
SMK900

Portia Radio Module
Datasheet

Contents
1 Introduction 7

2 System 7

2.1 SMK900 System Overview . 7

2.2 Mesh Network Systems . 8

2.3 Frequency Hopping Implications . 8

3 Specifications 8

3.1 Broadcast Frame . 8

3.1.1 Dynamic parameters . 8

3.1.2 Broadcast Frame Structure . 10

3.2 SMK900 Addressing and Network Segregation . 11

3.3 Transparent and Protocol‐Formatted Mode . 11

3.3.1 Transparent . 12

3.3.2 Protocol‐formatted . 12

4 Virtual Machine 12

4.1 Description . 12

4.2 Virtual Machine Triggers . 12

5 Hardware 14

5.1 Serial Port . 14

5.2 Module Pin Out . 14

5.3 Power Supply and Input Voltage . 18

5.4 ESD and Transient Protection . 18

5.5 Antenna Connector . 20

6 Additional I2C Functions 20

7 Example VM User Script Using I2C Functions 21

8 Protocol‐Formatted Messages 26

8.1 Protocol Formats . 26

8.2 Message . 27

8.3 Message Format Details . 27

8.3.1 Summary of message types . 27

8.4 EnterProtocolMode . 27

8.5 DeviceReset . 27

8.6 DeviceResetReply . 30

1

8.7 TxLongData . 30

8.8 OTA . 30

8.8.1 FASTWRITE . 31

8.8.2 STARTTRANSFER . 31

8.8.3 STOPTRANSFER . 31

8.8.4 WRITE . 31

8.8.5 READ . 32

8.8.6 READFIRMWARECHECKOUTOK . 32

8.8.7 GETMISSINGFLAGS . 32

8.8.8 GETUNCHECKEDCRCPAGES . 32

8.8.9 PRUNEVALIDPAGESBYCRC . 33

8.8.10 READMETADATABUFFER . 33

8.8.11 ACTIVATEMETADATAMAGICWORD . 34

8.9 TxReduxData . 34

8.10 RxDataPacket . 34

8.11 RxReduxDataPacket . 34

8.12 RXBcastInSniffedDataPacket . 35

8.13 BcastUART2TrxBufferDone . 36

8.14 RXBcastInSnifferAirDataPacket . 36

8.15 RXBcastOutSnifferAirCmd . 36

8.16 DynConfig . 37

8.17 DynConfigReply . 37

8.18 GetRegister . 39

8.19 GetRegisterReply . 39

8.20 SetRegister . 39

8.21 SetRegisterReply . 40

8.22 TransferConfig . 40

8.23 TransferConfigReply . 41

8.24 TXAirCmdWrapper . 41

8.25 RXAirCommandWrapper . 43

9 Configuration Registers 43

9.1 Registers Description . 46

9.1.1 addressBuf . 46

9.1.2 addressBufLen . 46

9.1.3 dyn . 46

9.1.4 nwkID . 46

9.1.5 hopTable . 46

9.1.6 power . 47

2

9.1.7 uart_bsel . 47

9.1.8 nodeType . 47

9.1.9 sleepMode . 47

9.1.10 extSlpCtrlI2CAddress . 47

9.1.11 extSlpCorrectionFactor . 47

9.1.12 presetRF . 47

9.1.13 cryptoData_qWord0 . 48

9.1.14 i2c . 48

9.1.15 meshExecActiveFlag . 48

9.1.16 sniffFlagsMask . 48

9.1.17 enableNotificationFlagsMask . 50

9.1.18 gpStorage_qWordx . 50

9.1.19 index . 50

9.1.20 valueRFLinks . 50

10 Developer Kit 51

10.1 Portia Adapter Board . 51

10.2 Arduino‐Compatible Shield . 51

11 Certification Information 51

3

List of Figures
1 Typical structure of periodic network broadcast cycles for the DYN = 1, 2, 4, 1, 1, 5

configuration . 11

2 Mesh Network Triggers . 12

3 External Triggers . 13

4 Module Through Hole Pinout . 15

5 Module USB Pinout . 17

6 Through Holes Mounting . 18

7 Module USB Pinout . 19

4

List of Tables
1 Specifications . 9

2 Virtual Machine Triggers . 13

3 Calculating the effective baud rate fBAUD . 14

4 Standard baud rates list . 15

5 Module Pinout . 16

6 Module Pinout (continued) . 17

7 Additional I2C Functions . 20

8 Protocol‐Formatted Common Header . 26

9 Packet Type Decoding . 27

10 Packet Type Decoding . 28

11 Packet Type Decoding (continued) . 29

12 EnterProtocolMode (special keyword command) . 29

13 DeviceReset (command) . 29

14 DeviceResetReply (reply) . 30

15 TxLongData (command) . 30

16 OTA FASTWRITE (command) . 31

17 OTA STARTTRANSFER (command) . 31

18 OTA STOPTRANSFER (command) . 31

19 OTA WRITE (command) . 32

20 OTA READ (command) . 32

21 OTA READFIRMWARECHECKOUTOK (command) . 32

22 OTA GETMISSINGFLAGS (command) . 33

23 OTA GETUNCKECKEDCRCPAGES (command) . 33

24 OTA PRUNEVALIDPAGESBYCRC (command) . 33

25 OTA READMETADATABUFFER (command) . 33

26 OTA ACTIVATEMETADATAMAGICWORD (command) 34

27 TxReduxData (command) . 34

28 TxDataPacket (event) . 35

29 RxReduxDataPacket (event) . 35

30 RxBcastInSniffedDataPacket (event) . 35

31 BcastUART2TrxBufferDone (event) . 36

32 RXBcastInSnifferAirDataPacket (event) . 36

33 RXBcastOutSnifferAirCmd (event) . 37

34 DynConfig (command) . 38

35 DynConfigReply (reply) . 38

36 GetRegister (command) . 39

5

37 GetRegisterReply (reply) . 39

38 SetRegister (command) . 40

39 SetRegisterReply (reply) . 40

40 TransferConfig (command) . 41

41 TransferConfigReply (reply) . 41

42 TXAirCmdWrapper (command wrapping another command for remoting) 42

43 RXAirCmdWrapper (event wrapping remote reply) . 43

44 Register Table . 44

45 Register Table (continued) . 45

46 MeshExecActiveFlag Bit‐Mask Register . 49

47 Relevant Sniff Flags . 49

48 Flags Enabling Special Notification UART Messages 50

6

1 Introduction
SMK900 transceivers provide for highly‐reliable, long‐range, and low power mesh networking radio
applications. They use frequency hopping spread spectrum (FHSS) technology to ensure resistance
to multipath fading and robustness, as well as for compliance with 900 MHz unlicensed band regu‐
lations in Canada and the US. The SMK900 supports a CTS‐enabled serial port interface with data
rates ranging from 1.2 to 230.4 kbps, with two possible modes of operation (transparent ASCII and
protocol‐formatted). For easy integration, error correction and buffering is all accomplished within
the mesh controller module. A Virtual Machine is also available so that the user can leverage the
module peripherals of the radio processor to perform operation such as signal processing and re‐
mote control devices. The module accepts multiple sleep synchronization clock sources: internal
crystal, internal RC, or with an external I2C‐line sleep controller for optimal sleep management. Key
features include:

— Multipath fading resistance, with more than 51 frequency channels, 902.7 to 927.4 MHz
— Receiver protected by low‐loss SAW filter for excellent receiver sensitivity and interference

rejection
— Support for high‐speed mesh networking applications
— Maximum range in free space exceeds 10 km (antenna height dependent)
— Typical range in forested areas between 250 and 500 m
— Transparent ASCII serial data mode for easiest integration available
— Advanced protocol‐formated serial data mode available for maximum flexibility
— Accessibility to multiple analog and digital I/O via Virtual Machine
— Serial baud rates between 1.2 and 230.4 kbps
— AES 128 bits encryption available
— Module configuration stored in non‐volatile memory
— Local and Over‐the‐air configuration for the radio
— Virtual Machine locally and remotely programmable at whim
— VM engine bytecode can be locally or remotely accessed/modified at whim via IDE

2 System

2.1 SMK900 System Overview
A SMK900 radio can be configured to operate in two main modes: gateway or node. A gateway
controls a whole mesh network and functions as the main coordinator node, and its usual primary
function is to bridge a host such as a PC, tablet, or internet gateway, with the rest of the mesh
network. A node is a transceiver that acts as a repeater inside of the mesh network. The primary
function of a node is to allow communication between an external devices and the gateway, or to
serve as a bridge between analog and/or digital inputs/outputs such as for sensor arrays.

It is possible to configure any node so that it filters messages by MAC address, or configure it so that
it acts like a sniffer relaying all messages transiting through the mesh network to the client circuitry
via serial port.

7

2.2 Mesh Network Systems
The topology used by a SMK900 radio is that of a broadcast‐only mesh network, with sleep‐wake
synchronization handled by the gateway. This mean that any SMK900 radio transmission sends a
broadcast to the whole mesh network. There are no provisions for pure unicast messaging, and such
needs are usually handled by integrator using a higher‐level protocol sitting on top of the SMK900
protocol. The maximum of broadcast transmission of the same messages over the mesh network
depend on the number of hops allowed.

Multiple independent mesh networks may coexist in the same physical space by configuring nodes
with differing FHSS channels, different network IDs and/or different encryption patterns. Each of
those mesh networks have to be controlled by its own gateway. The bridging between gateways is
handled by the integrator.

2.3 Frequency Hopping Implications
The SMK900 uses the FHSS approach in order to ensure that co‐located networks using different
FHSS hopping tables (a.k.a channels) can coexist with graceful degradation of network performance
as the number of conflicting networks overlapping increases. This however comes with the price
that any node needs a certain time delay (called ”seek time”) in order to connect itself to its desired
network (this delay can range between seconds tominutes, depending on the sleep interval between
wake cycles for said network. For instance, at a sleep interval of 1 second, the seek time is of the
order of 30 seconds to 1 minute, and this seek time increases linearly with said sleep interval.

3 Specifications

3.1 Broadcast Frame
In order to ensure synchronization of every node within a given network, the gateway always ini‐
tiates a broadcast beacon periodically, which encompasses a broadcast parameters. This is the pri‐
mary construct within which all nodes communicate. In particular, there is Time‐Division Multiple
Access (TDMA) slotting mechanism that specify unique slots, called broadcast phases, for outbound
communication from a gateway to nodes, and inbound communication from a node back to a gate‐
way.

3.1.1 Dynamic parameters
There are 6 parameters inside the broadcast beacon. They will be referred to in this integration
guide by the moniker: dynamic parameters, or, in short, DYN. Configuration of those parameters
usually take the form of a sequence of 6 bytes, with 1 byte per parameter, as follows:

DYN ← BO, BI , NH , NR, R,D (1)

For each broadcast frame, the periodic delay between broadcast as well as its length being deter‐
mined by:

BO: number of gateway to node messages per broadcast (also called broadcast out phase

8

Table 1: Specifications

Absolute Maximum Rating
Supply Voltage ‐0.5 to 6.5V
All Input/Output
Pins

‐0.5 to 3.3V

Specification Descriptions
Operating
Temperature

‐20 to 70C guaranteed for max hop count
‐40 to 85C guaranteed for half hop count

Storage
Temperautre

‐40 to 85C

Power Requirement
Supply Voltage 3.3 to 5.5V
Transmit Current 130 mA peak
Receive Current 20 mA
Idle 30 uA peak
Transceiver
Urban / Indoor /
NLOS*

100 to 500m

Outdoor / LOS** 10km+
Transmit Power Low: 50mW High 100mW
RF Data Rate 50 kbits
Number of
Channels

5

Frequency Band 902 to 925 Mhz
Receiver
Sensitivity

‐110 dBm

Antenna
Connector

U.Fl

Antenna Gain
Maximum

3 dBi

Max Hop Count 31
Encryption OTA AES 128 bits
Virtual Machine
Memory 16 kBytes

*Not line of sight ** Line of sight

count),

BI : number of node to gateway messages (also called broadcast in phase count),

NH : the maximum number of hops for the network (i.e. maximum number of time a message
can be relayed from node to node),

NR: number of random‐access specialized hop slots (called redux),

9

R: specialized slotting mechanism enabled

D: inverted sleep‐wake duty cycle ratio D (min. value is 1),

The broadcast time can be then calculated as:

TBCAST [msec] = 10(NH(BO +BI) +NR ·R) (2)

The interval between each broadcast is:

TINTERV AL[msec] = TBCAST ·D (3)

For the vast majority of applications, the default settings, where BO = BI = 1 and R = 0, are
applicable, in which case the timing equations simplify to:

TBCAST [msec] = 20 ·NH

TINTERV AL[msec] = TBCAST ·D
(4)

Allowable values for each of those are, with default values in (boldface):

BO: [(1), 2, 3, 4]

BI : [(1), 2, 3, 4]

NH : [1, 2, ... , 4, (5), 6, ..., 31]

NR: [(1)]

R: [(0), 1]

D: [1, 2, 5, (10), 20, 40, 80]

Note that D is defined as TINTERV AL/TBCAST , and is thus the inverse of what is commonly defined
as the network duty‐cycle, which is defined as follows:

dutycycle[%] = 100%/D (5)

Note that there are no parameters controlling any acknowledgement/retry cycles in case a message
from one node to another fails to pass through. It is assumed that the onus of managing packet
delivery failure occurrences fall upon the shoulder of the higher‐level protocol as implemented by
the integrator. The easiest way to do so, say for a mesh network with standard round‐robin sensor
polling, is simply to detect reply failure at the host side connected to the gateway, and retry polling
for a number of times, before flagging a failure to user in the case a maximum number of retries
has been hit. Note, however, that there is an internal CRC‐based mechanism for controlling packet
integrity, so any packet received can be assumed for the majority of applications as containing valid
and uncorrupted information.

3.1.2 Broadcast Frame Structure
The following schematic shows the typical structure of periodic network broadcast cycles, for the
following configuration DYN = 1, 2, 4, 1, 1, 5:

10

Figure 1: Typical structure of periodic network broadcast cycles for the DYN = 1, 2, 4, 1, 1, 5 con‐
figuration

3.2 SMK900 Addressing and Network Segregation
Each module has a unique factory‐configured 3‐byte address, called the MAC address. In the stan‐
dard protocol‐based serial data mode, this MAC address can be used to specify to which destination
a message is intended, although this is not a necessary part of the protocol due to the fact that every
message is treated as a broadcast to all nodes. The MAC address 0x000000 is treated as an invalid
address. There is no broadcast address, in contrast with regular IEEE802.15.4 schemes (where a
broadcast address is typically the highest possible address for a given number of bytes encoding
said address). Note that in transparent serial data mode, MAC addresses are not used, and in this
case the system behaves as a transparent point‐to‐multipoint system.

Every node also has a configurable network ID, called NWKID, between 0 and 7, which can be used
to segregate multiple networks hopping on the same FHSS channel in order to reduce the impact of
interference. Every node can also be encrypted using a unique network key, which not only secures
a given mesh network, but also allows for more segregation between coexisting networks within
the same physical space.

The primary means for network segregation is of course the selection of the FHSS channel via a
configuration variable named HOPTABLEID. The current implementation allows for values between
0 and 5 (i.e. 6 different hop tables).

3.3 Transparent and Protocol‐Formatted Mode
A SMK900 based network can be configured to use either the transparent or the protocol‐formatted
mode for the serial port interface.

11

3.3.1 Transparent
The transparent mode allows for basic, unsynchronized integration which emulate a simple point‐
to‐multipoint serial link between a gateway and its nodes. In this case, the message is assumed to
be of standard ASCII format, with the special ASCII terminator characters 0x13 (Carry) or 0x10 (Line
Feed) are used as markers to trigger the end of a message stream, and thus to trigger transmission
over radio waves.

3.3.2 Protocol‐formatted
Protocol‐formatted messages also referred to as Application Programing Interface (API) are dis‐
cussed in the following sections. protocol‐formatted messages usea start‐of‐message marker, fol‐
lowed by message length, message information type (or command byte), an optional string of MAC
addresses, and finally, the payload.

4 Virtual Machine

4.1 Description
SMK900 radios feature an embedded Virtual Machine (VM) allowing Over‐The‐Air (OTA) firmware
updates. This allows application‐specific user scripting to control the internal modules of the SMK900
radio and ease interfacing with external devices. The main processor controls and manages wireless
mesh operations and executes VM user scripts.

TheVirtual Machine is available when the serial protocol is configured to protocol‐formatted mode
(not to transparent mode). An IDE is available for Virtual Machine development, which includes basic
compiler, disassembler, node configuration and VM upload/erase functions as well as direct node
serial connection and OTA firmware node upload with a gateway.

4.2 Virtual Machine Triggers
Virtual Machine script execution is managed by the mesh network process. This is to ensure mesh
operation priority over the Virtual Machine. VM execution is triggered by various events, which are
defined in the table below.

The available triggers in the mesh network cycle are shown in the figures below.

Figure 2: Mesh Network Triggers

12

13

Table 2: Virtual Machine Triggers

Trigger Description

Bootup Bootup system initialization

Enter Seek Mode The transceiver is attempting communication with the
gateway over the mesh network.

Leave Seek Mode The transceiver has established a link to the mesh network.

Enter Broadcast The transceiver wakes up to enter the broadcasting cycle

Leave Broadcast Broadcasting cycle has ended and the transceiver is ready to
enter sleep mode.

Serial Event A message from a local serial device has been received by the
transceiver. Note: The local serial device must read CTS low
before sending.

Air Command An execute air command message has been received.
Typically, air command is used to control or read modules
connected to the radio.

Figure 3: External Triggers

5 Hardware
The SMK900 module provides multiple application interfaces: a primary communication serial port
(CTS enabled), a dedicated I2C port (Master mode only), and 13 generic digital I/O. The latter can
be reconfigured to ADC (2x), to DAC (2x) or to PWM hardware signalling or clock generation (2x).
The SMK900 transceiver can also use advanced peripherals such as hardware timers and event
capture/compare within custom bytecode executed by its VM engine.

5.1 Serial Port
The host processor is tied to the SMK900 module over a full‐duplex UART interface serial port with
CTS pin hardware control. Baud rate is configurable from 1.2 to 230.4 kbps, with non standard baud
rates also achievable (between the aforementioned boundaries). The serial port is configured for
standard 8‐bit data with no parity and 1 stop bit.

Baudrate configuration is done on the uartbsel register (register offset 0x06) This register can be
split into: BSEL = uartbsel[0..11], and BSCALE = uartbsel[12...15]. where BSCALE is a 4‐bit
signed integer, ranging from ‐7 (0b1001) to +7 (0b0111). For positive values of BSCALE, the baud
rate is prescaled by 2BSCALE . or negative values the baud rate will use fractional counting, which
increases resolution.

The formulae for calculating the effective baud rate fBAUD :

Table 3: Calculating the effective baud rate fBAUD

Conditions Baud Rate (in baud or Hz) BSEL Value

BSCALE≥0

fBAUD≤1MHz

fBAUD= 1·106
2BSCALE ·(BSEL+1)

BSEL= 1·106
2BSCALE ·fBAUD

−1

BSCALE<0

fBAUD≤1MHz

fBAUD= 1·106
(2BSCALE ·BSEL)+1

BSEL= 1

2BSCALE (1·106
fBAUD

−1)

Thus, here is a list of standard baud rates and their corresponding suggested configuration values:

5.2 Module Pin Out
Electrical connections to the SMK900 are made through the I/O pads and through the I/O pins
(depending on whether it is the SMT castellated or the through‐hole version). The hardware I/O
functions are detailed in Table 5 (note that the MCU alias is useful only when using advanced VM
programming using accessible native MCU functionalities, and only the mutable generic I/O pins
are available for such purposes, and are denoted by the principal name IO_x, where x is the generic
pin number as used in VM programming).

The schematic block diagram for the through hole module pinout is shown at Figure 4, and the
corresponding footpring at Figure 5. The surface mount pinout is shown at Figure ??

14

Table 4: Standard baud rates list

Baud Rate (baud) BSEL BSCALE uartBSEL

2400 831 (0x33F) ‐1 (0b1111) 0xF33F
4800 829 (0x33D) ‐2 (0b1110) 0xE33D
9600 825 (0x339) ‐3 (0b1101) 0xD339
19200 817 (0x331) ‐4 (0b1100) 0xC331
38400 801 (0x321) ‐5 (0b1011) 0xB321
57600 1047 (0x417) ‐6 (0b1010) 0xA417
115200 983 (0x3S7) ‐7 (0b1001) 0x93D7
125000 7 (0x007) 0 (0b0000) 0x0007
230400 428 (0x1AC) ‐1 (0b1001) 0x91AC

Figure 4: Module Through Hole Pinout

15

16Table 5: Module Pinout

PIN TH PIN XB PIN SMD NAME ALIAS I_O DESCRIPTION

1 10 1, 13, 28 GND ‐ ‐ Power supply and signal ground.
Connect to the host ground.

2 6 9 IO_12 TX_LED O(I) Transmit LED pin. This pin
activates only when a radio
transmission is active

3 9 12 IO_11 BCAST_LED O(I) Broadcast LED pin. This pin
activates/deactivates itself in
order to mark the beginning
and the end of a broadcast
cycle.

4 15 I2C_PWR ‐ O I2C Power pin. Can be
configured by changing the
powerBusMode byte in the I2C
configuration register. Allows to
turn on/off an I2C peripheral
connected to the module on
demand when required (usually
when a VM execution is
running after a broadcast cycle).

5 2 5 TXD ‐ O Serial data output from the
radio.

6 3 6 RXD ‐ I Serial data input to the radio.

7 12 15 /CTS ‐ O Host serial port CTS pin. When
the line goes high, the host
must stop sending data.

8 14 IO_2 RTS I(O) Generic I/O.

9 8 11 IO_5 DAC0 I(O) Generic I/O. Alternately,
hardware DAC channel 0.

10 7 10 I2C_SCL ‐ O I2C Master SCL clock pin. This
pin should be pulled via resistor
to a 3.3V high line (possibly the
3.3V_OUT pin).

11 19 22 I2C_SDA ‐ I/O I2C Master SDA data pin. This
pin should be pulled via resistor
to a 3.3V high line (possibly the
3.3V_OUT pin).

12 20 23 IO_1 ‐ I(O) Generic I/O.

13 IO_6 DAC1 I(O) Generic I/O. Alternately,
hardware DAC channel 1.

14 VCC ‐ I Power supply input, +3.3 to
+5.5 Vdc.

15 10 1, 13, 28 GND ‐ ‐ Power supply and signal ground.
Connect to the host ground.

16 10 1, 13, 28 GND ‐ ‐ Power supply and signal ground.
Connect to the host ground.

17 5 8 /RESET ‐ I Active low module hardware
reset.

18 IO_3 ADC0 I(O) Generic I/O. Alternately,
hardware ADC channel 0.

19 IO_4 ADC1 I(O) Generic I/O. Alternately,
hardware ADC channel 1.

20 4 7 IO_9 MISO I(O) Generic I/O. Alternately,
hardware SPI Master In Slave
Out pin, or OC1A Timer C
wave out Channel A.

21 14 IO_8 MOSI I(O) Generic I/O. Alternately,
hardware SPI Master Out Slave
In pin, or OC1B Timer wave out
Channel B.

Table 6: Module Pinout (continued)

PIN TH PIN XB PIN SMD NAME ALIAS I_O DESCRIPTION

22 17 20 IO_7 /SS I(O) Generic I/O. Alternately, hardware
SPI enable pin.

23 18 IO_10 SCK,
MIRROR

I(O) Generic I/O. Alternately, hardware
SPI port clock, or MCU event
mirror output pin.

24 1, 13 4, 16 3.3V ‐ O Stable low‐power 3.3V output.
Use with low‐power devices only
(< 10 mA average power
consumption, < 20 mA peak
consumption).

25 24 IO_0 ADC_EXT,
REF

Generic I/O. Alternately, ADC
external reference voltage pin. The
voltage at this pin can be used by
the ADCs as a reference for
ratiometric measurements.

26 RSVD ‐

27 RSVd ‐ Reserved pin. Leave unconnected.

28 10 1, 13, 28 GND ‐ Connect the host circuit board
ground plane.

29 RSVD ‐ Reserved pin. Leave unconnected.

30 10 1, 13, 28 GND ‐ Connect the host circuit board
ground plane.

2 DM ‐ I/O USB negative wire (white)

3 DP ‐ I/O USB positive wire (green)

Figure 5: Module USB Pinout

17

Figure 6: Through Holes Mounting

5.3 Power Supply and Input Voltage
SMK900 radio modules can operate from an unregulated DC input in the range of 3.3 to 5.5 V with
a maximum ripple of 5% over the temperature range of ‐40 to 85 °C. Applying AC, reverse DC, or a
DC voltage outside the range given above can cause damage and/or create a fire and safety hazard.
Further, care must be taken so logic inputs applied to the radio stay within the voltage range of 0
to 3.3 V. Signals applied to the analog inputs must be in the range of 0 to ADC_EXT_REF (Pad/Pin
25) if the reference is used as such, else the range of 0 to VCC shall be used. Applying a voltage to
a logic or analog input outside of its operating range can damage the SMK900 module.

5.4 ESD and Transient Protection
The SMK900 circuit boards are electrostatic discharge (ESD) sensitive. ESD precautions must be
observed when handling and installing these components. Installations must be protected from
electrical transients on the power supply and I/O lines. This is especially important in outdoor in‐
stallations, and/or where connections are made to sensors with long leads. Inadequate transient
protection can result in damage and/or create a fire and safety hazard.

18

Figure 7: Module USB Pinout

In the case where low power consumption is desired, dedicated logic level converters, or equivalent
FET circuitry can be used to achieve such specifications.

19

5.5 Antenna Connector
The antenna connector is a U.Fl type male connector which can either be mated to a PCB host
board or directly to an antenna using the appropriate adapter. Impedance of all components from
the connector up to the antenna part has to be 50 Ohms.

6 Additional I2C Functions
Table 7 lists additional I2C commands that are available for execution from a custom user VM
script(see Section 4 for more details):

Table 7: Additional I2C Functions

Name Type Description Master
command byte
stream

Expected slave
answer byte
stream

Read
configuration

Read Read in the following order: voltage (1
byte), RF channel (1 byte), I2C address (1
byte), expected reference voltage (2 bytes,
Little‐Endian byte ordering). Voltage is the
input VCC voltage of the external sleep
controller, using the internal chip FVR
voltage reference. Precision expected of
this voltage measurement is ±0.15 V, and
is thus usually sufficient to evaluate
battery pack status if standard alkaline
batteries are used. The raw voltage value
sent VRAW is in increments of 0.05V, and
is an unsigned 8‐bit integer. In other
terms, V [V olt] = V RAW · 0.05. The
expected reference voltage REFVOLT is
the actual reference voltage of the
internal FVR used for ADC
measurements, which defaults to 2048
mV (value stored in 16‐bit as a mV value).
In the case where there is a discrepancy
in the voltage assessment of VCC by the
external sleep controller Vext and a
calibrated measurement in laboratory
Vlab, then the REFVOLT should be
corrected in the following manner:
REFV OLT ≤ REFV OLT · Vlab/Vext

[(ADDR x 2)+1] [VOLTAGE, RF
channel, ADDR,
REF voltage LS
byte, REF
voltage MS
byte]

Change I2C
address

Write Write a new I2C address to the external
sleep controller. Note that changes are
effective without having to reboot the
external sleep controller chip, less than
100 msec after the I2C command is sent
on the I2C bus.

[ADDR x 2,
0x28, new I2C
ADDR]

N/A

Change
reference
voltage

Write Change the reference voltage used for
calibrating the voltage measurements.
Change is valid and enforced < 100 msec.
after end of I2C command.

[ADDR x 2,
0x11, new REF
voltage LS
byte, new REF
voltage MS
byte]

N/A

Change RF
channel

Write Change the generic RF channel value via
I2C. Change is valid and enforced < 100
msec. after end of I2C command.

[ADDR x 2,
0x18, new RF
channel value]

N/A

20

Note that all byte streams are notated as a sequence of bytes in brackets [], and that ADDR is the
current I2C address of the external sleep controller chip when the command is issued from the I2C
master side.

7 Example VMUser Script Using I2C Func‐
tions
The following is a VM example for a simple node that (1) at boot‐up, queries the external sleep con‐
troller for the RF channel variable, and configures the transceiver NwkId and HopTable configuration
registers accordingly (see section 7.3 for details about configuration registers); (2) when receiving
an air command from a gateway, it queries the external sleep controller voltage, and sends this back
as the gateway answer, in conjunction with the last known received packet RSSI value.

21

VM example!

1 #include ”SMK900.evi”
2 //Note that SMK900.evi include code listing is appended as an

annex of this document.
3 //This include defines transceiver-specific constants as well

as available special-purpose
4 //transceiver functions. See section 8.2.1 for details.
5
6 #define RFCHANNEL_MAX_RETRIES_COUNT_STD (20)
7 #define

SLEEPCTRL_I2C_ADDR_AND_0X7F_SHIFTL_1_OR_I2CMASTER_READMODE_gc
(0x91)

8
9 function exec_bootup(){

10 local rfChannel;
11 local retryCount;
12
13 local nwkid;
14 local hoptableid;
15 local i;
16 retryCount=0;
17
18 //Hardcode a delay of 100usec * 1000 * 60 = 6 seconds
19 for(i=0;i<60;i++){
20 Delay(1000);
21 }
22
23 while(retryCount<RFCHANNEL_MAX_RETRIES_COUNT_STD){
24 if(I2C_Start(

SLEEPCTRL_I2C_ADDR_AND_0X7F_SHIFTL_1_OR_I2CMASTER_READMODE_gc
)){

25 //Sleep controller answered NAK
26 I2C_Stop();
27 retryCount++;
28 Delay(5000);//delay 500 msec before retrying
29 }
30 else{
31 //Sleep controller answered ACK
32 I2C_ReadAck(); //1st byte is voltage. We discard
33 rfChannel = I2C_ReadNak(); //2nd byte is RF channel
34 I2C_Stop();
35
36 //Define NwkId and HopTable register values according

to read RF channel value
37 //stored in external sleep controller
38 nwkid = rfChannel \% NWK_COUNT;
39 hoptableid = HOPTABLE_50K_START + (rfChannel \%

HOPTABLE_50K_COUNT);
40
41 //REGISTER_xxx are VM-accessible mesh controller

configuration parameters
42 GetRegisterRAMBUF(8, REGISTER_NWKID);

22

43 GetRegisterRAMBUF(9, REGISTER_HOPTABLE);
44 if((nwkid!=GetBuffer_U8(8)) || (hoptableid!=

GetBuffer_U8(9))){
45 SetBuffer(8,nwkid,1);
46 SetBuffer(9,hoptableid,1);
47 SetRegisterRAMBUF(8, REGISTER_NWKID);
48 SetRegisterRAMBUF(9, REGISTER_HOPTABLE);
49
50 TransferConfigEEPROM();
51 //force reset by letting watchdog expire (the mesh

controller
52 //has a safety watchdog that runs at all times,

and set by default at 8 sec)
53 while(1){}
54 }
55
56 break;
57 }
58 }
59 }

23

VM example! (continued)

1 //Custom VM function executed when end node mesh controller
receives an ”air cmd”, which is

2 //a command from coordinator node to execute a VM function
over the air

3 function exec_aircmd(){
4 local V;
5
6 //time to read external sleep controller voltage using I2C

bus
7 if(I2C_Start(

SLEEPCTRL_I2C_ADDR_AND_0X7F_SHIFTL_1_OR_I2CMASTER_READMODE_gc
)){ //failure

8 V=0;
9 }

10 else{
11 V = I2C_ReadNak();
12 }
13 I2C_Stop();
14
15 SetBuffer(0,GetRSSI(),1); //set first answer byte as the

RSSI of the last known good packet received
16 SetBuffer(1,V,1); //set 2nd answer byte as voltage fetched

via I2C bus
17
18 Send(2);
19 }

24

VM example! (continued)

1 //note: the content of airBuf will be : the air-wrapped
command byte (for VM execution this will be either 0E or 8E
, the former if no addr is sent back,

2 //the latter if addr has to be sent back.
3 //Then, the actual cmd byte(s), in this case we expect 1 byte,

with ASCII char 0x41
4 //Total: 2 bytes
5
6 //ALIAS NAME............|.fn#.|ALIAS#|argc|.......argv

........| Description
7 //GetAirBuf(r, i, len)..|.0...|0x74..|.4..|aliasID, r, i, len

| Copy
8 //mid(airbuf, i, len) into buffer #r: returns number of valid

bytes in airbuf
9 //GetBuffer_16(r).......|.0...|0x22..|.2..|....aliasID, r

.....| Get buffer
10 //#r, 2 first bytes, as int16/uint16, and return it verbatim (

as int16)
11
12 rxLen=GetAirBuf(0, 0, 2);
13 if(rxLen>=3){
14 expectedCmd=(GetBuffer_16(1) & 0xFF);//expected state is in

the 3rd byte!
15
16 //Do something with received ’A’ cmd
17 }

Listing 1: Receiving ’A’ command

25

VM example! (continued)

1 //Common entry point for all VM executions: the subfunction to
b executed is selected according to trigger

2 //type via GetExecType().
3 function main()
4 {
5 local execType;
6
7 execType = GetExecType();
8 if(execType==MESHEXECTYPE_BOOTUP_bm){
9 exec_bootup();

10 }
11 else if(execType==MESHEXECTYPE_AIRCMD_bm){
12 exec_aircmd();
13 }
14 }

8 Protocol‐Formatted Messages

8.1 Protocol Formats
SMK900 module can work in one of two serial data modes ‐ transparent or protocol. Transparent
mode requires no data formatting, but cannot leverage the embedded node addressing schemes, nor
can access configuration and VM upload/erase/check/execute functions. Thus, transparent mode
is adapted mainly for simple drop‐in serial wire replacement for point‐to‐multipoint applications.

Thus, a gateway that needs to send messages to a specific node, or a node replying to said gate‐
way, must use protocol formatting if any advanced functionality other than simple ASCII message
broadcast is needed, such as access to sensor I/O commands, configuration commands and replies,
event monitoring, etc. All protocol‐formatted messages have a common header as shown in Table
8

Table 8: Protocol‐Formatted Common Header

0 1 2 3 4

SOP Length
(LSByte)

Length
(MSByte)

PktType Variable number of
args...

The scale above is in bytes.

The Start‐of‐Packet (SOP) character, 0xFB, is used to mark the beginning of a protocol‐formatted
message and to assure synchronization in the event of a glitch on the serial port at startup.

This is followed by two length bytes, in Little‐Endian ordering (lowest‐significant byte first). This
16‐bit value corresponds to the length of the remainder of the message following the length bytes
themselves, i.e. the length of the entire message ‐ 3.

The Packet Type (PktType) byte specifies the type of message. It is a bitfield‐oriented specifier, de‐
coded as shown in Table 10.

26

Table 9: Packet Type Decoding

Bit(s) Meaning

7 Address send back request bit

6 Reserved for future use

5 Event ‐ this bit is set to indicate an event message

4 Reply ‐ this bit is set to indicate a message is a reply

3..0 Type ‐ these bits indicate the message type

8.2 Message
Messages generated on the serial interface by the user are referred to as host messages, and have
a PktType reply bit (4) cleared. Messages generated on the serial interface by the radio are referred
to as reply or event messages, and have either bit 4 (replies) or bit 5 (event) of the PktType byte set.
For most commands, there is a corresponding reply message, which is either an acknowledgement
message.

Errors are usually flagged using event messages. Messages received by the radio and relayed back to
user, such as node reply messages, are flagged as event messages as well. Note that for all quantities
encoded using multi‐byte, the byte ordering is Little‐Endian, except for text strings. Little‐Endian
byte order places the lowest order byte in the left‐most byte of the argument and the highest order
byte in the right‐most byte of the argument.

A command sent from the host to a module locally via serial port in order to initiate an action
locally, or to read/write to the module locally, is the default type of message. However, there is also
another type of message, which are called air command wrapped messages. Those are typically
akin to local destination messages, but wrapped around a meta‐message, which, combined with a
destination MAC address, allows to execute said command at a remote transceiver node location
with said MAC address as if that command was locally executed at this remote node location. Thus,
it is possible to use the same command set (encapsulated within those meta‐messages, called air
command wrappers) to change the configuration and act on remote nodes in a straightforward
manner. It is also possible to send air command wrapped messages to multiple MAC addresses (up
to 4), if multi‐phase mode is used (only possible when the number of broadcast in phases BI > 1).

8.3 Message Format Details

8.3.1 Summary of message types

8.4 EnterProtocolMode
This command is used to enter protocol formatted mode from transparent serial mode via a special
keyword (transceiver will reply with an EnterProtocolModeReply message).

8.5 DeviceReset
This resets the transceiver module (for local UART commands only, the transceiver will reply with a
DeviceResetReply message). This command can be wrapped as an air command.

27

28

Table 10: Packet Type Decoding

Com‐
mand

Reply Event Type Direction AirCmd
Wrapped
no MAC

AirCmd
Wrapped
w/ MAC

Gateway
cmd

Node
cmd

0x00 ‐ ‐ EnterProtocolMode from
Host

‐ ‐ X X

‐ 0x10 ‐ EnterProtocolMod‐
eReply

from
Radio

‐ ‐ X X

0x01 ‐ ‐ ExitProtocolMode from
Host

‐ ‐ X X

0x02 ‐ ‐ DeviceReset from
Host

0x02 0x82 X X

‐ 0x12 ‐ DeviceResetReply from
Radio

‐ ‐ X X

0x05 ‐ ‐ TXLongData from
Host

‐ ‐ X X

0x06 0x06 OTA from Host 0x06 0x86 X X

0x07 ‐ ‐ TXReduxData from
Host

‐ ‐ X

‐ ‐ 0x26 RXDataPacket from
Radio

‐ ‐ X X

‐ ‐ 0x28 RXReduxData‐
Packet

from
Radio

‐ ‐ X

‐ ‐ 0x29 RXBcastInSniffed‐
DataPacket

from
Radio

‐ ‐ X

‐ ‐ 0x2A BcastU‐
ART2TrxBufferDone

from
Radio

‐ ‐ X X

‐ ‐ 0x2B RXBcastInSnif‐
ferAirDataPacket

from
Radio

‐ ‐ X

‐ ‐ 0x2C RXBcastOutSnif‐
ferAirCmd

from
Radio

‐ ‐ X

0x0A ‐ ‐ DynConfig from
Host

‐ ‐ X

‐ 0x1A ‐ DynConfigReply from
Radio

‐ ‐ X

0x03 ‐ ‐ GetRegister from
Host

0x03 0x83 X X

‐ 0x13 ‐ GetRegisterReply from
Radio

0x13 0x93 X X

0x04 ‐ ‐ SetRegister from
Host

0x04 0x84 X X

‐ 0x14 ‐ SetRegisterReply from
Radio

0x14 0x94 X X

0x0B ‐ ‐ TransferConfig from
Host

0x0B 0x8B X X

‐ 0x1B ‐ TransferConfigRe‐
ply

from
Radio

0x1B 0x9B X X

29

Table 11: Packet Type Decoding (continued)

Com‐
mand

Reply Event Type Direc‐
tion

tiny AirCmd
Wrapped
no MAC

tiny AirCmd
Wrapped
w/ MAC

Gate‐
way
cmd

Node
cmd

0x0C ‐ ‐ TXAirCmd‐
Wrapper

from
Host

‐ ‐ X

‐ ‐ 0x2D RXAirCmd‐
Wrapper

from
Radio

‐ ‐ X

0x0D ‐ ‐ VMFlash from
Host

0x0D 0x8D X

‐ 0x1D ‐ VM‐
FlashReply

from
Radio

0x1D 0x9D X

0x0E ‐ ‐ VMExe‐
cute

from
Host

0x0E 0x8E X X

‐ 0x1E ‐ VMExe‐
cuteReply

from
Radio

0x1E 0x9E X X

‐ ‐ 0x27 An‐
nounce/Er‐
ror

from
Radio

0x27 0xA7 X X

Table 12: EnterProtocolMode (special keyword command)

Byte offset Field Description

0x00 Start‐of‐Packet 0xFB = Indicates start of protocol formatted message

0x01 ‐ 0x02 Length 0x08 0x00 = Number of bytes in message following this
byte (Little‐Endian)

0x03 ‐ 0x10 Keyword 0x44 0x4E 0x54 0x43 0x46 0x47 0x00 0x00 = Keyword
string

Table 13: DeviceReset (command)

Byte offset Field Description

0x00 Start‐of‐Packet 0xFB = Indicates start of protocol formatted message

0x01 ‐ 0x02 Length 0x02 0x00 = Number of bytes in message following this
byte (Little‐Endian)

0x03 Packet Type 0x02 = DeviceReset

0x04 Reset Type 0x00 = Normal reset

8.6 DeviceResetReply
This is the reply message (only for local UART commands) after the transceiver receives a DeviceRe‐
set command. An equivalent air command reply wrapped accordingly can be sent out from a node
back to its gateway if the latter sent an air command with DeviceReset as the wrapped command.

Table 14: DeviceResetReply (reply)

Byte offset Field Description

0x00 Start‐of‐Packet 0xFB = Indicates start of protocol formatted message

0x01 ‐ 0x02 Length 0x01 0x00 = Number of bytes in message following this
byte (Little‐Endian)

0x03 Packet Type 0x12 = DeviceResetReply

8.7 TxLongData
Basic data send in command mode, that can span multiple consecutive broadcast phases. Note that
no reply is tied to this command. In the case where the transmitter is a gateway, then all nodes
directly or indirectly connected to that gateway via the mesh network that properly receives the
broadcasted packet will send a corresponding RxDataPacket reply to their own hosts. In the case
where the transmitter is a node, then only the gateway will send a corresponding RxDataPacket
reply at reception of packet. If another node needs to monitor that signal, then the proper sniffer
configuration register flags (RAM bank register sniffFlagsMask, flag BROADCASTIN_bm) must be
written (see section 7.3), in which case the corresponding sniffed receive replies to host will be in
the form of RXBcastInSniffedDataPacket.

Table 15: TxLongData (command)

Byte offset Field Description

0x00 Start‐of‐Packet 0xFB = Indicates start of protocol formatted message

0x01 ‐ 0x02 Length 0x?? 0x?? = Number of bytes in message following this byte
(Little‐Endian)

0x03 Packet Type 0x05 = TxLongData

0x04 Start Broadcast
Phase

0x00‐0x03 = Start Broadcast Phase (range is in practice
limited to B‐1 where B is the number of Broadcast Out
Phases if sender is a gateway or the number of Broadcast In
Phases if sender is a node

0x05 ‐ … Payload Up to 20 x B bytes of data at 50kbit/sec 72 x B bytes of
data at 100kbit/sec where B is the number of Broadcast
Out Phases if sender is a gateway or the number of
Broadcast In Phases if sender is a node

8.8 OTA
OTA commands allow for remote firmware updates. All OTA commands include a subcommand
as the first byte of the payload. The subcommand also contains some metadata. The bit at 0x80
indicates whether the OTA command contains firmware (0) or VM code (1). The bit at 0x40 has
a special meaning and indicates a fast write operation. In fast write mode, the command acts as a
write command where the sequence id MSB is stored.

30

For instance, a very basic firmware update could go through the following steps:

1. Sending a STARTTRANSFER command to every node to be reprogrammed;
2. Use broadcasted FASTWRITE commands to upload the firmware;
3. Ensure no dropped pages with GETMISSINGFLAGS commands;
4. Perfom CRC checks with broadcast PRUNEVALIDPAGESBYCRC commands;
5. Ensure all CRC pages have been checked with GETUNCHECKEDCRCPAGES commands;
6. Write the metadata buffer with WRITEMETADATABUFFER commands;
7. Enable firmware upload to the desired target with ACTIVATEMETADATAMAGICWORD com‐

mands;
8. The nodes will perform the required update operation on reset.

8.8.1 FASTWRITE
Special command to write data starting at the seqence Id 0x(MSB)(LSB). Note that the subcommand
value is used to hold the MSB of the sequence id.

Table 16: OTA FASTWRITE (command)

Subcommand Command payload Response payload

Sequence id msb [0x4(MSB), (LSB), Data] ‐

8.8.2 STARTTRANSFER
Enables an OTA transfer containing pageCount pages.

Table 17: OTA STARTTRANSFER (command)

Subcommand Command payload Response payload

0x00 [0x00, pageCount:u16] [0x00]

8.8.3 STOPTRANSFER
Stops the device from accepting OTA commands.

Table 18: OTA STOPTRANSFER (command)

Subcommand Command payload Response payload

0x02 [0x02] [0x02]

8.8.4 WRITE
Writes 16bytes long pages to the flash starting with page startPage. All pages that got written
are returned in succession by this command. In most cases, the broadcast version of this command
is more useful in order to update multiple devices at the same time.

A variant command, WRITEMETADATABUFFER performs the same write operation but on the meta‐
data buffer, which contains firmware size, encryption salt and SHA256 hashes.

31

The normal write command uses the subcommand id 0x01, while the WRITEMETADATABUFFER
uses the subcommand id 0x0D.

Table 19: OTA WRITE (command)

Subcommand Command payload Response payload

0x01 [0x01, startPage:u16,
data:[u8]]

[0x01,
writtenPages:[u16]]

0x0D [0x0D, startPage:u16,
data:[u8]]

[0x0D,
writtenPages:[u16]]

8.8.5 READ
Reads length bytes from the flash starting at byte byteOffset.

Table 20: OTA READ (command)

Subcommand Command payload Response payload

0x03 [0x03, length: u8, byteOffset:u24] [0x03, data:[u8]]

8.8.6 READFIRMWARECHECKOUTOK
Validates that the firmware in flash has been validated. This means that any previous OTA write
operation has been successful and has been verified. This command only returns a single flag. Using
the GETUNCKECKEDCRCPAGES command is better in this context since this command returns the
location of the invalid pages.

Table 21: OTA READFIRMWARECHECKOUTOK (command)

Subcommand Command payload Response payload

0x10 [0x10] [0x10, firmwareOk:bool]

8.8.7 GETMISSINGFLAGS
This command returns the missing scratch page byte indexes. A scratch page is a bit field represent‐
ing the status of the WRITE operations. A single bit of scratch represents a single page of the write
operation (16 bytes). When a write operation is performed, the corresponding scratch page bit is
set. Each scratch page is a word of two bytes, representing a total page length of 256 flash bytes.
When there are scratch pages that are not 0xff, this means that there was an unsuccessful WRITE
or PLUNEVALIDPAGESBYCRC operation on this page.

This command has two variations. The STATICSIZE, with id 0x06 returns a single non completed
scratch word if any. The VARIABLESIZE, with id 0x07, will fill the packet with as much non com‐
pleted scratch word as it can.

8.8.8 GETUNCHECKEDCRCPAGES
This command returns the CRC pages that were not validated during a PRUNEVALIDPAGESBYCRC
command. A CRC page corresponds to 256 bytes of firmware. That is 16 WRITE pages, or a single

32

Table 22: OTA GETMISSINGFLAGS (command)

Subcommand Command
payload

Response payload

0x06 [0x06] [0x06, scratchByteId: u16,
scratchContent: u16]

0x07 [0x07] [0x07, [scratchByteId: u16,
scratchContent: u16]]

scratch word. The command returns CRC pages id.

This command has two variations. The STATICSIZE, with id 0x12 returns a single non completed
CRC check if any. The VARIABLESIZE, with id 0x13, will fill the packet with as much non com‐
pleted CRC checks as it can.

Table 23: OTA GETUNCKECKEDCRCPAGES (command)

Subcommand Command payload Response payload

0x12 [0x12] [0x12, crcId: u16]

0x13 [0x13] [0x13, crcIds:[u16]]

8.8.9 PRUNEVALIDPAGESBYCRC
This command performs CRC checks and marks the written pages as invalid if the check fails. This
command is most useful in broadcast, as all nodes will be able to perform the checks at the same
time. The GETUNCHECKEDCRCPAGES command can then be used to validate that every CRC check
was actually performed.

This command contains the first CRC page to check, then a series of consecutive page CRC32. The
command returns a operation status byte for each performed check. A CRC check failure will return
a value of 0, while a success will return a value of 1. Other errors such as incomplete or non existant
pages will return respectively a value of 2 and 3.

Table 24: OTA PRUNEVALIDPAGESBYCRC (command)

Subcommand Command payload Response payload

0x09 [0x09, firstPageId: u16,
crc32Values:[u32]]

[0x12, crcId: u16,
crcStatus: [u8]]

8.8.10 READMETADATABUFFER
This command is used to read bytes from the metadata buffer.

Table 25: OTA READMETADATABUFFER (command)

Subcommand Command payload Response payload

0x0F [0x0F, offset: u16,
length: u8]

[0x0F, offset: u16, length: u8,
data: [u8]]

33

8.8.11 ACTIVATEMETADATAMAGICWORD
This command enables special actions on reset regarding the firmware. The SMK900 firmware up‐
date magic word is 0x42424242, this means that after writing this command, the firmware on this
node will be updated on node reset from the flash content.

For this command to succeed, all CRC checks must have been done.

Table 26: OTA ACTIVATEMETADATAMAGICWORD (command)

Subcommand Command payload Response payload

0x0E [0x0E, magicWord:
u32]

[0x0E, magicWord: u32, success:
bool]

8.9 TxReduxData
Special data send using the broadcast cycle redux phase. This command is only available for nodes
(redux phase utilization is forbidden by gateway), and only if the dynamic configuration of the net‐
work has the redux phase enabled (see section 2.2 for more details). Note that no reply is tied to
this command.

Table 27: TxReduxData (command)

Byte offset Field Description

0x00 Start‐of‐Packet 0xFB = Indicates start of protocol formatted message

0x01 ‐ 0x02 Length 0x?? 0x?? = Number of bytes in message following this byte
(Little‐Endian)

0x03 Packet Type 0x07 = TxReduxData

0x04 ‐ … Payload Up to 20 bytes of data at 50kbit/sec 72 bytes of data at
100kbit/sec

8.10 RxDataPacket
Event message from transceiver to its host when it received a regular packet sent via TxLongData.
Note that this packet type is also used as a special Broadcast End Marker, in which case the packet
byte stream is hard‐coded to the following: [0xFB 0x03 0x00 0x26 0xFF 0x00], a marker that is sent
at the end of every broadcast cycle, before any air command is processed (and only if configuration
register in RAM bank enableNotificationFlagsMask, flag CLOSEBROADCAST_bm, is set; see section
7.3 for details).

8.11 RxReduxDataPacket
Event message from transceiver to host when it receives a packet in the broadcast cycle redux phase.
This is only available if the current dynamic configuration of the network allows a redux phase.

34

Table 28: TxDataPacket (event)

Byte offset Field Description

0x00 Start‐of‐Packet 0xFB = Indicates start of protocol formatted message

0x01 ‐ 0x02 Length 0x?? 0x?? = Number of bytes in message following this byte
(Little‐Endian)

0x03 Packet Type 0x26 = RxDataPacket

0x04 Broadcast
Phase ID

0x00‐0x03 = Received packet Broadcast Phase ID; 0xFF =
Broadcast End Marker (special case)

0x05 RSSI 0x00‐0xFF = Received packet strength (for regular received
packet); this value is forced to 0x00 if Broadcast Phase ID is
0xFF (Broadcast End Marker)

0x06 ‐ … Payload Up to 20 bytes of data at 50kbit/sec 72 bytes of data at
100kbit/sec

Table 29: RxReduxDataPacket (event)

Byte offset Field Description

0x00 Start‐of‐Packet 0xFB = Indicates start of protocol formatted message

0x01 ‐ 0x02 Length 0x?? 0x?? = Number of bytes in message following this byte
(Little‐Endian)

0x03 Packet Type 0x28 = RxReduxDataPacket

0x04 RSSI 0x00‐0xFF = Received packet strength

0x05 ‐ … Payload Up to 20 bytes of data at 50kbit/sec 72 bytes of data at
100kbit/sec

8.12 RXBcastInSniffedDataPacket
Event message from a node (exclusively) transceiver to host, when it receives a sniffed packet trans‐
mitted from another node towards the network gateway via command TxLongData. This message
is only sent to transceiver host if the proper transceiver configuration register flag is set (RAM bank
register sniffFlagsMask, flag BROADCASTIN_bm, see section 7.3).

Table 30: RxBcastInSniffedDataPacket (event)

Byte offset Field Description

0x00 Start‐of‐Packet 0xFB = Indicates start of protocol formatted message

0x01 ‐ 0x02 Length 0x?? 0x?? = Number of bytes in message following this byte
(Little‐Endian)

0x03 Packet Type 0x29 = RXBcastInSniffedDataPacket

0x04 Broadcast
Phase ID

0x00‐0x03 = Received packet Broadcast Phase ID

0x05 RSSI 0x00‐0xFF = Received packet strength

0x06 ‐ … Payload Up to 20 bytes of data at 50kbit/sec 72 bytes of data at
100kbit/sec

35

8.13 BcastUART2TrxBufferDone
Event message sent from transceiver to host after the UART transmit buffer is cleared and its corre‐
sponding data is transferred in RF packet buffers, ready to be transmitted out. This marker is always
sent at the beginning of a broadcast, even if the UART transmit buffer is clear (only if configuration
register in RAM bank enableNotificationFlagsMask, flag ENDUARTTRANSFERTOTXBUFFER_bm,
is set; see section 7.3 for details).

Table 31: BcastUART2TrxBufferDone (event)

Byte offset Field Description

0x00 Start‐of‐Packet 0xFB = Indicates start of protocol formatted message

0x01 ‐ 0x02 Length 0x01 0x00 = Number of bytes in message following this
byte (Little‐Endian)

0x03 Packet Type 0x2A = BcastUART2TrxBufferDone

8.14 RXBcastInSnifferAirDataPacket
Event message from a node (exclusively) transceiver to host, when it receives a sniffed packet trans‐
mitted from another node towards the network gateway which contains an air command reply of
any kind (i.e. an air command reply sent back by a node after having received an air command
sent by a gateway, the latter having sent it via command TXAirCmdWrapper). This message is only
sent to transceiver host if the proper transceiver configuration register flag is set (RAM bank reg‐
ister sniffFlagsMask, flag BROADCASTIN_bm, see section 7.3). Also note that the entirety of the
raw wrapped air command answer, including the sender node address bytes (if applicable), can be
found within the payload of this message.

Table 32: RXBcastInSnifferAirDataPacket (event)

Byte offset Field Description

0x00 Start‐of‐Packet 0xFB = Indicates start of protocol formatted message

0x01 ‐ 0x02 Length 0x?? 0x?? = Number of bytes in message following this byte
(Little‐Endian)

0x03 Packet Type 0x2B = RXBcastInSnifferAirDataPacket

0x04 Broadcast
Phase ID

0x00‐0x03 = Received packet Broadcast Phase ID

0x05 RSSI 0x00‐0xFF = Received packet strength

0x06 ‐ … Payload Up to 20 bytes of data at 50kbit/sec 72 bytes of data at
100kbit/sec

8.15 RXBcastOutSnifferAirCmd
Event message from a node (exclusively) transceiver to host, when it receives a sniffed packet trans‐
mitted from a gateway towards another node which contains an air command of any kind (sent via
TXAirCmdWrapper). This message is only sent to transceiver host if the proper transceiver config‐
uration register flag is set (RAM bank register sniffFlagsMask, flag BROADCASTOUT_AIR_bm, see
section 7.3). Also note that the entirety of the raw wrapped air command, including the requested
node address bytes (if applicable, and possibly for multiple nodes), can be found within the payload

36

of this message. Note that a supplementary parameter (Phase In Count) is provided in this message
in order for the recipient to know how many MAC addresses are in said air command, which di‐
rectly correlates with the current number of Broadcast In Phases of the network (parameter BI, see
section 2.2).

Note that although is in effect theoretically possible for a node to extrapolate this information by
retrieving the network dynamic configuration parameters, in order to get parameter BI instead on
relying on the Phase In Count parameter of this event message, it is not a recommended practice.
Indeed, it would be possible for a network to dynamically change its current dynamic configuration
after the sniffed message arrives, but before the request for fetching the dynamic configuration is
sent (by reading RAM bank register dyn; see section 7.3), thereby creating the low‐level equivalent
of a ”concurrency atomicity problem”. Thus, the Phase In Count parameter is provided to user in
order to ensure atomicity when reading the current Broadcast In Phase count within the dynamic
configuration parameters of the mesh network.

Table 33: RXBcastOutSnifferAirCmd (event)

Byte offset Field Description

0x00 Start‐of‐Packet 0xFB = Indicates start of protocol formatted message

0x01 ‐ 0x02 Length 0x?? 0x?? = Number of bytes in message following this byte
(Little‐Endian)

0x03 Packet Type 0x2C = RXBcastOutSnifferAirCmd

0x04 Broadcast
Phase ID

0x00‐0x03 = Received packet Broadcast Phase ID

0x05 RSSI 0x00‐0xFF = Received packet strength

0x06 Phase In Count 0x01‐0x04 = Number of Broadcast In Phases at sniffed
message reception

0x07 ‐ … Payload Up to 20 bytes of data at 50kbit/sec 72 bytes of data at
100kbit/sec

8.16 DynConfig
This is the main command for changing the dynamic configuration of a network, and can only be sent
to a transceiver set as a gateway. After this command is sent, a reply will acknowledge the change
request immediately if said request is valid (via a DynConfigReply message), and those changes will
be applied to the gateway mesh configuration at the beginning of the next broadcast cycle (see
section 2.2 for details about broadcast cycles, and for details about the DYN parameters), or will
return an error event message if the set of DYN parameters is deemed invalid. Note that the new
set of DYN parameters are then subsequently flooded to the whole of the mesh network via a
gateway broadcast out packet.

8.17 DynConfigReply
This is the reply message corresponding to gateway command DynConfig, and is sent from gateway
transceiver back to its host if the requested DYN configuration changes are deemed valid.

37

38

Table 34: DynConfig (command)

Byte offset Field Description

0x00 Start‐of‐Packet 0xFB = Indicates start of protocol formatted message

0x01 ‐ 0x02 Length 0x07 0x00 = Number of bytes in message following this
byte (Little‐Endian)

0x03 Packet Type 0x0A = DynConfig

0x04 Phase Out
Count

0x01‐0x04 = Number of Broadcast Out Phases

0x05 Phase In Count 0x01‐0x04 = Number of Broadcast In Phases

0x06 NumSeq 0x01‐0x1F = Number of sequence slots (repeater hop count
for mesh network)

0x07 NumSeqRedux 0x01 = Numer of sequence slots for redux phase (for the
current firmware version only 1 value is supported)

0x08 ReduxEnable‐
Flag

0x00‐0x01 = Redux phase enable flag

0x09 DutyCycleDiv 0x01 0x02 0x05 0x0A 0x014 0x28 0x50 = Duty Cycle
inverted

Table 35: DynConfigReply (reply)

Byte offset Field Description

0x00 Start‐of‐Packet 0xFB = Indicates start of protocol formatted message

0x01 ‐ 0x02 Length 0x01 0x00 = Number of bytes in message following this
byte (Little‐Endian)

0x03 Packet Type 0x1A = DynConfigReply

8.18 GetRegister
This is a configuration parameter register read command, in a certain register bank, and with a given
offset (see section 7.3 for specific configuration register details). Note that the correct expected
register size has to be provided as an argument, as the transceiver will use this to verify the validity
of the GetRegister command (in case of an invalid size, it will return an error event message). This
command can be wrapped as an air command.

Table 36: GetRegister (command)

Byte offset Field Description

0x00 Start‐of‐Packet 0xFB = Indicates start of protocol formatted message

0x01 ‐ 0x02 Length 0x04 0x00 = Number of bytes in message following this
byte (Little‐Endian)

0x03 Packet Type 0x03 = GetRegister

0x04 Register Type 0x00=RAMBUF 0x01=RAM 0x02=EEPROM (configuration
register bank selector)

0x05 Register Offset 0x00‐0x14 = Configuration register offset in register bank

0x06 Register Size 0x01‐0x08 = Requested configuration register size

8.19 GetRegisterReply
This is the reply corresponding to GetRegister command. An equivalent air command reply wrapped
accordingly can be sent out from a node back to its gateway if the latter sent an air command with
GetRegister as the wrapped command.

Table 37: GetRegisterReply (reply)

Byte offset Field Description

0x00 Start‐of‐Packet 0xFB = Indicates start of protocol formatted message

0x01 ‐ 0x02 Length (0x04 + N) 0x00 = Number of bytes in message following
this byte (Little‐Endian) where N is the Register Size
parameter (see below)

0x03 Packet Type 0x13 = GetRegisterReply

0x04 Register Type 0x00=RAMBUF 0x01=RAM 0x02=EEPROM (configuration
register bank selector)

0x05 Register Offset 0x00‐0x14 = Configuration register offset in register bank

0x06 Register Size 0x01‐0x08 = Returned configuration register size (N)

0x07 ‐ … Register
content

From 1 to 8 bytes of data (byte count is N): this is the
content of register being read with variables or structures
being stored in a Little‐Endian manner

8.20 SetRegister
This is a configuration parameter register write command, in a certain register bank, and with a
given offset (see section 7.3 for specific configuration register details; note that some registers are
read‐only). The correct expected register size has to be provided as an argument, as the transceiver

39

will use this to verify the validity of the SetRegister command (in case of an invalid size, it will return
an error event message). This command can be wrapped as an air command.

Table 38: SetRegister (command)

Byte offset Field Description

0x00 Start‐of‐Packet 0xFB = Indicates start of protocol formatted message

0x01 ‐ 0x02 Length (0x04 + N) 0x00 = Number of bytes in message following
this byte (Little‐Endian) where N is the Register Size
parameter (see below)

0x03 Packet Type 0x04 = SetRegister

0x04 Register Type 0x00=RAMBUF (direct register writes disallowed for RAM
and EEPROM banks)

0x05 Register Offset 0x00‐0x14 = Configuration register offset in register bank

0x06 Register Size 0x01‐0x08 = Configuration register size (N) of register to be
written

0x07 ‐ … Register
content

From 1 to 8 bytes of data (byte count is N): this is the
content of register being modified with variables or
structures being stored in a Little‐Endian manner

8.21 SetRegisterReply
This is the reply corresponding to SetRegister command. An equivalent air command reply wrapped
accordingly can be sent out from a node back to its gateway if the latter sent an air command with
SetRegister as the wrapped command.

Table 39: SetRegisterReply (reply)

Byte offset Field Description

0x00 Start‐of‐Packet 0xFB = Indicates start of protocol formatted message

0x01 ‐ 0x02 Length 0x01 0x00 = Number of bytes in message following this
byte (Little‐Endian)

0x03 Packet Type 0x14 = SetRegisterReply

8.22 TransferConfig
This is a command for transferring content from one register bank to another bank (see section 7.3
for the definition of register banks), or to reset node to factory settings. Note that a factory reset
might set the node address to another address than its current address, in which case the node
address should be changed to its desired value immediately after a factory reset operation (either
via local SetRegister UART command writing new values in RAMBUF bank register addressBuf as
defined in section 7.3, followed by a TransferConfig command for RAMBUF to EEPROM, followed
by a device reset, or via the equivalent VM execution commands, which are defined in section 5).
This command can be wrapped as an air command.

40

Table 40: TransferConfig (command)

Byte offset Field Description

0x00 Start‐of‐Packet 0xFB = Indicates start of protocol formatted message

0x01 ‐ 0x02 Length 0x02 0x00 = Number of bytes in message following this
byte (Little‐Endian)

0x03 Packet Type 0x0B = TransferConfig

0x04 Transfer Type 0x00 = RAM‐>TMP 0x01 = TMP‐>RAM 0x02 =
TMP‐>EEPROM 0x03 = RESET TO FACTORY DEFAULTS

8.23 TransferConfigReply
This is the reply corresponding to TransferConfig command. An equivalent air command replywrapped
accordingly can be sent out from a node back to its gateway if the latter sent an air command with
TransferConfig as the wrapped command.

Table 41: TransferConfigReply (reply)

Byte offset Field Description

0x00 Start‐of‐Packet 0xFB = Indicates start of protocol formatted message

0x01 ‐ 0x02 Length 0x01 0x00 = Number of bytes in message following this
byte (Little‐Endian)

0x03 Packet Type 0x1B = TransferConfigReply

8.24 TXAirCmdWrapper
This command is used to wrap a local serial device command, so that it can be rerouted from a gate‐
way to a given set of nodes, and executed there. This is useful when one needs to send a command
to a node, without local access to its serial communication bus, in which case the command can be
packaged within a TXAirCmdWrapper command, then sent via serial communication bus to a gate‐
way transceiver controlling the network which is connected to the node in question. Said gateway
then reroutes that command to the desired destination node(s) via the mesh network. The node(s)
then read that command, as if it received it via its own local serial communication bus, except for
the fact that all air commands are read by the node(s) only after a broadcast cycle ended, just before
they go into sleep mode (if sleep mode is enabled for any particular node).

Any node which executes any command is usually expected to generate a reply. Because an air com‐
mand is received via the mesh network, the corresponding reply is not transmitted over the serial
bus to a host locally connected to that node, but is instead transmitted over the mesh network back
to the gateway, which then proceeds to wrap the reply received in a RXAirCmdWrapper message.
That wrapped reply message is then sent out to the host connected to that gateway transceiver.

Therefore, this command is only available for transceivers configured as gateways. If a node wants
to sniff those special air command packets sent out from a gateway, then it needs to use the event
marker RXBcastOutSnifferAirCmd (with proper concomitant configuration register flag set).

For a diagram detailing the whole flow of information and processing events related to it for air
commands and the corresponding air replies, see section 7.2.23.

41

42

Table 42: TXAirCmdWrapper (command wrapping another command for remoting)

Byte offset Field Description

0x00 Start‐of‐Packet 0xFB = Indicates start of protocol formatted message

0x01 ‐ 0x02 Length 0x?? 0x?? = Number of bytes in message following this
byte (Little‐Endian)

0x03 Packet Type 0x0C = TXAirCmdWrapper

0x04 Broadcast
Phase ID

0x00‐0x03 = Received packet Broadcast Phase ID

0x05 Wrapped
Packet Type

IF using MULTI‐PHASE mode:
0x0F = multiphase mode
ELSE:
0x?? (not 0x0F) = any single command packet type byte
for any command compatible with air command
wrapping

0x06 ‐
(0x06+N+1)

Destination
MAC Address
List

IF using MULTI‐PHASE mode:
N = M*BI bytes, which is the concatenated series of M
MAC address bytes for each node being queried (total
number of nodes queried is BI, i.e. corresponds to the
Broadcast In Phase count of the network)
ELSE:
N = M bytes, which are the M MAC address bytes for
the single node being queried

(0x06+N) ‐ ... Wrapped
Partial Payload

IF using MULTI‐PHASE mode:
Wrapped command message, with Start‐of‐Packet and
Length word removed
ELSE:
Wrapped command message, with Start‐of‐Packet and
Length word and Packet Type byte of that command
removed

8.25 RXAirCommandWrapper
This event message is a wrapper message for any replies from a node transmitted back to the
gateway of a given mesh network (instead of being transmitted to a host locally connected to that
node via serial communication bus), and thus is the corresponding message to TXAirCmdWrapper
(see section 7.2.22 for details).

This reply message is only applicable for transceivers configured as gateways. If a node needs to sniff
another node answer to an air command previously sent by gateway, then that node needs to use
the event marker RXBcastInSnifferAirDataPacket (with proper concomitant configuration register
flag set).

Table 43: RXAirCmdWrapper (event wrapping remote reply)

Byte offset Field Description

0x00 Start‐of‐Packet 0xFB = Indicates start of protocol formatted message

0x01 ‐ 0x02 Length 0x?? 0x?? = Number of bytes in message following this
byte (Little‐Endian)

0x03 Packet Type 0x2D = RXAirCmdWrapper

0x04 Broadcast
Phase ID

0x00‐0x03 = Received packet Broadcast Phase ID

0x05 RSSI 0x00‐0xFF = Received packet strength

0x06 Wrapped
Packet Type

IF Packet Type byte of corresponding air command has
its bit 7 set (i.e. if bit‐masking that byte with 0x80 yields
a non‐zero result), then:
0x??, which is the reply Packet Type byte matching said
air command, with its bit 7 set also
ELSE:
0x??, which is the regular reply Packet Type byte
matching said air command

0x07 ‐
(0x07+N+1)

Node MAC
Address

IF Packet Type byte of corresponding air command has
its bit 7 set (i.e. if bit‐masking that byte with 0x80 yields
a non‐zero result), then:
N = M bytes, which are the M MAC address bytes for
the node answering said air command
ELSE:
N = 0 bytes

(0x07+N) Wrapped
Partial Payload

Wrapped message, with Start‐of‐Packet and Length
word and Wrapped Packet Type byte of that wrapped
reply message removed

9 Configuration Registers
There are three configuration parameter banks: the TMP bank (also called RAMBUF), RAM bank,
and EEPROM bank. The EEPROM allows a configuration that must stick through radio module reset
or power‐down to be stored in non‐volatile memory. The RAM bank is copied from the EEPROM
bank at boot‐up, and is the main bank used by the mesh controller itself for its operations within its
mesh network.

To control the mesh configuration registers, the SMK900 must be in protocol‐formated mode. All
three banks can be read via GetRegister command. Write operations (SetRegister) are only allowed
to the TMP bank, and only to those registers. The proper procedure to change mesh configuration
register, containing critical parameters such as the NwkID or the HopTable are changed, is as follows:

43

— Set registers in TMP bank to the desired value (using SetRegister command);
— Transfer TMP bank to EEPROM bank (using TransferConfig command);
— Reset the module to activate the changes into RAM bank (using DeviceReset command).

Here is a table summarizing the configuration parameter registers available to the user:

Table 44: Register Table

Re
gis
ter
off
se
t

Siz
e (
by
tes
)

Re
ad
‐O
nly

Fla
g

Re
gis
ter
na
me

Su
b‐r
eg
ist
er
na
me

Su
b‐r
eg
ist
er

loc
ati
on
bit
off
se
t

Su
b‐r
eg
ist
er
ran
ge

De
fau
lt v
alu
e

Description

0 8 addressBuf ‐ ‐ N/A MAC address buffer
1 1 addressBufLen ‐ ‐ 3 MAC address buffer length
2 6 R dyn BO 0 1..4 1 Dynamic configuration Broadcast Out

Phase Count
BI 8 1..4 1 Dynamic configuration Broadcast In Phase

Count
NH 16 2..31 5 Dynamic configuration Number of Hops
NR 24 1 1 Dynamic configuration Number of Hops

for Redux Phase
R 32 0..1 0 Dynamic configuration Redux Enable Flag
D 40 1 2 5 10 20

40 80
10 Dynamic configuration Inverted Duty Cy‐

cle
3 1 nwkId ‐ ‐ 0..7 0 Network ID
4 1 hopTable ‐ ‐ 0..5 0 FHSS Hop Table selection
5 1 power ‐ ‐ 0..1 1 Power selection (0=LO 1=HI)
6 2 uart_bsel ‐ ‐ 1..65535 0x93D7 UART baudrate selector. See Serial Inter‐

face section for more details.
7 1 nodeType ‐ ‐ 0..1 1 Node Type (0=GATEWAY 1=NODE)
8 1 sleepMode ‐ ‐ 0..2 2 Sleep mode (0=IDLE 1=RC 2=EXTERNAL)
9 1 extSlpCtrlI2CAddress ‐ ‐ 0..127 0x48 Ext Slp Ctrl I2C address
10 2 R extSlpCorrection Fac‐

tor
‐ ‐ 0..65535 N/A Correction Factor (current value)

11 1 presetRF ‐ ‐ 0..1 0 Preset RF configuration set (0=PRE‐
SET1_50K(default) 1=PRESET2_100K)

12 8 cryptoData_qWord0 ‐ ‐ 0..264 − 1 0 Data encryption key first 8 bytes Little En‐
dian

13 8 cryptoData_qWord1 ‐ ‐ 0..264 − 1 0 Data encryption key last 8 bytes Little En‐
dian

14 7 i2c delayClockLen 0 0..65535 16 I2C delay for clock generation. The I2C
max clock speed is: MaxSpeed[MHz] = 1
/ (2 + 0.5*(delayClockLen)). Thus a value
of 16 yields a 100KHz max speed and a
value of 96 yields a 20KHz max speed. Use
lower clock values when using higher value
resistor pull‐ups or when the capacitance
charge on the I2C pins is higher than usual.

srcPort 16 0 0 I2C source port (hard‐coded to the I2C
pins assigned to module for the current
firmware revision)

pullupEnabled
Flag

24 0..1 1 I2C internal weak pull‐up on I2C pins (0 =
disabled 1 = enabled)

powerBus
Mode

32 0..3 1 I2C Power Bus mode. Values possible
are: 0 = DISABLED (hi‐impedance) 1 =
NORMAL (pin state toggling between hi‐
impedance and VCC connection depend‐
ing on VM execution and I2C commands ‐
on if I2C command executed and togglable
via VM commands) 2 = ALWAYSOFF (pin
connected to ground) 3 = ALWAYSON (pin
connected to VCC)

powerBus_
powerUp
Delay_msec

40 0..65535 0 I2C additional power‐up delay for stabiliza‐
tion purpose (if needed)

44

45

Table 45: Register Table (continued)

Re
gis
ter
off
se
t

Siz
e (
by
tes
)

Re
ad
‐O
nly

Fla
g

Re
gis
ter
na
me

Su
b‐r
eg
ist
er
na
me

Su
b‐r
eg
ist
er

loc
ati
on
bit
off
se
t

Su
b‐r
eg
ist
er
ran
ge

De
fau
lt v
alu
e

Description

15 1 meshExecActiveFlag SERIAL_bm 0 0..1 1 VM Execution Trigger Enable Flag On Se‐
rial Cmd Receive Event

AIRCMD_bm 1 0..1 1 VM Execution Trigger Enable Flag On Air‐
Cmd Receive Event

BOOTUP_bm 2 0..1 1 VM Execution Trigger Enable Flag On
Boot‐Up Event

ENTER SEEK‐
MODE_bm

3 0..1 0 VM Execution Trigger Enable Flag On En‐
ter Seek Mode Event

LEAVE SEEK‐
MODE_bm

4 0..1 0 VM Execution Trigger Enable Flag On
Leave Seek Mode Event

ENTER BROAD‐
CAST_bm

5 0..1 0 VM Execution Trigger Enable Flag On En‐
ter Broadcast Event

LEAVE BROAD‐
CAST_bm

6 0..1 0 VM Execution Trigger Enable Flag On
Leave Broadcast Event

ENABLEVM
FLASHOP_bm

7 0..1 1 Enable VM Flash Operations Flag

16 1 sniffFlagsMask BROADCASTIN
_bm

0 0..1 0 Enable node sniffing of broadcast in phase
messages from other nodes to gateway

BROADCASTOUT
_ AIR_bm

1 0..1 0 Enable node sniffing of broadcast out air
commands to specific MAC addresses that
do not match address of said sniffer node

17 1 enableNotification
FlagsMask

CLOSE BROAD‐
CAST _bm

0 0..1 0 Enable broadcast end close event message
report (via special RxDataPacket event
message with Broadcast phase ID = 0xFF)

ENDUART
TRANSFERTO
TXBUFFER_bm

1 0..1 0 Enable uart transfer to TX buffer
event message report (via BcastU‐
ART2TrxBufferDone event message)

18 8 gpStorage_
qWord0

‐ ‐ 0..264 − 1 0 General purpose storage buffer bytes [0 7]

19 8 gpStorage_
qWord1

‐ ‐ 0..264 − 1 0 General purpose storage buffer bytes [8
15]

20 8 gpStorage_
qWord2

‐ ‐ 0..264 − 1 0 General purpose storage buffer bytes [16
23]

21 1 versionBundle.
version

‐ ‐ 0..255 1 Firmware version of the module.

22 8 cryptoCfg 0..264 − 1 0
23 cryptoCfg 0..264 − 1 0
24 R versionBundle.

subVersion
0..255 Sub version of the firmware.

25 R versionBundle. db‐
Version

0..255 Database version of the firmware

26 R versionBundle.
partNumber
Version

Hardware part number?

128 8 index 0..264 − 1 0 Index meta‐register
137 2 valueRFLinks 0..216 − 1 N/A Indexed read‐only register readout for var‐

ious RF health parameters

9.1 Registers Description

9.1.1 addressBuf
holds the address bytes for the transceiver. This buffer is always defined as having 8 bytes, and the
address is held in a Little‐Endian format. The number of bytes used to form the effective address
is defined in subsequent register addressBufLen (register offset 0x01) from the left. For example
an addressBuf = [0x08 0x15 0x02 0x04 0x00 0x00 0x00 0x00] with addressBufLen = 3 will yield a
3‐byte MAC address of 2.21.8 (if one uses a 4‐byte MAC convention, this can also be written as
0.2.21.8).

9.1.2 addressBufLen
holds the effective number of address bytes, as described above.

9.1.3 dyn
holds the dynamic configuration of the transceiver. This is the set of 6 parameters that determine
the configuration of the broadcast cycles and sleep intervals of a given mesh network, as described
in dynamic parameters section. This register is read‐only, because only a transceiver configured as a
gateway is allowed to change the dynamic configuration of the whole network it is attached to (and
this is not done via asynchronous writing to the dyn register in the RAM bank directly, but is rather
accomplished using a special command, which schedules a change action of the dyn parameters
in the RAM bank in such a way that the change becomes effective at the beginning of the next
broadcast cycle).

9.1.4 nwkID
holds the network ID of the network that the transceiver is allowed to receive and transmit to. This is
used as a basic packet filter in such a way that any network using the same frequency hop sequence
than the transceiver, but with a different configured network ID, will be effectively invisible to said
transceiver. Range of valid nwkID is from 0 to 7 (i.e. 8 different possible values). A given network
access key can be uniquely configured using a given set of 4 configuration registers: nwkID, hopTable,
cryptoData_qWord0, and cryptoData_qWord1.

9.1.5 hopTable
holds the current hop sequence of the network intended to be connected to the transceiver. This
variable ranges from 0 to 5 (i.e. 6 different possible values). Combinedwith nwkID, cryptoData_qWord0
and cryptoData_qWord1, this defines a unique network access key. Note that if one discounts the
use of encryption keys, then it would be possible to combine hopTable and nwkID in such a way that
the combined number becomes an extended ”channel number”. For instance, one could define an
arbitrary configuration variable CHANNEL with the following mapping: hopTable = CHANNEL % 6 +
HOPTABLE_OFFSET, and nwkID = CHANNEL % 8 + NWKID_OFFSET, where HOPTABLE_OFFSET
and NWKID_OFFSET are arbitrarily chosen numbers. This would extend the maximum number of
channels to effective.

46

9.1.6 power
holds two different power presets, one at high power (1 = HI: 158mW) and the other at low power
(0 = LO: 40mW).

9.1.7 uart_bsel
baud rate selector register for the main UART communication bus. See section 3.0 for details on
how to configure this register.

9.1.8 nodeType
defines the type of transceiver, which can either be a gateway (nodeType = 0) or an individual node
of the mesh (nodeType = 1).

9.1.9 sleepMode
selects the active sleep clock in use with the transceiver. Idle mode (sleepMode = 0) is a set‐
ting where only the internal fast clock of the mesh controller is employed as the main sleep time
base. WARNING: this setting is the highest power consumption mode, and is mainly suitable for
transceivers wired on the electrical grid in some way, with high power availability off‐grid. Examples
include typically transceivers configured as gateways. RC mode (sleepMode = 1) is a setting where
a lower power RC clock is used as the main sleep clock... This mode uses the higher‐speed clock
in order to recalibrate the RC clock operation from broadcast cycle to broadcast cycle, in order
to compensate for clock frequency variation due to environmental changes such as temperature.
Note that even with this compensation in place, it is not suggested to use this sleep mode for sleep
intervals between broadcast cycles higher than 2 seconds. Finally, external sleep controller mode
(sleepMode = 2) allows the use of a dedicated Smartrek external sleep controller chip in I2C slave
mode in order to retro‐fit ultra‐low power consumption capabilities for longer sleep period of times
(> 2 seconds, up to about 20 seconds). This chip is to be connected to the main transceiver using
the transceiver I2C lines. Pull‐up resistor values suggested for that I2C bus is 2 kOhms or less, and
powered with an input voltage between 3.3 and 5.5 V. See section 6.3 for more details on how to
integrate the external sleep controller chip.

9.1.10 extSlpCtrlI2CAddress
external sleep controller I2C address, if external sleep controller is selected as the main sleepMode
mode of operation. Default factory‐configured I2C address is 0x48 (note that the external sleep
controller itself can have its own internal address changed via I2C command (see section 6.3 for
more details).

9.1.11 extSlpCorrectionFactor
this is a read‐only register indicating the current correction factor compensating for the external
sleep controller crystal drift (see section 6.3 for more details).

9.1.12 presetRF
this is the current RF parameter preset for the transceiver (default value is presetRF = 0) and corre‐
sponds to a RF bitrate of 50 kbit/sec. Currently, it is the only suggested preset, and for this preset,

47

the data payload of every packet is limited to 20 bytes. For the presetRF = 1 set of parameters, it
is a (beta‐stage) preset for 100 kbit/sec mode of operation with a somewhat larger maximum data
payload size (72 bytes).

9.1.13 cryptoData_qWord0
AES‐128 16‐byte key least significant 8 bytes (Little‐Endian). This register, combinedwith its counter‐
part cryptoData_qWord1, nwkId and hopTable, constitutes the set of registers for a given network
access key.

9.1.14 i2c
register set for I2C bus configuration parameters. The following sub‐registers are defined:

— delayClockLen ‐ I2C maximum clock speed parameter, which defines the minimum duration
of an I2C bit in the following fashion: MaxSpeed[MHz] = 1/(2 + 0.5(delayClockLen));

— srcPort ‐ I2C port selector (must be set to 0 in the current firmware revision);
— pullupEnabledFlag ‐ enables or disables the internal resistor pull‐ups for I2C port (those are

very weak >10kOhm pull‐ups, and will not satisfy the I2C rise‐time specifications by default);
— powerBusMode ‐ selects the operation mode for I2C Power Pin (module pin #4, see section

6.1). Values possible are: 0 = DISABLED (hi‐impedance), 1 = NORMAL (pin state toggling be‐
tween hi‐impedance and VCC connection depending on VM execution and I2C commands ‐
on if I2C command executed, and togglable via VM commands), 2 = ALWAYSOFF (pin con‐
nected to ground), 3 = ALWAYSON (pin connected to VCC). Note about NORMAL mode:
every time the I2C bus is used in order for the mesh controller to interact with an external
sleep controller, the I2C Power Pin will be connected to VCC temporarily, then shut down
and set to high impedance when that transaction is done. For user‐customized control of this
pin, see section 5 for details;

— powerBus_powerUpDelay_msec ‐ delay automatically applied after the I2C Power Pin (module
pin #4, see section 6.1) is auto‐connected to VCC, in milliseconds, for hardware stabilization
purposes.

9.1.15 meshExecActiveFlag
bit‐mask register in order to set up event trigger points that are to activate a VM user‐made program.
All bit flags are considered enabled when their binary value is 1, and disabled when their binary value
is 0. The bit‐mask constants corresponding to each trigger point as defined in section 5 are:

9.1.16 sniffFlagsMask
flags which, when activated, enable sniffing of some types of packets, either from a gateway to
another node, or vice versa. The concept of sniffing is only relevant when using UART command
mode, because transparent mode acts as a dumb point‐to‐multipoint serial link between all the
transceivers. Moreover, this mode is only relevant for air commands when considering packets out‐
going from a gateway to nodes, because only this mode uses automatic packet filtering at the des‐
tination transceiver site using the requested MAC address given by the gateway. Indeed, all regular
long packet transmissions out in commandmode are considered as being whole network broadcasts,
and are received by default by all node transceivers in the mesh network. Here is a description table
of the relevant flags:

48

49

Table 46: MeshExecActiveFlag Bit‐Mask Register

Constant name Bit position Bit‐mask value Description

SERIAL_bm 0 0x01 Activate virtual machine when a serial command for VM Exec has been
received locally (see section 5 for details) via the UART communication
bus. In this case the VM command is executed on the spot when the
serial command is received. Note that if the VM is executed during an
active broadcast cycle the virtual machine engine will always yield to
the mesh protocol controller software when the latter needs to execute
timing‐critical operations for synchronizing the transceiver with its
mesh network as for any local serial commands (see section 3.0 for
details).

AIRCMD_bm 1 0x02 Activate virtual machine in a node when an air command for VM Exec
(i.e. command wrapped with an Air Cmd. Wrapper) from a gateway has
been received via a gateway broadcast out phase (see section 5 for
details). In this case the VM execution command is executed at the end
of the broadcast cycle in which the air command was received like any
other air command requests. Note that LEAVEBROADCAST_bm event
marker will be activated before said VM will be executed if that event
marker is enabled.

BOOTUP_bm 2 0x04 Activate virtual machine when the main boot sequence and
configuration initialization of the transceiver finished executing.

ENTERSEEK‐
MODE_bm

3 0x08 Activate virtual machine when a node goes into seek mode (i.e.
searches for an existing mesh network to latch itself onto).

LEAVESEEK‐
MODE_bm

4 0x10 Activate virtual machine when a node leaves seek mode (i.e. just found
an existing mesh network to latch itself onto).

ENTER‐
BROAD‐
CAST_bm

5 0x20 Activate virtual machine when a transceiver (gateway or node) starts a
broadcast cycle (i.e. leaves sleep/idle state in between broadcast
cycles).

LEAVEBROAD‐
CAST_bm

6 0x40 Activate virtual machine when a transceiver (gateway or node)
broadcast cycle just ended (i.e. about to go to sleep). Note that this
event if enabled will be always triggered before any pending VM
execution request via air command (see above AIRCMD_bm) will be
executed.

ENABLEVM‐
FLASHOP_bm

7 0x80 Enable VM flash operations. This needs to be enabled for VM
programming operations to be available and thus acts as a safety lock
flag.

Table 47: Relevant Sniff Flags

Constant name Bit position Bit‐mask value Description

BROAD‐
CASTIN_bm

0 0x01 Enable node sniffing of broadcast in phase messages from other nodes
to gateway. All broadcast in that was sent in command mode by
another node be it an air command or a regular packet transmission will
be read by the sniffing transceiver when this mode is activated.

BROAD‐
CASTOUT_AIR_bm

1 0x02 Enable node sniffing of broadcast out air commands to specific MAC
addresses that do not match address of said sniffer node. Note that this
mode only applies for air commands sent from a gateway out.

9.1.17 enableNotificationFlagsMask
flags enabling special notification UART messages for some useful events. Here is a description
table of the relevant flags:

Table 48: Flags Enabling Special Notification UART Messages

Constant name Bit pos‐ition Bit‐mask value Description

CLOSE‐
BROAD‐
CAST_bm

0 0x01 Enable broadcast end close event message report (via special
RxDataPacket event message with Broadcast phase ID = 0xFF). If this
is activated the following raw UART message will be sent from
transceiver to the host in order to mark the end of a broadcast (this
always occur before any air command is processed as explained in
section 5):

[0xFB 0x03 0x00 0x26 0xFF 0x00]

ENDUART‐
TRANSFER‐
TOTXBUFFER_bm

1 0x02 Enable UART transfer to TX buffer event message report (via
BcastUART2TrxBufferDone event message). This marker will be sent
from transceiver to the host in order to mark a transfer from internal
UART buffer of a message to the main RF packet buffers in which case
a new UART message can now be queued in the UART buffer. This
event occurs at the very beginning of every broadcast cycle and is
triggered even if no UART message is pending (in that case the byte
transfer count internally to the transceiver is zero but the transfer
event still occurs) The raw UART message sent to host for this event
marker is:

[0xFB 0x01 0x00 0x2A]

9.1.18 gpStorage_qWordx
gpStorage_qWord0, gpStorage_qWord1, gpStorage_qWord2 ‐ 8 byte sized general purpose registers,
that are usually employed as general storage space for a VM user program so that variables can
be carried over from a given VM execution instance to the next (see section 5 for more details).
Moreover, because those registers exist in both RAMBUF, RAM and EEPROM banks, the latter
(EEPROM) can be used as non‐volatile general purpose storage space for a given VM user program.

9.1.19 index
index ‐ 8 byte sized indexing meta‐register, employed to access or write to index‐enabled registers.
For instance, a given read‐only register could allow user to read out more than one configuration
or status parameter, depending on the value held by the index register.

9.1.20 valueRFLinks
valueRFLinks ‐ 2 byte sized index register, read‐only, which reads out health status of the end‐node.
The health status parameter being read out depends on the value currently held by the index register.
The following readouts are provided:

— Index 0: scaledAveragedRSSI ‐ Auto‐rescaled (not raw) and low‐pass filtered RSSI value (back‐
compatible with legacy SMK targets). This is the average RSSI value as seen by packets re‐
ceived by the end‐node itself, and thus this value can be polled remotely via gateway in order
to determine the approximate mesh network signal strengths at a given end‐node location;

— Index 1: averagedRSSI ‐ This is the non‐rescaled, but low‐pass filtered RSSI value (similar to
Index 0, but with no back‐compatibility);

— Index 2: hopX256 ‐ The current hop distance of the end‐node with respect to its gateway
(a.k.a. how many hops is needed to reach it), times 256. This is a low‐pass filtered value, in
order to stabilize the measurement against RF instantaneous variabilities;

50

— Index 3: hop ‐ The current hop distance of the end‐node with respect to its gateway (a.k.a.
how many hops is needed to reach it), times 1. This is a low‐pass filtered value, in order to
stabilize the measurement against RF instantaneous variabilities.

10 Developer Kit

10.1 Portia Adapter Board
The Portia Adapter Board is provided in the development kit in order to connect a Portia SMK900
radio module to a USB serial device such as a PC or laptop This is especially useful, when developing,
to monitor the mesh network, to generate/modify/upload a Virtual Machine firmware. Additionally,
the adapter board features a breadboard footprint compatible dual inline package (DIP). Note that
two 15 positions male headers with 100 mil spacing have to be soldered .

10.2 Arduino‐Compatible Shield
The Arduino‐compatible Shield can be used for fast prototyping by leveraging the extensive Arduino
library

11 Certification Information

SMK900 Certification

Smartrek Technologies Module

FCC ID: 2AP8V‐SMK900

IC: 24079‐SMK900

United State (FCC)

Note: This equipment has been tested and found to comply with the limits for a Class B digital
device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable
protection against harmful interference in a residential installation. This equipment generates,
uses and can radiate radio frequency energy and, if not installed and used in accordance with
the instructions, may cause harmful interference to radio communications. However, there
is no guarantee that interference will not occur in a particular installation. If this equipment
does cause harmful interference to radio or television reception, which can be determined by
turning the equipment off and on, the user is encouraged to try to correct the interference
by one or more of the following measures:

— Reorient or relocate the receiving antenna.
— Increase the separation between the equipment and receiver.
— Connect the equipment into an outlet on a circuit different from that to which the

receiver is connected.
— Consult the dealer or an experienced radio/TV technician for help.

FCCAntenna Gain Restriction andMPE Statement: The SMK900 radio has been designed to
operate with any dipole antenna of up to 3 dBi of gain. The antenna used for this transmitter

51

must be installed to provide a separation distance of at least 20 cm from all persons and must
not be co‐located or operating in conjunction with any other antenna or transmitter.

IMPORTANT: The SMK900Module has been certified by the FCC for use with other products
without any further certification (as per FCC section 2.1091). Modifications not expressly
approved by Smartrek Technologies could void the user’s authority to operate the equipment.

IMPORTANT: OEMs must test final product to comply with unintentional radiators (FCC sec‐
tion 15.107 and 15.109) before declaring compliance of their final product to Part 15 of the
FCC rules.

IMPORTANT: The RF module has been certified for remote and base radio applications. If the
module will be used for portable applications, please take note of the following instructions
the device must undergo SAR testing.

Warning!

OEM labeling requirements: As an Original Equipment Manufacturer (OEM) you must ensure
that FCC labeling requirements are met. You must include a clearly visible label on the outside
of the final product enclosure that displays the following content:

Contains FCC ID: 2AP8V‐SMK900 The enclosed device complies with Part 15 of the FCC
Rules. Operation is subject to the following two conditions: (i.) this device may not cause
harmful interference and (ii.) this device must accept any interference received, including
interference that may cause undesired operation.

Certification SMK900

Smartrek Technologies Module

FCC ID: 2AP8V‐SMK900

IC: 24079‐SMK900

États‐Unis (FCC)

Remarque :Cet équipement a été testé et déclaré conforme aux limites d’un appareil numérique
de classe B, conformément à la partie 15 des règlements de la FCC. Ces limites sont conçues
pour fournir une protection raisonnable contre les interférences nuisibles dans une installation
résidentielle. Cet équipement génère, utilise et peut émettre de l’énergie radiofréquence et, s’il
n’est pas installé et utilisé conformément aux instructions, peut causer des interférences nuis‐
ibles aux communications radio. Cependant, il n’y a aucune garantie que des interférences ne
se produiront pas dans une installation particulière. Si cet équipement cause des interférences
nuisibles à la réception de la radio ou de la télévision, ce qui peut être déterminé en éteignant
et en rallumant l’équipement, l’utilisateur peut tenter de corriger ces interférences par une ou
plusieurs des mesures suivantes :

— Réorienter ou déplacer l’antenne de réception.
— Augmenter la distance entre l’équipement et le récepteur.
— Brancher l’équipement dans une prise de courant sur un circuit différent de celui auquel

le récepteur est branché.
— Consulter le revendeur ou un technicien radio/TV expérimenté pour obtenir de l’aide.

52

Restriction de gain d’antenne FCC et déclaration MPE : Le module radio SMK900 a été
conçu pour fonctionner avec n’importe quelle antenne dipôle jusqu’à 3 dBi de gain. L’antenne
utilisée pour cet émetteur doit être installée à une distance de séparation d’au moins 20 cm
de toutes les personnes et ne doit pas être placée ou utilisée conjointement avec une autre
antenne ou un autre émetteur.

IMPORTANT : Le module SMK900 a été certifié par la FCC pour une utilisation avec d’autres
produits sans autre certification (selon la section 2.1091 de la FCC). Toute modification non
expressément approuvée par Smartrek Technologies pourrait annuler le droit de l’utilisateur
d’utiliser l’équipement.

IMPORTANT : Les OEM doivent tester le produit final pour se conformer aux radiateurs non
intentionnels (articles 15.107 et 15.109 de la FCC) avant de déclarer la conformité de leur
produit final à la partie 15 des règles de la FCC.

IMPORTANT : Le module RF a été certifié pour les applications radio de base et à distance. Si
le module doit être utilisé pour des applications portables, veuillez prendre note des instruc‐
tions suivantes, l’appareil doit subir un test SAR.

Attention !

Exigences d’étiquetage OEM : En tant que fabricant d’équipement d’origine (OEM), vous de‐
vez vous assurer que les exigences d’étiquetage de la FCC sont respectées. Vous devez inclure
une étiquette clairement visible à l’extérieur de l’enveloppe du produit final qui affiche le con‐
tenu suivant :

Contient l’ID FCC : 2AP8V‐SMK900 L’appareil fourni est conforme à la partie 15 des règle‐
ments de la FCC. L’exploitation est assujettie à aux deux conditions : (i.) cet appareil ne doit
pas causer d’interférences nuisibles et (ii.) cet appareil doit doit accepter toute interférence
reçue, y compris des interférences susceptibles de provoquer un fonctionnement non désiré.

ISED (Innovation, Science and Economic Development Canada)

This device complies with Industry Canada license‐exempt RSS standard(s). Operation is sub‐
ject to the following two conditions: (1) this device may not cause interference, and (2) this
device must accept any interference, including interference that may cause undesired opera‐
tion of the device.

Le présent appareil est conforme aux CNR d’Industrie Canada applicables aux appareils radio
exempts de licence. L’exploitation est autorisée aux deux conditions suivantes : (1) l’appareil
ne doit pas produire de brouillage, et (2) l’utilisateur de l’appareil doit accepter tout brouillage
radioélectrique subi, même si le brouillage est susceptible d’en compromettre le fonction‐
nement.

Labeling requirements: Similarly to FCC, labeling requirements for Industry Canada must be
clearly visible label on the outside of the final product enclosure andmust display the following
text.

Contains IC: 24079‐SMK900 The integrator is responsible for its product to comply with IC
ICES‐003 & FCC Part 15, Sub. B Unintentional Radiators. ICES‐003 is the same as FCC Part 15
Sub. B and Industry Canada accepts FCC test report or CISPR 22 test report for compliance

53

with ICES‐003.

54

	Introduction
	System
	SMK900 System Overview
	Mesh Network Systems
	Frequency Hopping Implications

	Specifications
	Broadcast Frame
	Dynamic parameters
	Broadcast Frame Structure

	SMK900 Addressing and Network Segregation
	Transparent and Protocol-Formatted Mode
	Transparent
	Protocol-formatted

	Virtual Machine
	Description
	Virtual Machine Triggers

	Hardware
	Serial Port
	Module Pin Out
	Power Supply and Input Voltage
	ESD and Transient Protection
	Antenna Connector

	Additional I2C Functions
	Example VM User Script Using I2C Functions
	Protocol-Formatted Messages
	Protocol Formats
	Message
	Message Format Details
	Summary of message types

	EnterProtocolMode
	DeviceReset
	DeviceResetReply
	TxLongData
	OTA
	FASTWRITE
	STARTTRANSFER
	STOPTRANSFER
	WRITE
	READ
	READFIRMWARECHECKOUTOK
	GETMISSINGFLAGS
	GETUNCHECKEDCRCPAGES
	PRUNEVALIDPAGESBYCRC
	READMETADATABUFFER
	ACTIVATEMETADATAMAGICWORD

	TxReduxData
	RxDataPacket
	RxReduxDataPacket
	RXBcastInSniffedDataPacket
	BcastUART2TrxBufferDone
	RXBcastInSnifferAirDataPacket
	RXBcastOutSnifferAirCmd
	DynConfig
	DynConfigReply
	GetRegister
	GetRegisterReply
	SetRegister
	SetRegisterReply
	TransferConfig
	TransferConfigReply
	TXAirCmdWrapper
	RXAirCommandWrapper

	Configuration Registers
	Registers Description
	addressBuf
	addressBufLen
	dyn
	nwkID
	hopTable
	power
	uart_bsel
	nodeType
	sleepMode
	extSlpCtrlI2CAddress
	extSlpCorrectionFactor
	presetRF
	cryptoData_qWord0
	i2c
	meshExecActiveFlag
	sniffFlagsMask
	enableNotificationFlagsMask
	gpStorage_qWordx
	index
	valueRFLinks

	Developer Kit
	Portia Adapter Board
	Arduino-Compatible Shield

	Certification Information

