ua(t, x, q, )],

s

with the final condition:
ua(T, x,q,s) = —exp(=y (x+q(s = €(¢))),
and the boundary condition:
ua(t, x,0,5) = —exp(—yx).

Since we use a CARA function, we can factor out the mark-to-market (MtM)
value x + ¢s of the portfolio. This remark leads to considering the change of variables
ua(t, x,q,s) = —exp(—y(x+ ¢gs + 6a(¢, ¢))). In that case, the above HIB equation with
four variables is (formally) reduced to the following system of ordinary differential equa-
tions indexed by ¢:

1
(HJo,)  0=y3,05(t. q)+yrq— zy’o’q’ + Hy

(QA(Zv ‘I) - GA(Z$ q— A))
3 s

A
with

OA(T, q) = —t(q)g,  6a(z,0)=0,
where

Hx(p) = sup Aa(8) (1 _ ewA(s—m) .
§

3. SOLUTION OF THE OPTIMAL CONTROL PROBLEM

This section aims at solving the optimal control problem set up in the preceding section.
We first concentrate on the equation (HJy,). Then, we provide a verification theorem
that indeed gives a solution to the control problem and characterizes in a simple way
the optimal quotes. The last subsection is dedicated to the addition of a hard constraint
8 > (Smm'

3.1. A Solution to (HJy,)
We start with a lemma about the hamiltonian function Hj.

LEMMA 3.1. Let us define La(p, 8) = Ax(8) (1 — e 720~0),
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VpeR, §— LA(p 8) is strictly increasing on (—oo, 8% A(p)] and strictly decreasing on
[82( p), +00), where §* A(p) is uniquely characterized by (Eg* )

x 1 AAGL(P)
5 (p)— —1log[1—yA , Ey ).
A = 3 og( YA B ))) P (Esy)

Moreover, p +— 8% (p)isa C' function.
Subsequently, Hy is a C' function with:

AsGA(P)

H =
M) = YA G () — AL ()

Proof. Straightforwardly, 8§ — La(p, 8) is strictly increasing on (—oo, p].
Regarding the behavior of this function on [p, +00), let us notice that Lx(p, p) =0
and that lims_. ;o La(p,8) = 0.
Now, if we differentiate, we get
0 La(p.8) = Ny6) (1= e72077) 4y ANA @) 72077,

Hence, 95 La(p, p) = yAAA(p) > 0 and there is at least one §* € (p, +00) such that

3sLa(p,8%) = 0.
1 AA(S*
8*—log<l—yA /A( )>=
yA A (6%)

Such a §* must satisfy:
Now, f(x) = x— yiA log ( —yA AAEX) defines a strictly increasing function since

(AA(X)>/
/ Ay
f(x) =1+ 1A7AA(X)
Ay ()
AP — AsIALE)

AN (%) =y AAA()AL(X)

— Y AAA(X)A (%) ZA’A(X)2 — AA(X)A} ()
AL — pAMAOAL () | AA() — pAAA(IAL )

is strictly positive because of the hypotheses onA .
Hence 6*, defined by f(5*) = p, is unique and La(p, ) is strictly increasing on

(—o0, 8% A(p)] and strictly decreasing on [8 (p), +00), where 5% A(p) is uniquely charac-
terized by:

% x 1 Ar(B5(p)
SOAP) =5(p) — —log |1 —yA—TF"——
. . yA N (B (p)
Using the implicit function theorem, this also gives that p > §%(p)is a C' function.

Plugging the relation for 8%(p) in the definition of Hj then gives the last part of the
lemma. 0
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Now, we are going to prove a comparison principle for the system of ODEs. This
result is useful in two ways. First, it gives a priori bounds that will allow us to prove the
existence of a solution to (HJy,). Second, it will provide bounds to 6, independently of
A in Section 5, when we shall consider the limiting behavior of 6, as A — 0.

PROPOSITION 3.2. (Comparison principle) Let T € [0, T), k € N.
Let6, :[t, T] x {0, A, ..., kA} - Rbea C! function with respect to time with

Vg e{0,A, ... kAY, 0,(T.q)<—tq)q Vielr,T], 6,(t.0) <0,

and

1 OA(t,q) —0,(t, g — A)
0 <y0,0,(t,q)+yung — Eyzazqz + Hy ( A A .

A
LetOp :[1, T] x {0, A, ..., kA} — R bea C' function with respect to time with

V([ € {03 Aa ey kA}7 gA(Ta CI) Z _Z((l)q Vl € [Tv T]v §A(Za 0) Z Oa

and

B 1
0> y3,0a(t,q)+ynq — sy*c’q* + Hx

2

aA(L CI) - gA(L q — A)
A .

Then,

|
>
v
&)
>

Proof. Leta > 0.
Let us consider a point (£, ¢) such that

0,3 42) =08 g2) — (T =)= sup  0,(t.q) = Ba(t.q) — (T =)
(t,9)€[r, T]x{0,....kA}

If £7 # T and ¢} # 0, then
305ty q3) — 3,041, q3) < —«.
By definition of (¢}, g}), since ¢ # 0:
0.1, 43) — Oa(ty, 43) = 0,(15, g5 — D) = 0a(5), 45 — D),
and
0A(5. 4) = 05(5, 45 — D) = Oa(5, 42) — 045, g5 — D).
Now, by definition of the functions @ , and 6 o, we have
0 <y 005, 42) — 8,07 43)]
. [ i (ew:, 92) = 0t 42 ~ A)) o (eA(r::, 4:) = 0t} g5 — A))} .

A A
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Since H, is a decreasing function, we have

HA<9A(r*, SRR A))SHA(W*, )—eAA(r*, 4 A)>'

This leads to 0 < —y«, which is not possible.
Therefore, & = T or g} = 0 so that

sup QA(tv ‘I) _gA(t’ q) —(X(T— t)
(1,q)€lr, T1x{0,....kA}

= max sup  O,(T,q) —Oa(T,q), sup 0,(t,0)—0(t,0) —a(T—1)] <0
q€{0,....kA} telz, T)

Thus,¥(z, ), 0 ,(t, ) —0(t, q¢) < a(T—1) < o T. Sending « to 0 proves our result. [J
We are now ready to prove that the equation (HJy, ) has a unique solution.
PROPOSITION 3.3. There exists a unique function 6, : [0, T] x AN — R such that:

o 1[0, T (Oa(:, q))gean is continuously differentiable.
® 0, is a solution of (Hly,).

Proof. We proceed by induction on ¢. For ¢ = 0, we have by definition 6,(¢,0) = 0
Now, for a given ¢ € AN*, let us suppose that 6,(-, ¢’) : [0, T] — R is a C' function
Vq' < q — A. Then, the ODE

(QA(I, q) —Oa(t, q — A))

1
0=yd0at, q)+ynqg — 5)/202612 + Ha A

with the terminal condition
OA(T, q) = —t(q)q,

satisfies the assumptions of Cauchy-Lipschitz theorem. Consequently, there exists a
unique solution 7 — 0 (¢, ¢) on a maximal interval that is a subinterval of [0, 7] and we
want to show that this subinterval is [0, 77 itself.

To prove this, let suppose by contradiction that (7, 7] is the maximal interval with
i>0.

Let us notice that because Hy is positive, ¢ > Oa(¢, q) — uq(T — 1) + %yazqz(T— 1)
is decreasing. Hence, the only possibility for (7, 7] to be a maximal interval in [0, 77 is
that lim,_ 3+ 05 (¢, ¢) = +00.

Now let us consider n > 0,k = £ and t =7+ 1. We define on [z, 7] x {A, ..., g} the
two functions 6, and 6 5 defined by

QAZQA

and _ 1
Vg ' <q,05(t,q) =1 q(T—0)+ ;HA(O)(T_ 1.

These two functions satisfy the assumptions of the above comparison principle. We
indeed have that

Vg' <q,0A(T.q)=0=—Lg")g  Vte[r,T],0a(1,0) = pu"q(T—1)

+%HA(0><T— H=0,
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and

1
y2o,2q/2

Vie[t, T, Yq¢' €{A,....q}, v3,05(t. ")+ ynqg — 5

+m<mm¢»waa¢—&)

A
1 + ’ 1 2.2 /2
Z—V;HA(O)—VM q+tynqg —5yv°oiq + Hx(0)

’ 2
= —y(u'q —ng) - *7/20261 <0.

Hence,Vn > 0,Vt € [ + 1, T],0a(t, q) < utq(T —7) + %HA(O)(T — 7), in contradiction
with the fact that lim,_ 3 0A(¢, ¢) = +00.
Hence, 1 — 64(t, g) is defined on [0, 7] and this proves the result. (I

3.2. Verification Theorem and Optimal Quotes

Now, we can solve the initial optimal control problem and find the optimal quotes at
which the trader should post his limit orders.

THEOREM 3.4 (Verification theorem and optimal quotes). Let us consider the solution
O of the system (HJy,).

Let us define upa(t, x, q,s) = —exp(—y(x + gs + 0A(t, q))).

We have:

® y, isasolutionto (HJIB),
® u, is equal to the value function Vy.

Moreover, the optimal ask quote S = S; + §%(2), for g, > 0, is characterized by:

<9A(t’ ql) - QA(I’ qr — A))

Sa(0 =5} A

where SZ(-) is the function defined in Lemma 3.1.

Proof. From the very definition of 6, and u,, it is straightforward to see that u, is a

solution of (HJB).
We indeed have that the boundary condition and the terminal condition are satisfied,

and for ¢ > A, we have that

1
oun(t, x,q,s)+ nosun(t, x, q,s)+ fozafsuA(t, X, q,S)
+supAA(8) [ua(t,x+ As+ AS,q — A,s) — uA(t X, q,5)]
= _VMA(t X, q, )00, q) — yqua(t, x, q, S)+ 0 qua(t, x.q. s)

+sup An@ua(t, x,q,5)(exp(—y(AS — (Oa(1. q) — Oa(1.g — A))) — 1)



GENERAL INTENSITY SHAPES IN OPTIMAL LIQUIDATION 467

|
= —un(t, X, ¢, 5) [J/BfGA(t, q)+yug — 502)/2612

+SI;P An@) (1 —exp(—y(Ad — (Bt q) — Oa(t. g — A)))))}

GA(tv q) - eA(ts q— A))i| — 0

1
:—I/IA([, X, q,S) I:yateA(ts q)+)///Lq - 502y2q2+HA ( A

Now, we need to verify that u, is indeed the value function associated to the problem
and to prove that our candidate (6} ), is indeed the optimal control. To that purpose, let
us consider a control § € A(¢) and let us consider the following processes for t € [z, T7:

dS”* = pdt + odW,, S =,

dX;¥ = (S, +8)AdN;, X0 =x,

g’ = —AdN,, ¢ =q,

where the point process has stochastic intensity (A;),; with A, = A A((S,)lqr)o.3
Now, let us write Itd’s formula for u:*

Unp (Ta X{]Lfts» q;lzﬁ? ‘S{]’"A> = uA(ts X, Qs S)

T
=+ / (BIuA (T, X;’f‘s, qifé, S§A> + (osua (T, Xi‘f’87 qui{ls, Sfrs)
t
o2
2
T
+/ (u% (r, X004 ASY + AS, qi’f"s — A, ﬁé) —ua (t, X0 qi’i”a, Si’) A dt
r+‘/ WU A (r, X% qi’i”a, S§°) dt —|—/ o dsUA (r, Xxo qifl’ﬁ, S;S) dw,
t t

Y.

where M is the compensated process associated to N for the intensity process (A;):.

Now, we have to ensure that the last two integrals consist of martingales so that their
mean is 0. To that purpose, let us notice that d,u = —y qu, and hence, since the process
q"9 takes values between 0 and ¢, we just have to prove that

r 2
E |:/ Ua (T, Xixo gl S?) dr] < 400,
t

+ afsuA(t, X0 qi’g’s, Si’s)) dt

a

T
+/ <UA (f, X0 AS 4 A8, gh T — A, Si"?) —un (r, Xom0 gt
t

T
E [/ ‘uA (‘L’, X4 ASY + AS,, qi‘f’a — A, SQ“)‘)»Tdt] < 400,
t

3This intensity being bounded since § is bounded from below.
4The equality is still valid when ¢; = 0 because of the boundary condition for u,, and because the
intensity process is then assumed to be 0.
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and

T
E [/ ‘uA <r, X0 q;’i”s, Sf)
t

A,df:| < +o00.

We have

ua (1, X050, g0, 86)7 < exp 2y [10alloc) exp (—2p (X*0 + 49 50))

< exp(2y[10alloc) exp (—23/ <x =418 Ml +2¢ flﬂfn S int, o Si"‘<o>>

< exp 2y 110 lloo) exp (=27 (x — ¢1I8” [|o)) (1 + exp <_2yq Tg}fﬂ S)) .

Hence,

T T
E[ [ s )@Xvs,qi‘fﬁ,&“)zdr]=E[/ U, Xi’x'5,4§'q’6s5§’s)2dt]
t t

<exp (2 110alloo) exp (=2y(x = qll8™ llo))(T — 1)

X (1 +E [exp (—2yq g}fﬂ S?)}) < +o0,

because of the law of inf ¢, 77 S&°.

Now, the same argument works for the second and third integrals, noticing that § is
bounded from below and that A is bounded.

Hence, since we have, by construction®

o2

2

T

RN (r, XEx0 ghd? Si“) + udstia (r, XE20 ghd? Si’f) +—082ua (r, XEx0 gba?, S“)

+ (uA (r, X L AS + A8, gt — A, S’"‘) —ua (r, XX ghad, S”‘Y)) A <0,

T T— T

we obtain that
Efus (7. X5, 45, 5¢) | = B [ua (T. X327 q32%, 87°) | < uat, x..9),

and this is true for all § € A(¢). Since for §, = &} (¢), we have an equality in the above
inequality by construction of the function 8%, we obtain that

sup B [ua(T, X5, q§°, $1)] < uatt. x.q.5) = E[ua(T, X7, g7, 5]
SeA(r)

1.e.,

wp B-cxp (o (157254 (5 — )]

SeA(r)

3This inequality is also true when the portfolio is empty because of the boundary conditions.



GENERAL INTENSITY SHAPES IN OPTIMAL LIQUIDATION 469

< ua(t,x.q.9) =E[—exp (—y (X7 447" (s = eai"™))) |-

This proves that u is the value function and that ¢ — &} (¢) is optimal. O

Theorem 3.4 proves that the optimal quotes are deterministic. This is linked to the
use of a CARA utility function as in the usual Almgren—Chriss framework. Theorem
3.4 also provides a simple way to compute the optimal quotes. One has indeed to solve
the triangular system of ODEs (HJy,) to obtain the function 6. Numerically, this
does not constitute any difficulty and one may use, for instance, a Euler scheme. Then,
once 0, has been computed, the optimal quotes are given by the simple expression

SZ W) where the function SZ is implicitly characterized by the equation

(EBZ) of Lemma 3.1, and can be easily computed using Newton’s method for instance.

3.3. Introducing a Hard Constraint § > §™"

In the above framework, § was allowed to take any value on the real line. To avoid
marketable limit orders, one might want to impose a constraint § > 8™ where §™" would
be positive. Using the same tools as above, the problem with the additional constraint
8 > 8™ can be solved easily.

The (HJB) equation becomes

. . 1 .
0 =0u}y"(t, x,q,5) + pndux"(t, x, q,5) + Eazafsurg““(t, X,q,S)

+ sup  Aa(s® =) [Nt x4+ Ash g — A, s) —uN"(t, x, q,5)],

§4>g-4-gmin

with the final condition:
WN™(T, X, 4, 5) = —exp(=y (x+ q(s — £(q))),
and the boundary condition:
Uit x,0,5) = —exp(—yx).

We consider the change of variables u}(z, x, ¢, ) = —exp (—y(x + gs + 62(z, ¢))),
as above. We then obtain the following system of ODEs indexed by ¢

ORI (1, q) — OX™ (1, q — A))
A ,

. 1 .
(Hlgpn) — 0=ya,0"(1,q) + ypg = 3770’ + H™ <

with
oNNT, q) = —L(g)q,  OX"(1,0) =0,
where

HY(p) = sup Aa(8) (l - e‘VA(‘S_”)> = sup La(p,9).

(stmin 525min
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The important point here is to recall that § — La(p, 8) is strictly increasing on
(—o00, 8* A(p)] and strictly decreasing on [82( p), +00). Hence, the unique maximizer of
8 > La(p, 8) over {§ > ™"} is max(§™", §* AD).

Let us define p™ = gmin — 1 ~ log (1 —yA Aﬁ(gnz) The hamiltonian function H‘A“i“
can be written as

min

ing  _ | Ha(p) ifp>p
HTAn (P) - {AA((Smin) (1 _ efyA(B““"fp)) lfp < pmin.

It is a locally Lipschitz and decreasing function. In particular, the counterpart of
Proposition 3.2 and Proposition 3.3 holds: there exists a unique C' function §™" solution
of (HJgnin). Therefore, we can enounce a verification theorem and find the optimal quotes.
The proof is mutatis mutandis the same as for Theorem 3.4.

THEOREM 3.5 (Verification theorem and optimal quotes). Let us consider the solution
0" of the system (Hgyn).
Then:

—exp (—y (x+gs +0"(t, )

= supy o B[ exp (= (X5 5 (53— eia))) .

where A™"(t) is the set of predictable processes on [t, T], bounded from below by §™" and
where.

dS = pdt +odW,, St =s,
dX:% = (S 4+ 8:)AdN;,, X0 = x,

dgt** = —AdN,, /"' =g,

the point process N having stochastic intensity (A ) with . = Ax(8:)14,_>o0.
Moreover, the optimal ask quote S = S, + 8%""*(1), for q, > 0, is characterized by

0" (t, q1) — O3 (1, 41 — A)))
A ,

azu'n*([) — max <8lm‘n’ SZ (

where SZ(-) is the function defined in Lemma 3.1.

4. EXAMPLES AND PROPERTIES
4.1. The Case of an Exponential Intensity Function

In the above section, we generalized a model already used in Guéant et al. (2012), in
which the intensity functions had exponential shape: Ax(8) = Apekad,

In the case of exponential intensity, we can write the results of Guéant et al. (2012)
(in a slightly more general case than in the original paper) in the language of this paper.
In fact, the reason why closed-form solutions can be obtained in the exponential case is
that the equation (HJy, ) simplifies to a linear system of equations when we replace the
unknown 6, by exp (%26,):



GENERAL INTENSITY SHAPES IN OPTIMAL LIQUIDATION 471

PROPOSITION 4.1. Assume that Ax(8) = Axe <.
,1,%
Then, HA(p) = % <1 + %) Apehar,
Also, if we consider 0 : [0, T] x AN — R, the unique C" solution of (HJy,), then w =
exp (%QA) is the unique solution of:

1 1 A\ A
dwa(t, q) = = kapgwalt, ) + 5 vkao g’ walt, q) = Aa (1 + V)

XWA([, q — A),

with
Wwa(T,q) = e~ 2D ypa(1,0) =1,

and the optimal quote, for q; > 0, is given by

1 walt, q1) ) 1 ( VA)
5()= —log| —————— |+ —log| 1+ ~—).
a) ka £ (WA(I» gr —A) yA £ ka

4.2. Numerical Examples

We now provide numerical approximations of both the function 6A(z, ¢) and the
optimal control function &% (¢, ¢). These numerical approximations allow to compare
what happens in the pure exponential case and what happens when another intensity
function is considered, especially for negative §s. In this section, we consider as an
alternative to the exponential form for A, a functional form A (see Figure 4.1) that
prevents the use of marketable limit orders. The intensity function A, prevents the use
of marketable limit orders since A, is constant (in fact, decreasing very slowly to satisfy
the hypotheses of the paper) for negative §. Also, we included the commonly observed
fact that the probability to be executed does not correspond to the exponential intensity
framework for small positive §s.

Figures 4.2 and 4.3 represent, respectively, the solution 6, and the optimal quotes
8%(t, q) as given by Theorem 3.4.° From Figure 4.2, we know that 6, is not a monotonic
function of ¢. It is important here to recall the economic meaning of 6,. The certainty
equivalent of holding ¢ shares at time ¢ is ¢s + 0A(¢, ¢). Hence, 64 (2, ¢) is a risk-adjusted
value of holding ¢ shares at time ¢ in excess of the MtM value ¢gs. The reason why
0A(t, q) is not a monotonic function of ¢ can then be understood easily. At the time
horizon T, the function is decreasing but far from 7 two effects are at stake. On the one
hand, when there are many shares in the portfolio, there will be many trades and hence
more opportunities to make money through limit orders: this goes in the direction of an
increasing function 6, (¢, -). On the other hand, the larger the inventory to liquidate, the
more price risk. This goes in the direction of a decreasing function 6,(z, -) since it is a
risk-adjusted value.

Although there is almost no difference between the two cases A, and A, as far as
Oa is concerned, this is not true anymore when it comes to the optimal quotes §%. We

%One may wonder why we choose a risk aversion parameter y = 0.001. This figure seems small but it has,
in fact, an important impact since the shares are sold by groups of 50.
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Intensity function

Lambda
o
o
[e5]

0.06

delta (in tick)

FIGURE 4.1. Intensity functions (here represented on [—1, 5]). Line: Ax(8) = Ae™r,
A=0.1(s""), k=0.3 (Tick™"). Dotted line: A (8), identical to A (8) for § > 2.

indeed see in Figure 4.3, as expected, that, in the case of the intensity function A, there
is no negative optimal quotes. This very conservative choice for the intensity function
is a way to avoid any influence of the intensity function on the set {§ < 0}. Also, we see
that since A » is not of exponential form for small positive 8s, the lower bound for the
optimal quotes is higher than expected.

Another way to prevent marketable limit orders is to impose § > ™" = 0 as in Section
3.3. In that case, if we consider the intensity function A, and the same parameters as
above, we obtain the quotes given in Figure 4.4. These quotes are almost exactly the same
as if we had floored the optimal quote &} of the unconstrained problem to 0.

4.3. Asymptotic Quote

In Gueéant et al. (2012), we obtained a limiting regime when 7 — oo. This result
generalizes to our general framework. More exactly, we obtain:

PROPOSITION 4.2 (Asymptotic behavior). Let us suppose that:

o lim,_ 1 Hr(p) = 0.7
e y >0,
* i< %yazA.

TThis is guaranteed if lims— 1 oo SAA(S) = 0.
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FIGURE 4.2. Solution 64(¢, q) fqr Ax (top) and A, (down), go = 400, A =50, T =
300 (s), w = 0, ¢ = 0.3 (Tick.s"2), y = 0.001 (Tick '), and ¢(q) = € = 3 (Tick). The
index ¢ € {0, 50, ..., 400} of each curve can be read from the terminal values.
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Optimal quotes
12

Optimal quote (Tick)

T T T T
0 50 100 150 200 250 300
Time (sec)

Optimal quotes

12

10 e

Optimal quote (Tick)
J
/

T T T T
0 50 100 150 200 250 300
Time (sec)

FIGURE 4.3. Solution §3(¢, q) for Aa (top) and A (down), go = 400, A =50, T =
300 (s), u = 0, o = 0.3 (Tick.s"2), y = 0.001 (Tick '), and £(q) = ¢ = 3 (Tick). The
lower the quotes, the higher ¢ € {50, ..., 400}.
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Optimal quotes

12
10 T
—
i\H
- —~
-
-~
HHH \\
M~
8 T NG
~— _ ~
— ~
T~ _ ~ N
~— ~ ~
61 ~— \\\ N
—~—— _ _ ~— ~ N
M L;Hi iH ~ \
— ~ —
T — T~ - RN \\
e __ T ~ — ~ ~
4 —— ~ ~—_ ~ - \
— — — ~ ~ N
i — -~ —
T T T T T T N
~——_ _ -~ _ - -~ ~ N \
24 HMHA me x\\ \\\\ ~ \
e —~ - ~ ~ ~ ~ O\
~ T~ I~~~ N
0 N N TSN
-2 T T T T T
0 50 100 150 200 250 300
Time (sec)

FIGURE 4.4. Optimal quote for A, when the constraint § > 0 is imposed. gy = 400,
A=50,T=300(), u=0,0=0.73 (Tick.s’%), y = 0.001 (Tick '), and Ug) =1L =
3 (Tick). The lower the quotes, the higher ¢ € {50, ..., 400}.

Then, the asymptotic behavior of 04 is:

1
. _ -1 (1,222
TETMGA(O, qg)=A H, <2J/ o°q

The resulting asymptotic behavior of the optimal quote is

. * % — 1 *00
TErEng(t =0) =34, (HAI (ZJ’ZUZQ§ - J’MQO)> =087

Proof. Let us define for ¢ € AN:

— 1 / /
03(q) = A H' (21/202!1 *—yuq ) 8

Let us define for 1 > 0 and ¢ € AN, 6%, the unique solution’ of:

OA(1, q) = 0,(t, g — A)

1
0=—yd0a(t,q) +yurq — Eyzozqz + Hy ( A

- wq’) =0(q)-

).

8This is well defined because of the assumptions on Hx and on the parameters, and because y > 0. In
the risk-neutral case, there is no upper bound for the optimal quotes when 7" — oo. This constitutes an

important difference between our model and the model of Bayraktar and Ludkovski (2014).

9To prove that this function is well defined, one can use the same tools as in Proposition 3.3.
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with
0,0,9) = —Lq)g,  03(1,0)=0.
Then, because we just reversed time, we want to prove that
Vg € AN, - lim 6,(1.¢) = 65(q).
We proceed by induction. The result is true for ¢ = 0. Let us suppose that the result is

true for ¢ — A for some ¢ € AN*,
Then,

Ve > 0,31, a, ¥Vt > 1, a, [04(1, g — A) = 03(g — A)| < e

Since Hy is a strictly decreasing function, we obtain that vV > #,_x:

(é)g(z, N A)+e)
A

1
yug — 51/202612 + Hy

Op (. q) = 03°(g — A) — )
. ,

. 1
<305, q) <ynq — 5720242 + Hy (

or equivalently:

A (92(1, q) —03(q —A) +6> _ (92"@1) —03(q — A))

A A

< y0,0L(1.q) < Ha (%(L q) — 92;(61 —A)— e) _ A (egC(q) - QAZO(q - A)) ’

Hence, V1 > 1,_a:
0L (t, q) > 0°(q) + € = 3,0,(t,q) <O,
and
OA(1.q) < 63(q) — € = 3,65(t. ) > O.

As a consequence, if there exists # > #,_ such that [0} (¢, ¢) — 0(q)| < €, then V¢ >
£, 1642, q) — 62(q)] < e.

In particular, if |6} (,—a, ) — 0°(9)| < €, then Vi > #,_4, |04 (2, q) — O°(q)| < €.

Now, if 03 (,—a, ) > 03°(q) + €, then there are two possibilities. The first one is that
the function ¢ > 1,_A +— 0(¢, q) is decreasing and in that case, it is bounded from below
by 03°(¢) — € and must converge. Since lim,, ;o 04(f, g — A) = 0°(q — A), the only
possible limit for 6% (¢, q) is 63°(¢). The second possibility is that t > #,_A +— 6,(t, g) is
not a decreasing function and in that case, there must exist #' > #,_ such that 0 (¢', g) <
03°(q) + €. Since 04 (¢, q) = 0 (q) — €, we now obtain that Vi > ¢, |04 (¢, ) — 03°(9)]
<e.

Finally, if 0} (z;-a, q) < 0°(q) — €, then there are two possibilities. The first one is that
the function ¢ > #,_A +— 6, (¢, ¢) is increasing and in that case, it is bounded from above



GENERAL INTENSITY SHAPES IN OPTIMAL LIQUIDATION 477
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FIGURE4.5. 0%°(q) for A 5 defined above, g9 = 800, A = 50,u = 0,0 = 0.3 (Tick.s*%),
and y = 0.001 (Tick ).

by 0%°(q) + € and must converge. Since lim,, {o 04(2, g — A) = 03°(q¢ — A), the only
possible limit for 6 (¢, q) is 63°(q). The second possibility is that ¢ > #,_A — 6} (t, g) is
not an increasing function and in that case, there must exist ¢ > #,_ such that 6} (¥, q) >
03°(q) — €. Since 604 (t', q) < 0°(q) + €, we now obtain that Vz > 1., |04(¢, q) — 03°(q)]
<e.

The conclusion is that limsup,_, , |04 (¢, 9) — 0°(q)| < €. Sending € to 0, we get the
result for O4.

The result for the optimal quote is then straightforward. O

These asymptotic formulae deserve some comments. First, regarding the above discus-
sion on monotonicity, we know that Hj is a decreasing function; therefore, the asymptotic
limit 63°(-) is either a decreasing function (when $y202A% — yuA > Hy(0)) or a func-
tion that is first increasing and then decreasing (otherwise)—see Figure 4.5 in our case.
Second, coming to the optimal quotes and the role of the parameters, we can analyze the
way §3°° depends on p, o, y, and A,. The best way to proceed is to use the expression
for H, found in Lemma 3.1 and to notice that an equivalent way to define §> is through
the following implicit characterization:

As(BR)
YAAABRY) — AL

15,
—MQO-FEVU gy =A

It is then straightforward to see that §3> is an increasing function of u. A trader
expecting the stock price to go up is indeed encouraged to slow down the liquidation
process. Similarly, we see that §5> decreases as o increases. An increase in o corresponds
to an increase in price risk and this provides the trader with an incentive to speed up
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FIGURE 4.6. Optimal quotes for ¢ € {50, 100, ..., 400}, for ¢o = 600, 7" = 1200 (s),
w=0,0=0.3(Ticks2), A=0.1(s""), k= 0.3 (Tick "), y = 0.001 (Tick '), and
¢(q) = £ = 3 (Tick). Line: A(8) = Ae™* and A = 50. Dotted line: A(§) = 24e~* and
A =25,

the execution process. Therefore, it is natural that the asymptotic quote be a decreasing
function of o.

Differentiating the above expression with respect to y, we see that the asymptotic
quote decreases as the risk aversion increases. An increase in risk aversion forces indeed
the trader to reduce both nonexecution risk and price risk and this leads to posting orders
with lower prices.

Now, if one replaces the intensity function A, by AA, where A > 1, then it results in
an increase in §3°°. This is natural because when the rate of arrival of liquidity-taking
orders increases, the trader is more likely to liquidate his shares faster and posting deeper
into the book allows for larger profits.

4.4. The Influence of A

In addition to the asymptotic regime, we can consider different sizes A of
orders.

We see in Figure 4.6 that there is little difference between the two cases we considered.
This is linked to the existence of a limit regime as A — 0 and the next section is dedicated
to its analysis. The limiting equation for 6, will turn out to be a classical equation in
optimal liquidation theory (see Section 5).
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5. LIMIT REGIME A — 0

In the preceding sections, the size of the order posted by the trader was constant equal to
A, a size that is supposed to be small with respect to ¢o. As a consequence, the question
of the limiting behavior when A tends to 0 is relevant.!? To that purpose, we need to
make an assumption on the behavior of the intensity function with respect to the order
size A. The “right” scaling (already used above for the numerics underlying Figure 4.6)
is to suppose that

sy 29

With this scaling , along with additional technical hypotheses, our goal is to prove the
following theorem that is rather technical and echoes the results obtained by Bayrak-
tar and Ludkovski (2014), here with risk aversion (i.e., y > 0), whereas Bayraktar and
Ludkovski (2014) deals with the risk-neutral case:

THEOREM 5.1 (Limit regime A — 0). Let us suppose that

o ABA'(S) < 2A'(8)%,
® lim;., o 3A(5) =0,
® ( is a continuous function.

For a given A > 0, let us define 65 on [0, T] x [0, go] by

¢ _ eA(tv 0)$ Jq =0,
falt )= {9A (t,(k+ DA), ifq e kA, (k+1)A]

Then, 05 converges uniformly toward a continuous function 6 : [0, T] x [0, go] — R that
is the unique viscosity solution of the equation (HJ;,,):

—y0,0(t, ) — yq + 1y*o’q> — H(3,0(t.9)) =0, on[0, T) x (0, o],
0, q) = 0, on [0, T] x {0}, (HJjjp,)
9(1, CI) = _Z(q)q’ on {T} X [07 CIO],

where H(p) = y sup; A(8)(8 — p) and where the terminal condition and the boundary con-
dition are, in fact, satisfied is the classical sense.

To prove this theorem, we first need to study H and the convergence of the Hamilto-
nian functions Hy toward H. We start with a counterpart of Lemma 3.1 that requires
AB)A(8) < 2A'(8).

LEMMA 5.2. Let us define L(p, §) = A(S) (8 — p).
Vp € R, § — L(p, d) attains its maximum at §*(p) uniquely characterized by:

o AG)
) _— =
RS

Moreover, p — §*(p) is a C' function.

10 Although this is not recalled, it is assumed that A is always chosen as a fraction of .
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Subsequently, H is a C' function with

AG*(p))*
H(p)=y—=——.
—A'(3*(p))
Proof. The proof is similar to the proof of Lemma 3.1. ]

Now, we can state a result about convergence that also provides a uniform bound for
the hamiltonian functions:

LEMMA 5.3.  Hx converges locally uniformly toward H when A — 0 with Vp €
R, Ha(p) = H(p).

Proof. For a fixed x > 0, the function f: A € R, l_gm is a decreasing function

(f(0) = x).
Hence,
— e~ vAG-p) 1 — e 72 @=p)
VO < A" < A, supA()———— <supA(§)————— < ysup A(§)(S — p).
3>p A 3>p A 8§>p
This gives

Hx(p) < Ha(p) < H(p).

Now, because H is continuous, using Dini’s theorem, if we prove that convergence is
pointwise, convergence will be locally uniform. We then only need to prove pointwise
convergence of Hy toward H. Using Lemma 3.1 and Lemma 5.2, we see that it is sufficient
to prove that 6% converges pointwise toward 6*.

For that purpose, notice that the sequence of functions fa(x)=x—

1 A(Y)
unique characterizations of 8 (p) and 6*(p), we see that 5% (p) increases as A decreases to
0 and is bounded from above by 6*(p) thatis the only possible limit. Hence, §% (p) — §*(p)
as A — 0 and this proves the result. O

) is an increasing sequence of increasing functions. Hence, by the

Now, we provide a uniform bound for the 6, that will be important in the proof of
Theorem 5.1.

PROPOSITION 5.4 (Bounds for 6,). V¢ € [0, T],Vq € {0, A, ..., g0},

1 1
—€(g0)q0 — = qo(T — 1) — szqé(T— 1) < Oa(t,q) < " qo(T — 1) + ;H(O)(T— 1).

Proof. To prove these inequalities, we use the comparison principle of Proposition 3.2.
I£0,(t, q) = 1" qo(T — 1) + 3 Ha(O)(T — 1), then

Fa(T,q) =0 = —t(q)q. 5ML®=MWMT—0+%EMMT—02Q

and

eunw—egnq—Aj

_ 1
y30a(t, q) + yig — 57/202612 + Ha ( A



GENERAL INTENSITY SHAPES IN OPTIMAL LIQUIDATION 481

1 1
_V;HA(O) —yutqo+yung — Eyzazqz + Hx(0)

1
—y(utqo — 11q) — 5)/202(12 <0.

Therefore, 64 (7, ¢) < 01, ¢) = w"qo(T — 1) + + Ha(0) (T — ).
The uniform upper bound is then obtained using Lemma 5.3.
Now, if 0, (1, ¢) = —(g0)g0 — 1+~ qo(T — 1) — 3y o2q3(T — 1), then

OA(T, q) = —€(q0)q0 < —t(q)q, 02, 0) = —L(qo)gqo — p~ qo(T — 1)

1
—370 (T = 1) <0,

and
1 OA(t, @) —O,(t, g — A)
Y005t q)+ yug — Eyzazqz + Hy ( A AA
1 1
=yu qo+ 53/202613 +yug — 51/202612 + Ha(0)
B 1
> y(k=qo + uq) + 5)/202((13 —q%) = 0.
Therefore, Oa(t, ) > 0,(t. ) = —£(q0)g0 — = qo(T — 1) — Syo2q3(T — 1). O

We are now ready to start the proof of Theorem 5.1.

Proof of Theorem 5.1. We first introduce the following half-relaxed limit functions:

— . . . 1
0(t, g) = lim sup lim sup sup {93(1/, q), ' —t+19 —ql < } ,
J

jodoo  A—0

0(t, ¢) = liminf lim inf inf {92([’, q), ' —t+l¢ —ql < 1} .
j—>+oo A—0 ]

6 and @ are, respectively, upper semicontinuous and lower semicontinuous and the
goal of the proofis to show that they are equal to one another and solution of the partial
differential equation (HJ}jyy,).

Step 1: 6 and @ are, respectively, viscosity subsolution and viscosity supersolution of
the equation (HJjjy)-

To prove this point, let us consider (*, ¢*) and a test function ¢ such that 8 — ¢
attains a local maximum at (¢*, ¢*). Without loss of generality, we can assume that
o(t*, g*) = 6(t*, ¢*) and consider r > 0 such that

® the maximum is global on the ball of radius r centered in (¢*, ¢*),
e outside of this ball, ¢ > 2sup, ||6a|lc—this value being finite because of the uni-
form bound obtained in the above proposition.

Following Barles and Souganidis (1990) methodology, we know that there exists a
sequence (A, t;, g,), such that
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* Ay—0,(ty,qn) = (7, %),

® 0%, (1 gn) — 0%, 4%),
® 05 — ¢ hasa global maximum at (f,, ¢,).

Now, because of the definition of 65 , if (1, ¢*) € [0, T) x (0, go], we can always sup-
pose that g, > A, and ¢, # T and then by definition of 6, :

1 O0a, (10, qn) = Oa,(ta, gn — Ap)
—Y3,0a,(tns @n) — Y14Gn + sy 0%q — Hi, ( SR L AA o dn T 20 .
n

2

Because H,, is decreasing we have, by definition of (z,, ¢,):

_HAH (QA”([nv Qn) - GA,,(tnv qn — An)) > _HA,, <¢(tn» qn) - ¢(ZI’17 qn — An)) )

A, Ay
Similarly, since t, < T, we have, for / sufficiently small:
On, (1w + 1, qn) = Oa,(tn, 4n) < ¢t + 1, Gn) — (1, qn)-
Hence,

aIQA,,(tnv qn) = 3[¢(fn, qn)~

These inequalities give

1
_)/ar(,b(tns qn) — YHqn + EV o qn An

222 Hy, (d’(lm Gn) — d(tn, gn — An)> <0.
Using now the convergence of (¢, ¢,,) toward (t*, ¢*) and the local uniform convergence
of H,, toward H, we eventually obtain the desired inequality:

]
—ydp(t*, q") — yg* + Eyzozq*z — H(3,6(t*, ¢)) < 0.

We see that the boundaries corresponding to ¢ = gy and ¢ = 0 play no role. However,
we need to consider the cases t* = 7' and ¢* = 0.

If t* = T and ¢* # 0, then there are two cases. If there are infinitely many indices #
such that #, < T, then the preceding proof still works. Otherwise, for all n sufficiently
large, 04, (41, 41) = —£(¢,)q,» and hence, passing to the limit, 6(¢*, ¢*) = —€(g*)q*.

Eventually, we indeed have that

. * * 1 * * 2y * * *
min(—yd¢(T, ") = yug* +37%0°¢"* = H(9,¢(T. ¢"), 0(T, ¢") + €(g")g") < 0.

If ¢* = 0, then there are also two cases. If there are infinitely many indices # such
that ¢ > 0 and #, < T, then the initial proof still works. Otherwise, for n sufficiently
large 6, (#:, gn) = —€(qn)qn 0T 04, (%, g») = 0 and hence, passing to the limit, we obtain
o(t*, ¢*) = 0.

Eventually, we indeed have that

min(—yd,¢(t*, 0) — H (3,9(:*,0)) , 6(r*, 0)) < 0.
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We have proved that @ is a subsolution of the equation in the viscosity and one can
similarly prove that 6 is a supersolution.
Step 2:¥q € [0, q0l,  O(T., q) = (T, q) = —t(q)q.

We consider the test function ¢(¢, g) = C(T — t) + é(q - qu)2 where g,.r € [0, go] is
fixed, where € > 0 is a constant and where C, is a constant that depends on €, and that
will be fixed later.

Let (z., g.) be a maximum point of § — ¢ on [0, T] x [0, go]. Then,
— — 1
Q(T, qref) = e(te» 6]5) - CE(T - te) - E(CIG - qref)z-

This inequality gives gc — grer as € — 0.
Now,

1 1
—y09(te, q¢) — yuqe + EVZO,ZqEZ - H(aqd’(tev QE)) =yCe —yuqe + EVZGZQez

2
_H<(q€ - qryf)>
€
240

1
>yC. —H|[-"2)+ inf (—yuqg+=y>c2¢*).
€ q<[0.q0] 2

Hence, if C, is positive and greater than %H (—@) — infye0,4] (_yﬂq + %yzcﬂqz) +1,

we see that we must have either ¢, = T and (., q.) < —£(q.)q. or (for sufficiently small
€, only in the case where gf = 0), 0(%, g.) < 0.
If g,y # 0, we then write, for € sufficiently small:

_ _ 1 _
G(T, Qref) =< 0(t65 qe) - Ce(T - te) - E(qe - 6Iref)2 < 9(15, qe) < _Z(qE)QE'
Sending € to 0, we obtain

g(T» Qref) = _Z(qref)CIref-

If gref = 0, then we know from the above two inequalities that
_ _ 1 _
Q(T» qref) 5 e(te» qe) - CE(T_ te) - E(QG - Qref)z S e(tes QG) S maX(—f(C]e)qe, 0) = 0

Hence, Yq € [0, qo], 0(T, ¢) < —£(q)q and the same proof works for the supersolu-
tion'! to get Vg € [0, qo], 8(T', ¢) = —t(q)q -

As a consequence, Yq € [0, qo], (T, q) < —4(q)q < 6(T, q), and eventually, because
6(T, q) < 6(T, q), we obtain that Vg € [0, qol, 6(T, q) = —t(q)qg = 6(T, q).

Step 3:Vt €0, T], 0(¢,0)=0

Concerning the boundary condition corresponding to ¢ = 0, we can apply the same
ideas but only to the supersolution 6.

"I'The only difference is that we have to pass to the limit in the case gyt = 0 to obtain the conclusion.
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Let us consider indeed #..¢ € [0, T) and the test function ¢(¢, ¢) = —C.q — é(t — t,.ef)z.
Then, let (%, g.) be a minimum point of & — ¢ on [0, T] x [0, go]. We have

1
Q(trefv 0) > Q(tes qe) + Ce qe + g(te - [ref)zc

This inequality gives f, — trase — 0.
Now,

T — e

1
— Yuge + s yiolq’

1
— y3id(te, q) — yige + zy*o’q” — H(9,9(t, g)) = 2y 5

2
_H(_Ce)

T 1
=2y~ = yugo+ 5y’’’ — H(=Co).
Since lim,_, o, H(p) = 400, we can always choose C, > 0 so that the above expression
is strictly negative.
As a consequence, for € sufficiently small, we must have ¢. = 0 and 6(z, 0) > 0.
Consequently,

1
O(ter, 0) > (2, qc) + Ceqe + g(te - Z‘ref)z > 0.

This result being already true for #.; = T, we have that 6(¢, 0) > 0, V¢ € [0, 7] and, in
fact, 6(¢, 0) = 0, Vt € [0, T] because of the definition of 6(¢, 0).

Step 4:Vt € [0, T], there exists a sequence (#,, ¢,), such that ¢, # ¢, g, # 0, (t,, g,) —
(¢,0), and 6(t,, g4) — 0

To prove this claim, we prove that ga(z) = 0A(7T — t, A) converges uniformly (in ¢)
toward 0 as A — 0.

By definition, g, (0) = —£(A)A and g, (1) = uA — Lyo? A2 + LH, (f»T“))

We now distinguish two cases:

Case l: u <0.

The stationary state of the above ODE is g = AH, ' (1y202A% — ypA) and g, is
increasing on {gx < g¥°}. Since AH,'(3y?02 A — ypuA) > AH, ' (y?0?A% — yuA) as
soonas A < A’, g¥is positive for A sufficiently small. As a consequence, since g (0) < 0,
ga 1s increasing on [0,T].

Now, g/, (1) < %H(“Tm) Hence,

/‘gA(l) y 4 /gA(f) y 4
— < — <1,
T 00 R NS 77 63 i

and this gives ga(f) < AG™! (ylA), where G(x) = [ #y)dy.
Consequently,

Vi e[0, T], —lA)A < ga(t) < AG™! (T) )
yA
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Since limgs_, 1, §A(8) = 0, we have lim,_, ., H(x) =0, and therefore lim,_, ; G

X
+o00. This proves that g, converges uniformly toward 0 on [0, 7.

Case 2: u > 0.

In this second case, we know that 3A, such that A € (0, Ag) = nA — Syo?A is an
increasing and positive function. Now, let us introduce A; € (0, Ag). VA € (0, A}), we
have

ga(T) y
/ "
0 yuA -3yl AT+ H ()

ga(T) y
5/ 1.2 A2 v =T
—ea)n YA — 3y202 A% + Hy (%)

1
ThlS glves gA(T) < AG ( ) Where GA](X) fO md}/’
Now, because lim,._, ;o H(x) =0, we have
G 1
fiminf F4 ) 5 1 .
¥>foo X YAl = 37207 A]
Hence,
T 1
lim inf >

This gives
. |
lim sup ga(7) < T(pA; = Jyo A},
A—0

and sending A; to 0, we get

limsup ga(7) < 0.
A—0

The result is then proved since
Vt [0, T], —L(A)A < ga(t) <ga(T).

Step 5: Comparison principle: § < 6.

Let us consider « > 0 and the maximum M = max ¢)e(o, 77x[0.q,] O(1, ) — (2, ) —
o(T —t). If m =max,cp 10(t,0) —06(t,0) —a(T — t) < M, then we distinguish two
cases.

Case 1:m < 0.

We introduce @.(1,q, 1, ¢') = 6(t,q) - 0(1', q') — (T — 1) — U=4X _ (=10

Let us consider (., ¢., ., ¢.) a maximum point of ®,.. We have M <o (te, qe, 1., qL)
and we are going to prove that liminf._, o ®c(te, qe. £, q.) < 0.

We have ®.(l, qc, e, ge) < Pe(te, ge, 1., q) and hence (g~ ‘1‘) + (’f ~” s bounded. As
a consequence, t. — . — 0and ¢. — g, — 0.
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Now, if for all € sufficiently small we have (%, q., 2., q/) € [0, T) x (0, qo] x [0, T) x
(0, go], then we have

t.—t 1
—2y—= +ya—yuq. + 2)/262613 HEE qe) <0,

and

!

1
[+ 5yl — HT qf)_o.

Hence, yo — yu(ge — q.) + 1y?0%(¢2 — ¢/*) < 0 and thisis a contradiction as we send
€to 0.

The consequence is that there exists a sequence €, — 0 such that (z,, ¢, % . 4. )
verifies t,, = T, Vn or ¢, = 0, Vn or te’” ,Vn or qé”, Vn.

Then,

lim sup q)e,, (tE,,a 9e,» té” s C]é,,) = lim sup g(ten ’ qen) - Q(le,n s Qén) - Ot(T - te,,)

n—+00 n—-+00

< max 0(t,q) — 0(t, q) — (T — t) < max(0, m) < 0.
(t,9)e({ T} x[0,g0])U([0, T]x }q0}) (t.9) = 6(t. q) ( ) ( )

Hence, in that case. M < 0.
Case2:m > 0.

In that case, we replace 6 by 6 + m in the above case, and we obtain, instead of M < 0,
the inequality M < m that contradicts our hypothesis.

It remains to consider the case m = M. We know then that the maximum A is attained
at a point (fyax, 0) and we suppose that M > 0.

From Step 4, we consider a sequence (t,, ¢,,) such that #, # timax, ¢n £ 0, (Z:, ¢n) —
(ZmaXa 0) and Q(tns qn) — 0.

We define

’ / ey ’ / (t_t/)2 q,_q :
U, (t,q,t,q")=0(t,9) —0(t',q') —a(T — 1) — - -1).
|tn_tmax| q}’l

This function attains its maximum at a point (¢
inequality W, (fmax. 0, s gmax) < Wl g, 1. q')):

g v, q'v). We first consider the

n’

g(tmax: O) - Q(tn» 6],1) - (X(T - tmax) - |tn - tmax|

. . . t*_tr*z k% 2
<B( g — 0" ") — (T — ) — =) —(‘“ In —1) .

|[n - Z‘malx| (]n

We then have £y — ¢/, — 0 and ¢', — ¢;; — 0.
Hence, limsup,, 0(¢F, ) — 0(¢';, ¢'7) — a(T — tF) < M. Now, the maximum M is also
given by lim, H(tmax, 0) — 6(t,, gu) — a(T — tmax), and we obtain that the penalization

term (‘1 w | converges to 0.

This gives ¢’ = ¢, + qn + 0(gn) > 0.
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Now, if we have infinitely many » such that ¢, = T, then

M = 1im 0 (tmax, 0) — 8(ty, g,) — (T — tmax) < sup (T, q) —60(T,q) =0
L q€l0.0]

and this contradicts our hypothesis.
Otherwise, for all n sufficiently large:

t*_ /*

1 « 2
_2)/ _}/Mq + 7/20,2q/nz_FI( (qn qn _1)> Z0
|6, — tmax| 2 qn qn

Now, going to the subsolution, if there are infinitely many » such that ¢ = T, then

M= limé(tmax’ O) - Q([n» Cln) - O[(T_ [max) =< sup g(T’ (]) - Q(T, q) =0
" q€[0,g0]

in contradiction with our hypothesis.

Else, if ¢ =0 and 0(zf, ¢) <0 for infinitely many n, then we obtain M=
lim,, 0(tmax, 0) — 8(ty, gn) — (T — tmax) — |ty — tmax| < O straightforwardly, and this con-
tradicts our hypothesis. Hence, the viscosity inequality must be satisfied and we get

1 2
,yZO.Zq:lJ _ H(— <q n qn _ 1)) <0.
2 qn qn

Combining the two inequalities eventually leads to ay <0 as n — oo and this is a
contradiction.

We have obtained that M < 0 and hence § — 6 < aT. Sending « to 0, we get 6 < 6.

This proves that 8 = 6 is, in fact, a continuous function that we call §, solution of the
PDE (HJ}jyy, ). Using the same techniques as above, it is clear that 0 is the unique viscosity
solution of (HJjjpy,)-

We have

t* _ 1%
2y ——"— +ya—yuq, +

|tn - [mlx|

0(t. ) = 6(t, q) = iminf O3(z, ¢) < limsup 63(z, ¢) < 0(t, q) = 6(1, q).
- A—0

Hence, 6(¢, ) = lima_.¢ 05 (¢, ¢) and by the same token, lima—o,(/,¢)—@.¢) 05 (', ¢') =
0(t, q) so that the convergence is locally uniform and then uniform on the compact set
[0, 7T % [0, go]- O

6. LINK WITH ALMGREN-CHRISS
6.1. Interpretation of the PDE in the Limit Regime

In the above section, we proved that 6, converged to 6, which is the unique continuous
viscosity solution of (HJjj;y,), the limit condition and boundary condition being satisfied
in the classical sense.

Now, we are going to link this equation to a classical equation of Almgren—Chriss—like
models. The intuition behind the link between our framework in the limit regime A — 0
and the Almgren—Chriss framework is that nonexecution risk vanishes as A tends to 0.
Hence, the only remaining risk is price risk, corresponding to the term %yzozqz in the
above equation. To see more precisely the correspondence between the two approaches,
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let us write the hamiltonian function as
H(p)=y sup A — p)

=y supv(A~'(v) — p)

v>0

— ysupvA~'(v) — pv,

y>0

where the last equality holds since lim;s_, . o, §A(8) = 0.
Hence, if we define for v > 0, f(v) = —A~!(v), then we can define the function H(p) =
sup,- —f(v)v — pv and write the partial differential equation for 6 as

—3,0(t,q) — nq + syo’q® — H(3,0(t,9)) =0, on]0, T) x (0, o],
0, q) = 0, on [0, 7] x {0},
9([7 9) = _Z(‘])q’ on {T} X [0’ q()]

This equation is the Hamilton—Jacobi equation associated to the Almgren—Chriss
optimal liquidation problem with an instantaneous market impact function (per share)
f and with a final discount £(g7) per share. More precisely, the above Hamilton—Jacobi
equation is the Hamilton—Jacobi equation associated to the optimization problem:!?

r 1
[ (-0 0sa 0 - nar+ 3ot ) ar+ gneca.

inf
qeAC(0,T),q(0)=qo

where AC(0, T) is the set of absolutely continuous functions on [0, 77.

However, the instantaneous market impact function f has here a rather unusual form
since f(v) is negative for v < A(0) and positive for v > A(0), whereas it is usually a
positive function. This must be interpreted in a very simple way: if one needs to obtain
an instantaneous volume lesser than A(0), then one will choose a positive §. In other
words, he will post a classical limit order, since we assumed that the reference price is the
first bid quote—this makes sense since nonexecution risk disappears in the limit regime
A — 0. On the contrary, if one needs an instantaneous volume greater than A(0), then
one will rely on a marketable limit order (§ < 0).

The above discussion only makes sense at the limit, when nonexecution risk does not
exist anymore. However, it clarifies the meaning of negative &s. In particular, the above
correspondence between our model and a model @ la Almgren—Chriss provides a possible
way to solve one of the main practical problems of the model discussed in Guéant et al.
(2012): the interpretation of the intensity functions for negative values of 8.

6.2. Discussion on the Choice of A

The model we discuss in this paper does not consider explicitly market orders or
limit orders but rather considers that there is, for each price s* = s + §, an instantaneous
probability to obtain a trade at that price. In practice, this interpretation is perfectly suited
to classical limit orders, but we need to provide an interpretation for the intensity function
A on the entire real line. In practice, since the model has been designed to liquidate a

121n the usual Almgren—Chriss framework, liquidation is mandatory but the theory can easily be adapted
to allow for a penalization term.
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position with limit orders, it should not be used if the liquidation evidently requires
liquidity-taking orders from the very beginning. However, it may happen, because of a
slow execution, that the optimal quote in the model turns out to be negative'? after some
time.

This issue of negative § was present in the model with exponential intensity functions
introduced in Guéant et al. (2012). Although the exponential form was justified for many
stocks for positive §s, the intensity function was also of exponential form for § < 0, and
this choice was dictated by mathematical needs rather than by empirical rationale. Since
A (or in practice A ) can be chosen in our setting, we can improve the initial model.

First, using statistics on execution, we can estimate the probability to be executed at any
positive distance from the first bid limit. In practice, the profile of the empirical intensity
for positive § is decreasing and may not be convex, especially when the bid-ask spread is
large (this is the rationale underlying our choice — for § > 0—in Figure 4.1). Then, once
the function A, has been calibrated for positive 8, several natural choices are possible
for AA(8) when 8 < 0. Instead of extending the function for negative § using a specific
functional form as in Guéant et al. (2012), we can assign to A A(8) a constant value when
8 <0 as above for A,. This corresponds to a very conservative choice that basically
prevents the use of marketable limit orders since, intuitively, the optimal quote will then
always be positive. Another choice consists in using the parallel made between the usual
literature and our framework in the limit regime A — 0. If we indeed omit nonexecution
risk, we can consider, for § <0, that AA(§) = if”(—(S) = %sup{v >0, f(v) < -8}
where v — f(v) is an instantaneous market impact function (average execution cost per
share) that is typically equal to nought for small values of v and increasing after a certain
threshold.

This choice for A, is, however, subject to several comments. First, the function A,
must satisfy the hypotheses of the model. In particular, it must be decreasing. However,
it may happen that although the specifications for positive § and negative § are both
decreasing, the function is not decreasing on the entire real line. Since the function
§<0r % f~1(—8) can be considered a lower bound to A (8) because we have to take
into account the risk of nonexecution, we can always scale the function § < 0 > AA(6)
so that the resulting function A, is decreasing (and strictly decreasing if we smooth
the function). In general, the inequality A”A < 2A’> may not be satisfied but the model
can still be used although the optimal quotes §* may not be unique. Second, a question
remains regarding the interpretation of the model when an optimal quote §* turns out
to be negative. A possible answer, in line with the parallel made with Almgren—Chriss—
like models, is to send a market order of size A(8*) = AAA(8*) (or, in practice, to use
marketable limit orders to obtain this size).

7. CONCLUSION

In this paper, we analyze optimal liquidation using limit orders. The classical literature
on optimal liquidation, following Almgren—Chriss, only considers optimal scheduling
and a new strand of research has recently emerged that uses either dark pools or limit
orders to tackle the issue of the actual optimal way to liquidate. Our paper provides a
general model for optimal liquidation with limit orders and extends both Bayraktar and

13 Although quotes evolve continuously between execution times, using the model, in practice, requires
to post orders and to keep them in the order book for some time. Hence, the optimal quote at some point
may, in practice, be strictly negative.
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Ludkovski (2014) that only considers a risk-neutral framework and Guéant et al. (2012)
that was restricted to exponential intensity functions. Our general framework also sheds
new light on the important topic of negative quotes. An important improvement of our
model would consist in linking the Brownian motion that drives the price and the point
process modeling execution. Research in this direction has recently been made by Cartea
et al. (2014) to model market making and it may adapt to our case.

APPENDIX A: THE MULTIASSET CASE

This appendix is devoted to the generalization of our results to the case of a portfolio
with multiple stocks. Our main result (Theorem 3.4) generalizes to the multiasset case.

We consider a trader who has to liquidate a portfolio made of d different stocks with
a quantity g, of stock i (i € {1,...,d}).

We suppose that the reference price of stock i evolves as

dSt = puldt + O’[dVV;,

with V(W, ..., W) = (p'/) < j<q definite positive.

The trader under consideration continuously proposes an ask quote for each stock
(S'“ = S + 68! for stock 7), and will hence sell shares according to the rate of arrival of
liquidity-taking orders at the prices he quotes.

The state of the portfolio is (ql*’sl, e q"*‘sd). It evolves according to the following
dynamics:

Vi, dg? = —A'N",

where N" is a point process giving the number of executed orders for stock i, each order
on stock 7 being of size A’—we suppose as above that A’ is a fraction of ¢). The intensity
process (A}), of the point process N'*%" is given by

}\l[ = A’AI_(SA,(I _ ‘S;)lq,'fi>0 = AIA,-(S;)I%,;S,;(),

where the function A'A, : R — R, satisfies the same assumptions as in the single-stock
case.

We suppose that the point processes N, ..., N%%" are independent.

The cash account X* 4 of the trader has then the following dynamics:

d
del ..... s _ Z(‘S; _|_8;')Adetf,s'.

i=l

Eventually, the optimization problem is

., SL;REAJE [— exp (—J/ (XSTI‘S' + gq’f’y (S'f - (%ﬂ)))} :

where the functions £!, . .., ¢¢ satisfy the same assumptions as in the single-asset case.
This multiasset setting deserves two remarks. First, the execution processes associated

to different stocks are independent. Hence, the only difference between the multiasset

case and the single-asset cases has to do with price risk: in this multiasset framework,
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optimal quotes will depend on the correlation structure between stocks. Second, the
trader can only sell shares, although buying shares might sometimes reduce price risk in
practice.

The counterpart of Proposition 3.3 and Theorem 3.4 in this multiasset framework is
the theorem below:

Theorem A.1. (Verification theorem and optimal quotes)
There exists a unique solution Ox1__ad, C! in time, of the system:

viel0,7),(q",....,q°)#(0,...,0),

0=y0d0a . Af(lq,..-,q‘/)JrVZ/MI—* > pelalq'q’

1<i,j=<d

d d i d

0 dt, g, g =00 aat gt g — AL
Zlq>0Hl’<A‘ ..... adlt, g q%) = Oar,... A/( q' q' q)>’
i=1

and the conditions:
Oat.ad(Tq" . gy == tgNq', 01 ait,0,...,0)=0,

where
HL(p) = sup Ay (8) (1= e 700).
If Oa1 .. aa is this function, then

d 1 d 1 d
Upat, .., A, x,q,...,q% s ,...,8%) =

d
—eXp <_V <X+qusl +8AI ,,,,, A"(t q ) 9qd)))

i=1

is the value function of the optimal control problem, and the optimal ask quotes are charac-
terized by

Vi, (00, = 8“‘,- (QAIW”A:I([, ql,....q") — 0 ,‘&Au(l, ql, . g = AL L e ))

where 8’* (p) is uniquely characterized by

(8% (p)
8’* ——1 A B
) °g< G <p)))

Proof. The proof is mutatis mutandis the same as in the single-stock case. Exis-
tence of a local solution ¢ +> @1 d(t, g, ..., q%) comes from Cauchy-Lipschitz. To

,,,,, A‘](lv q15 ey qd) + Z?:l Mlql(T - [) -
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5V Y 1eijea PP 07q g/ (T — 1) is a decreasing function of 7. Now, using a comparison
principle similar to Proposition 3.2, we have

d d
o 1
Oarni(tog gD <Y (T — 1)+ " > Hu(0)(T — 1),
i=1

i=1 =

and this bound guarantees that there is no blow up. This led to global existence. Unique-
ness follows from a comparison principle.

As far as verification is concerned, the proof is exactly the same as in the single-asset
case. (]

APPENDIX B: TRADING ON BOTH SIDES

Along with optimal liquidation, an important strand of research on optimal trading is
high-frequency market making. We claimed in the introduction that many models can be
used to deal with both optimal liquidation and market making. We illustrate this claim
and show that our framework can easily be adapted to two-sided trading. We present the
model in the single-stock case. The multistock case works the same but notations make
the exposition cumbersome.

We consider a stock with a reference price following a Brownian motion with a drift:

ds, = pdt +odW,.

The trader under consideration continuously proposes a bid quote S’ = S, — 8" and
an ask quote 8¢ = S, + 8. His inventory ¢*"*" evolves according to the rate of arrival of
liquidity-taking orders at the prices he quotes:

dq;sh’au _ Adeh _ Ad]\@‘su,

where N and N*" are the point processes giving the number of executed orders, respec-
tively, on the bid side and on the ask side, each order being of size A (on both sides). The
intensity processes (A7), and (19), of the point processes N and N*" are given by

A= AA(S — sf)quﬁj,,< = AA(a,b)quﬁj,,<

0 o’

and

A= AA(S = ST ey = AaBD e,
where Ap : R — R, satisfies the same assumptions as in the case of the optimal liquida-
tion model, and where Q is a bound on the inventory. The bounds on the inventory have
two roles: (i) they stand for the risk limits the traders have in practice, and (ii) they allow
to write a verification theorem as in Guéant et al. (2013).

As a consequence of his trades, the cash account X 3".5 of the trader has the following
dynamics:

dX) = (S, + 5NN — (S, — 87)AdN;.
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Finally, the optimization problem of the high-frequency market maker is

b sa b ga b ga b ca
sup E[— exp (—y (X‘ST"‘ +q5" Sr—1qy > 16y’ I)))],
§h.sec A

where ¢ satisfies the same assumptions as in the case of the optimal liquidation model.
The counterpart of Proposition 3.3 and Theorem 3.4 in this market model framework
is the theorem below:

Theorem B.1. (Verification theorem and optimal quotes)
There exists a unique solution O, C' in time, of the system:

1
Vtel[0,T),Yqgef{-0,....,—A,0,A,..., 0}, 0:y8,0A(t,q)+yuq—§y202q2
Oa(t, q) — Oa(t, A Oa(t,q) — Oa(t, g — A
+lq<QHA< alt, q) AA( q+ )>+1q>_QHA< NUY)) AA( q ))

and the terminal condition:

Oa(T, q) = —L(lgDlql,

where Hx(p) = sups Aa(8) (1 — e 72¢=7)
If O, is this function, then

uA(t7 X, q, S) = —e&Xp (_y (X+ qs + QA(I7 q)))

is the value function of the optimal control problem, and the optimal bid and ask quotes are
characterized by

OA(t, q1) — Oa(t, q: + A))

(6X) =83 ( A

9A(’5 Qt) - QA(I5 (It - A)
A s

(83 = 3% <

where SZ( p) is uniquely characterized by the equation (EaA) of Lemma 3.1.

Proof. The proofiis close to the proofin the one-sided case. Existence of a local solution
1> (0a(t. 9))yei—0,..—a 0., o) comes from Cauchy-Lipschitz. To obtain existence on

[0, 77, first notice that Oa(1, q) + ng(T — t) — 3y o?q*(T — ) is a decreasing function of
t. Then, using a comparison principle, we have

2
Oa(t, q) < Il QT — 1) + ;HA(O)(T_ 1),

and this bound guarantees that there is no blow up, hence global existence. Uniqueness
follows from a comparison principle.
As far as verification is concerned, the proof similar to the proof of Theorem 3.4. O
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We consider an illiquid financial market where a risk averse investor has to liquidate
a portfolio within a finite time horizon [0, 7] and can trade continuously at a traditional
exchange (the “primary venue”) and in a dark pool. At the primary venue, trading yields
a linear price impact. In the dark pool, no price impact costs arise but order execution
is uncertain, modeled by a multidimensional Poisson process. We characterize the costs
of trading by a linear-quadratic functional which incorporates both the price impact
costs of trading at the primary exchange and the market risk of the position. The
solution of the cost minimization problem is characterized by a matrix differential
equation with singular boundary condition; by means of stochastic control theory,
we provide a verification argument. If a single-asset position is to be liquidated, the
investor slowly trades out of her position at the primary venue, with the remainder
being placed in the dark pool at any point in time. For multi-asset liquidations this is
generally not the case; for example, it can be optimal to oversize orders in the dark
pool in order to turn a poorly balanced portfolio into a portfolio bearing less risk.

KEY WORDS: stochastic control, optimal liquidation, dark pools, singular boundary condition,
illiquid markets, market microstructure.

1. INTRODUCTION

In the last years, equity trading has been transformed by the advent of so-called dark
pools. These alternative trading venues differ significantly from classical exchanges and
have gained considerable market share, especially in the United States. Dark pools vary
in a number of properties such as crossing procedure, ownership, and accessibility (see
Mittal 2008 and Degryse et al. 2009b for further details and a typology of dark pools).
However, they generally share the following two stylized facts. First, the liquidity available
in dark pools is not quoted, hence making trade execution uncertain and unpredictable.
Second, dark pools do not determine prices. Instead, they monitor the prices determined
by the classical exchanges and settle trades in the dark pool only if possible at these
prices. Thus, trades in the dark pool have no or less price impact.!
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In this paper, we consider an investor who has to liquidate a portfolio within a finite
time horizon [0, 7] and has access both to a classical exchange (also called “primary
venue” or “primary exchange”) and to a dark pool.” The investor hence faces the trade-
off of execution costs of the orders at the primary venue, market risk of the portfolio
position, and execution risk of the dark pool orders. For liquidation of a position in a
single asset, it should intuitively be optimal to slow down trading at the primary exchange
initially in the hope of finding liquidity in the dark pool; no execution costs have to be
paid for dark pool orders and hence the full remainder of the position should be placed
in the dark pool at any point in time. For multi-asset liquidation, the correlation between
the assets comes into play. Depending on whether the portfolio is well (poorly) balanced,
it should be optimal to place orders in the dark pool which are smaller (larger) than the
remaining portfolio position. In the first case, the portfolio bears little market risk and
therefore the trader will not risk to lose her balanced position by the full execution of
her dark pool order for only one of the assets. In the second case, it might be optimal to
oversize the dark pool orders for risk mitigation reasons.

To our best knowledge, the mathematical framework established here and in the
discrete-time model of Kratz and Schoneborn (2014) (cf. the discussion later) is the
first within which optimal trade execution is analyzed for a multi-asset portfolio using a
classical exchange and a dark pool simultaneously. Within our framework, we are able to
derive an analytical representation of the optimal trading strategy allowing a thorough
analysis of its properties which confirms the intuitions above. When a position in a single
asset is to be liquidated, the current asset position is at all times being offered in the
dark pool, while it is liquidated in parallel at the primary exchange. The opportunity to
trade in the dark pool leads to a slower liquidation at the primary exchange compared
to a market without a dark pool. Traders hence need to fundamentally adjust their trade
execution algorithms when a dark pool is introduced. It is not sufficient to use an al-
gorithm that was optimal for execution at the exchange and to add a component that
also places trades in the dark pool; instead, trading at the exchange needs to be adjusted
during the entire trade execution time interval. While in a single-asset setting the entire
asset position is placed in the dark pool, this is not true if a multi-asset portfolio is to
be liquidated. If, for example, the portfolio is balanced and thus only exposed to little
market risk, then a complete liquidation of the position in one of the assets is unfavorable
and thus only a fraction of the entire portfolio should be placed in the dark pool. This
highlights again that overly simple adjustments to existing trade execution algorithms are
exposed to potential pitfalls. For dark pools, the reluctance of traders to place balanced
portfolios in a dark pool is an incentive to offer balanced executions in order to attract
more liquidity.

Our model for trading and price formation at the classical exchange is a linear (infinitely
resilient) price impact model. Trade execution can be enforced by selling aggressively,
which however results in quadratic execution costs due to a stronger price impact. We
model order execution in the dark pool by a multidimensional Poisson process. Orders
submitted to the dark pool are executed at the jump times of the respective components
of the process. The split of orders between dark pool and exchange is thus driven by the
trade-off between execution uncertainty and price impact costs.

2The overall liquidity traded in dark pools in the United States is strongly fragmented among approxi-
mately 40 different venues, see, e.g., Carrie (2008). Therefore, liquidity aggregation is a major issue. Ganchev
et al. (2010) and Laruelle et al. (2011) establish learning algorithms to achieve optimal order split be-
tween dark pools. Instead of analyzing the simultaneous use of several dark pools, we consider such an
“aggregated” dark pool in our model which we call “the dark pool.”
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The investor aims to maximize her expected proceeds minus a quadratic risk term
reflecting the market risk of the position. For appropriate assumptions on the price dy-
namics, this yields a linear-quadratic cost functional. However, the liquidation constraint
implies a singularity of the value function at the terminal time 7', which renders the solu-
tion of the optimization problem difficult. We approximate the constraint by a sequence
of modified unconstrained optimization problems with increasing finite end-costs. Via a
quadratic ansatz, the corresponding Hamilton-Jacobi-Bellman (HJB) equation suggests
that the value functions of the modified optimization problems are quadratic forms for
matrix-valued functions which are the solutions of initial value problems for a specific
matrix differential equation. Explicit solutions for these initial value problems are not
known. We establish a matrix inequality which allows us to apply a known comparison
result for Riccati matrix differential equations in order to obtain closed form upper and
lower bounds for the solutions of the initial value problems. The bounds are important
for several reasons. First, they enable us to prove a verification theorem for the modi-
fied unconstrained optimization problems with finite end-costs. Second, they imply the
existence of the limit of the solutions of these optimization problems and thus yield a
well-defined candidate for the value function of the original optimization problem with
liquidation constraint. Third, the limit of the bounds transfers to bounds for this candi-
date value function and we deduce a verification theorem for the solution of the optimal
liquidation problem.

Hence, the value function of the problem is a quadratic form for a matrix-valued
function which is the “principal solution” of the matrix differential equation. The optimal
strategy is linear in the portfolio position; it is determined by the value function and can
be computed easily from a numerical solution of the “principal solution” of the matrix
differential equation. This makes the model tractable for practicable applications and
allows us to investigate the properties of the solution (cf. the discussion above).

Our model complements the model by Kratz and Schoneborn (2014), where (in par-
ticular) multi-asset liquidation in dark pools is studied in discrete time; for single-asset
liquidation, the two models are connected via a convergence result. The mathematical
analysis of the continuous-time model is substantially different from the discrete-time
model. In discrete time, the optimal liquidation strategy and its costs are given by a back-
ward recursion obtained by standard dynamic programming; this recursion is rather
unhandy and it is difficult to deduce properties of the optimal strategy from it. In contin-
uous time, the optimization problem cannot be solved by standard methods of stochastic
control because of the singular boundary condition for the value function. Instead, these
methods had to be modified and extended. We believe that the analysis of the matrix
differential equation characterizing the optimal strategy and the value function as well
as the resulting verification theorem for the optimization problem are mathematically
interesting in their own right (cf. the discussion above). In addition, the differential equa-
tion is easier to analyze than the (discrete-time) backward recursion and we can deduce
additional properties of the value function and the optimal strategy from it; in particular,
we are able to show that for a two-asset portfolio, the optimal strategy is monotone in
the correlation of the assets.

In addition, our paper is connected to several lines of research. First, it builds
on research on optimal trade execution strategies for a single trader in models with
exogenously given liquidity effects. Several such models have been proposed for classical
trading venues, for example, Bertsimas and Lo (1998), Almgren and Chriss (2001), Alm-
gren (2003), Schied and Schoneborn (2009), Alfonsi et al. (2010), Schied et al. (2010), and
Obizhaeva and Wang (2013). We follow Almgren and Chriss (2001) and assume a linear
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temporary price impact model for the primary venue. This choice yields a tractable model
which allows us to derive closed form solutions for the optimal liquidation strategy while
capturing price impact effects. Furthermore, linear price impact models have become the
basis of several theoretical studies, for example, Almgren and Lorenz (2007), Carlin et al.
(2007), Schoneborn and Schied (2013), and Rogers and Singh (2010). The models above
are limited to trading on one venue; they are concerned with the trade-off of execution
costs versus market risk. By using a dark pool, the investor additionally faces order
execution risk in our model. The trade-off of execution costs, market risk, and execution
risk is also apparent in the models of Bayraktar and Ludkovski (2014), Guéant et al.
(2012), Guéant and Lehalle (2015), Guilbaud and Pham (2015), and Huitema (2013)
who consider optimal liquidation with limit orders.? In most of these models, the investor
chooses a limit price for her orders;* the “probability” of execution is then dependent
on this price and the left-over position can be liquidated at fixed costs at the exchange.
In contrast to this, the dark pool orders in our model do not involve a limit price; they
are executed at the price of the primary venue. Klock et al. (2013) also work in a market
model with exogenously specified liquidity characteristics for both a public exchange
as well as a dark pool. Their focus is on the circumstances that can lead to price ma-
nipulation, while we focus on the quantitative and qualitative features of optimal trade
execution strategies in markets without price manipulation. Therefore they investigate
a more general class of price impact relationships, while our framework incorporates
several aspects of market and investor behavior that shape optimal trade execution, such
as risk aversion, multiple correlated assets, and a dynamic usage of the dark pool.

A second line of research connected to our paper focuses on the underlying mechanisms
for illiquidity effects. Early examples include Kyle (1985), Glosten and Milgrom (1985),
and Grossman and Miller (1988). In these models, price impact arises endogenously
through the interplay of market participants. More recently, such models have been
proposed to analyze the competition between classical trading venues and dark pools.
Hendershott and Mendelson (2000) analyze the interaction of dealer markets and a
crossing network® in a static one-period framework where each investor buys or sells a
single share. Their findings include that trading in a crossing network is cheaper than in
dealer markets since the trader saves half the spread, but trade execution is uncertain in
the crossing network. In a similar setting, Donges and Heinemann (2013) focus on game-
theoretic refinements in order to remove the multiplicity of equilibria in Hendershott and
Mendelson (2000). Degryse et al. (2009a) introduce a dynamic multiperiod framework
and compare the effect of different levels of transparency of the dark pool. In order to
focus on the optimal order execution of an individual trader, we exogenously specify the
liquidity properties of the market. Hence, all the models cited above can shed more light
on how the liquidity properties of the dark pool come about than our model can. On the
other hand, by defining the model parameters exogenously, we can allow the investor to
split her orders over time as well as between the two trading venues. While executing her
order over time, she can dynamically react to the existence or absence of liquidity in the
dark pool and adjust her trading strategy accordingly. Furthermore, we can take a multi-
asset perspective and investigate how the composition of basket portfolios influences
optimal trade execution strategies.

3In our model, all orders in the primary venue are market orders whose execution is guaranteed; hence,
the execution risk only applies to the dark pool orders.

“Except for Guilbaud and Pham (2015), where all limit orders are half a tick away from the midprice.

3Crossing networks are specific types of dark pools that offer periodic matching of buy and sell orders.
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Methods of stochastic control is a third line of research that this paper is connected
to. A standard reference for stochastic control with jumps is the book by Oksendal and
Sulem (2007). The liquidation constraint yields a singularity of the value function at the
terminal time 7, and thus, the resulting stochastic control problem requires non-standard
considerations. For single-asset liquidation and finite end-costs (hence no singularity of
the value function at time 7'), the solution of the linear-quadratic control problem is
wellknown, see, e.g., Oksendal and Hu (2008). Multidimensional linear-quadratic control
with jumps is treated in the book by Hanson (2007). However, our setting (even without
the singularity of the value function) is not covered therein. The difficulty in our setting
stems from the combination of the singularity of the value function and the fact that
we consider multidimensional portfolios; thus the solution of the optimization problem
involves the detailed analysis of a specific non-Riccati-type matrix differential equation,
for which we establish existence results and upper and lower bounds of the solution
by means of a novel matrix inequality. Several other texts are dealing with singular
boundary constraints in liquidation problems. For instance, Schied et al. (2010) study
optimal liquidation without dark pools for CARA investors. In this case the optimal
control problem does not include jumps. They carry out a verification argument for a
candidate value function obtained by considering only deterministic strategies. Naujokat
and Westray 2011 and Hoschler (2011) treat similar control problems with jumps. The
focus of both texts is on trading with limit orders rather than with dark pools; they
only treat single-asset trading and obtain the single-asset case of this paper as special
cases of their respective settings. Kratz (2013) generalizes the single-asset case of this
paper by allowing for adverse selection; this renders the liquidation problem nonlinear
quadratic; he shows that in this case the value function is a “quasi-polynomial” of degree
two instead of being quadratic; the solution for the multidimensional case is not known
yet.

The remainder of this paper is structured as follows. We specify the model set-up and
the optimization problem in Section 2 and obtain a candidate for the value function
of the unconstrained optimization problem with finite end-costs via an initial value
problem for a matrix differential equation. In Section 3, we state the main theoretical
results of the paper: the solution of the initial value problem (Section 3.1), the solution
of the unconstrained optimization problem (Section 3.2), and finally the solution of the
constrained optimization problem (Section 3.3). We discuss the properties of the value
function of the optimal strategy extensively for a single-asset position and a portfolio
consisting of two assets in Section 4. The main results of Section 3 are proven in Section 5
and the results of Section 4 are proven in Section 6.

2. MODEL DESCRIPTION

For a fixed time interval [0, 71, we consider the stochastic basis (Q, F, P, F = (F);ej0.1).°
We investigate a market model where a risk averse trader with a personal risk aversion
parameter o > 07 has to liquidate a portfolio x € R" of n assets within a finite trading
horizon [0, T]. The investor has the possibility to trade simultaneously at a traditional

6The filtration is generated by the involved random processes and is specified at the end of Section 2.2

7Although we use the term “risk aversion parameter,” the investor is only risk averse to market but not
to execution risk in our model as pointed out in Section 2.4 below (cf. also the discussion in the Appendix
A).
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exchange and in a dark pool, facing the trade-off of paying market impact costs in the
traditional exchange against uncertain execution in the dark pool.

We specify the price dynamics at the primary exchange in Section 2.1 and the dynamics
of order execution in the dark pool in Section 2.2. In Section 2.3, we define admissibility
of trading strategies. In Section 2.4, we specify the trading objective and show that the
resulting optimization problem is equivalent to a linear-quadratic optimization problem.
Heuristic arguments suggest that the value function of the optimization problem is sin-
gular at terminal time 7 because of the liquidation constraint. Hence, we introduce a
modified optimization problem where we drop the liquidation constraint and approxi-
mate it by finite end-costs for a portfolio not liquidated by time 7 as an intermediate step.
In Section 2.5, we derive a candidate for the value function of the modified optimization
problem via a quadratic ansatz and the corresponding HJB equation.

2.1. The Primary Exchange

In absence of transactions of the investor, the fundamental asset price at the primary
exchange is given by an n-dimensional stochastic process P.

ASSUMPTION 2.1. We assume that P satisfies the following properties.

(i) P is a square-integrable cadlag martingale.
(ii) The covariance matrix of P is constant in time, that is, for all t € [0, T), i, j =
1,....n,

Cov(Pi(1), Pj(1)) = 1%, ;

and ¥ = (Z; j)i j=t,..n € R™".

The martingale property in Assumption 2.1 (i) makes the model tractable for closed
form solutions. Furthermore, as the time horizon for portfolio liquidation is usually
short, that is, several hours or a few days, it is a sufficient approximation of reality for
our purposes.®

Once the trader becomes active on the primary exchange, she influences the market
price P. We assume that the trader at the primary exchange can only execute trades
continuously, that is, that her trading activity at the primary exchange is absolutely
continuous and can hence be described by her trading intensity &(f) with ¢ € [0, T).°

8We do not model the period in which the investor has held the assets before time zero. This period may
be long, whereas the liquidation time period is usually short. Any risk premium influences asset prices over
any time horizon, however its magnitude over short time horizons is usually outweighed by the magnitude of
market risk and price impact costs (see, e.g., Almgren and Chriss 2001). Furthermore, models with non-zero
drift can result in profits from trading even if no initial position is to be liquidated, thus making it harder to
differentiate between effects of portfolio liquidation and effects of optimal investment. We want to remark
here that also the optimal dark pool orders are sensitive to the martingale assumption (cf., e.g., Footnote
16).

%In the single-asset setting without dark pools of Obizhaeva and Wang (2013), impulse trades are allowed
in addition to absolute continuous trading. In order to include impulse trades in our model, it would first be
necessary to define plausible costs for such trades; in Obizhaeva and Wang (2013) these costs arise naturally
from their model of the order book. Unfortunately, this renders the model intractable for multi-asset trading
using dark pools. Furthermore, the introduction of impulse trades would render the model less applicable
for practitioners. We want to remark that the results of our paper are sensitive to the exclusion of impulse
trading. If, for example, a discrete trade at time 7 is allowed (with quadratic costs), the investor will liquidate
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Trading in the traditional exchange generates price impact, which we assume to be
temporary and linear in the trading rate £(¢). Given a strategy (£(7));[0, 77, the transaction
price at time ¢ € [0, T is given by

P(t) = P(t) — A&(1),

where A € R"*" is a positive definite matrix constant in time. Execution of the trades
at the primary exchange is certain; we hence consider only market orders and no limit
orders.

By assuming linear price impact for the primary venue, we follow Almgren and Chriss
(2001). This choice yields a tractable model which allows us to derive closed form solu-
tions for the optimal liquidation strategy while capturing price impact effects. Further-
more, linear price impact models have become the basis of several theoretical studies,
for example, Almgren and Lorenz (2007), Carlin et al. (2007), Schoneborn and Schied
(2013), and Rogers and Singh (2010). In contrast to Almgren and Chriss (2001), the price
impact in our model is purely temporary; Klock et al. (2013) analyze the influence of per-
manent price impact on the existence of market manipulation strategies. Such an analysis
is not in the scope of our paper; hence we allow only for temporary price impact.'

2.2. Order Transaction in the Dark Pool

In addition to the primary exchange, the trader can also use a dark pool. Dark pools
often have rather complex order allocation mechanisms; most of them use some sort of
a pro-rata or time-priority rule for matching orders from opposite sides of the market.
Here, we consider a dark pool with a time-priority matching rule: the investor’s order
n enters a queue and is matched with liquidity from the opposite side of the market (if
there is any) once it has reached the front of the queue.

We allow for continuous updating of the orders 5(¢) in the dark pool at any time
t € [0, T]. Orders for the ith asset in the dark pool are executed fully at the jump times
of the ith component of an n-dimensional Poisson process

7w = (my, ..., m,) with intensities 0y, ..., 6, > 0, respectively.

Else, the orders are not executed at all. This mechanism implies two main simplifications
of reality which allow a thorough mathematical analysis of the model. First, we exclude
partial execution; the probability of execution does not depend on the size of the order.
Second, we assume independence of the increments of the dark pool liquidity. On the
other hand, the resulting model captures the stylized facts outlined above and in the
introduction; we believe that it constitutes a sufficiently good approximation of reality
for our purposes.

at least a small position at time 7" (unless she finds liquidity in the dark pool before; cf. Section 4.1), that is,
X*(T—) # 0 in contradiction to Assumption 2.3 (v) below.

10 A5 the price is not influenced permanently by the investor, the term price impact might be misleading.
Alternatively, we could rename the quadratic costs caused by trading in the primary venue as the execution
costs of the investor; indeed, the costs of trading can be interpreted to include such different effects as price
impact and transaction costs. However, the term execution costs does not capture the possible impact of
trading in one asset on the price of another asset which we include by allowing the off-diagonal elements of
A to be non-zero (cf. the discussion of cross price impact in Section 4.2.2).
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ASSUMPTION 2.2. We assume that v satisfies the following conditions.

(i) mi,...,m, are independent.
(ii) 7 and P are independent.

By Assumption 2.2 (ii) we exclude correlations between dark pool liquidity and the
fundamental asset price in the market. In particular, this rules out adverse selection.'!
For single-asset liquidation, adverse selection was incorporated by Kratz (2013). This
renders the liquidation problem nonlinear quadratic; he shows that in this case the value
function is a “quasi-polynomial” of degree two instead of being quadratic. A solution
for the multidimensional case is not known yet.

While the dark pool has no impact on prices at the primary venue, it is less clear to
which extent the price impact of the primary venue A&(¢) is reflected in the trade price
of the dark pool. If, for example, the price impact is realized predominantly in the form
of a widening spread, then the impact on dark pools that monitor the mid-quote can
be much smaller than A&(z). We will make the simplifying assumption that trades in the
dark pool are not influenced by the price impact at all, that is, that they are executed
at the fundamental price P. If alternatively the transaction price in the dark pool is the
price P at the primary exchange including the trader’s price impact, market manipulation
strategies can become profitable unless the parameters are chosen with great care, as has
been shown by Kratz and Schoneborn (2014) for the discrete-time case. For a detailed
discussion see also Klock et al. (2013) who analyze the circumstances that can lead to
price manipulation in dark pools.

We are now ready to specify the filtration (F;), as the completion of (o' ( P(s), 7 (r)|0 <
s<t,0<r <t),.

2.3. Admissible Trading Strategies

Lett € [0, T) be a given point in time and x € R” be the portfolio position of the trader
at time ¢. The trader has the possibility to trade asset & in the traditional exchange with
trading intensity &(s) at time s € [¢, T') and to place orders nx(s) in the dark pool at time
s.

We call a 2n-dimensional stochastic process

(u(s))se[r,T) = (&(s), n(s))se[f,T)

a trading strategy if & is progressively measurable and 5 is predictable. Given a trading
strategy u, the portfolio position at time s € [, T) is given by the following controlled
stochastic differential equation:

dX"(s) = —&(s)ds — n(s)dm(s)

(2.1
X(t) = x
such that the left-hand side in (2.1) is well defined.
For technical reasons we require all trading strategies to fulfill the following conditions.

Here, adverse selection refers to the phenomenon that liquidity seeking traders find that their trades
in the dark pool are usually executed just before a favorable price move, i.e., exactly when they do not want
them to be executed since they miss out on the price improvement.
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DerFINITION 2.3, Let t€[0,7) and xeR" be fixed. Let u = (u(s))ser, 1) =
((&(s), n(s)))sefr, 1) be a trading strategy, that is, £ is progressively measurable and 5 is
predictable.

(a) We call u an admissible trading strategy if it fulfills the following conditions.

(i) The Stochastic Differential Equation (2.1) possesses a unique solution on

[z, T).

(ii) T r
E [/ ||§(S)||§ds] <400, E |:/ ||77(s)||§dsi| < +00.

t t
(iii)) If6; =0, then n;(s) =0 foralls €[, T).

We denote the set of admissible trading strategies by A(l).
(b) We call u € A(¢) an admissible liquidation strategy or just liquidation strategy if
additionally

(iv) limg_ 7_ X“(s) =0 a.s.

and denote the set of admissible liquidation strategies by A(z, x).

Let us shortly comment on Definition 2.3. Condition (ii) is required for the moment
bound in Lemma 5.5 which is in turn needed for the verification later. Condition (iii) is
needed in order to ensure uniqueness of optimal trading strategies: if §; = 0, no additional
gain can be achieved by nonzero dark pool orders. If the portfolio is liquidated at constant
speed at the primary exchange only, that is, £(s) = 7, n(s) = 0 for s € [¢, T), Definition
2.3 (in particular the liquidation constraint (iv)) is satisfied and hence A(z, x) # @.

REMARK 2.4. We expect that the stochastic control problems we solve are such that
the optimal control is of Markovian form (see, e.g., the book by @ksendal 2007, theorem

11.2.3):
u(s) = (§(s), n(s)) = (&(s, X(s)), n(s, X(s—))

for deterministic functions &,n :[f, T) x R” — R"”. The deterministic initial value
problem

22 X=-6(X, XO)=x

possesses a unique solution on [z, T) if ||E(s, V)| < f()yIl + g(s) on [z, T) x R" for
f.g € C(t, T)) and &(s, -) is locally Lipschitz (e.g., C').!> Let & : [t, T) x R" — R” fulfill
these conditions and let n : [z, T) x R” — R". We can pathwise construct the solution
of the Stochastic Differential Equation (2.1) inductively by interlacing the jumps (see,
e.g., Applebaum 2004, example 1.3.13): as the n Poisson processes are independent,
they jump at distinct times almost surely. Let (z;);>; be the jump times of 7 such that
t=:179 <1 <...almost surely, and let X be the solution of the Initial Value Problem
(2.2) on[z;, tir1 A T) withinitial value x = X(t;) fori € Nsuchthatt; < T.Fort;y < T
and Ami(tiy) > 0, we set

X(tiv) = X(ti1—) — mi(Tigr, X(zig1—)ex,

where ¢y is the kth unit vector.

12This follows, for example, by Peano’s existence theorem and Gronwall’s inequality.



PORTFOLIO LIQUIDATION IN DARK POOLS IN CONTINUOUS TIME 505

2.4. Cost Functional

The proceeds of selling the portfolio x € R” during [#, 7] according to the strategy
(u(s))s = (§(s), n(s))s € A(z, x) are given by

T R T N
(1. %) = / £(5)T(P(s) — AE(s)ds + / 1) B(s)dn (s).

The first term in the above equation represents the proceeds of selling at the primary
exchange at a price of P(s) = P(s) — A&(s), while the second term accounts for the
proceeds of selling in the dark pool at the unaffected price P(s). Applying integration by
parts and using X“(s) = x — [ &(r)dr — [ n(r)dm(r), Assumption 2.1 (i), the fact that
P and 7 are independent (Assumption 2.2 (ii)) and the liquidation constraint (Definition
2.3 (iv)), we obtain

T 5 T 5
o(t, x,u) = — / £(s)TAE(s)ds + x" P(t) + / X“(s—)d P(s).
This yields (cf. Assumption 2.1)
T
E[p(z, x, u)] = x" P(t) — E [ / g(s)TAs(s)ds] )

Instead of maximizing expected proceeds, we can thus equivalently minimize expected
price impact costs. We assume that the trader is not only interested in expected liquidation
proceeds, but in addition also wants to minimize risk during liquidation. We incorporate
both aspects in the following cost functional:'?

T
J(t, x,u) = x" P(t) — E[p(t, x,u)] + E [a/ X"(S)TEX”(S)dS]

T
_E [ / FEE). X"(s))ds} ,

where f:R" x R" — R is given by f(&, x) := £ A& + ax” Zx. The first two terms in
the cost functional capture the expected liquidation shortfall, while the last term is
an additive penalty function « f,T X*(s)T X X“(s) ds, which reflects the market risk of
the portfolio (recall that & > 0 is the risk aversion parameter of the investor); it pe-
nalizes slow liquidation and poorly balanced portfolios. It does not incorporate exe-
cution risk; hence the investor is only risk averse with respect to market risk but not
with respect to execution risk. This simplification allows us to obtain analytical so-
lutions for the cost minimization problem below. We investigate the impact of this
model choice in Appendix A. As outlined there, we believe that for realistic parame-
ters, market risk outweighs execution risk; hence we expect that the inclusion of risk
aversion with respect to execution risk would not change the optimal strategy substan-
tially. For deterministic liquidation strategies without dark pools, the risk term reflects

13Both mean and variance of execution costs are often used as measures of execution quality. The cost
functional J is inspired by such mean variance measures. An alternative approach is the maximization of
expected utility: J(z, x, u) = E[U(¢(1, x, u))] for some utility function U. In this alternative set-up analytical
solutions are unfortunately not directly available through the methods presented in this paper and are hence
left for future research.
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the variance of the liquidation costs (see Almgren and Chriss 2001). In this case, minimiz-
ing a mean-variance functional of the liquidation costs over all deterministic strategies is
equivalent to maximizing the expected utility of the proceeds of an investor with CARA
preferences over all strategies (see Schied et al. 2010).

We assume that the trader aims to minimize the cost functional and hence considers
the following optimization problem:'*

(OPT) v(t, x):= inf J(t, x, u).
uel(t,x)

Note that the optimization problem is well defined and the value function satisfies
v(t, x) < +oo for t < T (consider, e.g., constant liquidation exclusively in the primary
exchange). Because of the liquidation constraint (cf. Definition 2.3 (iv)), we expect the
value function to fulfill

0 ifx=0

lim v(s, x) =
s—>T— 400 else,

that is, v has a singularity at the terminal time 7. Because of this singularity, nonstan-
dard considerations are necessary for solving the Optimization Problem (OPT) via a
verification argument using the HJB equation.

As an intermediate step, we hence weaken the liquidation constraint by allowing for all
strategies u € A(7) and by penalizing nonliquidation by finite end-costs. More precisely,
for/ > 0and u = (&, n) € A(r), we define the following cost functional

T
J,t,x,u):=E [/ f(E(s), X“(s))ds +1 - X“(ﬂTIX“(ﬂ:| .
t
The resulting optimization problem is

(OPT) 31,1, x):= inf J({, 1, x, u).
uel(r)

The Optimization Problem (61}/[ ) mainly serves as an approximation of the Opti-
mization Problem (OPT). However, it is also of interest itself: the penalization term
[ - X*(T)TIX“(T) can be considered as the liquidation cost of the left-over position.
Note that the identity matrix in the term can be replaced by any positive definite matrix
reflecting this interpretation (e.g., A) without changing any of the proofs significantly.

In the following, we solve the unconstrained Optimization Problem (OPT) first (Sec-
tion 3.2). Then, we show that the solution of the Optimization Problem (OPT) con-
verges to the solution of the original constrained Optimization Problem (OPT) as/ — oo
(Section 3.3).

2.5. Hamilton-Jacobi-Bellman Equation

In this section, we derive a candidate for the value function of the Optimization
Problem (OPT). Heuristic considerations suggest that it should satisfy the following HIB

14An alternative interesting set-up is to consider trade execution under minimum proceeds constraints.
Such problems have recently been addressed using theory about stochastic target problems (see, e.g.,
Bouchard et al. 2009 and Bouchard and Dang 2013).
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equation (see, e.g., Oksendal and Sulem 2007):

(HJB)
3 n
Pw= sup [ 0,00 x) —wlt,x =" e)+Vow (e, 0 — f(E, x)
ot u=(&,n)eR" xR i=1
(2.3) w(T, x) =Ix"x.
The linear-quadratic form of the cost functional suggests that the value function is

quadratic. Assuming that the above guesses are correct, the following proposition pro-
vides candidates both for the value function and for the optimal strategy.

PROPOSITION 2.5. Let [ > 0 and assume that the initial value problem for a matrix
differential equation

C=C'A'C+C'CC-ax, C(T)=I1,

where C(l, t) := diag(—%—) possesses a positive definite solution C(l,t) =

¢ i(l,1)
(ci,j(l, )i j=1,..n on [0, T). Then
w(l, t, x) := x'C(, 1)x

yeees

satisfies the HJB equation (ﬁjB) with maximizer u* = (§*, n*) for
£ =%, t,x):= AT'CU Dx, n*=n%1,t,x):= C, )CU, t)x,

where C(l, t) 1= diag(ﬁ).
If there exist iy, ...,ix € {1,...,n} such that 0;,=0(j=1,...,k), then ni, can be
chosen arbitrarily. Up to arbitrary choices of n;,, the maximizer is unique.

Proof. The assertion follows directly from plugging the quadratic ansatz w(/, 7, x) =
xTC(l, t)x into the HIB equation (HJB); the resulting function can be maximized by
standard calculus. O

3. MAIN RESULTS

Proposition 2.5 suggests that the solution of the Optimization Problem ((/)T"/F ) solves the
initial value problem for the matrix differential equation

C=C"A'C+C"CC-ax

3.1
C(T) =11,
where
~ . 0;
(3.2) C :=diag <> .
Cii

In the remainder of the section, we state the main results of the paper. In Section 3.1, we
show that (3.1) admits a unique solution C on [0, 7] and establish appropriate upper and
lower bounds for C. Subsequently, we deduce the solution of the Optimization Problem
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(61\31") in Section 3.2 and as a limit of this (as / — 00) the solution of the Optimization
Problem (OPT) in Section 3.3. Proofs of these results are presented in Section 5.
Before we proceed, we introduce the following notations.

NOTATION 3.1.

(i) For symmetric matrices A and B we say A> B (A> B) if A— B is positive
(nonnegative)) definite.
(ii) We denote the smallest and the largest eigenvalues of a real-symmetric matrix A by
Amin and amax, respectively.
(iii) We define the following nonnegative definite matrix: D .= v A~1 S~/ AL,

3.1. Solution of the Initial Value Problem (3.1)

It is not immediately clear that the Initial Value Problem (3.1) possesses a positive
definite solution on the whole interval [0, T for n > 2. For n = 1, it reduces to C' =
%2 4+ 6,C —aX, C(T) = [. This is an initial value problem for a scalar Riccati differential
equation with constant coefficients, whose unique solution is explicitly known and exists
on the whole interval [0, 7] (cf. Section 4.1). For n > 2, the following theorem establishes
the existence and uniqueness of the solution of (3.1).

THEOREM 3.2. Let6; > O0fori=1,...,n,0 =) '_ 0; andl > ly, where
02 %
(33) IO = max {)\max ( Z + admin - 2) 5 )\min (\/ admax)}

(cf- Notation 3.1). Then the Initial Value Problem (3.1) possesses a unique solution C(l, -)
on (—oo, T\. The solution is symmetric for all t € (—oo, T and

0< P, 1)< VA1CU VAT < O, 1),

where P and Q are the solutions of the initial value problems

/ _— p2 . _ 1 /
PP=P +9P—ozdmm1, P(T')—KI, and Q

3.4) *
= Q2 —admax I, O(T) = ;Llim I,
respectively.
REMARK 3.3.

(1) The solutions of the initial value problems for Riccati matrix differential equations
in (3.4) exist on the whole interval [0, 7] and can be computed in closed form
(cf. equations (5.6)—(5.9)). For technical reasons, we prefer to establish bounds
for v A-1C+/ A1 instead of bounds for C. P and Q are constructed in terms of
multiples of the identity matrix and hence commute with all matrices. Therefore,
they transfer to bounds of C directly by multiplying them with A.

(i) The bounds of C are an essential component for the proof of Theorem 3.2. Ad-
ditionally, they are required for all key steps of the solution of the Optimization
Problem (OPT) (Proposition 3.4 and Theorem 3.5) and of the solution of the
Optimization Problem (OPT) (Theorem 3.6, Theorem 3.8, and Theorem 3.9).
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3.2. Solution of the Optimization Problem (O’FT)

Combining Proposition 2.5 and Theorem 3.2, we obtain well-defined candidates both
for the value function (/xj/C(l ,H)x) and for the optimal strategy u* = (¢*, n*) of the
Optimization Problem (OPT). The latter is given by

(3.5) () :=&*(I, t, x) ;= A'CU, t)x,

(3.6) n*() = n*(l, t, x) == IC(1, 1)C(l, 1)x,

1 if6; >0

i !
PP = d Ci I, =di .
=0 else an (,7) = diag (c,,,-(l, z))

The following proposition confirms that »* is admissible.

PROPOSITION 3.4. Let | > o for ly as in equation (3.3) and (¢, x) € [0, T) x R". Then
u (1) = &*(), n* () € A(¢), where £§*(I) and n*(l) are as in equations (3.5) and (3.6),
respectively.

Finally, we obtain the solution of the Optimization Problem ((Sﬁ ).

THEOREM 3.5. Let! > [ for ly as in equation (3.3) and let C(I, t) be the unique solution
of the Initial Value Problem (3.1). Then the value function of the Optimization Problem
(OPT) is given by

3, t,x) = x"C(l, H)x

and the P ® A - almost surely unique optimal strategy is given by u*(l) as in equations (3.5)
and (3.6).

3.3. Solution of the Optimization Problem (OPT)

Intuitively, infinite end-costs should force the controlled process X*(s) to approach
zero as s — T—; furthermore the solution of the Optimization Problem (OPT) should
be the limit of the solution of the Optimization Problem (OPT) as/ — oo. The following
theorem confirms (in particular) that this limit is well defined.

THEOREM 3.6. Lett € [0, T).

(i) The element-wise limit of the value function matrix
C@) = [lim Ccd, 1
exists on [0, T), and C(l,-) converges compactly to C on [0, T). Furthermore,

limy_, oo Cmin(ls T) = +oo.
(ii) C solves the matrix differential equation

(3.7) C=C'A'C+C"CC—-ax
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on [0, T) with boundary condition limy_, 7_ ciin(s) = +00. Moreover, the following
inequalities hold:

(3.8 0 < P(t) < VATICO)VAT! = Q(1),

where P(t) := lim;_., P(/, t) and Q(t) := lim;_, o, Q(, ).

REMARK 3.7. For Riccati matrix differential equations, there exists a unique solution
F with lim;_, 7— frin(s) = +o00. This solution is called the principal solution (see, e.g.,
Coppel 1971). In this spirit, C'is the principal solution of the Matrix Differential Equation
(3.7). Note however that it is not entirely clear that C'is the only solution of (3.7) satisfying
lim;_, 7 cmin(s) = +o00 since (3.7) is not a Riccati matrix differential equation.

By Theorem 3.6, we also obtain the existence of the limits of the optimal strategy:
£ =E7(1,x) = Jim £°(, 1, x) = AT C(t)x,
(3.9) =
n*i=n*t, x) = llim n*(, t, x) = IC()C(t)x.

It turns out that u* := (¢*, n*) is an admissible liquidation strategy, in particular that it
satisfies the liquidation constraint

lim X*(s)=0 for X*(s):= X" (s).

s—>T—

THEOREM 3.8. Let t € [0, T), x € R" and u* = (§*, n*) for &* and n* as in (3.9). Then
u* € Az, x).

We are now ready to present the main result of this paper: the solution of the Opti-
mization Problem (OPT).

THEOREM 3.9. The value function of the Optimization Problem (OPT) is given by

v(t, x) = x" C(f)x

forallt €0, T), x e R" and

. 0 ifx=0
lim v(s, x) =
s—>T— 400 else.
The P ® A - almost surely unique optimal strategy is given by u* = (§*,n*) as in (3.9) .

4. PROPERTIES OF THE VALUE FUNCTION AND THE
OPTIMAL STRATEGY

The characterization of the solution of the Optimization Problem (OPT) enables us to
analyze the properties of the optimal strategy and the value function in detail.'> For
single-asset liquidation (n = 1) the Initial Value Problem (3.1) can be solved in closed
form as the differential equation is a scalar Riccati equation with constant coefficients.

I3We limit the analysis to  the Optimization Problem (OPT). Most of the properties transfer directly to
the Optimization Problem (OPT) with the same or similar proofs.
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This allows us to prove monotonicity properties of the value function and the optimal
strategy in Section 4.1. In Section 4.2, we discuss the multi-asset case by analyzing a
portfolio of two assets. Although a closed form solution of the Initial Value Problem
(3.1) is not known in general for n > 2, it is possible to derive analytical results about
the dependence of the value function and the optimal strategy on the model parameters,
in particular on the correlation of the assets. We illustrate that overly simple adjust-
ments of existing trading algorithms for optimal liquidation without dark pools can have
undesirable properties. The proofs of the results of this section are presented in Section 6.

4.1. Single-Asset Liquidation
We let n = 1 and set 6 = 6. The solution of the Initial Value Problem (3.1) is given by

A6

Cl, )= % coth (Z(T— 1)+ K(l)) -5

where

2

~+0 ~ / 4aX
D)= th | 4~ 0= ,/024+ ——
k(l) := arco ( 5 ) + A

for 6 >0 or X >0 and C(, 1) = Tf;A for 6 = aX = 0. In order to highlight the
[

dependence of the value function on the parameters 6, A, and « X, we define, for example,

Af 6 A6
coth(z(T—t)>—2 if6 >0oraXx >0

C(1:0) = C(0) = lim C(L, 1) = 2

—00 A
- ifo =aX =0,
T—1

in particular
>
VaZ A coth (,/"‘A(T— z)) ifas > 0
C(t;0) =
A .
L ifas =0,

T—1t

We will apply similar notations throughout Section 4 to make the dependence of other
model components (such as the optimal strategy) on the respective parameters explicit
whenever this clarifies the exposition. For 6§ = 0, we obtain the special case of optimal
liquidation without dark pool, see Almgren and Chriss (2001) for the discrete-time case
and Schied et al. (2010) for the continuous-time version.

No transaction costs must be paid in the dark pool; intuitively, the investor should
hence try to liquidate as much as possible in the dark pool. Indeed, we have

n*(t, x;0) = C(t;0)C(1;0)x = x
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FIGURE 4.1. The left and the middle picture show optimal trading trajectories for a
risk neutral, respectively, a risk averse trader. The thick solid lines denote the optimal
trading trajectory with dark pool in the scenario where the dark pool order is executed
at time 7. The dotted lines denote the scenario where the dark pool order is not executed
during the entire trading horizon and the thin solid lines refer to the expected asset
positions. The dashed lines denote optimal liquidation without dark pools. The right
picture shows the dependence of the value function (solid line), the risk costs (dashed
line), and the impact costs (dotted line) on the dark pool execution intensity 6. x = 1,
T=1, A =1, 0 =4 (left and middle picture), respectively, 6 € (0, 6) (right picture)
and « = 6, ¥ = | (middle and right picture).

for & > 0 by Theorem 3.9, that is, it is optimal to always place the full remaining asset
position in the dark pool;'® note that the execution of the dark pool order immediately
stops the trading activity by the linearity of the optimal strategy in the position.

In Section 4.1.1, we discuss the dependence of the optimal strategy and the value
function on 6. Subsequently, we analyze the dependence on the price impact A and the
risk parameter ¢ X in Section 4.1.2.

4.1.1. Dependence on®. We expect it to be optimal to slow down trading in the primary
venue initially as the trader hopes to trade cheaper in the dark pool. This intuition is
confirmed by Proposition 4.1 (ii) and (iii) below. In order to state the property rigorously,
we first denote the optimal trading trajectory until execution in the dark pool by X(-; 6),
that is, X is the solution of the linear initial value problem X' = —&*(-, X:0), X(0) = x,
where x is the initial asset position at time zero. Then for 7 € [0, T),

" C(s; inh (5(7—1) gt
0 o[ 0T ),
sin 3

We obtain the following monotonicity properties. For simplicity of exposition we assume
aX > 0. Similar results hold for the simpler case « X = 0 (cf. also the left picture of
Figure 4.1).

PROPOSITION 4.1.

(i) Fortel0,T), C(t;0) is strictly decreasing in 6.
(ii) For x> 0andt e (0, T), £*(t, x;0) is strictly decreasing in 6.

16We want to remark that this property is sensitive to the assumption that P is a martingale (Assumption
2.1 (i)). If, for example, the investor holds a long position in the asset and P has a positive drift, she should
be reluctant to sell her entire position too early. Therefore, we expect that a drift changes this property.
Similarly, if adverse selection is included into the model, the property n*(#, x) = x does not hold; this was
shown by Kratz (2013).
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(iii) For x > 0andt € (0, T), X(t;0) is strictly increasing in 6.
(iv) For x>0 and t € (0, T), the expected asset position if the optimal strategy is
applied, B[ X*(t; 0)], is strictly decreasing in 6.
(v) ForaX > 0, the risk costs a’Z - E[fOT X*(t;0)*dt] are strictly decreasing in 0.
(vi) The impact costs A - E[fOT £5(t, X*(1;0);0)°dt] are strictly decreasing in 6.

Let us shortly comment on Proposition 4.1. The fact that the overall costs are decreas-
ing in 6 (part (i)) is quite intuitive and can be deduced directly from the definition of
the cost functional J. Proposition 4.1 (iv) states that the introduction of a dark pool de-
creases the expected asset position despite slower initial trading in the primary exchange
(parts (ii) and (iii)). Parts (v) and (vi) of Proposition 4.1 confirm that the introduction of
the dark pool decreases both the impact costs component and the risk costs component
of the value function.!”

We illustrate these properties in Figure 4.1. In the left picture, we consider a risk neutral
investor and in the middle picture a risk averse investor. The optimal trading trajectories
for trading with dark pool are displayed by the thick solid lines in these pictures. In the
displayed scenario the dark pool order is executed at time t. After execution in the dark
pool, the liquidation task is finished. The dotted lines denote the scenario where the
dark pool order is not executed during the entire trading horizon and the thin solid lines
refer to the expected asset positions. We contrast the optimal strategy with dark pool by
the optimal strategy without dark pool (dashed lines). As shown in Proposition 4.1, the
dark pool slows down trading in the primary venue initially. Nevertheless, the expected
position is smaller than the trading trajectory without dark pool. The right picture
illustrates the dependence of the value function (solid line) and the two cost components
(risk costs: dashed line; impact costs: dotted line) on the dark pool execution intensity 6.
As proven in Proposition 4.1 (i) respectively (v) and (iv), both the overall costs and the
cost components are decreasing in 6.

4.1.2. Dependence on A and oX. It follows directly from the definition of the cost
functional J that the value function is strictly increasing both in the impact costs pa-
rameter A and in the risk costs parameter «X. For the optimal strategy, impact costs
and risk costs have conflicting influences: while larger impact costs yield a reduction of
the trading intensity, larger risk costs yield faster trading (cf. also the difference of the
left and the middle picture of Figure 4.1). We summarize these findings in the following
proposition.

PROPOSITION 4.2.

(i) Fortel0,T), C(t; A, aX) is strictly increasing in A and in o X.
(ii) Lett €[0, T) and x > 0 be fixed. Then £*(t, x; A) is strictly decreasing in A. Con-
sequently, X(t; A) is strictly increasing in A for t € (0, T).
(iii) Let t €0, T) and x > 0 be fixed. Then £*(t, x;aX) is strictly increasing in 2.
Consequently, X(t;aX) is strictly decreasing in oS for t € (0, T).

7In the discrete-time setting of Kratz and Schéneborn (2014) the risk costs (but not the impact costs) are
increasing for small 6. Also in discrete time, the overall costs are always decreasing in 6; hence for small 6,
the increase in risk costs is outweighed by the decrease in impact costs. If the lengths of the trading periods
tend to zero, the effect disappears (see Kratz 2011, remark 2.6.4); the reason for the increasing risk costs
in discrete time is hence the limited flexibility of the trader due to long trading intervals where she cannot
trade.
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4.2. Portfolio Liquidation

If a risk averse investor has to liquidate a portfolio of multiple assets (n > 2), then
correlation between the assets comes into play. Depending on whether the portfolio is
well (poorly) balanced, it is intuitively optimal to place orders in the dark pool which are
smaller (larger) than the remaining portfolio position. In the first case, the risk costs of
the portfolio are small and therefore the trader will not risk to lose her balanced position
by the full execution of her dark pool order for only one of the assets; hence her orders
are smaller than the remainder of the position. In the second case, it might be optimal to
place orders in the dark pool which are larger than the remainder of the position for risk
mitigation reasons. This illustration suggests that overly simple adjustments of existing
trading algorithms for optimal liquidation without dark pools can have undesirable
results.

In Section 4.2.1, we verify the above intuition by analytical results about the depen-
dence of the value function and the optimal strategy on the correlation of a portfolio of
two assets; we then deduce the general structure of the optimal strategy dependent on
whether the portfolio is well or poorly balanced. We also discuss the dependence of the
value function and the optimal strategy on the price impact parameter and the execution
intensities in Section 4.2.2 and 4.2.3, respectively.

As a prerequisite, we introduce a characterization of the optimal dark pool order
which exploits that the jump times of the Poisson processes are almost surely distinct.
Intuitively, an execution of the optimal dark pool order for asset i should bring the
position in asset 7 to its optimal value given unchanged positions in all other assets j # i.
The following proposition confirms this intuition (see also Naujokat and Westray 2011
for a similar result).

PROPOSITION 4.3. Let t € [0, T], x € R" be the portfolio position at time t and i =
1,...,n. Then,

v(t, x — ni(t, X)e;) = minv(¢, x — ne;).
nelR

4.2.1. Dependence on Correlation. We will see that dark pool trading is sensitive to the
correlation of price increments. In the following, we discuss the case n = 2.'% In order to
simplify the exposition, we assume that there is no cross asset price impact:'’

M 0 ol 010
(4.2) A=(" o= (" P,
0 A pO102 0y

For the purposes of this section, we assume that the variances o1 and o of the two assets
as well as the risk aversion parameter « are strictly positive.

If the correlation of the two assets is positive (o > 0), a portfolio consisting of a long
position in one asset and a short position in the other asset is more desirable than long
positions (or short positions) in both assets; in the former case, a part of the risk of each

81f n > 2, the situation is more complicated: positive correlation is not transitive in general. Hence, we
cannot use Definition 4.4 below for the characterization of well versus poorly diversified portfolios. If the
correlations of the price processes satisfy transitivity, some of the results can be generalized.

19Cross price impact and correlation can have conflicting influences on the value function and the optimal
strategy. We discuss cross asset impact at the end of Section 4.2.2.
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FIGURE 4.2. Dependence of the value function (left picture), the optimal trading
intensity for the second asset (middle picture), and the optimal dark pool order for the
second asset (right picture) on the correlation p. x; = =1, T=1,A; =3, 1, = 0.2,
91 =0.5,92 =5,0l =4, andm =07 = 1.

asset is hedged by the other asset. Conversely, if p < 0, it is more desirable to have long
(or short) positions in both assets.

DEFINITION 4.4. A portfolio x = (x1, )7 (x1, x» # 0) is well diversified if either the
signs of the positions are equal (sgn(x;) = sgn(x»)) and p < 0 or if the signs of the
positions are different and p > 0. Otherwise, the portfolio is poorly diversified.

PROPOSITION 4.5. Let t € [0, T) and xi, xo # 0. Then v(z, (x;, x2)T) < v(t, (x1, —x)7)
if and only if the portfolio x is well diversified.

We can further specify the dependence of the value function on the correlation if the
portfolio is well diversified.

PROPOSITION 4.6. Let t € [0, T) and x be well diversified. Then v(t, x) is strictly decreas-
ing in |p|.

The left picture of Figure 4.2 illustrates the dependence of the value function on the
correlation p for a portfolio, that is, long in both assets. For p < 0, this portfolio is
well diversified and the value function is increasing in p (i.c., decreasing in |p|) in line
with Proposition 4.6. For p > 0, the portfolio is poorly diversified. This leads to elevated
liquidation costs for small positive p. For large positive p, the increased risk costs of
the current portfolio are outweighed by the (projected) smaller risk costs of a future
well diversified portfolio (e.g., after the execution of an order in the dark pool; cf. also
Proposition 4.8 (ii) below). The opportunity of risk reduction results in a decrease of the
value function for large values of p in the displayed example.

We have the following symmetry and monotonicity properties for the entries of the
value function matrix C.

PROPOSITION 4.7. Let t € [0, T) and denote the entries of the value function matrix by
cij(tip) i, j=1,2

(1) cra(t;p), 22(t50) >0 and 11t p) = cralt;—p),  c22(t;p) = c22(t;—p),
sgn(c12(7; p)) = sgn(p) and 1 2(t; p) = —c12(1; —p).

(ii) c1.1(t; p) and cy5(t; p) are strictly increasing in p on [—1, 0) and strictly decreasing
in p on (0, 1]. ¢1.2(2; p) is increasing in p on [—1, 1].

The risk mitigation opportunity created by a strong correlation of the price incre-
ments becomes apparent again in Proposition 4.7. Liquidating a single-asset position
x = (x1,0)" results in the cost v(7, (x, 0)) = ¢1,1(#; p)x7, which exhibits a strict local max-
imum at p = 0 and decreases as the correlation between the two assets becomes stronger
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FIGURE 4.3. Evolution of a portfolio consisting of two highly correlated stocks over
time. The left picture illustrates a poorly diversified portfolio, the right picture a well-
diversified portfolio. In both pictures, thin lines are used for the less liquid first stock
and thick lines for the more liquid second stock. Dashed lines correspond to trading
without the dark pool and solid lines correspond to a realization of the liquidation
process using the dark pool, where dark pool orders for the second stock are executed
at times 7; and 7, and for the first stock at time t3. Dotted lines correspond to the
position which the investor aims to reach by her dark pool order for the respective
stock. x; = 1, x; = 1 (left picture), x, = —1 (right picture), 7 =1, 6; = 0.5, 6, = 3,
)\.] =3,)\.2=0.2,0l=4,0'] =07 = 1,andp=0.9.

(irrespective of the sign of the correlation). This implies in particular that it is optimal
for the investor to trade in both assets (unless p = 0) even if the current position in one
asset is zero.

Proposition 4.5 suggests that an optimal liquidation strategy never changes the sign
of the asset positions of a well-diversified portfolio and always seeks to turn a poorly
diversified portfolio into a well-diversified portfolio. The following proposition confirms
this conjecture.

PROPOSITION 4.8. Let t € [0, T) and x € R? be the portfolio position at time t.

(i) If xiswell diversified, then X*(s)is well diversified for all s € [t, T) withsgn(X}(s)) =
sgn(x;) fori =1, 2.

(ii) If x is poorly diversified, then sgn(X;(s—) — ni(s, X*(s—))) # sgn(x;) for s € [t, 1),
where

T = inf{s > #|sgn(X7(s)) # sgn(x;) or X;(s) =0 for somei =1,2} AT >t a.s.

By Proposition 4.8, the investor trades in both assets during the entire trading horizon
[0, T if the portfolio is well diversified. If the portfolio is poorly diversified the execution
of the dark pool order in one of the assets a/ways changes the sign of the position. If dark
pool orders are never executed, it can be optimal to decrease the risk costs by changing
the sign of the position in one of the assets by only trading at the exchange (as it is the
case in the numerical example underlying the left picture of Figure 4.3); in general, this
is not the case.”’

20Consider, e.g., a portfolio where x; = x», A1 = A2, 01 = 02, and 6; = 6. Then the optimal trading
intensities for the two assets must be equal until a dark pool order is executed. In particular, if the orders
in the dark pool are never executed, both positions must become zero at the same time after which further
trading is not optimal.
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FIGURE 4.4. Dependence of the optimal trading intensity for the first asset on A; €
(0.005, 0.5) for a well-diversified portfolio x with x; = 0.7 and different positions in
the second asset: x, = —0.7 (left picture), x, = —1 (middle picture), and x, = —0.81
(right picture). T=1, A, =1,0, =06, =1, =4,01 =0, = 1,and p = 0.9.

In the following, we specify the dependence of the optimal strategy on p. By Theorem
3.9, we have

E1(1, %) = 5-(cri(1; 0)x1 + ¢12(8; p)x2),

(4.3) ) 1
£5(t, x) = 5 (c22(t; p)x2 + €1.2(8; p)X2),
t: t:
(4.4 w0 = x+ D20 ) =y 22ER)
c1,1(t; p) - c2.2(; p)

PROPOSITION 4.9. Lett €[0, T), x = (x1, %), x1, %0 > 0, and i =1, 2.

(i) ni(t, x) is strictly increasing in p for p € [—1, 1].
(ii) &(t, x) is strictly increasing in p for p € [—1,0).

Analogue results hold for x;, x, < 0 and sgn(x) # sgn(xy).

For a well-diversified portfolio, the profit from diversification is increasing in |p|
(cf. Proposition 4.6). Therefore, the investor decreases her trading activity both at the
exchange and in the dark pool for larger p. For a poorly diversified portfolio, this is not
necessarily the case (cf. the left picture of Figure 4.2 and the corresponding discussion); in
contrast to the optimal dark pool orders, the trader might decrease her trading intensity
for large positive p in order to save price impact costs while waiting for the execution of
an order in the dark pool (which yields a well-diversified position by Proposition 4.8 (ii)).
We illustrate the dependence of u* on p in the middle and the right picture of Figure 4.2.
In the displayed case, the trading intensity of the second asset is not increasing in p if x is
poorly diversified (i.e., p > 0). On the other hand, the optimal dark pool order is strictly
increasing for p € [—1, 1]. The symmetry of the graph in the right picture follows directly
from the symmetries of ¢}, and ¢, 5. If p = 0, the optimal strategies for the two assets
are independent and follow from the formulae of Section 4.1; in particular, the optimal
dark pool order equals x, = 1.

We deduce the general structure of the optimal strategy for initial positions xj, x, > 0
from the above results. If x is poorly diversified (o > 0), we have &(z, x), n;(¢, x) > 0
by equations (4.3) and (4.4); hence it is optimal to decrease the position. This is not
necessarily the case for a well diversified portfolio (o < 0); in this case both &;(¢, x) and
n;(¢, x) can be negative as ¢ 2(¢; p) < 0 (cf. also the middle picture of Figure 4.4 below).
For the first asset, this is the case if and only if x; < — :182 ; x». It can hence be optimal
to increase the position in order to further reduce the risk costs of the portfolio. Note
that as sgn(§;(z, x)) = sgn(n;(z, x)) the direction of trading in the dark pool and at the




518 P. KRATZ AND T. SCHONEBORN

primary exchange is always the same. Furthermore, it can be optimal to neither trade at
the exchange nor in the dark pool (in the first asset) at time 7 if x; = — E:ff;ﬁ ; 5.

As the execution of an order in the dark pool balances the trade-off of price impact
costs against risk costs, it should intuitively never be optimal to increase a positive
position or to decrease a negative position once the dark pool order of one of the assets

has been executed. The following proposition confirms this conjecture.

PROPOSITION 4.10. Let t € [0, T), x € R? be the portfolio position at time t and | be
the first jump time of w. Then for alls > t;,i =1, 2,

sgn(&i(s, X*(s—))) = sgn(ni(s, X*(s—))) = sgn(X;(s—)) or
§i(s, X*(s—) = nils, X*(s—)) = 0.

We close the section by illustrating the structure of the optimal strategy and its de-
pendence on p by a numerical example. To this end, we consider two strongly positively
correlated assets with A; = 3, A, = 0.2, that is, the second asset is more liquid than the
first asset. We also model the dark pool in such a way that the execution of orders for
the second asset is more probable than for the first asset: 8; = 0.5, #, = 3.2! We consider
a poorly diversified portfolio x = (1, 1)T and a well-diversified portfolio x = (1, —1)" of
the two stocks.

Figure 4.3 shows the evolution of the two portfolios if a risk averse investor applies
the optimal strategy. The left picture corresponds to the poorly diversified portfolio, the
right one to the well-diversified portfolio. In both cases, thin lines are used for the first
stock and thick lines for the second. Dashed lines correspond to trading without the
dark pool and the solid lines correspond to a realization of the liquidation process using
the dark pool, where the dark pool orders for the second stock are executed at times 1
and 1, and for the first stock only at time 3, that is, dark pool orders for the more liquid
stock are executed twice before any execution in the less liquid stock takes place. Dotted
lines correspond to the position which the investor aims to reach by her dark pool order
for the respective stock (cf. Proposition 4.3).

For the poorly diversified portfolio, the trader tries to improve her risky position by
trading out of the second stock (cf. Proposition 4.8 (ii) and the subsequent discussion).
For this stock, trading in the primary venue is less expensive and being executed in the
dark pool is more probable. For the well-diversified portfolio, the portfolio position is
decreasing almost linearly in time in all cases. In addition, orders in the dark pool are very
large for the poorly diversified portfolio and comparatively small for the well diversified
portfolio, in line with Proposition 4.8. The reason is that dark pool orders are such that
either the risk costs are decreased significantly by an execution (in the poorly diversified
case) or they are only slightly increased (in the well-diversified case). Note that both for
the poorly and for the well-diversified portfolio, these effects are stronger for the liquid
stock; for the illiquid stock, savings in price impact costs outweigh savings in risk costs.

4.2.2. Dependence on Price Impact. In this section, we discuss the dependence of the
value function and the optimal strategy on the price impact and on the cross price impact.
It follows directly from the definition of the cost functional J that the value function is

210ur choice of the parameters reflects the intuition that the asset which is more liquid at the exchange
(smaller 1) is also more liquid in the dark pool (larger 6). Theoretical findings of Ye (2013) support this
choice. However, we are not aware of any empirical evidence for this; in some cases, the opposite parameter
choice can also be plausible.
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increasing in the price impact matrix A in the sense of Notation 3.1 (i); in particular, it is
increasing in the diagonal elements of A. On the other hand, the increase of v is in some
sense bounded by the increase of A.

ProPOSITION 4.11. Let t € [0, T) and x € R".

(i) v(t, x) is increasing in A.
(ii) Let A =diag(x;,;j=1,...,n). Fori=1,...,n, w is decreasing in A;.

The optimal trading strategy does not need to be monotone in the price impact
parameter since risk mitigation and liquidation can be conflicting desires. We illustrate
this situation in Figure 4.4 by considering three different well diversified portfolios. In
the first case (x; = 0.7, x, = —0.7; left picture) further risk mitigation is not optimal;
the trading intensity is decreasing in the price impact. In the second case (x; = 0.7,
x; = —1.1; middle picture) it is profitable to increase the position for small price impact
in order to reach a position with even less risk costs; the optimal trading intensity is
increasing and further risk mitigation is only profitable for small enough A;. In the third
case (x; = 0.7, x, = —0.81; right picture) the optimal intensity is increasing for very small
A1 and then decreasing; the conflict apparent in the left and the middle picture destroys
the monotonicity in this case.

We close the section by analyzing the cross asset price impact A > in the price impact
matrix

Mo A
A= ( : 1’2) for 0 < [Aja] < /Aha

A2 A2

We first consider the case sgn(;2) = sgn(p).>> We obtain the following analogs of Propo-
sitions 4.5 and 4.8 (ii).

PROPOSITION 4.12. Let t € [0, T), sgn(r;2) = sgn(p) and x;, xo # 0.

(i) v(t,(x1, x)") < v(t, (x1, —=x2) ") if and only if the portfolio x is well diversified.?
(ii) If x is poorly diversified, then sgn(X;(s—) — ni (s, X*(s—))) # sgn(x;) for s € [t, T),
where

7 = inf{s > #|sgn(X;(s)) # sgn(x;) or X;(s) =0 for somei =1,2} AT > 1t a.s.

(iii) If x is well diversified, then sgn(X;(s—) — ni(s, X*(s—))) = sgn(x;) for s € [t, ),
where t is as above.

For well-diversified portfolios, we can recover only a part of Proposition 4.8 (i): by
(iii), it is not optimal to change the sign of the position by placing oversized orders in the
dark pool. However, it can be optimal to turn a well-diversified portfolio into a poorly
diversified portfolio by trading at the primary exchange. We illustrate this in the left

22This case is more intuitive than the converse: if the assets are positively correlated, buying in the first
asset should rather increase than decrease the price of the second asset.

23Similarly as before (cf. Definition 4.4), we call a portfolio x = (x1, x2) (x1, x2 # 0) well diversified if
either the signs of the positions are equal (sgn(x;) = sgn(x»)) and p, 12 < 0 or if the signs of the positions
are different and p, 11 » > 0. Otherwise, the portfolio is poorly diversified.
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FIGURE 4.5. The left picture illustrates the dependence of the optimal trading intensity
on X € (0,0.7) for a portfolio with x; = 0, x, = 1. The solid line refers to the first as-
set, the dashed line to the second asset. The middle picture illustrates the dependence
of the optimal dark pool order on A, € (—0.7,0) for a portfolio x; =1, x» = —1.
In both pictures, T=1,A\; = A =a =0y =0, =1,0; =06, =3 and p = 0.2; in par-
ticular, sgn(p) = sgn(x; ) for the left picture and sgn(p) # sgn(A;») for the middle
picture. The right picture illustrates the dependence of the optimal trading intensity
on 6; € (0, 10) for a well diversified portfolio x (x; = 0.25, x, = —1, p = 0.9; solid
line) and a poorly diversified portfolio X (X, = xj, X» = 1; dashed line). A >, = 0; the
remaining parameters are as above.

picture of Figure 4.5. In the displayed scenario, the trader holds a positive position in
the second asset only. The trading intensity of the first asset is denoted by the solid line.
If A1, = 0, it is optimal to sell stocks in the first asset which is positively correlated to
the second asset (cf. the results of Section 4.2.1, in particular the discussion following
Proposition 4.7). If A » increases, it becomes profitable to buy stocks in the first asset: as
the cross price impact is positive, this allows the trader to increase her trading intensity
in the second asset (dashed line) without increasing the overall impact costs too much.
In parallel, the trader places a sell order for the first asset in the dark pool as she does
not want to sell the stocks at the exchange again (which would result in additional price
impact costs due to the sign of 11 7).

The case sgn(A; ») # sgn(p) (cf. Footnote 22) is more complicated. In this case, it can
be optimal to change the sign of a well diversified position (in the sense of Definition 4.4)
by placing oversized orders in the dark pool; for large cross price impact, the savings
in impact costs resulting from the change of the position can outweigh the increase risk
costs. We illustrate this by a numerical example in the middle picture of Figure 4.5.

4.2.3. Dependence on the Execution Intensities. We conclude this section by analyzing
the dependence of the value function and the optimal strategy on dark pool liquidity
(more precisely on the intensities of the Poisson process 7). Similarly as in the single-asset
case (cf. Proposition 4.1 (i)), the costs are decreasing in the intensities 6;.

PRrROPOSITION 4.13. Lett € [0, T), x e R andi =1, ...,n. Thenv(t, x;0;) is decreasing
in 91‘.

The same trade-offs that can cause a nonmonotone dependence of the optimal strategy
on the price impact parameters can also give rise to a nonmonotone dependence on the
dark pool liquidity parameters 6;. We illustrate the dependence of the optimal trading
intensity on 6, for a poorly (dashed line) and a well diversified portfolio (solid line) in
the right picture of Figure 4.5.
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5. PROOFS OF THE MAIN RESULTS
5.1. Proof of Theorem 3.2

For n > 2, the second summand in the matrix differential equation CT CC'is in general
not linear (or quadratic), and (3.1) is not a Riccati matrix differential equation. Further-
more, a closed form solution for the corresponding initial value problem is not known,
and the existing theory about Riccati matrix differential equations is not applicable
directly.

It turns out that appropriate upper and lower bounds for the nonlinear term CT CC
transform to lower and upper bounds (P respectively Q) for the solution of the Matrix
Initial Value Problem (3.1) and yield existence and positive definiteness of the solution
on the whole interval (—oo, 7] (Theorem 3.2). To this end, we require a version of a
well-known comparison result for matrix Riccati differential equations, which we state in
Appendix A. The main step is thus to obtain adequate matrix inequalities which enable
us to transfer these results to the Initial Value Problem (3.1).

For C > 0, wehave 0 < CCC. The desired upper bound of CCCis a direct consequence
of the matrix inequality stated in the following result.

PRrOPOSITION 5.1. Let C = (c; ;)i j=1...n € R"" be a positive definite matrix and 6; > 0,
i=1,...,n. Then

(5.1) C < odiag (2) —60,

where 6 :=0(n) =Y ", 6;.
Proof. We prove the inequality by induction on #. It is clear for n = 1 with equality in

(5.1). Let now n > 1 and C = (¢; ;)i j=1....nt1 € ROFDXOHD be positive definite. Define
C, € R"" and ¢ € R” such that

C, c
c=| "7 :
c Cn+l,n+1

Forz=(x, )" e R" xR, z # 0, we have

2TCz=x"Cux+2x" ¢y + Cryt i1 V2

leag( ) z = x'diag (c, ') x4 Sl
0; 9/1+l

l

By abuse of notation, dlag((’ t)is used both for the diagonal n x n-matrix with 4, ..., %=
in the diagonal and for the respectlve diagonal (n 4+ 1) x (n 4+ 1) matrix. Which one we

refer to is always clear from the context. We compute

T (9(n + 1)diag <‘9> - c) z=xT (O(n)diag (‘;) - c,1> X7

O(n
(5.2) + 0,41x" diag ( > x—2x"cy+ ( )cn+1 w1 V2
9[ 9 +1
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The first summand in equation (5.2) is nonnegative by the induction hypothesis. The
remainder equals

X dia G c ' diag [ 1) (x - dia G c
9n+l & Cii Y Vl+1 & 01 0n+1 g Cii Y

o
oy () )
—c ——%c¢|y,

n+1 9n+l

+ | Cht1nt1

Cii

where the first summand is nonnegative as C, (and therefore diag (5*)) is positive definite
and 6, > 0. We have (see, e.g., the book by Horn and Johnson 1985 corollary 7.7.4%)

0i -1
(5.3) 0< %dlag (c, l) <C,

by the induction hypothesis. Moreover

Inxn _C,Zlc Cn 0
¢ =\.T T -1
0 1 c Crring1 —c C, ' c

and hence
detC
5.4 gl — ¢ Crle = 0.
(5.4 Cn+ln+l —C G C det C, >
Finally,
1 . 0; (18) 19
Cn+l,n4+1 — 7Cleag — ) C = Cptlnt+l — CTC, C(>)0
0(n) Cii
finishing the proof. O

Applications of Horn and Johnson (1985), corollary 7.7.4 (cf. Footnote 24 again), imply
the desired bound for CCC. In addition, we obtain two elementary matrix inequalities.

COROLLARY 5.2. Let C>0and6; >0,i =1, ...,n. Then

(5.5) ccc=oc,
C <ndiag(c;;) and C<tr(C)l.

The Matrix Inequality (5.5) enables us to apply Theorem B.1 to the Matrix Initial
Value Problem (3.1) such that we can prove existence of a solution C of (3.1) on the
whole interval (—oo, T] and at the same time construct upper and lower bounds for C
via the solutions of the initial value problems in (3.4); these are given explicitly by

(5.6) P,y =pl,0l, O 1)=q( DI,

24For matrices 4, Bwith0 < 4 < B, wehave 0 < B~! < 471,
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where

62 02 0
(57) p(l, t) = Z + Oldmin coth Z + admin(T_ [) + Kl(l) - E,

(5.8) (L, 1) := Jadme coth (,/admax(T —)+ Kz(z))

for 0 4+ adyin > 0, respectively, adyax > 0 with

1 + 0 /
k1(l) := arcoth e 2| 0, «»(/) := arcoth (M) -0

/ % + admin kY% admax

(5.9) P, 1) =

and

. oq(l )=

T —t+ o T— 1+t

for 6 = adny, = 0, respectively, adn,x = 0. Note also that 0 < p(/, 1), g(/, t) < +oo for
all t € (—o0, T].

Proof of Theorem 3.2. Let C(/, t) be a solution of (3.1) on some interval (#,, T7]; note
that there exists a local solution by the Picard-Lindelof theorem. The symmetry of A, ¥
and the initial value C(/, T) = /I imply that C(/, ¢) is symmetric on (¢, T].

Let now P := A P for P asin (5.6). Then P(l, t) solves P’ = PA~'P + 0 P — admin A,
P(T)= —A on (=00, T]. As P >0 and P commutes with A, we have P(/, ) > 0.

Amax

Assume that

(5.10) {t € (11, T]| C({, t) is not positive definite} # @

and define t := sup{t € (#;, T]| C(l, ?) is not positive definite}. As C(/, T) =/1 > 0 and
C(l, ) is continuous, there exists an € > 0 sucﬂh that C(/,t) > 0 for t € (T — ¢, T] and
thus 7 < T. We apply Theorem B.1 to P := — P and C := —C on [z, T]. We have

PUT) = A= —11=C0.T)

max
and

P=—PA'P+0OP+ adunA,

C=—CA'C+CCC+as =—CA'C+6C+ (avVADJVA + CCC —00).

Let now x € R”. Applying Corollary 5.2 to —C, we obtain

x"(av/ADVA + CCC—0C— adpin A)Xx =
axT(VA(D = dpin DVA)x + X (CCC — 0C)(1)x > 0.

As A > 0, Theorem B.1 implies C(/, 1) < P(l, r) and therefore 0 < P(/, 1) < C(l, 1) on
(z, T]. By continuity of C(/,-), we have 0 < P(/,7) < C(/, t) and thus C(/,¢) > 0 in
some neighborhood of 7, a contradiction to Assumption (5.10). Hence, C(/, ¢) is positive
definite on the whole interval (¢, T]. Applying Theorem B.1 in the same way as above
again, yields that we may choose #; = —oo and that 0 < P(/, r) < C(l, t) on (—o0, T].
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A similar argument establishes O as an upper bound by using 0 < CCC instead of
Inequality (5.5). O

5.2. Proof of Proposition 3.4
Before we begin, we introduce the following notation.
NOTATION 5.3.

(i) We denote the jump times of w by (t;)jen, where T; < tj1 (j € N) almost surely
(with the convention Ty =t ).

(ii) Given the Markovian control u*(l), the Stochastic Differential Equation (2.1) pos-
sesses a unique solution. We denote the process controlled by u*(l) by

X (1, 5) := X Os).

In order to prove admissibility of u*(/), we show that || X*(/, -)||» is bounded by using
Gronwall’s inequality pathwise inductively on the time-intervals [t; A T, 7,41 A T) and
interlacing the jumps (cf. Remark 2.4). This can be achieved by applying the upper and
lower bounds of C(/, s) from Theorem 3.2.

LEMMA 5.4. Let | > Iy for ly as in equation (3.3), t € [0, T), x € R" be the portfolio
position at time t and 0 =Y _, 0; as before. Then the following hold.

(i) Fors €|t, T),
X, )" CU, 5)X*(,5) < exp(0(s — )x' C(, t)x a.s.

(ii) There exists a constant K independent of | such that for all s € [t, T), | X*(, s)|»
< Ka.s.

Proof.
(1) Leti € N.On {r; < T}, X*(l, -) solves the initial value problem
X =-A"'CHX, Xr)=X(1)
for s € [t;, tix1 A T). Hence, as C(/) solves the Initial Value Problem (3.1),
%(X"(l, )T CU, )X (1, 5))
- a%x*(z, 9TCU )X 5) + X, s)T%C(l, X 5)

+ X, s)" C, s)% X, s)

=—X(,5)"Cl, )N'CU, )X, 5) + X (1, 5)" CU, )N~ CU, 5)X*(I, 5)
+ X', )T CU, 5)C(, 5)CU, ) X*(1, 5) —a X (I, s) T X, 5)
— X1, s)"CU, s)A™'C(, ) X*(, 5)

< 0X(L,s)"CU, )X, s)
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by Corollary 5.2 and the fact that C, A~!, ¥ > 0. By Gronwall’s inequality, this
implies
(5.11) X1, 5)"CU, $)X*(1,5) < exp(0(s — 7;))x" C(, 1)x.
Now, on {1;; < T}, there exits an (almost surely) unique j =1,...,n (cf. As-
sumption 2.2 (ii)) such that

X*(lv 'E,j+1) = X*(ls Ti+l_) - 77;(17 Tit+1, X*(L fi+1—))€j.

Let n € R. Then
(X, tip1=) — ne)) CU, tp (X, ti1—) — nej)
=X, up1=) CU t) X (L =) + e CU, Ty e
—2ne; C(L, 1) X*(, Ti1—)
= X"(, 1:[+1—)TC(I, Tt ) X (L, i1 —)

1
+ (T)\/ cj i, Tig1) — mejc(l, T 1) X7, Ti+1—)>

(e;rC(L TH—l)X*(l’ ri+1_))2a

2

¢j ;. Tiv1)
which attains its (unique) minimum in n for n = nj(l , Tirl, X*(I, ti41—)). Hence,

(X*(lv Ti+1_) - 777([’ Tit+l1s X*(L ti+l_))ej)T
CUl, )X, i1 =) = i Tir, X w1 —))e )
= Ir%iﬂgl(X*(l, Tip1—) — ney) C, T (XL, ti1—) — ne;)

and therefore

(512) X'(,t) CU ) X 1) < X 100=) CUL 1) X T —).

Using Inequalities (5.11) and (5.12) inductively, we obtain the assertion.
By Theorem 3.2, we have A < 1/p(/, s)C(l, s) and hence,
1
p(l.s5)
1
plo, s)
Kx"c(, nx

(5.13) X, ) AX (1, 5) < X1, 5)TC(l, 5)X*(U, 5)

=

X, 5)" CU, )X, s)

IA

for a constant K independent of s by (i) and the fact that p(ly) attains its min-
imum in [¢, T). The assertion follows as g(¢) := lim;_. ¢(/, t) < 400 exists (cf.
Equations (5.8) and (5.9); cf. also Lemma 5.6 below) and C(/, 1) < Amaxq(?) (cf.
Theorem 3.2). =

The bound obtained in Lemma 5.4 enables us to prove that »*(/) fulfills the moment
conditions of Definition 2.3 (ii) and hence Proposition 3.4.

Proof of Proposition 3.4. Definition 2.3 (i) and (iii) are clearly satisfied.
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Let || - ||2.» denote the matrix norm induced by the space (R”, | - [|2). Note that || - ||2.
is the spectral norm on R"*" and therefore (see, e.g., Bernstein 2005, theorem 8.4.9)

| All2.2 < || Bll2.2 for 0 < A < B. Using Theorem 3.2 and 5.4 (ii), we deduce

T T
E[/ ||s*<z,s,X*<s))||§ds}sE[/ ||A1||3“2||C<1,s)||3“2||X*(l,s)n;‘ds]

T
<E |:/ q(, s)4K4ds:| < 400
t

for K as in Lemma 5.4 (ii). Similarly,

<nC(Z s)~! by Corollary 5.2
8 8 8
k(L )

T
EU n*(, s, X*(s— ))||§dv <H{ ||C(l $) 15 1CU OIS X (U, s—)5ds
[ A8 p(l s

Kgds] < 400.

5.3. Proof of Theorem 3.5

We first require the following moment estimate for the controlled process.
LEMMA 5.5. Lett €0, T), x € R" and u € A(t). Then

T
E |: sup ||X”(s)||§] < +o00, inparticular E [/ ||X”(s)||§ds:| < +00.
t

1<s<T

Proof. Lets € [t, T]. Then by Holder’s inequality and a multidimensional version of
Jensen’s inequality (see, e.g., Kallenberg 2002, lemma 3.5) we obtain

[soa] )

(5.14) <27 <||x||§ +(s—1) / E@) 1 Adr + H f n(r)dm(r)

+ [ ()

t

| X“(s)l3 < <||x||2+

)

By Definition 2.3 (ii), it is hence sufficient to consider the last summand of Equation
(5.14). To this end, we define the compensated Poisson processes M;(s) := 7;(s) —

i =1,...,n. Wenote that Poisson distributed random variables have finite moments and
apply Ito’s isometry (note that (M;)(s) = 6;s) and Holder’s inequality to obtain

4 s s
E[ } SE[(JT,-(S)—m(t))S ( / () M) + / |n,-<r)|4dr)]

E[(m(s)—m(t))“( [( / Im(r)l4dM(V)> ]
s 275
E{(e; / Inf(r)l“a’r)}

for a constant K; independent of s by Definition 2.3 (ii), which finishes the proof. O

/ ) (r)

t

<K,‘
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Proof of Theorem 3.5. Let! > 1y, (t,x) € [0, T) x R" and u = (¢, n) € A(z). We ap-
ply Itd’s formula (see, e.g., the book by Oksendal and Sulem 2007) to the function
w(l, t, X)) = X“(t)T CU, 1) X*(1):

ow

T
w(l, t,x)=w(, T, X(T)) +/ Vow(l, s, X“(s)E(s) — g(l, s, X“(s))ds

n

T
+f (Z w(l,s, X(s—))—w(,s, X“(s—) — n,—(s)e,—)) ;i (ds)

i=1

T
< w(l. T. X(T)) + / FX(s). E(s))ds

n

T
+/ (Z w(l, s, X*(s=)) —w(,s, X'(s—) — nf(S)ei)> mi(ds)

i=l1

i=

T/ n
(5.15) —/ ( 0:(w(l, s, X'(s—=) —w(l,s, X'(s—) — 77,-(S)e,-)> ds
! 1
T
= w . T XN+ [ 006 E6s
nooaT
+ Z/ w, s, X'(s=)) —w(l, s, X'(s=) — ni(s)e;) Mi(ds),
i=1 7!

where M; is the compensated Poisson process M;(s) := m;(s) — 6;s and Inequality (5.15)
follows from Proposition 2.5. Furthermore, we have (pathwise) equality in (5.15) if and
onlyifu =u*A-a.s.

Taking expectations on both sides, we obtain

w(l, t,x) < J(, t, x, u)

(5.16) +iE I:/T(w(l, s, Xs=) —w(l, s, X(s—) — n,-(s)ei))]\/[,«(ds)] ,
i=1 !

with equality if and only if u = u* P® A - a.s.
It remains to show that the stochastic integrals in Inequality (5.16) are martingales.
To this end, we compute

E |;/T w(l, s, X(s=)) —w(l,s, X*(s—) — ni(s)e,-)|2ds]

T
_E [ / 2X(s=)T O, s)erni(s) — mils e (s, 1)|2ds]
T T
§E[/ 2|2X”(s—)TC(1,S)emi(S)lzdS}+]E[/ 2|ni(s)2ci.i(l»s)|2ds]

T T
(5.17) ssEU ||X“(s—)T||§||C(z,s)||%,z|ni(s)|2ds}+2E[/ |nf(s)|4|cf,f<l,s>|2ds]

t t

T 3 T 3
< 8Au (rer}ta%!ﬂl, S)2> E |:/ IIX”(S—)IlgdS:| E [/ ||77(S)||§ds]
N N t t
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T
+ 2)‘1211ax (maX Q(la S)z) E |:f ||77(S)||3d3}
selt, T] '

< 400

by Definition 2.3 (ii) and Lemma 5.5, where Inequality (5.17) follows from Holder’s
inequality. As (M;)(s) = 6;s, this finishes the proof. |

5.4. Proof of Theorem 3.6

We start by computing the limits of the functions p(/) and ¢(/) given by Equations
(5.7) and (5.8), respectively, (5.9).

LEMMA 5.6. Lett € [0, T) and p(I) and q(I) as in Equations (5.7) and (5.8 ), respectively,
(5.9). Then

Jim p(/,-) = p(), lim g(Z,) = q(),

where p and q are given by

02 92 0
(5.18) p(1) =y 5+ aduin coth |\ = + adin( T = 1) | = 7.

(5.19) (1) i= /adax coth (w/ozdmax(T - t))

for 0 + adnin > 0, respectively, adm,x > 0 and

1
(5.20) p):=q(t) = T—7

for 60 = adyin = 0, respectively, ady,x = 0. The convergence is compact and strictly in-
creasing on [0, T). Furthermore, p(I, T), q(I, T) /' co asl — oo.

Proof. Point-wise convergence and the formulae for the limits are straightforward by
equations (5.7) and (5.8), respectively, by equation (5.9). Strict monotonicity follows from
the fact that the initial values are strictly increasing in /. Finally, compact convergence
follows from these observations by Dini’s theorem. O

Proof of Theorem 3.6.

(1) Notefirst that Theorem 3.5 implies that for fixed ¢ € (—oo, T, C(/, ?) isincreasingin
[ on (Iy, +00) for [y as in equation (3.3) in the sense of Notation 3.1 (i). The existence
of the element-wise limit of (C(l, t));~¢ follows directly from this monotonicity and
the boundedness by Ag(t)I for ¢(t) as in equation (5.19), respectively, (5.20).
Compact convergence follows by Dini’s theorem due to the monotonicity. Finally,
p(l, T) /" +o0 implies lim;_, o cpin(l, T) = +00.

(i1) The inequalities in (3.8) follow directly from Lemma 5.6 and (i). Furthermore, the
compact convergence of C(/, r) (and C(/, 1)) on [0, T) and the fact that C(/, -) solves
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the Matrix Differential Equation (3.7) implies

t
lim | (CA™'C+ CCC —aX)l,s)ds + llim C(,0)

I—00 Jo

C(t) = lim C(, 1)

t
(CA™'C+ CCC = ax)(s)ds + C(0)
0

and hence that C solves the Differential Equation (3.7) with boundary condition
limg_ 7~ cmin(s) = +o0 (as lim,_, 7_ p(s) = +00). .
5.5. Proof of Theorem 3.8
We start by proving the following bounds for X*(/) and X*.
LEMMA 5.7. Lett € [0, T) and x € R" be the portfolio position at time t.

(i) Letl > Iy forly as in equation (3.3) and s € [t, T). Then (cf. Notation 5.3 (i))

X, )T AX(, 5)

S l ;

(521) = xAxexp (—2 / 0, u)du> 90, @)

' yones PUST)

2)\'de 2
L S O @, %)
(5.22) < x"Axexp(d(s — 1)) max l_[ q(, T
SR/ W AU
S o

where p and q are as in equations (5.7) and (5.8), respectively as in (5.9).
(ii) Lets €[t, T). Then

X*(S)TAX*(S) < xTAxCXp(Q(S _ [)) l—[ q(fl a@s.,

- ) 1<7;<s (T’

where p and q are as in equations (5.18) and (5.19), respectively, as in (5.20).

Proof. We prove (i); (ii) follows by exactly the same line of reasoning with the respective
bounds. Let i € N. Observe that on {tr; < T},

387 (X, ) AX (L, 5)) = —2X*(1, )" CU, ) X1, )
< =2p(l, )X, )" AX*(, 5)
for s € [t;, tix1 A T) by Theorem 3.2. Gronwall’s inequality implies
X, )"AX (1, s) < X, v;)) T AX*(I, ;) exp (—2 /S p(l, r)dr) ,
in particular
X (tit AT) =) AX (L, (i1 A T)—)

‘L’,+1/\T
(5.23) < X'(I, )" AX*(, ;) x exp (—2/ p(, r)dr) .
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This implies (cf. Inequalities (5.12) and (5.13) in the proof of Lemma 5.4)

1
X*(l, 7:,»+1)TAX*(I, Ti+1) = 71\/*(17 Tf+1—)TC(l, Ti+1)X*(l, Ti+1—)
pU, Tis1)
_ . Tin)

5.24
(524 = ot

X*(L TH—I_)TAX*(Z’ 7:1'+1_) a.s.

Using Inequalities (5.23) and (5.24), we obtain Inequality (5.21) inductively as before.
Inequality (5.22) follows from

1 0
o D 2700
21 + 0 Amax
which is a direct consequence of Corollary B.2. O

The main step in the proof of the admissibility of «* is to show that the liquidation
constraint holds (cf. Definition 2.3 (iv)). This is (in particular) accomplished in the
following proposition.

PROPOSITION 5.8. Let t € [0, T) and x € R" be the portfolio position at time t.

(i) X*(l, -)H—of X*(*) a.s. compactly on[t, T).
[—o0 [—00

(ii) 1- 11X, T)|5— 0 a.s. and in L' and X*(I, T) — X*(T) = linTl X*(s) =0a.s.

Proof.

(1) The spectral norm || - ||2.» is equivalent to the matrix maximum norm, and there-
fore the element-wise convergence results from Theorem 3.6 (i) transfer to the
corresponding results for the spectral norm.

Lett < T’ < T.On {t; < T'}, X* and X*(/) solve the respective ordinary differ-
ential equations

X =-£X)=—-A"'CX and X =—-¢%(1,-, X\)=—-A"'CHX

on the interval [t;, t;41 A T”). We prove that the assertion follows from the contin-

uous dependence of solutions of ordinary differential equations on the right-hand

side and initial values. To this end, we first require some preliminary observations.
Fors € [t, T'] and x, y € R”, we have

1A C@x = A7 C6l < max 1)z llx =yl = Lilx =yl

(cf. Theorem 3.6 (ii)), that is, for all s € [¢, T’], £*(s, -) is Lipschitz continuous on
R”" with Lipschitz constant L = L(7T’) independent of 5. Furthermore, there exits
a constant K; > 1 such that for s € [t, T'], ||C(s)C(s)2.» < K;. We now show by
induction on i € N that for all € > 0, there exits an /; > /; such that /; > /;_; and
foralll > 1I;,s e[t,t; AT'], | X*(L,5) — X*(5)|2 < €.

The assertion is clear for i = 0. Let i > 0 and € > 0. By the induction hypothesis,
there exists /;_; > [y such that for / > /;_4,

o LT'=1)

(5.25) X i) = X (riDl2 < K
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Note that on {r;_; > T’} the induction step is trivial. We therefore fix some w €
{ti.1 < T'}. Let now [; > I;_; such that for / > [;, s < 7; A T’ (recall the uniform
convergence of (C(/, s)); on [¢, T'], Theorem 3.6 (1)),

IATICU, 5) = AT C) . < 1A 22l CU, 5) — C($)ll2

e~ LT'=D)
420 STk
and
— — €
(5.27) 1€ $)CU 5) = C6)CW)Iho < 375

for K as in Lemma 5.4 (ii). By the continuous dependence of solutions of systems
of ordinary differential equations on the right-hand side and initial values, we have
fors € [t;_1, 7; A T') (by Inequalities (5.25) and (5.26)),

e L(T'—1) e~ UT'=0) , €
X - X — e F (T =t | =
X, s, ®) (s, 0)l2 < (E 0K, +( )66(7"/_;)1(1>€ 3K’

in particular

(5.28) X (i A T) =) = X (i A T)— )”253%

We can conclude by using the Inequalities (5.27) and (5.28):
Xt AT, @) = X(1; AT, o)l
= 11X, (@) A T)=, ) = C, (@) A TYCU (@) A TYXU, (1(0) A T =, @)
=X (@) A T))=, @) + C(xi(@) A T C(wi(@) A THX (ti(@) A T =, )2
< I1X (U (m@) A T—, o) = X' (t(@) A T =, o)

<€/(3K;)=<e/3 by Inequality (43)

FIX @@ A T =, )21 CU (@) A THCU, Ti(@) A T') = Czi(w) A THC(wi(@) A T2

<e/3 by Inequality (42)

+11C(w(@) A TC(wi(@) A TN XU, (w(@) A T=, @) = X*(z:(@) A T =, o)ll2

<é€/3 by Inequality (43)

<€

as required.
(i1) For fixed w € 2, we have by Lemma 5.7 (i) that

l ( 2A‘max )2
1
x"Axexp (O(T — 1)) 2+ O ma 1_[ 9¢, )

min T—14 2 max <1 <s p(, )
2l + eA’]naX

[-1X(, T, 0|3

(529) <

>

Furthermore,

[, 7)
Hiil: < K> < 400

t<t<T
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for some constant K, independent of /; thus for almost all w € €2, there exists a
constant K3(w) such that

40, 7))
[l

AT D

1<ti(@)<T
Therefore, Inequality (5.29) implies

E[l- X0, T,0)3] =30 and - |X1 T, 0)F=30 as.
Finally, Lemma 5.7 (i) implies that Sl_i)r;l_ | X*(s)|l> = 0 a.s., finishing the proof. -

We are now able to prove that «* is indeed an admissible liquidation strategy. The main
step toward this goal is accomplished by Proposition 5.8 (ii). It remains thus to show
that »* fulfills the moment conditions in Definition 2.3 (ii).

Proof of Theorem 3.8. Definition 2.3 (i) and (iii) are clear and (iv) follows from
Proposition 5.8 (ii).
Furthermore, we have

T T
E [/ 1£(s, X*(s))||‘2‘ds:| <E [/ q(s)4||X*(s)||‘2‘ds] < 400

by Lemma 5.4 (ii) and Proposition 5.8 (i). Finally, C(s) < nC(s)~! by Corollary 5.2 and
thus, as & admlts a continuous extension on [¢, T, there exists a constant K independent
of s sucﬁu that

mdxq(S)g
mm (s)8

Using Lemma 5.4 (ii) and Proposition 5.8 (i) again, we can deduce from Inequality (5.30)
that

(5.30) ICs)C)II5, < nBICB,IICS , < <Kk.

T T _
E[ [ InGs. X*(s—)n%ds]sE[ / ||C(s)C<s)||§nms—)||§ds}<+oo.

5.6. Proof of Theorem 3.9

We can directly deduce compact convergence of the optimal trading intensity in the
primary venue from Theorem 3.6 (i) and Proposition 5.8 (i).

COROLLARY 5.9. Lett € [0, T) and x € R" be the portfolio position at time t. Then
&, -, X°(,) — &E°C, X*(")) a.s. compactly on[t, T)
asl — oo.

This enables us to finally prove the main result of the article.

Proof of Theorem 3.9. We fix t € [0, T) and x € R”. Note first that we have

(5.31) v(t, ) = lim 3(0, 1, ).
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For the converse inequality, let 4 := {w(T) = 7 (¢)} be the set of scenarios without any
dark pool execution in [0, 7] and K : (/y, +00) x € — [0, +00] be the following cost
function:

T
K(l, ) = / E* (s, X, s, ) AE* (A, s, X, 5, ®))
+aX(l. s, 0) X s, 0)ds + 1| X, T, )|I2.

ThenP[A4] > 0Oand forw € A, K(I, A) := K(/, w) is independent of the specific scenario w
almost surely. By optimality of «#*(/) (Theorem 3.5), K(/, A)is an upper bound for K(/, -)
almost surely. As lim;_. v(/, t, x) is bounded and P[4] > 0, there exists a constant
K such that for all / > [y, K(I, A) < K. By the dominated convergence theorem, this
implies

llirgo v(l,t, x) = llir?c E[K()] = ]E[llirgo K()].

By Proposition 5.8 and Corollary 5.9, the limit in the last expression exists, so Fatou’s
lemma yields

/lilgo v, t, x)
T
> E |:/ llim €, s, X1, 5))"AE (1, s, X*(I,5))

+aX(,5)" TX (I, 5))ds + llim [ X%, T)||§]

T

=FE |:/ (5*(s, X (s)TAE (s, X'(5) +aX'(s)' T Xk(s)) ds]

t
(5.32) > v(t, x).
The Inequalities (5.31) and (5.32) establish that u* solves the Optimization Problem
(QPT) and that the value function is given by v. For uniqueness, let u = (¢, 1), u =
(€,7) € A(t, x), and i € (0, 1). We define the convex combination i = (£, 7):
E(s) = p&(s) + (1 — wECs),  7i(s) = pnls) + (1 — wi(s)

for s € [t, T). Thus, X"(s) = u X*(s) + (1 — u) X"(s) and & € A(t, x). Notice that
(5.33) PRA[u#i]>0 implies PRA[E#E]>0

as else P[lim,_, 7— X"(s) # lim,_, 7_ X?(s)] > 0, a contradiction to Definition 2.3 (iv).
Hence,

T —_ —
J(t, x,u)=FE |:/ f (“g‘(r), X”(r)) dr]

T
(5.34) <E [/ wfEE), X+ 1= f (G, X)) dr}

1

= uJ(t, x,u)+ (1 — pn)J(t, x, ),
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where Inequality (5.34) follows from the convexity of f. We have equality in Inequality
(5.34) if and only if u = &1 P ® A - a.s. by the strict convexity of f in the first argument
and (5.33). O

6. PROOFS OF THE RESULTS OF SECTION 4
6.1. Proofs of the Results of Section 4.1
We first require the following elementary result.
LEMMA 6.1. Let0 <a < b, x > 0. Then

d sinh(ax) (@—b) sinh(ax)
> — > — .
dx sinh(bx) sinh(bx)

Proof. Note first that

i sinh(ax)  acosh(ax)sinh(bx) — b cosh(bx) sinh(ax)
dx sinh(bx) sinh’(bx) '

(6.1)

The result follows from elementary calculus (see Kratz 2011 for details). O

Proof of Proposition 4.1. Welett € [0, T) and compute

A6 coth (i(T— t))
2 c:0) = : S AT 4
30 20 o (9 ) 2
4sinh” [ =(T — 1)
2
A6 (cosh (g(T— t)) sinh (Z(T— t)) — g(T— 1) — sinh® <Z(T— t)))
= =
26 sinh? (i(T — t))
<0

for 0 > 0 since

cosh (i(T— z)) sinh (Z(T— t)) - g(T— 1) — sinh? (Z(T— z))

= sinh (Z(T— t)) (cosh (g(T— Z)) — sinh (Z(T— t))) — g(T— 1)

_ (1 _ exp(—ZQ(T— t))) _ %(T— <0

(note that % (1 —exp(—2x)) — x < 0 for x > 0). This establishes the first and the second
assertion directly; the third assertion follows from the first equality in equation (4.1). For
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sinh (z(T — t)) exp (—it)

62)  E[X(1;0)] = Plx(r) = 0] - X(1;0) = 4 x.

sinh (ZT)
%E[X*(t;@)] = Xé (9(7;5— d) sinh (i T) cosh (i(T - t)) exp <—Zt>
sinh? ( T)

the proof of (iv), we note first that

We compute for 6 > 0,

t . (O \ . [0 0 0T é
) sinh <2 T) sinh (2(T— t)) exp (—2t> % cosh (2 T)
X sinh (Z(T— t)) exp (—Zt))

T) cosh (i(T — t))

0
0 exp (—21) X
<—71 <(T— t) sinh (
~ 0
20sinh® [ = T
sin (2 )
o 6
— Tcosh | =T |sinh | =(T—1))) <0
2 2
by Lemma 6.1 (cf. also equation (6.1)), finishing the proof of (iv).

We have
6
inh | =(T — 1t
sin (2( )) 2

E[X*(;6)’] = Pl (1) = 0] - X(£;0) = —————x".
sinh (iT)

This term is differentiable and strictly decreasing in 6 by Lemma 6.1 (note that & is strictly
increasing in #). Thus by Fubini’s theorem,

| D

3 r a [T %
89E|: /0 X*(t;e)zdt}z / E[X*(t;0)]dt = /O QE[X*(z;e)Z]dmo,

a0 Jy
establishing (v).
Finally, we note that
. C(t;0)* - C(t;0)>
BlE* (0, X (15007 = Flr(n) = 0] < g X(156)" = < B (567

by equation (6.2). This term is differentiable and strictly decreasing in 6 as both terms
are positive and strictly increasing in 6. Similarly as before, we deduce (vi). O
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Proof of Proposition 4.2. (i) follows directly from the cost functional J. For (ii), we
compute

. cosh (i(T— t)) sinh (Z(T— t)) — g(T— 1)

0
—E&*(t; AN) = - — 0
aas M= 554 T =
sinh™ | =(T —?)
2
30 . y . . .
as ET 0. Monotonicity of X follows as in the proof of Proposition 4.1 (iii). A similar
calaﬁation yields
0
——& () >0
3 (QE)S (t;a%) >
as % > 0, finishing the proof. ]

6.2. Proofs of the Results of Section 4.2

Proof of Proposition 4.3. We have v(t, x — ne;) = (x — ne;) " C(t)(x — ne;), which can
easily be seen to be minimized by n}(z, x). (I

Proofof Proposition4.5. We prove the case xi, x» > 0, p < 0, thatis, xis well diversified.
Let u* be the optimal strategy for the initial portfolio position (x;, —x;)". For (x1, x) ",
we define the strategy u € A(z, (x1, x;)") in such a way that fori = 1,2, 5 > ¢, X/(s) > 0
and | X“(s)] = | X (s)|; this is achieved by changing the signs of the trading intensities
and by adjusting the dark pool orders appropriately if necessary. In particular, we have
& (s, X“(s))| = |&"(s, X*(s))| and both strategies yield the same impact costs. On the
other hand, the risk costs of u are strictly smaller as p < 0. Hence,

v(t, (x1, —xz)T) = J(t, (x, —xz)T, u*) > J(t, (x, xz)T, u) > v(t, (x, xz)T)

as desired. The remaining cases follow accordingly. O

Proof of Proposition 4.6. We prove the case x, x; > 0, p < p < 0and proceed similarly
as in the proof of Proposition 4.5. Let & be the optimal strategy for p. For p, we define the
strategy u € A(t, x) in such a way thatfori = 1,2,s > ¢, X*(s) > Oand | X¥(s)| = | X"(s)|.
As p < p < 0, this yields

v(t, x;p) < J(t, x,u;p) < J(t, x,u; p) = v(t, x; D).

The remaining cases follow in the same way. (]

For the proof of Proposition 4.7, we first require the following symmetry results of the
value function.

LEMMA 6.2. Lett €[0, T), x € R?, and p € [—1, 1]. Then v(t, x; p) = v(t, —x, ; p) and
v(t, (x1, )" p) = v(t, (i, —x2) 5 —p).
Proof. We have J(t,x,u)= J(t,—x, —u) and hence the first assertion fol-

lows. The second assertion follows from J(z, (x1, %) 7, (u1, u2)"; p) = J(¢, (x1, —x) T,
(ur, —u2)";—p). O
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Proof of Proposition 4.7.

(M)

(ii)

The first assertion follows directly from C(¢) > 0. The second assertion follows
from Lemma 6.2 as for i = 1,2, ¢; ;(t, p) = v(t, ;5 p) = v(t, ;5 —p) = ¢;.i(t, —p).
We directly deduce the third assertion as

i1t p) + e22(t; p) 4+ 2¢10(1, p) = v(t, (1L, 1) 5 0) = v(t, (1, =1) "5 —p)
= c1,1(t; p) + c22(t; p) — 2c1,2(8; —p)-

Finally, it follows for p < 0 (o > 0) by Proposition 4.5 that

11t p) + e2a(t; p) + 2¢12(t;0) = v(t, (1, D5 p) < (>)v(t, (1, 1) —p)
= c1.1(t; p) + c22(; p) — 2c10(2; p)

and therefore ¢ 2(2; p) < 0 (c12(¢; p) > 0).

For the monotonicity of ¢; 1(; ), we let p < p < 0 and proceed similarly as in the
proofs of Propositions 4.5 and 4.6. Let # be the optimal strategy for p. For p,
we define the strategy u € A(¢, ;) in such a way thatfori =1,2,5 > ¢, X/(s) > 0
and | X“(s)] = | X¥(s)|. As p < p < 0, this yields J(¢, e1, u; p) < J(t, ey, it; p) with
equality if and only if X‘;‘(s) = 0 a.s. However, we have & (¢, ;) = 1/Axc12(t; ) < 0
and hence X > 0 in some neighborhood of 7 with positive probability. Thus,

cri(t;p) =v(t, er;0) < J(t, e, u;p) < J(t, er, it; 0) = v(t, e1, i; p) = c1,1(¢; p).

The monotonicity of ¢; » and the case p > 0 follow by the same line of reasoning.

Before we proceed, we remark that all symmetry properties and the monotonicity
of ¢;,; and ¢, in p also hold for C(/) (I > Iy) with exactly the same proofs. We
now prove monotonicity of ¢ 2(/, t; p) (I > Ip) first; monotonicity of ¢; »(#; p) then
follows directly from the fact that lim;_, o 1 2(, £; p) = ¢1.2(¢; p). A straightforward
computation confirms that ¢ »(/) fulfills the following scalar initial value problem

3
— [t
8tcl‘2( p)
c 1, ¢ ol t
(6.3) :cl,z(l,z;p)(l’l( P el p)+91+92>—a6102,0,
M Aa
cio(l, T;0) =0

By the continuous differentiable dependence of ¢; ; on the parameter p, we can
exchange differentiation with respect to ¢ and p and obtain the following initial

value problem for 8;;2:
d oc LIS . dc
=22 np) = 2 o) S t;p) — g 5 p), =21 T:p)=0
at dp ap ap
for
11, 8 01, t;
f.tip) = cra(l, t; p) n 200, 1 p) 4040
A A
1 9ci11(, 1, 1 9cr0(l, 1
g, t;p) =00y —c12(l, ;5 p) | — ‘1.1, 5.0) +— 22, :0) ;
Al ap A op
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this implies

T T
8‘”(1 t; p) = exp </f(l 3 ,o)ds)/ g(l,r; p)exp (/ f(l,s;p)ds) dr >0

as g(/, t; p) > 0 by (i) and the monotonicity of ¢; 1(/, ¢; ) and ¢22(l, £; -).

|
Proof of Proposition 4.8.

(i) We prove the assertion for x;,x, >0 and p < 0. Let j € N. We assume that
X! (r;) > 0( =1,2) on {r; < T} (cf. Notation 5.3). We compare the initial value
problem for the controlled process on [z}, 7,41 A T) (cf. equations (4.3)) with the
case p = 0;asc;2(s; 0) < c12(5;0) = 0and 0 < ¢;;(s; p) < ¢;.i(s; 0) by Proposition
4.7, Xi(s; p) = X:(s;0) fors € [tj, Tj31 A T). For p = 0 the two components of X*
evolve independently according to the results of Section 4.1. In particular, the op-
timal asset position remains positive in [z, 7,41 A T). It follows that X} (s; p) > 0
for all s < tj41 A T and that X7 (tr;;1—) > 0 on {r;41 < T}. Applying equations
(4.4) and Proposition 4.7, we obtain on {741 < T},

Xi(tj1—) —m(rj, X'(tj41-) = _MX’;(TM—I_) >0

cr1(tjv15 0)
and the respective result for X3. The assertion now follows by induction on j. The
remaining cases follow accordmgly

(i) Weassume x|, x», p > 0. Itisclear that t > 7 a.s. The result follows from equations
(4.4) and Proposition 4.7 asfor ¢t < s <,

ni(s, X*(s)) = Xi(s) + c1.2(s; p)

——2X5(s) > X[ (s).
Cl,l(sa ,0)

O

Proof of Proposition 4.9. The assertions follow directly from equations (4.3) and (4.4)
by applying Proposition 4.7. O

For the proof of Proposition 4.10, we require the following results about the mono-
tonicity of ¢; ; and ¢; » in ¢.

LEMMA 6.3. Fori =1,2andt €[0, T), c; ;(t) is increasing in t. ¢1 »(t) is decreasing in t
if p > 0 and increasing in t if p < 0.

Proof. For fixed ! > [y, we consider the Initial Value Problem (3.1); its solution C(/) sat-
isfies C(I) > QO(l), where Q(I) solves the initial value problem Q' = 1/Aynin O> — €Omin ]
Q(T) = II (cf. Notation 3.1). As in the proof of Proposition 3.4, QO(/) can be computed
explicitly with Q(/)'(¢) > 0 for / large enough, say / > /;; in particular ¢; ;(/, 1) > 0 and
therefore ¢; ;(7) > 0.

For the monotonicity of ¢} » we assume p > 0 and consider the Initial Value Problem
(6.3) for ¢ 2(/, t). Note first that for all /, c/lqz(l, T) = —apojo; < 0. Furthermore,

cral, 1) el 1)
MM + Ao

el (1) =c)5(, 1) (

¢t ch ot
+91+92>+L’1’2(1,l‘)< 1’1( )-|— 2’2( )>

Al A2

>0 for >/,

This implies ¢ ,(/,7) <0 for / >/; and hence c|,(t) <0. The case p <0 follows
accordingly. |
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Proof of Proposition 4.10. We assume p > 0 and that the dark pool order for the first
asset is executed at time 7y, thatis, Xj(r1) = — ;:?EE; X;(71); we further assume X3(71) > 0.
We have &(r) = 0 and &5(t1) > 0. As ¢12(s)/cii(s) is decreasing in s by Lemma 6.3, we
have £5(s) > 0 and &;°(s) < 0 (in particular n3(s) > 0 and n}(t;) < 0) until the next jump
time of 7. The result follows inductively as the number of jumps is almost surely finite.
The proof for the remaining cases is analog. O

Proof of Proposition 4.11. The first assertion follows directly from the definition of the
cost functional J. For the second assertion, let A; < A;. Then

v(t, XA .. AL a
% _E / 6P+ Y LE W+ X BN ) | ds
! s j#i ! ! i
r * 2 )"j * 2 o T V(l, X5 5\1)
>E / EGY D56 + = X @) DX | ds | = ==
i t i i i i i
O

Proof of Proposition 4.12.

(1) We prove the case x, x; > 0, p < 0, that is, x is well diversified and modify the
proof of Proposition 4.5. Let u* be the optimal strategy for the initial portfolio
position (x;, —x) . For (x1, x;) ", we can define a strategy u € A(¢, (x1, x»)") with
the following properties: for s < t; (where t; is the first jump time of ),

(6.4) & =171, X < X ()],
sgn(&{ (s)) = sgn(&y (s)) = sgn(&1(s)) = sgn(&(s)),
sgn( X} (5)) = sgn(Xy (s)) = sgn(X|(s)) = sgn(X3(s)).

u needs to be defined carefully by considering all possible combinations of the
signs of the trading intensities; note that it can be necessary to change the signs
of the positions. We adjust the dark pool orders in such a way that X¥(z;) €
{y X" (1), =y X*" (1)} for some y < 1 (cf. the inequality in (6.4)). For s > 71, we
proceed similarly as before by defining &;(s) = y&/*(s) (or &(s) = —y&/"“(s)) and
the dark pool orders as before.

This ensures that the impact costs of u are less or equal than the impact costs of
u* while the risk costs are strictly smaller; hence the assertion follows inductively.
The remaining cases follow by the same line of reasoning.

(ii), (iii) As in the proof of Proposition 4.7 (i), we obtain that sgn(c; 2(¢; p, 212)) =
sgn(Xx; ) = sgn(p). The assertions follow from the fact that n* is as in equations
(4.4) (also in the presence of cross price impact).

O

Proof of Proposition4.13. Let 6; < 6;. For any matrix C > 0, we have C(6;) > C(6;) (cf.
equation (3.2)). Similarly as in the proof of Theorem 3.2, we obtain that the respective
solutions of the Initial Value Problem fulfill C(/, t;6;) < C(l, t;6;) for [ large enough. The
assertion follows by taking the limit / — oo. O
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FIGURE A.1. The left and the middle picture show the distribution of the proceeds of
selling ¢ (thick solid lines) and the approximation by a Gaussian mixture distribution
with common mean ¢ (thin solid lines). The right picture shows the overall variance
Var(¢) (thick solid line) and the modeled market variance Var(¢) (thin solid line)
depending on the temporary impact parameter A; the dashed line denotes the variance
of liquidation proceeds due to dark pool execution risk. x=1, T=1,0 =2.3, ¥ =
100, o = 0 (left and middle picture), respectively, @ = 1 (right picture) and A = 1 (left
picture), A = 100 (middle picture), respectively, A € (0, 10] (right picture).

APPENDIX A: MARKET AND EXECUTION RISK

Our model set-up penalizes the variance introduced by market risk but not the execution
risk of the dark pool orders. Here, we investigate the impact of this model choice by
analyzing the single-asset case (cf. Section 4.1). To this end, we consider the distribution
of the proceeds of selling ¢ = ¢(0, x, u*) (cf. Section 2.4) when the optimal liquidation
strategy u* is applied.

Liquidity in the dark pool is found at time ¢ for the first time with probability den-
sity w, := 6 exp(—01).>> Conditional on this event, the trades (£*(s))o<,, and the asset
positions (X*(s))o<s<, are deterministic (i.e., independent of the market price evolu-
tion) and are zero after time ¢. The proceeds are hence normally distributed with mean
fe = [y AE*(s)*ds and variance o := [; £ X*(s)*ds. Mixing these normal distributions
with weights w, gives the distribution of ¢, that is, the distribution of ¢ is a Gaussian
mixture distribution.

In the left and middle picture of Figure A.1, we illustrate the exact distribution of ¢
(thick solid lines) for two different parameter choices. In the left picture, the price impact
A is small compared to the exogenous volatility X of the asset price; in this case, ¢ follows
a unimodal distribution that is driven by market risk. In the middle picture, the price
impact is large compared to the volatility and ¢ follows a bimodal distribution where the
two modes correspond to the cases of presence and absence of liquidity in the dark pool.

We compare the distribution of ¢ (which mixes the distributions N(u,, o;)) to another
Gaussian mixture distribution ¢ (illustrated by the thin solid lines) with the same weights
w, and the same variances o as in the exact distribution of ¢; the means of the normal
distributions however are changed from p, to & := fOT w, isds, that is, the same mean is
applied to all underlying Gaussian distributions. This mixture of the normal distributions

25The case ¢ = T corresponds to not finding any liquidity in the dark pool and occurs with discrete
probability exp(—6T).
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N(jx, o,) erased the execution risk component (i.e., the differences in u,), but captures
the market risk component which is penalized in our model:

T
Var(¢) = E |:/0 EX*(S)zds:| .

As shown in the left picture of Figure A.1, the thick solid line (exact distribution) and the
thin solid line are similar if the temporary price impact is small compared to the variance;
on the other hand, they are notably different if the temporary price impact is large (middle
picture). In the first case, the variance of the exact distribution is only marginally larger
than the market risk component, but in the latter case, it is several orders of magnitude
larger. The right picture of Figure A.1 illustrates this dependency of overall variance
Var(¢) (thick solid line) and modeled market variance Var(¢) (thin solid line) on the size
of the temporary impact parameter A. Depending on the relative sizes of A and X, our
model might hence be missing an important component of overall variance. In reality
however, price impact is almost always significantly smaller than market volatility. This
is reflected, for example, in the difficulty of measuring market impact and evaluating
the performance of trade execution algorithms (see, e.g., Almgren et al. 2005, Sofianos
and Jeria 2008a, and Sofianos and Jeria 2008b). Under such circumstances our model
appears to capture the primary risk component.

APPENDIX B: RICCATI MATRIX DIFFERENTIAL EQUATIONS

In this section, we state a well-known comparison result about matrix Riccati equations
in the form in which we apply it in the proof of Theorem 3.2. A standard textbook is the
one by Reid (1972). A proof for the specific form of the theorem can, for example, be
found in Kratz (2011).

THEOREM B.1. Let A(t), Bp(t), Cp(1), Bo(t), Co(t) € R"*" be piecewise continuous on
R. Furthermore, let Bp(t), Cp(t), Bo(t), Co(t) (t € R), and Sp, Sp € R"*" be symmetric.
Letty > ) > —o0 and

So< Sk 0<Bo()<Bp(), Cp() < Col)
on (6, ty]. Assume that the initial value problem
P =—A"P— PA— PBpP+Cp, P(ty))=Sp
possesses a solution P on (t, ty). Then the initial value problem
Q' =-4"0-04-0ByQ+Co, Qt) = Sp

possesses a solution Q on (ty, ty] and P(t) > Q(t) on (1, b).

We apply the theorem to scalar Riccati equations with constant coefficients and obtain
a useful lower bound for their solution.
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COROLLARY B.2. Let y be the solution of the scalar initial value problem y = y* +
ay—>b, y(T)=c, where a,b >0, ¢c>0, b < 2 +ac, and d = a2/4+b > 0. Then for
t € (—oo, T,

W)z e
T—-1t+

c+a/2

Proof. As d > 0, we have that the solution z of the initial value problem z’ = z> — d,
z(T) = ¢ + a/2 fulfills

1
Z(t) Z 1 on (_007 T]
T—t
c+a/2
(cf. Theorem B.1; compare z with the solution of /" = f2, f(T) = c + 5). The assertion
follows directly from the fact that y(z) = z(t) — a/2. O
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We propose a framework to study optimal trading policies in a one-tick pro rata
limit order book, as typically arises in short-term interest rate futures contracts. The
high-frequency trader chooses to post either market orders or limit orders, which are
represented, respectively, by impulse controls and regular controls. We discuss the
consequences of the two main features of this microstructure: first, the limit orders
are only partially executed, and therefore she has no control on the executed quantity.
Second, the high-frequency trader faces the overtrading risk, which is the risk of
large variations in her inventory. The consequences of this risk are investigated in the
context of optimal liquidation. The optimal trading problem is studied by stochastic
control and dynamic programming methods, and we provide the associated numerical
resolution procedure and prove its convergence. We propose dimension reduction
techniques in several cases of practical interest. We also detail a high-frequency trading
strategy in the case where a (predictive) directional information on the price is available.
Each of the resulting strategies is illustrated by numerical tests.

KEy WorDs: market making, limit order book, pro rata microstructure, inventory risk, marked
point process, stochastic control.

1. INTRODUCTION

In most of modern public security markets, the price formation process, or price discov-
ery, results from competition between several market agents that take part in a public
auction. In particular, day trading sessions, which are also called continuous trading
phases, consist of continuous double auctions. In these situations, liquidity providers
continuously set bid and ask prices for the considered security, and the marketplace pub-
licly displays a (possibly partial) information about these bid and ask prices, along with
transactions prices.! The action of continuously providing bid and ask quotes during
day trading sessions is called market making, and this role was traditionally performed
by specialist firms. However, due to the recent increased availability of electronic trad-
ing technologies, as well as regulatory changes, a large range of investors are now able
to implement such market making strategies. These strategies are part of the broader
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category of high-frequency trading (HFT) strategies, which are characterized by the fact
that they facilitate a larger number of orders being sent to the market per unit of time.
HFT takes place in the continuous trading phase, and therefore in the double continuous
auction context, but actual mechanisms that implement this general continuous double
auction setup directly influence the price formation process and, as a consequence, HFT
strategies.

In this work, we shall focus on the case where the continuous double auction is
implemented by a limit order book (LOB), operated under the pro rata microstructure
(see Aikin 2006; Janecek and Kabrhel 2007). This microstructure can be encountered
on some derivatives markets, and especially in short-term interest rate (STIR) futures
markets, also known as financial futures, traded, e.g., on LIFFE (London International
Financial Futures and options Exchange) or on CME (Chicago Mercantile Exchange).
This differs from the usual price/time microstructure found on most cash equity markets,
and governed by the FIFO (first in first out) rule where limit orders are executed according
to the first arrival at the best price. We will describe in detail the pro rata microstructure
in Section 2 but the general mechanism of this microstructure is as follows: an incoming
market order is dispatched on all active limit orders at the best price, with each limit order
contributing to execution in proportion to its volume. In particular, we will discuss the
two main consequences of this microstructure on HFT strategies which are the oversizing
of the best priced slices of the LOB and the overtrading risk.

Our main goal is to construct an HFT strategy, by means of optimal stochastic control,
that targets the pro rata microstructure. We allow both limit orders and market orders
in this HFT strategy, modeled, respectively, as continuous and impulse controls, due to
considerations about direct trading costs. From a modeling point of view, the key novelty
is that we take into account partial execution for limit orders, which is crucial in the pro
rata case. For this purpose, we introduce a compound Poisson model for trades processes,
which can be fitted to a large class of real-world execution processes, since we make few
assumptions about the distributions of execution volumes. From a practical trading point
of view, we allow the HFT to input predictive information about price evolution into the
strategy, so that our algorithm can be seen as an information-driven HFT strategy (this
situation is sometimes called HFT with superior information; see Cartea, Jaimungal, and
Ricci 2014). We derive the dynamic programming equation (DPE) corresponding to this
mixed impulse/regular control problem. Moreover, we are able to reduce the number of
relevant state variables to one in two situations of practical interest: first, in the simple
case where the mid-price is a martingale, and second, in the case where the mid-price is
a Lévy process, in particular when the HFT has predictive information on price trend,
in line with recent studies (Cont and de Larrard 2013). We provide a computational
algorithm for the resolution of the DPE, and prove the convergence of this scheme.
We illustrate numerically the behavior of the strategy and perform a simulated data
benchmarked backtest.

HFR has recently received sustained academic interest, mostly in a price/time
microstructure model. The reference work for inventory-based HFR is Avellaneda and
Stoikov (2008) following early work by Ho and Stoll (1981). The authors present the
HFT problem as an inventory management problem and define inventory risk as the
risk of holding a nonzero position in a risky asset. They also provide a closed-form
approximate solution in a stylized market model where the controls are continuous. Sev-
eral works are available that describe optimal strategies for HFT on cash equities or
foreign exchange, e.g., Kiithn and Stroh (2010), Cartea and Jaimungal (2013), Guéant,
Fernandez Tapia, and Lehalle (2013), Guilbaud and Pham (2013) or Veraart (2011).
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Gueéant et al. (2013) provide extensive analytical treatment of the Avellaneda and Stoikov
model. Veraart (2011) includes market orders (that are modeled as impulse controls) as
well as limit orders in the context of FX trading. Guilbaud and Pham (2013) study
market/limit order HFT strategies on stocks with a focus on the price/time priority
microstructure and the bid/ask spread modeling. Cartea et al. (2014) consider an HFT
strategy that takes into account influence of trades on the LOB, and give the HFT supe-
rior information about the security price evolution. A growing literature is dedicated to
modeling the dynamics of the LOB itself, and its consequences for the price formation
process. A popular approach is the Poisson Limit Order Book model as in Cont and
de Larrard (2013). These authors are able to retrieve a predictive information on price
behavior (together with other LOB features) based on the current state of the order book.
Finally, in empirical literature, much work is available for cash equities, e.g., Gould et al.
(2010), but very little is dedicated to markets operating under pro rata microstructure.
We would like to mention the work by Field and Large (2008), which provides a detailed
empirical description of such microstructure.

This paper is organized as follows: in Section 2 we detail the pro rata microstructure
model and explain the HFT strategy in this context. In Section 3 we formulate the control
problem, derive the corresponding DPE for the value function, and state some bounds
and symmetry properties. We also simplify the DPE in two cases of practical interest,
namely the case where the price is a martingale, and the case where the investor has
predictive information on price trend available. In Section 4 we provide the numerical
algorithm to solve the DPE, and we study the convergence of the numerical scheme,
by proving the monotonicity, stability, and consistency for this scheme. We also provide
numerical tests including computations of the optimal policies and performance analysis
on a simulated data backtest. Finally, in Section 5 we show how to extend our model in
the optimal liquidation case, i.e., when the investor’s objective is to minimize the trading
costs for unwinding her portfolio.

2. MARKET MODEL

Let us fix a probability space (2, F, P) equipped with a filtration F = (F;)o<,<r satisfying
the usual conditions. It is assumed that all random variables and stochastic processes are
defined on the stochastic basis (2, F, F, P).

Prices in a one-tick microstructure. We denote by P the mid-price, defined as a Markov
process with generator P valued in P. We shall assume that P is a special semimartingale
with locally integrable quadratic variation process [ P], so that its dual predictable pro-
jection (also called sharp bracket) ( P) exists (see Protter 2005). We assume that (P) 7 is
integrable, and that the predictable finite variation term A of the special semimartingale
P satisfies the canonical structure: d 4; < d{P);, with a bounded density process

dA;

Q2.1) 0, = 7Py

and the sharp bracket process ( P) is absolutely continuous with respect to the Lebesgue
measure

(2.2) d(P), = o(P)dt
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for some positive continuous function o of P. We denote by § > 0 the tick size, and
we shall assume that the spread is constantly equal to §, i.e., the best ask (resp. bid)
price is P? := P+ % (resp. P’ := P — %). This assumption corresponds to the case of
the so-called one-tick microstructure (Field and Large 2008), which can be encountered,
e.g., on STIRs futures contracts.

Trading strategies. For most investors, brokerage costs are paid when a transaction
occurs, but new limit order submission, update or cancel are free of charge. Therefore,
the investor can submit or update her quotes at any time, with no costs associated to
this operation: it is then natural to model the limit order strategy (make strategy) as
a continuous-time predictable control process. On the contrary, market orders lead to
immediate execution, and are costly, so that continuous submission of market orders
would lead to bankruptcy. Therefore, we choose to model the market order strategy
(take strategy) as impulse controls. More precisely, we model trading strategies by a pair
o = (a™ake gtake) in the form

k ki
oM = (L;Iv Lﬁj)zZO’ o™ = (Tns Endnen-

The predictable processes L? and L”, valued in {0, 1} represent the possible make regimes:
when L¢ = 1 (resp. L? = 1) this means that the investor has active limit orders at the best
ask price (resp. best bid price) at time ¢, else, if L = 0 (resp. L? = 0) this means that the
investor has no active order at the best ask price (resp. best bid price) at time . A practical
implementation of such rule would be, for example, to send a limit order with a fixed
quantity, when the corresponding control is 1, and cancel it when it turns to 0. Another
practical implementation of the rule would be to post a constant proportion of the
available volume at best prices: for example, if V}(?) is the current offered volume at best
ask, and if L = 1, the practical action in this situation is to post a limit order of volume
ve(t) s.t. W(IV)W) = const at the best ask price. Choice of practical implementation of
the limit order controls will impact the outcome of the high-frequency trader’s strategy in
term of executed volumes, and therefore we propose in the next paragraph an approach
suitable in both cases. On the other hand, (7,),cy 1S an increasing sequence of stopping
times, representing the times when the investor chooses to trade at market, and &,,n > 0
are F, -measurable random variables valued in R, representing the quantity purchased
if &, > 0 or sold if ¢, < 0.

Execution processes in a pro rata microstructure. The pro rata microstructure (see
Janecek and Kabrhel 2007, for extensive presentation and discussion) can be schemati-
cally described as follows:> when a market order comes in the pro rata LOB, its volume
is dispatched among all active limit orders at best prices, proportionally to each limit
orders volumes, and therefore create several transactions (see Figure 2.1).

This pro rata microstructure fundamentally differs from price-time microstructure
(Guilbaud and Pham 2013) for two reasons: first, several limit orders at the best prices
receive incoming market order flow, regardless of the time priority, and second, market
makers tend to oversize their liquidity offering (that is, posting limit order with much
higher volume than they actually want to trade) in order to increase their transaction

2For a detailed description of actual trading rules, and a general overview of STIR futures trading, we
refer to Aikin (2006) and references therein.
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FIGURE 2.1. Schematic view of the pro rata market microstructure.

volume. For example, on the 3-month EURIBOR futures contracts, the liquidity available
at the best prices is 200 times higher than the average transaction size.

Let us examine more precisely the outcomes of the two practical implementations of
limit orders posting mentioned in the last paragraph. We consider the two cases where the
high-frequency trader posts (1) limit orders with a fixed volume, say ¥y = 100 contracts,
and (2) limits orders with volumes:

ve(r)

4 —_— = %0; b L.
vi(t) st )+ Vi 10%; V(1) st

b
t
U
vh(0) + Vyt)
where V5 (1) (resp. V,{’,,(t)) is the volume available at best ask (resp. bid) at time 7. Con-
sidering an incoming market order of size V on the ask side, the high-frequency trader
receives:

e incase (1), min (V, ¥ + Vi(0) ooy < Vo
¢ andin case (2) 10% min(V, v/(¢) + V3, (1)) < v(2).

Note that in these two cases, the volume offered by the market maker is fully executed
if and only if the market order’s volume V' is greater or equal to the total volume offered
at ask 15 + Vj(2), resp. v/(t) + V§,(1). Therefore, the probability that the high-frequency
trader volume is fully executed is equal to the probability that the market order consume
the first slice of the LOB in integrality. In other words, the volume 7 Jjﬂw @ Tesp. 7 r‘)+(;/)w oL
that the HFT receives, never reaches the bound ¥4, resp. v“(¢), unless the market order
consumes the first slice of the LOB in integrality.
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FIGURE 2.2. Probability of the HFT ask limit order ¥}, resp. v¥(?), to be fully executed
as a function of total offered volume Vg + Vj(¢), resp. v/(¢) + V},(¢), when a market
order of size V'~ Gamma(4, 7.5) comes in the LOB at time ¢.

For illustration purposes, and in this discussion only, we assume that the volume of
incoming market orders has a gamma distribution with shape 4 and scale 7.5 (which
makes an average market order volume of 30 contracts, consistent with observations on
the front 3-month EURIBOR contract, see Field and Large 2008). In Figure 2.2, we plot
the probability of the HFT’s limit order to be fully executed as a function of Vg + Vi (1),
resp. v¥(1) + V3, (1).

In this example, we see that the probability of the HFT limit order to be fully executed
drops to negligible values once the total offered volume is greater than 100, which is
about three times the average transaction size. Yet, in actual market, the average offered
volume at the best priced slice is about 200 times larger than the average transaction size
(Field and Large 2008), and therefore, the probability that the HFT limit orders are fully
executed is negligible. For example, if we use the average volume offered on best prices
on the front EURIBOR future, 6,000 contracts, the probability of such a market order
consuming the first slice is 3 x 10734,

Therefore, our approach is to assume that the HFT’s limit orders are never fully
executed, and instead we model the executed volume as a random variable on which the
market maker has no control.? This approach combines the advantages of abstracting
from practical details of the strategy implementation while keeping precise information
on executed volumes. In other words, we assume that the outcome of the practical
implementation of the strategy, in terms of executed volume distribution, is known and
can be measured in market data.

More precisely, let N (resp. N?) be a Poisson process of intensity A% > 0 (resp. A?),
whose jump times represent the times when execution by a market order flow occurs at

3 Actually, the distribution of the executed volume depends on the posted volume, and we should then
consider a family of distributions indexed by posted volume. In this paper, we consider as first approximation
an a posteriori distribution for the executed volume, which can be obtained ex post by following a given
volume posting strategy.
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best ask (resp. best bid), and we assume that N“ and N’ are independent. Let (¢%),cn-
and (¢?),en+ be two independent sequences of i.i.d. integrable random variables valued
in (0, 00), of distribution laws ¢ and u”, which represent the transacted volume of the
nth execution at best ask and best bid. We denote by v*(dt, dz) (resp. v’(dt, dz)) the
Poisson random measure associated to the marked point process (N¢, (¢ )sen+) (resp.
(N?, (¢?),en-)) of intensity measure A ju?(dz)dt (resp. A’ u”(dz)dt), which is often identi-
fied with the compound Poisson processes

N¢ NP

1 t o] ‘ t [e )
(2.3) 9 = Zg};’ = / / zvi(dt, dz), z?th = Z;}f = f / zvP(dt, dz)
0 Jo 0 JO

n=1 n=1

representing the cumulative volume of transaction at ask, and bid, assumed to be inde-
pendent of the mid-price process P. Notice that these processes model only the trades in
which the investor has participated.

Cash holdings and inventory. The cash holdings process X and the cumulated number
of stocks Y (also called inventory) held by the investor evolve according to the following
dynamics:

8 8
(2.4) dX, =L P+ = |do* =L [P — = )do", 1, <t<Tu1,
1 2 t t t

2
(2.5) Ay, = [bdo’ — L/dv?, 1, <t <1,
2.6) X, = Xo = —£,P, — I&] (i + s) el 0
(2.7) Y, - Y, =é&.

The equations (2.4)—(2.5) model the evolution of the cash holdings and inventory under
a limit order (make) strategy, whereas equations (2.6)—(2.7) describe the jump on the
cash holdings and inventory when posting a market order (take) strategy, subject to a per
share fee ¢ > 0 and a fixed fee g9 > 0. In the sequel, we impose the admissibility condition
that the inventory should remain within a bounded interval [-M,, M,], M, > 0, after
the trade at market, i.e., §, € [-M, — ¥, _, M, — ¥, _], n > 0, and we shall denote by A
the set of all admissible make and take strategies o = (™, /1K),

REMARK 2.1. Let us define the process V; = X; + Y; P,, which represents at time ¢
the marked-to-market value of the portfolio (or mid-price value of the portfolio). From
(2.4)-(2.7), we see that its dynamics is governed by

8
(2.8) dv, = E(L’fdﬂ,b + L!dv!) + Y-dP,,

1)
(2.9) Ve, = Ve, = =18l (2 + 8) — €0lg, 0.
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In equation (2.9), we notice that a trade at market will always diminish the marked-
to-market value of our portfolio, due to the fact that we have to “cross the spread,”
hence trade at a least favorable price. On the other hand, in equation (2.8), the term
f %(Lf’dﬂ,b + L{dv") is always positive, and represents the profit obtained from a limit
order execution, while the term [ ¥-d P, represents the portfolio value when holding
shares in the stock, hence inducing an inventory risk, which one wants to reduce its
variance.

3. MARKET MAKING OPTIMIZATION PROCEDURE
3.1. Control Problem Formulation

The market model in the previous section is fully determined by the state variables
(X, Y, P) controlled by the limit/market orders strategies o = (¢™*¢, «'®°) € A. The
market maker wants to optimize her profit over a finite time horizon T (typically short
term), while keeping control of her inventory risk, and to get rid of any risky asset by
time 7. We choose a mean-variance optimization criterion, and the goal is to

T
(3.1) maximize E [XT — y/ Ytzd(P),] over all strategiesx € A, st. Yr=0
0

with the convention that co — co = —o0, as usually done in expected utility maximiza-
tion. The integral fOT Y2 d(P), is a quadratic penalization term for holding a nonzero
inventory in the stock, and y > 0 is a risk-aversion parameter chosen by the investor.
The penalty term y E[ fOT Y2 d(P),] can further be motivated by noting that the variance

!
of the total value of the investor’s inventory in the case where P is a martingale by the

1t6 isometry:
T T
Var(/ KdP,):E[/ K2d<P),:|,
0 0

which is our penalty term, up to the scale factor y. As pointed out by Cartea and
Jaimungal (2015), this running penalty is much more effective than the terminal inventory
constraint at controlling the trader profit and loss distribution.

Let us now rewrite problem (3.1) in a more standard formulation where the constraint
Yr = 0 on the inventory control is removed. For this, let us introduce the liquidation
function

F)
L(x,y,p) = x+yp— |yl (2 + 8> — &0ly20,

which represents the cash obtained after an immediate liquidation of the inventory via a
(nonzero) market order. Then, problem (3.1) is formulated equivalently as

T
(3.2) maximize E [L(XT, Yr, Pr)—y / de(P),] over all strategies € A.
0

Indeed, the maximal value of problem (3.1) is clearly smaller than the one of problem
(3.2) since for any a € A s.t. Yr = 0, we have L(X7, Yr, Pr, S7) = Xr. Conversely, given
an arbitrary @ € A, let us consider the control & € A, coinciding with @ up to time 7,
and to which one add at the terminal date 7" the admissible market order consisting in
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liquidating all the inventory Y7 if it is nonzero. The associated state process ()f Y, P, S)
satisfies: X, = X,, Y, = Y, fort < T, and Xy = L( X7, Yr, Pr, S7), Y7 = 0. This shows
that the maximal value of problem (3.2) is smaller and then equal to the maximal value
of problem (3.1).

Recalling (2.2), let us then define the value function for the problem (3.2):

T
(3.3) v(t, x, ¥, p) = suApEz,x,yﬁp [L(Xr, Y7, Pr) — J// KZQ(Pg)dS]
(23

t

for t € [0, T], (x, y, p) € R> x P. Here, given a € A, E; ., , denotes the expectation
operator under which the process (X, Y, P) solution to (2.4)—(2.7) with initial state
(X;-, Y-, P-) = (x, y, p), is taken. Problem (3.3) is a mixed impulse/regular control
problem in Markov model with jumps that we shall study by dynamic programming
methods.

First, we state some bounds on the value function, which shows in particular that the
value function is finite and locally bounded.

PROPOSITION 3.1. There exists some constant K p (depending only on the price process
and y ) such that for all (t, x, y, p) € [0, T] x R?> x P,

5
B4 Levy.p) =v(txp,p) < x+p+ (B + A EP)(T - 1) + Kop,

where i = [% zu(dz), i’ = [° zu’(dz) are the mean of the distribution laws p*
and pP.

Proof. The lower bound in (3.4) is derived easily by considering the particular strategy,
which consists of liquidating immediately all the current inventory (if nonzero) via a
market order, and then doing nothing else until the final horizon. Let us now focus on
the upper bound. Observe that in the definition of the value function in (3.3), we can
restrict obviously to controls ¢ € A s.t.

T

(3.5) E [/ de(P),] < oo.
0

For such strategies, we have

T
El,x,y.p |:L(XTa YTs PT) - V/ Ygzd(P>si|

t

T
= E[,x.y,p [VT - J// Yg2d<P>&i|
t

2
8
2

5 T T
< x+yp+E. 1, [(ﬁ;, +95_,) + / Y,-dP, — y/ x?dum]
t t

T
= st B[S0 oh )+ [ (e —y)an].
t

Here, the second inequality follows from the relation (2.8), together with the fact that
L7, I[P <1, 99, 9" are increasing processes, and also that jumps of ¥V are negative

by (2.9). The last equality holds true by (2.1) and the fact that [ Y_.d M is a square-
integrable martingale from (3.5), where M is the martingale part of the semimartingale
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P. Since 0 is bounded and y > 0, this shows that for all strategies « satisfying (3.5), we
have:

T
1)
Er,x,y.p |:L(XTa YT’ PT) - )// Yv2d<P)vi| =< X+ yp + EE[ﬁ?L; + ?997,] + KE[(P> T]
t

for some positive constant K, which proves the required result by recalling the charac-
teristics of the compound Poisson processes 9 and 9, and since ( P) 7 is assumed to be
integrable. O

REMARK 3.2. The terms of the upper bound in (3.4) have a financial interpretation.
The term x + yp represents the marked-to-market value of the portfolio evaluated at mid-
price, whereas the term Kp stands for a bound on profit for any directional frictionless
strategy on the fictive asset that is priced P. The term 3 (1“2 + A* i*)(T — t), always posi-
tive, represents the upper bound on profit due to market making, i.e., the profit of the strat-
egy participating in every trade, but with no costs associated to managing its inventory.
3.2. Dynamic Programming Equation

For any (¢4, £%) € {0, 1}?, we introduce the nonlocal operator associated with the limit
order control:

(3.6) LU =P 401 + ebr?,
where

R )

[g(1, x, y. p) = X° /0 [¢> (z, Xtz (p + 2) -z p) ot x. v, p)} 1(d2),
o )

Fh¢(tvx7yvp)=khA |:¢ (l»x_Z<P_2>sJ’+ZaP> _d’(l’x’y’P)] :u’h(dz)

for (¢, x, y, p) [0, T] x R x R x P. Let us also consider the impulse operator associated
with admissible market order controls, and defined by

b
Mo(t, x, y, p) = sup ¢<t,x—ep—|e| <+8>—80,y+€,p>.
ING

e€[-M,—y,M,—y 2

The DPE associated to the control problem (3.3) is a quasi-variational inequality (QVI)
in the form

9 .
G7) min| -2~ sup £V 4 yg, v—Mv| =0, on [0,T) x R x P,
8t (eu,lh)e{o’l}z

together with the terminal condition

(3.8) wWT,)=L, on R>xP,

where we denoted by g the function: g(y, p) = y*0(p). By standard methods of dynamic
programming, one can show that the value function in (3.3) is the unique viscosity
solution under growth conditions determined by (3.4) to the DPE (3.7)—(3.8) of dimension
three (in addition to the time variable) (see, e.g., chapter 9 in Gksendal and Sulem 2007).
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3.3. Dimension Reduction in the Lévy Case

We now consider a special case on the mid-price process where the market making
control problem can be reduced to the resolution of a one-dimensional variational in-
equality involving only the inventory state variable. We shall suppose actually that P is
a Leévy process so that

3.9 Pl =c,, and o is aconstant,

where Ip is the identity function on PP, i.e., Ip(p) = p, and ¢ > 0, ¢, are real constants
depending on the characteristics triplet of P. Two practical examples are:

® Martingale case: The mid-price process P is a martingale, so that PIp = 0. This
martingale assumption in a high-frequency context reflects the idea that the market
maker has no information on the future direction of the stock price.

® Trend information: To remove the martingale assumption, one can introduce some
knowledge about the price trend. A typical simple example is when P follows
an arithmetic Brownian motion (Bachelier model). A more relevant example is
described by a pure jump process P valued in the discrete grid §Z with tick § > 0,
and such that

P(Pyy— P =81F)=n"h+o(h)
P(Py — Pr=—8|F) =n"h+o(h)
P(| Pp — P > 8 |F) = o(h),
where 7, 7~ > 0, and o(h) is the usual notation meaning that lim,,_,o o(h)/h = 0.
Relation (3.9) then holds with ¢, = @8, where @ = 7 — 7~ represents a constant
information about price direction, and ¢ = (7 + + 7 )82. In a high-frequency con-
text, this model is of practical interest as it provides a way to include a (predictive)
information about price direction. For example, Cont and de Larrard (2013) infers
the future prices movements (at the scale of a few seconds) from the current state
of the LOB in a Poisson framework. In this work, as well as in our real data tests,

the main quantities of interest are the volume offered at the best prices in the LOB,
also known as the imbalance.

In this Lévy context, we can decompose the value function v into the form
(3.10) v(t, X, . p) = Lo(x, y, p) + w(z, y),
where Ly(x, y, p) = x4+ yp — |y|(% + 8) = L(x, y, p) + €0l is the liquidation func-

tion up to the fixed fee, and where w is solution to the integral variational inequality:

[ @ N
(3.11) min [—a‘: —ye, +yvoyt —Tw —Tlw , w —Mw:| =0, on [0,T) xR

together with the terminal condition

(3.12) w(T, y) = —golyz, VyelR
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with Z¢ and Z”, the nonlocal integral operators

Tty =2 ([ [y = w25+ (54 ) a1 - = 2| wean

Thw(t, y) = A" (/OOO [w(t, y+z)—w(t, y)+ z% + (i + e) Iyl —ly+ zl)] 1’ (dz)

and M, the nonlocal operator

N 1)
Mw(e, )= sup [w(t,y+e)— (2 +s) (1 + el + lel - |y|)—€0:|
e€[—M,—y, M, —y\{0}

).
).

The interpretation of the decomposition (3.10) is the following. The term Ly(x, y, p)
represents the mid-price value that the investor would obtain by liquidating immediately
with a market order (up to the fixed fee), and w is an additional correction term taking

into account the illiquidity effects induced by the bid-ask spread and the fees, as
as the execution risk when submitting limit orders. Moreover, in the Lévy case,

well
this

correction function w depends only on time and inventory. From (3.4), we have the

following bounds on the function w:

5 5.
—eolyzo < w(t,y) S<2+€>|J/|+2()»a,u« + A BONT — 1)+ Kp, V(t,p) €0, T] x R.

Actually, we have a sharper upper bound in the Lévy context.

PROPOSITION 3.3. Under (3.9), we have:
2
(313)  —eolyz < w(t.y) <(T—1) [g’p + A+ )’ + 2" + e)ﬁ”]
forall (¢, x, v, p) € [0, T] x R? x P.

Proof. For any (x, y, p) € R? x P, we notice that

8
(3.14)  Lo(x,y,p)— sup Lo(x —ep — |e| (2 +8> —&0,y+e p)
e€[—M,—y, M, —y]\{0}

)
- inf ° - > 0.
o [( o+ s) (lel + Iy + el — Iy + 80] >

We also observe that for all z > 0

(3.15)

F) 8 )
l@<x+z(p+2),y—z,p)—Lo(x,y,p)zzz+<2+8)(|y|—|y—2|)

< +e)z,

and similarly

8

(3.16) M(x—z(p—2),y+z,p>—Lo(x,y,p)§(8+8)z.
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Let us then consider the function ¢(¢, x, y, p) = Lo(x, y, p) + (T — t)u, for some real
constant u to be determined later. Then, ¢(T,.) = Ly, and by (3.15)-(3.16), we easily
check that

a a gb

9 sup LY + yg

at (5“,(’7)6{0,1}2

=u— 1@+ =@ +en" —yer +yyp.
The r.h.s. of this last inequality is a second-order polynomial in y and therefore it is
always nonnegative iff

cp—dypu— 1@+ e’ — 1 +e)n’) <0,

which is satisfied once the constant u is large enough, namely:
2

Ui o= P A6+ e + AP+ ).
4yp

For such choice of u = i, and denoting by ¢ the associated function: @(z, x, y, p) =
Lo(x, y, p) + (T — t)u we have

oY Sup £e(/,lhq§ + yg z 07
al (Z"4[I7)€{0.1}2

which shows, together with (3.14), that ¢ is a supersolution of (3.7)~(3.8). From compar-
ison principle for this variational inequality, we deduce that

v§q'3 on [O,T]XRZX]P’,

which shows the required upper bound for w = v — L. 0
Finally, from (3.11)—(3.12), and in the case where A? = A?, u® = u’, and by stressing
the dependence of w in ¢,, we see that w satisfies the symmetry relation

3.17) w(t,y,c,) =w(t,—y,—c,), VY, »)el0, T] xR.

REMARK 3.4. Notice that in some situations, one may have Z?w (¢, y) = Z°w(¢, y) = 0
and w(t, y) — Mw(z, y) > 0, meaning that the optimal control at the point (¢, y) is to do
nothing (no market order, no limit orders on either sides). For example, if we have a zero
inventory y = 0 at time ¢ € [0, 7, then by (3.13)

(3.18) .
/ |:w(t, 0—2)—w(,0)+ Z% + (i + 8) (10] =10 — z|)] w(dz)
0

62
s(T—r)[LWPp +k“(8+6)ﬂ”+k”(8+6)/1”} —eil* =t Cop(T— 1) —efi’,

where we wrote # for ask and bid a, b, and set C, , = [% + 298 + ) + A8 + e)in].
The r.h.s. of (3.18) is nonpositive for ¢ close enough to 7, namely for: (7 —¢) <
emin[ii?, i’]/C,», and so: Z9w(t, y) = Z°w(t, y) = 0. Using again (3.13), we also see
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that for ¢ satisfying (7' — t) < &9/ C,.», then Mw(t,0) < 0 < w(t, 0). Consequently, when
we have a zero inventory close to maturity, it is not optimal to send any limit order nor
submitting market orders. Indeed, from a zero inventory, posting a limit order, say at
ask, may lead to an execution (a sale), and this open short position, unlikely to be closed
by another limit order execution, will have to be closed at 7" with a market buy order
(hitting the ask side). Therefore, this operation is a net loss of the per share fee times the
volume of the trade.

4. NUMERICAL RESOLUTION

In this section, we focus on the numerical resolution of the integral variational inequality
(3.11)—~(3.12), which characterizes the reduced value function of the market-making
problem in the Lévy case.

4.1. Numerical Scheme

We provide a computational scheme for the integral variational inequality (3.11). We
first consider a time discretization of the interval [0, 7] with time step &7 = T/N and
a regular time grid Ty = {& = kh, k=0, ..., N}. Next, we discretize and localize the
inventory state space on a finite regular grid: for any M > 0 (in practice we choose
M = Mpy) and Ny € N, and denoting by Ay = Nﬂy, we set

Yy ={y=iAy, i =—Ny, ..., Ny}.

We denote by Proj,,(y) := — MV (y A M), and consider the discrete approximating dis-
tribution of u¢ and u’, defined by

/fL” = Z ,L,La([l'Ay; (i + I)AY))SI‘AY, l/ALb = Z Hb([iAY; (i + I)AY))SiAY

ieZ+ ieZ*
with 8, the Dirac measure at x. We then introduce the operator associated to the explicit
time-space discretization of the integral variational inequality (3.11): for any real-valued
function ¢ on [0, 7] x R, 7 € [0, T, and y € R, we define
St y, o) = max[T"4rM(r, y, ) s MMMy, g)),
where

ThAr M1,y @) = o(t, y) — hyoy* + hycp

A ( fo [p(t, Proj (v — 2)) — (i, ]A“(d-)

e [T (5 o) wim=afwan)

+ m( /0 ({1, Proj (3 + 2) — ¢t ]A"(d2)

e [T (5 o) wi-ean]utan)
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and

@1 MhArME Y, )

F)
= sup [w(t, Proj (v +e)) — ( +8>(|y+e| + le| — Iyl)—so].

€Y yN[—My—y. My —y\(0} 2

By recalling that x, = maxco1) £x, we see that the operator 7"47M may be written
also as

42) 7M1, y, ) = —hyoy’ +hycp + max [sﬂ(z,y)(l—vhea—xbhzb)
£, Pe{0,1}

+ e ( /0 (1, Proj(y — 2))A(d2)

[ 5 (5 e) =2 wian)

+ APhet ( /0 o (1, Proj (v + )i’ (d2)

~rs (3 ,
+ /0 [2z+ (2 +e) Iyl - |y+z|>] " (dz))].

Notice that on the boundary y = My (resp. y = — My) the set of admissible market orders
is[—2y, 0] (resp. [0, —2y]) which implies that we only allow sell (resp. buy) market orders.
Limit order controls can be of any type on the boundary, since we do not set a global
constraint on the inventory.

We then approximate the solution w to (3.11)—(3.12) by the function w
Ty x Y, solution to the computational scheme

h,Ay, M on

(4.3) wh A Mgy, y) = —eglyzg, v € Yoy,
@4.4) whirMi y)y = ShArMig y ywh A My k=0,...,N—1, ye Yy
This algorithm is described explicitly in backward induction by the following pseudo-

code:

e Time step ty = T for each y € Yy, set w"2r-M(1, y) := —&01 20
e Fork= N—1...0, from time step #, to time step #, and for each y € Y

—  Compute T7"2rMg 1y, wharMy from (4.2), and store £* , ¢* the
argmax;

—  Compute M"2rM(g_\ y whAv-M) from (4.1), and store e* the argmax;

_ IfTh’AY’M(l‘k+1, , Wh,Ay,M) > ./\;lh'AY’M(l/\»+1, ¥, Wh.Ay,M) then set

wh.Ay,M(t/ﬁ y) — Th’AY'M(Ik+1, ¥, Wh,Ay,M)

and the policy is make (£%*, £7*). Otherwise, set

Wh'Ay’M([k, y) = MII’AY’M(lkH, 7, Wh,Ay.M)

and the policy is take e¢*.
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4.2. Convergence of the Numerical Scheme

In this section, we study the convergence of the numerical scheme (4.3)-(4.4) by
showing the monotonicity, stability, and consistency properties of this scheme. We denote
by CL([0, T] x R) the set of bounded continuously differentiable functions on [0, 7] x R,
with bounded derivatives.

PrROPOSITION 4.1 (Monotonicity). For any h > 0s.t. h < ;\IW the operator S™

is nondecreasing in ¢, i.e., for any (t, y) € [0, T] x R and any ¢, ¥ € Cg([O, Tl x R), s.t.
p=v:

Ay,M

S}]'Ay’M([, y’ (,0) S S}]'A),’M([, y’ w)

Proof. From the expression (4.2), it is clear that 772 M(z, y, @), and then also
ShAv Mty ) is monotone in ¢ once 1 — A%h — APk > 0. O

ProprosITION 4.2 (Stability). For any h, Ay, M > 0 there exists a unique solution
whar Mo (4.3)-(4.4), and the sequence (w"27M) is uniformly bounded: for any (t, y) €
Ty x Yy,

2
—eolyz0 < WM, y) < (T —1) [fy”p +2B + R’ + 13 + 6);1”} :

Proof. Existence and uniqueness of w’-27M follows from the explicit backward scheme
(4.3)—(4.4). Let us now prove the uniform bounds. We consider the function

2
() = (T —1) [4(;;) + 28 +e)a + 2L + e)ﬁ”}

and notice that W*(¢) > S"27M(t 4 h, y, U*) by the same arguments as in Proposi-
tion 3.3. Moreover, we have, by definition, w"27(T, y) = —&0l,20 < W*(T) =0, and
therefore, a direct recurrence from (4.3)—(4.4) shows that w-2rM(¢, y) < W*(¢) for all
(¢, y) € T, x Y, which is the required upper bound for w2» M

On the other hand, we notice that S"2rM(z, 0, ) > ¢(t, 0) for any function ¢ on
[0, TT x R, and ¢ € [0, T], by considering the“diffusive” part of the numerical scheme
with the particular controls £¢ = ¢” = 0. Therefore, since w-2"M(T, 0) = 0, we obtain
by induction on (4.3)—(4.4) that w"27M(z,0) > 0 for any ¢ € Ty. Finally, considering
the obstacle part of the numerical scheme, with the particular control e = —y, shows
that w2r Mz, y) > whArM(z 0) — g1 ,.0 > —eol,z0 for any (7, y) € Ty x Y, which

proves the required lower bound for w47 M O

PROPOSITION 4.3 (Consistency). For all (t, y) € [0, T) x Rand ¢ € C}([0, T] x R), we
have

1
(4.5) lim —[p(t', y) = T"2r Mt + h, Y, 9)]
(h, Ay, M) — (0,0, 00) h

', y)— (t,y)

aQD a
= =5, (LY —ye, +yey’ =Tt 1) = T0(t, )
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and

(4.6) R DU MEAEM 1 h, Y ) = Mot p).
5 Y, B
', y)— ()

Proof. The consistency relation (4.6) follows from the continuity of the function
(t,y.e) > o(t, y+e)— (5 +¢)(ly+el+ le] — |y]) — €. On the other hand, we have
forall (#, ") €0, T) x R,

4.7)
/ ! ; / / 1 ! / / / / !
Z[w(t,y)—Th’A”M(t +h, )Y, 0)] = z[w(t,y)—w(t +h )=y, +ypy?
_IL/JLAY’M(ZJ—Fh’ y/’ QO)_I[/:’AY,M([/—i_h’ y’» (p)’

where

A My ) = A [@(1, Proj (v — 2)) — (1, y)]4“(d2)

()1
+ [ [+( +e)<|y| |y—z|)]u“(dz>)+

ThArM( ) = Ab(/o [@(1, Proj (v + 2)) — (1, )] A" (dz)

[T+ (5re) wi-tean]utan)

The three first terms of (4.7) converge trivially to —%—‘f(l, y) — yc, +yoy* as h goes to
zero and (¢, ') goes to (¢, y). Hence, in order to get the consistency relation, it remains
to prove the convergence of Z"27M(¢' + h, y, ¢) to T¢p(t, y) as (h, Ay, M) goes to
(0,0, 00),and (¢, y') goes to (¢, y) (an identical argument holds for I1 ArMy 4 op, Vv, ).
By writing that |x; — X/ | < |x — x/|, we have

|ZhA M+ h, Y @) — T, p)|
<Mt +h, y) — (1. y)|

o0

Y f (¢ + B, Projy,(y/ — 2)A“(dz) — / oty — u(d2)
0 0

<Mt +h,y) — o, )

M+y M+y'
Y /0 o(f +h, ¥ — DAY(dz) — /0 oty — u(d2)

Y / ot + h, — M)A“(dz) — f oty — Dp(d2)

M+ }" M+ }:/

< Aot +h, y) — (1, y)|
Y /0 (' + b,y —(2)) — @ty — 2)|p(d=)

+ 20 @l ([M + Y, 00)),
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where we denote by «(z) = LA%J Ay.
Since the smooth function ¢ has bounded derivatives, say bounded by |||, it
follows that

|Z02r M+ b,y @) — T, )| < AWl + 21y — ¥l + Ay)
+ 22 @lloop* (M + ¥/, 00)),

which proves that

o lim TR ) = (0, ),
, Ay, — (U, U,
)= (t.y)

hence completing the consistency relation (4.5). O

THEOREM 4.4 (Convergence). The solution w"2vM to the numerical scheme ((4.3)—
(4.4) ) converges locally uniformly tow on [0, T) x R, as (h, Ay, M) goes to (0, 0, 00).

Proof. Given the above monotonicity, stability, and consistency properties, the conver-
gence of the sequence (w27 ) toward w, which is the unique bounded viscosity solution
to (3.11)—(3.12), follows from Barles and Souganidis (1991). We report the arguments for
sake of completeness. From the stability property, the semirelaxed limits

wi(t, y) = lim inf whAr Mg g7y
(h, Ay, M) — (0,0, 00)
@, y)— (1.9
wH(t, y) = lim sup whAr Mgl g7y
(h, Ay, M) — (0,0, c0)
()= (1. y)

are finite lower semicontinuous and upper semicontinuous functions on [0, 7] x R, and
inherit the boundedness of (w/-27*). We claim that w, are w* are, respectively, viscosity
super and subsolution of (3.11)—(3.12). Assuming for the moment that this claim is
true, we obtain by the strong comparison principle for (3.11)—(3.12) that w* < w,. Since
the converse inequality is obvious by the very definition of w, and w*, this shows that
w, = w* = w is the unique bounded continuous viscosity solution to (3.11)—(3.12), hence
completing the proof of convergence.

In the sequel, we prove the viscosity supersolution property of w, (a symmetric argu-
ment for the viscosity subsolution property of w* holds true). Let (7, ) € [0, T) x R and
¢ a test function in C}([0, T] x R) s.t. (7, ¥) is a strict global minimum point of w, — ¢.
Then, one can find a sequence (¢, y,) in [0, T) x R, and a sequence (4, A"}, M,) such
that

@,y) = @), (h,, Ay, M) — (0,0, 00), whn 8 Mo sy (3, y),

(¢, ¥)) is a global minimum point of w'47M — ¢,

Denoting by ¢, = (w27 — ¢)(£, ), we have w27 M > ¢ 4+ ¢, From the defini-
tion of the numerical scheme S"»2%™: and its monotonicity, we then get

Gn+ @y, 3,) = whe S My

i, Ay, My (4 !yl Ay My
=S Y (t;1+hﬂ’ Vs W Y )
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> 8" A (1 4y, 3y 0 4 80) = S MG 4 by, 3, 0) G
— max [/Z"]’lnqA’;/th(t’; + hy, y’;, (p) , Mh,,.Ar;,,Mﬂ(t’; + h,, y’/w (p)] + ¢,
which implies

min [‘/’(t,é, V) = T2 M (g + by, 30 @)
hy

o,y = M A M,y (p)] > 0.

By the consistency properties (4.5)—(4.6), and by sending » to infinity in the above
inequality, we obtain the required viscosity supersolution property:

. oo - . _ - “ - - - - ~
min [_az(t’ ¥) — Ve, +yvoy —To1, 7)) — '@, 3) . o, 5) — Mo(i, y)] > 0.
0

4.3. Numerical Tests

In this section, we provide numerical results for the (reduced-form) value function and
optimal policies in the martingale case and the trend information case, and a backtest
on simulated data for the trend information case.

Within this section, we will denote by w” the value function and by a* the make/take
strategy associated with the backward numerical scheme (4.3)—(4.4). Given a generic
controlled process Z and a control @ € A, we will denote Z* the process controlled by
a. Unless specified otherwise, such processes will be supposed to start at zero: typically,
we assume that the investor starts from zero cash and zero inventory at date t = 0 in the
following numerical tests. Finally, we will write indifferently w”(z, y, cp) or w'(t, y) :=
wh(z, y, 0) to either stress or omit the dependence in cp.

o The martingale case: in the martingale case, we performed the algorithm (4.3)—(4.4)
with parameters shown in Table 4.1. This set of parameters is chosen to be consistent with

TABLE 4.1
Parameters for Numerical Results in the Martingale Case

Parameter Value

(a) Market and Risk Parameters

12.5 EUR/contract
1.05 EUR/contract
0
0.05/s
exp(1/m)

20 contracts
2.5x 1073
100 s

NR TR O o >

(b) Discretization Parameters

Ny 100
Nr 500
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100

Inventory

FIGURE 4.1. Reduced form value function w”.

calibration data on the front maturity for 3-month EURIBOR future, see, for example,
Field and Large (2008).

Figure 4.1 displays the reduced-form value function w” on [0, T] x [— Ny; Ny]. This
result illustrates the linear bound (3.13) as noticed in Proposition 3.3, and also the
symmetry of w” as pointed out in (3.17). We also observe the monotonicity over R.. and
R_ of the value function w’ (¢, .).

In Figure 4.2, we display the optimal take and make policies. The optimal take policy is
represented as the volume to buy or sell with a market order, as a function of the time and
inventory (¢, y) € [0, T] x [— Ny; Ny]. We notice that a market order only occurs when
the inventory becomes too large, and therefore, the take policy can be interpreted as a
“stop-loss” constraint, i.e., an emergency rebalancing of the portfolio when the inventory
risk is too large.

The optimal make policy is represented as the regime of limit orders posting as a
function of the time and inventory (¢, y) € [0, T] x [— Ny; Ny]. For sake of simplicity, we
represented the sum of £“ and £° on the map. The meaning of this surface is as follows: 0
means that there is no active limit orders on either side, 2 means that there is active limit
orders on both bid and ask sides, and 1 means that there is only one active limit order
either on the bid or the ask side, depending on the sign of y (if y < 0 only the bid side
is active, and if y > 0 only the ask side is active). We notice that when close to maturity
T, the optimal strategy tends to be more aggressive, in the sense that it will seek to get
rid of any positive or negative inventory, to match the terminal liquidation constraint.
Moreover, we notice that close to date 0, the dependence in ¢ seems to be negligible,
which indicates that a “stationary regime” may be attained for large 7.

o The trend information case: in this case, we provide a backtest of the optimal strategy
on simulated data in addition to the plot of the optimal policy o*. We kept the same
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policy_take o

=50

&
100

(b) Optimal make policy

FIGURE 4.2. Numerical results for the martingale case: representation of optimal make
and take policies o*.

parameters for execution intensity and volume, price characteristics and costs, but we
chose a wider time period 7' = 2,000 s in order to observe multiple trade events. With
this set of parameters, we expect to observe about 100 trade events of average volume 20.
Note that the execution intensity A = 0.05, a value consistent with market activity of the
front quarterly EURIBOR future, is independent in our model to the trend information
w that we will describe below.
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1.0f

Trend

Inventory

FIGURE 4.3. Optimal policy o* at date t = 0.

Figure 4.3 displays the optimal policy at date ¢ = 0, in the plane (y, ¢ p). The policy has
central symmetry properties as expected in (3.17), and should be read as follows: dark
green zones represent a situation where a market order to buy must be sent, light green
means that a limit order is active only at bid, white means that limit orders are active on
both sides, light red means that a limit order is active only at ask, and dark red means
that a market order to sell must be sent. Let us provide a qualitative example: assume
that after the high-frequency trader acquired a positive inventory, she is informed that
price is going down, i.e., negative drift ¢p < 0. Therefore, the optimal strategy will be
either to cancel the bid limit order (light red zone) and keep ask limit order active, or
depending on the value of |cp|, send a market order to get rid of our positive inventory
(dark red zone).

We performed a benchmarked backtest on simulated data and a performance analysis
in this case. The first benchmark strategy o WoMO = (gmake. WoMO () corresponds to the
case where we do not allow the high-frequency trader to use market orders. It is computed
using the backward numerical scheme (4.3)-(4.4), but without taking into account the
obstacle part, which is equivalent to setting ¢y = co. The second benchmark strategy is
made of constant controls (also known as symmetric or constant strategy):

acst — (amake , cst, O)
amake esto.__ (1 1)
In order to make our simulated data backtest closer to reality, we chose to slightly deviate

from the original price model, and use a varying price trend. We simulate a price process
model given by

PtZPO‘i‘S(NtJF_N;)’
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where N* and N~ are the Euler scheme simulation of Cox processes of respective inten-
sities 7+ and 7~ defined as follows:

nt+n =K=0/8
dnt —dn =dw, = —0w,dt + ocdB,,

where K > 0,0 > 0,and o > 0 are positive constants, and B is an independent Brownian
motion. Note that we chose the sum 7w+ + 7~ to be the constant K, for simplicity sake: it
means that, disregarding the direction of price variation, the mean number of price change
per second is assumed to be constant P (| P, — P/| = §) = Kh + o(h), which provides an
easy way to calibrate the parameter K while reducing the dimension of the simulation.
The interpretation of this simulation model is as follows: we add an exogenous risk
factor B, which drives the price trend information @ as an Ornstein—Uhlenbeck process.
Notice that this supplementary risk factor Bis not taken into account in our optimization
procedure and thus has a penalizing impact on the strategy’s performance: therefore it
does not spoil the backtest. This model choice for the process (@) is a convenient way to
simulate the real-world situation, where the high-frequency trader continuously updates
her predictive information about short-term price movements, based, e.g., on the current
state of the LOB.

Therefore, qualitatively speaking, our optimization procedure is consistent with this
simulation model if we choose 6 and o s.t. The variation of the (reduced-form) value
function w due to predictive information is very small compared to the variation of the
value function due to other market events (e.g., an execution event).

This assumption is consistent with HFT practice since the HF trader is able to adapt
very quickly to a modification of this predictive information. Backtest parameters in-
volved in this simulation are shown in Table 4.2.

The interpretation of the trend information parameters is the following: independently
from the trade intensity A = 0.05, we consider the price trend, which is interpreted as the
expected return of the mid-price over the next few milliseconds, and is directed by the
state variable @ . In the stationary regime, this variable @ has a marginal distribution
L(w,) which is essentially a centered normal law of standard deviation o/+/26 ~ 0.32
with this set of parameters. Qualitatively speaking, using the 2-sigma rule, this means that
the process @ spends most of the time in the range —0.6 to 0.6. The value @, = 0.6 (resp.
@, = —0.6) represents qualitatively a 60% probability of an uptick (resp. a downtick) in
the next second. Such signal can be computed, for example, using the methods developed
in Cont and de Larrard (2013). Moreover, @ is a mean reverting process, of reversion

TABLE 4.2
Backtest Parameters

Parameter Value
K 0.2

6 0.2/s
o 0.2/s
Nuc 50,000

Ny 50
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TABLE 4.3
Synthesis Table for Backtest. Categories Are, from Top to Bottom: Relative
Performance Metrics, Period-Adjusted Performance Metrics, Absolute Performance
Metrics and Absolute Activity Metrics

*

OlWOMO

cst

Quantity Definition o o

Info ratio over 7' m(Vi)/o(V) 3.67 0.89 0.18

Profit per trade m(V3)/m( Q) 8.06 16.31 5.57

Risk per trade o (V) /m( Q%) 2.19 18.31 29.56

Mean performance  m( IA/T) 31,446.4 28,246.3 21,737.2

Standard deviation O’(f/T') 8,555.46  31,701.2 115,312
of perf

Skew of perf skew(V ;) 0.64 0.16 —0.007

Kurtosis of perf kurt(V ;) 3.82 3.31 7.02

Mean total m( Qo) 3,900.68 1,730.82 3,900.61
executed volume

Mean at market m( Qmarket.. 1,932.29 0 0
volume

Ratio market over  m( Qmarket.) /py( Orotal-) 0.495 0 0
total exec

speed 0.2/s, which can be qualitatively interpreted as the timescale during which a
prediction remains valid, in this case ;- = 5 s. This can be viewed as the timescale on
which the high-frequency trader will update her prediction about the price trend. Note
that in the case of STIR futures trading, this choice of reversion speed is consistent with
other market activity statistics: indeed, this reversion speed is greater than mid-price
update intensity (of order 0.01/s) and smaller than order book update intensity (of order
1 to 10/s) (see Field and Large 2008, for precise statistics).

Let us denote by 9 and ©” the Euler scheme simulation of the compound Poisson
processes 9¢ and ©°, with dynamics (2.3). Therefore, for « € {a*, «VoMO_ '}, we were
able to compute the Euler scheme simulation X* (resp. ¥*) of X (resp. Y¥), starting at
0 at r = 0, by replacing 9 (resp. ¥?) by 3¢ (resp. #”) in equation (2.4) (resp. (2.5)).

We performed Ny simulation of the above processes. For each simulation w €
[1...Nyc] and for a € {a*, aVoMO o), we stored the following quantities: the ter-
minal wealth after terminal liquidation VD}(w) = L(X*(0), Y*(w), P(w)), called “perfor-
mance” in what follows; the total exe(iuted volume Qe () := Z[o,n | f"}‘(w) — f/‘,"_(a))l;
and the volume executed at market O™t () 1= Z[O’ 17 16n(w)?|. Finally, we denote by
m(.) the empirical mean, by o (.) the empirical standard deviation, by skew(.) the empirical
skewness, and by kurt(.) the empirical kurtosis, taken over w € [1... Nyl

Table 4.3 displays a synthesis of descriptive statistics for this backtest. We first notice
that the information ratio over 7 of «* is more than four times that of "°MO  which
itself is about four times that of . Second, the per trade metrics can be compared to
the half-spread % = 6.25 EUR/contract, and we see that although the mean profit per
trade is smaller for the optimal strategy, the risk associated to each trade is dramatically
reduced compared to the benchmark.
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FIGURE 4.4. Empirical distribution of performance I7T'. The graph shows the number
of occurrences for each bin on N, = 50,000 simulations.

TABLE 4.4
Varying Risk-Aversion Parameter y: Data

Y a1 o(V) o*: info ratio aWVoMO (171 aWoMO- info ratio
0 8,585.7 3.68 32,095.7 0.88
1 x 1074 8,427.4 3.74 30,613.6 091
2x 1074 8,152.1 3.83 29,043.0 0.94
3x 107 7,880.1 3.88 27,322.3 0.98
4 %1074 7,594.4 3.92 25,752.1 1.02
5% 1074 7,252.7 4.00 24,300.8 1.06
1 x1073 5,538.2 4.31 18,724.3 1.29
2x 1073 3,730.8 4.62 13,882.4 1.51
3x 1073 2,785.9 4.71 12,156.6 1.55
4 %1073 2,255.1 4.65 11,428.1 1.51
5% 1073 1,845.4 4.71 10,858.2 1.47
1 x 1072 1,014.4 4.86 9,596.6 1.28

This is confirmed by the empirical distribution of performance, also shown in
Figure 4.4, where the dark blue represents the performance distribution of the opti-
mal strategy, the light yellow represents the performance distribution of the WoMO
strategy and the light purple represents the performance distribution of the benchmark
strategy. We see that not only benchmark has higher standard deviation, but also higher
excess kurtosis and heavy tails: this is due to the fact that inventory can be very large
for the constant strategy, and therefore it bears a nonnegligible market risk (or inventory
risk). Finally, we see that about 49% of the trades are done with market orders.

Our last numerical test is devoted to displaying the influence of the risk-aversion
parameter y. All other parameters remaining the same, we tested several values of y (as
indicated in Table 4.4), and characterized the performance of the corresponding strategy
by the pair (o( ¥ ;), m(V})), which gives the efficient frontier plot displayed in Figure 4.5.
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FIGURE 4.5. Varying parameter y for o* and «“Y°MO_ The x-axis represents the stan-
dard deviation of performance o (V') and the y-axis the average performance m(V 7)
estimated on Njy;c = 50,000 simulations of the model.

We measure the performance of each strategy empirically, both «* and « VMO, by running
Nyc simulations of our market model, and therefore we can observe a slight measurement
error on the points (o ( VT), m( I7T‘)). As expected, a reduction of y increases the standard
deviation of the strategy: this is due to the fact that a small y allows for large open position,
i.e., large inventory, and therefore the market risk is greater. For small y, performance is
also better since the investor can sustain large inventories, and therefore is less impatient
to get rid of it: in particular, the proportion of volume executed at market is increasing
in y. In real trading condition, the value of y should be tuned to attain the desired ratio
of mean/volatility of PnL. Cartea and Jaimungal (2015) observe similar behavior and
determine these frontiers analytically when market orders are absent. We also display in
Figure 4.5 the plot for o“°MO, that clearly exhibits a larger risk, which indicates that the
market orders in our optimal strategy are not only used to gain an extra performance, but
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also cut part of the risk of holding a nonzero position. Table 4.4 shows that if « WM and
a* are comparable in terms of mean performance, the standard deviation of a* is greatly
reduced compared to orV°MO This is reflected in significantly better information ratios
for a*. The choice of our simulation parameters explains the scale of improvements in o*
compared to o WV°MO: indeed, the choice A = 0.05/s implies that the typical delay between
two limit orders execution is about 20 s, when our parameterization for @ implies that
the typical delay between two price updates is about 1 s. Therefore, « VMO using solely
limit orders, is much slower (in terms of inventory adjustments) than the market’s typical
update speed, which is reflected in a much greater variance in «WoM© than in «*. For this
set of simulation parameters, we observe that for y > 2 x 102 (200 bps) the strategy
oVoMO will not trade anymore when starting in ¢ = 0 with a zero inventory y = 0, and will
have a zero mean and a zero standard deviation of performance. This is due to the fact
that, in this case, ask and bid limit order posting zones in « W°M© do not contain the line
(¢,0), t € [0, T]. Moreover, the standard deviation of @ VMO does not go under a certain
bound, approximatively 9,000 reached for y = 1072 (100 bp). Indeed, this strategy, using
only limit orders, cannot immediately cut its inventory with a market order, and so any
trade from the point y = 0 will lead to keep a nonzero position on the risky asset for a
noncontrollable time period. On the contrary, a* can accept larger values of y, up to 350
bp approximatively, before reaching the no-trade behavior, and increasing the value of y
leads to reducing the standard deviation of performance, following the trend shown in
Figure 4.5.

5. BEST EXECUTION PROBLEM AND OVERTRADING RISK

In this section, we apply our market model framework to a best execution problem.
The trading objective of the investor is to liquidate ¥, > 0 assets over the finite time
interval [0, 7). She is not allowed to purchase stock during the liquidation period, and
may only buy back the asset in case of short position. In this context, the investor posts
continuously a limit sell order (with a volume much larger that the required quantity %)
at the best ask price, and also runs market (sell) orders strategy until she reaches either
a negative inventory or the terminal date. By doing so, she hopes to trade as much as
possible at the ask price, and therefore avoiding to cross the spread.

Mathematically, this means that the investor uses a subset A, of strategies o = (a™k¢ =
(L7, L"), &) in A such that

(1,0) fort <,

(L, L)) =
e (0,0) fort > 1,

ke = (tn, & U (r, = X), witht, <7, §, <0,

where T = inf{f > 0 : ¥; < 0} A T. The value function associated to this liquidation prob-
lem is then defined by

T
(5.1 ve(t, x, y, p) = su/rl) E ), |:L(XT, Yr, Pr) — 7// K?Q(Ps)ds}
aeA, t

for (¢, x, y, p) € [0, T] x R? x P. With the notation in (3.6), the operator corresponding
to the limit order in A, is given by £'? = P + I'“, while the impulse operator associated
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to the market order in A4, is defined by

)
M o(t, x, y, p) = sup <p<t,x—ep—|e|<+s>—80,y+e,p),

cel~My—y,~(My~y) 1\(0} 2
where m_ = max(—m, 0). The DPE associated to (5.1) takes the form

. a
min [—avté —Pve—T%; + yg, vi— Mm] =0, on[0,7) xR x (0,00) x P

together with the terminal and boundary conditions

ve=L on({T}xRxRxP)U(0,7T)xRxR_ xDP).

The above boundary condition for nonpositive inventory is related to the overtrading
risk, which is the risk that the investor sold too much assets via the (oversized) limit order
at the best ask price. This risk occurs typically in execution problems on pro rata LOB
(see Field and Large 2008).

Again, in the Lévy case (3.9), the value function v, is reduced into

V(,(tv X, Vs p) = LO(X’ Vs P) + Wﬁ(tv y)v

where w, is solution to the integro-variational inequality

. BWZ 5
miny — ——= — y¢, +vey

0 ) 1)
= [w(l, y =)= wilt )+ 25+ (2 T e) (Il =1y — zl)} n(dz);

8
we(t, y) — sup [We(t,y+e)— (2 +8> (ly+el +le| — Iyl)—s()} } =0
—»)-1\0}

cel-My—v—(y
for (¢, y) € [0, T) x (0, 00), together with the terminal and boundary conditions
wi(t, y) = —eolyz0, Y, ) € ({T} x R)U ([0, T) x R_).
The associated numerical scheme reads now as follows:

wi(ty, ») = —golyzo, v €R,
Wit ) =0, k=0,...,N—1, y<0,
W?(lk, y) = max [']zh'A”’M(Z’ ¥, (p) ; MZvAy,M(t’ ¥, (,0)], k= 0,... N — 1, ye Y+ i

where Y1, = Yy N R,
T M1, . 9) = o(t, y) — hyoy* + hycp

+A%h (/0 [¢(t, Proj\(y — 2)) — o(t. »)]A"(dz)

[5G e) =2 wian)
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FIGURE 5.1. Numerical results for the simple liquidation problem (for ¢, = 0). On the
left side, level lines are indicated for the value function w,. On the right side, numbers
labeled represent the quantity to sell in the optimal market order control.

and
MEAME y, )

) P
= sup [so(t, Proj,(y +e)) — (5 +8> (ly+el+le| — Iyl)—so]-
€Y yN[—My—y.—(My—y)-1\{0}

In this case, the optimal policy shown in Figures 5.1 and 5.1b is simple to describe. The
state space is delimited in two zones: when the inventory is small, the HFT must wait for
her limit sell order to be executed; and when the inventory is large, the HFT must send a
market sell order to avoid the market risk related to holding a large position.

The frontier between the two zones (indicated in bold red in Figure 5.1b) can be
interpreted as an optimal trading curve, a concept that is extensively documented (see,
e.g., Guéant et al. 2013) in the optimal execution literature. The optimal trading curve
is the inventory that the investor should hold, seen as a function of time, in order to
minimize overall trading costs. Therefore, in the typical setting, the execution strategy
consists in trading via market orders to get as close as possible to the optimal trading
curve. Similarly, in our case, we can see on Figure 5.1b that the optimal strategy will
behave similarly for large inventories (i.e., when above the trading curve): indeed, we
observe that the quantities to sell are such that the market orders strategy would keep
the inventory close to the optimal trading curve, if no limit orders were allowed. Now,
in our case, we observe two specific features of the optimal strategy: (1) the optimal
trading curve does not reach 0 at maturity, and therefore the HFT has to get rid of
her inventory at market at final date to match the constraint Y7 = 0. This is due to
the fact that a supplemental gain is always achievable when the limit order is executed.
Therefore, this feature leads to an execution strategy where the final trade is bigger than
intermediary trades; (2) below the optimal trading curve, i.e., in the region where the
HFT trades via limit orders only, the sell limit order is always active, and can lead to
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an execution. Therefore, the inventory is always below the optimal trading curve, and
the distance between the current inventory and the optimal trading curve equals the
volume executed via limit orders. This differs from classic pattern-based best execution
strategies, for example, the U-shaped execution strategy that consists in trading a large
quantity at the beginning and at the end of the liquidation, and trade regularly small
quantities in between. Indeed, the optimal strategy does not provide a fixed pattern for
every execution, but provides the optimal action to take given the observation of the
inventory that is still to be sold and the market characteristics as, e.g., the mean traded
volume at ask per second A%, or trades volume distributions at ask .

Finally, let us notice that this strategy can be interpreted as a convenient way to avoid
the cost of crossing the spread during the liquidation of a portfolio, but we did not take
into account the impact of the market order on the transaction price. In the case of a pro
rata microstructure, available volumes offered at best prices are usually about 200 times
larger than the mean volume of market orders (see Field and Large 2008), and therefore
it is consistent to consider that there is no impact on the price for our market orders.
Yet, the model can easily be modified by adding an impact component in the obstacle
operator M, to take care of this effect. We also did not model the possibility that the
intensities A% and A? of execution processes may vary, and postpone this investigation for
future research.

6. CONCLUSION

In this paper, we investigate a framework to build up mixed HFR strategies in an exotic
microstructure, the pro rata microstructure. This microstructure can be encountered, for
example, on STIRs futures. We consider the situation of an investor willing to maximize
her terminal profit over a finite time horizon, and able to trade with limit and market
orders. We adopt the perspective of inventory management, which means that the in-
vestor’s primary objective is to keep her position on the risky asset close to zero at all
times, in order to avoid being exposed to market risk.

We provide a tractable market model that mimics the major features of our target
microstructure, while being parsimonious enough to fit a large range of products. We
detail the optimization procedure, by means of stochastic control, as well as the numerical
scheme used to solve the resulting HIB equation. Dimension reduction techniques as well
as interpretable decomposition of the profit’s dynamics are described. We also discuss
the practical implementation of such strategy.

In this particular microstructure, we are able to define and address two specific types of
risk: the overtrading risk, which is the risk of brutal variations in the investor inventory,
due to the fact that she does not control the quantity traded at limit; and the adverse
selection risk, which is the risk of market reacting unfavorably to the investor quotes.

For this last purpose, we introduce a new state variable, which we interpret as a predic-
tive price indicator, that allows us to balance our position before the price changes. This
last feature also provides an extra performance on our empirical tests. We provide sev-
eral examples of application of our framework, including a mixed limit/market strategy
when no information is available on price, a mixed strategy with superior information on
price, and a liquidation strategy without information on price. Moreover, we point out
the advantages of using market orders in this setup by benchmarking the performance
of our strategy against a pure limit order strategy, and we find that the mean/volatility
ratio is much smaller in this last case.
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We propose risk metrics to assess the performance of high-frequency (HF) trading
strategies that seek to maximize profits from making the realized spread where the
holding period is extremely short (fractions of a second, seconds, or at most minutes).
The HF trader maximizes expected terminal wealth and is constrained by both capital
and the amount of inventory that she can hold at any time. The risk metrics enable the
HF trader to fine tune her strategies by trading off different metrics of inventory risk,
which also proxy for capital risk, against expected profits. The dynamics of the midprice
of the asset are driven by information flows which are impounded in the midprice by
market participants who update their quotes in the limit order book. Furthermore, the
midprice also exhibits stochastic jumps as a consequence of the arrival of market orders
that have an impact on prices which can give rise to market momentum (expected prices
to trend up or down). The HF trader’s optimal strategy incorporates a buffer to cover
adverse selection costs and manages inventories to maximize the expected gains from
market momentum.

KEY woRDS: algorithmic trading, high-frequency trading, momentum trading, market impact,
adverse selection, risk metrics, inventory risk.

1. INTRODUCTION

Computerized trading has revolutionized the way in which financial markets work.
Nowadays, all major exchanges operate on electronic platforms where market partic-
ipants trade using powerful hardware and customized software. A general class of com-
puterized trading is known as algorithmic trading (AT) which refers to algorithms that
are designed to make trading decisions and to manage inventories without human inter-
vention. It is reported that over 60% in the United States, and over 40% in Europe, of the
trading volume in equities is due to AT, a figure that is expected to increase (CFTC and
SEC 2010). Within the AT class there is a more narrowly defined set of strategies, known
as high-frequency (HF) trading, that relies on ultra-high speed to process information in
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order to post, cancel, or amend buy and sell orders; and where inventories are managed
to ensure that no positions are carried overnight after markets close (see Cvitanic and
Kirilenko 2010).

Setting up a proprietary HF trading desk or becoming an HF trader requires high
initial sunk costs, but more importantly, it requires skills to develop strategies and main-
tain them so that they stay competitive and profitable (see Cartea and Penalva 2012).
Thus, understandably, there is a great deal of secrecy around what it is that HF traders
do and how they do it. Although for some electronic markets it is possible to obtain
detailed information of all messages sent to the limit order book (LOB), these publicly
available data do not include trader identity, hence it is very difficult to reverse engineer
HF strategies, measure HF traders’ trading profits, or assess the impact that HF trading
has on the quality of the markets.

Furthermore, an important state variable which is impossible to track with publicly
available data is the inventories that HF traders hold. The exception in the literature are
two studies that have access to the audit-trail tape which includes the identity of each
trader submitting orders to the LOB (Kirilenko et al. 2010 and Brunetti, Kirilenko and
Mankad 2011). Brunetti et al. use audit-trail data for all transactions in the September
2009 E-mini S&P 500 futures contract during the month of August 2009. Over that
period they find that only 11 HF traders are active in the market (out of 20,000 traders)
and find that the net position (aggregate inventory) of these HF traders starts at zero
at the beginning of the trading day, ends at zero at the end of the trading day, and it is
always between —3,000 and 3,000 contracts.!

The picture that emerges from the current literature on HF trading is that profits are
made by turning over positions over extremely short periods of time, where speed, which
is paramount to process information and to make trading decisions, is at the heart of
their competitive advantage. Another, much less explored trait of HF trading, is how are
inventories managed. Apart from the fact that HF traders aim at holding no inventories
at the end of the trading day, very little is known about how HF traders manage the
accumulated positions while both maximizing expected profits and obeying risk controls
on their inventory exposure.

In this paper we develop an HF trading strategy to post limit buy and sell orders which
are continuously updated based on the dynamics of the midquote price of the asset, the
shape of the LOB, and the trader’s accumulated inventories. The HF strategy results from
solving an optimal control problem where the HF trader maximizes expected terminal
wealth while optimally managing inventories and by taking into account trades where
she might be adversely selected. To this end, the optimal limit orders include a buffer to
offset losses that arise from trading with counterparties who are better informed about
the direction of subsequent price moves or losses that result from trades that have a
permanent (and adverse) price impact. Moreover, inventories are continuously managed
to ensure that at any point in time the strategy does not build large positions and to
prevent triggering unfavorable price movements when positions are unwound at the end
of the trading day.

Early work on optimal postings by a securities dealer is that of Ho and Stoll (1981).
More recently Avellaneda and Stoikov (2008) study the optimal HF submission strategies
of bid and ask limit orders where the authors perform a small inventory asymptotics in

IThe positions held by the HF traders are very low compared to those of the other traders. For instance,
buyers and sellers start the day with zero inventories and by the end of the day they have accumulated around
30,000 and —20,000 contracts, respectively.
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a symmetric model and assume that market orders arrive at Poisson times and the
fundamental price is independent of order arrivals. In general, very little is known about
the details of the strategies that are employed by AT desks or the more specialized
proprietary HF trading desks. Algorithms are designed for different purposes and to
seek profits in different ways (Bouchard, Dang, and Lehalle 2011). For example, there
are algorithms that are designed to find the best execution prices for investors who wish
to minimize the price impact of large buy or sell orders, e.g., Bertsimas and Lo (1998),
Almgren (2003), Kharroubi and Pham (2010), and Bayraktar and Ludkovski (2012).
Moreover, there are HF strategies that specialize in arbitraging across different trading
venues, and that seek to profit from market making and from short-term deviations in
stock prices, e.g., Cartea and Jaimungal (2013), Guilbaud and Pham (2013), Cartea,
Jaimungal and Ricci (2014), and Guéant, Lehalle and Fernandez Tapia (2011).

In this paper we assume that the HF trader maximizes expected terminal wealth and
is inventory and capital constrained. The inventory constraint is a consequence of the
time scale over which the HF strategies are designed to profit from buying and selling
assets. HF traders use their superior speed to process information and act ahead of
other slower traders. For example, some of these strategies include arbitraging the same
stock in different markets, thus absolute speed is all that matters; or to trade quicker
than other market participants to take advantage of short-lived price deviations from the
fundamental value of the asset. Admittedly, there are a great deal of HF strategies and
all we know is that their success depends on being able to profit from roundtrip trades
(buy followed by a sell or vice-versa). Therefore, because HF traders’ competitive edge
is speed, their strategies seek opportunities to enter and exit the market very quickly
(seconds or minutes) and, as a result, holding periods are extremely short. In other
words, speed cannot be employed only to execute one leg of a roundtrip trade and wait
until there is an opportunity to close the position. On the contrary, HF traders only
take positions that present a high chance of being closed very quickly and at a profit.
Consequently, HF traders’ inventories should never be too “far” away from the optimal
inventory level. The profitability of strategies that operate over “long-time” intervals
depends on more attributes than just speed and, for that reason, HF traders lose their
competitive advantage to more traditional professional traders.

In addition, capital requirements also constrain the amount of assets the HF trader
is willing (or allowed) to hold at any point in time. For example, if the HF trader builds
a large position in a stock, she will need more capital to be able to hold the position,
whether required by the exchange or by her own risk controls. Similarly, if at the end
of the trading day the HF trader has a large position to be carried overnight, she not
only faces the risk that the market will move against her before trading commences the
following business day, but the exchange will require collateral. Finally, traders know
that unwinding large positions is costly because their own trades may trigger adverse
price movements and this effect might be exacerbated at the end of the trading day.

Therefore, here we assume that the control problem solved by the HF trader maximizes
expected terminal wealth where inventories enter in the optimization program in three
different ways. First, the amount of assets that the HF trader can hold at any point
in time is between an upper and lower bound. Second, deviations of inventories from
zero along the entire path of the strategy, i.e., throughout the whole trading horizon, are
penalized. And third, at maturity (at most one trading day for HF traders) the inventory
is liquidated at worse prices than the best available quotes because HF traders have to
execute aggressive market orders to ensure that no positions are carried over after the
market closes. The use of market orders is costly because there is an exchange fee for
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taking liquidity as well as a high chance of causing adverse price changes when there is
not enough depth at the best quotes; the HF will receive less (pay more) than the best
bid (best offer) when she unwinds her positions at maturity.

Furthermore, our paper contributes to the literature in two more directions. First,
we propose risk metrics which are designed for HF trading strategies. Current off-the-
shelf risk metrics are intended for the more traditional investment strategies and fail to
provide the right decision-making tools and risk controls for HF trading. Risk metrics
for HF trading should encapsulate information on risk exposures that derive from risk
profiles over long (hours) and short (seconds or minutes) time scales. We propose risk
metrics which are based on the path of inventories throughout the entire period of
the trading strategy. Our risk metrics embed information about: the lifetime for every
inventory level; how quickly inventories return to their optimal level, how much time
is the strategy exposed to undesired levels of inventories; and what is the exposure to
terminal inventories. Thus, our risk metrics allow HF traders to fine tune their strategies
to obey risk controls and to trade off inventory risk against expected profits.

Second, in our model the innovations in the fundamental value of the asset are driven by
information flows and the arrival of market orders. Under normal market circumstances,
information is gradually impounded in the fundamental price of the asset by market
participants who are continuously updating their quotes in the LOB. Market orders, on
the other hand, cause prices to jump up or down by a random amount depending on the
arrival of news, noise traders coming to the market with large orders, informed traders
taking advantage of their superior or privileged information, and/or because market
orders arrive at times when there is not enough depth at the best quotes in the LOB to
fully absorb the orders.

We illustrate the behavior and performance of the strategies by showing how an
HF trader, who maximizes expected terminal wealth and faces capital and inventory
constraints, trades off expected profits against the variance and distribution of terminal
Profit and Loss (PnL), terminal inventory, and lifetime of inventories. Our analysis shows
that final inventory penalties (which proxies the cost of unwinding positions at expiry of
the strategy) affect the distribution of inventories at the expiry of the strategy, but have a
limited effect on the distribution of the PnL of the strategy. On the other hand, our results
show that penalizing inventories throughout the entire strategy (the penalization affects
inventory management but does not alter the PnL directly) has an important effect on
the three risk metrics we propose and provides a useful tool to trade off expected profits
against risks. For example, we show that there are ranges of the penalization parameter
where a small increase in the parameter causes a considerable reduction in the risks borne
by the HF trader (as given by our risk metrics), while expected profits are hardly affected.

Our results also show that during times when markets become one-sided, i.e., there
are more sell than buy market orders (or vice versa), the HF trader adjusts her strategy
to take advantage of the market momentum. For example, if it is expected that the
price of the asset will drift upwards, the optimal strategy consists in quickly building
a long position and then proceed to post limit buy and sell orders to make profits on
the realized spread. The optimal postings are such that inventories revert to an optimal
time-dependent position which is positive most of the time, but very close to (and at)
expiry the optimal inventory level becomes negative.

The rest of this paper is organized as follows: Section 2 formulates and solves the
HF’s optimization problem. Section 3 illustrates the behavior of the optimal limit orders
posted by the HF trader as a function of the model parameters and inventories. Section 4
proposes risk metrics for HF trading strategies. Section 5 shows how the HF trader
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employs the risk metrics to depict the tradeoff between expected profits and the exposure
to risks and it also discusses how the HF trader fine tunes her strategies to maximize
expected profits while obeying risk controls. Section 6 discusses further properties of the
optimal strategy. Finally, Section 7 concludes and in the Appendix we collect proofs of
our results.

2. THE HIGH-FREQUENCY TRADER’S OPTIMIZATION PROBLEM
2.1. Formulation of the High-Frequency Market Making Problem

The HF strategy we develop here is based on posting limit buy and sell orders to
profit from the realized spread which is the expected gain from a roundtrip trade. The
HF trader is continuously updating her positions in the LOB to reflect changes in the
midprice of the traded asset as well as other state variables, such as inventories and shape
of the LOB, that we discuss below. The midprice of the asset is the average of the best
bid and best ask and we assume that market participants that populate the LOB are
constantly updating their quotes as a result of new information arriving in the market.
We assume that the midprice (or fundamental price) S, of the traded asset satisfies

@.1) ds, = o d W + f lut(dy. di) — - (dy. do)

¥

where (W,)o</<7 is a standard Brownian motion, o is a positive constant, and u*(dy, dr)
are Poisson random measures’> on Ri x [0, T, independent of one another and the
Brownian motion (W,)o<,<r, with mean measures v=(dy, dt) = A* F(dy,) G=(dy») dt
where the distribution F* satisfies [, F (+d i) =1, [;° yi F(dy) < 400 (i.e., with finite
second moments) and G*(dy,) = Jre™ 2dy, with k* > 0. The distributions F* de-
termine the size of the impact of trades on the midprice, while the distributions G* are
related to the probability of limit orders at price y being filled. Below we discuss the role
of G* further. The counting processes corresponding to the arrival of sell and buy mar-
ket orders are M = [ fRi w(dy,ds) and M = foi fRi wt(dy, ds), respectively, and
are therefore Poisson processes with intensities A~ and A™. We often find it convenient
to work with the random variables €= whose distribution functions are F*. As usual,
we work on a completed filtered probability space (2, F, F = {F,}o<;<71, P) where F
is the natural filtration generated by the midprice (S,)o<,<7 and the counting processes
(]v,i)()gth which count the number of filled sell/buy limit orders that the trader posts.
We define N* more precisely below.?

Intuitively, we can view the dynamics of the midprice as the sum of two components.
The first component, the Brownian motion on the right-hand side of (2.1), captures
the changes in the midprice that are due to information flows that reach all or some
market participants who subsequently update their quotes. The other component, the
jump process with increments e "d M;" — e ~d M, represents the changes in the midprice
caused by the arrival of market orders that have a permanent price impact. Market
orders may come at times when there is enough liquidity in the market—hence prices
remain unchanged or change by a negligible amount; they may arrive at times when

2See Kiihn and Stroh (2012) for a thorough development of Poisson random measures for limit order
book modeling.

3For stock price models with HF data where the interarrival times of trades are not exponential, see
Cartea and Meyer-Brandis (2010) and Cartea (2013).
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liquidity is thin or the orders sent by traders with superior information and these trades
have a permanent impact on prices. The impact of trading on the midprice may also be
viewed as the action of informed traders. If an informed trader purchases (sells) shares,
they will only do so if the asset price is known to be going up (down). The resulting
increase (decrease) of the midprice following informed trading can be approximated by
an immediate, and permanent, price impact as we model here. Note we also assume
that the size of the jump in the midprice at the time of a market-order is stochastically
independent of the depth at which the market order eats into the book.

In practice market orders also have a temporary price impact which depends on the
type of information that triggered the trade and the resiliency of the LOB. For example,
if a large market order (or a series of one-side market orders) arrives it will eat into one
side of the LOB and it will take some time before other market participants update their
quotes. If the market order is a pure liquidity trade which is not motivated by private
information about the fundamental value of the asset, the price impact is temporary and,
everything else equal, the midquote will revert to the value prior to the arrival of the
market order. The time it takes for the midquote to mean-revert is determined by how
long it takes market participants to process market information (i.e., find out that the
trade is purely a liquidity trade) and repost resting orders to replenish the book. In our
model, market orders have either a permanent price impact or no price impact, but it is
possible to extend it so that market orders have a transitory price impact.

In our setting HF traders maximize expected terminal wealth and are constrained by
the amount of inventories they are willing to hold. As mentioned above, HF traders’
main competitive advantage is speed. HF strategies that profit from the realized spread
are designed to enter and exit the market over very short-term horizons (seconds, or at
most minutes) because the shorter the time scales the more likely are HF traders to take
advantage of speed to process information and execute roundtrip trades at a profit. In
our framework speed comes into play in two ways. One, we assume that the HF trader
is able to process information and send instructions to the exchange in microseconds.
Speed enables her to place optimal buy and sell limit orders in the LOB, i.e., how far
away from the midquote S, is it optimal to post a buy limit order S;— — §;” and a sell limit
order S,_ + 8" (with §F > 0), before other slower traders can make decisions or reach
the exchange. And two, because HF traders exploit their speed advantage to open and
close positions, optimal strategies generate a high turnover of inventories. Everything
else equal, HF traders prefer strategies with very short expected holding periods because
they are constrained by the amount of inventories they can hold long or short.

Thus, in the optimization problem that the HF trader solves, inventories ¢, are penal-
ized and managed as follows: First, inventories receive a penalty throughout the entire
path of the strategy, and, at maturity final inventory ¢ is liquidated using market orders
which are executed at worse prices than the best available quotes. The use of market
orders is costly because there is an exchange fee for taking liquidity as well as an adverse
impact on prices which is increasing, and generally convex, in the size of the inventories;
a market order will eat into the LOB away from the best quote. Finally, to avoid accu-
mulating large positions, the HF trader imposes a cap on the number of shares that she
can hold long or short at any point in time.

To formalize the investor’s problem we need to introduce some more notation. Let
N and N;© denote the counting processes for the market orders that filled the HF
trader’s buy and sell limit orders. Thus, the total inventory of the HF trader is given by
g: = N, — N  and so ¢, € Z for each ¢. Upon a buy or sell order being filled, the HF
trader pays (S,— — 3,7) or receives (S;— + &;7). We assume that a limit order at price level
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S,_ £ &* is filled (given that a market order arrives) with probability e~<*%"  Hence, k=
can be interpreted as the exponential decay factor for the fill rate of orders placed away
from the midprice, and the fill rate function can be written as AF = A* ¢ ™*+% which is
the rate of execution of a limit order. For queuing models of the LOB we refer the reader
to Cont, Talreja, and Stoikov (2010). For simplicity we assume that the LOB is instantly
replenished after a market order arrives and that the spread is zero.*

In terms of the Poisson random measures u*(dy, dt) introduced earlier, the count-
ing processes corresponding to the trader’s filled limit orders are written as N =
IN SR (5 400) nt(dy, ds). Note that N counts those events which lie above y» > §*
(representing market orders large enough to eat into that level of the limit order book)
regardless of the impact size y; on the midprice. Recall that the filtration F is the natural
one generated by both (S;)o<,<7r and (N,i)OS,ST and the jumps of S, coincide with those
of M, therefore the collection of compensated counting processes (N*, 7\\4,1)0S <7 Where
Nf = NF — [/ a* e+ ds and M = M — A* ¢ are F-martingales.

Finally, the HF trader’s wealth X, satisfies the stochastic differential equation

2.2) dX, = (S-+68")dN" —(S-—6)dN;,

and the investor seeks the strategy (8?)@57 which maximizes expected terminal wealth
while penalizing and constraining inventories. Therefore, the HF trader solves the control
problem

T
(23) H(tv X, q, S) = Sup IE [XT + ‘IT(ST - 0”1T) - ¢02/ qu dS
t

(5.%)15.\-5T€.A
Aff* :x’ql‘* :qa*gt— :S],

where ¢, € Z is the inventory position at time ¢, the terminal date of the strategy is 7' > ¢,
and A denotes the set of admissible strategies—strategies that are F,-predictable processes
such that inventories are bounded above by ¢ > 0 and below by ¢ < 0 both finite. Here,
¢ > 0 penalizes deviations of ¢, from zero along the entire path of the strategy, while
the term —a g% only penalizes deviations away from zero at maturity itself.> Moreover,
admissible strategies must obey upper and lower bounds on inventories: ¢ < ¢y, < ¢q,t <
s < T, where ¢,7 € Z with —0o < g < 0 < < +o00. In particular, if ¢, = g, then the
investor places only limit sell orders (i.e., she sets - = 400) and if ¢, = ¢, then the
investor places only limit buy orders (i.e., she sets § = +00). B

The penalty term ¢o’E[ ftT q? ds|F;] can further be motivated by noting that the total
value of the investor’s inventory (assuming a mark-to-market value at midprice and
ignoring jumps) is V' = f[T g5 dS;, where S¢ denotes the continuous component of the

midprice S. Hence its variance is
T
J’:,] =0’E |:/ ql ds f,]
t

([ o]+ on

40ur model could be extended so that the shape and depth of the book undergoes temporary changes in
response to the arrival or market orders that eat into the book and to reflect the update of quotes due to the
arrival of news. Moreover, a constant nonzero bid-ask spread can be incorporated, however, the qualitative
results do not change and essentially result in shifting the optimal drift by the half-spread.

5In the work of Guéant et al. (2011) final inventory is penalized with —«|g7|. In principle we can include
any liquidation penalty as a function of ¢ or any inventory integrated penalty that is an even function of ¢.

2
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which, up to the scale factor ¢, is the penalty we employ. In particular ¢ > 0 reflects how
severe the inventory controls are.

2.2. The Optimal Strategy

To solve the optimal control problem described above, a dynamic programming prin-
ciple holds and the value function (2.3) is the unique viscosity solution of the Hamilton-
Jacobi-Bellman (HJB) equation (see, e.g., Fleming and Soner 2006, chapter V):

1
(2.4) 0=20H+ E(;2assH— po’q®

+2tsup {e*K*S*E(H(z, X+ (S+68T),q—1,S+€") — H)
(S+

F (1= e YE(H(t, x, q, S+ ) — H)}
e sup{efk CE(H(,x—(S—8 ), g+ 1,S—e)— H)
Ul

+(1— e IE(H( x. g, S— )~ H)
subject to the terminal condition
2.5) H(T,x,q,8 =x4+q(S—aq),

and where x, S, and ¢ are the quantities at  — (and not ¢) and the expectation is over the
random variables e* and not over x, S, or g. Moreover, recall that the set of admissible
strategies imposes bounds on ¢,, this means that when ¢, = ¢ (¢) the optimal strategy is to
post one-sided limit orders which are obtained by solving (2.4) with the term proportional
to A~ (AT) absent. Alternatively, one can view these boundary cases as imposing §~ =
+00 (87 = +00) when g = ¢ (q).

Intuitively, the various terms in the HJB equation represent the arrival of market
orders that may be filled by limit orders together with the diffusion of the asset price
through the term %ozassH and the effect of penalizing deviations of inventories from
zero along the entire path of the strategy which is captured by the term ¢o2g>. The sup
over 8 contain the terms due to the arrival of a market buy order (which is filled by a
limit sell order). The first term represents the expected change in the value function H
due to the arrival of a market order which fills the limit order and the midquote S; jumps
up by the random amount €*; and the second term represents the arrival of a market
order which does not reach the limit order’s price level (but still causes a random jump
in the midquote). Similarly, the sup over §~ contain the analogous terms for the market
sell orders which are filled by limit buy orders.

To solve the HIB equation we use the terminal condition (2.5) to make an ansatz for
H. In particular, write

(2.6) H(t,x,q,8) =x+q(S—aq)+ hy(1),

which leads to a coupled system of ordinary differential equations (ODEs) for the
functions A,(7) and allows us to solve for the optimal feedback controls. Before pro-
ceeding, note that the function /,(¢) is related to the so-called reservation price of
the asset as in Ho and Stoll (1981). In particular, the reservation bid price r;” sat-
isfies H(t,x—r,q+1,s)= H(t,x,q,s) and the reservation ask price r;" satisfies
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H(t,x+r}', q—1,5)= H(t, x, q,s). In other words, the reservation bid (ask) price is
the price at which the HF trader is indifferent between buying (selling) and the inventory
increasing (decreasing) by one unit or not trading at all.

Let, ¥ = E[e*] be the mean jump size in asset price when a market-order arrives.
Then, substituting (2.6) in the HIB equation results in /,(f) satisfying

2.7)
dhy + 2 Tsupletq + e (ST — T —a(l = 2q) + hy_1 — hy))
5

+a7sup{—e g +e (8T —e —a(l +2q)+ hgr1 — hy)}, q#4q. 7.
U

po’q’ = -
8lhq + )»+SUP{5+C] + e b (5+ - 8+ - Ol(l - Zq) + hqfl - hz[)} - s—qu’ q= q’
5+

dhg +27supl—e g +e P (8 —e —a(l+29)+hg1 —hy) +e"2q, g =4,
! q

subject to /1,(T) = 0 which allows us to solve for the optimal feedback controls, in terms
of 4(?), as shown in the proposition below.

ProPOSITION 2.1 (Optimal Feedback Controls). The optimal feedback controls of the
HJB equation are given by

1
(2.8a) st (t, q) = s +e 4+ all —=2¢) —hy (O +hy(1), q#q.
and

1
(2.8b) 5 g) = — + e ol +20) —hya (O + (0, g £7.

Proof. Applying the first-order conditions directly to each sup term in the HJB equa-
tion (2.7) leads immediately to the result. O

To understand the intuition behind the feedback controls we first note that the optimal
8% can be decomposed into four terms. The first component, 1/« is the optimal strategy
that a risk-neutral agent would employ in the absence of both terminal date restrictions
(i.e., T = oo, below in Proposition 2.6 we study the limiting case when 77 — o0) and
inventory constraints. To see this, note that the expected gains from buying (selling) the
asset at the midprice S;, followed by selling (buying) it using a limit order at S,_ + §*
(S, — 87), is given by 8*e~*"%" which is maximized if the limit order is posted 1/x*
away from the midprice.

The second term shows that the HF trader incorporates the expectation of the jump
in prices, conditioned on a market order arriving, by posting limit orders which are
et = E[e*] further away from the midprice. In this way the HF trader recovers, on
average, the losses she incurs when her limit orders are filled by trades that have a
permanent price impact—for example, losses arising from trading with more informed
traders (adverse selection).

Furthermore, the term a(1 £ 2¢) ensures that positions neither become too large nor
too small, relative to the optimal inventory level, because at time 7" there are liquidation
costs. For example, the time T optimal spreads are given by 6% = 1/k* + &¢* + a(1F2¢)
and one can see that when ¢ > 0 (¢ < 0), the limit sell (buy) order is posted nearer
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to the midprice to increase the likelihood of selling (buying) the stock, which induces
inventories to revert to zero.

Finally, the term —/,_1(f) + h,(f), controls for inventories through time. As expected,
if inventories are long, then the strategy consists in posting limit orders that increase
the probability of sell orders being hit. Moreover, the function /,(#) also induces mean
reversion to an optimal inventory level as a result of penalizing accumulated inventories
throughout the entire trading horizon and the strategy approaching 7" as well as the other
parameters of the model, including ¢o>.

PRrOPOSITION 2.2 (Solving Reduced Value Function). If k¥ = k= = «, then write
hy(t) = % In w,(t) and stack w,(t) into a vector o(t) = [wg(t), wg_1(2), ..., wy(t)] . Further,
let A denote the (G — q + 1)-square matrix whose rows are labeled from q to q and whose
entries are given by B

g (et At —e A7) —po’kq®, i=gq,

A+ 6,7/c(%4r5++t>1(1*2¢1))7 i=q-—1,
(2.9) Aiy =
: — (Lt teta(1429)) - _
2 e (Gt rad20) =g 4 1,
0, otherwise.
Then,
(2.10) ot =M1,

where 1 =[1, ..., 1] is a (g — q + 1)-dim vector of ones.
Proof. See Appendix Al. O

As a direct consequence of Proposition 2.2, when the market is symmetric the spread
on the buy side with ¢ shares equals the spread on the sell side with —¢g shares.

COROLLARY 2.3 (Symmetry in Spreads). When «* = k, At = A, et = ¢, the optimal
spreads are symmetric in the sense that §**(t, q) = §7*(t, —q).

Proof. See Appendix A2.

Since we now have a classical solution of the HIB equation (2.7) which is also bounded
above and below, it is easy to see that the feedback controls in (2.8) are admissible and
the verification theorem below follows.

THEOREM 2.4 (Verification). Let hy(t) be a classical solution to (2.7).Then H(t, w, S,
q) = x + q(S — aq) + hy(?) is the value function of the trader’s control problem (2.3) and
the optimal controls are given by (2.8) in feedback form.

Proof. See Appendix B.
In the following proposition we show that the optimal HF strategy §**(z, ¢) induces

mean reversion in inventories—below in the simulations section we show that the speed
of mean reversion is increasing in the penalty parameter ¢.
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COROLLARY 2.5 (Mean Reversion in Inventories). Given the pair of optimal strategies
87(t, q), 87 (1, q), the expected drift in inventories q, is given by

1 o
Q1) pilg) 2 lim ——Elg, — gig, = g = 1™ (0t 000,

Proof. Itisstraightforward to see that the expected drift in inventories is given by the
difference in the arrival rates of filled orders. =]

There are two remaining interesting limiting cases to study. The first is in the limit of
being “far” from the investor’s maturity and the second is in the limit of being “near” to
the investor’s maturity. Since the matrix A has elements which are linear in the activity
rates, the time scale on which the “far” and “near” limits are valid is of the order
min (1/A7F, 1/17). The key mathematical results are recorded below.

PROPOSITION 2.6 (Limiting Spreads). Assume that k* = « and let (Soi(q) = % +et 4+
a(l F 2q). Then,

1. As T — oo, the limiting spreads are given by the (time independent) values

(2.12)
M) =85(@)—c"(q), q#q. and §(1,q)=58,(q)—c(q). q#7.,

where ¢*(q) = V=1 — v, and the vector v = %ln(U[U’ll]g) where the logarithm is
taken componentwise, £ denotes the index of the largest eigenvalue of the matrix A,
the notation [-], denotes the vector obtained by setting all entries to zero except for
the ¢" entry, and U denotes the matrix whose columns are the eigenvectors of A.

2. As t 4 T, the limiting spreads for q # q, q are given by

(2.13a) 5
5+(l, q) — 38—(Q) + |: (A+6*K(%+g+72aq) _ Afefk(%+s’+2a(qfl))) sinh(/(oz)
K

+( et —aTeT) — po’k(2g — 1)](T —t)4+o(T—1),

(2.13b) 5
87(t,q) = 5, (q) + [ (—)ﬁe”‘(%“tz"‘(‘[“)) + A*e”((%f”“‘”) sinh(ka)
K
— (et —aTe) + po’i(2g + 1)i|(T —t)+o(T—1).
Proof. See Appendix A3. O

As direct consequence of the previous result we have the following limiting behavior
of the strategies:

COROLLARY 2.7 (Terminal Strategy Approach). When k* =k, A* = A, e* = ¢ and
¢ =0, we have for q #q, q



RISK MATRICS AND HF TRADING STRATEGIES 587

. n . _
1z1¢HT1 9,87 (¢, q), Vg > 0, ltlTrrTl 9,87 (¢, q), Vg <0,

(2.14) 0 > and 0 <
_liTHTI 3,6%(t,q), VYq <0, _liTnTl 0,67 (t,q), VYq <0.
t t

This result tells us whether the strategy approaches its terminal strategy of 80i (¢) from
above or below. For example, if ¢ < 0 then §*(¢, g) approaches §; (¢) from below, while
if ¢ > 0, then 87 (z, g) approaches §; (¢) from above.

3. THE BEHAVIOR OF THE STRATEGY

In this section we illustrate several aspects of the behavior of the optimal strategy as a
function of ¢, ¢, a, A%, 7, —¢g. In all the examples of this section the terminal date of the
strategy is 7 = 10 seconds, k* = 25, 0 = 0.1, and upon the arrival of market orders,
the midprice jumps up or down by the amount 1/25, with probability 1/10, or 0, with
probability 9/10, so that E[e*] = ¢* = 1/250.

3.1. Liquidation Penalty and the Optimal Spreads as a Function of Time for Various
Inventory Levels

Figure 3.1 shows the behavior of the optimal spreads as a function of the liquidation
penalty &« = {0, 0.01} for different inventory levels. In the examples the arrival rate of
market orders is A* = 2 (there are on average 2 buy and 2 sell market orders per second),
g = —q = 3, and ¢ = 0. In this subsection we discuss the results for the sell spread, the
buy spread has a similar interpretation. In panel (a) the HF strategy is not penalized for
unwinding inventories at expiry, @ = 0, and we show the optimal sell postings 87, i.e.,
upon the arrival of a market buy order the HF trader is willing to sell one unit of the
asset at the price S, + 8. Thus, when @ = 0 and inventories are close to the allowed
minimum, the optimal posting is furthest away from the midquote because only at a very
“high” price is the HF trader willing to decrease her inventories further. However, as
the strategy approaches T and ¢, < 0, the optimal spread §* decreases. To understand
the intuition behind the optimal strategy note that if the terminal inventory g7 < 0 is

0.08 : : : : 0.08
0.07 q= -2 1 0.07} q= -2 /’,L
—~ 0,06 ] —~ 06l /|
3+ 0 + O S
= g=-1 = g=-1 —
= 0.05 S 0.05f .
< q=20 < q=20 —
[ i
2 a=1 2. 004 a=1 1
004 S
= q=2 = =2
% [ 4
£ 003 & 003
0.02 =3 0.02 =3 1
0.01 s 0.01 \ ‘ ‘
0 2 4 6 8 10 0 2 4 6 8 10
Time (secs) Time (secs)
(a) a=0 (b) a =0.01

FIGURE 3.1. The optimal spreads as a function of time for various inventory levels and
T = 10. The remaining model parameters are: A* =2, k* =25,¢* = L., 7 = —q =3,
¢ =0, 0 =0.1. Only the sell-side is shown as the buy-side is similar.
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FIGURE 3.2. The optimal spread at ¢ = 0 as a function of time for various levels of
¢ and . The remaining model parameters are: 7 = 10, A* = 2, k* = 25, ¢* = o1,
—q =¢q = 3,and 0 = 0.1. In the left panel « = 0 and in the right panel ¢ = 0.

liquidated at the price S — agr, then when « is sufficiently low and ¢; < 0, as well as
being fractions of a second away from expiry, it is optimal to post nearer the midprice
to increase the chances of being filled (i.e., selling one more unit of the asset) because
the price is not expected to move too much before expiry and the entire position will be
unwound at the midprice—making a profit on the last unit of the asset that was sold.

When ¢, > 0 and the strategy is far away from 7 it is optimal to post low spreads
because there is enough time before expiry to turn over positions. On the other hand,
when ¢, > 0 and the strategy approaches 7, it is optimal to post further away from the
midquote. Initially this result appears to be counterintuitive because one would expect
that it would be best to post nearer the midprice, rather than further, to increase the
probability of selling the asset at a price slightly above S, to reduce the long position
instead of closing the position at S7. Note however, that if the strategy is one second
away from expiry, the HF trader knows that on average there will be 2 buy/sell market
incoming orders and that there is a tradeoff between posting nearer or further away from
the midprice. The tradeoff consists in comparing what is the change in expected wealth
from posting a limit sell order far from the midprice compared to the change in the
expected wealth from posting close to the midprice. The former has a lower probability
of being filled than the latter, but overall the HF trader is better off, in expectation, if she
posts the sell limit order deeper in the LOB as shown by panel (a) in the figure.

When the penalty for liquidating terminal inventory is increased, as in panel (b), we
observe a change in the qualitative behavior of the strategy as T is approached. For
instance, panel (b) shows that when ¢, < 0 and the strategy approaches T, the spreads
increase—if the HF trader sells another asset close to expiry, it is at a price that ensures
that it would cover the liquidation penalty of agr per share. Similarly, when ¢, > 0 and
the strategy approaches 7, it is optimal to post very close to the midprice to increase
the probability of unwinding the long position with a limit order before T rather than
picking up the liquidation penalty.

3.2. The Optimal Spread at Zero Inventory as a Function of Time for Various Levels
of ¢ and o

Figure 3.2 shows how the optimal buy/sell spread changes as a function of the lig-
uidation penalty parameter @ and the inventory penalty ¢ when ¢, = 0. We recall that
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due to the symmetry of both the arrival rate of market orders and the size of jumps in
the midprice, the buy and sell spreads are the same when ¢, = 0 (as shown in Corollary
2.3). In our discussion we focus on the sell spread, the interpretation of the buy spread
is similar. In the left panel, « = 0 and we see that when ¢t < T the higher is the inven-
tory penalty ¢, the further away from the midprice is the optimal sell spread, but as the
strategy approaches T, all spreads, as a function of ¢, converge to the same terminal
value of ,%i + ¢*. The monotonic decreasing behavior is natural because, here, there is no
terminal penalty and the running penalty (driven by ¢) does not have time to constrain
the strategy.

The picture on the right-hand shows how the liquidation penalty affects the optimal
sell strategy. We observe that for low values of the liquidation parameter « the optimal
spread starts to decrease a few seconds before 7" and then increases. The intuition behind
this behavior is the following. When the strategy approaches expiry, and ¢, = 0, it is
optimal to lower the sell spread in the hope of acquiring a unit of the asset and have
enough time left for other market orders to arrive on the other side of the LOB to be
able to unwind the position. However, if the strategy is approaching 7 then there is not
enough time left to execute a roundtrip trade and this explains why the spread turns and
increases very close to 7. This can be seen as a direct consequence of (i) Corollary 2.7
which shows that the strategy (for ¢ = 0) must approach its terminal limit §; from below,
and (ii) the fact that the terminal limit lies below the far from maturity limit §*(z, ¢). On
the other hand, for high values of @ we see that as the strategy approaches expiry, the
spread increases because if the offer is lifted by an incoming buy market order, the HF
trader has very little time left to unwind her position before expiry and the spread has to
be high enough to cover the high-liquidation penalty.

3.3. The Optimal Spreads as a Function of Time for Various Inventory Levels and
Maximal Positions

Figure 3.3 shows how the optimal sell spread depends on the maximum amount of
shares ¢ (long or short) that the HF trader is allowed to hold. We assume that 7 =

10 seconds, A* =2, k* =25, 6% = 555, ¢ = 0,0 = 0.1, and & = 0.001. As expected, as
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FIGURE 3.3. The optimal spreads as a function of time for two inventory levels and
maximal positions with T = 10. The remaining model parameters are: A* = 2, x* =
25, 6% =55, ¢=0,0=0.1,and a = 0.001.
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FIGURE 3.4. The optimal spreads as a function of time for various inventory levels

when buy market orders are more likely AT = 6, A~ = 4. The remaining model pa-

rameters are: T = 10, k* = 25, et =55, 7= —¢=3,¢=0,0=01,and a =

0.001.

inventories get closer to ¢ + 1, which are given by the lines with highest spread in each
panel, the sell spread increases because only if the expected realized spread is higher will
the HF trader be willing to increase her short position in the asset. The figure also shows
that when the strategy is approaching 7" the optimal spread decreases or increases when
inventory constraints are ¢ + 1 or g, respectively. Finally, it is interesting to see that as
7 (q) increases (decreases), the maximum and minimum spread, which correspond to
inventories reaching the largest position (long or short) that can be held, do not vary
much when inventory bounds increase from 5 to 20. In fact, we observe that the effect of
a larger ¢ is to reduce the difference between optimal spreads that only differ by one unit
of inventory.

3.4. The Optimal Spreads as a Function of Time for Various Inventory Levels When
Buy Market Orders Are More Likely

Figure 3.4 shows the behavior of the optimal buy and sell spread when the arrival of
market orders is not symmetric. We assume that the intensity of arrival of buy market
orders is higher than that of sell orders, A* = 6, A~ = 4, and that T = 10, «* = 25,
et = %50, qg=-q=3,¢=0,0=0.1, and & = 0.001. The figure shows that for all
levels of inventory, the postings around the midprice will show a larger spread on the sell
than on the buy side because the HF trading strategy incorporates the fact that the value
of the asset is drifting upwards as a consequence of the arrival of more buy than sell
market orders. Thus, when the strategy is not close to expiry, posting lower spreads on
the buy side means that the HF trader expects to build a long inventory position because
inventories will on average appreciate in value due to the upward pressure in prices.
Finally, as the strategy approaches expiry, spreads on both sides of the book become
more symmetric to ensure that inventories are unwound.

3.5. Mean Reversion of Inventories: Speed and Level

In Figure 3.5 we assume that the strategy is far away from expiry and we illustrate
how the inventory drift (see Proposition 2.5) varies as a function of inventory and how
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this rate depends on the mean arrival rate of market orders and the parameter ¢ that
penalizes deviations of inventories from zero. In the left panel, the arrival rates of market
buy and sell orders are equal and we observe that the drift changes sign at zero inventory
level (for positive inventories the drift is negative, while for negative inventories the drift
is positive), thus the HF trader’s inventory mean-reverts to zero. The figure also shows
that the higher the penalty ¢, the quicker will inventories mean revert to zero.

In the right panel of Figure 3.5 the arrival rate of market sell orders is much larger than
that of buy orders. We observe that the drift changes sign at negative inventory levels,
and consequently, the HF trader’s inventory mean reverts to holding a short position in
the asset in anticipation of the downward pressure on prices due to the excess arrival of
sell market orders. Recall that the midquote price process is given by (2.1) so the HF
trader knows that the midprice is drifting downward, lima, o iIE[SH ar— SF]l=— %,
in which case it is optimal to always hold short positions, when far away from expiry,
because the value of the asset holdings is expected to decrease. Moreover, if the penalty
¢ is increased, inventories mean revert to values which are closer to zero.

In panel (a) of Figure 3.6 we show a 2-second snippet of one simulation of the midprice
where market buy and sell orders arrive with intensity A* = 2, and we also show how these
market orders cross with the HF trader’s limit orders. In panel (b) of the same figure we
show the dynamics of the HF trader’s inventory position over a 300-second window—the
picture clearly shows that inventories are quickly mean reverting to zero and that they
are always far away from the allowed upper and lower bound g = —¢g = 10.

4. RISK METRICS FOR HIGH-FREQUENCY TRADING STRATEGIES

HF trading is relatively new and relies on strategies which, as any other type of investment
in the stock market, seek to profit from buying and selling assets. However, one of the
differences between HF trading and any other type of activities that we observe in
the exchanges, is the speed at which HF traders are able to process information and
make trading decisions. Moreover, because speed is at the core of their competitive
advantage, it is logical that HF traders invest in skills to develop trading strategies based
on completing roundtrip trades as quickly as possible which is one of the reasons that
explain why inventories revert to an optimal level of inventory so rapidly.®

Therefore, everything else equal, HF traders prefer strategies which are less exposed
to inventory risk. Holding larger positions than the optimal one is risky for HF traders,
and holding smaller positions than the optimal one for a long period of time is also
risky. Ideally, HF traders prefer to hold small positions (relative to what other types
of market participants are holding) for a short period of time because the longer the
holding period, the riskier it is for them because they lose their competitive advantage
to the more traditional market participants—being able to take decisions in milliseconds
becomes less effective and less valuable.

Most risk metrics have been designed with the more traditional market participants
in mind. For instance, the variance of the PnL is a widely used risk metric to assess
an investment strategy that maximizes expected profits. However, this risk metric fails
to address, in a direct rather than indirect way, the tradeoff between inventory risk and
expected profits which is fundamental for HF trading. In the rest of this section we

%This is another striking difference between the behavior of HF traders and other investors, such as
traditional market makers, who are willing (and required by the exchange) to hold inventories for much
longer periods of time.
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propose risk metrics for HF trading strategies and illustrate them using the model we
developed above. We point out that the risk metrics proposed here have been designed
to be applied to all HF trading strategies, not only the ones discussed in this paper. The
risk metrics provide a tool to understand and quantify exposure to inventory risk (which
also proxies for capital constraints), as well as to enable HF traders to fine tune their
strategies by trading off inventory risk against expected profits.

4.1. Risk Metrics for High-Frequency Trading

In this section we discuss three risk metrics designed to assess the risk of HF strategies
which profit from making the realized spread in the intraday market. Thus, the risk
metrics are for HF market makers that meet all or some of the following: cannot or do
not wish to hold inventories that deviate from the optimal level for a long period of time;
employ strategies which turn over a vast amount of positions in the intraday market but
do not want to hold large inventories; are capital constrained; operate in markets where
liquidity varies throughout the trading day.

The first risk metric quantifies the variance of the PnL of the strategy, and the other
two metrics quantify the exposure that HF trading strategies have to inventory risk.
Below ¢; and X} denote the path of inventory and cash holdings respectively, followed
by a general HF strategy—i.e., not limited to the one developed above. We let E,[-] and
V,[-] denote the expectation and variance operators conditional on X, = x, ¢, = g and
Si-=S8.

1. Variance of terminal PnL:
4.1 Rt x.q, 8) 2 V[ X; + q7(St — aq})].

2. Variance of terminal inventory:

4.2) Rt, q) = Vi[q7].
3. Variance of lifetime inventory:
4.3) R(tg)2 > (1= (g")g) Qult.q).
ne{g,m,ﬂ

where (q*>1.q = ZHE{E 7} n Qn(ta ‘1) and

T
44 Q) 2B | o [ e =njas].
— l’ ¢

denotes the percentage of time (from ¢ to T') that the strategy holds an inventory of
n given that the strategy begins with g-shares. Moreover, note that Q,(z, ¢) defines
a distribution over the discrete set {q, ..., g} of possible inventory levels and that
risk metric R3(¢, ¢) assesses the strategy over the entire time horizon and not just
at maturity.

For the particular optimal HF strategy derived in this paper we can compute risk
metrics R, Ry, and R; in closed-form in terms of time ordered exponentials. It is possible
to further obtain an approximation of the three risk metrics by setting the strategy to
the limiting strategy of Proposition 2.6 where the spreads are not time dependent. As
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we saw in the previous section, for the particular parameters we have chosen to study,
the effect of the terminal date T starts to show only a couple of seconds before expiry.
In general the scale on which the strategy approaches its asymptotic value is very short,
consequently, using the limiting strategy provides us with an excellent approximation to
the strategy of Proposition 2.1. In the proposition below, we use the limiting strategy
to calculate in closed-form risk metrics R, R,, and R3. In A4 we show the fully time
dependent risk metrics.

PrOPOSITION 4.1 (Risk Metrics). Suppose the agent follows the strategy specified by
the limiting optimal spreads’ Sqi* given by Proposition 2.6. Let B denote the matrix whose
elements (labeled from q to q) are

—(A_ e %" 4 At e—m;*)’ i=gq,
Ate ™ i=gq—1,
4.5) B, = .
2 e %, i=qg+1,
0, otherwise,

and let V denote the matrix of eigenvectors stacked columnwise in decreasing order of its
eigenvalues. Then we have the following:

(1) B contains exactly one zero eigenvalue, and all other eigenvalues are negative.
(1) The terminal variance risk metric is given by

4.6) R'(t,x,q) = a(t,q) —m(t, ¢)* + 20q™my (2, ¢) + (b(g) — 2my (7, ¢))x
+(c(t, 9) — 2qmy(2, q)) S

where my(t, q) is provided in equation (4.5), a =Va, b = Vb, and ¢ = V& with 7,
b, and € provided in equations (A.10a), (A.10b), and (A.10c). Moreover, we have
(witht =T — )

@.7) Bt =7 (o). bit.q)=F 7 (1+0(x)),
~ 1~
c./(la ‘I) = E‘Illlxl Tz (1 + O(T))v
for j = 1 and equal zero otherwise. Here, the constants ¥, and W, are given in
(A.11a) and ry is given in (A.11h).
(ii1) The limiting terminal inventory risk metric is given by

(4.8) lim Rt q) = (VIV™ B, = ((VIV™ 71,)°

where B and y are (q — q + 1)-dim vectors with elements B, = q* and Yi =49
respectively.
(iv) For each inventory level, the limiting lifetime is given by

(49) TET@O Qn(ta q) = (V [V_l ln]l)q 5
where 1, is a (q — q + 1) vector of zeros except for the n'™ entry which equals 1.

7Recall these are independent of time and depend only on ¢.
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5. EXPECTED PROFIT FRONTIERS: FINE TUNING
HIGH-FREQUENCY STRATEGIES

Here we show the tradeoff between expected profits and exposure to volatility of terminal
PnL (R!), volatility of terminal inventory (R?), and volatility of lifetime inventory (R?).
Unless otherwise stated, in this section, the model parameters are 7' = 300 seconds,
Kkt =252 =2,0=0.1,7=—¢g =10, So = 100, and upon the arrival of a market
order prices jump by €* = 21—5 with a probability of % and do not jump with probability
9

10°

5.1. Expected Profit Frontiers and Risk Metrics for High-Frequency Traders

HF traders seek to maximize expected profits but also take into account the tradeoff
between profits and their exposure to inventory risk. In Figure 5.1 we depict three
investment frontiers that show the risk-return profile for the three risk metrics developed
above as the penalty parameter ¢ and the liquidation cost parameter « vary. To depict

16 ‘ : 16 e
)q 14} / increasing ¢ i 14} increasing ¢
= =i
[al [aB
EAE ERk
= g
5] 3
= 10p = 10p
3 ——a=10" 8 ——a=10"
= <
= gt —=—a =10 |- = 8t —=—a =107 |4
——a=1072 ——a=10"2
6 . 6 . . . .
0 2 4 6 8 0 1 2 3 4 5
Vol of Terminal PnL Vol of Terminal Inventory
(a) Risk Measure 1 (b) Risk Measure 2

increasing ¢

N

o

——a=10""

Mean Terminal PnL

©

—F—a=10"% |4

——a=10"2

1 2 3 4
Vol of Lifetime Inventory
(c¢) Risk Measure 3

o

FIGURE 5.1. The effects of the penalty parameter ¢ and the terminal liquidation cost
a on the risk-return profiles. Each point corresponds to ¢ = {0, 0.01, 0.1, 1, 5, 10}.
The investment horizon 7' = 300 seconds and the remaining model parameters are
k* =252 =2, e* = J-a* where a* are independent Bernoulli r.v. with success prob
of %, 0 =0.1,7 =—¢ =10, and Sy = 100.
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the frontiers we use the optimal strategy in Proposition 2.1 and calculate the risk metrics
by numerical integrating the system of ODEs (A.3) and (A.6).3

Panels (a), (b), and (c) show the tradeoff between the mean of the PnL and the
volatility of the PnL, volatility of terminal inventory, and volatility of lifetime inventory,
respectively. The three panels show that increasing the inventory penalty parameter ¢
reduces both the mean PnL and the exposure to risk as measured by R, R, and Rj.
Moreover, it is interesting to see that there are ranges where fine tuning ¢ can significantly
reduce the risk of the strategy without a significant reduction in expected profits.

The panels also show how the expected profit frontiers depend on the liquidation
penalty «. In panels (a) and (c) we observe that the liquidation penalty has virtually no
effect on the tradeoff between the mean of the PnL and both the volatility of the PnL and
the volatility of lifetime inventory. On the other hand, panel (b) shows that the frontier
that depicts the tradeoff between expected profits and the variance of final inventory is
mildly affected by low values of the liquidation penalty, but when the penalty is increased
to a = 0.01 the frontier shifts to the left by an economically significant amount.” A shift
to the left implies that by increasing « (and not varying ¢) the HF trader can achieve the
same level of expected profits and considerably reduce her exposure to final inventory
risk.

Overall, Figure 5.1 shows that HF traders who maximize terminal expected wealth
and are constrained by inventories and capital requirements can fine tune their strategies
to find an optimal point in the expected profit frontiers. The constraints are either self-
imposed or required by a regulator or the exchange and the severity of these constraints
will determine what is the HF trader’s optimal choice.

5.2. Distribution of PnL, Terminal Inventory, and Lifetime Inventory

5.2.1. Symmetric arrival of market orders. Moreover, to further understand how HF
traders can fine tune their strategies to maximize expected profits, while obeying risk
controls, we employ 10,000 simulations'® and illustrate the effects that the penalties ¢
= {0,0.1,2} and « = {0,0.001,0.01} have on the distribution of the PnL, terminal
inventory g7, and inventory lifetime when the optimal strategy derived in Proposition
2.1 is employed. We recall that the model parameters are A* = 2 (i.e., symmetric arrival
of market orders), k* =25, = —q = 10,0 = 0.1, T = 300 seconds and upon the arrival
of a market order prices jump by e* = % with a probability of % and do not jump with
probability % The results are reported in Panel A of Table 5.1.

8Note that the various matrices and vectors appearing in these ODEs will be time-dependent when the
optimal strategy from Proposition 2.1 is inserted—which is why numerical integration is necessary.

9We note that for panels (a) and (c) the expected profit frontiers that result from employing the optimal
limiting strategy in Proposition 2.6, and calculating the risk metric using the results in Proposition 4.1,
coincide with the numerical solution of the optimal strategy in Proposition 2.1 presented here—the effect of
the terminal date 7" on the expected profit frontiers is negligible.

100ne path of the simulation is obtained by generating the time of the next market order (occurring
at a rate of AT 4+ A7); generating a uniform random variable to decide if it is a buy/sell (it is a buy with

probability ); generating a uniform random variable to decide if the limit order on the appropriate

_AT
IREVE
it

side of the book is filled (occurs with probability e ). Moreover, the cash and inventories are tracked
and the process repeated until maturity at which point any remaining inventory is liquidated (accounting for
the liquidation cost). It is important to note that this process effectively prevents the optimal spreads from
being negative, because a negative spread implies that market orders arrive faster. However, here market
orders always arrive at the specified rate. See Section 6 for further discussion of this and related points.
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The table shows the mean and standard deviations of the PnL, lifetime inventory, and
terminal inventory from following the optimal policy. We observe that for any level of
liquidation cost «, the effect of an increase in the penalty ¢ reduces both the expected
profit and its standard deviation.

It is also clear, that everything else equal, the HF trader will prefer strategies where the
lifetime inventory is concentrated around the optimal level of inventories which in this
case is zero because AT = A~. In the table we see that penalizing asset holdings along the
entire path of the strategy with ¢ = 2 ensures that inventories revert to zero very quickly.

Panel A clearly shows that the higher is the liquidation penalty and the higher is
the penalization of inventories throughout the entire strategy, the terminal inventory
is more concentrated around zero. This information will be used by the HF trader to
choose among strategies with similar PnL distributions by picking the ones that are least
exposed to terminal inventory.

Thus, given the liquidation costs (which proxy for the price impact of large market
orders as well as capturing the fees charged by the exchange for taking liquidity) the HF
trader will fine tune her strategy by looking at Table 5.1 and picking a preferred ¢ and/or
by looking at the expected profit. For example, an HF trader that is highly constrained by
the amount of inventory that she can hold at any point in time, will select an HF strategy
with a high ¢ at the expense of low expected profits—the HF trader must ensure that the
expected profits are sufficiently high to allow her to recover the fixed and variable costs
from being in the business.

Finally, we remark that the liquidation penalty « seems to be useful only to reduce
the volatility of the final inventory. On the other hand, ¢ plays a prominent role in
the distribution of the PnL, terminal inventory, and lifetime inventory. The inventory
penalty parameter ¢ is self-imposed by the HF trader and captures how binding are the
constraints on intraday inventory exposures for the HF trader which could be different
depending on the market—and particular asset—she is trading.

5.2.2. Asymmetric arrival of market orders. Above we assumed that the arrival rate
of market buy and sell orders was the same, on average there were four market orders
per second and half of them were buy and the other half were sell. Here we proceed as
above but assume that the arrival of market orders is asymmetric, AT = 1 and A~ = 3,
so that on average there are four market orders per second but there are much more sell
than buy orders (market momentum). We perform 10,000 simulations and the remaining
parameters are as above: ¢ = {0,0.1,2}, & = {0,0.001,0.01}, x* = 25,7 = —¢ = 10,
o =0.1, T = 300 seconds and upon the arrival of a market order prices jump by e* = %
with a probability of % and do not jump with probability % We report the results in
Panel B of Table 5.1.

Panel B shows that when inventories are not penalized throughout the entire strategy,
the mean PnL in the asymmetric market is higher than the mean PnL resulting from a
symmetric market. This occurs because in the former the strategy benefits from roundtrip
trades as well as inventory appreciation. When the strategy is far away from expiry it is
optimal to quickly build a short inventory position, and then start executing roundtrips
around that short optimal level. The excess arrival of market sell orders exerts a downward
pressure on the midquote which means that on average the HF trader earns a profit on
short positions.

Panel B also shows that even though the HF trader can profit from the expected
appreciation of her short position, if ¢ = 0.1 her inventory levels are “forced” to be



RISK MATRICS AND HF TRADING STRATEGIES 599

6000 5000
=0 [

0

5000 4000

4000
3000

3000

2000
2000

6000 5000
=01 =01

5000 4000

4000
3000

3000

2000
2000
1000 1000
0 0
10 10 -10 -5 0 5 10
qar
6000 4500 -
¢=2 M 4000} | ¢ =2
5000
3500
4000 3000
2500
3000
2000
2000 1500
1000
1000
500
0 0
10 5 0 5 10 -10 5 0 5 10
di ar
(a) Lifetime Inventory Distribution (b) Terminal Inventory Distribution

FIGURE 5.2. Distribution of inventory using lifetime inventory and terminal inventory
levels from following the optimal policy with AT = 1, A~ = 3 (white bars), and A= =2
(gray bars), k* = 25, ¢* = -La* where a* are independent Bernoulli r.v. with success
prob of 1—'0, qg=—q=10,0 =0.1, T = 300 seconds, « = 0.001, and ¢ =0, 0.1, and 2

(from top to bottom).

closer to zero and these appreciation gains are forgone. Furthermore, if the penalization
of inventory is further increased to ¢ = 2, then the distribution of the PnL in the
asymmetric market shifts to the left of that of a symmetric market. The intuition is that
in an asymmetric market the expected appreciation gains are an important component
of the PnL, but these are considerably curbed by ¢.

Figure 5.2 shows histograms of lifetime inventory, column (a), and terminal inventories,
column (b), for both the symmetric (gray bars) and asymmetric (white bars) markets.
Column (a) shows that when the penalty parameter ¢ is increased, the distribution of
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lifetime inventory becomes more symmetric and centered at zero. When ¢ = 0 the optimal
strategy profits from the expected decline in prices by building a short position in the
asset and then performing as many roundtrips as possible, but always reverting to an
optimal short inventory position—the strategy reaches the minimum allowed ¢ = —10
and spends most of the time between ¢ = —9 and ¢ = —10. As the inventory penalties are
increased, the optimal strategy relies less on gains via inventory appreciation and more
on roundtrips with inventories reverting to zero.

Column (b) shows that when ¢ = 0 the distribution of terminal inventory is negatively
skewed and to the left of that of the symmetric market. As the penalty parameter ¢ is
increased the distribution of terminal inventory becomes skewed to the right. Initially
this result may seem counterintuitive because one would expect that in a market with
negative momentum it is always optimal to keep a short position which is either unwound
fractions of a second before T or liquidated at time 7. But on the contrary, the figure
shows that the histogram is positively skewed and that the mean final inventory level is
also positive. To understand the intuition behind this result assume that we are at expiry
or milliseconds before expiry. In this case the chances of completing a roundtrip trade
are essentially zero. Thus, the HF trader knows that if anything she can only execute the
first leg of a trade to then liquidate it at the midprice and pick up the liquidation penalty.
If we assume, for simplicity, that the liquidation penalty is « = 0 and we have reached
expiry, the best strategy is to maximize the probability of being filled on either side of the
book—the same argument that follows still applies if the strategy is microseconds before
expiry. In this case the optimal deltas are given by §* = § = 1/k + & (see Proposition
2.1) and the fill rates are AT = A*te™%. Obviously A~ > AT, because A~ > AT, and
one can verify that although at the beginning of the strategy it is optimal to build short
positions to gain from the expected fall in prices (see panel (b) in Figure 3.5), as we
approach expiry the optimal postings will be such that the HF trader is more likely to
be buying rather than selling the asset. This explains why we see the positive skew in the
distribution shown in the last picture of column (b) in Figure 5.2 for ¢ = 2. We remark
that although this effect is always present at times close to expiry, in our examples it only
becomes visible in the last picture of column (b) occurs because a high ¢ “forces” the
strategy not to deviate from zero inventories before 7', but at the last moment the optimal
limit orders are more likely to be filled by sell, rather than buy, market orders. Therefore,
at the end of the strategy there is an upward pressure on inventories and the distribution
of terminal inventory is shifted and skewed to the right.

Finally, if we look at the last pictures of columns (a) and (b) we corroborate the
intuition given above to explain the positive skew in terminal inventories. To this end,
note that although the distribution of lifetime inventory is left skewed, the distribution of
the final inventory is skewed to the right, which confirms that very close to and at expiry
the optimal strategy is to increase inventories as much as possible—this last upward
pressure on inventories is the same for all cases, but only becomes visible for high ¢.

6. CONSTRAINED STRATEGIES

As a final note, we discuss the issue of negative spreads (8 < 0). Recall that conditional
on the arrival of a market order, the probability of a limit order at price S, + §F being
filled is assumed to be e« resulting in a rate of arrival of filled limit orders of AT =
AT Ko Consequently, negative spreads (8 < 0) can be interpreted as increasing the
rate of arrival of market orders. However, this may not be a desirable feature. To correct
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FIGURE 6.1. Comparison between the exact constrained spreads (solid lines) and the
spreads computed by constraining afterwards (circles). The remaining model parame-
tersare T =10, =0.001,¢ =0.1, k" =k~ =25, =&~ = ﬁ,ﬁ =—¢q=10,ando
= 0.1. The inventories decrease from 10 to —9 from the smallest spreads to the largest.
The thick lines show the spreads at the mean-reverting inventory level: top panels g =
0, bottom panels ¢ = —1.

this effect we can restrict the spreads to be nonnegative. In this case, the optimal controls
are given by

(6.1a) 87(¢, q) = max <Kl+ + et +a(l —2q) — hy_1(t) + hy(0), O) . q4#—q.

and
(6.1b) 87 (¢, ¢) = max <Kl_ +e" +a(l +2q) = hy1(2) + hy(1), 0) q#9q,

rather than (2.8). Upon substituting the feedback controls into the HIB equation the
resulting coupled system of ODEs no longer admits a closed-form solution. However, it
is straightforward to numerically integrate this system.

Figure 6.1 compares the spreads computed by numerically solving the ODEs to the
spreads computed by ignoring the constraint but then replacing §* — max(s*, 0) af-
ter the fact. This after-the-fact truncation of spreads to nonnegative values is how our
simulations are carried out. Notice that for most of the inventory levels corresponding
to small/moderate spreads the exact constrained spreads and the spreads constrained
afterwards are essentially identical. Only at large spreads, corresponding to short inven-
tory levels on the sell side of book, are the solutions different. However, these inventories
are only rarely attained and the impact on the overall strategy appears to be minimal.
The highlighted spreads correspond to the mean-reverting inventory levels—measured
by the highest lifetimes of inventory. Only the sell side is shown here, the buy side is
similar except that ¢ and —q are interchanged in the sell side analog to Figure 6.1(a)—as
required by Corollary 2.3—while in the analog to Figure 6.1(b), the symmetry is only
approximate.
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7. CONCLUSIONS

We propose risk metrics for HF trading strategies that profit from market making at
very high speeds. The HF trader maximizes expected terminal wealth, and is capital
and inventory constrained. These constraints enter into the optimization problem by
penalizing accumulated inventories throughout the entire strategy, imposing a financial
penalty for liquidating terminal inventories, and by imposing a cap on the amount of
accumulated inventories that the HF trader can hold, long or short, at any point in time.

The risk metrics calculate the variance of terminal PnL, variance of terminal inventory,
and the variance of lifetime inventory. We show that these metrics provide information
that enables HF traders to fine tune their strategies to trade off expected profits against
exposure to different metrics of inventory risk (which also proxy for capital constraints).
We remark that the risk metrics we propose are for HF trading strategies in general and
not limited to the particular ones discussed here.

For the optimal strategies we develop here, our analysis shows that final inventory
penalties (which proxies the cost of unwinding positions at expiry of the strategy) affect
the distribution of inventories at the expiry of the strategy, but have a very limited
effect on the distribution of the PnL of the strategy. On the other hand, penalizing
inventories throughout the entire strategy (the penalization affects inventory management
but does not alter the PnL directly) has an important effect on the three risk metrics we
propose. For example, we show that there are ranges of the penalization parameter
where a very small increase in the parameter causes a considerable reduction in the risks
borne by the HF trader (as given by our risk metrics), while expected profits are hardly
affected.

Furthermore, the strategies include a component to recover adverse selection costs and
induce mean reversion of inventories to an optimal level. This optimal level can change
sign throughout the life of the strategy. When markets are asymmetric (arrival of sell
market orders is different from that of buy orders) the optimal strategy benefits from both
inventory appreciation and roundtrip trades. In a market with positive momentum—the
arrival rate of buy market orders is higher than the arrival rate of market sell orders—
the optimal strategy starts by quickly building positive inventories and is immediately
followed by executing roundtrip trades while reverting to a time-dependent positive
inventory level. However, as expiry is approached, the optimal postings are such that
the optimal inventory level decreases and changes sign from positive to negative. This
happens because very close to or at expiry the chances of executing roundtrip trades
are virtually zero, and the expected gains from inventory appreciation (due to market
momentum) are also very low, so the optimal strategy is to maximize the probability of
being filled, and then liquidate the position, which in a market with positive momentum
means that the optimal inventory level very close to or at expiry is negative.

Finally, we also discuss other possible risk metrics that are closely connected to the
risk metrics we propose. In particular we show that the distribution of the lifetime
inventory provides important information for HF traders who are capital and inventory
constrained. For example, everything else equal, an HF trader prefers a strategy where
inventories are turned over very quickly but the lifetime inventory is highest for the
optimal level of inventory (which is not necessarily zero as discussed above). Thus, to
provide further insights into the fine tuning of the optimal strategies derived here, we
show the trade off between expected profits and the distribution of lifetime inventory as a
function of the parameter ¢ that penalizes inventories throughout the entire strategy. In
particular, we show that small increases in ¢ have an important effect on the distribution
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of lifetime inventory while the distribution of the PnL (expected profits) is much less
affected by this parameter—this provides a useful tool to fine tune HF strategies.

APPENDIX A: PROOFS
A.1. Proof of Proposition 2.2

Inserting the controls (2.8) into the HIB equation (2.7) and writing /,(?) = % Inw, (1),
after some straightforward computations, one finds that w,(?) satisfy the coupled system
of equations

(A1) 9,;w(f) + Aw(t) = 0.

The boundary condition /,(7) = 0 translates into w,(7") = 1. This is a first-order coupled
system of ODEs. The solution to (A.1) is trivially given by (2.10).

A.2. Proof of Corollary 2.3

Let @, (1) = e"‘“lzwq (1), then through straightforward computations we see that 9,® +
Aw = 0 subject to @,(T) = ¢*?’ where

—¢02Kq2, i =g,
A, = A GTo), i=qg—1,q+1

0, otherwise.

Clearly, this system is symmetric under ¢ — —q, therefore ®,(f) = ®@_,(¢). Fur-
thermore, w,(f) = w_,(¢) and hence hy(t) = h_,(¢). Finally, the optimal feed-
back control §7*(z, ¢) = % +e+a(l —29) —hy_1()+ hy(t) = % +e+a(l+2(—q)) —
h,(qfl)(l) + hfq(l‘) = 57*(I, —q). O

A.3. Proof of Proposition 2.6

Part 1: Clearly, eA"=) = UePT=DU~! where D is the diagonal matrix of eigenvalues of
V. We then have exp{A(T — )}1 = Uexp{[D](T — 1)}U~'1 + o(exp{D¢(T — t)}), where
[D], denotes the diagonal matrix whose entries are all zero except for the £ entry. Next,
notice that exp{[D]¢(7 — 1)}U~'1 = [U~'1], e®(7=". Consequently, h(r) = 24(T — 1) +
%ln(U[U‘ll]g) 4+ o(T — t) and the result immediately follows since the linear term is
independent of ¢ and applying Proposition 2.1.

Part 2: We have eA7=) =1 4+ A(T — t) + o(T — t), therefore w(t) = 1 + AN(T — t) +
o(T — t)and h(r) = %Al (T — t) 4+ o(T — t). Moreover, for ¢ # ¢, ¢ we have

(Al)q — )\’+€—K(Kl+8+—(x(1+2q)) + )L—e—:((%+£’+a(2q—1)) + qK()»+E+ _ )\_E_) _ ¢(72Kq2.

Using Proposition 2.1, after some tedious computations we arrive at the result.
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A.4. Proof of Proposition 4.1

Part 1: Since the rows of B sum to zero, and nondiagonal entries are positive, it
represents a generator matrix of a Markov chain. Consequently, 1 is an eigenvector with
eigenvalue zero and its remaining eigenvalues are negative. This proves part 1.

Part 2: We compute M(t, x, ¢, S) = E,[ X7+ qr(Sr —a gq7)] and M(t, x, q, S) =
E/[(X7 + qr(Sr — a q7))*] under the strategy §; separately. Clearly, M;(t, X, q;, S;) are
martingales under any strategy, therefore they must each satisfy the following PIDE:

(A.2) |
0=0M;+ Edzasij
Fat {e*”**w)E(M_,-(z, X+ S48 g -1, S+e) — Myt x, g, 5))
+ (1= e O)EM (1, x, . S+€7) = M(t, %4, )
+ A" {e_’(aif(")E(Mj(t, xX—84+687(9),q+1,S—€)— Mt x,q,9)

+ (1= e TR (1, x,q. S— €)= Myt x.q, )}

forqg =q,q +1...,q.Here and in the remainder of this proof, we have written § 7*(¢g) =
87*(g) = 400 to avoid having to treat these boundary cases separately. B

Solving for M: Using the ansatz M| = x + ¢(S — ag) + m (¢, ¢) then after some
tedious computations, m;(q) satisfies

(A.3) om +Bm; +0 =0,

where the vector 6 has elements

(A.4) 0, = (A" —e i) g+ e TORE (57(q) — et — a1 - 29))
+e DT (5 (g) — e~ — a(l +29))

subject tom; (7)) = 0. Delicate treatment of the zero eigenvalue of the matrix B is required,
but it is not difficult to show that the solution to (A.3) is given by m; = Vm;where the
components of m; are

V'eyz, j=1,
(A.5) ) = dje

(V—lg)j e -1

o j> 1.
d; 7=

Solving for M,: Using the ansatz M» = (x + ¢(S — aq))*> + ma(t, x, g, S) with ms(t, x,
q,S)=ualt,q) + b(t, q) x + c(t, q) S, we find that a, b, and c satisfy the coupled system of
equations

(A.6a) da+Ba+Yb+ Qc+v=0,

(A.6b) %b+Bb+x =0,

(A.6¢) dec+Be+Wb+y =0,
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where the elements of the matrices Y, £, and ¥ are
TR (), i=q -1,
(A.72) Yig=1e " Wi=8(q), i=q+]1,

0 otherwise,

{(1 _ 67/«5**(4)) T (1 _ efxa**(q)) X,}& i=q,

ek 57 (q) ’}‘\'+ e, i = q— 1,
(A.7b) Q4=
—8 (@) T~ | =
—e A e, i=q+1,
0 otherwise,
e—x(w(q);ﬁ’ i=q—1,
(A7C) ‘Il[,q = _e*K5*7((1)'X*’ i=gq+ 1,
0 otherwise,

and the vectors v, x, and ¥ have elements

(A8a) _ R R
v, = A {q (67 — 2aqe™) + e (3 (q) + 20q)(6F(q) — 2a(g” — q) + 2q¢™))

+3{q? (5 +2age7) + e (5 (q) — 20q)((q) — 20(q> + q) — 2g¢7)},

(A.8b)
Xo = 2@ (@) + 209)e O et g} + 207 {5 (q) — 2aq)e D — e g,

(A8c) N

¥, =20q@ (g) + 20g)e ™D + g7} + 20 {q (5 (q) — 2aq)e D — g6},
where
(A.8d) THg) =8 (q) —a —e*, and &F = E[(e¥)].

The existence of the zero eigenvalue in the matrix B introduces some complexity in the
solution to ODEs. This system of ODE:s is solved by (i) solving (A.6b) by diagonal-
ization (using the eigenvectors of B). The solution to the equations corresponding to
nonzero(negative) eignevalues decays exponentially. The solution to the equations cor-
responding to the zero eigenvalue grows linearly. (ii) Substituting the solution for b into
(A.6¢), diagonalizing once again and carefully separating out the zero-eigenvalues which
now interact with the remaining eigenvalues. The zero eignevalue solution now contains
linear combinations of 7, 2, and ¢~%7, while the remaining eigenvalue solutions are
linear combinations of 7, te~%7, and e~ (iii) Substituting the solution for both b and
¢ into (A.6a), diagonalizing again and treating the interaction of the zero and nonzero
eigenvalues. The zero eigenvalue solution is now a linear combination of ¢, t2, ©3, e~%7,
and te~ %" while the nonzero eigenvalue solutions are linear combinations of 7, 72, e~ %7,
te~ %" and t?e~%7. After some tedious computations we find that
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(A9) a=Va, b=Vb, c¢=V¢,
where,
NT+mt +r T3+Zn1k(ed”—1)—|—Zalkted”, j=1,
k#1 k#1
(A10a) & = JUTHm TR0 =)+ Y (el — el
k#j.1
+ Zoi,-kred”+q‘,-rzedff, j>1,
k#j.1
il T’ ]: 17
(AlOb) bj = ~ ed,-r _ 1 ' 1
X , J>1,
J dj
(A.10¢) 1 ~
~ L\
—®1T+*‘1’11X1f2+zflk(ed’(r—1), j=1,
2 k
~ k#1
Cj = ed/..[ _1 a
—O Tt ) (et e+ Tt
d i de—dj ’

and the various coefficients are given by

=V v, =V,

=

5]' = (V’lv)_,-,

V=V IV, Qu= VR, Y= (Ve
Jjk dk f Jjk dk ’ jk dk s
Q= gijk (78
Zﬁlk - '/Nflv Jj=1
It
(A.11b) O=1~ _
\I’jlxl ] =1
d; ’
(A.11c) N =v,+0; =) Wy,
k#1
(ALLd) iy = @2m;— pj)/dj. my=@u¥nxi/d;.  h;=(;—8)/d;.
~ 1 Y-~ O .U
(A.1le) 8 =v;— Z{;k, Sk = @ (X1 + e + ;1 ¥ 1)
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(A.110)
~ ~ sfik/‘ilm
Bi=YjXx| — ZSZ_,k®k, Eik =ik — Z(gkl — g,  &n = Z 4 —d’
k2l Ik, 1 ml, m T ¢l
AdlY) (g —on 1 @V /dy. j=1,
7’ ] = ’
njx = di ok =& +dinj; k=j#1,
Ejx —oj)/de —d)), j#1, @V /(d —dy), k#j,1,
1~ ~ I~ ~
(A.11h) quiﬂjj‘lljj, r =6911‘I’11X1-

Large T asymptotics: Since the matrix B is a generator matrix of a Markov chain, its
nonzero eigenvalues are negative. Consequently, for large 7, only the polynomial terms!!
of the functions @, b, and € contribute. This leads to the stated result.

Part 3: For risk metric R?, note that [E,[¢3] and E,[¢7] are given by Proposition A.1
with £ = 0 and ¢(g) = ¢* and g, respectively. Consequently, we have

2
A12) V'8 V='y ©
e T0(V-1 ), e T0(V-1y),
R*(t,)=V . Y
edvfgﬂ(T—f)(V—lﬁ)q_gH edﬁ—yl(T—f)(V—l }’)ﬁ—g—&-l

Here, the notation A©? represents componentwise squaring. The limiting risk metric (as
T — +00) in (4.8) immediately follows from the fact that the nonzero eignevalues are
negative.

Part 4: Finally, for R*(¢, ¢) note that E[[f,T I{gs; = n}ds] is given by Proposition A.1
with £(¢) = [{g = n} and ¢(g) = 0. Consequently, we have,

(T—0(V'1,)

d(T-1) _
g V1,
1 d;
A.13 2t,g) = ——V
(A13) Qi 9) = 77—
dg_g11(T—1)
et -1
d (V711)1)ﬁ—1+1
q—q+1

Once again, the limiting case (as 7 — +0o0 ) in (4.9) follows from the fact that the nonzero
eignevalues are negative. m]

PROPOSITION A.1 Let (§5*)g< <1 denote the limiting optimal spreads'? given by Proposi-
tion 2.6 and (q; )o<i<1 the corresponding inventory. Define, for arbitrary bounded functions

T Although only these terms contribute for large 7, it is necessary to construct the full solution because
the boundary conditions depend on the exponential terms and feed into the constant term of the polynomial.
12Recall these are independent of time and depend only on ¢.
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¢(q) and £(q) for q € {q. ..., q},

T
(A.14) g =E [<P (q?)+/ €(q7) ds] ;

and let g denote the collection of these functions, i.e., g = [g(1), gg-1(1), ..., g4(1)]'. Then,
g = Vg where

(V') + (T — )V, k=1,

(A.15) gi(t) = d(T—1) _

1
(V—l(p)k ed(T=1) ¢ (V‘le)k, otherwise.

k

Proof. Clearly, g,(¢) + fot £(gs) ds is a martingale, and therefore g satisfies the coupled
system of ODEs

(A.16)
3,8, (1) + 1T T @(g, (1) — g (1) + Ame VT D(g, 1(1) — g, (1) + £, =0,

g(T) = 9(q),

which can compactly be written as 9,8(¢) + Bg(r) + £ = 0 subject to g,(T) = ¢(g). Di-
agonalizing, and integrating, treating the zero eigenvalue separately, leads to the stated
result. |

APPENDIX B: PROOF OF THEOREM 2.4

Here we prove the verification theorem for the value function in (2.7). Let (§5),<;<7 € A

denote an arbitrary admissible control, §; = (8}, 8;) denote the pair of controls,

(X*),<5<1 (solving (2.2)) and (N*?),.;-7 denote the trader’s wealth and counting
process for filled limit sell/buy orders, respectively, obtained by following the control
with X, = x. Proceeding in the usual manner, write the tentative value function as
H(, x, S, q) = x+ q(S—aq) + h(t, q) (here, we write h(t, q) = h,(¢) to ease readability).
Next, observe that

T T T
(B.1) / dXs+/ Si— dys =/ / 8, u'(dy, ds)
’ t t t R, x[85,+00)
T
+ / / 85 u(dy, ds),
t R x[85 ,+00)

T
[S. 17 — [S. 41, = / / » wH(dy. ds)
t R, x[85,+00)

T
—/ / i u (dy,ds), and
t R x[8;,+00)

T
G- = / f (1 = 2, ) u* (dy, ds)
t R, x[85,+00)

T
4 / f (1+ 24, ) i (dy. ds).
t R x[85 ,400)
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Note that only 8 appear in the above and not 83 since the class of admissible strategies
are taken to be F-predictable. Also, recall that §& are bounded from below and 8} =
+00 (8; = +o00) whenever g, = ¢ (¢, = q). Using the above together with Ito’s lemma for
Poisson random measures and the fact that A(, ¢) given by Proposition 2.2 is differentiable
in ¢, we then have

(B.2) ,
?I(T, X’}’f, Sr_, q‘ST_) = ?I(t, x, S, q) —i—/ ah(s, q4°) ds
t

s

T T
o [Cacawe [0 [ oo (et @ydo - ay.as)
t t
T
+/ / [87 + i — (1 —2q,-) + h(s, q"° — 1) — h(s, ¢2°)] 1™ (dy, ds)
t R x[8;,+00)

T
+/ / [8; — v —a(l4+2g,-) + h(s, q"° +1) = h(s, ¢2°)] ™ (dy, ds).
t R x[85,400)
Next, note that, since the processes §* are bounded below (say —A* < §* Vs € [0, T),
then
(B.3)

T
sl [T an)| S R e oy do)
0 R x[85F,400)

T
E [/ ./ (85 L5t -0 v (dy, ds)}
0 JRx[s,+00)

-2

de~ =)
< ()\(Ai)ze’(iAi + ¢ ) T < 400,

(k*)?

Furthermore, the process ¢ is bounded in the interval [¢,q] and finally, from

Proposition 2.2, |A(s, q‘?"s)l < C for some C < 400, therefore from (B.3) we have

B.4 ~
B g o[ar st

T
= H(t, X, S, q) + Et,x,(].s |:/ {afh(s, qg’ﬁ) + q57(8+ _ 8_)
t
+ AT + et —a(l —2¢,-) + hs, P - 1) — h(s, qg;‘s)

+ A7 +et —a(l+2q,) + h(s, g’ + 1) — hfs, qﬁ’;ﬁ)} ds]

T
< H(t,x,8 ¢ +¢0*E/ ys [/ (qé‘?"s)2 ds] , by (2.7).
t

The above inequality holds for any admissible strategy § € A and is binding for the
optimal strategy 6*. Furthermore,

Ei g s[H(T, X;°, St q7°)] = Ev vy s[H(T, X;°, Sr. 47")]

B s X+ (S —aqt)]
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Hence we have,

(B.5)

T
X. 5 B 2
suE]E[,x,q'S |:X’T‘5 + quJ(ST - aq?a) - qboz/ (g7°) ds}
e t

T
o~ * * * s\ 2
<Ht,x,$¢)=Ei.y5s [X“}"‘ + g8 (Sr—aglk’) - p o’ f (¢4%) ds]
t

which proves that /H(t, x, S, ¢)isindeed the value function of the original control problem
(2.8). Moreover, the feedback controls given by (2.8) are clearly admissible. O
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OPTIMAL EXECUTION OF A VWAP ORDER:
A STOCHASTIC CONTROL APPROACH
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We consider the optimal liquidation of a position of stock (long or short) where
trading has a temporary market impact on the price. The aim is to minimize both
the mean and variance of the order slippage with respect to a benchmark given by
the market volume-weighted average price (VWAP). In this setting, we introduce a
new model for the relative volume curve which allows simultaneously for accurate
data fit, economic justification, and mathematical tractability. Tackling the resulting
optimization problem using a stochastic control approach, we derive and solve the
corresponding Hamilton—Jacobi-Bellman equation to give an explicit characterization
of the optimal trading rate and liquidation trajectory.

KEY WORDs: optimal trade execution, VWAP, HJB equation, gamma bridge.

1. INTRODUCTION

In investment banks today algorithmic trading is rapidly becoming the preferred method
for clients to acquire and liquidate positions of stock. Typically, a computer-based al-
gorithm is used to buy (or sell) a position while attempting to stick to a client-selected
benchmark. One of the oldest and most popular of these algorithms is volume-weighted
average price (VWAP). The popularity of the VWAP benchmark for both brokers and
clients stems from several reasons. First, it is very simple to calculate, facilitating easy
posttrade reporting. Second, it encourages the splitting of larger orders into smaller
orders, reducing demand for large liquidity and hence market impact/volatility. Finally,
given a time interval, it is considered a “fair” benchmark price; in the language of
Berkowitz, Logue, and Noser (1988), VWARP is a price which

“...is an unbiased estimate of prices that could be achieved by any randomly
selected nonstrategic trader.”

Beating market VWAP would thus be considered as a “good” execution, see Madhavan
(2002) for further detailed discussion.
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This paper proposes a stochastic control approach to tackle the question of how a
broker should optimally schedule a VWAP-benchmarked trade. In reality, the client
specifies either a buy (or sell) quantity as well as a start and end time and the broker must
then acquire (liquidate) the position attempting to minimize the mean and variance of the
difference of the volume-weighted price achieved with the market VWAP over the order
lifetime (slippage). The main motivation for the present research is attempting to improve
execution efficiency. Due to the huge notional volumes being traded algorithmically, small
gains arising from the application of results obtained can lead to substantial increase in
profits for both brokers and their clients.

The question of optimal execution with an arrival price benchmark is well studied
in the literature going back to Bertsimas and Lo (1998), see also the seminal papers
of Almgren and co-authors (Almgren and Chriss 2000; Almgren et al. 2005; Almgren
2012). In contrast, perhaps due to the stochastic nature of the benchmark, there is
significantly less literature related to the present problem. The first work in this area is
the article by Konishi (2002) who derives the optimal execution trajectory for single and
basket VWAP executions when the price is given by a Brownian motion. The strategy
is then assessed against actual trade data from the Tokyo Stock Exchange. Following
this article, VWAP tracking has been attacked using a variety of different methods.
McCulloch and Kazakov (2012) view it as a quadratic hedging problem under partial
information, whereas Kakade et al. (2004) and Biatkowski et al. (2008) use online learning
and dynamic volume approaches and Humphery-Jenner (2011) gives a VWAP trading
rule, which takes intraday noise into consideration. Finally, Bouchard and Dang (2013)
formulate it as a stochastic target problem and derive a viscosity solution characterization
of the value function. Note that the above articles (excluding Bouchard and Dang 2013)
do not take into account the market impact of a trade and none of them impose any
parametric structure on the intraday volume curve.

This paper has several contributions. First, we extend previous literature in this area
by allowing for a linear temporary market impact model. More general models of price
impact have been studied both theoretically, e.g., by Gatheral (2010), and empirically,
e.g., by Bouchaud et al. (2004) (see Gatheral and Schied 2013 for a good overview);
however, the linear model leads to a tractable problem. Second, we provide a parametric
model for relative volume, which fits real data well, reflecting meaningful underlying
economic assumptions and simultaneously being tractable enough to perform optimiza-
tion. Finally, although the optimization problem is involved due to the use of VWAP
as benchmark, we are able to explicitly characterize the optimal control thus providing
a closed-form solution for the optimal trading rate. This final result opens up, for the
first time, a rigorous mathematical approach to the determination of commission for
guaranteed VWARP trades, similar to that done for Implementation Shortfall in Almgren
and Chriss (2000).

The paper is organized as follows. In the next section, we introduce and justify our
model, which uses VWAP as a benchmark in optimal trade execution. We present the
main result in Section 3, Theorem 3.1, which provides the explicit solution for the
optimal trading rate. Deferring the proof to Section 5, we explain in Section 3 two crucial
properties of the optimal trading rate. Its sign can switch only once from negative to
positive and never the other way, and the optimal trading rate can be decomposed into
two parts, with one being a deterministic TWAP (time-weighted average price) strategy
and the other reflecting the adjustment necessary due to jumps in the relative volume



614 C. FREI AND N. WESTRAY

curve. In Section 4, we show and discuss how well the parametric model fits to trading
volume.

2. AFRAMEWORK FOR USING A VWAP BENCHMARK

Here, we describe the model formulation and the key assumptions. We begin with our
trading strategies, without loss of generality we consider a buy program for Y shares. The
situation of a sell can be considered by reversing the time.

2.1. Trading Costs

We are given a start and end time by the client, which we assume (without loss of
generality) to be given by 7y = 0 and T, respectively. We must complete the purchase of
stock by T and will be benchmarked to the market VWAP over the period [0, 7], for
simplicity, the reader may think of 7' = 1, corresponding to a day VWAP order. As is
standard in the literature, we work on a filtered probability space (2, F, (F/)o<i<7, P)
satisfying the usual hypotheses of right continuity and completeness, and we denote
by X“(¢) our share holdings at ¢ where the trading strategy u is an adapted and inte-
grable process typically referred to as trading rate. In particular, our holdings evolve
according to

dX“(t) =u(r)ds, X'0)=0, XY(T)=Y.
The asset price process ( P(2))o</<7 is assumed to be an arithmetic Brownian motion

P(t) = P(0) + o WAt),

where o > 0 represents the daily volatility in dollars and (W(¢))o<,<r is a standard
Brownian motion on (2, F, (F;)o<;<7, P). Using an arithmetic as opposed to a geometric
Brownian motion in the present setup is possible since we are considering an intraday
trading horizon, so that P(¢) is negative with an extremely small probability and there
are negligible differences between the two models, see Gatheral and Schied (2011).

As is well known, when we trade, we do not realize the above price P(¢) (which could
be thought of as the mid quote) but instead we pay

PY(1) = P(t) + xu(t),

where « is the coefficient of the linear (temporary) market impact model. It represents an
instantaneous linear premium on the price due to how fast we trade. This model (among
many more complicated ones) is studied in detail in the literature, see Gatheral (2010)
or Bouchaud et al. (2004). The linear form is necessary as it leads to quadratic trading
costs, which then produces a tractable problem. However, it is also important to note
that given the extremely low predictive accuracy of market impact models (typically <
5% R?), the cost of increased complexity arising from moving away from a linear model
would outweigh any gains from better describing market impact. Moreover, a linear
price impact is supported in the recent empirical study by Cont, Kukanov, and Stoikov
(2014). The above will introduce some dependence on impact into the solution, which is
its purpose.
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Similarly to section 1.1 of Almgren (2012), our total expenditure TE” to buy the shares
Y using a control u is thus given by

T T T
u __ u 7 _ 2
TE _/0 PY(t)dX"(r) = YP(O)-{-U/(; W(t)u(t) dt+/</0 u-(t)dt,

where we applied the relation fOTu(t) dt = X(T) — X*(0) = Y. Using X*(T) = Y and
that X* is of finite variation, the product rule yields

T T T
/ W(t)u(r)dt = / W(it)d X“(t) = —/ Xy dw(t) + YW(T),
0 0 0
so that

T T
(2.1 TE" = YP(0) — o / X (ydW(t) + o YW(T) + « / u*(r)dr.
0 0

2.2. The VWAP Benchmark

Given a series of prices (P,);—1. ...
prices, the VWAP is defined to be

~ executed at those

N
VWAP = %
Yia Vi

If we define ¥; = Z;:I V; as the cumulative volume (with Vy = 0), we have

VWAP = P(t)~

S (Vi = V)P ~ /T di(r)
v 0 T’

Vy

In particular, to model VWAP, we need a continuous-time process for —2 . This will be

. V(T)
://((% = 0. A natural process to use is the

nondecreasing and satisfy ZEQ =1 as well as
gamma bridge.

DEFINITION 2.1. (1) A gamma process (L(¢))o</<7 is a process with independent and
identically distributed increments such that (0) = 0 and L(¢) is gamma distributed with
mean mt6 and variance mt6” for somem > 0,6 > 0.(2) For a gamma process (L(t))o</<7,
the gamma bridge (y(¢))o<,<7 1s defined by y(z) = L(¢) / L(T).

There are several reasons for our choice of modeling the intraday relative volume curve
by a gamma bridge. First, we will see in Section 4 that our model fits well to real stock
data provided the stock is sufficiently liquidly traded as well as being finite variation, like
real data. Second, we can think of the cumulative trading volume as analogous to the
accumulation of dam rain, similarly to Gani (1957) considering the arrival of insurance
claims as analogous to the accumulation of dam rain. The latter can be modeled by a
gamma process as pointed out by Moran (1956) so that similarly the relative amount
will be a gamma bridge. Finally, we can prove that the intraday volume curve must
be a gamma bridge if we assume that trading volume is independent and stationarily
distributed through the day and the relative intraday volume is independent of the total
volume. This link is based on the following theoretical result on gamma processes.
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FIGURE 2.1. Correlation between relative and total trading volume (left panel) and
intraday correlation between volume and price changes (right panel) for the stocks
of Vodafone and Microsoft during the first 100 trading days of 2012, using 5-minute
intraday data.

PROPOSITION 2.2. Let (L(t))o<i<7 be a Lévy process with L(T) > 0 a.s. and nondeter-
ministic (i.e., P[L(T) = c] < 1 for all c¢). Then the following are equivalent:

(i) L is a gamma process;
(ii) there exists t € (0, T) such that L(T) and L(t)/ L(T) are independent;
(iii) forallt € [0, T], L(T) and L(t)/ L(T) are independent.

In particular, the proposition shows that the gamma process is the only positive Lévy
process whose intermediate relative values are independent of the terminal value. We
immediately get from Proposition 2.2 the following application to the relative volume
curve.

COROLLARY 2.3. Assume that the cumulative trading volume has independent and sta-
tionary increments, its terminal value is nondeterministic and strictly positive (i.e., trading
happens a.s. ), and the relative volume curve is independent of the total trading volume. Then
the cumulative volume is a gamma process and the relative volume curve is a gamma bridge.

The assumption that the relative volume curve is independent of the total volume is not
too unrealistic; it is hard to imagine that the relative volume curve on a given day depends
significantly on the total traded volume on that day. This is supported by the left panel of
Figure 2.1 for a major US and European stock. A consequence of modeling volume with
a gamma process and prices with a Brownian motion is their mutual independence; see
lemma 15.6 of Kallenberg (2002). The right panel of Figure 2.1 shows that the intraday
correlation between volume and price changes varies a lot but is small on average. Hence,
it is difficult to incorporate in a model, leading to only a small potential increase in
performance and thus justifying the independence assumption.

Looking at the historical volume data and noting its episodic nature, the hypothesis
that volume is independent and stationarily distributed throughout the day is idealistic.
However, we can think of the gamma bridge as a zero-order approximation to the true
relative volume curve, which would be exact should such an assumption hold. This then
provides a tractable basis upon which one can incorporate more realistic features. As a
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final point, let us note that the fit to actual data is sufficiently good to conclude that the
effect of deviation from such a hypothesis is (perhaps surprisingly) not too severe.

Proof of Proposition 2.2. The implication “(i) = (iii)” is shown in proposition 3.2
of Brody, Hughston, and Macrina (2008), and (iii) clearly implies (i) so that it remains
to show “(ii) = (i).” Let t € (0, T) be such that I(T) and L(t)/L(T) are independent.
Since L is a Lévy process, it is enough to show that L(¢) is gamma distributed. If we set
A= L(t)and B = L(T) — L(t), we have that A, B are strictly positive, nondeterministic,
and independent. By assumption, 4+ B, A/(A+ B) are independent, hence so are
A+ B, A/B by using the measurable mapping x — x/(1 — x). It follows from Lukacs’
proportion-sum independence theorem (Lukacs 1955) that both 4 and B have gamma
distributions. 0

Since we will only consider a gamma bridge but not its underlying gamma process, by
scaling we can (and henceforth do) set & = 1 without loss of generality. Moreover, in the
later simulations, we fix 7= 1 and use m as the model parameter. Under the assumption
of gamma bridge for the relative volume curve, the expenditure (in dollars) to buy Y
shares of market VWARP is given by

T T
VWAP = / P(t)d(Yy(t)) = YP(0)+ o Y/ W(t)dy (1)
0 0
T
=YPO0)—o Y/ y(—=)dW(t) + o YW(T),
0

where we argued similarly to the derivation of (2.1). The VWAP benchmark should be
thought of as an average market price over the lifetime of the order and it ignores the
market impact because the mid quote represents a reasonable estimate of the current fair
market price. Observing that we can scale by 1/Y, we thus can (and do) assume that the
client wants to buy 1 share.

One may object to the model formulation in that I(7) is unknown. While this is a
valid objection, it misunderstands the objective of this paper. All major brokers who
engage in algorithmic trading require models for the intraday relative volume curve. The
primary application for such models is in the execution of VWAP and PVol (percentage
of volume) orders. When evaluating the viability of such a model in a trading application,
one can compare the performance when using the new model against that in the “perfect
information” case, modeled here by a gamma bridge. The framework presented here
allows closed-form solutions for this case and thus allows new volume curve models to
be assessed in a way relevant to their use rather than just a pure goodness-of-fit test.
A second benefit is in posttrade analysis, the solution presented here provides a broker-
independent benchmark for the execution of VWAP trades allowing the scope for relative
comparison as well as the common absolute performance. We will address the issues of
comparing and evaluating different VWAP strategies in future work. In summary, the
focus here is not a real-time (i.e., based on an adapted estimator of relative volume)
strategy for trading VWAP but rather an effort to set up a framework in which one
can get closed-form and implementable solutions to the VWAP trading problem, which
are of use for setting upper bounds on performance and providing broker-independent
benchmarks. As a consequence, the filtration (F;)o<;<7 we are working with is such that
the gamma bridge (y(7))o<<7 and the Brownian motion (W(t))o<,<7 are adapted to it.

The reader will note that our trading is not taken into account when calculating the
relative volume curve, so that it becomes exogenous. This is clearly a simplification and
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is effectively equivalent to assuming that the (unnormalized) size Y is small relative
to the total volume traded, i.e., that we are dealing with small orders. Since typical
algorithmically traded VWAP orders are traded with an effective (when scaled to a day)
size of 10-15% of the daily volume, this assumption is not too restrictive and hugely
simplifies the problem under consideration. As explained in Hu (2007), who analyzes
the difference in VWAP with and without own trading, it might even be desirable to
exclude our own trading from the market VWAP calculation in order to compare our
performance with a benchmark, which is not affected by us. The interesting case of large
VWAP trades (>50% daily volume) will be considered elsewhere.

REMARK 2.4. It is important to be precise about what is meant here by “volume.”
In recent years the number of trading facilities with visible order books (lit venues) has
increased substantially. For example, in 2008 one could only trade Vodafone Group PLC
(VOD) on the London Stock Exchange (its primary exchange) whereas today one can
trade this on BATS, CHI-X, and Turquoise (among others). Since most modern smart
order routers are able to access these MTFs (multilateral trading facilities), it makes sense
to consider everything in a consolidated view, so that (for example) day volume in this
paper should be understood as the total volume traded in a day on all (lit) venues.

2.3. Algorithm Performance

Now that the quantity of shares is normalized to Y = 1, our costs can be thought of
as per share in dollars. Our first aim is to minimize the expected slippage, defined as

T T
slip" = TE" — VWAP = ¢ / (y(t=) — X“(0)) dWA1) + « / u*(1)dr.
0 0

From a broker’s perspective, simply having small expected slippage, while good, is not
the sole goal. From a posttrade perspective, it will be necessary to explain to clients why
slippage was significantly far from that expected, should that occur. Our second aim is,
therefore, to attempt to minimize the variance of the slippage. We use the approximation

T 2 T
Var[slip“] ~ E |:(o /0 (y(t—) — X“(t))dW(t)) } =0’E [ fo (y(t) — X“(1))* dt} ,

where we assumed for the last equation that [ X d W is a square integrable martingale
and used that y is bounded and has only countably many jumps.

The main reason for this approximation is tractability, without this the difficulty
would be increased significantly. The mathematical reason for the difficulty of the original
problem is its time inconsistency. As explained in section 1.2 of Bjork and Murgoci (2010),
time inconsistence of mean—variance problems of the form E[X]+ AVar[X] is caused by
the term ( E[X])? in Var[X] = E[X?] — (E[X])>. While standard time-consistent problems
are allowed to have expected values of nonlinear functions, such as E[X?], the term
(E[X])? is a nonlinear function of the expected value and not an expected value of a
nonlinear function. However, in our particular problem, the time inconsistency is mild
in the sense that the value of Var[slip”] is close to the variance of fOT(y(t) — X"“(2))d (1),
which has zero mean, hence leading to a time-consistent formulation. Therefore, such an
approximation is appropriate in our situation.
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Hence, we study the minimization of
- r
K E[/ u*(1) dt} + AUZE[/ (y (1) — X“(1)* dt],
0 0

as an approximation of the mean—variance problem

inf( E[slip”] + A Var[slip"]),

for a given mean—variance trade-off parameter A > 0. In further justification of this
approximation, we note that similar to Almgren (2012) and Konishi (2002), it is the case
that the main driver of Var[slip“] is typically the volume curve y and not the trading rate
u, so that we capture the dominant term.

To get an idea of the approximation error, we used a Monte Carlo simulation to
compare Var[slip"] and o2 E[ fOT(y(l) — X*(¢))* dt]. Our calculation showed that, when
using the optimal strategy  for the approximated problem from Theorem 3.1, the relative
error

Varf[slip"] — azE[fOT(y(t) — X'(1))*> df]
Varf[slip”]

)

was always very small. For example, choosing o = 0.01, ¥ = 10~% (see Remark 2.5),
A =1,m=25,and T = 1, the relative error was less than 10~ = 0.1 %.

REMARK 2.5. Itis a simple exercise to calibrate a market impact model and determine
k, however, as a first-order approximation we simply use the trading rule of thumb, see
Gatheral (2010) (among others), that trading one day’s volume costs approximately one
day’s volatility in basis points. This is quite accurate in most cases and suffices for our
purposes. In particular, this implies the following relation for our linear impact model:

T
K/ w(dt~oV,
0

where V is the daily volume (shares) and o is again the volatility in ($). Assuming a
linear execution for V' (and noting 7" = 1), this reduces to k ~ 3 ~ 10~38 (for a stock like
Vodafone).

Dynamically formulated, the value function for the optimization problem is given by
T T
(2.2) v(t, x, y) = inf E[K / u*(s)ds + AUZ/ (y(s) — X“(s5)) ds:|,
u t t
where (y(s)):<s<7 1s @ gamma bridge with y(¢) = y and the infimum is over all adapted

and integrable u with

dX'(s) =u(s)ds, X'(t)=x, XY(T)=1.
In conclusion, we are considering a mean—variance formulation of minimizing slippage
from VWAP.

REMARK 2.6. The framework here is similar to the seminal paper of Almgren and
Chriss (2000). The key extra technical difficulty in the present case comes from the switch
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from an arrival price benchmark ( P(0)) to a VWAP benchmark (VWAP). This introduces
extra stochastic complexity coming from the gamma bridge.

Under a gamma bridge (y(s)),<;<7 With y(f) = y, we understand a process of the form
y@s) =y + Z((%:[L((’,))(l — y) for a gamma process L so that starting with y at 7, we take
the remaining part 1 — y proportional to the remaining relative portion of L. Note that
f((%iLL((?), t <s < T, is again a gamma bridge and independent of % (Emery and Yor
2004, p. 673).

The reader will note that we have not considered auctions in the current model.
Indeed, we have formulated the VWAP tracking problem for orders executed in the so-
called “continuous” (nonauction) trading phase. For US stocks, it would be a reasonable
approximation to simply ignore auctions, since the average volumes traded there are a
small percentage of total volume. In Europe where auction volumes are typically much
higher, one could imagine a small modification to the above framework where a dynamic
model would be used to estimate the fractions executed in the open and close auction
and the above model could then be used to execute the remainder. Since the focus of
this paper is not the prediction of auction volumes, we assume that the historical mean
values have been used and the total amount to be traded has been reduced accordingly in
a preliminary step so that the results presented here apply equally to US and European
stocks.

3. MAIN RESULT

Our main result is an explicit characterization of the value function v and the optimal
control in (2.2).

THEOREM 3.1. The value function v is given by
v(t, x,y) = a()x’ + b0y x + c(Dx +d0)y* + f(O)y +g(1)

fortel0,T), x>0andy €[0, 1] with the functions a, b, c, d, f,g : [0, T) = R defined
by

eZTQ/AGZ/K _|_621«/}»02/K oy i
a(t) = Viio? - —, b(t)=-2a() + —, c(t) = — ,
2T/ 202k _ Q2in/ho? [k T—1t T—t

r 1 T—s T—s+1/m
d(t) = a2 — —b(: K
@ /, (“ P m) Tt T—r+im

1 T T—s
¢(t) = at) — (T — o

T 1 b(s) [ a(s) d(s)/m 1
[P (Pa—os) - )

The optimal control @t and the corresponding share holdings X are given by

 2a(5) X(s) + b(s)y (5) + €(s)

GD) i) = =35 X6) v(9) = P
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X(s) = ye— k[l aydr _ i /IS (b(2)y(2) + c(2)) exp (—i /: a(r) dr) dz.

We postpone the proof of Theorem 3.1 to Section 5 and instead give a nonrigorous
motivation.
Suppose we replace (2.2) by the approximate problem,

T T
V'(t, x, ) = inf E[K/ u*(s)ds +)\02/ (y(s) — X“(s))* ds + n(X(T) — 1)2],

(3.2) ' '

where the infimum is over all adapted and integrable u with

dX“(s) = u(s)ds, X“(t)=x.
Observe now that X* has no fixed terminal condition. Using that y(./m) is a gamma
bridge on [tm, Tm] with underlying mean growth rate equal to 1, it follows from corollary

1 of Emery and Yor (2004) that the infinitesimal generator of the gamma bridge y is
given by

1 1
m [0+ =02 = fron =5,

where f is a function on R, with bounded variation on compacts. If we assume that v”
is sufficiently regular, it should satisfy

vy + Aoy — x> + inﬁg(vzu + ku?)
ue
! 1
+ m/ (1, x,y + (1 —p)z) —v"(t, x, y))(1 — z)Tm=im=1 - dz=0,
0
VviI(T, x,y) =n(x — 1)
Due to the quadratic structure, we propose the ansatz
Vi(t, X, y) = d"(Ox + by x+ " Ox+ d"Oy + @y + (1)
After some algebra, we derive that a”, ..., g” should solve
1
ay — —(@"Y? +rc’ =0, a"(T) =n,
K
1
b — —d"b" —2xr0* —b"gy =0, »(T) =0,
K
n n 1 n _n
el +b"py — ;a "'=0, "(T) = —2n,
1
di =2d"¢y +d"p1 = -(b") + 207 =0, d'(T) =0,

1
S = ancn +2d"po — f"9o — 2d"p1 = 0, S(T) =0,

1 "N n n
g?—@(0")2+f<po+d¢1=0, g"(T) =n,
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where ¢(t) = 7 and ¢(1) = 7 — m It is intuitively sensible to expect that

v" 4 v as well as that a” — a, b" — b, etc. However, if we let n 1 oo we would end up
with difficult singular conditions in ¢ and g. To avoid this, observe that the ratio ‘:,((g
and the difference a"(7T) — g"(T) are all constant and independent of n. Due to the
convergence we would expect this to hold in the limit, this is precisely what the functions
a, ¢, and g satisfy; see Lemma 5.1 below. A second justification is to see that as n 1 oo,
the terminal condition behaves like a quadratic function in x with one root at 1, which is

infinite elsewhere. That is to say we have

. 2 _ . _
th/gr}(a(l)x +c(t)x + g(t) = th/rr% v(t, x,0) = o0

for all x # 1. We thus expect that g behaves like a, and ¢ behaves like —2a for ¢ 7 T,
again consistent with Lemma 5.1.

REMARK 3.2. Note that our main result gives explicit formulae for both the optimal
trading rate & and the optimal holdings X. This desirable formula for X is due to our
requirement that the holdings be absolutely continuous with respect to ¢. In contrast, this
is not enforced in McCulloch and Kazakov (2012) so that one may not directly compare
their results with ours.

Observe that the optimal trading rate depends on the volume curve but not on the
price process. We give some intuition as to why this is a natural consequence of using a
VWAP optimization criterion together with a Brownian price process. When comparing
the VWAPs of two strategies, only price movements but not the absolute level of the
price process are relevant. Since in our model the price movements are independent from
past prices (they are given by Brownian increments), information about past prices is not
included in the optimal strategy.

Let us now describe in further detail the structure of the optimal control. It is intuitively
clear that there should be a buy and sell region; more precisely from (3.1) we can
see that the sign of #(s) depends on X(s). In particular, #(s) is positive if and only if
X(s) < %&“m Indeed, if we have low holdings X(s), we will make purchases to
come closer to our target while for high X(s), it can be beneficial to temporarily reduce
the holdings to come closer to y(s). This leads us to define the frontier ¢ by

bty — )

¢t y) = 2w 1€[0, 7], ye€l0,1]

so that we have

a(t) <0 on X(t) > ¢(t, y(1)),

() =0 on X(1)=¢(1,y(1)),

ia(f) > 0 on X(1) < ¢(t, y(t)).
A key practical requirement is that for the original buy program (i.e., when we start with 0
shares) we should not sell. Indeed, most clients would typically be unhappy if during their

execution the stock holdings were not monotone increasing. In addition, in US markets
such behavior is actually prohibited by the regulators.! The following proposition shows

'See FINRA directive 5310 on Best Execution and Interpositioning, http://finra.complinet.com/en/
display/display_main.html?rbid=2403&element_id=10455 .
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FIGURE 3.1. Simulations of X: each colored curve corresponds to and starts at one
initial condition (¢, X(r)) while the path of the gamma bridge is always the same. X
can cross the frontier ¢ (black curve) only from above (left panels) but not from below
(right panels). The parameters are x = 10~® (compare Remark 2.5), o0 = 0.01, A = 1,
m=25and T =1.

that in our formulation, for any parameter values, this is indeed the case, underlining the
model’s applicability and compliance with this important regulatory aspect.

COROLLARY 3.3. Both partial derivatives of ¢ are positive on [0, T) x [0, 1) and it holds
that £(0,0) > 0. Starting with X(0) = 0 and y(0) = 0, the process u(t) is nonnegative for
all t.

We provide the proof in Section 5.3. The idea of the second part is that when the
process X(¢) is below (1, y (1)), it will not cross (s, y(s)) at a later time point due to the
properties of the frontier ¢. Figure 3.1 illustrates this behavior of X, that it can cross ¢
only from above but not from below. We can also see that for different starting points,
the paths of X are on very similar trajectories after only a short time. This is due to the
multiplication by e+ / 9")9 of x in the definition (3.1) of X, which makes the impact of
the starting value x vanish soon since a diverges to oc.

Recalling that the gamma bridge satisfies E[y (r)] = +, a natural question to ask is how
our current optimization is related to the deterministic problem obtained by replacing
y(¢) by its mean, namely

(3.3) inf (K f Tuz(s)ds + 20’ / ! (% _ ,ws))2 ds) ,
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where the infimum is over all integrable u# with

dX"(s) = u(s)ds,  X'(t) = iT X(T) = 1.

The optimal control for the problem (3.3) is constant and since time is measured in
calendar units in our model, this corresponds to a TWAP execution. A nice consequence
of attempting to relate (3.3) to our original problem is that we are able to show that the
solution of the original problem can be decomposed into two components.

COROLLARY 3.4. The optimal trading rate it and the holdings X of the optimization
problem (2.2) can be decomposed as

(3.4) b= +0 and X=X + X,

where 1,(s) = 1/T, X\(s) = s/T for s > t is the solution to (3.3). The processes X» and
ity are given by

Xo(s) = (x — [T> ek fandr % /txb(Z) (% - J/(z)> exp <—i /Y a(r)dr> dz

and to(s) = Xy(s) = =5 (2a(s) Xo(s) + b(s)y(s) = $)).

The proof of Corollary 3.4 is provided in Section 5.3. This decomposition of the
optimal control can be interpreted as follows: the first part corresponds to the TWAP
execution. The second part shows how we need to deviate from this deterministic strategy
due to the randomness and jumps of y(s). Such a result corresponds nicely to heuristic
algorithm design where a “historical” or average amount is always executed with an
adaptive correction due to volume spikes.

Using a > 0 and the form of 715, we see that X, has a zero-reversion property: if X,
equals to a big positive (negative) value, i1, will become negative (positive) so that X> will
be decreasing (increasing).

We also note that for « T 3> 1, the optimal strategy & may be approximated by #; be-
cause 1, depends on %(y (s) — %), whose variance vanishes as « T — oo. This behavior is
inline with section 1.2 of Almgren (2012) and to be expected from the original optimiza-
tion problem (2.2): if « is huge, the first term dominates the second, which leads to an
approximately uniform distribution of the stock purchases due to the assumption of a lin-
ear market impact. Similarly, a huge 7 means that y(s) will be close to s/ T (low variance
of y(s)) and hence the second term will again have a minor impact for a linear X(7).

4. FITTING THE MODEL TO DATA

To fit our gamma bridge-based model to data, one could attempt to fit m, using, for
example, least squares. We note that since the mean increase of the gamma bridge over
the day is independent of m due to the fact that E[y(¢)] = +, this fit must be done on the
variance or standard deviation. In reality, it is known that trading volume is U-shaped
(higher volume at the beginning and end of the day), which implies an approximate cubic
shape for cumulative relative volume, see Figure 4.3. To incorporate this feature in our
model, we make a deterministic time change given by a polynomial

t—> G{t)=at’ +bt> +ct +d,
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for some constants a, b, ¢, d. We require that G be an increasing bijection of [0, 77, so we
haved = 0and ¢ = 1 — aT? — bT. In the next subsection, we discuss how the parameters
a, b, and m can be chosen to fit data. In Section 4.2, we explain how this time change
affects our model and results.

4.1. Estimating the Model Parameters

We exemplify the estimation of the parameters on the stocks of Vodafone Group
PLC (VOD) and Microsoft Corp (MSFT).”? We also analyzed other liquid European
and US stocks and the results were similar. We used intraday volume observed at 5-
minute frequencies, a reasonable duration for a volume prediction, although the below
parameters were not sensitive to this choice. We applied a method of moments estimator
computed using nonlinear regression and based on the first and second moments of the
intraday volume curves for the first 60 trading days of 2012. Since for our problem, the
relative and not the absolute volume is relevant, we study the fit to the relative volume.
Figure 4.1 displays the resulting curves, which led to the estimations:

a b ¢
VOD [1.3538|—1.6467|45.2344 .
MSFT|[1.0739|—1.8151(84.9270

We see in Figure 4.1 that we get overall a good fit for the mean and standard deviation
of the intraday volume curve, given that we only have three model parameters. To verify
that the model does not exhibit any extreme seasonal dependence, we calibrated the
parameters a, b, and m with a 60-day rolling window for the next 30 days. The time series
are shown in Figure 4.2. Note that the variance of the gamma bridge is proportional to
ﬁ so that the large range of m is not as severe as might be first assumed.

We next discuss not only the fit in the moments but the general fit. In a first qualitative
analysis, we can compare the intraday volume curves of the 60 trading days with a sample
of 60 trajectories based on the gamma bridge with a time change using the estimated
parameters. We see in Figure 4.3 that the patterns of the true and sample trajectories
look similar although the simulated paths have a more erratic behavior.

To make a more quantitative statement, we consider two goodness-of-fit tests. We
again use the estimated parameters @, b, and 71, given in the above table and based on
the first 60 trading days of 2012. We then take the following 30 days as an out-of-sample
test data set. Under our assumption of a gamma bridge for the relative volume, we have,
at each time ¢, 30 1.i.d. observations from a beta distribution with parameters

a(r) = mat’ + b + (1 —a — b)r) and B(t) = T — a(r).

The first test uses that the sample mean is approximately normally distributed with mean
m and variance W’%M by the central limit theorem. Performing a z-test
leads to the P-values shown in Figure 4.4.

The second test, displayed also in Figure 4.4, is the well-known Kolmogorov—Smirnov
test, which assesses the null hypothesis that the sample is drawn from a Beta(«(?), B(¢))-
distribution. Observe that we now consider the whole empirical cumulative distribution

and not just the sample mean. Since there is dependence across different time points,

2 All data are used with the permission of Bloomberg L.P.
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VOD: Mean of relative volume curve VOD: Standard deviation of relative volume curve
0.09 T T T T
—— 60 day sample
0.9f{ — Approximation (cubic time change) 0.08}
08r 0.07}
0.7
0.06f
0.6f
0.05f
0.5f
0.04
0.4f
0.03f
0.3
0.2 0.02f
01}t 0.01 ——60 day sample
—— Approximation (cubic time change)
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time as fraction of a trading day Time as fraction of a trading day
MSFT: Mean of relative volume curve MSFT: Standard deviation of relative volume curve
—— 60 day sample
0.9f{ — Approximation (cubic time change)
0.8f
0.7
0.6f
0.5
0.4f
0.3f
0.2
0.1} —— 60 day sample
—— Approximation (cubic time change)
0 . . . . 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time as fraction of a trading day Time as fraction of a trading day

FIGURE 4.1. Example fits for the mean and standard deviation for one US and one
EU stock.

one should interpret Figure 4.4 in the following way: if one selects a time interval during
the day at random, the corresponding y-values are the P-values of the two tests at that
given time. Generally, in the morning we do not reject the null hypothesis whereas in
parts of the afternoon we do. This conclusion of an imperfect fit in parts of the day is
not very surprising. Indeed, relative volume is not distributed as a gamma bridge, being
subject to idiosyncratic factors that the model does not (and cannot) fully capture. The
model proposed here aims to capture the main stylized features while being tractable
enough for optimization, compare with the use of Brownian motion as a model for the
price despite the non-Gaussianity of returns as well as the Black—Scholes framework for
option pricing. Taking these considerations into account, we conclude that the model is
suitable for our purposes.

One final point related to fitting the model to data concerns the choices of the param-
eters ¥ and A. A calculation shows that one consequence of our model formulation is
that as « | 0, since the costs vanish, we end up being able to track VWAP perfectly. In a
real trading environment, this is of course not possible since each execution of a market
order incurs a per share cost of one-half the spread (vs. mid quote). One way to resolve
this issue would be a reformulation of the impact costs to include a fixed cost of one-half
the spread. This naturally leads to an impulse control formulation which is beyond the
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VOD: Rolling parameter estimations MSFT: Rolling parameter estimations
2 T T T - 60 2 105
s ] 1.5 [\
1 1 4100
05 —a (left scale) 0.5 —a (left scale)
0 —b (left scale) 0 —b (Ie_ft scale) o5
——m (right scale) ——m (right scale)
-0.5 50 -0.5
_ -1 490
-1.5 -15
2 -2 485
25 -2.5
_% 40 _a N N N N 30
0 65 70 75 80 85 90 60 65 70 75 80 85 90
Trading days Trading days
FIGURE 4.2. Rolling parameter estimations of a, b, and m.
VOD: intraday volume curves 60 Samples of the time changed gamma bridge

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time as fraction of a trading day Time as fraction of a trading day

MSFT: intraday volume curves 60 Samples of the time changed gamma bridge

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time as fraction of a trading day Time as fraction of a trading day

FIGURE 4.3. Comparison of the intraday volume curves with sample paths.

scope of this paper. A more pragmatic solution observes that the key parameter driving
the optimal control/trajectory is ;7. In practice, one can therefore simply choose a value
of A so that this ratio is in an appropriate range for the model to be applicable. Broadly
speaking, one is choosing an “effective A” to take into account spread costs, similarly as
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VOD: p-values of goodness—-of—fit tests MSFT: p-values of goodness—offit tests

1 1
— z-test —z-test
0.9f — Kolmogorov-Smirnov test 0.9r — Kolmogorov—-Smirnov test
5% level 5% level

0.8f 0.8f
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3f
0.2f] 0.2f
0.1 0.1 ~

oL ‘ ‘ Woo, & VI oLV ‘ ‘ L N\

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time as fraction of a trading day Time as fraction of a trading day

FIGURE 4.4. P-values based on a 30-day out-of-sample data set.

is done in trading systems employing the Implementation Shortfall framework described
in Almgren and Chriss (2000).

4.2. Integrating the Time Change into the Model

As we have seen in the above discussion, the gamma bridge fits well to the relative
volume curve, but only after a deterministic time transformation. We next see that our
main result still holds when the model undergoes such a time change. We first explain the
reason in a simple example and give afterward the mathematical argument. Assume that
one has calculated the optimal control and the value function in the model of Section 2.
Now it is given that the model fits well except that the expected trading frequency in the
second-half of the day is double that of the first-half. How should the optimal trading
strategy be modified? A natural answer is to scale the original strategy accordingly by
simply changing the speed of trading execution. In the morning, it is reduced by a third
so that in the middle of the day one has the same position as one would have had after
one-third of the day with the original strategy. In the afternoon, the trading frequency is
then correspondingly increased. In summary, the new strategy is just the time-changed
original strategy scaled by the derivative of the time change.

It is also sensible to expect that the value of the optimization problem will not change
because the algorithm performance (minimal slippage from VWAP) should not change
under a deterministic time change. Indeed, we may take the time change into consider-
ation when choosing our strategy so that there is no additional information present. Of
course, these arguments use that the time change is deterministic and hence known in
advance, however, this is acceptable for most practical purposes.

Let us now make the above arguments rigorous by adapting the model of Section
2. The time change is assumed to be given by a differentiable deterministic function
G :[0, T] — [0, T]with G(0) = 0, G(T) = T,and G'(¢) > Cforsome constant C > 0 and
all ¢ € [0, T]. The relative volume curve is modeled by 7(¢) = y(G(¢)), where (y(¢))o<i<T
is a gamma bridge whose underlying gamma process has a general parameter m. The
time change means that trading frequency depends on the time of the day, e.g., higher at
the beginning and closing of the day.
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There is a well-known link between traded volume and prices, we thus expect that the
varying trading frequency will also affect the price process so that the asset price at time
t equals

P(t) = P(0) + o W(G(1)).

Observe that now we have that for two time points # and #, the volatility of returns is
proportional to

\/E [(P(t) — P(1)*] =0 / 1 G'(s)ds.

Iy

Assuming that the difference #; — # is small and fixed, this can be approximated by
o /i — fo/G'(1y). Since G’ reflects the expected intraday trading frequency, it is typically
U-shaped and hence /G’ is also U-shaped (or V-shaped). Indeed, a U-shaped G’ means
that its derivative G” is negative at the beginning and increases to become positive at
the end, and this property translates to %ﬁ = 2\% as well. Therefore, we expect the
instantaneous volatility to be U-shaped. Apart from being a mathematical consequence
of making a time change to our model, this phenomenon is very well documented in the
empirical finance literature across many different stock markets, dating back to Wood,
Mclnish, and Ord (1985) and Harris (1986). Also the link between the U-shaped forms
of intraday volume and volatility is well known and goes back, at least, to Harris (1987).
The common theoretical explanation is that the patterns of both volume and volatility
are related to the flow of information, which is not constant over time. For example,
in a market with asymmetrically informed participants, trading volume itself conveys
information so that a U-shaped volume will lead to a U-shaped flow of information. This
nonconstant flow of information is captured in our model by the time change.

Similarly, the coefficient of market impact at time ¢ is now k(¢) = k/G’(t) because a
decrease (or increase) in G’ means a slowdown (acceleration) in overall market trading
frequency so that the market impact of our trades is increased (decreased).

Proceeding along the same lines as in Section 2 and additionally using d{Wo G), =
dG(s) = G'(s) ds, we see that the new value function to the optimization problem is given
by

T T
w(T, X, y):h}f E[ / %(s)y*(s)ds + Ao / (n(s) — X}’(s))2G/(s)ds],

where 1(s) = y(G(s)) for a gamma bridge (y(5))g(r)<s<r With y(G(r)) = y and the inte-
grable y is such that

dXP(s)=y@)ds, X'(r)=x, X(T)=1

and y is adapted to the time-changed filtration (Fg(y))o<s<7. We associate such a y with

G‘((GG:] .((XS)))) , which is adapted to the original filtration (Fj)o<;<7. We

a process u by u(s) =
then have

T T
E[ / %(s))*(s)ds 4+ ro? / (n(s)—XJ’(s))zG’(s)dsj|

T T
= FE [/ ku’(s)ds + XGZ/ (y(s) — X“(5)) d5:|
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for t = G(r) and

G~(s) K
X(G(s)) = x+/ y(r)dr = x+/ u(r)dr = X“(s).
T t
Since this holds for any such y, we obtain

w(T, x,y) =v(G(), x,y),

where v is the original value function from (2.2), which is characterized in Theorem 3.1.
We can also see that the optimal control of the time-changed problem is given by

Wx, x,y) =i(G(z), x, y)G'(r)

_ _2a(G(@)x+b(G@)y +«(G(@) -,
2k

_2a(G())x + b(G(7))y + ¢(G(7)

B 2k(1) ’

()

again by using Theorem 3.1.

5. PROOF OF THE MAIN RESULT

We split the proof of Theorem 3.1 into two parts: we first show some properties of the
functions a, b, ¢, d, f, g, and the candidate for the value function, and then we verify
that this candidate indeed gives rise to the value function v. Finally, we will provide the
proofs of Corollaries 3.3 and 3.4.

5.1. Properties of the Auxiliary Functions

LEMMA 5.1. The functions a, b, c,d, f, g : [0, T) = R are well defined and there exist
constants ki, ky, k3 such that

(5.1) hfn} a(s)(T — s) = k,

(5.2) 1b()| + 1d@)] + | /(D] < k(T = 1),
c(t) B

(5.3) @H < k(T - 1),

(5.4) lg(t) —a(®)| < k(T — 1),

forallt €0, T).
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Proof. We consider a, ..., g and their limiting behavior sequentially.

(1) The functions a, b, c. The functions a, b, ¢ are well defined for 7 € [0, T), and an

2

(€)

4)

application of L’Hopital’s rule yields (5.1). To study the behavior of b, we use a
series expansion

b(t) = —2a(t) + %

eZ(T—r)«/Aa—’/K +1 i
S 2T — t)"(ho2/i)"/2/n! + T—t

n=1

= —2VkAio?

2 Y0 2T —0)y" (Ao k) )(n + 1) — QAT-03/207/k _ |
Tt S0 2T — 1y (ho [y 2 (n + 1)
Yool , 28T — ty' (Mo /)2 /(n + 1) — 1/n!)
Yoo 2T — 1y' (ko /iy [(n + 1)

= 2%(T — 1)

Using 2/(n + 1)! — 1/n! < 0 for all n, we see that
(5.5) 0>b(t)y>—-C(T—1)

for all t < T and some constant C. For the function ¢, we obtain
35 2 (T — 1) (o /)" f(n + 1)!
— +2=-2=" -
a(t) QAT-08/20% /K 4 |
0L 2UT — 1y~ 2 (Ao /i) (1 /n! — 2/(n + 1))
QAT /30 4 | ’

+2

=2(T—z)2z

which shows (5.3).
The function d. Since b is bounded by (5.5) and we have F5/2=> < 1and 7= < 1
for s € [t, T), the integrand in

r 1 T—s TH+1/m—s
d(t) = ro? — —b? d
@ /, (" P (S)) Tt T+1lm—1

is bounded so that d is well defined and we can deduce |d(¢)| < C(T — ¢) for some
constant C.
The function f.From (5.5) and the boundedness of d, we derive that

‘b(s) + 2d(s)T_T73

s—i—l/m‘ =UT=9)

for some constant C. Hence, f is well defined and
T —
b(s) + 2d(s)———>
T—s

1 T
o= [ T

The function g. Thanks to (5.1), the function s — a(s)(T — s) is continuous and
bounded on [0, T). Together with (5.2), this yields

b(s) [a(s) d(s)/m
'2 (U“”“) BRARA

C
d —(T —1).
SEz( )

‘SC(T—S)
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for some constant C. Therefore, the function g is well defined and

lg(t) — a(1)]
T
e (8 (o) - - ) e
<k(T—1)

for some constant k3, which shows (5.4).
LEMMA 5.2. The function ¢ : [0, T) x Ry x [0, 1] — R defined by
(5.6) o(t, x,y) = a(t)x’ + b()y x + c()x + d(t)y* + f()y + g(1)
satisfies
¢

5D gty -0
K

1
1
+ Mf (p(t, X,y + (1 = y)2) = 9(t, x, y))(1 = """ ~dz=0.
0

Proof. We can write

1 1
I’Vl/ (p(t, x,y + (1 —y)z) — o(t, x, y))(1 — Z)T)?’l*l‘mfli dz
0 z
(5.8) = (b(t)+ f()+2yd)(A — y)po(t) + d()(1 — y)*@1(1),
where

T—-t
1 1
T—t T—t+1/m

1
oo(t) = m/ a1- Z)Tm—tm_l dz —
0

1
QOI(Z) — m/ Z(l _ Z)Tm—tm—l dz =
0
We also have

21
_ % —(—a*x* — abxy — acx) —

1
(5.9) —(B*y? + 2bcy + ),
4k K 4k

where we write a for a(z), etc. By means of a straightforward calculation, we can check
that

1 1

a, = —a*> — ro?, d, = 2dgy — dg) + —b* — ro?,
K 4k
1 1

b, = ;ab—{—ZAoz—i—b(po, fi= ﬂbc—2d<po+f<po+2d<pl,
1 1,

¢, = —ac — by, g =-—c — foo—do.
K vive

Using this in calculating ¢, together with (5.8) and (5.9), we derive (5.7). O
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5.2. Verification

We next relate the candidate ¢ to the value function v by using the properties (5.1)-
(5.4). We start with two auxiliary results.

LEMMA 5.3. The candidate optimal process X given by
R 1 N A
(5.10) dX(r) = —2—(2a(t)X(t) + b))y () + c(2))dt, X(0)=x
K

is bounded.
Proof. Solving (5.10) for X yields

J0 =t 609 1 [ b - o (—i [ a(r)dr) ds.
0 s

Recalling that b is bounded by (5.2), @ > 0 and y is a gamma bridge, we see that it is
enough to show that

t 1 1
/ lc(s)| exp <— / a(r) dr) ds is bounded uniformly in 7.
0 K Js

Because of a > 0 and |c(s)| < a(s)(ka(T — 5)* + 2) by (5.3), this follows from

/Ota(s) exp <_i /Sta(r) dr> ds = k exp (—i ‘/Sta(") d’) -
=Kk — K exp (—i /fa(r)dr)
0

< k.

s=t

‘We next establish some a priori estimates for ¢.

LEMMA 5.4. There exists a constant K such that
—K(T—-0)(x+ 1) <o xy)—al)x—1)> < K(T—)(x+1)

Jorallt €[0,T), x>0, andy € [0, 1]. In particular, for every compact set M C R, there
exists a constant K such that

—K(T -0 < ¢(t, x,y) —a()(x = 1) < K(T - 1)

forallt €0, T), xe M, andy € [0, 1].

Lemma 5.4 shows that ¢(z, x, y) — a(t)(x — 1)> loses the x-dependence in the limit
behavior ¢ ~ T. This can be interpreted as canceling the term n(X“(T) — 1)? in the
auxiliary optimization problem (3.2) in the limit n — oco.

Proof. We deduce from (5.2)—(5.4) that
lo(t, x, y) — a(t)(x — 1)?|
= by x+d(0)y* + f(0)y + x(e(1) + 2a(1) + g(1) — a(1)]
< (T —t)ki(x+ 1)+ k3 + koa(t)(T — 1)).
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From (5.1), it follows that a(¢)(T — t) is bounded, which implies the first claim. For the
second part, it is enough to set K := K sup, /(1 + x). O

We are now in position to prove Theorem 3.1.

Proof of Theorem 3.1. We first show that ¢ < v, where ¢ is defined in (5.6) and v is the
value function. This claim is equivalent to

T T
(5.11) o(t,x,y) < E|:/ ku’(s)ds + Aoz/ (X“(s) — y(s))? dsj|,

for all controls u such that X*(f) = x and X“(7) =1 a.s., y(t) = y, where ¢ € [0, T],
x >0, y €0, 1]. Without loss of generality, we can assume that E[f[TKuz(s) ds] < o0
since otherwise, the result holds trivially. Using It6’s formula, we have, for any stopping
time t, valued in [¢, 71,

e AT, X(te AT), y(te AT)) — @(t, X, y)
AT
_ / (0 + 1p)(s, X(s), y(s)) ds

+ D (s, XU(s), v () — (s, X“(5), y(s—)).

se(t,tynT)
Applying proposition 4 of Emery and Yor (2004) separately to v and v ~, where
Yism, o, p) = ¢(s, X(s) (), y + 7 (s—)@)) — ¢(s, X (s)(@), y (s—)(@)),

we deduce that the process

X wfoesr()e)

se(tm,mtyA.]

. 1 m—s—
—/ / ¥ (S, w, (1 -y (i;) (w)) z> % dzds
tm J0

is a local martingale on the interval [¢m, Tm] in the time-changed filtration (Fx )um<s<7m
to which (y(5-))im<s<7m is adapted. Equivalently, the process

Y. Vm o, Ay(s) @)

se(t,TeN]

(5.12) o
—m//o Y(sm, w, (1 —y(s—)w))z)

1= Tm—sm—1
U= e

is a local martingale on [¢, 7] in the standard filtration (F;);<s;<7 (to which (y(s));<s<7 1s

adapted). Using Lemma 5.2 together with —%2; < @ + «u® for all u € R, we derive

@+ 207 (y — x)* + o + ku?

1
1
o [ (ttxy +( = )2 = gl = 9 dz 20
0
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In particular, choosing a sequence (t;),en of stopping times such that 7, / T and the
stopped process (5.12) is a true martingale, we obtain

AT unT
o(t, x,y) < E[/ Kuz(s)dsﬂozf (X“(s) — y(s5)) ds}

+E[p(te AT, X(te A T), y(te A 1))

(5.13)

Monotone convergence implies
AT AT
}im E[ f ku’(s)ds + ro? / (X“(s5) — y(s5))* ds]
L—> 00 t 1

= E|:/T/cu2(s) ds + ro? /T(X‘(s) — y(5))? ds}.

Applying Lemma 5.4, we have

Elp(re AT, X*(te AT), y(te A T))]

<KE [(T— AT ( sup X“(s) + 1>:| +E[a(rg AT Xt ANT)— 1)2].
selt, T

The first integrand converges to zero by dominated convergence, using

T T
sup |X”(s)|§x—|—/ lu(s)|ds < x+ T—t—}-/ u*(s)ds e L.
set,T] t t

For the second term, we observe that

2

T
(X(teAT)= 1) = (X(r A T) = X(T))* < (/ Tlu(S)ldS)
<(T-1 AT ' u’(s)ds,
AT

by Holder’s inequality. Using that a(ty A T)(T — ty A T) is uniformly bounded by (5.1),
we obtain, for some constant C,

T
u*(s) ds] — 0,

AT

Blate, A TX'(r A D)= 1] = CE| [
as m — oo by dominated convergence. Together this shows that
T T
o(t, x,y) < E[/ ku’(s)ds + ro? / (X“(s) — y(5)) ds],
t t

and concludes the proof of (5.11). To prove the reverse inequality ¢ > v, we deduce
similarly to (5.13) that

AT unl
o(t,x,y)=E [/ Kkii*(s)ds + koz/ (X(s) — y(5))* ds]

+ Elp(ze A T, X(zo A T), y (w0 A D)),

(5.14)
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for the candidate optimal control # corresponding to X given in (5.10)—this time we
have an equality from Lemma 5.2 using #i(s) = —%£:(s, X(s), y(s)). By Lemma 5.3, X" is
bounded and hence we obtain from Lemma 5.4 that

Elp(te AT, X(tg A T), y(te A T))]
(5.15) > Ela(ty A T)(X(ty AT)— 1)1 — KE[T — 7, A T).

Since the first term in (5.15) is nonnegative and the second converges to zero, monotone
convergence yields

T T
o(t, x, y) > E[/ Kz}z(s)ds+ko2/ (X(s) — y(s)) ds].

Using the admissible control i(s) = %, one can see that

(1-x)y
t

M < oo,
T—; T

(5.16) o(t,x,y) <v(t,x,y) <k

for some constant M'. We conclude the proof by showing X7 = 1 a.s. Using (5.14), (5.15),
and (5.16), we deduce

e X)2

T + M > Ela(v A TY(X (2o A T) = 1] = KE[T — 7 A T).

Since a is increasing, it follows, for every ¢y € [¢, T), that

e X)2

—, T M > a(t0) E[(X(ze A T) = 1)*1(z,2)] — KE[T — 7 A T].

Using that X is bounded, dominated convergence yields

(- X)2
T—

K

+ M = a(n) E[(X(T) — 1)’],

for all ty € [z, T), and hence

(1-x)
K T—1

+ M > hm a(to)E[(X(T) - 17

Since limy, ~7 a(ty) = oo, this can only hold if E[(X(T) — 1)*] = 0, which means X(T) = 1
a.s. The uniqueness of the optimal control is a consequence of the linearity of X* in u
and the strict convexity of the optimization problem in the control. O

5.3. Proofs of Corollaries 3.3 and 3.4
We conclude by proving Corollaries 3.3 and 3.4.
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Proof of Corollary 3.3. From b(t) <0 for t < T by (5.5) and a(¢) > 0, it follows

gt y)= ;;’((f)) > 0 for all t < T. We next write

=b(t)y — (1) 1
C(I,V)=T(I)=V+K(1—V)m-

To prove ¢(¢, y) > 0, it is enough to show that
(T — t)a(t) is decreasing. Hence, we consider

(T+>u(r) is increasing or, equivalently, that

d

5, (T — a() = —a(®) + (T = Na,(1)

eZT«/)»O'Z/K + 62[‘/)\02/’( N (T t) 4)\0.262(T+[)4/)»02/K

e2T«/}»02/K _ eth/}\UZ/fc (eZT/\/)\Uz/K _ e2r«/kaz/fc)2
ez(TJrf)«/KGZ/K(_W(eZ(Tfl)\/)nGZ/K _ 672(T7t)«/)«rz/;() + 4k02(T— t))

- (e2T4/)\.(72/K _ e2f4/)\(7'2/K)2

TN (i ho? AT — 1)y/Ao? [k + 4ro>(T — 1))
(equ/}\.Uz/K _ 62"/}"02/'()2 a

= —Vkko?

Oa

2+l

using e¥ — e~ = 2sinh(x) =237, Q!

Moreover, we have

> 2x for all x > 0. This proves ¢(z, y) > 0.

©0(0) eIV — ]
= K >
2a(0) 2T(e2T/VF 4 1)

£(0,0) = « 0.

For the second part of the lemma, we define a process &(7) = ¢ (7, y(1)) — X(), which
satisfies £(0) = ¢(0, y(0)) = ¢(0,0) > 0. We have &(¢) > 0 a.s. for all 7 by the following
reason. Fix ¢ and consider the event £(7) < 0. Since X is continuous and ¢, > 0and y has
only positive jumps, there needs to exist a random t < ¢ such that £(r) = 0and &£(s) <0
for all s € [1, t]. However, we have

E(1) = E(v) + £ (0 y (1)) — ¢ (r. (1) — / (s) ds = 0,
N r ——

=0 >0 <0

since Z(s, y(s)) is increasing and #(s) < 0 if £(s) < 0. Therefore, £(¢) cannot become
negative and #(¢) will be nonnegative for all ¢. O

Proof of Corollary 3.4. Let X, i1, be defined as in the corollary and set &1;(s) = ;Y’l(s)

and

A t Lo 1 s z 1 [
_ e ffamdr o _ ‘£ -
Xi(s) = —e + P _/, ( b(z) c(z)) exp( . /: a(r) dr) dz,

so that (3.4) is satisfied by construction; compare with (5.10). By definition, we have

2z 2zK n 2K
T (I'-zT T-z

2K
T!

—b(2) 7 — e(2) = a(2) =% +
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so that

A to_1ps 1 [ 2z 2k 1 [
— e fiamydr o~ - _ A dr
X1(s) Te + e ./, (a(z) T + T) exp( - / a(r)dr ) dz

— %07% flA a(r)dr + i _ 167% fl" a(rydr _

N
T

by integration by parts. Finally, we check that &t (¢) = Yl (1= lT is the optimizer to (3.3).
To this end, we calculate

K /Tuz(s) ds —i—kcrz/T (% — X”(s))2 dr > « fruz(s) ds

K r : K 1\ T—1t
ZT—t(/, u(s)ds> =T—t(1_T> e

by Jensen’s inequality using the probability measure T%t ds. Equality holds for the choice
Uu=1u; = iT with corresponding X"(s) = X (s) = iT This shows that #; is indeed the
minimizer of (3.3). O
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Execution traders know that market impact greatly depends on whether their orders
lean with or against the market. We introduce the OEH model, which incorporates this
fact when determining the optimal trading horizon for an order, an input required by
many sophisticated execution strategies. This model exploits the trader’s private infor-
mation about her trade’s side and size, and how it will shift the prevailing order flow.
From a theoretical perspective, OEH explains why market participants may rationally
“dump” their orders in an increasingly illiquid market. We argue that trade side and
order imbalance are key variables needed for modeling market impact functions, and
their dismissal may be the reason behind the apparent disagreement in the literature
regarding the functional form of the market impact function. We show that in terms of
its information ratio OEH performs better than participation rate schemes and VWAP
strategies. Our backtests suggest that OEH contributes substantial “execution alpha”
for a wide variety of futures contracts. An implementation of OEH is provided in
Python language.

KEey WorDps: liquidity, flow toxicity, broker, VWAP, market microstructure, adverse selection,
probability of informed trading, VPIN, OEH.

1. INTRODUCTION

Optimal execution strategies compute a trajectory that minimizes the shortfall cost of
acquiring or disposing of a position in an asset. Well-known contributions to this subject
are Perold (1998), Bertsimas and Lo (1998), Almgren and Chriss (2000), and Kissell and
Glantz (2003), to cite only a few. These strategies provide an abstract and general frame-
work to model the costs that trading imposes on a particular investor. One drawback
of this abstraction is that it does not explicitly define how market impact arises from a
trade’s perturbation of the liquidity provision process. This omission is important as the
market impact of orders generally depends on whether the orders lean with or against
the market. We use asymmetric information market microstructure theory to take this
feature of the provision of liquidity into account in our determination of optimal execu-
tion. A trader has private information about the size and direction of his upcoming trade.
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If, for example, he plans to buy in a selling market, his trade actually provides liquidity
to the market and can be executed at a lower trading cost than a sell in a similar market.
His execution strategy should take this private information into account.

An alternative approach to modeling the liquidity provision process is taken by
Obizhaeva and Wang (2013), which models the impact of trades on the limit order
book and evolution of the book. Our approaches differ in how the impact of orders on
liquidity is modeled. Our approach is based on an asymmetric information model of the
behavior of market maker; their approach is based on a model of the dynamics of orders
arriving to the book. The resulting optimal execution strategies differ as well.

The PIN theory (Easley et al. 1996) argues that market makers adjust the range at
which they are willing to provide liquidity based on their estimates of the probability of
being adversely selected by informed traders. Easley, Lopez de Prado, and O’Hara (2012)
show that, in high frequency markets, this probability can be accurately approximated
as a function of the absolute order imbalance (absolute value of buy volume minus sell
volume). Suppose that we are interested in selling a large amount of E-mini S&P500
futures in a market that is imbalanced toward sells. Because our order is leaning with
previous orders, it reinforces market makers’ fears that they are being adversely selected,
and that their current (long) inventory will be harder to liquidate without incurring a
loss. As a result, market makers will further widen the range at which they are willing to
provide liquidity, increasing our order’s market impact. Alternatively, if our order were
on the buy side, market makers would narrow their trading range (the spread between
the bid and ask prices) as they believe that their chances of turning over their inventory
improve, in which case we would experience a lower market impact than with a sell order.
Thus, order imbalance and market maker behavior set the stage for understanding how
orders fare in terms of execution costs. Our goal in this paper is to apply this theory in
the context of market impact and execution strategies.

Besides reducing transaction costs, there are a number of reasons why traders care
about not increasing the order imbalance. First, Federal Regulation and Exchange Cir-
culars limit a trader’s ability to disrupt or manipulate market activity.! A trading strategy
that disrupts the market can bring fines, restrictions, and sanctions.”> Second, traders
often will have to come back to the market shortly after completing the initial trade. If
a trader got great fills in the previous trade at the expense of disrupting the liquidity
process, the previous trade’s gains may transform into losses on the successive trades.’
Third, the position acquired will be marked-to-market, so posttrade liquidity conditions
will be reflected in the unrealized P&L of the position.* Thus, it would be useful to
determine the amount of volume needed to “conceal” a trade so that it leaves a minimum
footprint on the trading range.

Many optimal execution strategies make the assumption that liquidity cost per share
traded is a linear function of trading rate or of the size of the block to be traded. This

"We could envision a future in which regulators and exchanges limit the assets under management of an
investment firm based on that market participant’s technology as it relates to the disruption of the liquidity
provision process.

2See, for example, the “stupid algo” rules recently introduced by the Deutsche Borse (discussed in
“Superfast traders feel heat as Bourses act,” Financial Times, March 5, 2012). The CFTC and SEC have also
recently introduced explicit rules relating to algorithmic impact on markets.

3Even if there are no successive trades, leaving a footprint leaks information that can be recovered by
competitors and used against that trader in future occasions. See Easley et al. (2012¢) for examples.

4If a buyer pushes the mid-price up at the expense of draining liquidity, she may find that the liquidation
value of that position implies a loss.
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seems an unrealistic assumption and it is the motivation for Almgren’s (2003) study of
optimal execution. The model we introduce here also incorporates a nonlinear response
in trading cost to size of the trade. We are not aware of other methodologies explicitly
taking into account the presence of asymmetric information in determining the optimal
execution horizon, although Obizhaeva and Wang (2013) do analyze optimal execution
using a model of dynamic limit order book. In this context, we find that the side of the
trade is as important as its size.

Our Optimal Execution Horizon model, which for brevity we denote OEH henceforth,
is related to a growing number of recent studies concerned with execution in the context
of high frequency markets and tactical liquidity provision. Schied and Schoneborn (2009)
point out that the speed by which the remaining asset position is sold can be decreasing
in the size of the position, but increasing in the liquidity price impact. Gatheral and
Schied (2011) extend the Almgren—Chriss framework to an alternative choice of the risk
criterion. Forsyth (2011) formulates the trading problem as an optimal stochastic control
problem, where the objective is to maximize the mean-variance tradeoff as measured at
the initial time. Hendershott and Mendelson (2000), Donges and Heinemann (2006),
and Ye (2011) consider the choice of how to split an order between a dark pool and
a primary venue. Bayraktar and Ludkovski (2011) and Kratz and Schoneborn (2014)
propose optimal trade execution schemes for dark pools.

OEH does not replace or supersede minimum market impact strategies. On the con-
trary, it is complementary to them. OEH does not address the question of how to slice the
orders (create a “trading schedule”), which has been studied by Hasbrouck and Schwartz
(1988), Berkowitz et al. (1988), Grinold and Kahn (1999), Konishi and Makimoto (2001)
among others previously cited. Our main concern is with understanding how transaction
costs are derived from the impact that a trade has on liquidity providers. There are some
connections, however, between OEH and the previous studies. Like earlier models, OEH
minimizes the impact on liquidity subject to a timing risk. From the standard VWAP
(Madhavan 2002) to sophisticated nonlinear approaches (Almgren 2003; Dai and Zhong
2012), many execution strategies require as an input the trading horizon, which is typi-
cally exogenous to those models. One of our contributions is to provide a framework for
determining this critical input variable from a new perspective: Informational leakage. In
doing so, we stress the importance of modeling the order side and its asymmetric impact
on the order imbalance.

The current paper is organized as follows. Section 2 reviews how order imbalance
and trading range are related. Section 3 explains why our trading actions leave a foot-
print on the market makers’ trading range. Section 4 incorporates timing risk and risk
aversion to our analysis. Section 5 develops the OEH algorithm that determines the
optimal horizon over which to execute a trade. Section 6 presents three numerical ex-
amples, illustrating several stylized cases. Section 7 argues why the apparently irrational
behavior of some market participants during the “flash crash” may be explained by
OEH. Section 8 compares OEH’s performance with that of trading schemes that target
a volume participation rate. Section 9 discusses how our model relates to alternative
functional forms of the market impact function. Section 10 provides backtests of the
performance of OEH, and compares it with a VWAP execution strategy. Section 11
summarizes our conclusions. Appendix 1 provides a proof. Appendix 2 offers a gen-
eralization of our approach. Appendix 3 contains an implementation of Appendices
1 and 2 in Python language. Appendix 4 provides a procedure for estimating market
imbalance.
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2. TRADING RANGE AND FLOW TOXICITY

We begin by summarizing a standard sequential-trade market microstructure approach
to determining the trading range for an asset. In a series of papers, Easley et al. (1992a,
1992b, 1996) demonstrate how a microstructure model can be estimated for individual
assets using trade data to determine the probability of information-based trading, PIN.
This microstructure model views trading as a game between liquidity providers and
traders (position takers) that is repeated over trading periodsi=1, . . . ,I. At the beginning
of each period, nature chooses whether an information event occurs. These events occur
independently with probability «. If the information is good news, then informed traders
know that by the end of the trading period the asset will be worth S; and, if the information
is bad news, that it will be worth S, with § > S. Good news occurs with probability (/-8)
and bad news occurs with probability §. After an information event occurs or does not
occur, trading for the period begins with traders arriving according to Poisson processes.
During periods with an information event, orders from informed traders arrive at rate
w. These informed traders buy if they have seen good news, and sell if they have seen bad
news. Every period, orders from uninformed buyers and uninformed sellers each arrive
at rate ¢.

Easley, Kiefer, O’Hara, and Paperman (1996) argue that, for the natural case that

8= %, the trading range at which market makers are willing to provide liquidity is
ap o

2.1 =—J[S-S]

@D o+ 28[ 5]

This trading range gives the market maker’s targeted profit per portfolio turnover. The
first term in equation (2.1) is the probability that a trade is information based. It is
known as PIN. Easley, Engle, O’Hara, and Wu (2008) show that expected absolute trade
imbalance can be used to approximate the numerator of PIN. They demonstrate that,
letting VS and V2 represent sell and buy volume, respectively, E[| VS — VB|] ~ ap for
a sufficiently large u. Easley, Lopez de Prado, and O’Hara [2011a, 2012] argue that in
volume-time space, PIN can be approximated as’

apu

2.2 PIN = ———
2.2) o+ 2e

~ VPIN = E[|0I|]

where we have grouped trades in equal volume buckets of size V2 + V5=V = ap + 2e,
and Of = # represents the order imbalance within V.% This volume-time approxi-
mation of PIN, known as VPIN, has been found to be useful in a number of settings (see
Easley, Lopez de Prado, and O’Hara 2012; Bethel et al. 2011; Abad and Yagiie 2012; or
Menkveld and Yueshen 2013, for example). In the next section we will show how VPIN’s
expectations play a role in modeling the liquidity component of an execution strategy.

3. THE LIQUIDITY COMPONENT

For the reasons argued in the introduction, traders are mindful of the footprint that their
actions leave on the trading range, . According to equation (2.2) the trading range

5The expectation of the absolute value of order imbalance, E[| V2 — VS]] is approximated by the expected
arrival rate of informed trades, apt. This approximation is discussed in Easley, Engle, O’Hara, and Wu
(2008).

For a procedure that can be used to estimate OI, see Easley, Lopez de Prado, and O’Hara (2012b).
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will change due to adjustments on VPIN expectations. In the next two subsections we
discuss the impact that our trade has on the order imbalance, how that may affect VPIN
expectations and consequently the transaction cost’s liquidity component.

3.1. Impacting the Order Imbalance

Suppose that we are an aggressive trader for m contracts to be traded in the next
volume bucket, where m > 0 denotes a purchase, and m < 0 denotes a sale.” For now, we
set the bucket size at an exogenously given V' (we explain in Section 5 how to optimize
this bucket size). Our trade of m contracts will cause the bucket to fill faster than it would
otherwise fill. Let us suppose that our trade pushes buys and sells from other traders out
of the next bucket at equal rates. Given our knowledge of OI, we let V& and VS be our
forecasts of buy and sell volume that would occur in the next bucket without our trade.®
The expected order imbalance over V using our private information about our trade of
m contracts can be represented by

— —

VB VS
s =V =lm) = — (V= |ml)+m

(3.1) Ol = =V V
v v

|m| m

= 1— =)+ =

&,J( V>+V

ol

B . .
where V > m, v8 = 7 represents the forecasted fraction of buy volume in absence of

our trade and O = 2v® — 1 is the order imbalance in absence of our trade.’ The second
equality follows from observing that the predicted fraction of buys from others, v 5, times
the volume from others, V' — |m|, is their predicted buy volume; a similar term occurs
for their predicted sell volume; and finally adding in our trade gives the predicted order
imbalance. In the nomenclature above, O incorporates private information and O7 only
public information. If @ ~0, 0l ~ Ol. Alternatively, in the extreme case of @ ~ 1,
we have |67| ~ 1. Generally, the impact of our trade on o1 will depend on m, but also
the O1 that would otherwise occur in the next volume bucket. If, for instance, VB < VS,

M will make O7 = 0.
_VBiy

a trade of size m =

3.2. Informational Leakage on the Liquidity Component

The previous section explained how trading m contracts interspersed with V' —m
external volume displaces the expected order imbalance from O to O1. Next, we discuss
how that displacement triggers an updating of the market makers’ expectations on the
order imbalance, and thus VPIN.

Market makers adjust their estimates of VPIN as a result of the information leaked
during the trading process. Ceteris paribus, if |m| is relatively small, we expect it to
convey little information to market makers. For example, if a small trade is executed

7Of course, m must be smaller than or equal to ¥ in order for us to do it within one volume bucket. The
meaning of “aggressive trader” is that we determine the timing of the trade (as opposed to being a “passive
trader”).

8Easley et al. (2012a) present evidence that order imbalance shows persistence over (volume) time.

9For a procedure that can be used to estimate v ?, see Easley, Lopez de Prado, and O’Hara (2012b).



OPTIMAL EXECUTION HORIZON 645

in block but it is however large enough to fill a small bucket of size V, market makers
may expect VPIN to remain around forecasted levels rather than jump to 1. We model
the expected order imbalance (leaked to market makers) during execution, 01, as a
convex combination of two extreme outcomes—no leakage (¢[|m|] — 0) and complete
(¢[lm|] = 1) informational leakage:

||

62 Or=glm|@? (1=

)+ 5]+ a - e -y
———

oI

o1

where ¢[.] is a monotonic increasing function in |m| with real values in the range (0, 1).
O1 contains private information to the extent that it has been leaked by m. That occurs
as a result of the trade’s size (|m|). The role of ¢[.] is to determine the degree by which
the effective order imbalance during our execution (6\1) impacts the market markers’
expectations on VPIN, and consequently leads to an adjustment of the range at which
they provide liquidity, ¥

It is critical to understand that the privately known order imbalance (5\1 ) may differ
from the one inferred by the market makers (6?) due to the trade’s “footprint.” Some
private information may have been leaked by m, but not all. If ¢[|m|] — 0, there is no
informational leakage, and O7 ~ O1, regardless of O1. In this case, it is as if m had not
been traded and market makers will not adjust their behavior. However, when the order is
so large that ¢[|m|] — 1, the leakage is complete and the market maker knows as much as
the trader, O1 ~ OI. For instance, an order of 75,000 contracts on the E-mini S&P500
futures may dramatically displace the expectation of VPIN, even if blended among a
volume 10 times greater (see SEC-CFTC [2010] in connection with the Waddell & Reed
order). This displacement of the expectation from OF to OT is the footprint left by m in
the liquidity provision process.

The extent to which private information about our trade leaks to the market during
the volume bucket in which we are trading is critical. In our examples and empirical
implementation, we consider both complete leakage, ¢[|m|] — 1, and leakage that is a
simple function of the size of our trade. One could also consider more complex forms for
the leakage function; for example, it could depend on size of the volume bucket or which
way the market is leaning without our trade and the extent to which it is imbalanced. We
do not consider those extensions here. They would not change our conceptual framework,
but the extension to including the bucket size in the leakage function would certainly
change the details of the solution to the OEH.

For simplicity, we have assumed that E[| OI|] = | O 1|, because this expectation is based
on past, public information. Similarly, E[Iqo[lml]é\ll] = ¢[|ml]]| O1| because go[lml]é\l is
precisely the portion of O1 that has become public due to m’s leakage. In this par-
ticular model we have not considered other sources of uncertainty in forming VPIN’s
expectation; thus VPIN = E[|bvl|] = |bvl|.

4. THE TIMING RISK COMPONENT

Minimizing the footprint that trading has on ¥ is an important factor when deciding
the execution horizon. But it is not the only factor that matters to a trader. Minimal
impact may require slicing a large order into multiple small trades, resulting in a long
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delay in executing the intended trade. This delay involves a risk, called timing risk. To
model this timing risk, we introduce a simple, standard model of how the midpoint of
the spread evolves. It is useful to view the trading range, X, as being centered on the
mid-price, S, which moves stochastically as (volume) time passes. We model this process
as an exogenous arithmetic random walk

@.1) AS=6 [—¢

where & ~ N(0, 1) i.i.d. and V; is the volume used to compute each mid-price change.
So V/V, is the number of price changes sampled in a bucket of size V. The standard
deviation, o, of price changes is unknown, but it can be estimated from a sample of n
equal-volume buckets as &, in which case UESVLEPN X2 ).

According to this specification, the market loss from a trade of size m can be proba-
bilistically bounded as

4.2) P |:Sgn (m)AS > ZX&\/Z:| =1-x

where Sgn(m) is the sign of the trade m, A is the probability with which we are willing to
accept a loss greater than Z, & /7V, and Z, is the critical value from a standard normal

distribution associated with A € (0, %].10 A can also be interpreted as a risk aversion
parameter, as it modulates the relative importance that we give to timing risk.

The specification above abstracts from any direct impact that m may have on the
midpoint price process. As is well known from microstructure research, the private
information in our trade can introduce permanent effects on prices. In Appendix 2, we
provide a generalization of this component taking into account the possibility that m
leaks part of our private information into the mid-price.

5. OPTIMAL EXECUTION HORIZON

We have argued that the impact of our trade of m on X will depend on the size of m relative
to V. In this section we take the intended trade, m, as fixed and determine the optimal
trading volume ¥ in which to hide our trading action m without incurring excessive timing
risk. In order to compute this quantity, we define a probabilistic loss TT1 which incorporates
the liquidity and timing risk components discussed earlier. The probabilistic loss models
how different execution horizons will impact our per unit portfolio valuation after the
trade’s completion. This is not an implementation cost, as that is contingent upon the
execution model adopted to slice the parent order into child orders. OEH’s goal is to
determine the * that optimally conceals (in the sense of minimizing IT for a given risk
aversion A) our order m, given the prevalent market state (¢[|m|], v, [S— S 1, V,, 6),

10Note that at A = 0.5 the critical value changes sign. We restrict our attention to A < 0.5 as otherwise
we would be mixing losses and gains.
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where

= ‘w[lml] [(ZVB -1 (1 - |mV|> + 'ﬂ + (1 —llm])2v® = 1)|[S- §]

liquidity component

(5.1) — 7 /%6

—
timing risk component

with Z, <0, thus the subtraction. The greater V, the smaller the impact on the order
imbalance, but also the larger the possible change in the center of the trading range.
Appendix 1 demonstrates the solution to minimizing I1, which can be implemented
through the following algorithm (see Appendix 3 for an implementation in Python
language):

(1) £ @v® = Diml < m, try Vi = Qllm/li@v” — Dlm| — m][5 ~ S}%%)" and com-
pute the value of OT associated with V;, OI[V]].
(a) If Q:I[Vl] > 0and v® < vB¥, then V* = 1/ is the solution.
(b) If OI[Vi] > 0 and vZ > vB*, then V* = |m] is the solution.

2) If2vE = 1)|m| > m, try V3 = Qpllm][m ;(ZVB — Dm|[S - Q]%)z/3 and com-
pute the value of OI associated with V5, OI[V5].

(a) If @[Vz] < 0and vZ > v8- then V* = 15 is the solution.
(b) If O1[15] < 0and v® < v~ then V* = |m] is the solution.

(3) If 2v® — 1)|m| = m, then V3 = |m| is the solution.
(4) Else, try Vi = g[lm[(Im] — 55=).

2vB—1

(a) If vB > yB= then V* = ¥} is the solution.
(b) If v® < vB=, then V* = |m| is the solution.

where

m—(2vE —1)m| Lok

(5.8)  OI[V*]= g[iml] [ Tz

- 1} + (1 —glmh2v? = 1)

—+1 AN
5.9 B m 20
69 ! 2 dglmlS- ST,

m ! %6 /im
5.10 e S
(5.10) ’ 2 doImlIS - ST,
_ 1 |mle[|m|]
11 =i !
(5.11) V=3 (m(fp[lmll “nt )
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OI € [—1, 1] is the signed order imbalanced as a result of the informational leak that
comes with trading m. v5~, vB+, and v5= set the boundaries for v?Z in order to meet
the constraint that V* > |m|. The liquidity component is nonlinear in m and takes into
account the side of the trade (leaning against or with the market), which we illustrate
with numerical examples in Section 6.

Note that V* has been optimized to minimize I1, and it will generally differ from
the 7 used to compute VPIN. We reiterate the point made earlier that various uses of
VPIN require different calibration procedures. In this paper, we propose a method for
determining the 7* that minimizes the probabilistic loss IT, not the " that maximizes our
forecasting power of v 2 or short-term toxicity-induced volatility.

In practice, V* could be estimated once before submitting the first child order and
reestimated again before submitting every new slice. By doing so, we incorporate the
market’s feedback into the model: If our initial slices have a greater (or smaller) impact
than expected on the liquidity provision, we could adjust in real-time. That is, we assume
that the values observed will remain constant through the end of the liquidation period,
and determine the statically optimal strategy using those values. As the input parameters
change, we could recompute the stationary solution. Almgren’s (2009) shows that this
“rolling horizon” approach, although not dynamically optimal, provides reasonably good
solutions to a related problem.

6. NUMERICAL EXAMPLES

In this section, we develop numerical examples using the following state variables: 6 =
1,000, ¥, = 10,000, m = 1,000, [S— S] = 10,000, » = 0.05 and ¢[|m|] — 1. We want
to find the optimal horizon to buy our desired amount of 1,000, recognizing that the
optimal strategy must take account of both liquidity costs and timing risk costs. This
strategy will depend, in part, on the imbalance in the market, which we capture as

the fraction of buy volume, v5. Three scenarios appear relevant: v5 < %, vB = % and
v > % We limit our attention to m > 0, with the understanding that a symmetric
outcome would be attained with an alternative sell order m’ < 0 and v% =1 — v 8 (see
Figure 7.1).

Figure 6.1(a) displays the optimal volume horizons (*) for various values of the frac-
tion of buy volume, v5. As is apparent, the optimal trading horizon differs dramatically
with imbalance in the market. The reason for this is illustrated in Figure 6.1(b), which
demonstrates how the probabilistic loss of trading 1,000 shares is also a function of
the buy imbalance v2. The probabilistic loss is the sum of the loss from the liquidity
component and the loss from the timing component. Notice that with m > 0, the lig-
uidity component does not contribute to IT until shortly before the market is balanced
(VB — %).ll

6.1. ScenarioI: vZ = 0.4

In this scenario we want to buy 1,000 contracts from a market that we believe to be
slightly tilted toward sales (projected buys are only 40% of the total volume). If we plot
the values of TI[V, .] for different levels of V, we obtain Figure 6.2.

The liquidity component is positive at v5 < % as the order m = 1,000 makes the market unbalanced

’ . B _ 1
toward buys for v® < 3.
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FIGURE 6.1. (a) Optimal V for various v? on a buy order. This figure demonstrates how

the optimal trading horizon for a buy order depends upon the expected fraction of buy
orders in the market. When all orders are buys, v 2 is 1, while if all orders are sells then
v8 is 0. The optimal volume horizon is defined over shares or contracts. The figure
is drawn for state variables: & = 1,000, ¥, = 10,000, m = 1,000, [S — S] = 10,000,
A = 0.05 and ¢[|m]|] = 1. (b) Optimal probabilistic loss and its components for various
vB on a buy order. This figure shows the expected total trading loss for a buy order and
its relation to market imbalance. The total loss is a function of the liquidity component
(the cost from trading immediately) and a timing component (the cost from delaying
trading). The expected market imbalance is given by the expected fraction of buy orders
in the market. When all orders are buys, vZ is 1, while if all orders are sells v 2 is 0. The
optimal volume horizon is defined over shares or contracts. The figure is drawn for
state variables: 6 = 1,000, ¥, = 10,000, m = 1,000, [S — S] = 10,000, » = 0.05 and
pliml] = 1.
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FIGURE 6.2. TI(V,.) for different volume horizons (¥), with v5 = 0.4. This figure
demonstrates the expected total trading loss for a buy order and its relation to the
volume horizon when the market is expected to have more selling activity. The total
loss is a function of the liquidity component (the cost from trading immediately) and
a timing component (the cost from delaying trading). The optimal volume horizon is
defined over shares or contracts. The figure is drawn for state variables: 6 = 1,000,
V, = 10,000, m = 1,000, [S — S] = 10,000, A = 0.05 and ¢[|m|] = 1.

In this case 5?[ V*] = 0 at the optimum trading horizon of V* = 6, 000 contracts
(of which 5,000 come from other market participants). The optimum occurs at the
inflexion point where the liquidity component function changes from convex decreasing
to concave increasing.!? This may seem counter-intuitive as it is natural to expect the
liquidity component to be decreasing in V. But this reasoning misses the important
role played by market imbalance. Because we are buying in a selling market, there is a
vB = 0.6 at which we are narrowing ¥ to the minimum possible and our liquidity cost is
zero. Once we pass that liquidity-component optimal V*, the trading range ¥ necessarily
widens again. The only way this can happen is with an increasing concave section in the
liquidity component function, which explains the appearance of the inflexion point.

If we trade the desired 1,000 contracts within less than 6,000 total contracts traded
our loss IT will increase because ¥ increases more rapidly than the timing component of
loss declines. If, on the other hand, we trade those 1,000 while more than 6,000 contracts
are traded, our loss IT will increase because we will be taking on both excessive liquidity
and timing costs.

One question to consider is, why does OEH allow the purchase to occur in the presence
of selling flow which may result in lower future prices? Or put differently, why is it not

I2Note that in this case the timing risk plays no role as the kink in the liquidity component overwhelms
the curvature of the timing risk component. So, in this example, the value of A is not important.
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FIGURE 6.3. TI(V,.) for different volume horizons (¥), with v5 = 0.5. This figure
shows the expected total trading loss for a buy order and its relation to the volume
horizon when the market is expected to be in a balanced state. The total loss is
a function of the liquidity component (the cost from trading immediately) and a
timing component (the cost from delaying trading). The optimal volume horizon is
defined over shares or contracts. The figure is drawn for state variables: 6 = 1,000,
V, = 10,000, m = 1,000, [S — S] = 10,000, A = 0.05 and ¢[|m|] = 1.

optimal to have a larger, possibly infinite execution horizon for a buy order, as long as
vB < 0.57 After all, prices may go lower as a result of the selling pressure, and that would
give the trader a chance to buy at a better level. The reason is, this is an execution model,
not an investment strategy. The portfolio manager has decided that the trade must occur
as soon as liquidity conditions allow it. It is not the prerogative of OEH to speculate on
the appropriateness of the trader’s decision, which may be motivated for a variety of
reasons (she holds private information, it is part of her asset management mandate, she
must obey a stop loss or abide by a risk limit, a release is about to occur, etc.). The
role of the OEH model is merely to determine the execution horizon that minimizes the
probabilistic trading loss.

6.2. Scenario II: vZ = 0.5

In this scenario, the market is expected to be balanced (buys are 50% of the total
volume). If we plot the values of II[V, .] for different levels of V, we obtain Figure 6.3.

The optimum now occurs at V* = 11,392 contracts, with a value for 5?[ V*] = 0.088.
The model recognizes that a larger volume horizon is needed to place a buy order in an
already balanced market than in a market leaning against our order (note the change
in shape of the liquidity component). In this scenario, our order does not narrow X
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FIGURE 6.4. TI(V,.) for different volume horizons (V), with vZ = 0.6. This figure
demonstrates the expected total trading loss for a buy order and its relation to the
volume horizon when the market is expected to have a greater buy imbalance. The
total loss is a function of the liquidity component (the cost from trading immediately)
and a timing component (the cost from delaying trading). The optimal volume horizon
is defined over shares or contracts. The figure is drawn for state variables: 6 = 1,000,
¥, = 10,000, m = 1,000, [S — S] = 10,000, A = 0.05 and ¢[|m|] = 1.

abruptly (as in Scenario I), and the only way to reduce IT is by substantially increasing
V (i.e., concealing our order among greater market volume). The liquidity component
function is now convex decreasing, without an inflexion point, because the market is not
leaning against us. But the optimal }* is still limited because of greater timing risk with
increasing V.

6.3. Scenario III: vZ = 0.6

The market is now expected to be tilted toward buys, which represent 60% of the total
volume. If we plot the values of I1[V, .] for different levels of V, we obtain Figure 6.4.

The optimum now occurs at V* = 9, 817 contracts, with a value for 5?[ V*] = 0.2816.
Two forces contribute to this outcome: On one hand, we are leaning with the market,
which means that we are competing for liquidity (vZ > %), and we need a larger volume
horizon than in Scenario I. On the other hand, the gains from narrowing X are offset
by the additional timing risk, and IT eventually cannot be improved further. The relative
strength of these two forces determines the optimal volume horizon. Note that this need
not be a longer horizon than in a balanced market. In this example, the equilibrium
between these two forces is reached at 9,817 contracts, a volume horizon between those
obtained in Scenarios I and II.
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FIGURE 7.1. Optimal V for various vZ on a sell order. This figure shows how the
optimal trading horizon for a sell order depends upon the expected order imbalance
in the market. When all orders are buys (sells), v 5 is 1, while if all orders are sells v 2 is
0. The optimal volume horizon is defined over shares or contracts. The figure is drawn

for state variables: 6 = 1,000, ¥V, = 10,000, m = 1,000, [S— S] = 10,000, » = 0.05
and ¢[|m|] = 1.

7. EXECUTION HORIZONS AND THE OSCILLATORY NATURE OF
PRICES

Figure 6.1 illustrates how traders behave as predicted toxicity increases. For buyers
in a market tilted toward buys, the execution horizon is a decreasing function of v 5.
For sellers in a market tilted toward sells, the execution horizon is also a decreasing
function. Figure 7.1 depicts the optimal horizon for a sell order. Note that, in this case,
vS decreases as we move from left to right in the graph. For both buyers and sellers,
therefore, their optimal trading horizon will be influenced by the toxicity expected in the
market.

We next consider the combined impact of alternative trade sizes, sides, and v5. For

simplicity, we assume that ¢[|m[] is linear in |m|, with ¢[|m|] = {5 for m € (0, 10%). The
largest execution horizons occur in a perfectly balanced market, due to the inherent

difficulty of concealing trading intentions. Again we observe in Figure 7.2 that leaning
against the market (selling in a buying market or buying in a selling market) allows for
shorter execution horizons, thanks to the possibility of achieving zero liquidity cost.
Leaning with the market (selling in a selling market or buying in a buying market) leads
to horizons that are longer than when the trade leans against the market, due to the fact
that our trade is taking liquidity. The key point is that we have private information about
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FIGURE 7.2. Optimal execution horizons for various order imbalances and trade
sizes/sides. Combining alternative trade sizes and sides with our three scenarios
(v8=04,v8 =1 vB=0.6) results in the optimal execution horizons displayed in
the figure above. 6 = 1,000, ¥, = 10,000, m = 1,000, [S — S] = 10,000, » = 0.05 and
¢[|m|] linear.

how our trade will disturb the liquidity provision process and we use this information to
derive an optimal trading horizon.

Now consider a recent event in which toxicity played a significant role. The CFTC-
SEC examination of the “flash crash” (see CFTC-SEC [2010]) indicates that, during the
crash, market participants dumped orders on the market. Why would anyone reduce
their execution horizon in the midst of a liquidity crisis? Perhaps the most cited example
i1s the Waddell & Reed order to sell 75,000 E-mini S&P500 contracts. It seems at first
unreasonable to execute large orders in an increasingly illiquid market. The model intro-
duced in this paper provides a possible explanation for this behavior, and illustrates how
it contributes to the oscillatory nature of prices.'?

Suppose that vS increases to a level sufficient to have a measurable impact on PIN.
This prompts sellers to shorten their execution horizons in volume-time (Scenario III,
left side of Figure 7.1) because small gains from the liquidity component come at the
expense of substantial timing risks. As several sellers compete for the same gradually
scarcer liquidity, an increase in the volume traded per unit of time will likely occur,

13We are not claiming that the Waddell & Reed order was executed optimally. Our argument instead is
that trading faster in toxic markets is not necessarily irrational.
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which is consistent with the observation that market imbalance accelerates the rate of
trading (i.e., greater volume occurs during liquidity crises, like the “flash crash™). Prices
are then pushed to lower levels, at which point buyers will have even shorter execu-
tion horizons than the sellers (Scenario I, left side of Figure 6.2). This is caused by
the convex increasing section of the optimum for buyers (Figure 6.1(a)), compared to
the concave decreasing section of the optimum for sellers (Figure 7.1). The increas-
ing activity of buyers causes prices to recover some of the lost ground, v® returns to
normal levels, and execution horizons expand (Scenario II). The outcome is an oscil-
latory price behavior induced solely by timing reactions of traders to an initial market
imbalance.'*

8. VOLUME PARTICIPATION STRATEGIES

Many money managers conceal large orders among market volume by targeting a certain
participation rate. Part of OEH’s contribution is to show that, to determine an optimal
participation rate, order side and order imbalance should also be taken into account.
In this section, we will illustrate how a typical volume participation scheme performs in
relative terms to an OEH strategy.

Suppose we apply the same parameter values used in Section 6: 6 = 1,000, V, =
10,000, [S — S] = 10,000, » = 0.05. For simplicity, consider a ¢[|m|] linear in |m|, with
pllm|] = {5z for m € (0, 10%). Figure 8.1 compares the probabilistic loss from OEH and
a scheme that participates in 5% of the volume, for various buy order sizes when v5 = %
(i.e., when the markets is balanced between buying and selling). What is apparent is that
volume participation results in a far mostly costly trading outcome. For a desired trade
size of 2,000 contracts, the Volume Participation probabilistic loss is almost 50% greater
than that of the OEH algorithm.

The divergent behavior of these algorithms is also influenced by market imbalance.
Figures 8.2 and 8.3 present the equivalent results for vZ = 0.4 and vZ = 0.6, respectively.
OEH’s outperformance is particularly noticeable in those cases when the order leans
against the market (i.e., buying in a selling market).

9. THE SQUARE ROOT RULE

Loeb (1983) was the first to present empirical evidence that market impact is a square root

function of the order size. Grinold and Kahn (1999) justified this observation through

an inventory risk model: Given a proposed trade size |m/|, the estimated time before a

sufficient number of trades appears in the market to clear out the liquidity supplier’s
[m]

net inventory is a linear function of — 7%, where ADV is the average daily volume.

Because prices are assumed to follow an arithmetic random walk, the transaction cost

incorporates an inventory risk term of the form & /{'1’)”1/'

Over the last three decades, studies have variably argued in favor of linear (Breen,
Hodrick, and Korajczyk 2002; Kissell and Glantz 2003), square-root (Barra 1997) or
power-law (Lillo, Farmer, and Mantegna 2003) market impact functions. A possible
explanation for these discrepancies is that these studies did not control for two critical

14Note that in this discussion we are taking the existence of buyers and sellers as given. The effects
discussed in the text arise only from optimal trading horizons. If the impacts on prices also induce changes
in desired trades, the effects on market conditions may be exacerbated or moderated.
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FIGURE 8.1. OEH’s performance versus a volume participation strategy when v? = %

This figure shows the expected total trading loss for a buy order arising from either a
volume participation strategy or the OEH strategy when the market is expected to be in
a balanced state. The total loss is a function of the liquidity component (the cost from
trading immediately) and a timing component (the cost from delaying trading). The
optimal volume horizon is defined over shares or contracts. The volume participation
strategy is assumed to participate in 5% of the volume. The figure is drawn for state
variables: 6 = 1,000, ¥, = 10,000, [S — S] = 10,000, » = 0.05 and ¢[|m|] linear.

variables affecting transaction costs: order side and its relation to order imbalance.
Consider once again the same parameter values used in Section 6: 6 = 1,000, V, =
10,000, [S — S] = 10,000, » = 0.05. Suppose that ¢[|m|] is linear in |m|, with ¢[|m|] = 10
for m € (0, 10%).

Figure 9.1 plots the probabilistic loss IT that results from executing a buy order of size
m at optimal horizons V*(m) given v# = 1. A power function fits IT almost perfectly,
with a power coefficient very close to the g reported by Almgren, Thum, Hauptmann,
and Li (2005). However, Figure 9.2 shows that, if vZ = 0.4, TI has a linear end and is
below the levels predicted by the square root. Finally, when vZ = 0.6, Figure 9.3 displays
IT values greater than in the other cases, as the order now competes for liquidity. These
conclusions depend on our assumption of a linear ¢[|m|], but they can be generalized to
other functional forms. For example, Figure 9.4 shows that, for ¢[|m|] &« «/mand v5 = %,
IT fits the square root, as originally reported by Loeb (1983).
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FIGURE 8.2. OEH’s performance versus a volume participation strategy when v? =
0.4. This figure shows the expected total trading loss for a buy order arising from either
a volume participation strategy or the OEH strategy when the market is expected to
have a greater sell imbalance. The total loss is a function of the liquidity component
(the cost from trading immediately) and a timing component (the cost from delaying
trading). The optimal volume horizon is defined over shares or contracts. The volume
participation strategy is assumed to participate in 5% of the volume. The figure is
drawn for state variables: 6 = 1,000, ¥, = 10,000, [S — S] = 10,000, » = 0.05 and
¢[|m|] linear.

10. EMPIRICAL ANALYSIS

In the previous sections we presented a theory showing that OEH optimally uses order
imbalance to determine the amount of volume needed to disguise a trade. We have also
shown that OEH provides an explanation for the apparently contradictory views on the
functional form of the market impact function. In this section we study the empirical
performance of OEH relative to a VWAP strategy.

We consider an informed trader who wishes to trade m units of a particular futures
contract. To keep the discussion as general as possible, we will consider two scenarios. In
the first scenario, the trader has information about the sign of the price change over the
next volume bucket, but not its magnitude. In this case, we model the desired trade by
m = Sgn(AS;)q, where ¢ is a standard trade size determined by the trader. In the second
scenario, the trader has information about the sign as well as the magnitude of the price
move, and in this case we model the desired trade by m = f(AS;)g. As in Section 5,
we can analyze the performance of an execution strategy in terms of two components:
liquidity and timing costs. The timing cost can be directly observed, as measured by the
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FIGURE 8.3. OEH’s performance versus a volume participation strategy when v =

0.6. This figure shows the expected total trading loss for a buy order arising from either
a volume participation strategy or the OEH strategy when the market is expected to
have a greater buy imbalance. The total loss is a function of the liquidity component
(the cost from trading immediately) and a timing component (the cost from delaying
trading). The optimal volume horizon is defined over shares or contracts. The volume
participation strategy is assumed to participate in 5% of the volume. The figure is
drawn for state variables: 6 = 1,000, ¥, = 10,000, [S — S] = 10,000, » = 0.05 and
¢[|m|] linear.

price change with respect to the fill price, excluding the impact that the order has on
liguidity. For example, in the first scenario the trader may know that prices will go up,
but she may not know the magnitude of the price increase, so for a sufficiently large m
the expected timing gain may turn into a loss due to the liquidity cost.

When the trader executes using OEH, she combines her private information with
market estimates of o and v over the next bucket. In this particular exercise, the latter is
based on the procedure described in Appendix 4, and the former is the standard deviation
of price changes over a given sample length. Then, for some ¢[|m]], A, and a long-run
volatility &, assuming [S — S] = —Z,5,"° she can compute the OEH V* over which to
trade m contracts. Let’s denote the average fill price over the horizon V*, in absence of
her trade, by Forp. The realized timing component is (S, — Fogy .)m. The liquidity

130ther specifications could be considered to model the maximum trading range at which market makers
are willing to provide liquidity. Here, we express that number as a function of the long-term volatility,
multiplied by a market makers’ risk aversion factor. That factor may not coincide with Z;; however we see
an advantage in keeping the model as parsimonious as possible, rather than introducing a new variable.
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FIGURE 9.1. Probabilistic loss under v5 = % and ¢[|m|] linear. When order flow is

balanced, the probabilistic loss follows a functional form close to the square root.

component can be estimated as |5/I oen < |[S — Slim|, following equations (4) and (7).
Thus, the total profit during volume bucket 7 is

(10.1) PLogn = —|01opn < |[S — Slim| + (St — Fopn . )m

L T
PLOL-'II,r PL()E[[,r

where we have expressed the profit in terms of its liquidity (PLléEH’T) and timing
(PLY;, ) components. Similarly, if the trader executes through a VWAP with fixed
horizon, the total profit during volume bucket 7 is

(10.2) PLywap. = —|0Iywup \[S— Slim| + (S, — Fymap . )m.

L T
PLVWAP,r PL VWAP,©

Based on the previous equations, we can compute the relative outperformance of OEH
over VWAP in terms of its information ratio,
_ E[PLOEH,r - PLVWAP,T]

(10.3) IR =
o[PLoEn,: — PLywap <]

where /7 is the annualization factor, and »n the number of independent trades per year.
Our goal is to evaluate the performance of OEH relative to a VWAP benchmark,
for a trader that needs to execute a large order on a daily basis (n = 260). To compute
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FIGURE 9.2. Probabilistic loss under v? = 0.4 and ¢[|m|] linear. When order flow is
leaning against the market, the probabilistic loss has a piecewise linear functional form.
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FIGURE 9.3. Probabilistic loss under vZ = 0.6 and ¢[|m|] linear. When the order is
large and competing for liquidity, the probabilistic loss is greater than predicted by the

square root.
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FIGURE 9.4. Probabilistic loss under v = % and ¢[|m|] o< /m. The probabilistic loss
exactly fits the square root when v# = § and ¢[|m|] o /m.

this performance, we estimate v? using the methodology discussed in Easley, Lopez de
Prado, and O’Hara (2012b), on one volume bucket per day, where each volume bucket
is composed of 25 volume bars. o, is estimated for each bucket looking back enough
trades to have a combined volume of 5 times the ADV (an average of one week of trading

activity). We then compute the OEHs for trades of size ¢ = {457, 4BV 4BV} with a

risk aversion A = 0.05 and an informational leakage function ¢[|m|] = min(,/ A";'V, .999),
6

where ADV is the average daily volume.!

Table 10.1 summarizes the data used in our calculations. We have selected these prod-
ucts because they encompass a wide variety of asset classes and liquidity conditions. For
example, E-Mini S&P500 Futures are traded in the Chicago Mercantile Exchange, it is
an equity index product, our sample contains 476,676,009 transactions recorded between
January 1, 2007 and July 26, 2012, rolls occur 12 days prior to expiration date, and the
ADV for that period has been 1,964,844.89 contracts.

Tables 10.2, 10.3, and 10.4 report the outperformance of OEH over VWARP for trading
sizes equivalent to 1%, 5%, and 10% of ADV respectively, when the trader has information
about the sign of the price move over the next volume bucket (not the size of the move). To
interpret these results, suppose that a trader has information that the price of the E-Mini
S&P500 futures will increase over the next volume bucket, and for that reason she wishes

16These are rather arbitrary values, and alternative ones could be adopted, depending on the user’s specific
objective. For example, A could have been calibrated in order to maximize OEH’s risk-adjusted performance
over VWAP.
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TaBLE 10.1
Description of the Data Series Used in the Numerical Examples

Futures

contract Exchange  Group Start End Roll Records ADV
E-Mini S&P500 CME Equity 1/1/2007 7/26/2012 12 476,676,009  1,964,844.89
T-Note CBOT Rates 1/1/2007  7/26/2012 28 95,091,010 921,056.33
EUR/USD CME FX 1/1/2007  7/26/2012 10 188,197,121  233,201.17
WTI Crude Oil NYMEX  Energy 1/1/2007 7/26/2012 19 164,619,912 194,902.36
Gold COMEX  Metals 1/1/2007 7/26/2012 27 62,672,073 81,854.96
Corn CBOT Softs  1/1/2007  7/26/2012 20 41,833,299 73,860.53
Natural Gas NYMEX  Energy 1/1/2007 7/26/2012 Volume 50,575,494 61,685.78
Lean Hogs CME Meat  1/1/2007 7/26/2012 24 5,499,602 6,544.67
Cotton#2 ICE Softs 1/1/2007  7/26/2012 20 4,494,294 6,171.32

TABLE 10.2
OEH’s Outperformance over VWAP for Trades Equivalent to 1% of ADV and
Information Regarding the Side of the Price Move over the Next Bucket

Futures Trade Max OEH

contract Information size profit  profit (pts) Outperf.(pts) Outperf.(%) IR
E-Mini S&P500 Sign 0.01*ADV  12.1428  10.5104 4.3262 35.63% 10.04
T-Note Sign 0.01*ADV  0.3966 0.3441 0.1322 33.33% 9.18
EUR/USD Sign 0.01*ADV  0.0074 0.0064 0.0028 37.28% 10.62
WTI Crude Oil Sign 0.01*ADV ~ 1.3913 1.1949 0.4582 32.93% 10.02
Gold Sign 0.01*ADV ~ 9.4932 8.1780 3.2875 34.63% 9.68
Corn Sign 0.01*ADV ~ 8.4173 7.2806 3.1640 37.59% 9.67
Natural Gas Sign 0.01*ADV ~ 0.1098 0.0945 0.0409 37.26% 9.50
Lean Hogs Sign 0.01*ADV ~ 0.7451 0.6334 0.2613 35.07% 10.51
Cotton#2 Sign 0.01*ADV  1.3211 1.1358 0.4675 35.38% 7.66

TABLE 10.3

OEH’s Outperformance over VWAP for Trades Equivalent to 5% of ADV and
Information Regarding the Side of the Price Move over the Next Bucket

Futures Trade Max

contract Information size profit OEH profit (pts) Outperf.(pts) Outperf.(%) IR
E-Mini S&P500 Sign 0.05*ADV 12.1428 8.2047 2.2770 18.75%  5.63
T-Note Sign 0.05*ADV  0.3966 0.2682 0.0649 16.37% 491
EUR/USD Sign 0.05*ADV  0.0074 0.0051 0.0015 20.78%  6.51
WTI Crude Oil Sign 0.05*ADV  1.3913 0.9275 0.2217 15.94%  5.33
Gold Sign 0.05*ADV  9.4932 6.3202 1.6253 17.12%  5.15
Corn Sign 0.05*ADV  8.4173 5.6471 1.7222 20.46%  5.73
Natural Gas Sign 0.05*ADV  0.1098 0.0731 0.0221 20.14%  5.68
Lean Hogs Sign 0.05*ADV  0.7451 0.4820 0.1230 16.51%  5.32
Cotton#2 Sign 0.05*ADV  1.3211 0.8776 0.2372 17.96%  4.24

to acquire a position equivalent to 1% of E-Mini S&P500 futures’ ADV, i.e., buy 19,648
contracts. We compute the liquidity and timing components for that trade using VWAP,
and evaluate by how much OEH beats VWAP on that same trade in dollar terms. After
repeating that calculation for each of the 1,450 volume buckets, we can estimate OEH’s
performance over VWAP. For instance, Table 10.2 reports that the maximum profit
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TaBLE 10.4
OEH’s Outperformance over VWARP for Trades Equivalent to 10% of ADV and
Information Regarding the Side of the Price Move over the Next Bucket

Futures Trade Max

contract Information size profit  OEH profit (Pts) Outperf.(pts) Outperf.(%) IR
E-Mini S&P500 Sign 0.1*ADV  12.1428 6.3551 0.9577 7.89% 2.59
T-Note Sign 0.1*ADV  0.3966 0.2065 0.0212 5.36% 1.82
EUR/USD Sign 0.1*ADV  0.0074 0.0039 0.0007 9.18% 3.17
WTI Crude Oil Sign 0.1*ADV  1.3913 0.7037 0.0600 4.31% 1.58
Gold Sign 0.1*ADV  9.4932 4.7746 0.5125 5.40% 1.82
Corn Sign 0.1*ADV  8.4173 4.2081 0.6715 7.98% 2.63
Natural Gas Sign 0.1*ADV  0.1098 0.0549 0.0091 8.30% 2.57
Lean Hogs Sign 0.1*ADV  0.7451 0.3580 0.0314 4.22% 1.46
Cotton#2 Sign 0.1*ADV  1.3211 0.6582 0.0869 6.58% 1.72

TABLE 10.5

OEH’s Outperformance over VWAP for Trades Equivalent to 1% of ADV and
Information Regarding the Side and Size of the Price Move over the Next Bucket

Futures Trade Max

contract Information size profit  OEH profit (pts) Outperf.(pts) Outperf.(%) IR
E-Mini S&P500  Sign, Size 0.01*ADV 15.8723 14.1671 6.4076 40.37%  8.52
T-Note Sign, Size  0.01*ADV  0.5291 0.4721 0.1959 37.03%  6.74
EUR/USD Sign, Size  0.01*ADV  0.0098 0.0087 0.0039 39.98%  8.74
WTI Crude Oil  Sign, Size  0.01*ADV  1.8682 1.6672 0.6830 36.56%  8.39
Gold Sign, Size  0.01*ADV 12.5753 11.4060 4.7222 37.55%  6.96
Corn Sign, Size  0.01*ADV 12.3966 11.0999 5.1200 41.30%  5.77
Natural Gas Sign, Size  0.01*ADV  0.1380 0.1230 0.0566 40.98%  7.97
Lean Hogs Sign, Size  0.01*ADV  0.8442 0.7552 0.3348 39.66%  7.92
Cotton#2 Sign, Size  0.01*ADV  1.7879 1.6020 0.7070 39.54%  6.52

attainable with this information is 12.1428 index points on average, if execution were
instantaneous and costless.!” Out of that, OEH was able to capture 10.5104 index points
on average, or 86.56% of the average maximum profit. This represents an outperformance
of 4.3262 index points over VWAP’s performance on the same trade, or 35.63% of the
average maximum profit, with an information ratio of 10.04. As expected, OEH’s IR edge
over VWARP decays as we approach very large daily trades. For example, the information
ratio associated with an OEH trade for 196,484 E-Mini S&P500 futures contracts (10%
of its ADV) is 2.59. This occurs because for trades of that extremely large size, it becomes
increasingly difficult to conceal the trader’s intentions. Although the information ratio
is smaller, the average dollar amount of savings is greater (0.9577 points per contract),
because the trade is for a size 10 times larger.

Tables 10.5, 10.6, and 10.7 present the results of applying our methodology when
the trader has information about the side and size of the price change, for an amount
equivalent to 1%, 5%, and 10% of ADV, respectively. OEH’s edge over VWAP also decays
as we approach very large daily trades, however the extent of this performance decay is
much less pronounced when the trader holds size as well as sign information with regards
to price changes.

"The value of an index point is USD50 in the case of the E-Mini S&P500 futures.
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TABLE 10.6
OEH’s Outperformance over VWAP for Trades Equivalent to 5% of ADV and
Information Regarding the Side and Size of the Price Move over the Next Bucket

Futures Trade Max

contract Information size profit OEH Profit (pts) Outperf.(Pts) Outperf.(%) IR
E-Mini S&P500  Sign, Size  0.05*ADV 15.8723 11.4107 4.0384 25.44%  7.34
T-Note Sign, Size  0.05*ADV  0.5291 0.3744 0.1120 21.17%  6.30
EUR/USD Sign, Size  0.05*ADV  0.0098 0.0071 0.0025 25.40%  8.26
WTI Crude Oil ~ Sign, Size  0.05*ADV  1.8682 1.3453 0.4091 21.90%  7.25
Gold Sign, Size  0.05*ADV 12.5753 9.3511 2.9978 23.84% 594
Corn Sign, Size  0.05*ADV  12.3966 8.6294 3.0115 24.29%  6.28
Natural Gas Sign, Size  0.05*ADV  0.1380 0.0988 0.0358 2598% 691
Lean Hogs Sign, Size  0.05*ADV  0.8442 0.6141 0.2119 25.11%  7.50
Cotton#2 Sign, Size  0.05*ADV  1.7879 1.2726 0.4329 2421%  5.46

TaBLE 10.7

OEH’s Outperformance over VWAP for Trades Equivalent to 10% of ADV and
Information Regarding the Side and Size of the Price Move over the Next Bucket

Futures Trade Max

contract Information size profit  OEH profit (Pts) Outperf.(Pts) Outperf.(%) IR
E-Mini S&P500  Sign, Size  0.1¥*ADV 15.8723 8.8113 2.2197 13.98%  5.98
T-Note Sign, Size  0.1*ADV  0.5291 0.2891 0.0546 10.32% 4.69
EUR/USD Sign, Size  0.1¥*ADV  0.0098 0.0055 0.0014 14.79%  7.10
WTI Crude Oil Sign, Size  0.1*ADV  1.8682 1.0389 0.2004 10.73% 5.16
Gold Sign, Size  0.1¥*ADV 12.5753 6.7359 1.4143 11.25%  6.36
Corn Sign, Size  0.1*ADV  12.3966 6.4158 1.5333 12.37% 5.39
Natural Gas Sign, Size  0.1*ADV  0.1380 0.0768 0.0208 15.11% 5.26
Lean Hogs Sign, Size  0.1¥*ADV  0.8442 0.4827 0.1199 14.21% 6.57
Cotton#2 Sign, Size  0.1¥*ADV  1.7879 0.9576 0.2466 13.79%  4.26

11. CONCLUSIONS

The choice of execution horizon is a critical input required by many optimal execu-
tion strategies. These strategies attempt to minimize the trading costs associated with a
particular order. They do not typically address the footprint that those actions leave in
the liquidity provision process. In particular, most execution models do not incorporate
information regarding the order’s side, without which it is not possible to understand the
asymmetric impact that the order will have on the liquidity provision process.

In this paper, we introduce the OEH model, which builds on asymmetric information
market microstructure theory to determine the OEH. OEH allows existing optimal
execution models to minimize both an order’s trading costs and its footprint in the
market. In a high frequency world, this latter ability takes on increased importance.
OEH is shown to perform better than schemes that target a participation rate. Our model
also provides an explanation of the apparent disagreement in the literature regarding the
functional form of the market impact function as a result of not controlling for the order
side and its relation to the order imbalance. Overall, our analysis suggests a new way to
trade in the high frequency environment that characterizes current market structure.

Our empirical study shows that OEH allows traders to achieve greater profits on their
information, as compared to VWAP, which we have theoretically justified by OEH’s use
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of the trader’s private information. If the trader’s information is correct, OEH will allow
her to capture greater profits on that trade. If her information is inaccurate, OEH will
deliver smaller losses than VWAP. OEH is not an investment strategy on its own, but
it delivers substantial “execution alpha” by boosting the performance of “investment
alpha.”

A.1 APPENDIX: COMPUTATION OF THE OPTIMAL EXECUTION
HORIZON

We need to solve the optimization problem

min [V, v%,m, [S = I, 2,6, I{,]E‘(p[|m|]|:(2v —1)( '”;l)+'ﬂ
v
(A.1) + (1 = ¢[lm[D@2v”? —1)‘5 N ZK\/;

subject to V > |m].
Let’s denote

||

&zwnmu[(zv —1)( -

) - ”;] + (L= gl v = 1)

c

m—(2vE — 1)|m|

(A2) =<p[|m|][ (V +2vB—1i|+c.

Observe that, if V' > |m|, then —1 < o1 < 1. The objective function contains the ab-
solute value of O7 which depends on the choice variable V" and it is not continuously
differentiable around O7 = 0. Accordingly, we solve the problem in cases based on the
sign of OT at an optimum.

A.1.1. CASE 1: Suppose that O7 > 0. Then

3|01 208 — 1)jm| —
(A3) % = wnmuw,
and
an(y) QvE = Dm| —m. - Z,.6
(A4) sy = elml——— IS - 8] - VT

Note that the second term in (A.4) is positive, and so an interior solution can occur
only if the first term in (A.4) is negative. We first suppose that the solution to the problem
does not occur at the constraint ¥ > |m|. Using the first order necessary condition for
an interior solution that an(V) = 0 and multiplying by /7, we obtain

72,6

(A.5) elml[@v? = Dim| = m][S— S|y = 2T
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Thus,
_ IV 3
(A.6) Vr= (2¢[IMI][(2VB = Dim| —m][S— S]— f) .
20

The V* given by equation (A.3) is a candidate for an interior solution if 01>0
evaluated at V* and V* > |m|. It is straightforward to show that V* > |m| if v8 < v B+
where

p— Iy
vB+ _ Z)LO'_ |m| 4 m -
4olIml]S — SV Vs 2

Alternatively, if v2 > v5¥, then the candidate for a solution in this region is |m|. Note
that the condition v# < v 5+ implies that m is negative which in turn implies that the first
term in (A.4) is positive and so the V* given by equation (A.3) is well defined.

In this region the second derivative of T1( V) is

2 28 —1 —-m_ -
L [ ) Ll R

(A7)

(A.8)

7.6
NN

It can be shown that ‘d“aﬂV(zV) > 0ifv8 < yB+,

A.1.2. CASE 2: Suppose that O < 0. Then

9101| _ m—Q2vE = 1)|m|

(A.9) = ellml] 72

Using an argument similar to that in Case 1, we see that in this region the candidate
for an interior solution is

V7 )2/3.

(A.10) v = (2etimilon = @07~ DS - 51

The V* given by equation (A.10) is a candidate for a solution if O7 < 0 evaluated at
V* and V* > |m|. Note that V* > |m| if vZ > vB~ where

Al Bo_m & .
A0 ! 2 ap(mliS- SWT,

Note that the condition vZ > vZ~ implies that m is negative which in turn implies that
the V* given by equation (A.10) is well defined.

Alternatively, if vZ < v5~, then the candidate for a solution in this region is |m].
In this region the second derivative of T1( V) is

T(V) m—2vE—1)m| - A
Y2 —M[IM]W[S—S +—.

&
(A.12) T

It can be shown that a“anV(QV) >0ify8 > vB-,

A.1.3. CASE 3: Suppose that O1 = 0. In this case BBI(VV) does not exist, and the
optimum cannot be computed using calculus. However, we can still compute V*, because
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in this case

m—(2vE —1)m|

(A.13) ¢[IMI][ +@f -~ 1)] + (1 = ¢llmD2v® - 1) =0,

7
and thus
m
It is straightforward to show that V* > |m| if vZ > v®= where
-1 |m|op[|ml]
(A.15) vB=<+l .
2 \m(g[lm|]] - 1)

A.2 INFORMATIONAL LEAKAGE ON THE MID-PRICE

The literature devoted to optimal execution typically differentiates between the tem-
porary and the permanent impact that an order m has on mid-prices (e.g., Stoll 1989).
The temporary impact arises from the actual order slicing (also called trajectory) within
the execution horizon, while the permanent impact is a result of the information leaked
by the order flow. Because our model is not concerned with the trajectory computation,
we do not take into consideration the temporary impact of the actual order slicing. With
regard to the permanent impact, Almgren and Chriss (2000) and Almgren (2003) propose
a linear permanent impact function that depends on |m|.

Let us suppose that, as in the above referred models, the permanent impact function
depends on |m|, but that unlike those models it is also a function of our volume par-
ticipation rate, ‘I’j—ﬂ, and whether we are leaning with or against the market. As we have
noted, this is not the approach chosen by most execution strategies, but we believe it
is worth considering because for large enough trades our orders will have a noticeable
impact. For example, in the extreme case that ';,i' ~ 1, and a sufficiently large |m/|, our
parent trade will not go unnoticed, no matter how well we slice it (especially if we are
leaning with the market). We would expect leakage to be greatest when informed traders
dominate market activity over a considerable horizon. Under this conjecture, we could
conceive a permanent impact function that indeed depends on factors other than |m|.

In fact, the specification presented earlier in the paper already modeled an informa-
tional leakage process. In the text, we only considered the effect on the trading range, but
there is no reason why we could not assume that the same way our parent trade leaves
a footprint in the liquidity component, it also leaves a footprint in the mid-price. The
probabilistic loss function could then take the form

M= ‘(p[|m|] [(2\13 —1 (1 - "”V') + ";]

(A.16) + (1= gllm]) @2v® - 1)’([§—§I+ Imlk) — Z)\&\/?

for k > 0. If k = 0, the probabilistic loss reduces to our original specification. If £ > 0,
there is a permanent impact on prices that is linear in the informational leakage and the
parent order’s size. In this way we are taking into account not only the size of the order,
but also its side, as we should expect a greater permanent impact when we compete with
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the market for scarce liquidity. The optimal execution horizon can then be computed
with the following algorithm:

(D) If @v? = Dim| <m, try Vi = Qellm[l(2v® — Dlm| — m][S— S+ k] L
and compute the value of O7 associated with V], o1 [M].

(a) If OI[V] > 0 and v < vB* then V* = I, is the solution.
(b) If OI[Wi] > 0 and vB > v+ then V* = |m| is the solution.

2) If @v? = Dim| > m, try V> = Qpllm|lim - 2v* — DIm][S — S+ |mlk] 7)(,)2/3
and compute the value of O1 associated with V5, OT [75].

(a) If OI[¥3] < 0and v® > v~ then V”* = V4 is the solution.
(b) If OI[V5] < 0 and vZ < vB~, then V* = |m| is the solution.

(3) If 2v8 — 1)|m| = m, then V3 = |m| is the solution.
(4) Else7 try V;‘ = (p[|m|](|m| - ZVZ],] .

(a) IfvB > yB= then V* = T} is the solution.
(b) If v8 < vB=, then V* = |m| is the solution.

with

(A17)  BIV] = ¢llm] [’"_(QV_”"”' “1] - et -
2 2,6 /Tml

AL18 Bt m Ak A

*.18) ’ > aglmlS - St mkVTL
e Z,6\/Tm

B— _ m _ Xl m
(A.19) YT T T dgmB - S+ mAvT,
_ 1 |m|@[|m]]
A.20 b= _ (TR 7).
(A.20) ’ (m(qonmu 1t )

A.3 ALGORITHM IMPLEMENTATION

The following is an implementation in Python of the algorithm described in this paper.
Set the values given in the “Parameters” section according to your particular problem.
The k parameter is optional. If £ is not provided (or given a value k = 0), the procedure
described in Appendix 1 is followed. Otherwise, the specification discussed in Appendix
2 is applied. If you run this code with the parameters indicated below, you should get
V* = 6, 000 (the solution in Section 6.1).
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#!/usr/bin/env python

# By MLdP on 20130427 <mlopezdeprado@hetco.com>

# It computes the Optimal Execution Horizon

#

# PARAMETERS

sigma = 1000

volSigma = 10000

S_S = 10000

zLambda = -1.644853627 #CDF(0.05) from the Std Normal dist

vB=0.5

phi=1

m = 1000

k=0

#

def signum(int):
if(int < 0):return -1
elif(int > 0):return 1
else:return 0

#
def getOI(v,m,phi,vB,sigma,volSigma):
return phi*(float(m-(2*vB-1)*abs(m))/v+2*vB-1)+ \
(1-phi)*(2*vB-1)

#
def getBounds(m,phi,vB,sigma,volSigma,S_S,zLLambda,k = 0):
vB_l = float(signum(m)+1)/2-zLambda*sigma*abs(m)**0.5/ \
float(4*phi*(S_S+abs(m)*k)*volSigma**0.5)
vB_u = float(signum(m)+1)/2+zLambda*sigma*abs(m)**0.5/ \
float(4*phi*(S_S+abs(m)*k)*volSigma**0.5)
vB_z = (signum(m)*phi/float(phi-1)+1)/2.
return vB_1,vB_u,vB_z

#
def minFoot(m,phi,vB,sigma,volSigma,S_S,zLambda,k = 0):
# compute vB boundaries:
if phi< = 0:phi+ = 10**-12
if phi> = 1:phi- = 10¥*-12
vB_L,vB_u,vB_z = getBounds(m,phi,vB,sigma,volSigma,S_S, \
zLambda,k)
# try alternatives
if (2*vB-1)*abs(m)<m:
vl = (2*phi*((2*vB-1)*abs(m)-m)*(S_S+abs(m)*k)*volSigma**0.5/ \
float(zLambda*sigma))**(2./3)
o1 = getOI(v1l,m,phi,vB,sigma,volSigma)
if 01>0:
if vB< = vB_u: return vl
if vB>vB_u: return abs(m)




670 D. EASLEY, M. L. DE PRADO, AND M. O’HARA

elif (2*vB-1)*abs(m)>m:
v2 = (2*phi*(m-(2*vB-1)*abs(m))*(S_S+abs(m)*k)*volSigma**0.5/ \
float(zLambda*sigma))**(2./3)
o1 = getOI(v2,m,phi,vB,sigma,volSigma)
if 0i<0:
if vB> = vB_I: return v2
if vB<vB_l: return abs(m)
elif (2*vB-1)*abs(m) = = m: return abs(m)
if m<O0:
if vB<vB_z: return phi*(abs(m)-m/float(2*vB-1))
if vB> = vB_z: return abs(m)
else:
if vB> = vB_z: return phi*(abs(m)-m/float(2*vB-1))
if vB<vB_z: return abs(m)

#
def main():
print minFoot(m,phi,vB,sigma,volSigma,S_S,zl.ambda,k)
#
if _name__=="°__main__’": main()

A.4 APPENDIX: EXPECTED ORDER IMBALANCE

Given a sample of L buckets, we fit a forecasting regression model of the form
(A.21) Ln(v2.)=Bo+ BiLn(vF) + &

and because vZ € [0, 1] we must obtain that |B;| < 1.!® The expected value of the order
imbalance at T over T + 1 is

(A.23) E[OI 1] = 250701 —
where
(A24) E-L— [Ln (Vf+1)] = BO + Ban (vf) .

In general we would expect roughly balanced markets, and so vZ = %ET[VTB_H] =
%. This means that the regression should cross through the equilibrium point
(Ln(v®), E.[Ln(vE_)]) = (Ln(}), Ln(})), rather than having an equilibrium is systemi-

cally disrupted by some arbitrary intercept value ). We impose that condition as

(A.24) Ln(v2,) — Ln (;) =B |:Ln (vE) — Ln (;)} + &,
and we use

(A.25) Ln(v2,) =85+ BiLn (v]) + &

18 S ‘o cervations pairs (vB - v B : B _ B_ (.
When fitting this regression, observations pairs (v, |, v;') whereeither v. | = 0or v/ = 0 are removed.
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1 1
TG L) + [In()F = LaGNInG ) + LGBy
where B = and B =

1 1
S (Ln(EP + [Ln(3)P = 2Ln(5) La(vE))

1 n
Ln(3)(1 = B)).
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