Errata for the First Printing of *Exploring Creation With Physics, 2nd Edition*

With the help of students and teachers, we have found a few typos in the first printing of the second edition.

STUDENT TEXT

Introductory Remarks:

p. 3	In the second paragraph on the page, the object discussed is not really a cube. It should be called a box
Module #1:	
CD ONLY	In the section entitled "Speed and Velocity," near the top, the phrase:
	is 60.0 meters · 30.0 seconds should read:
	is 60.0 meters ÷ 30.0 seconds
CD ONLY	In Experiment 1.2, step #7, the phrase:
	Dt. Take your value for Dv and divide it by Dt should read:
	Δt . Take your value for Δv and divide it by Δt
p. 8	In the first line of Example 1.1, the phrase
	A child is 5.0 meters away from a wall and rolls a balls towards it.
	Should read:
	A child is 5.0 meters away from a wall and rolls a ball towards it.
p. 19	In the second line above Example 1.4, the phrase
	and then do the "On Your Own" problems that follows in order
	Should read:
	and then do the "On Your Own" problems that follow in order

Module #2:

p. 41	In the fourth line above Example 2.2, the phrase
	initial velocity, final velocity, acceleration, and distance.
	Should read:
	initial velocity, final velocity, acceleration, and displacement.
p. 43	In the third equation on the page, the "a" should be in boldface type.
p. 46	In both equations labeled (2.18), the "a" should be in boldface type.
p. 50	In the illustration, the velocity of the plane should have units of miles/hr.
p. 61	Near the end of the 13 th line from the bottom, the word "help" should be replaced with "held"
Module #3:	
CD ONLY	In the section entitled "Vectors," near the bottom, the phrase:
	learned that to solve for q in the above equation should read
	learned that to solve for θ in the above equation
p. 79	At the beginning of the fourth line of text, the phrase:
	of vector A, because its tells you Should read:
	of vector A , because it tells you
p. 90	In the fourth line from the top of the page, the equation:
	$-90^{\circ} + 180.0^{\circ} = 90^{\circ}$
	Should read:
	$-90^{\circ} + 180^{\circ} = 90^{\circ}$
	Since 180 is exact by the definition given in Figure 3.1, there is no need to

o add a decimal place to it. It has an infinite number of decimal places.

p. 91	In the experiment, step #14 should read:
	14. Use the protractor to measure the angle the arrow makes with the positive x-axis at Phoenix.
Module #4:	
p. 113	In the last two equations on the page, x should be replaced with Δx , because Δx is the proper symbol for displacement.
p. 113	In the last equation on the page, there should be no negative sign on the 9.8 m/sec^2 .
p. 114	In the first equation on the page, the argument of cosine should be 45.0° .
p. 124	At the end of step #2, there should not be a space between "table" and the period at the end of the sentence.
p. 135	In the second equation on the page, the term $(0) \cdot (2.75 \text{ sec})$ should read $(0) \cdot (1.31 \text{ sec})$. This typo does not affect the answer.
p. 139	In question #3, "gunnery sergeant" should be replaced with "crew," as there is no gunnery sergeant position in the navy.
Module #5:	
CD ONLY	In the section entitled "An Equation for the Frictional Force," The bold-faced sentence should have a closed parenthesis after μ_s .
p. 148	The force in "On Your Own" problem 5.3 should be 15 Newtons, not 15.0 Newtons.
р. 155	In Figure 5.5, the molecules at the surface of the box should really be brown, while the molecules at the surface of the floor should be gray. That would make them consistent with the rest of the figure.
p. 164	The beginning of the last sentence of the first paragraph on this page should be "Since 530" It currently reads "Since 580"
pp. 169 - 170 Module #6:	In the last equation, the mass should be <u>4.1 kg</u> , since the math works out to 4.05 That means the equation on p. 170 should change as well. With the mass being 4.1 kg, the weight should be <u>4.0 x 10¹ Newtons</u> . The answer needs to be in scientific notation, since it needs two significant figures.
CD ONLY	In the section entitled "Translational Motion and Measuring Weight 2," "32 m/sec ² " should be replaced by "32 ft/sec ² "

p. 187	In the eighth line from the bottom, the acceleration should read 32 ft/sec2
p. 188	Near the middle of the the 7 th line from the bottom, the phrase "or course" should be replaced with "of course"
p. 195	The 7 th line from the bottom should begin, "to indicate this, because it is used to get the <i>magnitude</i> of the torque" the word "to" was left out.
p. 203	In the first drawing for Example 6.6, there should be a string connecting the cars.
p. 206	The second equation on the page should be $T_{1y} = T_1 \cdot \sin(45^\circ) = 0.71 \cdot T_1$.
p. 211	At the bottom of the page, the equation should use the symbol μ_k instead of μ_s .
p. 213	Since we are dealing with motion, the equation at the top of the page should
Module #7:	read: $37 \text{ Newtons} = \mu_k \cdot (91 \text{ Newtons})$
p. 221	In the fourth line of the third paragraph, the word "strong" should be replaced with "string."
p. 222	In the second line of Example 7.1, the phrase:
	what are magnitudes of the centripetal force and
	Should read:
Module #8:	what are the magnitudes of the centripetal force and
p. 261	In the fourth line below the drawing of the roller coaster, the phrase:
	The easiest way to do this to find a place where either
	Should read:
	The easiest way to do this is to find a place where either
p. 278	In the last equation for 8.3, there should be an "=" before 2.6 x 10^3
p. 282	In the fifth and sixth equations on the page, 0.65 should be 0.67. This does not affect the answer.
p. 286	In problem #9, the time should be 2.40 minutes. This gives three significant figures, and that's how many are used for time in the solution.

Module #9:

CD ONLY	"euation (9.7)" should be replaced with "Equation (9.7)."
	In the section entitled "Angular Momentum, the units for angular momentum should be $\frac{\text{kg} \cdot \text{m}^2}{\text{sec}}$, not $\frac{\text{kg} \cdot \text{m}}{\text{sec}}$
p. 295	In the second line of the text, the phrase:
	Even though the two object collide with each other,
	Should read:
	Even though the two objects collide with each other,
p. 296	In the tenth line of the text, the phrase
	and the ball's momentum change substantially,
	Should read
	and the ball's momentum changed substantially,
p. 298	In the second paragraph under the experiment, line seven, the phrase:
	After the collusion, the momentum had to be the same,
	Should read
	After the collision, the momentum had to be the same,
p. 303	The left side of the second to the last equation should read -6.8×10^3 , because when you multiply the numbers above, you have only three significant figures for each term. Then, when you add the terms, you can only report your answer to the hundreds place. This changes the final equation and the final answer. The final answer then should be 4.3 m/sec
<u>Module #10</u> :	The final answer, then, should be 4.5 m/see.
p. 322	Last paragraph on this page, fourth line up, should say "force equal to but opposite the weight of the object"
p. 332	In Example 10.3, the student is pulling on a <i>spring</i> . Thus, the second sentence in the example should read:
	After the spring has stretched to its new equilibrium position,

In that same example, the force in the second line after the first set of equations should read $\mathbf{F} = 3.4 \times 10^2$ Newtons.

p. 333	In the sixth line from the bottom, a comma is missing. The proper punctuation is: In order to compress the spring, however, kinetic energy had
<u>Module #11</u> :	ist in order to compress the spring, no wever, innerte energy hadri
p. 366	In the last line of the example, the sentence:
	The lighting, therefore, was formed <u>341 m</u> away from the physicist.
	Should read:
	The lightning, therefore, was formed 341 m away from the physicist
p. 376	In the sixth line of the text, the phrase:
	electrons is force to pass through a screen
	Should read:
	electrons is forced to pass through a screen
p. 380	In the last equation for the answer to problem 11.4, the answer should be 12 m/sec_{1} and m/sec_{2} . The underlined answer should also be 12 m/sec_{2} . When
	we solve the first term in the final equation, $\frac{511 \text{ Hz}}{494 \text{ Hz}} \cdot 346.7 \frac{\text{m}}{\text{sec}}$, we can keep
	only three significant figures. Thus, it is 359 m/sec. Then, when we subtract 346.7 m/sec, we must report our answer to the ones place, because the least precise number (359) goes to the ones place. That's why the answer must be rounded to 12 m/sec.
<u>Module #12</u> :	
p. 404	In steps 15 and 16, the line referenced is incorrect. They should each indicate that you are to draw the line relative to the line you drew in step 1.
p. 416	In problem 12.6, one index of refraction (1.5) has only two significant figures.
<u>Module #13</u> :	Thus, the answer can have only two. This means the correct answer is <u>58</u> .
p. 427	In step #15 of the experiment, the first word (pull) should be capitalized.
p. 432	The first line should say that the proton is more than 1,800 times as massive as the electron.
p. 435	In the second and fourth equations on this page, a parenthesis is missing after the

unit for k.

p. 436	In the last equation on this page, a parenthesis is missing after the unit for k.
p. 437	In the second equation on this page, a parenthesis is missing after the unit for k.
p. 438	The second equation should read:
	$B_y = (4.7 \times 10^{11} \text{ Newtons}) \cdot \sin(315.0^\circ) = -3.3 \times 10^{11} \text{ Newtons}$
p. 440	The last three words on the page should be "Figure 13.3, a"
p. 442	In Example 13.3, the charges should be listed as -0.30 C and $+0.60$ C. In other words, the charge unit should be C, not mC. This change doesn't really affect this example, but it affects Example 13.4.
p. 444	In Example 13.4, the charges should be listed as -0.30 C and $+0.60$ C. In other words, the charge unit should be C, not mC.
p. 445	In the second problem of Example 13.4, the charge should be -0.0060-mC.
<u>Module #14</u> :	
p. 462	In the equation for ΔV , the initial potential should be 6.4×10^7 V, as calculated in the first two equations on the page. This changes ΔV to 1.8×10^7 V, which changes ΔPE to -1.0×10^5 J.
<u>Module #15</u> :	
p. 488	To be consistent with the rest of the text, the Δt in the ninth line of text should be in quotes.
p. 507	Because of the rules of addition for significant figures, $1/R_{effective}$ should be 0.150 $1/\Omega$, which makes $R_{effective}$ 6.67 Ω .
<u>Module #16</u> :	
p. 532	The line directly above the figure should read:
	I were to draw the magnetic field of the earth, it would look like Figure 16.5.
p. 539	The first line of the second paragraph should read:
	In the next section, we are going to see the usefulness of Faraday's Law of Electromagnetic

"see" was left out

p. 542 The definition of direct current should say "flows" not "flow".

p. 546 The last seven words of #15 should say "magnet is the same in each case".

Extra Practice Problems for Module #6:

p. 569 The angle for problem 1 should be 45° , not 45.0° .

Extra Practice Problems for Module #9:

- **p. 573** Question #6 should ask for the velocity, not the speed.
- **p. 573** Question #8 should ask for the speed, not the velocity.

SOLUTIONS AND TESTS GUIDE

Answers to the Review Questions for Module #11

p. 11 In problem #5, the fourth difference should read "Sound waves travel more quickly in solids than in liquids and more quickly in liquids than in gases, whereas light waves generally travel more slowly the more dense the medium."

Solutions to the Practice Problems for Module #2:

p. 26 The first equation should read:

 $\mathbf{v}^2 = \mathbf{v}_0^2 + 2\mathbf{a} \cdot \Delta \mathbf{x}$

The "a" was left out.

Solutions to the Practice Problems for Module #4:

- **p. 37** The answer to the second equation on the page should be 2.3×10^3 m. It was incorrectly written as 2.3×10^2 m. This does not affect the final answer, as the proper value was used in subsequent steps.
- **p. 38** The answer to #4 should be <u>0.17 sec</u>. The equation works out to 0.1656, which rounds UP to 0.17.
- **p. 41** The answer to #8 should be <u>60 ft</u>. Since you are adding two terms, you must work out the terms with significant figures in mind, and then add. $63 \cdot 2.5 = 160$ when you take significant figures into account, and $\frac{1}{2} \cdot (-32) \cdot (2.5)^2 = 1.0 \times 10^2$. The precision of each is to the tens place, so when you add them, your answer can only go out to the tens place

Solutions to the Practice Problems for Module #6:

p. 53The weight that starts the 3^{rd} line of the page should be 210 N, not 220 N.
That weight is used in the solution, so the answer is not affected.**p. 55**For question #9, here is a better way of calculating the acceleration. This
keeps consistent with our use of significant figures.
 $f + -w \cdot \sin(\theta) = ma$

95 Newtons + -(290 Newtons) $\cdot \sin(23^\circ) = (30.1 \text{ kg}) \cdot \mathbf{a}$

95 Newtons + -110 Newtons = $(30.1 \text{ kg}) \cdot \mathbf{a}$

a = -20 Newtons / 30.1 kg = -0.7 m/sec²

Sample Calculations for Experiment 6.1:

p. 56 The last line of data should read, "Minimum weight while elevator is falling: 171.1 lbs."

In addition, the average reported in the sample calculation should be 47.54, which changes the angle to 27.98° and μ to 0.5313.

Solutions to the Practice Problems for Module #7:

- **p. 60** The answer to the first equation in #8 should be $2.65 \times 10^9 m$, as the data have three significant figures. This changes all of the other equations, making the speed equal to $1.73 \times 10^4 m/sec$. The final answer, then, is $1.89 \times 10^{27} kg$.
- **p. 61** The answer to question #10, should say 2.24 hours instead of 2.2 hours.

Solutions to the Practice Problems for Module #8:

- **p. 63** The answer to the first problem needs three significant figures. Thus, it should be $1.40 \ge 10^2$ J.
- **p. 64** The value inside the square root should be 350 instead of 340 for question 3.
- **p. 65** The value inside the square root should be 290 instead of 292 for question 4.

Solutions to the Practice Problems for Module #9:

p. 72 The last equation for #6 should have a positive 18 in the numerator. This does not affect the final answer.

Solutions to the Practice Problems for Module #11:

- **p. 80** The answer to #2 should be <u>0.2157</u>. Since there are four significant figures in each number of the equation, there should be four in the answer.
- **p. 82** The answer to #7 should be <u>16 m/sec</u>. In the term where 551 is divided by 578 and multiplied by 346.7, you have only three significant figures. Since the next step is subtraction, you need to round that to 331. That means the result of the subtraction can be reported only to the ones place.

Solutions to the Practice Problems for Module #12:

p. 87 The answer to #7 should be <u>1.70</u>. Since there are three significant figures in each number of the equation, there should be three in the answer.

Solutions to the Practice Problems for Module #13:

p. 92 The units for the answer to 5b should be Newtons / C.

Solutions to the Practice Problems for Module #14:

p. 98 The third equation should be:

$$\Delta PE = q\Delta V = (1.5 \text{ C}) \cdot (-8 \times 10^9 \text{ } \frac{\text{N} \cdot \text{m}}{\text{C}}) = -1 \times 10^{10} \text{ N} \cdot \text{m} = -1 \times 10^{10} \text{ J}$$

Solutions to the Extra Practice Problems for Module #2:

- **p. 110** The solution to problem #5 should be -4 ft/sec². The units in the underlined portion of the answer should be changed to ft/sec² as well.
- **p. 111** In problems 8 and 9, the very last sentences should both end, "or 270 ft/sec down." In addition, the acceleration should be -32 ft/sec² and the displacement -1,140 ft, since both are directed down.

Solutions to the Extra Practice Problems for Module #6:

p. 128 The second equation in the problem should read:

 $T_{2y} = (10.3 \text{ lbs}) \cdot \sin(105^\circ) = 9.95 \text{ lbs}$

This does affect the weight calculation to make 19.9 lbs. This does not affect the solution. However, the angle must be defined properly, which makes it 105° rather than 75°. This is where the third significant figure comes from.

p. 130 The solution to problem #6 should be:

 $(0.29 \text{ N}) \cdot (0.400 \text{ m}) + (0.39 \text{ N}) \cdot (0.250 \text{ m}) + (0.20 \text{ N}) \cdot (0.050 \text{ m}) - (0.098 \text{ N}) \cdot r - (0.49 \text{ N}) \cdot (0.400 \text{ m}) = 0$

0.12 N \cdot m + 0.098 N \cdot m + 0.010 N \cdot m - (0.098 N) \cdot r - 0.20 N \cdot m = 0

 $0.03 \text{ N} \cdot \text{m} - (0.098 \text{ N}) \cdot \text{r} = 0$

r = 0.3 m

The answer, then, should be 0.3 m. The mistake in the book is that the lever arm for the 40.0 g mass was 0.200 m, while the diagram shows it should be 0.250 m.

p. 131 The solution to problem #8 should be -7.0 m/sec².

Solutions to the Extra Practice Problems for Module #7:

p. 136 In the last equation for problem #8, the denominator should not be squared. It does not affect the answer, as it was not squared when the math was done.
p. 137 The answer to the first equation should be 3.639 x 10¹¹ m. It should then be plugged into the equation for ∆t, but it does not affect the answer.

Solutions to the Extra Practice Problems for Module #9:

p. 145 In problem #7, the numerator for \mathbf{v}_{both} should be 1.15×10^5 , which changes the answer to 83.2 m/sec.

Solutions to the Extra Practice Problems for Module #15:

pp. 171- In problem #8, the single-digit resistances are listed as 5.0Ω and 4.0Ω . As a result, the solution should have the resistances to the tenths place as well. This changes the significant figures:

 $\frac{1}{R_{effective}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_5} = \frac{1}{5.0\Omega} + \frac{1}{15\Omega} + \frac{1}{4.0\Omega} + \frac{1}{5.0\Omega} + \frac{1}{20\Omega} = 0.77\frac{1}{\Omega}$

$$R_{effective} = 1.3 \Omega$$

Even though 20 has only one significant figure, we are adding, so we look at decimal place. All of the inverses go to the hundredths place, so that is why we can report the sum to 0.77, which allows us to report the effective resistance to two significant figures. This changes the equations at the top of the next page to:

V = IR
I =
$$\frac{V}{R} = \frac{1.5 \text{ V}}{1.3 \Omega} = 1.2 \text{ A}$$

P = IV = (1.2 A) · (1.5 V) = 1.8 W

This makes the answer <u>1.8 W</u>.

Test for Module #2:

p. 177 and In question 12, the word "travel" should replace the word "skid." When a car skids, the brakes really aren't providing the negative acceleration, friction is.

Test for Module #6:

p. 185 and In question 8, the child sitting on the swing is pictured on the SAME page, not the next page, as the question states.page 11

Test for Module #8:

p. 190 and #13 should start, "A 345-gram box slides down"page 15

Test for Module #11:

p. 195 and pullout tests	Question 3 should be reworded as follows:
page 21	Given substances A and B above, if A is a solid and B is a liquid, in which does sound travel faster?

Solutions to the Test for Module #1:

p. 207 The equation for question #7 should start out as:

$$\mathbf{v} = \frac{\Delta \mathbf{x}}{\Delta t}$$

Solutions to the Test for Module #8:

p. 238	The final answer for #10 should be 5.3 m/sec.
p. 239	The points for problem #12 should read, "(2 pts: one for equating kinetic energy and the work done by friction, one for the displacement)"
p. 240	The numerator of the last equation on the page should be 1.83×10^3 . This does not affect the answer.
p. 239 and 240	All references to a "ball" should be replaced with "box" in problem #13

Solutions to the Test for Module #9:

p. 242 The equation for Δp in the solution to problem 10 should not have squared seconds in the denominator. It should read:

$$\Delta \mathbf{p} = \mathbf{p}_{\text{final}} - \mathbf{p}_{\text{initial}} = -13 \, \frac{\text{kg} \cdot \text{m}}{\text{sec}} - 9.5 \, \frac{\text{kg} \cdot \text{m}}{\text{sec}} = -23 \, \frac{\text{kg} \cdot \text{m}}{\text{sec}}$$

- **p. 243** In the last equation for problem #12, the units on 3.7 should be m/sec. The "kg" part of the unit should not be there.
- **p. 244** In the last equation on the page, the denominator should be 0.98, not 9.8. This does not affect the answer, as the correct number was used in the calculation.

Solutions to the Test for Module #11:

p. 248 The answer to question #3 should be reworded as follows:

Sound speed increases from gas to liquid to solid. Thus, sound travels faster in <u>substance A</u>.

Solutions to the Test for Module #15:

p. 263 The answer to problem #14 should be <u>667 Watts</u>. The parallel resistors were not calculated with proper significant figures. Using the proper significant figures rules, the left-hand parallel set is 8.13 Ω and the right-hand set is 6.49 Ω . This changes the total resistance to 21.6 Ω , which changes the current to 5.56 A, which changes the final answer to 667 Watts.

Solutions to Quarterly Test #1:

- **p. 276** Since the two measurements in the equation at the top of the page each have three significant figures, the answer should have three. Thus, the answer to problem #10 should be -3.02 m/sec^2 .
- **p. 279** Since the acceleration due to gravity has only two significant figures, the answer to problem #24 should have only two. Thus, the answer should be $2.6x10^3$ ft.
- **p. 280** Because of the significant figures rules, the answer to problem #25 should be 90 ft.

Solutions to Quarterly Test #2:

- **p. 286** Problem #19: Since all measurements in the equation have three significant figures, the answer should have three. Thus, the answer should be $\underline{4.27 \times 10^8}$ <u>m</u>.
- **p. 287** To keep things consistent with the way significant figures are handled, the answer to #21 should be <u>4.7 m/sec</u>. Minor differences like this are not important, however.

- **p. 288** The second equation on the page is missing the closing square bracket under the square root sign.
- **p. 288** The grading suggestion should read, "(2 pts: one for equating kinetic energy and the work done by friction, one for the distance)"

Solutions to Quarterly Test #3:

- **p. 291** In the first equation on the page, there should be no "kg" unit with 5.7. Instead, the "kg" unit with 58.0 should cancel the "kg" unit in the denominator.
- **p. 292** In the second equation on the page, the number in the denominator should be 0.075. The typo was not used in the calculation, so the answer is not affected.
- **p. 294** In the equation for #18, the units on 21.3 were left out. They should be "m/sec."

Solutions to Quarterly Test #4:

p. 297 Problem #4: The answer should be -2.0 C.
p. 297 Problem #5: The answer should read, "The greatest acceleration will occur where the force is the greatest. In an electric field, this occurs where the line density is the greatest, <u>directly next to A or B</u>."
p. 297 Problem #6: This should be worth 2 pts: ½ for each force, and one for the answer. This makes the total possible points for the test 37 (p. 302).
p. 301 Problem #19: the third set of parallel resistors should have a resistance of 9.90 Ω, which makes the total resistance 23.4 Ω, which makes the current 5.13 A, which makes the power 6.16 Watts.