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Theory of Automata 

 
Lecture N0. 1 

Reading Material 
 

Introduction to Computer Theory   Chapter 2 

 

Summary 
Introduction to the course title, Formal and In-formal languages, Alphabets, Strings, Null string, Words, Valid 
and In-valid alphabets, length of a string, Reverse of a string, Defining languages, Descriptive definition of 
languages, EQUAL, EVEN-EVEN, INTEGER, EVEN, { an bn},  { an bn an }, factorial, FACTORIAL, 
DOUBLEFACTORIAL, SQUARE, DOUBLESQUARE, PRIME, PALINDROME. 

  
What does automata mean? 
It is the plural of automaton, and it means  “something that works automatically” 
 
Introduction to languages 
There are two types of languages 
 

• Formal Languages (Syntactic languages) 

• Informal Languages (Semantic languages) 
 

Alphabets 
Definition 
A finite non-empty set of symbols (called letters), is called an alphabet. It is denoted by Σ ( Greek letter sigma). 
 
Example 
 Σ = {a,b} 
     Σ = {0,1}  (important as this is the language which the computer understands.) 
 Σ = {i,j,k} 
 
Note Certain version of language ALGOL has 113 letters. 
Σ (alphabet) includes letters, digits and a variety of operators including sequential operators such as GOTO and 
IF 
 

Strings 

Definition 
 Concatenation of finite number of letters from the alphabet is called a string.  
 
Example 
 If Σ = {a,b} then 
 a, abab, aaabb, ababababababababab 
 

Note 

Empty string or null string 
Sometimes a string with no symbol at all is used, denoted by (Small Greek letter Lambda) λ or (Capital Greek 
letter Lambda) Λ, is called an empty string or null string. 
The capital lambda will mostly be used to denote the empty string, in further discussion. 

 

Words 
Definition 
Words are strings belonging to some language. 
 
Example 
If Σ= {x} then a language L can be defined as  
L={xn : n=1,2,3,…..} or L={x,xx,xxx,….} 
Here x,xx,… are the words of L 
 
Note 
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All words are strings, but not all strings are words. 
Valid/In-valid alphabets 
While defining an alphabet, an alphabet may contain letters consisting of group of symbols for example Σ1= {B, 
aB, bab, d}. 
Now consider an alphabet  
Σ2= {B, Ba, bab, d} and a string BababB. 
 
This string can be tokenized in two different ways  
(Ba), (bab), (B) 
(B), (abab), (B) 
Which shows that the second group cannot be identified as a string, defined over  
Σ = {a, b}. 
As when this string is scanned by the compiler (Lexical Analyzer), first symbol B is identified as a letter 
belonging to Σ, while for the second letter the lexical analyzer would not be able to identify, so while defining 
an alphabet it should be kept in mind that ambiguity should not be created. 

 

Remarks 

While defining an alphabet of letters consisting of more than one symbols, no letter should be started with the 
letter of the same alphabet i.e. one letter should not be the prefix of another. However, a letter may be ended in a 
letter of same alphabet. 

 

Conclusion 

Σ1= {B, aB, bab, d} 
Σ2= {B, Ba, bab, d} 
Σ1 is a valid alphabet while Σ2 is an in-valid alphabet. 

 

Length of Strings 

Definition 
The length of string s, denoted by |s|, is the number of letters in the string. 
 
Example 
Σ={a,b} 
s=ababa 
|s|=5 

 
Example 
Σ= {B, aB, bab, d} 
s=BaBbabBd 
Tokenizing=(B), (aB), (bab), (B), (d) 
|s|=5 

 

Reverse of a String 

Definition 
The reverse of a string s denoted by Rev(s) or  sr,  is obtained by writing the letters of s in reverse order. 
 
Example 
If s=abc is a string defined over Σ={a,b,c} 
then Rev(s) or sr = cba 
 
Example 
Σ= {B, aB, bab, d} 
s=BaBbabBd 
Rev(s)=dBbabaBB 
 

Defining Languages 
The languages can be defined in different ways , such as Descriptive definition, Recursive definition, using 
Regular Expressions(RE) and using Finite Automaton(FA) etc. 

 

Descriptive definition of language 

The language is defined, describing the conditions imposed on its words.  
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Example 
The language  L of strings of odd length, defined over Σ={a}, can be written as 
L={a, aaa, aaaaa,…..} 
 
Example 
The language L of strings that does not start with a, defined over Σ ={a,b,c}, can be written as  

L ={Λ, b, c, ba, bb, bc, ca, cb,  cc, …} 
 
Example 
The language L of strings of length 2, defined over Σ ={0,1,2}, can be written as 
L={00, 01, 02,10, 11,12,20,21,22} 
 
Example 
The language L of strings ending in 0, defined over  Σ ={0,1}, can be written as 
L={0,00,10,000,010,100,110,…} 
 
Example  
The language EQUAL, of strings with number of a’s equal to number of b’s, defined over Σ={a,b}, can be 
written as 
{Λ ,ab,ba,aabb,abab,baba,abba,…} 
 
Example  
The language EVEN-EVEN, of strings with even number of a’s and even number of b’s, defined over Σ={a,b}, 
can be written as 
{Λ, aa, bb, aaaa,aabb,abab, abba, baab, baba, bbaa, bbbb,…} 
 
Example 
The language INTEGER, of strings defined over Σ={-,0,1,2,3,4,5,6,7,8,9}, can be written as  
INTEGER = {…,-2,-1,0,1,2,…}  
 
Example 
The language EVEN, of stings defined over Σ={-,0,1,2,3,4,5,6,7,8,9}, can be written as  
EVEN = { …,-4,-2,0,2,4,…} 
 
Example 
The language {anbn }, of strings defined over Σ={a,b}, as  
{an  bn  : n=1,2,3,…}, can be written as 
{ab, aabb, aaabbb,aaaabbbb,…} 
 

Example 
The language {anbnan }, of strings defined over Σ={a,b}, as  
{an bn an: n=1,2,3,…}, can be written as 
{aba, aabbaa, aaabbbaaa,aaaabbbbaaaa,…} 
 

Example 
The language factorial, of strings defined over Σ={0,1,2,3,4,5,6,7,8,9} i.e. 
{1,2,6,24,120,…} 
 
Example  
The language FACTORIAL, of strings defined over Σ={a}, as  
{an! : n=1,2,3,…}, can be written as 
{a,aa,aaaaaa,…}. It is to be noted that the language FACTORIAL can be defined over any single letter alphabet. 
 
Example  
The language DOUBLEFACTORIAL, of strings defined over Σ={a, b}, as  
{an!bn! : n=1,2,3,…}, can be written as  
{ab, aabb, aaaaaabbbbbb,…} 
 
Example  
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The language SQUARE, of strings defined over Σ={a}, as  
{an2 : n=1,2,3,…}, can be written as 
{a, aaaa, aaaaaaaaa,…} 
 
Example  
The language DOUBLESQUARE, of strings defined over Σ={a,b}, as  
{an 2 bn 2 : n=1,2,3,…}, can be written as 
{ab, aaaabbbb, aaaaaaaaabbbbbbbbb,…} 
 
Example  
The language PRIME, of strings defined over Σ={a}, as  
{ap : p is prime}, can be written as 
{aa,aaa,aaaaa,aaaaaaa,aaaaaaaaaaa…} 
 

An Important language 
PALINDROME 
The language consisting of Λ and the strings s defined over Σ  such that Rev(s)=s. 
It is to be denoted that the words of PALINDROME are called palindromes. 
 
Example 
For Σ={a,b},  
PALINDROME={Λ , a, b, aa, bb, aaa, aba, bab, bbb, ...} 

 

Remark 

There are as many palindromes of length 2n as there are of length 2n-1. 
To prove the above remark, the following is to be noted: 

 

Note 
Number of strings of length ‘m’ defined over   alphabet of ‘n’ letters is nm. 
 
Examples 
The language of strings of length 2, defined over Σ={a,b} is L={aa, ab, ba, bb} i.e. number of strings = 22  

The language of strings of length 3, defined over Σ={a,b} is L={aaa, aab, aba, baa, abb, bab, bba, bbb} i.e. 
number of strings = 23 
 
To calculate the number of palindromes of  length(2n), consider the following diagram,  
 
 
 
 
 
 
 
 
 
which shows that there are as many palindromes of length 2n as there are the strings of length n i.e. the required 
number of palindromes are 2n.  
To calculate the number of palindromes of length (2n-1) with ‘a’ as the middle letter, consider the following 
diagram, 

 
 
 
 
 
 
 
which shows that there are as many palindromes of length 2n-1 as there are the strings of length n-1 i.e. the 
required number of palindromes are 2n-1. 
Similarly the number of palindromes of length 2n-1, with ‘ b ’ as middle letter, will be 2n-1 as well. Hence the 
total number of palindromes of length 2n-1 will be 2n-1 + 2n-1 = 2 (2n-1)= 2n . 
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Theory of Automata 
 

Lecture N0. 2 

Reading Material 

 
Introduction to Computer Theory   Chapter 3 

 
Summary 
Kleene Star Closure, Plus operation, recursive definition of languages, INTEGER, EVEN, factorial, 
PALINDROME, {a

n
b

n}, languages of strings (i) ending in a, (ii) beginning and ending in same letters, (iii) 
containing aa or bb (iv) containing exactly one a 

 
Kleene Star Closure 
Given Σ, then the Kleene Star Closure of the alphabet Σ, denoted by Σ*, is the collection of all strings defined 
over Σ, including Λ.  
It is to be noted that Kleene Star Closure can be defined over any set of strings. 
 

Examples 
If Σ = {x}  
Then Σ* = {Λ, x, xx, xxx, xxxx, ….} 
If Σ = {0,1}  
Then Σ* = {Λ, 0, 1, 00, 01, 10, 11, ….} 
If Σ = {aaB, c} 
Then Σ* = {Λ, aaB, c, aaBaaB, aaBc, caaB, cc, ….} 
 

Note 
Languages generated by Kleene Star Closure of set of strings, are infinite languages. (By infinite language, it is 
supposed that the language contains infinite many words, each of finite length). 
 
PLUS Operation (+) 
Plus Operation is same as Kleene Star Closure except that it does not generate  Λ (null string), automatically.  
 
Example 
If Σ = {0,1}  
Then Σ+ = {0, 1, 00, 01, 10, 11, ….} 
If Σ = {aab, c}  
Then Σ+ = {aab, c, aabaab, aabc, caab, cc, ….} 
 

Remark 
It is to be noted that Kleene Star can also be operated on any string i.e. a* can be considered to be all possible 
strings defined over {a}, which shows that a* generates Λ, a, aa, aaa, … 
It may also be noted that a+ can be considered to be all possible non empty strings defined over {a}, which 
shows that a+ generates a, aa, aaa, aaaa, … 

 
Recursive definition of languages 
The following three steps are used in recursive definition 
Some basic words are specified in the language. 
Rules for constructing more words are defined in the language. 
No strings except those constructed in above, are allowed to be in the language. 
 

Examples 
Defining language of INTEGER 

Step 1:  1 is in INTEGER. 
Step 2:  If x is in INTEGER then x+1 and x-1 are also in INTEGER. 
Step 3:  No strings except those constructed in above, are allowed to be in INTEGER. 
  

Defining language of EVEN 

Step 1:  2 is in EVEN. 
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Step 2:  If x is in EVEN then x+2 and x-2 are also in EVEN.  
Step 3:  No strings except those constructed in above, are allowed to be in EVEN. 
 

Defining the language factorial 
Step 1:  As 0!=1, so 1 is in factorial. 
Step 2:  n!=n*(n-1)! is in factorial. 
Step 3:  No strings except those constructed in above, are allowed to be in factorial. 
 

Defining the language PALINDROME, defined over Σ = {a,b}  
Step 1:  a and b are in PALINDROME 

Step 2:  if x is palindrome, then s(x)Rev(s) and xx will also be palindrome, where s belongs to Σ* 

Step 3:  No strings except those constructed in above, are allowed to be in palindrome 

 

Defining the language {a
n
b

n 
}, n=1,2,3,… , of strings defined over Σ={a,b} 

Step 1:  ab is in {a
n
b

n}  
Step 2:  if x is in {a

n
b

n}, then axb is in {a
n
b

n}  
Step 3:  No strings except those constructed in above, are allowed to be in {a

n
b

n} 
 

Defining the language L, of strings ending in a , defined over  Σ={a,b} 
Step 1:  a is in L  
Step 2:  if x is in L then s(x) is also in L, where s belongs to Σ*

 

Step 3:  No strings except those constructed in above, are allowed to be in L 

 

Defining the language L, of strings beginning and ending in same letters , defined over  Σ={a, b} 

Step 1:  a and b are in L  
Step 2:  (a)s(a) and (b)s(b) are also in L, where s belongs to Σ*

 

Step 3:  No strings except those constructed in above, are allowed to be in L 

 

Defining the language L, of strings containing aa or bb , defined over       Σ={a, b} 

Step 1:  aa and bb are in L  
Step 2:  s(aa)s and s(bb)s are also in L, where s belongs to Σ*

 

Step 3:  No strings except those constructed in above, are allowed to be in L 

 

Defining the language L, of strings containing exactly one a, defined over       Σ={a, b} 

Step 1:  a is in L  
Step 2:  s(a)s is also in L, where s belongs to b*

 

Step 3:  No strings except those constructed in above, are allowed to be in L 
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Theory of Automata 
 

Lecture N0. 3 

Reading Material 

 
Introduction to Computer Theory   Chapter 4 

 

Summary 
RE, Recursive definition of RE, defining languages by RE, { x}*, { x}+, {a+b}*, Language of strings having 
exactly one a, Language of strings of even length, Language of strings of odd length, RE defines unique 
language (as Remark), Language of strings having at least one a, Language of strings having at least one a and 
one b, Language of strings starting with aa and ending in bb, Language of strings starting with and ending in 
different letters. 
 

Regular Expression 
As discussed earlier  that a* generates Λ, a, aa, aaa, … and a+  generates  a, aa, aaa, aaaa, …, so the language L1 
= {Λ, a, aa, aaa, …} and L2 = {a, aa, aaa, aaaa, …} can simply be expressed by a* and a+, respectively. 
a* and a+ are called the regular expressions   (RE) for L1 and L2 respectively. 

 

Note a+, aa* and a*a generate L2. 
 

Recursive definition of Regular Expression(RE) 

Step 1: Every letter of Σ including Λ is a regular expression.  
Step 2: If r1 and r2 are regular expressions then  
(r1) 
r1 r2 
r1 + r2 and 
r1* 
are also regular expressions. 
Step 3: Nothing else is a regular expression. 
 

Method 3 (Regular Expressions) 

Consider the language  L={Λ, x, xx, xxx,…} of strings, defined over Σ = {x}. 
We can write this language as the Kleene star closure of alphabet Σ or L=Σ*={x}* . 

This language can also be expressed by the regular expression x*. 
Similarly the language  L={x, xx, xxx,…}, defined over Σ = {x}, can be expressed by the regular expression x+. 
Now consider another language L, consisting of all possible strings, defined over Σ = {a, b}. This language can 
also be expressed by the regular expression (a + b)*. 
Now consider another language L, of strings having exactly one a, defined over Σ = {a, b}, then it’s regular 
expression may be b*ab*. 
Now consider another language L, of even length, defined over Σ = {a, b}, then it’s regular expression may be 
((a+b)(a+b))*. 
Now consider another language L, of odd length, defined over Σ = {a, b}, then it’s regular expression may be 
(a+b)((a+b)(a+b))* or ((a+b)(a+b))*(a+b). 
 

Remark 
It may be noted that a language may be expressed by more than one regular expression, while given a regular 
expression there exist a unique language generated by that regular expression. 
 

Example 
Consider the language, defined over  
Σ = {a ,  b} of words having at least one a, may be expressed by a  regular expression (a+b)*a(a+b)*. 
Consider the language, defined over Σ = {a, b} of words having at least one a and one b, may be expressed by a  
regular expression (a+b)*a(a+b)*b(a+b)*+ (a+b)*b(a+b)*a(a+b)*. 
Consider the language, defined over Σ ={a, b}, of words starting with double a and ending in double b then its 
regular expression may be  aa(a+b)*bb 

Consider the language, defined over Σ ={a, b} of words starting with a  and ending in b OR 
starting with b and ending in a, then its regular expression may be  a(a+b)*b+b(a+b)*a 
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Theory of Automata 
 

Lecture N0. 4 

Reading Material 

 

Introduction to Computer Theory   Chapter 4, 5 

 

Summary 
Regular expression of EVEN-EVEN language, Difference between a* + b* and (a+b)*, Equivalent regular 
expressions; sum, product and closure of regular expressions; regular languages, finite languages are regular, 
introduction to finite automaton, definition of FA, transition table, transition diagram 
 

An important example 
The Language EVEN-EVEN 
Language of strings, defined over Σ={a, b} having even number of a’s and even number of b’s. i.e. 
EVEN-EVEN = {Λ, aa, bb, aaaa,aabb,abab, abba, baab, baba, bbaa, bbbb,…}, its regular expression can be 
written as (aa+bb+(ab+ba)(aa+bb)*(ab+ba))* 
 
Note 
It is important to be clear about the difference of the following regular expressions 
r1 = a*+b* 
r2 = (a+b)* 
Here r1 does not generate any string of concatenation of a and b, while r2 generates such strings. 
 

Equivalent Regular Expressions 
Definition 
Two regular expressions are said to be equivalent if they generate the same language. 
 
Example 
Consider the following regular expressions 
r1 = (a + b)* (aa + bb) 
r2 = (a + b)*aa + ( a + b)*bb   then both regular expressions define the language of strings ending in aa or bb.  
 
Note 
If r1 = (aa + bb) and r2 = ( a + b) then  
r1+r2 = (aa + bb) + (a + b) 
r1r2  = (aa + bb)  (a + b) 
= (aaa + aab + bba + bbb)  
(r1)* = (aa + bb)* 
  

Regular Languages 

Definition 
The language generated by any regular expression is called a regular language.  

It is to be noted that if r1, r2 are regular expressions, corresponding to the languages L1 and L2 
then the languages generated by r1+ r2, r1r2( or r2r1) and    r1*( or r2*) are also regular 
languages. 
 
Note 
It is to be noted that if L1 and L2 are expressed by r1and r2, respectively then the language expressed by  

r1+ r2, is the language L1 +  L2 or  L1 ∪ L2  
r1r2, , is the language L1L2, of strings obtained by prefixing every string of L1 with every string of L2 
r1*, is the language L1*, of strings obtained by concatenating the strings of L, including the null string.  
        
Example 
If r1 = (aa+bb) and r2 = (a+b) then the language of strings generated by r1+r2, is also a regular language, 
expressed by (aa+bb) + (a+b) 
If r1 = (aa+bb) and r2 = (a+b) then the language  of strings generated by r1r2, is also a regular language, expressed 
by (aa+bb)(a+b) 
If r = (aa+bb) then the language of strings generated by r*, is also a regular language, expressed by (aa+bb)* 
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All finite languages are regular 

Example 
Consider the language L, defined over Σ = {a,b}, of strings of length 2, starting with a, then  
L = {aa, ab}, may be expressed by the regular expression aa+ab. Hence L, by definition, is a regular language. 
 
Note 
It may be noted that if a language contains even thousand words, its RE may be expressed, placing ‘ + ’ between 
all the words.  
Here the special structure of RE is not important. 
Consider the language L = {aaa, aab, aba, abb, baa, bab, bba, bbb}, that may be expressed by a RE 
aaa+aab+aba+abb+baa+bab+bba+bbb, which is equivalent to (a+b)(a+b)(a+b). 
 

Introduction to Finite Automaton 
Consider the following game board  that contains 64 boxes 
 
 
 
 
 
 
 
 
 
 
There are some pieces of paper. Some are of white colour while others are of black colour. The number of 
pieces of paper are 64 or less. The possible arrangements under which these pieces of paper can be placed in the 
boxes, are finite. To start the game, one of the  arrangements is supposed to be initial arrangement. There is a 
pair of dice that can generate the numbers 2,3,4,…12 . For each number generated, a unique arrangement is 
associated among the possible arrangements.  
It shows that the total number of transition rules of arrangement are finite. One and more arrangements can be 
supposed to be the winning arrangement. It can be observed that the winning of the game depends on the 
sequence in which the numbers are generated. This structure of game can be considered to be a finite automaton.  
 

Method 4 (Finite Automaton) 

Definition 
A Finite automaton (FA), is a collection of the followings 
Finite number of states, having one initial and some (maybe none) final states. 
Finite set of input letters (Σ) from which input strings are formed. 
Finite set of transitions i.e. for each state and for each input letter there is a transition showing how to move 
from one state to another. 
 
Example  
Σ = {a,b} 
States: x, y, z where x is an initial state and z is final state. 
Transitions: 
At state x reading a, go to state z 
At state x reading b, go to state y 
At state y reading a, b  go to state y 
At state z reading a, b go to state z 
 
 
 
 
 
 
 
These transitions can be expressed by the following table called transition table 
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z z  z + 

y y y 

y z x - 

Reading b Reading a  

New States Old States 
 
 
 
 
 
 
 
 
 
Note 
It may be noted that the information of an FA, given in the previous table, can also be depicted by the following 
diagram, called the transition diagram, of the given FA 
 
 
 
 
 
 
 
Remark 
The above transition diagram is an FA accepting the language of strings, defined over Σ = {a, b}, starting with 

a. It may be noted that this language may be expressed by the regular expression a(a + b)* 

y 

a  
x – 
 

b 

Z+ 

a,b 

a,b 
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  a, b 

a, b 

     
 

a,b 

 

a,b 

 
b 

a 

 
–– 

 
+ 

1 

Theory of Automata 
 

Lecture N0. 5 

Reading Material 

 

Introduction to Computer Theory   Chapter 5 

 

Summary 
 
Different notations of transition diagrams, languages of strings of even length, Odd length, starting with b, 

ending in a, beginning with b, not beginning with b, beginning and  ending in same letters 

 
Note 
It may be noted that to indicate the initial state, an arrow head can also be placed before that state and that the 
final state with double circle, as shown below. It is also to be noted that while expressing an FA by its transition 
diagram, the labels of states are not necessary.  
 
 
 
Example  
Σ = {a,b} 
States: x, y,  where x is both initial and final state. 
Transitions: 
At state x reading a or b go to state y. 
At state y reading a or b  go to state x. 
 
These transitions can be expressed by the following transition table 
 
 
 
 
 
 
 
 
 
It may be noted that the above transition table may be depicted by the following transition diagram. 
 
 
 
 
 
The above transition diagram is an FA accepting the language of strings, defined over Σ={a, b} of even length. 
It may be noted that this language may be expressed by the regular expression ((a+ b) (a + b))* 

 

Example: 
Consider the language L of strings, defined over Σ={a, b}, starting with b. The language L may be expressed 
by RE  b(a + b)* , may be accepted by the following FA  
 

 
 
 

     
 

 
Example 
Consider the language L of strings, defined over Σ={a, b}, ending in a. The language L may be expressed by 

RE  (a+b)*a. 
 

x x y 

y y x ± 

Reading  
b 

Reading 
a  

New States 

Old States 

y 

a, b  
x ±±±± 

a, b 



Theory of Automata                                                                                                                               (CS402)          

                                                                                                           

 

© Copyright Virtual University of Pakistan 

 

14

 
This language may be accepted by the  
FA shown aside 
 
 
 
 
There may be another FA  
corresponding to the given  
language, as shown aside 
 
 
 
 

 
Note 
It may be noted that corresponding to a given language there may be more than one FA accepting that language, 
but for a given FA there is a unique language accepted by that FA. 
It is also to be noted that given the languages L1 and L2 ,where 
L1 = The language of strings, defined over Σ ={a, b}, beginning with a. 
L2 = The language of strings, defined over Σ ={a, b}, not beginning with b 

The Λ does not belong to L1 while it does belong to L2 . This fact may be depicted by the corresponding 
transition diagrams of L1 and L2. 
 
FA1 Corresponding to L1 

 
 
 
 
 
 
 
 
 

The language L1 may be  expressed by the regular expression a(a + b)* 

FA2 Corresponding to L2 

 
 
 
 
 
 
 
 
 
The language L2 may be expressed by the regular expression a(a + b)*  + Λ 
 
Example 
Consider the Language L of Strings of length two or more, defined over Σ = {a, b}, beginning with and 

ending in same letters. 

The language L may be expressed by the following regular expression  a(a + b)*a + b(a + b)*b 
It is to be noted that if the condition on the length of string is not imposed in the above language then the 

strings a and b will then belong to the language. 
This language L may be accepted by the FA as shown aside 
 
 

a b 

+ 

b 

 
– 

a 

a 

b 

b 

b a 

 
+ 

 
     

a 

 
– 

a,b 

 
a 

b a,b 
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+ 

a,b 

 

a,b 

 
a 

b 

 
± 

 
+ 

b 

a 

a 

b  
+ 

a 

 
     

 

b 

b 

a  
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a  
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b 

a 

b 

a  
4+ 

b 

 
2 

a 

a 

b  
5+ 

a 

 
3 

b 
 

1– 

a,b 

± 

a,b 

+ 
 
-
 

a,b 

a,b 

+ 
 
-
 

a,b 

 

Theory of Automata 
 

Lecture N0. 6 

Reading Material 
 

Introduction to Computer Theory   Chapter 5 

 

Summary 
Language of strings beginning with and ending in different letters, Accepting all strings, accepting non-

empty strings, accepting no string, containing double a’s, having double 0’s or double 1’s, containing 

triple a’s or triple b’s,  EVEN-EVEN 
 
Example 
Consider the Language L of Strings, defined over Σ = {a, b}, beginning with and ending in different letters. 

The language L may be expressed by the following regular expression a(a + b)*b + b(a + b)*a 
This language may be accepted by the following FA  
 
 

 

 

 

 

 
Example 
Consider the Language L, defined over Σ = {a, b} of all strings including Λ. The language L may be accepted 
by the following FA 
 
 
 
The language L may also be accepted by the following FA  
 
 
 
 
The language L may be expressed by the regular expression (a + b)* 
 
Example 
Consider the Language L , defined over Σ = {a, b} of all non empty strings. The language L may be accepted 
by the following FA 
 
 
 
The above language may be expressed by the regular expression (a + b)+ 
  
Example  
Consider the following FA, defined over Σ = {a, b} 
 
 
 
 
It is to be noted that the above FA does not accept any string, even it does not accept the null string; as there is 
no path starting from initial state and ending in final state. 
 

Equivalent FAs 

It is to be noted that two FAs are said to be equivalent, if they accept the same language, as shown in the 
following FAs. 
FA1 

 
 

a,b 

2+ 
 

1±
 

a,b 

– 

 
+
 

a,b 

a,b 
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a,b 

 

a 

 
     

 

b 

 
     

 

a 

b 
1- 3+ 2 

 
FA2 
 

 
 
FA3 
 
Note 
FA1 has already been discussed, while in FA2, there is no final state and in FA3, there is a final state but FA3 is 
disconnected as the states 2 and 3 are disconnected.  
It may also be noted that the language of strings accepted by FA1, FA2 and  FA3 is denoted by the empty set i.e.   
{ } OR Ø 
 
Example 
Consider the Language L of strings , defined over Σ = {a, b}, containing double a. 

The language L may be expressed by the regular expression (a+b)* (aa) (a+b)*. This language may be accepted 
by the following FA. 
 
 
 
 
Example 
Consider the language L of strings, defined over Σ={0, 1}, having double 0’s or double 1’s, The language L 
may be expressed by the regular expression (0+1)* (00 + 11) (0+1)* 

This language may be accepted by the following FA  
 
 
 
 
 
 
 
 
 
 
 
Example 
Consider the language L of strings, defined over Σ={a, b}, having triple a’s or triple b’s.   The language L may 
be expressed by RE (a+b)* (aaa + bbb) (a+b)* 

 
This language may be accepted by the FA as shown aside 
 
 
 
 
 
 
 
Example 
Consider the EVEN-EVEN language, defined over Σ = {a, b}. As discussed earlier that EVEN-EVEN 
language can be expressed by the regular expression  (aa+bb+(ab+ba)(aa+bb)*(ab+ba))*  
EVEN-EVEN language may be accepted by the FA as shown aside 
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a,b 

  

  

a,b 

4+ 
 

a b 

a,b 
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b 

1± 

a,b 

2+ 

 
5+ 
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a,b 
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a 

b 

1± 

2+ 

4 

6 

  

a,b 

a,b 

a,b 

a,b 

3 

5+ 

7+ 

8 

Theory of Automata 
 

Lecture N0. 7 

Reading Material 

 

Introduction to Computer Theory   Chapter 5, 6 

 

Summary 
FA corresponding to finite languages(using both methods), Transition graphs. 
 

FA corresponding to finite languages 

Example 
Consider the language  
L = {Λ, b, ab, bb}, defined over Σ ={a, b}, expressed by Λ + b + ab + bb OR  Λ + b (Λ + a + b). 
The language L may be accepted by the FA as shown aside 
 
 
 
 
 
 
 
 
 
It is to be noted that the states x and y are called  
Dead States, Waste Baskets or Davey John Lockers, as the  
moment one enters these states there is no way to leave it.  
 
Note 
It is to be noted that to build an FA accepting the language having less number  
of strings, the tree structure may also help in this regard, which can be observed 
 in the following transition diagram for the 
 Language L, discussed in the above example 
 

 

 

 
 
 
 

 

 

 

 

 

 

 
 
Example 

Consider the language  
L = {aa, bab, aabb, bbba}, defined over Σ ={a, b},  
expressed by aa + bab + aabb + bbba  
OR aa (Λ + bb) + b (ab + bba)  
The above language may be accepted by the FA  
as shown aside 
 

 

 

 

a,b 
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5+ 1– 

 
 y 

a,b 
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a a 
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b a,b 
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b 

a 

b 

 
4+ b 

 
2 

a 

a 

 
5+ a 

 
  3 

b  
1– 

a 
b 

Example 

Consider the language L = {w belongs to {a,b}*: length(w) ≥2 and w neither  ends in aa nor bb}. 
The language L may be expressed by the regular expression (a+b)*(ab+ba)            
This language may be accepted by the following FA 
 

 

 
 
 
 
 
Note 
It is to be noted that building an FA corresponding to the language L, discussed in the above example, seems to 
be quite difficult, but the same can be done using tree structure along with the technique discussed in the book 
Introduction to Languages and Theory of Computation, by J. C. Martin  
so that the strings ending in aa, ab, ba and bb should end in the states labeled as aa, ab, ba and bb, respectively; 
as shown in the following FA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 
Consider the language FA corresponding to r1+r2 can be determined as 
L = {w belongs to {a,b}*:  w does not end in aa}. 
The language L may be expressed by the regular expression Λ + a + b + (a+b)*(ab+ba+bb). This language may 
be accepted by the following FA  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Method 5 (Transition Graph) 

Definition: 
A Transition graph (TG), is a collection of the followings 
Finite number of states, at least one of which is start state and some (maybe none) final states. 
Finite set of input letters (Σ) from which input strings are formed. 
Finite set of transitions that show how to go from one state to another based on reading specified substrings of 
input letters, possibly even the null string (Λ). 
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a,b 

 
Λ 

a,b 

 
– 

 
+ 

 
- 

 
a, b 

 
- 

 
1 

a,b 

 
a, b 

 
- 

 
1 

Theory of Automata 
 

Lecture N0. 8 

Reading Material 

 

Introduction to Computer Theory   Chapter 6 

 

Summary 
Examples of TGs: accepting all strings, accepting none, starting with b, not ending in b, containing aa, 

containing aa or bb 

 

Note 
It is to be noted that in TG there may exist more than one paths for certain string, while there may not exist any 
path for certain string as well. If there exists at least one path for a certain string, starting from initial state and 
ending in a final state, the string is supposed to be accepted by the TG, otherwise the string is supposed to be 
rejected. Obviously collection of accepted strings is the language accepted by the TG.  

 
Example 
Consider the Language L , defined over Σ = {a, b} of all strings including Λ.  The language L may be accepted 
by the following TG 
 
 
 
The language L may also be accepted by the following TG  
 
 
TG1 
 
 
TG2 
 
 
Example 
Consider the following TGs 
 
TG1 
 
 
TG2 
 
 

 
TG3 
 
 
It may be observed that in the first TG, no transition has been shown. Hence this TG does not accept any string, 
defined over any alphabet. In TG2 there are transitions for a and b at initial state but there is no transition at state 
1. This TG still does not accept any string. In TG3 there are transitions at both initial state and state 1, but it does 
not accept any string. 
Thus none of TG1, TG2 and TG3 accepts any string, i.e. these TGs accept empty language. It may be noted that 
TG1 and TG2 are TGs but not FA, while TG3 is both TG and FA as well.  
It may be noted that every FA is a TG as well, but the converse may not be true, i.e. every TG may not be an 
FA. 
 
Example 

Consider the language L of strings, defined over Σ={a, b}, starting with b. The language L may be expressed 
by RE  b(a + b)* , may be accepted by the following TG 
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Example 
Consider the language L of strings, defined over Σ={a, b}, not ending in b. The language L may be expressed 
by RE Λ + (a + b)*a , may be accepted by the following TG 
 
 
 
 
 
 
 
 
Example 
Consider the Language L of strings, defined over Σ = {a, b}, containing double a. 

The language L may be expressed by the following regular expression (a+b)* (aa) (a+b)*. This language may be 
accepted by the following TG  
 
 
 
 
Example 
Consider the language L of strings, defined over Σ={a, b}, having double a or double b. 
The language L can be expressed by RE (a+b)* (aa + bb) (a+b)*. 

The above language may also be expressed by the following TGs. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

OR 

 

 

 

 

OR 
 
 
 
 
 
 
 
 
 
Note 
 
In the above TG if the states are not labeled then it may not be considered to be a single TG 
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Theory of Automata 
 

Lecture N0. 9 

Reading Material 

 

Introduction to Computer Theory   Chapter 6 

 

Summary 
TGs accepting the languages: containing aaa or bbb, beginning and ending in different letters, beginning and 
ending in same letters, EVEN-EVEN, a’s occur in even clumps and ends in three or more b’s, example showing 
different paths traced by one string, Definition of GTG  
 
Example 
Consider the language L of strings, defined over Σ = {a, b}, having triple a or triple b.   The language L may 
be expressed by RE (a+b)* (aaa + bbb) (a+b)* 

 
This language may be accepted by the following TG 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

OR 

 
 
 

OR 
 
 
 
 
 
 
 
 
 
 
Example 
Consider the language L of strings, defined over Σ = {a, b}, beginning and ending in different letters. 
The language L may be expressed by RE a(a + b)*b + b(a + b)*a 
The language L may be accepted by the following TG 
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Example 

Consider the Language L of strings of length two or more, defined over Σ = {a, b}, beginning with and 

ending in same letters. 
The language L may be expressed by the following regular expression a(a + b)*a + b(a + b)*b 
This language may be accepted by the following TG  
 
 
 
 
 
 
 
 
 
 
Example 
Consider the EVEN-EVEN language, defined over Σ = {a, b}. As discussed earlier that EVEN-EVEN 
language can be expressed by a regular expression (aa+bb+(ab+ba)(aa+bb)*(ab+ba))*  
The language EVEN-EVEN may be accepted by the following TG  
 
 
 
 
 
Example  
Consider the language L, defined over Σ={a, b}, in which a’s occur only in even clumps and that ends in 

three or more b’s. The language L can be expressed by its regular expression (aa)*b(b*+(aa(aa)*b)*) bb OR
 (aa)*b(b*+( (aa)+b)*) bb. 
The language L may be accepted by the following TG  
 
 
 
 
 
 
 

Example 

Consider the following TG 
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Consider the string abbbabbbabba. It may be observed that the above string traces the following three paths, 
(using the states) 
(a)(b) (b) (b) (ab) (bb) (a) (bb) (a) 
(-)(4)(4)(+)(+)(3)(2)(2)(1)(+) 
(a)(b) ((b)(b)) (ab) (bb) (a) (bb) (a) 
(-)(4)(+)(+)(+)(3)(2)(2)(1)(+) 
(a)((b) (b)) (b) (ab) (bb) (a) (bb) (a) 
(-) (4)(4)(4)(+) (3)(2)(2)(1)(+) 
Which shows that all these paths are successful, (i.e. the path starting from an initial state and ending in a final 
state).  
Hence the string abbbabbbabba is accepted by the given TG. 

 

Generalized Transition Graphs 
A generalized transition graph (GTG) is a collection of three things  
Finite number of states, at least one of which is start state and some (maybe none) final states. 
Finite set of input letters (Σ) from which input strings are formed. 
Directed edges connecting some pair of states labeled with regular expression. 
It may be noted that in GTG, the labels of transition edges are corresponding regular expressions 
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Theory of Automata 
 

Lecture N0. 10 

Reading Material 

 

Introduction to Computer Theory   Chapter 6, 7 

 

Summary 
Examples of GTG accepting the languages of strings: containing aa or bb, beginning with and ending in same 
letters, beginning with and ending in different letters, containing aaa or bbb, 
Nondeterminism, Kleene’s theorem (part I, part II, part III), proof of Kleene’s theorem part I 
 
Example 
Consider the language L of strings, defined over Σ = {a,b}, containing double a or double b. The language L 
can be expressed by the following regular expression (a+b)* (aa + bb) (a+b)* 

The language L may be accepted by the following GTG. 

 
 
 
 
 
 
Example 
Consider the Language L of strings, defined over Σ = {a, b}, beginning with and ending in same letters. 

The language L may be expressed by the following regular expression (a+b)+  a(a + b)*a + b(a + b)*b. 
This language may be accepted by the following GTG  
 
Example 
 
 
 
 
 
 
 
Example 
Consider the language L of strings of, defined over   Σ = {a, b}, beginning and ending in different letters. 
The language L may be expressed by RE a(a + b)*b + b(a + b)*a 
The language L may be accepted by the following GTG 
 
 
 
 
 
 
 
 
 
 
The language L may be accepted by the following GTG as well   
 
 
 
 
Example 
Consider the language L of strings, defined over Σ = {a, b}, having triple a or triple b. The language L may be 
expressed by RE (a+b)* (aaa + bbb) (a+b)* 
This language may be accepted by the following GTG 
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Nondeterminism 

TGs and GTGs provide certain relaxations i.e. there may exist more than one path for a certain string or there 
may not be any path for a certain string, this property creates nondeterminism and it can also help in 
differentiating TGs or GTGs from FAs. Hence an FA is also called a Deterministic Finite Automaton (DFA). 
 

Kleene’s Theorem 

If a language can be expressed by  
FA or 
TG or 
RE 
then it can also be expressed by other two as well. 
It may be noted that the theorem is proved, proving the following three parts 
 

Kleene’s Theorem Part I 
If a language can be accepted by an FA then it can be accepted by a TG as well. 

Kleene’s Theorem Part II 
If a language can be accepted by a TG then it can be expressed by an RE as well. 

Kleene’s Theorem Part III 
If a language can be expressed by a RE then it can be accepted by an FA as well. 
 

Proof(Kleene’s Theorem Part I) 

Since every FA can be considered to be a TG as well, therefore there is nothing to prove. 

  aaa+bbb 

a+b a+b 

+ - 

  
(a+b)*(aaa+bbb)(a+b)* 
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OR 
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Theory of Automata 
 

Lecture N0. 11 

Reading Material 

 

Introduction to Computer Theory   Chapter 7 

 

Summary 
proof of Kleene’s theorem part II (method with different steps), particular examples of TGs to determine 
corresponding REs. 

 

Proof(Kleene’s Theorem Part II) 
To prove part II of the theorem, an algorithm consisting of different steps, is explained showing how a RE can 
be obtained corresponding to the given TG. For this purpose the notion of TG is changed to that of GTG i.e. the 
labels of transitions are corresponding REs.  
Basically this algorithm converts the given TG to GTG with one initial state along with a single loop, or one 
initial state connected with one final state by a single transition edge. The label of the loop or the transition edge 
will be the required RE. 
Step 1 If a TG has more than one start states, then introduce a new start state connecting the new state to the old 
start states by the transitions labeled by Λ and make the old start states the non-start states. This step can be 
shown by the following example 
 
Example 
 
 
 
 
 
 
 
 
The above TG can be converted to 

 
 

Step 2: 
If a TG has more than one final states, then introduce a new final state, connecting the old final states to the new 
final state by the transitions labeled by Λ. 
This step can be shown by the previous  example of TG, where the step 1 has already been processed 
 
Example 
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The above TG can be converted to 

 
 
 
 
 

Step 3: 

If a state has two (more than one) incoming transition edges labeled by the corresponding REs, from the same 
state (including the possibility of loops at a state), then replace all these transition edges with a single transition 
edge labeled by the sum of corresponding REs.  
This step can be shown by a part of TG in the following example 
 
Example 
 
 
 
 
 
 
The above TG can be reduced to  
 
 
 
 
Note 
The step 3 can be generalized to any finite number of transitions as shown below 
 
 
 
 
 
 
 
The above TG can be reduced to  
 
 
 
 
 

 

Step 4 (bypass and state elimination) 

If three states in a TG, are connected in sequence then eliminate the middle state and connect the first state with 
the third by a single transition (include the possibility of circuit as well) labeled by the RE which is the 
concatenation of corresponding two REs in the existing sequence. This step can be shown by a part of TG in the 
following example 
Example 
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To eliminate state 5 the above can be reduced to 
 
 
 
 
Consider the following example containing a circuit 
 
 
Example 
Consider the part of a TG, containing a circuit at a state, as shown below 
 
 
 
 
 
To eliminate state 3 the above TG can be reduced to 
 
 
 
 
 
Example 
Consider a part of the following TG 
 
 
 
 
 
 
 
To eliminate state 3 the above TG can be reduced to 
 
 
 
 
  
 
 
 
To eliminate state 4 the above TG can be reduced to 
 
 
 
 
 
Note 
It is to be noted that to determine the RE corresponding to a certain TG, four steps have been discussed. This 
process can be explained by the following particular examples of TGs 
 
Example  
Consider the following TG 
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To have single final state, the above TG can be reduced to the following 
 
 
 
 
  
  
 
 
 
To eliminate states 2 and 3, the above TG can be reduced to the following 
 
 
 
 
 
 
To eliminate state 1 the above TG can be reduced to the following 
 
 
 
 
 
Hence the required RE is (ab+ba)(aa+b)*(aaa+bba) 
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Theory of Automata 
 

Lecture N0. 12 

Reading Material 

 

Introduction to Computer Theory   Chapter 7 

 

Summary 
Examples of writing REs to the corresponding TGs, RE corresponding to TG accepting EVEN-EVEN language,  
Kleene’s theorem part III (method 1:union of FAs), examples of FAs corresponding to simple REs, example of 
Kleene’s theorem part III (method 1) continued 
 
Example 
Consider the following TG 
 
 
 
 
 
 
 
 
 
 
To have single initial and single final state the above TG can be reduced to the following 
 
 
 
 
 
 
 
 
 
 
To obtain single transition edge between 1 and 3; 2 and 4, the above can be reduced to the following 
 
 
 
 
 
 
 
 
 
 
To eliminate states 1,2,3 and 4, the above TG can be reduced to the following TG 
 
 
 
 
 
 
OR 

 
 
  
 
 
 



Theory of Automata                                                                                                                               (CS402)          

                                                                                                           

 

© Copyright Virtual University of Pakistan 

 

31

To connect the initial state with the final state by single transition edge, the above TG can be reduced to the 
following 
 
 
 
Hence the required RE is (b+aa)b*+(a+bb)a* 
 
Example 
Consider the following TG, accepting EVEN-EVEN language 
 
 
 
 
 
 
It is to be noted that since the initial state of this TG is final as well and there is no other final state, so to obtain 
a TG with single initial and single final state, an additional initial and a final state are introduced as shown in the 
following TG 
 
 
 
 
 
 
 
 
 
To eliminate state 2, the above TG may be reduced to the following 
 
 
 
 
 
 
 
 
 
 
To have single loop at state 1, the above TG may be reduced to the following  
 
 
 
 
 
 
 
 
 
 
 
To eliminate state 1, the above TG may be reduced to the following  
 
 
 
 
 
Hence the required RE is (aa+bb+(ab+ba)(aa+bb)*(ab+ba))* 

 

Kleene’s Theorem Part III 

Statement: 

1± 
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If the language can be expressed by a RE then there exists an FA accepting the language. 
As the regular expression is obtained applying addition, concatenation and closure on the letters of an alphabet 
and the Null string, so while building the RE, sometimes, the corresponding FA may be built easily, as shown in 
the following examples 
 
Example 
Consider the language, defined over Σ = {a,b}, consisting of only b, then this language may be accepted by the 
following FA  
 
 
 
 
 
  
 
 
which shows that this FA helps in building an FA accepting only one letter 
 
Example 

Consider the language, defined over Σ = {a,b}, consisting of only ∧∧∧∧, then this language may be accepted by the 
following FA 
 
 
 
 
 
As, if r1 and r2 are regular expressions then their sum, concatenation and closure are also regular expressions, so 
an FA can be built for any regular expression if the methods can be developed for building the FAs 
corresponding to the sum, concatenation and closure of the regular expressions along with their FAs. These 
three methods are explained in the following discussion 
 
Method1 (Union of two FAs): Using the FAs corresponding to r1 and r2 an FA can be built, corresponding to 
r1+ r2. This method can be developed considering the following examples 
 
Example 
Let r1 = (a+b)*b defines L1 and the FA1 be   
 
 
 
 
 
 
 
and r2 = (a+b )*aa(a+b )* defines L2

 and FA2 be 
 
 
 
 
 
Let FA3 be an FA corresponding to r1+ r2, then the initial state of FA3 must correspond to the initial state of FA1 
and the initial state of FA2. 
Since the language corresponding to r1+ r2 is the union of corresponding languages L1 and L2, consists of the 
strings belonging to L1or L2 or both, therefore a final state of FA3 must correspond to a final state of FA1 or FA2 

or both.  
Since, in general, FA3 will be different from both FA1 and FA2, so the labels of the states of FA3 may be 
supposed to be z1,z2, z3, …, where z1 is supposed to be the initial state. Since z1 corresponds to the states x1 or y1, 
so there will be two transitions separately for each letter read at z1. It will give two possibilities of states either z1 

or different from z1. This process may be expressed in the following transition table for all possible states of 
FA3. 
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RE corresponding to the above FA may be r1+r2 = (a+b)*b + (a+b )*aa(a+b )*. 
Note: Further examples are discussed in the next lecture. 

(x2,y1) ≡ z3 (x1,y2) ≡z2 z1–≡(x1,y1) 

(x2,y1) ≡ z3 (x1,y3) ≡z4 z2 ≡(x1,y2) 

(x2,y1) ≡ z3 (x1,y2) ≡ z2 z3+ ≡(x2,y1) 

(x2,y3) ≡ z5 (x1,y3) ≡ z4 z5+ ≡(x2,y3) 

(x2,y3) ≡ z5 (x1,y3) ≡ z4 z4+ ≡(x1,y3) 

b a 

New States after reading  
Old States 

 
 

 
     

 

Z3+ 

Z2 

 
       

 
      
 

Z4 + Z5 + Z1- a 

a a 

a 
b 

a 

b 

b 

b 
b 

b a 

a 

 
     
X1– 
  

b 

     
X2+ 
  

a,b 

 
     

 

a 

 
     

 

b 

 
     

 

a 

b 

y1– y3+ y2 
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a,b 

 
     

  
     

 
a,b 

y1- y2+ 

Theory of Automata 
 

Lecture N0. 13 

Reading Material 

 

Introduction to Computer Theory   Chapter 7 

 

Summary 
Examples of Kleene’s theorem part III    (method 1) continued, Kleene’s theorem part III  (method 2: 
Concatenation of FAs), Example of Kleene’s theorem part III     (method 2 : Concatenation of FAs) 
 
Note 
It may be noted that the example discussed at the end of previous lecture, FA1 contains two states while FA2 
contains three states. Hence the total number of possible combinations of states of FA1 and FA2, in sequence, 
will be six. For each combination the transitions for both a and b can be determined, but using the method in the 
example, number of states of FA3 was reduced to five. 
 
Example 
Let r1 = (a+b)*a and the corresponding FA1 be   
 
 
 
 
 
 
also r2 = (a+b)((a+b)(a+b))* or ((a+b)(a+b))*(a+b) and FA2 be 
 
 
 
 
FA corresponding to r1+r2 can be determined as 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(x1,y2) ≡ z3 (x2,y2) ≡z2 z1-≡(x1,y1) 

(x1,y1) ≡ z1 (x2,y1) ≡z4 z3+ ≡(x1,y2) 

(x1,y1) ≡ z1 (x2,y1) ≡z4 z2+≡(x2,y2) 

(x1,y2) ≡ z3 (x2,y2) ≡ z2 z4+ ≡(x2,y1) 

b a 

New States after reading  

Old States 

a a 

 
     

 

b 

 
     

 
b 

x1- x2+ 

a a 

 
     

 

b 

 
     

 
b 

x1- x2+ 

a,b 

 
     

  
     

 
a,b 

y1- y2+ 

b  
     

a 

 
     

 
 

b  
     

a 

b b a a 

z1- 

z4+ 

z2+ 

z3+ 
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a,b 

 
     

  
     

 
a,b 

y1- y2+ 

Example 
Let r1 = ((a+b)(a+b))* and the corresponding FA1 be   
 
 
 
 
 
also r2 = (a+b)((a+b)(a+b))* or ((a+b)(a+b))*(a+b) and FA2 be 
 
 
 
 
 
 
 
FA corresponding to r1+r2 can be determined as 
 
 

 
 
 
 
 
 
Hence the required FA will be as follows 
 
 
 

Method2 (Concatenation of two FAs):  
Using the FAs corresponding to r1 and r2, an FA can be built, corresponding to r1r2. This method can be 
developed considering the following examples  
 
Example 
Let r1 = (a+b)*b defines L1 and FA1 be  

 
 
  
 
and r2 = (a+b )*aa (a+b )* defines L2

 and FA2 be 
 
 
 
 
 
Let FA3 be an FA corresponding to r1r2, then the initial state of FA3 must correspond to the initial state of FA1 
and the final state of FA3 must correspond to the final state of FA2.Since the language corresponding to r1r2 is 
the concatenation of corresponding languages L1 and L2, consists of the strings obtained, concatenating the 
strings of L1 to those of L2 , therefore the moment a final state of first FA is entered, the possibility of the 

initial state of second FA will be included as well. 
Since, in general, FA3 will be different from both FA1 and FA2, so the labels of the states of FA3 may be 
supposed to be z1,z2, z3, …, where z1 stands for the initial state. Since z1 corresponds to the states x1, so there 
will be two transitions separately for each letter read at z1. It will give two possibilities of states which 
correspond to either z1 or different from z1. This process may be expressed in the following transition table for 
all possible states of FA3 
 
 
 
 
 

(x2,y2) ≡ z2 (x2,y2) ≡z2 z1±≡(x1,y1) 

(x1,y1) ≡ z1 (x1,y1) ≡z1 z2+≡(x2,y2) 

b a 

New States after reading  

Old States 

a,b 

 
     

  
     

 
a,b 

x1± x2 

a,b 

 
     

  
     

 
a,b 

z1± z2+ 

b b 

 
     

 

a 

 
     

 
a 

x1- x2+ 

 
y2 

b 

 
y1-  

y3+ a 

a,b a 

b 
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Hence the required FA will be as follows 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Another example is discussed in the next lecture. 

(x2,y1)≡ z2 x1≡z1 z1-≡x1 

(x2,y1)≡ z2 (x1,y3)≡z4 z3≡(x1,y2) 

(x2,y1)≡ z2 (x1,y2)≡z3 z2≡(x2,y1) 

(x2,y1,y3)≡ z5 (x1,y3)≡ z4 z4+≡(x1,y3) 

(x2 ,y1,y3)≡ z5 (x1,y3)≡ z4 z6+≡(x1,y2,y3) 

(x2,y1,y3)≡ z5 (x1,y2 ,y3)≡ z6 z5+≡(x2,y1,y3) 

b a 

New States after reading  

Old States 

b b 

 
     

 

a 

 
     

 
a 

x1- x2+ 

 
y2 

b 

 
y1-  

y3+ a 

a,b a 

b 

a 
 

     
 

     
 

z6+ z5+ 

 
     

b 

 
     

 

z2 z3 

 
     

 
     

 

z1- z4+ 

a 

b 

a 

a 
b 

b 

b 

b 

a a 
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(x2,y2) ≡ z2 (x2,y2) ≡z2 z1-≡(x1,y1) 

(x1,y1) ≡ z1 (x1,y1) ≡z1 z2+≡(x2,y2) 

b a 

New States after reading  

Old States 

b b 

 
     

 

a 

 
     

 
a 

x1- x2+ 

a,b 

 
     

 
     

 
a,b 

y1- y2+ 

a,b 

 
     

  
     

 
a,b 

y1- y2+ 

Theory of Automata 
 

Lecture N0. 14 
Reading Material 
 

Introduction to Computer Theory   Chapter 7 

 

Summary 
Examples of Kleene’s theorem part III (method 1) continued ,Kleene’s theorem part III (method 2: 
Concatenation of FAs), Examples of Kleene’s theorem part III(method 2:concatenation FAs) continued, 
Kleene’s theorem part III (method 3:closure of an FA), examples of Kleene’s theorem part III(method 3:Closure 
of an FA) continued 
 
Example 
Let r1 = ((a+b)(a+b))* and the corresponding FA1 be   
 
 
  
 
also r2 = (a+b)((a+b)(a+b))* or ((a+b)(a+b))*(a+b) and FA2 be 
 
 
 
 
 
 
FA corresponding to r1r2 can be determined as  
 
 
 
 
 
 
 
 
 
Hence the required FA will be as follows 

 
 

 
 

Method3: (Closure of an FA) 

Building an FA corresponding to r*, using the FA corresponding to r.  
It is to be noted that if the given FA already accepts the language expressed by the closure of certain RE, then 
the given FA is the required FA. However the method, in other cases, can be developed considering the 
following examples 
Closure of an FA, is same as concatenation of an FA with itself, except that the initial state of the required FA is 
a final state as well. Here the initial state of given FA, corresponds to the initial state of required FA and a non 
final state of the required FA as well. 
 
 
 
Example 
Let r = (a+b)*b and the corresponding FA be 
 
  
 
 
 

a,b 

 
     

  
     

 a,b 
x1± x2 
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(x2,x1)≡ z3 x1≡z2 Final z1 ±≡x1 

(x2,x1)≡z3 x1≡z2 z3+≡(x2,x1) 

(x2,x1)≡z3 x1≡z2 Non-final z2≡x1 

b a 

New States after reading  

Old States 

y1≡ z2 y2≡z3 Final z1±≡y1 

y1≡ z2 y2≡z3 Non-Final z2≡y1 

y1≡ z2 (y3,y1)≡z4 z3≡y2 

(y3,y1)≡ z4 (y3 ,y1,y2)≡ z5 z4+≡(y3,y1) 

(y3,y1)≡ z4 (y3,y1 ,y2)≡z5 z5+≡(y3,y1,y2) 

b a 

New States after reading  

Old States 

b b 

 
     

 

a 

 
     

 
a 

x1- x2+ 

b b 

 
     

 

a 

 
     

 
a 

x1- x2+ 

then the FA corresponding to r*  may be determined as under 

 

 
 
 
 
 
 
  
 
 
 
 
 
The corresponding transition diagram may be as under 

 
 
 
 
 
  
 
 
 
 
 
Example 
Let r = (a+b)*aa(a+b)* and the corresponding FA  be   
 
 
 
 
 
then the FA corresponding to r*  may be determined as under 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The corresponding transition diagram may be 
 
 
 

 
 
 
 

a 

b 

b 

 
z3+ 
 

a 

z2 
 

 
z1± 

a b 

 
y2 

b 

 
y1-  

y3+ a 

a,b a 

b 

 
     z3 

 
     

z

 
     

 
z4+ z5+ 

a 

b 

b 

b 

a 

b 
 

     

a 
b 

 
     z1±  

z2 

a 

a 
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y2≡ z2 y2≡z2 z1±≡y1 

y4≡z3 y4≡z3 z3≡y4 

(y3,y1)≡ z4 y4≡z3 z2≡y2 

(y3 ,y1 ,y2)≡ z5 (y3 ,y1 ,y2)≡ z5 z4+≡(y3,y1) 

(y1,y1 ,y2 ,y4)≡z6 (y1,y1 ,y2 ,y4)≡z6 z6≡(y1,y1 ,y2 ,y4) 

(y3,y1,y2)≡ z5 (y3,y1 ,y2 ,y4)≡ z6 z5+≡(y3,y1,y2) 

b a 

New States after reading  

Old States 

Example  
Consider the following FA, accepting the language of strings with b as second letter 

 
 
 
 
 
 

 
then the FA corresponding to r*  may be determined as under 
 
 
 

 
 
 
 
 
 
 
 
 
 
The corresponding transition diagram may be 
 
 
 
 
 
 
 
 
 
 
 
 

 
     

a,b 

 
     

 

y1- y2 

 
     y3+ 

 
     y4 

b 

a,b 

a,b 

a 

 
     

a,b 

 
     z1± z2 

 
     z3 

 
     z4+ 

a 
a,b 

b 

a,b 

 
     z5+ 

a,b 
b 

 
     z6+ 

a 
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Theory of Automata 
 

Lecture N0. 15 

Reading Material 

 

Introduction to Computer Theory   Chapter 7 

 

Summary 

Examples of Kleene’s theorem part III (method 3), NFA, examples, avoiding loop using NFA, example, 
converting FA to NFA, examples, applying an NFA on an example of maze 

 
Note 
It is to be noted that as observed in the examples discussed in previous lecture, if at the initial state of the given 
FA, there is either a loop or an incoming transition edge, the initial state corresponds to the final state and a non-
final state as well, of the required FA, otherwise the initial state of given FA will only correspond to a single 
state of the required FA (i.e. the initial state which is final as well). 

 

Nondeterministic Finite Automaton  (NFA) 

Definition 
An NFA is a TG with a unique start state and a property of having single letter as label of transitions. An NFA is 
a collection of three things 
Finite many states with one initial and some final states 

Finite set of input letters, say, Σ = {a, b, c} 

Finite set of transitions, showing where to move if a letter is input at certain state (∧ is not a valid transition), 
there may be more than one transition for certain letters and there may not be any transition for certain letters. 

 

Observations 
It may be observed, from the definition of NFA,  that the string is supposed to be accepted, if there exists at least 
one successful path, otherwise rejected. 
It is to be noted that an NFA can be considered to be an intermediate structure between FA and TG. 
The examples of NFAs can be found in the following 

 
Example 

 
  
 
 
 
 
It is to be noted that the above NFA accepts the language consisting of a and ab.  

 
Example 
 
 
It is to be noted that the above NFA accepts the language of strings, defined over Σ = {a, b}, containing aa. 

 

Note 
It is to be noted that NFA helps to eliminate a loop at certain state of an FA. This process is done converting the 
loop into a circuit. But during this process the FA remains no longer FA and is converted to a corresponding 
NFA, which is shown in the following example. 

 

 
 
Example 

Consider a part of the following FA with an  
alphabet Σ = {a,b,c,d} 
 
 
 

 
     

b 

 
     

  
     

 
a 

1- 

  
     

a 

a 

5+ 

2+ 

3 

4 

 

a,b 

a 

 
1-  

a 2 3+ 

a,b 

 
     

 
     

 

 
     

 

 
     7 

 
     

 
     

 

 
     

 a 

10 

9 

8 

6 

5 

4 … 

b 

c 

d 

a 

b 

c 

… 

… … 

… 

… 
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- 
 

1 
 

2 
 

3 
 

4 
 

L 
 

5 
 

O 
 

6 
 

M 
 

7 
 

P 
 

8 
 

N 
 

9 
 

+ 
 

 
 
To eliminate the loop at state 7, the corresponding NFA may be as follows 

 
 
 
 
 
 
 
 

 

Converting an FA to an equivalent NFA 

It is to be noted that according to the Kleene’s theorem, if a language can be accepted by an FA, then there 
exists a TG accepting that language. Since, an NFA is a TG as well, therefore there exists an NFA accepting the 
language accepted by the given FA. In this case these FA and NFA are said to be equivalent to each others.  
Following are the examples of FAs to be converted to the equivalent NFAs 

 
Example 

Consider the following FA corresponding to (a+b)*b 
 
 
 
 
The above FA may be equivalent to the following NFA 
 
 
 
 
Can the structure of above NFA be compared with the corresponding RE ? 
 

Example 
Consider the following FA 
 
 
 
The above FA may be equivalent to the  following NFA 
 
 
 
 
Can the structure of above NFA be compared with the corresponding RE ? 

 

 

 

 

 

Application of an NFA 
There is an important application of an NFA in artificial intelligence, which is discussed in the following 
example of a maze 
 
 
 
 
 
 
 
  
 

  

 
     

 

 
     

 

 
     

  
     

 
11 

 
     

 

 
     

 

 
     

 

10 

9 

8 

6 

5 

4 

 
     

 
7 … 

… 

… 

… 

… 

… 

a a 

a 

b 

c 

b 

c 

d 

c 

d 

b 

b b 

 
     

 

a 

 
     

 a 
- + 

a,b 

 
+ 

b 

 
– 

 
1 

b 

 
–  

+ a 

a,b a 

b 

 
1 

a, b 

 
–  

+ a 

a, b 

a 
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- 
 

1 
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4 
 

L 
 

5 
 

O 
 

6 
 

M 
 

7 
 

P 
 

8 
 

N 
 

9 
 

+ 
 

3 

a  
2 
 

a 

a  
1 
 

a 

a  
- 
 

a 

a 

 
4 
 

a 

a 

 
6 
 

a 

a  
8 
 

a 

a 

 
5 
 

a 

a 

 
7 
 

a 

a  
9 
 

a 

a  
+ 
 

a 

Theory of Automata 
 

Lecture N0. 16 

Reading Material 

 

Introduction to Computer Theory   Chapter 7 

 

Summary  
Applying an NFA on an example of maze, NFA with null string, examples, RE corresponding to NFA with null 
string (task), converting NFA to FA (method 1,2,3) examples 
 

Application of an NFA 
There is an important application of an NFA in artificial intelligence, which is discussed in the following 
example of a maze 
 
 
 
 
 
 
 
 

 

- and + indicate the initial and final states respectively. One can move only from a box labeled by other then L, 
M, N, O, P to such another box. To determine the number of ways in which one can start from the initial state 
and end in the final state, the following NFA using only single letter a,  can help in this regard  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It can be observed that the shortest path which leads from the initial state and ends in the final state, consists of 
six steps i.e. the shortest string accepted by this machine is aaaaaa. The next larger accepted string is aaaaaaaa. 
Thus if this NFA is considered to be a TG then the corresponding regular expression may be written as 
aaaaaa(aa)* 
Which shows that there are infinite many required ways 
 
Note 
It is to be noted that every FA can be considered to be an NFA as well , but the converse may not true. 
It may also be noted that every NFA can be considered to be a TG as well, but the converse may not true. 
It may be observed that if the transition of null string is also allowed at any state of an NFA then what will be 
the behavior in the new structure. This structure is defined in the following 

 

NFA with Null String 

Definition 
If in an NFA, ∧∧∧∧ is allowed to be a label of an edge then the NFA is called NFA with ∧ (NFA-∧∧∧∧). 

An NFA-∧∧∧∧ is a collection of three things 
Finite many states with one initial and some final states. 

Finite set of input letters, say, Σ = {a, b, c}. 



Theory of Automata                                                                                                                               (CS402)          

                                                                                                           

 

© Copyright Virtual University of Pakistan 

 

43

 
1 

a,b 

b 

 
–  

+ Λ 

Finite set of transitions, showing where to move if a letter is input at certain state. 

There may be more than one transitions for certain letter and there may not be any transition 

for a certain letter. The transition of ∧ is also allowed at any state. 
 

Example 
Consider the following NFA with Null string 
 
  
 
 
 
The above NFA with Null string accepts the language of strings, defined over Σ = {a, b}, ending in b. 

 
Example 
Consider the following NFA with Null string 
 
 
 
 
The above NFA with Null string accepts the language of strings, defined over Σ = {a, b}, ending in a. 
 
Note 

It is to be noted that every FA may be considered to be an NFA-∧ as well, but the converse may not true. 

Similarly every NFA-∧ may be considered to be a TG as well, but the converse may not true. 

 

NFA to FA 
Two methods are discussed in this regard. 

 

Method 1: Since an NFA can be considered to be a TG as well, so a RE corresponding to the given NFA can be 
determined (using Kleene’s theorem). Again using the methods discussed in the proof of Kleene’s theorem, an 
FA can be built corresponding to that RE. Hence for a given NFA, an FA can be built equivalent to the NFA. 
Examples have, indirectly, been discussed earlier. 
 
Method 2: Since in an NFA, there may be more than one transition for a certain letter and there may not be any 
transition for certain letter, so starting from the initial state corresponding to the initial state of given NFA, the 
transition diagram of the corresponding FA, can be built introducing an empty state for a letter having no 
transition at certain state and a state corresponding to the combination of states, for a letter having more than 
one transitions. Following are the examples 

 
Example 
Consider the following NFA 
 
  
 
 
 
 
 
Using the method discussed earlier, the above NFA may be equivalent to the following FA 

 

 
 
 
 
 
 
 
 
 

 
1 

a,b 

Λ, a 

 
–  

+ a 

 
     

a 

 
     

 
     1- 

 
     

b 

a b 

2 

3 

4+ 

 
     a 

 
     

 

 
     

 

 
     

 
     

 

b 

a 
a 

a, b 

1- 2 

4+ 

3 ∅∅∅∅ 

b 

b 

a, b 
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     b 

 
     

 
     

 

b 

 
     b 

1- 4+ 2 3 

b 

 
Example 

A simple NFA that accepts the language of strings defined over Σ = {a,b}, consists of bb and bbb 

 

 
 
 
The above NFA can be converted to the following FA 
 

 
 
 
 
 
 
 

 
Method 3: As discussed earlier that in an NFA, there may be more than one transition for a certain letter and 
there may not be any transition for certain letter, so starting from the initial state corresponding to the initial 
state of given NFA, the transition table along with new labels of states, of the corresponding FA, can be built 
introducing an empty state for a letter having no transition at certain state and a state corresponding to the 
combination of states, for a letter having more than one transitions. Further examples are discussed in the next 
lecture. 

 
     b 

 
     

 

b 

 
     

 

b 
1- 4+ 2 (3,4)+ 

 
∅ 

a,b a 
a 

a 

a, b 
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(x1 ,x2,x3) ≡z3 (x1 , ∅∅∅∅)≡x1≡z1 z2≡(x1,x2) 

(x1,x2)≡z2 x1≡z1 z1-≡x1 

(x1 ,x2,x3)≡z3 (x1,x3)≡z4 z3+≡(x1,x2,x3) 

(x1 ,x2,x3)≡z3 (x1,x3)≡z4 z4+≡ (x1,x3) 

b a 

New States after reading  

Old States 

Theory of Automata 

 

Lecture N0. 17 

Reading Material 
 

Introduction to Computer Theory   Chapter 7 

 
Summary 
converting NFA to FA (method 3), example, NFA and Kleene’s theorem method 1, examples, NFA and 
Kleene’s theorem method 2 , NFA corresponding to union of FAs, example  

  
Method 3: As discussed earlier that in an NFA, there may be more than one transition for a certain letter and 
there may not be any transition for certain letter, so starting from the initial state corresponding to the initial 
state of given NFA, the transition table along with new labels of states, of the corresponding FA, can be built 
introducing an empty state for a letter having no transition at certain state and a state corresponding to the 
combination of states, for a letter having more than one transitions. Following are the examples 

 

Example 

Consider the following NFA which accepts the language of strings containing bb 

 
  
 
 
Using the method discussed earlier, the transition table corresponding to the required FA may be constructed as 

 

 
 

 

 

 

 

 

 
 
 
 
 
The corresponding transition diagram follows as 

 

 
 

  

  

NFA and Kleene’s Theorem 

It has been discussed that, by Kleene’s theorem part III, there exists an FA corresponding to a given RE. If the 
given RE is as simple as r = aa+bbb or r = a(a+b)*, the corresponding FAs can easily be constructed. However, 
for a complicated RE, the RE can be decomposed into simple REs corresponding to which the FAs can easily be 
constructed and hence, using the method, constructing the FAs corresponding to sum, concatenation and closure 
of FAs, the required FA can also be constructed. It is to be noted that NFAs also help in proving Kleene’s 
theorem part III, as well. Two methods are discussed in the following.  
 
NFA and Kleene’s Theorem 
Method 1: 
The method is discussed considering the following example.   

 
Example 

To construct the FAs for the languages L1 = {a}, L2 = {b} and L3 = {∧} 

Step 1: Build NFA1, NFA2 and NFA3 corresponding to L1, L2 and L3 , respectively as shown in the following 

diagram 

 

a,b 

b 

 
x1-  

b x2 x3+ 

a,b 

a 

b 

 
     

a 

z1- 

a 

b 

a b 

b z2 z3+ z4+ 
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NFA1 
 
 
NFA2 
 
 
NFA3 
Step 2:  
As discussed earlier for every NFA there is an FA equivalent to it, hence there must be FAs for the above 
mentioned NFAs as well. The corresponding FAs can be considered as follows 

 

 
 
 
FA1                                                                   FA2   

  

  

  

  

  

  

  

 
            FA3  

NFA and Kleene’s Theorem method 2 
It may be observed that if an NFA can be built corresponding to union, concatenation and closure of FAs 
corresponding to the REs, then converting the NFA, thus, obtained into an equivalent FA, this FA will 
correspond to the given RE.  
Followings are the procedures showing how to obtain NFAs equivalent to union, concatenation and closure of 
FAs  
 
NFA corresponding to Union of FAs 
Method 
Introduce a new start state and connect it with the states originally connected with the old start state with the 
same transitions as the old start state, then remove the –ve sign of old start state. This creates non-determinism 
and hence results in an NFA. 

 
Example 
 
 
 
FA1 
 
 
 
 
 
 
 
 
 
 
FA2 

  
 
 
 
 
 

 
a 

 
 + 

 
b 

 
 + 

 
± 

a 

a,b 

a,b 

 
+ 

 
     

b 

 
– 

1 

b 

a,b 

a,b 

 
+ 

 
     

a 

 
– 

1 

  
a,b 

± 1 

a,b 

 
     

 

a 

 
     

 

 
     

 
     

 

a 

a a 

b 

x1- x2 

x4+ x3 

b b 

b 

a 

b 

 
y1-  

y2+ 

a,b 
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NFA equivalent to FA1∪FA2 

 
     a 

 
     

 

 
     

 
     

a 

a a 

b 

x1 x2 

x4+ x3 

b 

b 

b 

 
     - 

b 

 

a a, b 

y1 y2+ 

a 

b 

b a 
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Theory of Automata 

 
Lecture N0. 18 

Reading Material 
 

Introduction to Computer Theory   Chapter 7 

 
Summary 
NFA corresponding to union of FAs, example, NFA corresponding to concatenation of FAs, examples, NFA 
corresponding to closure of an FA, example 
 

Example 
 
FA1 

 
 
 
 
 
 
FA2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NFA equivalent to FA1∪FA2 

 
NFA corresponding to Concatenation of FAs 
Method 
Introduce additional transitions for each letter connecting each final state of the first FA with the states of 
second FA that are connected with the initial state of second FA corresponding to each letter of the alphabet. 
Remove the +ve sign of each of final states of first FA and –ve sign of the initial state of second FA. It will 
create non-determinism at final states of first FA and hence NFA, thus obtained, will be the required NFA. 

 

Note 
It may be noted that if first FA accepts the Null string then every string accepted by second FA must be accepted 
by the concatenation of FAs as well. This situation will automatically be accommodated using the method 
discussed earlier. However if the second FA  accepts Null string, then every string accepted by first FA must be 
accepted by the required FA as well. This target can be achieved as, while introducing new transitions at final 
states of first FA the +ve sign of these states will not be removed.  

a,b 

 

a 

 
     

 

b 

 
     

 

a 

b 
p- + q 

 
a 

 1– 

3

 
6+ 

2 

3 

 

 

4 

5 

a 

a 
a,b 

b 

b 

b 

a b 

b 

a 

a,b 

 

a 

 
     

 

b 

 
a 

b  
+ q 

 
a 

 
1 

 

 
6+ 

2 

3 

 

 

4 

5 

a 

a 
a,b 

b 

b 

b 

a b 

b 

a 

 
     

a 

a 

b 

- 

p 

b 



Theory of Automata                                                                                                                               (CS402)          

                                                                                                           

 

© Copyright Virtual University of Pakistan 

 

49

a,b 

 

a 

 
     

 

b 

 
     

 

a 

b 
p- r+ q 

a 

a 
b p

 
a 

 
1 

 

 
6+ 

2 

3 

 

 

4 

5 

a 

a 
a,b 

b 

b 

b 

a b 

b 

a 

a 

b 

 
r 

a,b 

 
p- 

b 

 
q 

a,b 

 

a 

 
     

 

b 

 
     

 

a 

b 
p- r+ q 

y 

a, b 

 
x ±±±±  

a, b 

a,b 

 

a 

 
     

b 

 
a 

b 
p- r + q 

y 

a, b 

 
x + 

a, b 

a, b 

Lastly if both FAs accepts the Null string, then the Null string must be accepted by the required FA. This 
situation will automatically be accommodated as the second FA accepts the Null string and hence the +ve signs 
of final states of first FA will not be removed. 

 
Example (No FA accepts Null string) 
 
 
FA1 

 
 
 
 
 
 
FA2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NFA equivalent to FA1FA2 
 
 
 
Example (FA2 accepts Null string) 

 
 
 
 
FA1 

 
 
 
FA2  

 
 
 
 
 
 
 
 
 
 
 
 

 
a 

 1– 

3

 
6+ 

2 

3 

 

 

4 

5 

a 

a 
a,b 

b 

b 

b 

a b 

b 

a 
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y 

a, b 

 
x ±±±±  

a, b 

 y 

a, b  
± 

a, b 

b  
     

b 

 

 
 

b  
     

b 

a a a a 

1+ 

4 

3 

2 

b 

a 

NFA equivalent to FA1FA2 

 

Example (Both FAs accept Null string) 
 
 
FA1 

 
 
 
 
 
 
 
 
FA2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NFA equivalent to FA1FA2 

NFA corresponding to the Closure of an FA 
Apparently, it seems that since closure of an FA accepts the Null string, so the required NFA may be obtained 
considering the initial state of given FA to be final as well, but this may allow the unwanted string to be 

accepted as well. For example, an FA, with two states, accepting the language of strings, defined over. Σ = {a, 
b}, ending in a, will accept all unwanted strings, if the initial state is supposed to be final as well.  

 

Method 
Thus,  to accommodate this situation, introduce an initial state which should be final as well (so that the Null 
string is accepted) and connect it with the states originally connected with the old start state with the same 
transitions as the old start state, then remove the –ve sign of old start state. Introduce new transitions, for each 
letter, at each of the final states (including new final state) with those connected with  the old start state.This 
creates non-determinism and hence results in the required NFA. 
Example 
Consider the following FA 
 
 
 
 
It may be observed that the FA* accepts only the additional string which is the Null string. 
Considering the state 1 to be final as well, will allow the unwanted strings be accepted as well. Hence the 
required NFA is constructed introducing the new initial state, shown below. 
 
 
 
 
 
 

b  
     

b 

 
     

 
 

b  
     

b 

a a a a 

1± 

4 

3 

2 

a,b 

 

a 

 
     

 

b 

 
     

 

a 

b 
1- 3+ 2 

a,b 

 
2 

a 

 

b 

 
     

 

a 

b 
1 3 + 

 

a 

b ± 

a 

b 
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Example 
Consider the following FA 
 
 
 
 
 
It may be observed that the FA* accepts only the additional string which is the Null string 
As observed in the previous example the required NFA can be constructed only if the new initial state is 
introduced as shown below. 
 

  

  

  

  

  

  

  

  

a b 

2 + 

b 

 
1– 

a 

a b 

2 + 

b 

 
1

a 

a 

b 
± 
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a,b 

 
2+ a, b 

 
     

  
     

a, b 
1±   3 

a,b 

0 

1 

0 

1 

1 0 

0,1 

 
p- 

 

 

 
s+ 

 
q 

r 

0 

1 

0 

1 

1 0 

0,1 

 
p 

 

 

 
s+ 

 
q 

r 

 
± 

0 

1 

0 

1 

Theory of Automata 

 
Lecture N0. 19 

Reading Material 
 

Introduction to Computer Theory   Chapter 7 

 

Summary 

NFA corresponding to Closure of FA, Examples, Memory required to recognize a language, Example, 
Distinguishing one string from another, Example, Theorem, Proof 

 
Example 
Consider the following FA 
 
 
It can be observed that FA*not only accepts the Null string but every other string as well.  

Here we don’t need separate initial and final state. Hence an NFA corresponding to FA* may be 
 
 
Example 
Consider the following FA 
 
 
 
 
 
 
 
 
 
 
 
 
 
The NFA corresponding  to FA*  may be as follows 
 
 

 

 

 

 

 

 

 

 

 

 

 

Memory required to recognize a language 

Memory required to recognize a language means to look at the machine which can recognize a language. As an 
FA can be considered to be a machine which is simple model of computation and every regular language is 
associated with certain FA, so to recognize a language there is a restriction that there is a single pass from left to 
right for any string to decide whether it belongs to certain language ? This helps to remember the information 
about the initial part of the string read so far. 
By this process the input string is examined and the string is decided either to be in a certain language or not. 

Consider L = {w ∈ {a,b}*: w neither ends in ab nor in ba}. i.e. L is the language of strings, defined over Σ = 
{a,b}, consisting of Λ, a, b and strings ending in aa or bb. L may be accepted by the following FA 
 

a,b 

 
2+ a, b 

 
     

 
     

a, b 
1±   3 
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a 

a 

  
       

  

   

 
b 

a 

 

a 

b 

 
a 

a 

b 

b 

b 

b 

a b 

  

ab 

ba 

  

  

 Λ     

b 

a 

 

bb 

aa 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As seen in the above FA, seven states are required to recognize the language L, while on the other hand it is 
very hard to recognize the language PALINDROME. 
As seen in the above example of FA, seven states are required to recognize that language. Now consider another 

language L3 of strings of length three or more, defined over Σ = {a,b}, and the third letter from the right is a.  

As discussed by Martin, there is a straight forward method to build an FA recognizing L3 i.e. a distinct state for 
every possible substring of length less then or equal to 3. It is obvious that for each length i, i=0,1,2,3, of 
substring, the number of states are 2i  and thus total number of states required to recognize the language L3 are  
20+21+22+23 = 23+1-1=15 (using 20+21+22+…+ 2n= 2n+1-1) 

 

Remark: Let L20 be the language of strings of length 20 or more, defined over Σ = {a,b}, and the 20
th

 letter 

from the right is 1, then following the previous method, number of states for the corresponding FA is  

2
20+1

-1=2,097,151. 

However, it may be noted that any portion of memory of a computer that can accommodate 21 bits can be in 221 
 

possible states i.e. 221 possible choices for the informational content. 

 

Distinguishable strings and Indistinguishable strings 

Two strings x and y, belonging to Σ*, are said to be distinguishable w.r.t a language L ⊆ Σ* if there exists a 

string z belonging to Σ* s.t.    xz ∈ L but yz ∉ L or xz ∉ L but yz ∈ L . 

Two strings x and y, belonging to Σ*, are said to be indistinguishable with respect to a language L ⊆ Σ* if for 

every string z belonging to Σ*, either both xz or yz ∈ L or both don’t belong to L. 

 

Example 

Let L be the language of strings, defined over   Σ = {0,1}, ending in 01. 

The strings 110 and 010011 are distinguishable w.r.t L, as there exists 1 belonging to Σ* s.t. 1101 belongs to L 
but 0100111 doesn’t belong to L. 

But 111 and 010011 are indistinguishable, for 1 belonging to Σ* s.t. both 1111 and 010011 don’t belong to L 

i.e. for every z belonging to Σ*, either both 111z and 01001z belong to L, or both don’t belong to L. 
 

Theorem 

Statement 

If L is a language over an alphabet ∑ and for integer n there are n strings from ∑*, any two of which are 
distinguishable w.r.t. language L, then any FA recognizes L must have at least n states. 
(Note: There may not exist any FA which recognizes the given language.) 

 

Proof 
Let S be set of strings, any two of which are distinguishable w.r.t. language L. Let F1 be the FA which 
recognizes the language L. To prove the theorem, it is sufficient to show that any two strings under F1 must be 
ended in different states i.e. corresponding to each string x belonging to S, F1 ends in distinct states. 
Thus if S has n strings then it is to be shown that F1 has at least n states.  
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Let x and y be any two strings from S. By supposition any two strings of S are distinguishable w.r.t. L, so there 

exists a string z belonging to ∑*such that only one of xz and yz belongs to L i.e.F1 ends in a final state either for 
xz or yz  which shows that F1 ends in distinct states for xz and yz. 
Let F1 be ended in same state for both the strings x and y, which shows that F1ends in same state for both xz and 
yz, a contradiction as x and y being distinguishable implies xz and yz are ended at distinct states of F1. 
Hence F1 does not end in a same state for both strings x and y, which shows that each pair of strings belonging 
to S ends in different states. Hence F1 must contain at least n states. 
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Theory of Automata 

 
Lecture N0. 20 

Reading Material 
 

Introduction to Computer Theory   Chapter 8 

 

Summary 

Example of previous Theorem, Finite Automaton with output, Moore machine, Examples 

 
Example 

Let L20={w ∈ {0,1}*: |w| ≥ 20 and the 20th letter of w, from right is, 1}. Let S be the set of all strings of length 

20, defined over Σ, any two of which are distinguishable w.r.t. L20. Obviously the number of strings belonging 
to S, is 220. Let x and y be any two distinct strings i.e. they differ in ith letter, i=1,2,3,…20, from left. For i=1, 
they differ by first letter from left. 
Then by definition of L20, one is in L20 while other is not as shown below 
 
 
 
  
 

So they are distinct w.r.t. L20 for z = Λ i.e. one of xz and yz belongs to L20. 

Similarly if i=2 they differ by 2nd letter from left and are again distinguishable and hence for z belonging to Σ*, 
|z|=1, either xz or yz belongs to L20 because in this case the 20th letter from the right of xz and yz is exactly the 
2nd letter from left of x and y as shown below 
 
 
 
 
 
Hence x and y will be distinguishable w.r.t. L20 for i=2, as well. Continuing the process it can be shown that any 
pair of strings x and y belonging to S, will be distinguishable w.r.t. L20. Since S contains 220 strings, any two of 
which are distinguishable w.r.t. L20, so using the theorem any FA accepting L20 must have at least 220 states.  

 
Note 
It may be observed from the above example that using Martin’s method, there exists an FA having  
220+1-1=2,097,151 states. This indicates the memory required to recognize L20 will be the memory of a computer 
that can accommodate 21-bits i.e.the computer can be in 221 possible states. 

 

Finite Automaton with output 
Finite automaton discussed so far, is just associated with the RE or the language. 
There is a question whether does there exist an FA which generates an output string corresponding to each input 
string ? The answer is yes. Such machines are called machines with output. 
There are two types of machines with output. Moore machine and Mealy machine 

 

Moore machine 

A Moore machine consists of the following 
A finite set of states q0, q1, q2, … where q0 is the initial state. 

An alphabet of letters Σ = {a,b,c,…} from which the input strings are formed. 

An alphabet  Γ={x,y,z,…} of output characters from which output strings are generated. 
A transition table that shows for each state and each input letter what state is entered the next. 
An output table that shows what character is printed by each state as it is entered. 

 

Note 
It is to be noted that since in Moore machine no state is designated to be a final state, so there is no question of 
accepting any language by Moore machine. However in some cases the relation between an input string and the 
corresponding output string may be identified by the Moore machine. Moreover, the state to be initial is not 
important as if the machine is used several times and is restarted after some time, the machine will be started 
from the state where it was left off. Following are the examples 

. … 0 . 

. … 1 . 

z 

z 

. … . 0 

. … . 1 
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q1 q3 q1 

q3 q1 q0- 

q3 q0 q2 

q2 q3 q3 

b a 

New States after reading  

Old States 

1 

0 

0 

1 

Characters          

to be   printed 

 
     

a 

 
     

b 

b 

 
     a 

 
     

 
q0/1 

a 

b 

q1/0 

q2/0 q3/1 a 
b 

Example 
Consider the following Moore machine having the states q0, q1, q2, q3 where q0 is the start state and 

Σ = {a,b}, 

Γ={0,1}  
the transition table follows as 
 
 
 
 
 
 
 
 
 
 
 
the transition diagram corresponding to the previous transition table may be 
 
 
 
 
 
 
 
 
 
It is to be noted that the states are labeled along with the characters to be printed. Running the string abbabbba 
over the above machine, the corresponding output string will be 100010101, which can be determined by the 
following table as well 
  
 
 
 
 
 
 
 
 
It may be noted that the length of output string is l more than that of input string as the initial state prints out the 
extra character 1, before the input string is read. 

 

1 0 1 0 1 0 0 0 1 output 

q0 

 
q2 q3 q2 q3 q1 q1 q1 q0 State 

a b b b a b b a  Input 
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0 1 0 0 0 0 0 1 0 0 0 0 output 

q0 q3 q2 q1 q0 q0 q1 q3 q2 q2 q1 q0 State 

a a b b a a b a b b b  Input 

 
q2/0 b 

 
     

 a  
     

 

a q1/0 q3/1 
 

b q0/0 

a 

b 

b 

a 

Theory of Automata 

 
Lecture N0. 21 

Reading Material 
 

Introduction to Computer Theory   Chapter 8 

 

Summary 

Example of Moore machine, Mealy machine, Examples, complementing machine, Incrementing machine. 

 
Example 
To identify the relation between the input strings and the corresponding output strings in the following Moore 
machine,  
 
 
 
 
 
 
 
if the string bbbabaabbaa is run, the output string will be 000010000010, as shown below 
 
 
 
 
 
 
 
 

 

It can be observed from the given Moore machine that q3 is the only state which prints out the character 1 which 
shows that the moment the state q3 is entered, the machine will print out 1. To enter the state q3, starting from q0 
the string must contain bba. It can also be observed that to enter the state q3 once more the string must contain 
another substirng bba. In general the input string will visit the state q3 as many times as the number of substring 
bba occurs in the input string. Thus the number of 1’s in an output string will be same as the number of 
substring bba occurs in the corresponding input string. 

 

Mealy machine 
A Mealy machine consists of the following 
A finite set of states q0, q1, q2, … where q0 is the initial state. 

An alphabet of letters Σ = {a,b,c,…} from which the input strings are formed. 

An alphabet  Γ={x,y,z,…} of output characters from which output strings are generated. 
A pictorial representation with states and directed edges labeled by an input letter along with an output 
character. The directed edges also show how to go from one state to another corresponding to every possible 
input letter.  
(It is not possible to give transition table in this case.) 

 
Note 
It is to be noted that since, similar to Moore machine, in Mealy machine no state is designated to be a final state, 
so there is no question of accepting any language by Mealy machine. However in some cases the relation 
between an input string and the corresponding output string may be identified by the Mealy machine. Moreover, 
the state to be initial is not important as if the machine is used  
several times and is restarted after some time, the machine  
will be started from the state where it was left  

 
off. Following are the examples 

 
Example 
Consider the Mealy machine shown aside, having the states q0, q1, q2, q3 , where q0 is the start state and 

 
     

a/0 

 
     

 

 
     b/1 

 
     

 

q1 

a/0 

b/1 

q2 

q0 q3 a/1 b/0 

a/1 b/1 
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0 1 0 1 1 1 1 0  output 

q1 

 
q0 q3 q0 q3 q3 q2 q1 q0 States 

a b b b a b b a  Input 

 
q0 

0/1, 1/0 

Σ = {a,b}, 

Γ={0,1} 
 
Running the string abbabbba over the above machine, the corresponding output string will be 11011010, which 
can be determined by the following table as well 
  
 
 
 
 
 
 
 
It may be noted that in Mealy machine, the length of output string is equal to that of input string. 

 
Example 
Consider the following Mealy machine having the states q0, q1, q2 , where q0 is the start state and 

Σ = {a,b}, 

Γ={0,1} 
 
 
 
 
 
 
It is observed that in the above Mealy machine, if in the output string the nth character is 1, it shows that the nth 
letter in the input string is the second in the pair of double letter. 
For babaababba as input string the machine will print 0000100010.  

 
Example 
Consider the following Mealy machine having the only state q0 as the start state and 

Σ = {0,1}, 

 Γ= {0,1} 
  
  
If  0011010  is run on this machine then the corresponding output string will be 1100101. 
This machine is called Complementing  machine. 

 

Constructing the incrementing machine 

In the previous example of complementing machine, it has been observed that the input string and the 
corresponding output string are 1’s complement of each other. There is a question whether the Mealy machine 
can be constructed, so that the output string is increased, in magnitude, by 1 than the corresponding input string? 
The answer is yes.  
This machine is called the incrementing machine. Following is how to construct the incrementing machine. 
Before the incrementing machine is constructed, consider how 1 is added to a binary number. 
Since, if two numbers are added, the addition is performed from right to left, so while increasing the binary 
number by 1, the string (binary number) must be read by the corresponding Mealy machine from right to left, 
and hence the output string (binary number) will also be generated from right to left. 
Consider the following additions 
a) 100101110  b)  1001100111 
                     + 1       + 1 
 100101111        1001101000 
 
It may be observed from the above that 
If the right most bit of binary number, to be incremented, is 0, the output binary number can be obtained by 
converting the right most bit to 1 and remaining bits unchanged. 
If the right most bit of binary number is 1 then the output can be obtained, converting that 1 along with all its 
concatenated 1’s to 0’s,  then converting the next 0 to 1 and remaining bits unchanged. 
The observations (a) and (b) help to construct the following Incrementing (Mealy) machine.  
The Mealy machine have the states q0, q1, q2 , where q0 is the start state and 

a/0 

 
     

 

 
     

 
     

 

q1 q2 

q0 

b/1 
b/0 

b/0 

a/1 
a/0 
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Σ = {0,1}, 

Γ={0,1} 
 
 
 
 
 
 
 
 
 
It may be observed that, in the incrementing machine, if 0 is read at initial state q0, that 0 is converted to 1 and a 
no change state q1 (no carry state) is entered where all 0’s and all 1’s remain unchanged. If 1 is read at initial 
state, that 1 is converted to 0 and the state  q2(owe carry state) is entered, where all 1’s are converted to 0’s and 
at that state if 0 is read that 0 is converted to 1 and the machine goes to no change state. 
If the strings 100101110 and 1001100111 are run over this machine, the corresponding output strings will be 
100101111 and 1001101000 respectively. 

 
Note 
It is to be noted that if the string 111111 is run over the incrementing machine, the machine will print out 
000000, which is not increased in magnitude by 1. Such a situation is called an overflow situation, as the length 
of output string will be same as that of input string.  
It may also be noted that there exists another incrementing machine with two states. 

0/1 

 
     

 

 
     

 
     

 

q1 q2 

q0 

1/0 
0/1 

1/0 

0/0,1/1 
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Theory of Automata 

 
Lecture N0. 22 

Reading Material 
 

Introduction to Computer Theory   Chapter 8 

 

Summary 

Applications of complementing and incrementing machines, Equivalent machines, Moore equivalent to Mealy, 
proof, example, Mealy equivalent to Moore, proof, example 

 

Applications of Incrementing and Complementing machines 

1’s complementing and incrementing machines which are basically Mealy machines are very much helpful in 
computing. 
The incrementing machine helps in building a machine that can perform the addition of binary numbers. 
Using the complementing machine along with incrementing machine, one can build a machine that can perform 
the subtraction of binary numbers, as shown in the following method 

 

Subtracting a binary number from another 
Method 
To subtract a binary number b from a binary number a 
Add 1’s complement of b to a (ignoring the overflow, if any) 
Increase the result, in magnitude, by 1 (use the incrementing machine ). Ignoring the overflow if any. 
Note: If there is no overflow in (1). Take 1’s complement once again in (2), instead. This situation occurs when 
b is greater than a, in magnitude. Following is an example of subtraction of binary numbers 

 
Example 
To subtract the binary number 101 from the binary number 1110, let  
a = 1110  and  b = 101 = 0101.  
(Here the number of digits of b are equated with that of a) 
Adding 1’s complement (1010) of b to a. 
   1110 
              +1010 
 11000  which gives 1000 (ignoring the overflow) 
Using the incrementing machine, increase the above result 1000, in magnitude, by 1 
 1000 
     +1 
 1001 which is the same as obtained by ordinary subtraction. 

 
Note 
It may be noted that the above method of subtraction of binary numbers may be applied to subtraction of 
decimal numbers with the change that 9’s complement of b will be added to a, instead in step (1). 

 

Equivalent machines 
Two machines are said to be equivalent if they print the same output string when the same input string is run on 
them. 
Remark: 
Two Moore machines may be equivalent. Similarly two Mealy machines may also be equivalent, but a Moore 
machine can’t be equivalent to any Mealy machine. However, ignoring the extra character printed by the Moore 
machine, there exists a Mealy machine which is equivalent to the Moore machine. 
 

Theorem 

Statement 
For every Moore machine there is a Mealy machine that is equivalent to it (ignoring the extra character printed 
by the Moore machine). 

 
Proof: 
Let M be a Moore machine, then shifting the output characters corresponding to each state to the labels of 
corresponding incoming transitions, machine thus obtained will be a Mealy machine equivalent to M.  
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Note 
It may be noted that while converting a Moore machine into an equivalent Mealy machine, the output character 
of a state will be ignored if there is no incoming transition at that state. A loop at a state is also supposed to be 
an incoming transition. 
Following is the example of converting a Moore machine into an equivalent Mealy machine 

 
Example 
Consider the following Moore machine 
 
 
 
 
  
 
 
Using the method described earlier, the above machine may be equivalent to the following Mealy machine 

 

 
 
 
 
 
 
Running the string abbabbba on both the machines, the output string can be determined by the following table 

 

 
 
 
 
 
 

  

 

Theorem 

Statement 
For every Mealy machine there is a Moore machine that is equivalent to it (ignoring the extra character printed 
the Moore machine).  

 
Proof 
Let M be a Mealy machine. At each state there are two possibilities for incoming transitions  
The incoming transitions have the same output character.  
The incoming transitions have different output characters. 
If all the transitions have same output characters, then shift that character to the corresponding state. 
If all the transitions have different output characters, then the state will be converted to as many states as the 
number of different output characters for these transitions,  which shows that if this happens at state qi then qi  
will be converted to qi

1 and qi
2 
i.e. if at qi there are the transitions with two output characters then qi

1 for one 
character and qi

2 for other character.  
Shift the output characters of the transitions to the corresponding new states qi

1 and qi
2. Moreover, these new 

states qi
1 and qi

2  should behave like qi as well. Continuing the process, the machine thus obtained, will be a 
Moore machine equivalent to Mealy machine M. 
Following is a note 

 

Note 
It may be noted that if there is no incoming transition at certain state then any of the output characters may be 
associated with that state. 
It may also be noted that if the initial state is converted into more than one new states then only one of these new 
states will be considered to be the initial state. Following is an example 
 

1 1 1 1 1 1 0 1 0 Moore 

q3 q3 q3 q3 q3 q3 q2 q1 q0 States 

a b b b a b b a  Input 

1 1 1 1 1 1 0 1  

 
Mealy 

 
     

b 

 
     

 

 
     a 

 
     

 
q0/0 

a 

b 

q1/1 

q2/0 q3/1 a,b a 

b 

 
     

b/0 

 
     

 

 
     a/1 

 
     

 

q0 

a/1 

b/1 

q1 

q2 q3 a/1,b/1 a/0 

b/0 
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0 1 0 1 1 1 1 0  Mealy 

q1 q0 q3 q0 q3 q3 q2 q1 q0 States 

a b b b a b b a  Input 

0 1 0 1 1 1 1 0 1 

 
Moore 

Example 
Consider the following Mealy machine 
 
 
 
 
  
  

Shifting the output character 1 of  transition b to q0 

 
 
 
 
 
 
 

Shifting the output character 0 of transition a to q1 

 
 
 
 
 
 
 

Shifting the output character 1 of transition b to q2 

 

 
 
 
 
 
 

Splitting q3 into q1

3 and q2

3  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Running the string abbabbba on both the machines, the output strings can be determined by the following table 

 

 
     

a/0 

 
     

 
     b/1 

 
     

 

q1 

a/0 

b/1 

q2 

q0 q3 a/1 b/0 

a/1 b/1 

 
     

a/0 

 
     

 

 
     b/1 

 
     

 

q1 

a/0 

b 

q2 

q0/1 q3 a/1 b/0 

a/1 b/1 

 
     

a 

 
     

 

 
     b/1 

 
     

 
q1/0 

a/0 

b 

q2 

q0/1 q3 a/1 b/0 

a/1 b/1 

 
     

a 

 
     

 

 
     b 

 
     

 
q1/0 

a/0 

b 

q2/1 

q0/1 q3 a/1 b/0 

a/1 b/1 

a 

 
     

 
     

 
     q1/0 q2/1 

q0/1 

b 

a 

a b 

b 

b 

b 

a 

q3/1 
1 

q3/0 
2 

a 



Theory of Automata                                                                                                                               (CS402)          

                                                                                                           

 

© Copyright Virtual University of Pakistan 

 

63

Theory of Automata 

 
Lecture N0. 23 

Reading Material 
 

Introduction to Computer Theory   Chapter 8 

 

Summary 

Mealy machines in terms of sequential circuit 
  
Example 
Consider the following sequential circuit 
 
 
 
 
 
 
 
 
 
 
The following four types of boxes are used in this circuit 
NAND box (NOT AND): For the given input, it provides the complement of Boolean AND output. 
DELAY box (Flip Flop box): It delays the transmission of signal along the wire by one step (clock pulse). 
OR box: For the given input, it provides the Boolean OR output. 
AND box: For the given input, it provides the Boolean AND output. 
The current in the wire is indicated by 1 and 0 indicates the absence of the current. 
There are two points A and B w.r.t. to which following four states of the machine are identified according to the 
presence and absence of current at these points i.e. 

q0(A=0, B=0) ≡ (0,0) 

q1 (A=0, B=1) ≡ (0,1) 

q2 (A=1, B=0) ≡ (1,0) 

q3 (A=1, B=1) ≡ (1,1) 
The operation of the circuit is such that the machine changes its state after reading 0 or 1. The transitions are 
determined using the following  relations 
new B = old A 
new A = (input) NAND (old A AND old B) 
output = (input) OR (old B) 
It is to be noted that old A and old B indicate the presence or absence of current at A and B before inputting any 
letter. Similarly new A and new B indicate the presence or absence of current after reading certain letter. 
At various discrete pulses of a time clock, input is received by the machine and the corresponding output string 
is generated. 
The transition at the state q0 after reading the letter 0, can be determined, along with the corresponding output 
character as under 
 
 new B = old A = 0 
 new A = (input) NAND (old A AND old B) 
            = 0 NAND ( 0 AND 0) = 0 NAND 0 
            = 1 
 output = (input) OR (old B) = 0 OR 0 = 0 
 

Thus after reading 0 at q0 new B is 0 and new A is 1 i.e. machine will be at state (1,0) ≡ q2 and during this 
process it’s output character will be 0. 
The remaining action of this sequential circuit can be determined as shown by the following suggested transition 
table of the corresponding Mealy machine 
 
 
 

NNAND DELAY OR 

AND 

  
input output 

 
A B 
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0 1 1 1 1 1 1 0 

 
output 

q3 q2 q1 q3 q2 q1 q3 q2 q0 States 

0 1 1 1 0 1 1 0 

 
Input 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The corresponding transition diagram may be as follows 
 
 
 
 
 
 
 
 
 
 
 
 
Note: It may be noted that if the string 00 is read at any state, it results in ending in state q3. 
 
Running the string 01101110 on the previous machine, the output string can be determined by the following 
table 
 
 
 
 
 
 
 
Following is a note regarding the sequential circuit under consideration 
 

Note 

 
 
 
 
 
 
 
 
 
 
It is to be noted that in this sequential circuit, delay box plays an important role in introducing four states of the 
machine. 

0/0, 1/1 0/0, 1/1 

1/1 

1/1 0/1 
0/1 

 
 

 

 
     

 

q0 

q2 

q1 

q3 

NNAND DELAY OR 

AND 

  
input output 

 
A B 

1 (0,1)≡q1 1 (1,1)≡q3 q3 ≡(1,1) 

1 (1,1)≡q3 0 (1,1)≡q3 q2 ≡(1,0) 

1 (1,0)≡q2 1 (1,0)≡q2 q1 ≡(0,1) 

1 (1,0)≡q2 0 (1,0)≡q2 q0 ≡(0,0) 

Inputting 1          
 

State            Output 

Inputting 0 
 

State            Output 

Old state 
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Theory of Automata 

 
Lecture N0. 24 

Reading Material 
 

Introduction to Computer Theory   Chapter 9 

 

Summary 
Regular languages, complement of a language, theorem, proof, example, intersection of two regular languages 

  

Regular languages 
As already been discussed earlier that any language that can be expressed by a RE is said to be regular language, 
so if L1 and L2 are regular languages then L1 + L2 , L1L2 and L1*  are also regular languages. This fact can be 
proved by the following two methods 
  
By Regular Expressions 
As discussed earlier that if r1, r2 are regular expressions, corresponding to the languages L1 and L2 then the 
languages L1 + L2 , L1L2 and L1* generated by r1+ r2, r1r2  and  r1*, are also regular languages. 
 
By TGs 
If L1 and L2 are regular languages then L1 and L2 can also be expressed by some REs as well and hence using 
Kleene’s theorem, L1 and L2 can also be expressed by some TGs. Following are the methods showing that there 
exist TGs corresponding to L1 + L2, L1L2 and L1*  
 
If L1 and L2 are expressed by TG1 and TG2 then following may be a TG accepting L1 + L2  

 
 
 
 
 
 
 
 
 
If L1 and L2 are expressed by the following TG1 and TG2 
 

 
 
 
then following may be a TG accepting L1L2 
  

 

 

 

also a TG accepting L1*  may be as under 
 
 
 
 
 
 
Example 
Consider the following TGs 
 
 
 
 
 
 

 
     

 
     

 
     

 
     

 
     - 1- 

n+ 

p- 

m+ 

Λ Λ 

TG1 TG2 

 
      

     1- TG1 
n+ 

 
      

     p- TG2 m+ 

 
      

     1- TG1 
n 

 
      

     p TG2 m+ Λ 

 
      

     1- n+ 

Λ 

Λ 

TG1 

ab,ba 
 

     

ab,ba 

 
     1± 

aa,bb aa,bb 

2 TG1 

  
aaa,bbb 

a,b a,b 

q+ p- 
TG2 
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Following may be a TG accepting L1+L2   
 
 
 
 
 
 
  
  
  
 
 
 
also a TG accepting L1L2 may be 
 
 
 
  
 
 
 
and a TG accepting L2* 
 
 
 

  

  

  

Complement of a language 

Let L be a language defined over an alphabet Σ, then the language of strings, defined over Σ, not belonging to 

L, is called Complement of the language L, denoted by Lc or L’. 
 
Note 
To describe the complement of a language, it is very important to describe the alphabet of that language over 
which the language is defined. 
For a certain language L, the complement of Lc is the given language L i.e. (Lc)c  = L 

 

Theorem 
If L is a regular language then, Lc is also a regular language.  

 

Proof 

Since L is a regular language, so by Kleene’s theorem, there exists an FA, say F, accepting the language L. 
Converting each of the final states of F to non-final states and old non-final states of F to final states, FA thus 
obtained will reject every string belonging to L and will accept every string, defined over Σ, not belonging to L. 
Which shows that the new FA accepts the language Lc. Hence using Kleene’s theorem Lc  can be expressed by 
some RE. Thus Lc is regular. 
 
Example 
Let L be the language over the alphabet Σ = {a, b}, consisting of only two words aba and abb, then the FA 
accepting L may be 
 
 
 
 
 
 
 
 
 

ab,ba 
 

     

ab,ba 
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aa,bb aa,bb 
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aaa,bbb 

a,b a,b 

q+ p- TG1 TG2 
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Λ Λ 
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     1- 
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q+ TG1 TG2 

Λ 

p 
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Λ 
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a,b 
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     n± o+ 

a 

 
     p+ 

b 

 
     q 

a,b 

 
     r+ 

b a 
a,b 

a,b 

 
Converting final states to non-final states and old non-final states to final states, then FA accepting Lc may be 
 
 
 
 
 
 
 

Theorem 

Statement 

If L1 and L2 are two regular languages, then L1 ∩  L2 is also regular. 

 

Proof 
Using De-Morgan's law for sets 

(L1
c
 ∪ L2

c)c  = (L1
c)c ∩  (L2

c)c = L1
 ∩  L2  

Since L1
 and L2 are regular languages, so are L1

c
 and L2

c. L1
c
 and L2

c being regular provide that L1
c ∪ L2

c is also 

regular language and so (L1
c ∪ L2

c)c = L1
 ∩ L2, being complement of regular language is regular language.  
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Theory of Automata 

 
Lecture N0. 25 

Reading Material 
 

Introduction to Computer Theory   Chapter 9,10 

 

Summary 
Intersection of two regular languages, examples, non regular language, example 

  

Theorem 
Statement 

If L1 and L2 are two regular languages, then L1 ∩ L2 is also regular. 

 

Proof 
Using De-Morgan's law for sets 

(L1
c ∪ L2

c)c  = (L1
c)c ∩ (L2

c)c = L1
 ∩ L2  

Since L1
 and L2 are regular languages, so are L1

c
 and L2

c. L1
c
 and L2

c being regular provide that L1
c ∪ L2

c is also 

regular language and so (L1
c
 ∪  L2

c)c = L1
 ∩ L2, being complement of regular language is regular language. 

Following is a remark  
 

Remark 
If L1

 and L2 are regular languages, then these can be expressed by the corresponding FAs. Finding regular 

expressions defining the language L1
 ∩  L2 is not so easy and building corresponding FA is rather harder. 

Following are example of finding an FA accepting the intersection of two regular languages 
 
Example 
Consider two regular languages L1

 and L2, defined over the alphabet Σ = {a, b}, where  
L1

 = language of words with double a’s. 

L2
 = language of words containing even number of a’s. 

FAs accepting languages L1
 and L2 may be as follows 

 
 
FA1 

 

 

 

FA2 

 

 
Their corresponding REs may be 
r1 = (a+b)*aa(a+b)* 

 r2 = (b+ab*a)* 

Now FAs accepting L1
c and L2

c , by definition, may be 
 
 
FA1

c 

 
 
 
FA2

c 

 

 

  

Now FA accepting L1
c ∪ L2

c , using the method described earlier, may be as follows 
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Here all the possible combinations of states of FA1

c and FA2
care considered 

 
 
 
 
 
 
 
 
 
 
 
 

An FA that accepts the language (L1
c
 ∪ L2

c)c=L1 ∩ L2may be  
 
 
  
 

 
 
 
 
 
 
Corresponding RE can be determined as follows 

The regular expression defining the language L1 ∩ L2 can be obtained, converting and reducing the previous FA 
into a GTG as after eliminating states z2 and z6 

 
 
 
  
 
 

 
 
 
 
after eliminating state z3 
 
 

 
 
 
 

(r,2)≡ z6 (r,1)≡ z5 z6+≡(r,2) 

      (p,1)≡z1 (q,2)≡z4 z1±≡(p,1) 

(p,1)≡ z1 (r,2)≡z6 z3+≡(q,1) 

(p,2)≡ z2 (q,1)≡z3 z2+≡(p,2) 

(p,2)≡ z2 (r,1)≡ z5 z4+≡(q,2) 

(r,1)≡ z5 (r,2)≡ z6 
z5≡(r,1) 

b a 

New States after reading  

Old States 

b b 

z6+ 
a  

z5 

a 

a 

 
z4+ 

b 

 
z3+ 

b 

 
z2+ 

 
z1± 
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b b 
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b 
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a 

b a 

b 
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z4 

b 

 
z3 
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a 
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ab*a ab*a+b 

bb*a 
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z1- 

b+abb*ab 
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b+ab*a 
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z4 can obviously be  
eliminated as follows  
 
 
 
eliminating the loops at z1 and z5 

 

 
Thus the required RE may be (b+abb*ab)*a(a+bb*aab*a)(b+ab*a)* 

 

FA corresponding to intersection of two regular languages      (short method) 

Let FA3 be an FA accepting L1 ∩ L2, then the initial state of FA3 must correspond to the initial state of FA1 and 
the initial state of FA2. 

Since the language corresponding to L1 ∩ L2 is the intersection of corresponding languages L1 and L2, consists 
of the strings belonging to both L1and L2, therefore a final state of FA3 must correspond to a final state of FA1 
and FA2. Following is an example regarding short method of finding an FA corresponding to the intersection of 
two regular languages. 
 
Example 
Let r1 = (a+b)*aa(a+b)* and FA1 be 

  
 
 
 
also r2 = (b+ab*a)*  and FA2 be 
 
 
 
 

An FA corresponding to L1 ∩ L2 can be determined as follows 

 

 
 
 
 
 
 
 
 
 
 

 
 
The corresponding transition diagram may be as follows 

 
 
 
 
 
 
 
 
 
 
 
 
 

(p,1)≡z1 (q,2)≡z4 z1-≡(p,1) 

(p,1)≡ z1 (r,2)≡z6 z3≡(q,1) 

(p,2)≡ z2 (q,1)≡z3 z2≡(p,2) 

(p,2)≡ z2 (r,1)≡ z5 z4≡(q,2) 

(r,2)≡ z6 (r,1)≡ z5 z6≡(r,2) 

(r,1)≡ z5 (r,2)≡ z6 z5+≡(r,1) 

b a 

New States after reading  

Old States 

z1- z5+ 

b+ab*a b+abb*ab 

a(a+bb*aab*a) 

z1- z5+ 
(b+abb*ab)*a(a+bb*aab*a)(b+ab*a)* 

b b 
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a  
1± 
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Nonregular languages 
The language that cannot be expressed by any regular expression is called a Nonregular language. 
The languages PALINDROME and PRIME  are the examples of nonregular languages. 
Note: It is to be noted that a nonregular language, by Kleene’s theorem, can’t be accepted by any FA or TG. 
 
Example  
Consider the language L = {Λ, ab, aabb, aaabbb, …} i.e. {an bn  : n=0,1,2,3,…} 
Suppose, it is required to prove that this language is nonregular. Let, contrary, L be a regular language then by 
Kleene’s theorem it must be accepted by an FA, say, F. Since every FA has finite number of states then the 
language L (being infinite) accepted by F must have words of length more than the number of states. Which 
shows that, F must contain a circuit. 
For the sake of convenience suppose that F has 10 states. Consider the word a9 b9 from the language L and let 
the path traced by this word be shown as under 
 
 
 

 
 
 
 
 
 
 
But, looping the circuit generated by the states 3,4,6,5,3 with a-edges once more, F also accepts the word a9+4 b9, 
while a13b9 is not a word in L. It may also be observed that, because of the circuit discussed above, F also 
accepts the words a9(a4 )m b9, m =  1,2,3, … 
Moreover, there is another circuit generated by the states 9,10,9. Including the possibility of looping this circuit, 
F accepts the words     a9(a4 )m b9(b2 )n  where m,n=0,1,2,3,…(m and n not being 0 simultaneously).Which shows 
that F accepts words that are not belonging to L.  
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Theory of Automata 

 
Lecture N0. 26 

Reading Material 
 

Introduction to Computer Theory   Chapter 10 

 

Summary  

Example of nonregular language, pumping lemma version I, proof, examples  

 
Example  
Consider the language L = {Λ, ab, aabb, aaabbb, …} i.e. {an bn  : n=0,1,2,3,…} 
Suppose, it is required to prove that this language is nonregular. Let, contrary, L be a regular language then by 
Kleene’s theorem it must be accepted by an FA, say, F. Since every FA has finite number of states then the 
language L (being infinite) accepted by F must have words of length more than the number of states. Which 
shows that, F must contain a circuit. 
For the sake of convenience suppose that F has 10 states. Consider the word a9 b9 from the language L and let 
the path traced by this word be shown as under 
 
 
 
 
 
 
 
 
 
 
 
But, looping the circuit generated by the states 3,4,6,5,3 with a-edges once more, F also accepts the word a9+4 b9, 
while a13b9 is not a word in L. It may also be observed that, because of the circuit discussed above, F also 
accepts the words a9(a4 )m b9, m =  1,2,3, … 
Moreover, there is another circuit generated by the states 9,10,9. Including the possibility of looping this circuit, 
F accepts the words     a9(a4 )m b9(b2 )n  where m,n=0,1,2,3,…(m and n not being 0 simultaneously).Which shows 
that F accepts words that are not belonging to L.  
Similarly for finding FAs accepting other words from L, they will also accept the words which do not belong to 
L. 
Thus there is no FA which accepts the language L. which shows, by Kleene’s theorem, that the language L can’t 
be expressed by any regular expression. It may be noted that apparently  anbn seems to be a regular expression of 
L, but in fact it is not. The observations made from this example, generalize the theorem (also called the 
Pumping lemma) regarding the infinite regular language as follows 
 

Pumping Lemma 
Statement 

Let L be any infinite regular language (that has infinite many words), defined over an alphabet ∑ then there exist 

three strings x, y and z belonging to ∑* (where y is not the null string) such that all the strings of the form xynz 
for n=1,2,3, … are the words in L. 

 
Proof 
If L is a regular language, then according to Kleene’s theorem, there exists an FA, say, F that accepts this 
language. Now F, by definition, must have finite no of states while the language has infinitely many words, 
which shows that there is no restriction on the length of words in L, because if there were such restriction then 
the language would have finite many words. 
Let w be a word in the language L, so that the length of word is greater than the number of states in F. In this 
case the path generated by the word w, is such that it cannot visit a new state for each letter i.e. there is a circuit 
in this path. 
The word w, in this case, may be divided into three parts 
The substring which generates the path from initial state to the state which is revisited first while reading the 
word w. This part can be called x and x can be a null string. 
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The substring which generates the circuit starting from the state which was lead by x. This part can be called as 
y which cannot be null string. 
The substring which is the remaining part of the word after y, call this part as z. It may be noted that this part 
may be null string as the word may end after y or z part may itself be a circuit. 
Thus the word may be written as w = xyz  where x,y and z are the strings, also y can’t be a null string. 
Now this is obvious that, looping the circuit successively, the words xyyz, xyyyz, xyyyz, … will also be 
accepted by this FA i.e. xynz, n=1,2,3, … will be words in L. 
 

Remark: In the above theorem, it is not affected if the z-part has circuit. To prove the theorem it is only to find a 
circuit and then looping that circuit, is all that is needed. While looping the circuit the volume of the string y   
(or z) is pumped, so the theorem is also called the Pumping lemma. Following are the examples 
 
Example 
Consider the following 5 states FA, say, F which accepts an infinite language 
 
 
 
 
 
 
  
 
 
 
 
 
 
Let the word w = bbbababa, belonging to the language L, so that the length of word is greater than 6 (the 
number of states in F). 
In this case the path generated by this word is such that it cannot visit a new state for each letter i.e. there is a 
circuit in this path. 
The word w, in this case, may be divided into three parts. 
The substring which generates the path from initial state to the state which is revisited first while reading the 
word w. This can be called as part x and this may be null string. 
The substring which generates the circuit starting from the start state which was lead by x, this part can be called 
as y and this cannot be null string. 
The substring which is the remaining part of the word after y, this part can be called as z. It may be noted that 
this part may be null string as the word may end after y or z-part may itself be a circuit. 

Thus the word w may be written as w =  xyz, where x,y,z are strings belonging to ∑* and y cannot be null string. 
The state 2 is such that it is revisited first while reading the word w. So the word w can be decomposed, 
according to pumping lemma, as w = xyz = (b)(bba)(baba) 
If y-part of w is continuously pumped, the resulting strings will be accepted by F and hence will be words in the 
language accepted by F. Thus, by pumping lemma, the language accepted by F is regular. 
 

Remark: If the pumping lemma is applied directly on the language L = {an bn  : n=0,1,2,3,…}, it can be observed 
that for the word w = (aaa)(aaaabbbb)(bbb) 
where x = aaa, y = aaaabbbb and z = bbb 
xyyz will contain as many number of a’s as there are b’s but this string will not belong to L because the 
substring ab can occur at the most once in the words of L, while the string xyyz contains the substring ab twice. 
On the other hand if y-part consisting of only a’s or b’s, then xyyz will contain number of a’s different from 
number of b’s. This shows that pumping lemma does not hold and hence the language is not regular. 
 
Example 
Consider the language EQUAL, of strings, defined over Σ={a,b}, with number of a’s equal to number of b’s, 
i.e. EQUAL = {Λ ,ab,aabb,abab,baba,abba,…} 

From the definition of EQUAL, it is clear that {an bn } = a* b* ∪ EQUAL 

Obviously a* b*  defines a regular language while {an bn } has been proved nonregular. 
Using the theorem that intersection of two regular languages is, regular; it can be proved that the EQUAL is not 
regular. Because if it is considered regular then the language {an bn } will, being intersection of regular 
languages, be regular language, which is impossible. 
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Following are the remarks regarding these examples 
Remarks 
In the previous examples, languages are proved to be regular or nonregular using pumping lemma. In fact to 
prove a certain language to be regular, it is not needed to use the full force of pumping lemma i.e. for a word 
with length greater than the number of states of the machine, decomposing the word into xyz and for a language 
to be regular it is sufficient that xyyz is in L. The condition that xynz  is in L for n>2, provides that the language 
is infinite. 
Consider the language PALINDROME and a word w = aba belonging to PALINDROME. Decomposing  
w = xyz where x=a, y=b, z=a. It can be observed that the strings of the form xynz  for n=1,2,3, …, belong to 
PALINDROME. Which shows that the pumping lemma holds for the language PALINDROME (which is non 
regular language). To overcome this drawback of pumping lemma, a revised version of pumping lemma is to be 
introduced.  
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Theory of Automata 

 
Lecture N0. 27 

Reading Material 
 

Introduction to Computer Theory   Chapter 10 

 

Summary 
Pumping lemma version II, proof, examples, Myhill Nerode theorem, examples 
 

Pumping Lemma version II 
Statement 
Let L be an infinite language accepted by a finite automaton with N states, then for all words w in L that have 

langth more than N, there are strings x,y and z (y being non-null string) and length(x) + length(y) ≤ N s.t.  
w = xyz and all strings of the form xynz  are in L for n = 1,2,3, … 

 

Proof 
The lemma can be proved, considering the following examples 
 
Example 
Consider the language PALINDROME which is obviously infinite language. It has already been shown that the 
PALINDROME satisfies pumping lemma version I (previous version). To check whether the new version of 
pumping lemma still holds in case of the PALINDROME, let the PALINDROME be a regular language and be 
accepted by an FA of 78 states. Consider the word w = a85ba85.  

Decompose w as xyz, where x,y and z are all strings belonging to ∑* while y is non-null string, s.t.  

length(x) + length(y) ≤ 78, which shows that the substring xy is consisting of a’s and xyyz will become  
amore than 85ba85 which is not in PALINDROME. Hence pumping lemma version II is not satisfied for the 
language PALINDROME. Thus pumping lemma version II can’t be satisfied by any non regular language. 
Following is another example in this regard 
 
Example 
Consider the language PRIME, of strings defined over Σ = {a}, as {ap : p is prime}, i.e. 
PRIME = {aa, aaa, aaaaa, aaaaaaa, …} 
To prove this language to be nonregular, suppose contrary, i.e. PRIME is a regular language, then there exists 
an FA accepts the language PRIME. Let the number of states of this machine be 345 and choose a word w from 
PRIME with length more than 345, say, 347 i.e. the word w = a347 

Since this language is supposed to be regular, therefore according to pumping lemma xynz, for n = 1,2,3,… are 
all in PRIME. 
Consider n=348, then xynz = xy348z = xy347yz. Since x,y and z consist of a’s, so the order of x, y, z does not 
matter i.e. xy347yz = xyzy347 = a347 y347, y being non-null string and consisting of a’s it can be written y = am, 
m=1,2,3,…,345. 
Thus xy348z = a347 (am)347 = a347(m+1) 

Now the number 347(m+1) will not remain PRIME for m = 1,2,3, …, 345. Which shows that the string xy348z is 
not in PRIME. Hence pumping lemma version II is not satisfied by the language PRIME. Thus PRIME is not 
regular. 
 
Strings belonging to same class 

Consider a regular language L, defined over an alphabet ∑. If, two strings x and y, defined over ∑, are run over 
an FA accepting the language L, then x and y are said to belong to the same class if they end in the same state, 
no matter that state is final or not. 
 
Note: It is to be noted that this concept of strings x and y can be compared with indistinguishable strings w.r.t. L 
(discussed earlier). Equivalently, the strings x and y are said to belong to same class if for all strings z, either xz 
and yz belong to L or xz and yz don’t belong to L. 

 

Myhill Nerode theorem 
Statement 

For a language L, defined over an alphabet∑,  

L partitions ∑*  into distinct classes. 
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If L is regular then, L generates finite number of classes. 
If L generates finite number of classes then L is regular. 
The proof is obvious from the following examples 
 
Example 

Consider the language L of strings, defined over ∑ = {a,b}, ending in a. 

It can be observed that L partitions ∑* into the following two classes 
C1 = set of all strings ending in a. 
C2 = set of all strings not ending in a. 
Since there are finite many classes generated by L, so L is regular and hence following is an FA, built with the 
help of C1 and C2, accepting L. 
 

 
 
  
 
Example 

Consider the language L of strings, defined over ∑ = {a,b}, containing double a. It can be observed that L 

partitions ∑* into the following three classes 
C1 = set of all strings without aa but ending in a. 

C2 = set of Λ and all strings without aa but ending in b. 
C3 = set of all strings containing aa. 
Since there are finite many classes generated by L, so L is regular and hence following is an FA, built with the 
help of C1, C2 and C3, accepting L. 
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Theory of Automata 

 

Lecture N0. 28 

Reading Material 
 

Introduction to Computer Theory   Chapter 10 

 

Summary  
Examples of Myhill Nerode theorem, Quotient of a language, examples, Pseudo theorem: Quotient of a 
language is regular, prefixes of a language, example 
 
Example 

Consider the language L which is EVEN-EVEN, defined over Σ = {a,b}. It can be observed that L partitions Σ* 
into the following four classes 
C1 = set of all strings with even number of a’s and odd number of b’s. 

C2 = set of all strings with odd number of a’s and odd number of b’s. 

C3 = set of all strings with odd number of a’s and even number of b’s.  

C4 = set of all strings with even number of a’s and even number of b’s. 

Since there are finite many classes generated  
by L, so L is regular and hence following is  
an FA, built with the help of C1, C2, C3  

and C4, accepting L. 

 
 
 
 
 
 

Example 

Consider the language L = {w ∈∈∈∈ {a,b}*: length(w) ≥≥≥≥ 2, w ends in either ab or ba}.  
It can be observed that L partitions Σ* into the following seven classes 
 C1 = set containing only null string. 

 C2 = set containing only letter a. 

 C3 = set containing only letter b. 

 C4 = set of strings ending in aa. 

 C5 = set of strings ending in ab. 

 C6 = set of strings ending in ba. 

 C7 = set of strings ending in bb. 

Since there are finite many classes generated by  
L, so L is regular and hence FA shown  
aside, is built with the help  
of C1, C2, C3 , C4, C5 , C6 and  

C7, accepting L 

 
 
 
 
Following is an FA equivalent to the above FA 
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Note It can be noted, from the above two FAs accepting the same language, that if the language L, partitions Σ*  

into n distinct classes, then L may partition Σ* into finite many distinct classes other than n. 

 

Quotient of a language into another 
Remark The theorem has been proved to show under what conditions a language is regular. It has also been 
proved that the product of two regular languages is regular. 
The question arises that whether there exists a theorem showing that quotient of regular languages is regular. 
There is a problem in defining the quotient of two regular languages. There is an approach in defining the 
quotient of regular languages i.e. the language Q is said to be quotient of two regular languages P and R, 
denoted by Q=R/P if PQ=R.  
It is to be noted that this definition does not determine a unique language e.g. for P=Q=R expressed by a* then 

PQ=R and so Q=R/P i.e. a*=a* / a*. But for Q={∧}, P=R expressed by a*, PQ=R is still true which shows that 

Q={∧}=R/P expressed by a* / a*  

Similarly, for the same P and R, Q may be taken as {∧},{a},{aaaa},{aaaaaaaa}, … Thus there exist infinite 
many choices for defining the quotient language in this case of one-letter alphabet.  
 

Pseudo theorem 
Statement 
For three languages P,Q and R, while PQ=R the language Q must be regular if both P and R are regular. 
(Note: It is to be noted that since this theorem is not true, so the theorem is called pseudo theorem.) 
  
Disproof 
The theorem can be disproved by contradiction i.e. supposing that Q is regular. 
 
Let P=a*, Q be the product of {anbn:n=0,1,2,…} and b*  then PQ=a*{anbn}b*=a*b*=R which shows that R is 
regular. 
To disproof this theorem, it is sufficient to prove that Q is not regualr. By definition, the words in Q are of the 

form axby where x ≤ y. Let Q be regualr and hence there exists an FA that accepts Q. Suppose the number of 
states in this machine be N. Now the word aNbN  is also in Q and must be accepted by this FA. 
Since the number of states in this machine is N, there must be a circuit in this machine to run the substring aN. 
Thus while accepting the word aNbN, the machine looping the circuit once again, can accept the word 
amore than NbN, which is not in Q. Hence it is impossible to find any FA that accepts exactly the language Q. Thus 
Q is not regular and hence the theorem is disproved. 

 

Prefixes of a language in another language 
If two languages R and Q are given, then the language the prefixes of Q in R denoted by Pref(Q in R) is the set 
of strings of letters that, when concatenated to the front of some word in Q to produce some word in R i.e. 
Pref(Q in R) = the set of all strings p such that there exists words q in Q and w in R such that pq = w. Following 
are the examples in this regard 
 
Example 
Let Q = {aa,abaaabb,bbaaaaa,bbbbbbbbbb} and R = {b,bbbb,bbbaaa,bbbaaaaa} 
It can be observed that aa and bbaaaaa occur at the ending parts of some words of R, hence these words help in 
defining the language pref(Q in R). Thus pref(Q in R) = {b,bbba,bbbaaa} 
 
Note: The language of prefixes may be consisting of word L, while there is also a possibility that this language 
may not contain any string (even not the null string). 
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Theory of Automata 

 
Lecture N0. 29 

Reading Material 
 

Introduction to Computer Theory   Chapter 10, 11 

 

Summary  

Example of prefixes of a language, Theorem: pref(Q in R) is regular, proof, example, Decidablity, deciding 
whether two languages are regular or not ?, method 1, example, method 2, example 

  
Example 
Let Q and R be expressed by ab*a and (ba)* respectively i.e. Q={aa,aba,abba, …} and  

R={∧, ba, baba, bababa, …}. aba is the only word in Q which can make a word in R, because the words in R 
don’t contain the double letter. Thus pref(Q in R) = {b, bab, babab, …}, which can be expressed by b(ab)* or 
(ba)*b. 
 
Remark 
It may be noted that the language R cannot be factorized with the help of language Pref(Q in R) i.e.  
Pref(Q in R)Q is not equal to R in general. However the following theorem shows that the language pref(Q in R) 
is regular if R is regular, no matter whether the language Q is regular or not. 
 

Theorem 

Statement 
If R is regular language and Q is any language (regular/ nonregular), then Pref(Q in R) is regular. 

 

Proof 
Since R is regular there exists an FA that accepts this language. Choose a state, say, s of this FA and see whether 
this state can trace out a path ending up in a final state while running words from Q. If this state traces out a path 
ending up in a final state for any of the words of Q, mark this state with certain colour.  
Repeat this process for remaining states of the machine. If at least one state of this machine is marked then it can 
be shown that the language Pref(Q in R) is non-empty. Now build a new FA with some marked states by 
considering the initial state that of original FA and final states which are marked. The machine, thus obtained 
accepts exactly the language Pref(Q in R). Thus Pref(Q in R) being accepted by an FA is regular.  
 
Remark 
There is a problem in deciding whether a state of FA should be marked or not when the language Q is infinite. 
This proof just gives non constructive method to prove that Pref(Q in R) is regular. 
 
Example 

Consider the languages Q={aba, abb} and R = {w ∈ {a,b}*: length(w) ≥ 2, w ends in either ab or ba}, where R 
may be accepted by the following FA 
 
 
 
 
 
 
 
 
 
It can be observed that the string aba from Q make the words of R and hence the states 1,2,3,4 and 5 can easily 
be marked. Thus from the given FA, making the states 1, 2 and 3 to be final as well, the resulting FA will accept 
the language pref(Q in R). Moreover it can be observed that pref(Q in R) can be expressed by (a+b)*, which is 
the RE corresponding to the resulting FA as well. 
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1- 2 

a b 

A problem is said to be effectively solvable if there exists an algorithm that provides the solution in finite 
number of steps e.g. finding solution for quadratic equation is effectively solvable problem, because the 
quadratic formula provides an algorithm that determines the solution in a finite number of arithmetic operations, 
(four multiplications, two subtractions, one square root and one division). 

Decision procedure 
If an effectively solvable problem has answer in yes or no, then this solution is called 
decision procedure. 
Decidable problem 
A problem that has decision procedure is called decidable problem e.g. the following problems 
The two regular expressions define the same language. 
The two FAs are equivalent. 
 

Determining whether the two languages are equivalent or not ? 

If L1 and L2 are two regular languages, then they can be expressed by FAs. As shown earlier, L1
c , L2

c , L1∪ L2 , 

L1∩ L2 are regular languages and the methods have already been developed to build their corresponding FAs. It 

can be observed that (L1 ∩  L2
c ) ∪ ( L1

c ∩  L2 ) is regular language that accepts the words which are in L1 but 
not in L2 or else in L2 but not in L1 . The corresponding FA cannot accept any word which is in both L1 and L2 
i.e. if L1 and L2 are equivalent, then this FA accepts not even null string. Following are the methods that 
determine whether a given FA accepts any words 
 

Method 1 

For FA corresponding to (L1 ∩  L2
c ) ∪ ( L1

c ∩  L2 ), the regular expression can be determined that defines the 
language accepted by this FA. From that regular expression one can determine whether this regular expression 
defines any word or not? Following are the steps to be followed 
Remove all *s from the regular expression. 
Separate the right part of + and the plus itself. 
 
The regular expression thus obtained if contains atleast one word then the language is not empty otherwise the 
language is empty. 
 
Example  

For (a+∧)(a*b+ba*)(a*+∧)* to be the regular expression of (L1 ∩  L2
c ) ∪ ( L1

c ∩  L2 ), it is required to find 
whether this language accepts any string or not? 

After removing all *s the RE will be (a+∧)(ab+ba)(a+∧) 
After separating the right part from + and the + itself the RE will be aaba 
As this language contains atleast aaba as its word, so this language is not empty. 
 
Remark 
Sometimes, while determining regular expression for a given FA, it is impossible to write its regular expression 
e.g. 
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To examine whether a certain FA accepts any words, it is required to seek the paths from  initial to final state. 
But in large FA with thousnads of states and millions of directed edges, without an effective procedure it is 
impossible to find a path from  initial to final state. Following are the steps of this procedure 
Mark the initial state. 
For every marked state follow each edge that leads out of it and marked the concatenating states and delete these 
edges. 
Repeat step 2 until no new state is marked. 
If any of the final states are marked then the FA accepts some word, otherwise not.  
Example 
Suppose it is required to test the FA, which is given below,  whether it accepts any string or not? Applying 
method 2 as 
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This FA accepts no string as after applying method 2, the final state is not marked. 
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Theory of Automata 

 
Lecture N0. 30 

Reading Material 
 

Introduction to Computer Theory   Chapter 11,12 

 

Summary  
Deciding whether two languages are equivalent or not, example, deciding whether an FA accept any string or 
not, method 3, examples, finiteness of a language 

  
Example 

Consider two languages L1 and L2, expressed by the REs r1=a* and r2=∧+aa* respectively. To determine 
whether L1 and L2 are equivalent, let the corresponding FAs be  
 
 
 

 
 
 
 
 

As discussed earlier, the FA corresponding to the language (L1 ∩  L2
c ) ∪ ( L1

c ∩  L2 )  helps in this regard i.e. if 
this FA accepts any word then L1 and L2 are not equivalent other wise L1 and L2 are equivalent.  

Following are the FAs corresponding to L1
c  and L2

c 

 
 
 

 

 
 
 

FAs corresponding to (FA1
c ∩ FA2)

c and (FA2
c ∩ FA1)

c may be as follows 
 
 
 
 
 
 
 
 
 
 
 
Both the FAs have no final state, so these FAs accept nothing. This implies that their union will not also accept 

any string. Hence FA corresponding to the language (L1 ∩  L2
c ) ∪ ( L1

c ∩  L2 )  accepts nothing. Thus both the 
languages are equivalent. 
 
Example 
Following is an FA, for which it is required to decide whether it accepts any string or not? Using steps discussed 
in method 2, the following FA can be checked whether it accepts any word or not. 
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As no final state of the FA is marked, so the given FA accepts no word. 

Method 3 
If the FA has N states, then test  the words of length less than N. If no word is accepted by this FA, then it will 
accept no word. 
 

Note: It is to be noted that all the methods discussed above, to determine whether an FA accepts certain word, 
are effective procedures. 
 

Example: To determine whether the following FA accepts certain word, using method 3, all the strings of length 
less than 4 (i.e. less than the number of states of the FA) are sufficient to be tested 
 
 
 
 
 

 

 

 

 

 

 

 

i.e. ∧, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb are required to be tested. 
It can be observed that the strings aa, baa, aaa are accepted by this FA, hence the language accepted by this FA 
is not empty.  
 
Example 
Consider the following FA. To determine whether this FA accepts some word, all the strings of length less than 
4 (i.e. less than the number of states of this FA) are to be tested 
 
 
 
 
 
 

It can be observed that none of the strings Λ, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, is 
accepted by this FA. Thus the given FA cannot accept any word. 
 

Observation 

To find whether a regular expression defines an infinite language or not? The following possibilities are 
required to be checked.  

If a regular expression contains * then it may define an infinite language, with the exception ∧* as ∧* = ∧ e.g. 

(∧+a∧*)(∧*+∧)* defines finite language. While (∧*+a∧*)* (∧*+∧)* defines an infinite language.  
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There are so many ways to decide whether an FA accepts a finite language or an infinite. Following is a theorem 
in this regard 
 

Theorem 
Let F be an FA having N states  

If F accepts a word w s.t. N ≤ length(w) < 2N    
then F accepts infinite language. 

If F accepts an infinite language then there are some words w s.t. N ≤ length(w) < 2N  
The first part can be proved, using the pumping lemma version II.  
 
Remark 
There is an effective procedure to decide whether an FA accepts finite or infinite language. For a machine with 

N number of states, the total number of strings to be tested, defined over an alphabet of m letters, is mN +mN+1 

+ mN+2 +… +m2N-1. After testing all these strings on the machine, if any is accepted then the machine accepts 

infinite language other wise not. e.g. for machine of three states and alphabet of two letters,  2 3 +2 4 +2 5 = 56 
strings are to be tested. 
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Theory of Automata 

 

Lecture N0. 31 
Reading Material 
 

Introduction to Computer Theory   Chapter 12 

 

Summary  
Context Free Grammar, Terminals, non-terminals, productions, CFG, context Free language, examples. 

 
Context Free Grammar (CFG) 
The earliest computers accepted no instructions other then their own assembly language. Every procedure, no 
matter how complicated , had to be encoded in the set of instructions, LOAD, STORE, ADD the contents of two 
registers and so on. The major problem was to display mathematical formulas as follows 
 
 
 
 
or 
  
 
 
 
 
So, it was necessary to develop a way of writing such expressions in one line of standard typewriter symbols, so 
that in this way a high level language could be invented. Before the invention of computers, no one would ever 
have dreamed of writing such complicated formula in parentheses e.g. the right side of formula can be written as 
  ((1/2)+9)/(4+(8/21)+(5/(3+(1/2)))) 
The high level language is converted into  assembly language codes by a program called compiler. 
The compiler that takes the user’s programs as its inputs and prints out an equivalent program written in 
assembly language. 
Like spoken languages, high level languages for computer have also, certain grammar. But in case of computers, 
the grammatical rules, don’t involve the meaning of the words. 
It can be noted that the grammatical rules which involve the meaning of words are called Semantics, while 
those don’t involve the meaning of the words are called Syntactics. 
e.g. in English language, it can not be written “ Buildings sing ”, while in computer language one number is as 
good as another. 
e.g. X = B + 10,     X = B + 999 
 
Remark 
In general, the rules of computer language grammar, are all syntactic and not semantic. A law of grammar is in 
reality a suggestion for possible substitutions.  
 

CFG terminologies 

Terminals: The symbols that can’t be replaced by anything are called terminals. 
Non-Terminals: The symbols that must be replaced by other things are called non-terminals. 
Productions: The grammatical rules are often called productions. 
 

CFG 

CFG is a  collection of the followings 

An alphabet Σ of letters called terminals from which the strings are formed, that will be the words of the 
language. 
A set of symbols called non-terminals, one of which is S, stands for “start here”. 
A finite set of productions of the form  

non-terminal → finite string of terminals and /or non-terminals. 
 
Note  
The terminals are designated by small letters, while the non-terminals are designated by capital letters. 
There is at least one production that has the non-terminal S as its left side. 

2 

) 10 11 () 10 7 () 0 8 ( 2 2 2 − −−
=S 

+ + 
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Context Free Language (CFL) 

The language generated by CFG is called Context Free Language (CFL). 
Example  

Σ = {a} 
productions: 

S →aS 

S→∧ 
Applying production (1) six times and then production (2) once, the word aaaaaa is generated as  
      

           S ⇒ aS 

⇒ aaS 

⇒ aaaS 

⇒ aaaaS 

⇒ aaaaaS 

⇒ aaaaaaS 

⇒ aaaaaaΛ 
= aaaaaa 
 

It can be observed that prod (2) generates Λ, a can be generated applying   prod. (1) once and then prod. (2), aa 
can be generated applying prod. (1) twice and then prod. (2) and so on. This shows that the grammar defines the 
language expressed by a*. 
 
Example 

 Σ = {a} 
 productions: 

S→SS 

S→a 

S→Λ 
This grammar also defines the language expressed by a*. 
 

Note: It is to be noted that Λ is not considered to  be terminal. It has a special status. If for a certain non-terminal 

N, there may be a production N→Λ. This simply means that N can be deleted when it comes in the working 
string. 
 
Example 

 Σ = {a,b} 
 productions: 

S→X 

S→Y 

X→Λ 

Y→aY 

Y→bY 

Y→a 

Y→b 
All words of this language are of either X-type or of Y-type. i.e. while generating a word the first production 

used is  S→X or S→Y. The words of X-type give only  Λ, while the words of Y-type are words of finite strings 
of a’s or b’s or both i.e. (a+b)+. Thus the language defined is expressed by  (a+b)*. 
 
Example 

 Σ = {a,b} 
 productions: 

S→aS 

S→bS 

S→a 

S→b 

S→Λ 
This grammar also defines the language expressed by (a+b)*. 
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Example 

 Σ = {a,b} 
 productions: 

S→XaaX 

X→aX 

X→bX 

X→Λ 
This grammar defines the language expressed by (a+b)*aa(a+b)*. 
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Theory of Automata 

 
Lecture N0. 32 

Reading Material 
 

Introduction to Computer Theory   Chapter 12 

 

Summary    

Examples of CFL, EVEN-EVEN, EQUAL, Language of strings containing bbb, PALINDROME, {anbn}, 
Language of strings beginning and ending in different letters, Parsing tree, example 
 
Example 

 ∑ = {a,b} 
 productions: 

S → SS 

S → XS 

S → Λ 

S → YSY 

X → aa 

X → bb 

Y → ab 

Y → ba 
This grammar generates EVEN-EVEN language. 
 
Example 

 ∑ = {a,b} 
 productions: 

S → aB 

S → bA 

A → a 

A → aS 

A → bAA 

B → b 

B → bS 

B → aBB 
This grammar generates the language EQUAL(The language of strings, with number of a’s equal to number of 
b’s). 
 
Note 
It is to be noted that if the same non-terminal have more than one productions, it can be written in single line 

e.g. S → aS, S → bS, S → Λ can be written as S → aS|bS|Λ 

It may also be noted that the productions S → SS|Λ always defines the language which is closed w.r.t. 

concatenation i.e.the language expressed by RE of type r*. It may also be noted that the production S → SS 
defines the language expressed by r+. 
 
Example 

∑ = {a,b} 
productions: 

S → YXY 

Y → aY|bY|Λ 

X → bbb 
It can be observed that, using prod.2, Y generates Λ. Y generates a. Y generates b. Y also generates all the 
combinations of a and b. thus Y generates the strings generated by (a+b). It may also be observed that the above 
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CFG generates the language expressed by (a+b)*bbb(a+b)*. Following are four words generated by the given 
CFG 
 

            S ⇒ YXY 

   ⇒ aYbbbΛ 

   ⇒ abYbbb 

   ⇒ abΛbbb 
   =  abbbb 

               S ⇒ YXY 

   ⇒ bYbbbaY 

   ⇒ bΛbbbabY 

   ⇒ bbbbabbY 

   ⇒ bbbbabbaY 

   ⇒ bbbbabbaΛ 
   =  bbbbabba 
 

            S ⇒  YXY 

   ⇒  ΛbbbaY 

   ⇒  bbbabY 

   ⇒  bbbabaY 

   ⇒  bbbabaΛ 
   =   bbbaba 
 

              S ⇒ YXY 

   ⇒ bYbbbaY 

   ⇒ bΛbbbaΛ 
   =  bbbba 
 

Example 
Consider the following CFG 

S → SS|XaXaX|Λ 

X → bX|Λ 

It can be observed that, using prod.2, X generates Λ. X generates any number of b’s. Thus X generates the 
strings generated by b*. It may also be observed that the above CFG generates the language expressed by 
(b*ab*ab*)*. 
 
Example 
Consider the following CFG 

 ∑ = {a,b} 
 productions: 

S → aSa|bSb|a|b|Λ 
The above CFG generates the language PALINDROME. It may be noted that the CFG  

S → aSa|bSb|a|b generates the language NON-NULLPALINDROME. 
 
Example 
Consider the following CFG 

 ∑ = {a,b} 
 productions: 

S → aSb|ab|Λ 
It can be observed that the CFG generates the language {anbn: n = 0,1,2,3, …}. It may also be noted that the 

language {anbn: n=1,2,3, …} can be generated by the CFG, S → aSb|ab 
 
Example 
Consider the following CFG 

S → aXb|bXa 

X → aX|bX|Λ 

The above CFG generates the language of strings, defined over ∑={a,b}, beginning and ending in different 

letters. 
 

Trees 
As in English language any sentence can be expressed by parse tree, so any word generated by the given CFG 
can also be expressed by the parse tree, e.g. consider the following CFG 

 S → AA 

 A → AAA|bA|Ab|a 
Obviously, baab can be generated by the above CFG. To express the word baab as a parse tree, start with S. 
Replace S by the string AA, of nonterminals, drawing the downward lines from S to each character of this string 
as follows 
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S 

A A 

S 

A A 

b A A b 

S 

A A 

b A A b 

a a 

 
 
     
 
 
 
Now let the left A be replaced by bA and the right one by Ab then the tree will be 
 
 
 
 
 
 
 
 
Replacing both A’s by a, the above tree will be 
 
 
 
 
 
 
 
 
 
 
 
Thus the word baab is generated. The above tree to generate the word baab is called Syntax tree or Generation 

tree or Derivation tree as well. 
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Theory of Automata 

 
Lecture N0. 33 

Reading Material 
 

Introduction to Computer Theory   Chapter 12 

 

Summary 
Example of trees, Polish Notation, examples, Ambiguous CFG, example 

 
Example 
Consider the following CFG 

 S → S+S|S*S|number 
where S and number are non-terminals and the operators behave like terminals. 
The above CFG creates ambiguity as the expression 3+4*5 has two possibilities (3+4)*5=35 and 3+(4*5)=23 
which can be expressed by the following production trees 
 
 
   
 
 
 
 
 
 
 
The expressions can be calculated starting from bottom to the top, replacing each nonterminal by the result of 
calculation e.g. 
 
 
 
 
 
 
 
 
 
 
 
Similarly 
 
 
 
 
 
 
 
The ambiguity that has been observed in this example can be removed with a change in the CFG as discussed in 
the following example 
 
Example 

 S → (S+S)|(S*S)|number 
where S and number are nonterminals, while (, *, +, ) and the numbers are terminals. 
Here it can be observed that  

S ⇒ (S+S) 

   ⇒ (S+(S*S)) 

   ⇒ (3+(4*5)) = 23 

S ⇒ (S*S) 

   ⇒ ((S+S)*S) 

S 

S S 

S S 
3 

4 

+ 

* 

5 

(i) 

S 

S 

5 

* (ii) S 

S S 

3 

+ 

4 

S 

3 S 

4 5 

+ 

* 

(i)  ⇒⇒⇒⇒ ⇒⇒⇒⇒ 

S 

3 20 + 
⇒⇒⇒⇒     23 

S 

5 
* 

(ii)  ⇒⇒⇒⇒ ⇒⇒⇒⇒ 

S 

7 5 * 
⇒⇒⇒⇒   35 S 

3 4 
+ 
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         ⇒ ((3+4)*5) = 35 

Polish Notation (o-o-o) 

There is another notation for arithmetic expressions for the CFG, S→S+S|S*S|number. Consider the following 
derivation trees 
 
 
 
 
 
 
 
 
 
 
 
 
The arithmetic expressions shown by the trees (i) and (ii) can be calculated from the following trees, 
respectively 
 
 
 
 
 
 
 
 
 
 
 
 
Here most of the S’s are eliminated.  
The branches are  connected directly with the operators. Moreover, the operators + and * are no longer terminals 
as these are to be replaced by numbers (results). 
To write the arithmetic expression, it is required to traverse from the left side of S and going onward around the 
tree. The arithmetic expressions will be as under  
(i) + 3 * 4 5  (ii) * +3 4 5 
The above notation is called operator prefix notation. 
To evaluate the strings of characters, the first substring (from the left) of the form operator-operand-operand  
(o-o-o) is found and is replaced by its calculation  e.g. 
+3*4 5 = +3 20 = 23 
*+3 4 5 = * 7 5 = 35 
It may be noted that 4*5+3 is an infix arithmetic expression, while an arithmetic expression in (o-o-o) form is a 
prefix arithmetic expression. 
 
Example 
To calculate the arithmetic expression of the following tree 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S 

S S 

S S 
3 

4 

+ 

* 

5 

(i) 

S 

S 

5 

* 
(ii) S 

S S 

3 

+ 

4 

5 

S 

3 

4 

+ 

* (i) 

S 

5 

* 

(ii) 

3 

+ 

4 

S 

* 

+ 

5 

6 

+ 

1 2 

+ 

3 4 

* 
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S 

a S 

a S 

a 

 
It can be written as *+*+1 2+3 4 5 6 
The above arithmetic expression in (o-o-o) form can be calculated as   
*+*+1 2+3 4 5 6 = *+*3+3 4 5 6 
= *+*3 7 5 6 = *+21 5 6 = *26 6 = 156. 
Note 
The previous prefix arithmetic expression can be converted into the following infix arithmetic expression as  
 *+*+1 2+3 4 5 6  
 = *+*+1 2 (3+4) 5 6  
 = *+*(1+2) (3+4) 5 6  
 = *(((1+2)*(3+4)) + 5) 6 
 = (((1+2)*(3+4)) + 5)*6 
 
Ambiguous CFG 

The CFG is said to be ambiguous if there exists atleast one word of it’s language that can be 
generated by the different production trees. 
 

Example: Consider the following CFG 

S→aS|Sa|a 
The word aaa can be generated by the following three different trees 
 
 
 
 
 
 
 
 
 
 
  
 

Thus the above CFG is ambiguous, while the CFG, S→aS|a is not ambiguous as neither the word aaa nor any 
other word can be derived from more than one production trees. The derivation tree for aaa is as follows 
 

S 

a S 

S a 

a 

S 

S a 

S a 

a 

S 

a S 

a S 

a 
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Theory of Automata 

 
Lecture N0. 34 

Reading Material 
 

Introduction to Computer Theory   Chapter 12,13 

 

Summary 
Example of Ambiguous Grammar, Example of Unambiguous Grammer (PALINDROME), Total Language tree 
with examples (Finite and infinite trees), Regular Grammar, FA to CFG, Semi word and Word, Theorem, 
Defining Regular Grammar, Method to build TG for Regular Grammar 
 
Example 
Consider the following CFG 

 S → aS | bS | aaS | Λ 
It can be observed that the word aaa can be derived from more than one production trees. Thus, the above CFG 

is ambiguous. This ambiguity can be removed by removing the production S → aaS  
 
Example 
Consider the CFG of the language PALINDROME 

  S→aSa|bSb|a|b|Λ 
It may be noted that this CFG is unambiguous as all the words of the language PALINDROME can only be 
generated by a unique production tree. 

It may be noted that if the production S → aaSaa is added to the given CFG, the CFG thus obtained will be no 
more unambiguous. 
 

Total language tree 
For a given CFG, a tree with the start symbol S as its root and whose nodes are working strings of terminals and 
non-terminals. The descendants of each node are all possible results of applying every production to the working 
string. This tree is called total language tree. 
 
Example 
Consider the following CFG 

 S → aa|bX|aXX 

 X → ab|b 
then the total language tree for the given CFG may be 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It may be observed from the above total language tree that dropping the repeated words, the language generated 
by the given CFG is {aa, bab, bb, aabab, aabb, abab, abb}  
  
 
 
Example 
Consider the following CFG 

 S → X|b, X → aX 
then following will be the total language tree of the above CFG 

S 

aa 
bX 

aXX 

bab bb 

aabX 

abX 

aXab 

aXb 

aabab aabb aabab abab 

aabb 

abb 

abab abb 
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 Note: It is to be 
 noted that the  
 only word in  
 this language 
 is b. 
 

  
 

Regular Grammar 
All regular languages can be generated by CFGs. Some nonregular languages can  be generated by CFGs but not 

all possible languages can be generated by CFG, e.g. the CFG     S → aSb|ab generates the language 
{anbn:n=1,2,3, …}, which is nonregular. 
 

Note: It is to be noted that for every FA, there exists a CFG that generates the language accepted by this FA.  

 
Example 

Consider the language L expressed by (a+b)*aa(a+b)*
 
i.e.the language of strings, defined over ∑ ={a,b}, 

containing aa. To construct the CFG corresponding to L, consider the FA accepting L, as follows 
 
  
 
 
 
 
CFG corresponding to the above FA may be 

 S → bS|aA 

 A → aB|bS 

 B → aB|bB|Λ 
It may be noted that the number of terminals in above CFG is equal to the number of states of corresponding FA 
where the nonterminal S corresponds to the initial state and each transition defines a production. 

 
Semiword 
A semiword is a string of terminals (may be none) concatenated with exactly one nonterminal on the right i.e. a 
semiword, in general, is of the following form  
 (terminal)(terminal)… (terminal)(nonterminal) 

 
word 

A word is a string of terminals. Λ is also a word.  
 

Theorem 

If every production in a CFG is one of the following forms 

Nonterminal → semiword 

Nonterminal → word 
then the language generated by that CFG is regular. 

 

Regular grammar 
Definition 
A CFG is said to be a regular grammar if it generates the regular language i.e. a CFG is said to be a regular 

grammar in which each production is one of the two forms 

 Nonterminal → semiword 

S 

X b 

aX 

aaX 

∂∂∂∂ 

aaa …aX 

a,b a b 

a 

b 

S - B+ A 
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 Nonterminal → word 
 
Examples 

The CFG  S → aaS|bbS|Λ is a regular grammar. It may be observed that the above CFG generates the language 
of strings expressed by the RE (aa+bb)*. 

The CFG S → aA|bB, A → aS|a, B → bS|b is a regular grammar. It may be observed that the above CFG 
generates the language of strings expressed by RE (aa+bb)+.    
 
Following is a method of building TG corresponding to the regular grammar. 
 

TG for Regular Grammar 
For every regular grammar there exists a TG corresponding to the regular grammar. 
Following is the method to build a TG from the given regular grammar 
Define the states, of the required TG, equal in number to that of nonterminals of the given regular grammar. An 
additional state is also defined to be the final state. The initial state should correspond to the nonterminal S. 
For every production of the given regular grammar, there are two possibilities for the transitions of the required 
TG 
 

If the production is of the form nonterminal → semiword, then transition of the required TG would start from 
the state corresponding to the nonterminal on the left side of the production and would end in the state 
corresponding to the nonterminal on the right side of the production, labeled by string of terminals in semiword. 

If the production is of the form nonterminal → word, then transition of the TG would start from the state 
corresponding to nonterminal on the left side of the production and would end on the final state of the TG, 
labeled by the word. 
 
Example 
Consider the following CFG  

 S → aaS|bbS| Λ 
The TG accepting the language generated by the above CFG is given below 
 
  
 
  
 
 
The corresponding RE may be (aa+bb)*. 

 
Λ 

 
S- + 

aa 

bb 
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b 
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Theory of Automata 

 
Lecture N0. 35 

Reading Material 
 

Introduction to Computer Theory   Chapter 13 

 

Summary 

 
Examples of building TG’s corresponding to the Regular Grammar, Null productions with examples, Nullable 
productions with examples, Unit production with example, Chomsky Normal Form (Definition) 

  
Example 
Consider the following CFG 

 S → aA|bB 

 A → aS|a 

 B → bS|b 
then the corresponding TG will be 
 
 
 
  
 
 
The corresponding RE may be (aa+bb)+. 
 
Example 
Consider the following CFG 

 S → aaS|bbS|abX|baX|Λ 

 X → aaX|bbX|abS|baS,  
then the corresponding TG will be 
 
 
  
 
The corresponding language is EVEN-EVEN. 
 

Null Production 
Definition 

The production of the form nonterminal → Λ is said to be null production.  
 

Example: Consider the CFG, S → aA|bB|Λ, A → aa|Λ, B → aS 

Here S → Λ and A → Λ are null productions.  
 
Note 
If a CFG has a null production, then it is possible to construct another CFG without null production accepting 

the same language with the exception of the word Λ i.e. if the language contains the word Λ then the new 

language cannot have the word Λ. 
 
Following is a method to construct a CFG without null production for a given CFG 
 
Method 
Delete all the Null productions and add new productions e.g.  

consider the productions of a certain CFG  X → aNbNa, N → Λ, delete the production N → Λ and using the 

production X → aNbNa, add the new productions  X → aNba, X → abNa and X → aba  

Thus the new CFG will contain the productions X → aNba|abNa|aba|aNbNa 

Note: It is to be noted that X → aNbNa will still be included in the new CFG. 
 

Nullable Production 

ab,ba  
     

  
     

 
S- 

ab,ba 

aa,bb aa,bb 

X 
 

     
 

+ 
  Λ 
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Definition 

A production is called nullable production if it is of the form N  → Λ  
or  

there is a derivation that starts at N and leads to Λ i.e. N1 → N2, N2 → N3, N3 → N4, …, Nn →Λ, where N, N1, 
N2, …, Nn are non terminals.  
 
Example 
Consider the following CFG 

  S → AA|bB, A → aa|B, B → aS | Λ 

Here S → AA and A → B are nullable productions, while B → Λ is null a production. 
Following is an example describing the method to convert the given CFG containing null productions and 
nullable productions into the one without null productions 
 
Example 
Consider the following CFG  

 S → XaY|YY|aX|ZYX  

 X → Za|bZ|ZZ|Yb 

 Y → Ya|XY|Λ 

 Z → aX|YYY 

It is to be noted that in the given CFG, the productions S → YY, X → ZZ, Z → YYY are Nullable productions, 

while Y → Λ is Null production.  
Here the method of removing null productions, as discussed earlier, will be used along with replacing 
nonterminals corresponding to nullable productions like nonterminals for null productions are replaced.  
Thus the required CFG will be 

 S →XaY|Xa|aY|a|YY|Y|aX|ZYX|YX|ZX|ZY| X|Z 

 X → Za|a|bZ|b|ZZ|Z|Yb 

 Y → Ya|a|XY|X|Y 

 Z → aX|a|YYY|YY|Y  
 
Example 
Consider the following CFG 

 S → XY, X → Zb, Y → bW 

 Z → AB, W → Z, A → aA|bA|Λ 

 B →Ba|Bb|Λ. 

Here A → Λ and B → Λ are null productions, while Z → AB, W → Z are nullable productions. The new CFG 
after, applying the method, will be 

 S → XY  

 X → Zb|b 

 Y → bW|b 

 Z → AB|A|B 

 W → Z 

 A → aA|a|bA|b 

 B →Ba|a|Bb|b 
 
Note 
While adding new productions all Nullable productions should be handled with care. All Nullable productions 
will be used to add new productions, but only the Null production will be deleted.  
 

Unit production 

The productions of the form nonterminal → one nonterminal, is called the unit production. 
Following is an example showing how to eliminate the unit productions from a given CFG.  

 

Example 
Consider the following CFG  

 S → A|bb  

 A → B|b  

 B → S|a 
Separate the unit productions from the nonunit productions as shown below  
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unit prods. nonunit prods. 

 S → A   S → bb 

 A → B   A → b 

 B → S   B → a 
 

 S → A gives S → b   (using A → b) 

 S → A → B gives S → a   (using B → a) 

 A → B gives A → a   (using B → a) 

 A → B → S gives A → bb   (using S → bb) 

 B → S gives B → bb   (using S → bb) 

 B → S → A gives B → b   (using A → b) 
 
Thus the new CFG will be  

 S → a|b|bb, A → a|b|bb, B → a|b|bb. 
Which generates the finite language {a,b,bb}. 
 

Chomsky Normal Form 

If a CFG has only productions of the form 

nonterminal → string of two nonterminals 
or 

nonterminal → one terminal  
then the CFG is said to be in Chomsky Normal Form (CNF). 
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Theory of Automata 

 
Lecture N0. 36 

Reading Material 
 

Introduction to Computer Theory   Chapter 13,14 

 

Summary 
Chomsky Normal Form, Theorem regarding CNF, examples of converting CFG to be in CNF, Example of an 
FA corresponding to Regular CFG, Left most and Right most derivations, New format of FAs. 

  

Chomsky Normal Form (CNF) 

If a CFG has only productions of the form  

nonterminal → string of two nonterminals 
or 

nonterminal → one terminal 
then the CFG is said to be in Chomsky Normal Form (CNF).  
 
Note 
It is to be noted that any CFG can be converted to be in CNF, if the null productions and unit productions are 
removed. Also if a CFG contains nullable productions as well, then the corresponding new production are also 
to be added. Which leads the following theorem 
 

Theorem 
All NONNULL words of the CFL can be generated by the corresponding CFG which is in CNF i.e. the 
grammar in CNF will generate the same language except the null string. 
 
Following is an example showing that a CFG in CNF generates all nonnull words of corresponding CFL. 
 
Example 
Consider the following CFG  

 S → aSa|bSb|a|b|aa|bb 
To convert the above CFG to be in CNF, introduce the new productions as  

 A → a, B → b, then the new CFG will be 

 S → ASA|BSB|AA|BB|a|b 

 A → a 

 B → b  
Introduce nonterminals R1 and R2 so that  

 S → AR1|BR2|AA|BB|a|b 

 R1 → SA 

 R2 → SB  

 A → a  

 B → b 
which is in CNF. 
It may be observed that the above CFG which is in  CNF generates the NONNULLPALINDROME, which does 
not contain the null string. 
 
Example 
 Consider the following CFG  

 S → ABAB 

 A → a|Λ 

 B → b|Λ 

Here  S → ABAB is nullable production and A → Λ, B → Λ are null productions. Removing the null 
productions  

 A → Λ and B → Λ, and introducing the new productions as  

 S → BAB|AAB|ABB|ABA|AA|AB|BA|BB|A|B 
 

Now S → A|B are unit productions to be eliminated as shown below 
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  S → A gives S → a (using A → a) 

  S → B gives S → b (using B → b) 
Thus the new resultant CFG takes the form  

  S → BAB|AAB|ABB|ABA|AA|AB|BA|BB|a|b, A → a, B → b. 

Introduce the nonterminal C where C → AB, so that 

S → BAB|AAB|ABB|ABA|AA|AB|BA|BB|a|b 

 
S → BC|AC|CB|CA|AA|C|BA|BB|a|b 

A → a 

B → b 

C → AB  
is the CFG in CNF. 
 
Example 
To construct an FA that accepts the grammar 

 S→abA 

 A→baB 

 B→aA|bb 
The language can be identified by the three words generated as follows 

S ⇒ abA     

⇒ abbaB   (using A→baB)   

⇒ abba bb  (using B→bb) 

S  ⇒ abA   

  ⇒ abbaB  (using A→baB) 

  ⇒ abbaaA  (using B→ aA) 

  ⇒ abbaabaB   (using A→ baB) 

  ⇒ abbaababb   (using B→ bb) 

S ⇒ abA   

  ⇒ abbaB   (using A→baB) 

  ⇒ abbaaA  (using B→ aA) 

  ⇒ abbaabaB   (using A→ baB) 

  ⇒ abbaabaaA   (using B→ aA) 

  ⇒ abbaabaabaB   (using A→ baB) 

  ⇒ abbaabaababb   (using B→ bb) 
which shows that corresponding language has RE abba(aba)*bb. Thus the FA accepting the given CFG may be  
 

 
 
 
 
 
 
 
 
 
 

 

Left most derivation 
Definition 
The derivation of a word w, generated by a CFG, such that at each step, a production is applied to the left most 
nonterminal in the working string, is said to be left most derivation. 
It is to be noted that the nonterminal that occurs first from the left in the working string, is said to be left most 
nonterminal. 
 
Example 
Consider the following CFG 

  
     

   
b b 

b 

b a 

a,b 
 

a b 

a 
b 

a 

a 

A B + S- 

a,b 

a 
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 S→XY 

 X → XX|a 

 Y→YY|b 
then following are the two left most derivations of aaabb 

 
           S ⇒ XY 

  ⇒ XXY 

  ⇒ aXY 

  ⇒ aXXY 

  ⇒ aaXY 

  ⇒ aaaY 

  ⇒ aaaYY 

  ⇒ aaabY 
  =  aaabb 

               S ⇒ XY 

      ⇒ XXY 

   ⇒ XXXY 

   ⇒ aXXY 

   ⇒ aaXY 

   ⇒ aaaY 

   ⇒ aaaYY 

   ⇒ aaabY 
   =  aaabb 
 

Theorem 
Any word that can be generated by a certain CFG has also a left most derivation. 
 
It is to be noted that the above theorem can be stated for right most derivation as well. 
Example 
Consider the following CFG 

  S→YX 

 X → XX|b 

 Y→YY|a  
Following are the left most and right most derivations of abbbb 

 
            S ⇒ YX 

      ⇒ aX 

  ⇒ aXX 

  ⇒ abX 

  ⇒ abXX 

  ⇒ abbX 

  ⇒ abbXX 

  ⇒ abbbX 
  =  abbbb 

               S ⇒ YX 

      ⇒ YXX 

   ⇒ YXb 

   ⇒ YXXb 

   ⇒ YXbb 

   ⇒ YXXbb 

   ⇒ YXbbb 

   ⇒ Ybbbb 
   =  abbbb 
 

A new format for FAs 

A class of machines (FAs) has been discussed accepting the regular language i.e. corresponding to a regular 
language there is a machine in this class, accepting that language and corresponding to a machine of this class 
there is a regular language accepted by this machine. It has also been discussed that there is a CFG 
corresponding to regular language and CFGs also define some nonregular languages, as well 
There is a question whether there is a class of machines accepting the CFLs? The answer is yes. The new 
machines which are to be defined are more powerful and can be constructed with the help of FAs with new 
format.  
To define the new format of an FA, some terms are defined in the next lecture. 
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START 

ACCEPT 

REJECT 

Theory of Automata 

 
Lecture N0. 37 

Reading Material 
 

Introduction to Computer Theory   Chapter 14 

 

Summary 

New format for FAs, input TAPE, START, ACCEPT , REJECT,  READ states Examples of New Format of FA, 
PUSH Down STACK , PUSH and POP, Example of PDA 
 

A new format for FAs 
A class of machines (FAs) has been discussed accepting the regular language i.e. corresponding to a regular 
language there is a machine in this class, accepting that language and corresponding to a machine of this class 
there is a regular language accepted by this machine. It has also been discussed that there is a CFG 
corresponding to regular language and CFGs also define some nonregular languages, as well 
There is a question whether there is a class of machines accepting the CFLs? The answer is yes. The new 
machines which are to be defined are more powerful and can be constructed with the help of FAs with new 
format.  
To define the new format of an FA, the following are to be defined 
Input TAPE 

The part of an FA, where the input string is placed before it is run, is called the input TAPE. 
The input TAPE is supposed to accommodate all possible strings. The input TAPE is partitioned with cells, so 
that each letter of the input string can be placed in each cell. The input string abbaa is shown in the following 
input TAPE. 
 
 
 
 
The  character ∆ indicates a blank in the TAPE. The input string is read from the TAPE starting from the cell (i). 
It is assumed that when first ∆ is read, the rest of the TAPE is supposed to be blank. 
 

The START state 
This state is like initial state of an FA and is represented by  
 
 
 
 

 

An ACCEPT state 

This state is like a final state of an FA and is expressed by 
 
 
 
 
 

A REJECT state 

This state is like dead-end non final state and is expressed by  
 
  
 
 
 
Note: It may be noted that the ACCEPT and REJECT states are called the halt states. 
 

. ∆ ∆ a a b b a 

 
Cell i  Cell ii  Cell iii  
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b  
     

 

a 

 
     x- 

a b 

y+ 

A READ state 
This state is to read an input letter and lead to some other state. The READ state is expressed by  
 
 
 
 
 
 
Example 
Before some other states are defined consider the following example of an FA along with its new format 
 
 
 
 
 
 

Obviously the above FA accepts the language of strings, expressed by (a+b)*a. Following is the new format of 
the above FA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note 

The ∆ edge should not be confused with ∧∧∧∧-labeled edge. The ∆-edges start only from READ boxes and lead to 
halt states. 
Example 
 
 
 
 
The above FA accepts the language expressed by (a+b)*bb(a+b)* 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

READ 

a 

b 

∆  

REJECT ACCEPT 

START 

READ 
a 

READ 

a 

b 

b 

∆  

∆  

a 

a  
   1  

 

b 

     −  
   +  

 

b 

1 +

a,b 

REJECT ACCEPT 

START 

READ 

a 

READ 

a 

b 
READ 

REJECT 

b 

a,b 

∆  ∆  ∆  
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PUSHDOWN STACK or PUSHDOWN STORE 
PUSHDOWN STACK is a place where the input letters can be placed until  these letters are referred again. It 
can store as many letters as one can in a long column. 
Initially the STACK is supposed to be empty i.e. each of its storage location contains a blank. 
PUSH 
A PUSH operator adds a new letter at the top of STACK, for e.g. if the letters a, b, c and d are pushed to the 
STACK that was initially blank, the STACK can be shown as 
 

The PUSH state is expressed by 
 
 
 
 
When a letter is pushed, it replaces the existing letter and pushes it one position below. 
 

POP and STACK 
POP is an operation that takes out a letter from the top of the STACK. The rest of the letters are moved one 
location up. POP state is expressed as   
 
 
 
 
 
 
Note 
It may be noted that popping an empty STACK is like reading an empty TAPE, i.e. popping a blank character ∆. 
It may also be noted that when the new format of an FA contains PUSH and POP states, it is called 
PUSHDOWN Automata or PDAs. It may be observed that if the PUSHDOWN STACK (the memory structure) 
is added to an FA then its language recognizing capabilities are increased considerably. Following is an example 
of PDA 
 
Example 
Consider the following PDA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The string aaabbb is to be run on this machine. Before the string is processed, the string is 
supposed to be placed on the TAPE and the STACK is supposed to be empty as shown below 
 

a a a b b b ∆ ∆ ≡ 
 

d 

c 

b 

a 

∆ 

 

∆ 

 

 

 

PUSH a 

STACK 

POP 

∆  

a  

b 

STACK 

PUSH a 

START 

REJECT 

REJECT ACCEPT 

READ1 

a READ2 

a 

b 

POP2 

b, a,b 

∆  

POP1 

∆  

b 

∆  

∆  
a 
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Reading first a from the TAPE we move from READ1State to PUSH a state, it causes the letter a deleted from 
the TAPE and added to the top of the STACK, as shown below  
 

a a a b b b ∆ ∆ ≡ 

 

 
 
 
 

Reading next two a’s successively, will delete further two a’s from the TAPE and add these 
letters to the top of the STACK, as shown below  
 

a a a b b b ∆ ∆ ≡ 
 
 
 
Then reading the next letter which is b from the TAPE will lead to the POP1  state. The top letter at the STACK 
is a, which is popped out and READ2 state is entered. Situation of TAPE and STACK is shown below 
 

a a a b b b ∆ ∆ ≡ 
 
 
 

 
 
 
Reading the next two b’s successively will delete two b’s from the TAPE, will lead to the 
POP1 state and these b’s will be removed from the STACK as shown below 
 

a a a b b b ∆ ∆ ≡ 

 
 
 
 
 
 
Now there is only blank character ∆ left, to be read from the TAPE, which leads to POP2 state. While the only 
blank characters is left in the STACK to be popped out and the ACCEPT state is entered, which shows that the 
string aaabbb is accepted by this PDA. It may be observed that the above PDA accepts the language 

{anbn: n = 0,1,2, … }.  
Since the null string is like a blank character, so to determine how the null string is accepted,  it can be placed in 
the TAPE as shown below 
 

∆ ∆ ∆ ≡      

 
Reading ∆ at state READ1 leads to POP2 state and POP2 state contains only ∆, hence it leads to ACCEPT state 
and the null string is accepted.  
 
Note: The process of running the string aaabbb can also be expressed in the table given in the next lecture. 

a 

∆ 

 

 

a 

a 

a 

∆ 

≈ 

a 

a 

a 

∆ 

 

≈ 

∆ 

 

 

 

≈ 

STACK  

STACK 

/ TAPE 

TAPE 

STACK 
TAPE 

STACK 

TAPE 

TAPE 
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aaabbb∆ … aa∆ … POP1 

aaabbb∆ … aaa∆ … READ1 

aaabbb∆ … aaa∆ … PUSH a 

aaabbb∆ … aa∆ … READ1 

aaabbb∆ … aa∆ … PUSH a 

aaabbb∆ … a∆ … READ1 

aaabbb∆ … a∆ … PUSH a 

aaabbb∆ … ∆ … READ1 

aaabbb∆ … ∆ … START 

TAPE STACK STATE 

Theory of Automata 

 
Lecture N0. 38 

Reading Material 
 

Introduction to Computer Theory   Chapter 14 

 

Summary 

Example of PDA with table for running a string, Equivalent PDA, PDA for EVEN EVEN Language. Non-
Derterministic PDA, Example of Non-Derterministic PDA, Definition of PUSH DOWN Automata, Example of 
Non-Derterministic PDA.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note 
The process of running the string aaabbb can also be expressed in the following table 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PUSH a 

START 

REJECT 

REJECT ACCEPT 

READ1 

a 
READ2 

a 

b 

POP2 

b, ∆ 

∆  

POP1 

∆  

b 

∆  

a 

a,b 
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aaabbb∆ … ∆ … 

 

POP2 

aaabbb∆ … ∆ … ACCEPT 

aaabbb∆ … ∆ … READ2 

aaabbb∆ … 

  

∆ … 

 

POP1 

aaabbb∆ … 

 

a∆ … 

 

READ2 

aaabbb∆ … 

 

a∆ … 

 

POP1 

 

aaabbb∆ … aa∆ … READ2 

TAPE STACK STATE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It may be observed that the above PDA accepts the language {anbn : n=0,1,2,3, …}. 
 
Note 

It may be noted that the TAPE alphabet Σ and STACK alphabet Γ, may be different in general and hence the 
PDA equivalent to that accepting {anbn: n=0,1,2,3…} discussed above may be 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Following is an example of PDA corresponding to an FA 
 

Example 
Consider the following FA corresponding to the EVEN-EVEN language 

 
 
 
 

 
 
 
 
 
 
 
 
The corresponding PDA will be 

PUSH X 

REJECT ACCEPT 

START 

READ1 

X 
READ2 

a 

b 

POP2 

∆  

POP1 

∆  

b 

∆  

∆  a 

X 

a  
     

 

a 

 
     

 
     

 a  
     

 

a 

b b b b 

± 
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Nondeterministic PDA 

Like TGs and NFAs, if in a PDA there are more than one outgoing edges at READ or POP states with one label, 
then it creates nondeterminism and the PDA is called nondeterministic PDA.  
In nondeterministic PDA no edge is labeled by string of terminals or nonterminals, like that can be observed in 
TGs. Also if there is no edge for any letter to be read from the TAPE, the machine crashes and the string is 
rejected. 
In nondeterministic PDA a string may trace more than one path. If there exists at least one path traced by a 
string leading to ACCEPT state, then the string is supposed to be accepted, otherwise rejected. 
Following is an example of nondeterministic PDA  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Here the nondeterminism can be observed at state READ1.  It can be observed that the above PDA accepts the 
language  

EVENPALINDROME={w reverse(w): w∈{a, b}*} 

  ={Λ, aa, bb, aaaa, abba, baab, bbbb, …} 
Now the definition of PDA including the possibility of nondeterminism may be given as follows 
 

a 

a 

a 

a 
b 

b b b 

∆ 

∆ 
∆ 

 

  

 

START 

ACCEPT REJECT 

∆ 

REJECT 

REJECT 

READ1 

 
READ2 

 

READ3 

 
READ4 

 

PUSH a 

ACCEPT 

START 

READ1 

a 

READ2 

a 

b 

POP2 
b 

a 

∆  

POP1 

∆  

b 

∆  

PUSH b 

POP3 

a 

b 
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+4*4 S POP 

+4*4 +S READ1 

4+4*4 +S POP 

4+4*4 S+S PUSH4 S 

4+4*4 +S PUSH3 + 

4+4*4 S PUSH2 S 

4+4*4 ∆ POP 

4+4*4 S PUSH1 S 

        4+4*4 ∆ START 

TAPE STACK STATE 

PUSHDOWN AUTOMATON (PDA)[ including the possibility of non determinism] 
Pushdown Automaton (PDA), consists of the following 

1. An alphabet Σ of input letters. 
2. An input TAPE with infinite many locations in one direction.  Initially the input string is placed in it 

starting from first cell, the remaining part of the TAPE is empty. 

3. An alphabet Γ of STACK characters. 
4. A pushdown STACK which is initially empty, with infinite many locations in one direction. Initially 

the STACK contains blanks. 
5. One START state with only one out-edge and no in-edge. 
6. Two halt states i.e. ACCEPT and REJECT states, with in-edges and no out-edges. 
7. A PUSH state that introduces characters onto the top of the STACK. 
8. A POP state that reads the top character of the STACK, (may contain more than one out-edges with 

same label). 
9. A READ state that reads the next unused letter from the TAPE, (may contain more than one out-edges 

with same label).  
 
Example: Consider the CFG  

  S → S+S|S*S|4 
Following is the PDA accepting the corresponding CFL 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
The string 4 + 4 * 4 traces the path  shown in the following table 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

PUSH1 S 

ACCEPT 

START 

READ1 

4 

READ2 

* 

S 

POP 

∆  + 

∆  

S 

READ3 

READ4 

PUSH3 + 

PUSH2 S 

PUSH4 S 

PUSH5 S 

PUSH6 * 

PUSH7 S 

S 

+ * 



Theory of Automata                                                                                                                               (CS402)          

                                                                                                           

 

© Copyright Virtual University of Pakistan 

 

113

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Note 
It may be noted that the letters are deleted from the TAPE instead of underlined. 
It may also be noted that the choice of path at POP state can be determined by the left most deviation of the 
string belonging to the CFL.  
 

*4 S POP 

*4 *S READ1 

4*4 *S POP 

4*4 S*S PUSH7 S 

4*4 *S PUSH6 * 

4*4 S PUSH5 S 

4*4 ∆ POP 

4*4 S READ2 

TAPE STACK STATE 

4 S READ3 

∆ ∆ ACCEPT 

∆ ∆ READ4 

∆ ∆ POP 

∆ ∆ READ1 

4 ∆ POP 
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Theory of Automata 

 
Lecture N0. 39 

Reading Material 
 

Introduction to Computer Theory   Chapter 15 

 
Summary 
PDA corresponding to CFG, Examples of PDA corresponding to CFG 

  

PDA corresponding to CFG 
Theorem 
Corresponding to any CFG there exists a PDA accepting the language generated by the CFG. 
 
Since an algorithm has already been discussed to convert the CFG in CNF, so the PDA can be constructed 
corresponding to the CFG. As the CFG in CNF generates all the nonnull words of the corresponding CFL, so 
accepting the null string (if it is contained in the CFL), can be managed separately. 
 
Example 
Consider the following CFG which is in CNF and does not generate the null string 

  S → SB|AB 

  A → CC 

  B → b 

  C → a 
The corresponding PDA will be 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Here the STACK alphabet  Γ= {S, A, B, C}, where the TAPE alphabet ∑={a, b} 
 

Note: It may be noted that when the POP state is entered either a nonterminal is replaced by two nonterminals at 
the top of the STACK accommodating a production, or a nonterminal is popped out from the top of the stack 
and a READ state is entered to read a specified letter from the TAPE or else the machine crashes. 
 The choice of path taken at POP state to accommodate the word belonging to the CFL can be determined by the 
left most derivation of the word. Consider the word aab with its left most derivation, as follows 

PUSH S 

ACCEPT 

START 

READ1 

a 

READ2 

S 

POP 

∆  B 

∆  

S 

READ3 

PUSH B 

PUSH S 

PUSH C 

PUSH C 

C 

b 

PUSH B 

PUSH A 

A 
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aab∆… ∆… 

TAPE STACK 

aab∆… S 

TAPE STACK 

aab∆… AB 

TAPE STACK 

aab CCB 

TAPE STACK 

Working-String Generation Production Used 

 S ⇒ AB   S → AB  step 1 

    ⇒ CCB  A → CC  step 2 

    ⇒ aCB   C → a  step 3 

    ⇒ aaB   C → a  step 4 

    ⇒ aab   B → b  step 5 
 
First of all the START state is entered 
 
 
 
 
 
The PUSH S state is entered  
 
 
 
 
 

The POP state is entered and to accommodate the production S → AB, PUSH B and PUSH A states are entered.  
 
 
 
 

Then the POP state is entered and to accommodate the production A → CC, PUSH C, PUSH C states are 
entered 
 
 
 
 

The POP state is entered and to accommodate the production C → a, READ1 is entered and the letter a is read 
from the TAPE. 
  
 
 
 

The POP state is entered and to accommodate the production C → a, READ1 state is entered and the letter a is 
read from the TAPE 
 
 
 
 

The POP state is entered and to accommodate the production B → b, READ2 state is entered and the letter b is 
read from the TAPE 
 
 
 

The ∆ shown in the STACK indicates that there are no nonterminals in the working string and ∆ is read from the 

STACK which leads to READ3 state where the ∆ is read from the TAPE and the ACCEPT state is entered 
which shows that the word aab is accepted by the PDA.  
Following is the table showing all the observations discussed above, for the word aab 

aab CB 

TAPE STACK 

aab B 

TAPE STACK 

aab 

TAPE STACK 

∆ 



Theory of Automata                                                                                                                               (CS402)          

                                                                                                           

 

© Copyright Virtual University of Pakistan 

 

116

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Following is an example of building the PDA corresponding to the given CFG 
 
Example 
Consider the following CFG 

  S → XY 

  X → aX | bX |a 

  Y → Ya | Yb | a 
First of all, converting the CFG to be in CNF, introduce the nonterminals A and B as 

  A → a 

  B → b 
The following CFG is in CNF 

 S → XY 

 X → AX | BX |a 

 Y → YA | YB | a 

 A → a 

 B → b 

aab CB POP  

aab CCB PUSH C ⇒CCB 

aab CB PUSH C  

aab B POP  

aab AB PUSH A ⇒AB 

aab B PUSH B  

aab ∆ POP  

aab S PUSH S S 

aab ∆ START  

TAPE STACK STATE Left most 
derivation 

aab ∆ ACCEPT  

aab ∆ READ3  

aab ∆ POP  

aab ∆ READ2 ⇒aab 

aab ∆ POP  

aab B READ1 ⇒aaB 

aab B POP  

aab CB READ1 ⇒aCB 
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The PDA corresponding to the above CFG will be 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The word aaab can be generated as 
Working-String Generation  Production Used 

 S ⇒ XY    S → XY  step 1 

    ⇒ AXY   X → AX  step 2 

    ⇒ aXY   A → a  step 3 

    ⇒ aaY   X → a  step 4 

    ⇒ aaYB   Y → YB step 5 

    ⇒ aaaB   Y → a  step 6 

    ⇒ aaab   B → b  step 7 

 
 
 
 

PUSH S 

ACCEPT START 

READ1 

a 

READ2 

A 

POP 

∆  
Y 

∆  

READ3 

READ5 

PUSH Y 

PUSH X 

PUSH X 

PUSH B 

X 

a a 

PUSH X 

PUSH A 

S 

READ4 

b 

B 

PUSH A 

PUSH Y 

PUSH B 

PUSH Y 

X 
X 

Y 

Y 

      STACK      TAPE     STACK              TAPE 

∆ (POP)     ∆ aaab (READ3) XY 

aaab (READ4)   ∆ aaab (POP)   XY 

aaab (POP)     ∆ aaab (PUSH A) AXY 

aaab (READ2)   B aaab (PUSH X) XY 

aaab (POP)     B aaab (POP)      Y 

aabb (PUSH Y) YB aaab (PUSH X) XY 

aabb (PUSH B)  B aaab (PUSH Y)  Y 

aabb (POP)    ∆ aaab (POP)    ∆ 

aaab (READ1)  Y  aaab (PUSH S)   S 

aaab (POP)    Y aaab (START)   ∆ 
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Theory of Automata 

 
Lecture N0. 40 

Reading Material 
 

Introduction to Computer Theory   Chapter 15 

 

Summary 

Recap of example of PDA corresponding to CFG, CFG corresponding to PDA. Theorem, HERE state, 
Definition of Conversion form, different situations of PDA to be converted into conversion form 
 
Example 
Consider the following CFG 

  S → XY 

  X → aX | bX |a 

  Y → Ya | Yb | a 
First of all, converting the CFG to be in CNF, introduce the nonterminals A and B as 

  A → a 

  B → b 
The following CFG is in CNF 

 S → XY 

 X → AX | BX |a 

 Y → YA | YB | a 

 A → a 

 B → b 
The PDA corresponding to the above CFG will be 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Theorem 

Given a PDA that accepts the language L, there exists a CFG that generates exactly L. 
 
Before the CFG corresponding to the given PDA is determined, the PDA is converted into the standard form 

which is called the conversion form. 
Before the PDA is converted into conversion form a new state HERE is defined which is placed in the middle of 
any edge. 
Like READ and POP states, HERE states are also numbered e.g.  
 

PUSH S 

ACCEPT START 

READ1 

a 

READ2 

A 

POP 

∆  
Y 

∆  

READ3 

READ5 

PUSH Y 

PUSH X 

PUSH X 

PUSH B 

X 

a a 

PUSH X 

PUSH A 

S 

READ4 

b 

B 

PUSH A 

PUSH Y 

PUSH B 

PUSH Y 

X 
X 

Y 

Y 
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becomes 
 
 
 
 

Conversion form of PDA 

Definition 
A PDA is in conversion form if it fulfills the following conditions: 
There is only one ACCEPT state. 
There are no REJECT states. 
Every READ or HERE is followed immediately by a POP i.e. every edge leading out of any READ or HERE 
state goes directly into a POP state. 
No two POPs exist in a row on the same path without a READ or HERE between them whether or not there are 
any intervening PUSH states (i.e. the POP states must be separated by READs or HEREs). 
All branching, deterministic or nondeterministic occurs at READ or HERE states, none at POP states and every 
edge has only one label. 
Even before we get to START, a “bottom of STACK” symbol $ is placed on the STACK. If this symbol is ever 
popped in the processing it must be replaced immediately. The STACK is never popped beneath this symbol. 
Right before entering ACCEPT this symbol is popped out and left. 
The PDA must begin with the sequence   
 
 
 
 
The entire input string must be read before the machine can accept the word. 
Different situations of a PDA to be converted into conversion form are discussed as follows 
 
To satisfy condition 3, 
 
 
 
 
 
becomes 
 
 
 
 
 
 
 
To satisfy condition 4, 
 
 
 
becomes 
 
 
 
 
 
 
 
 
 
 
 

  
a b READ7 READ9 

  
a 

 
b READ7 

 
HERE3 READ9 

START PUSH $   
$ 

POP HERE 

   
a 

b 

b READ7 
 

READ8 

READ7   
a 

b 

PUSH b 

PUSH a 

PUSH $ 

 

a 

b 

$ 

b READ7 POP 

POP4   
a b 

POP5 

POP4   
a 

 
b 

HERE POP5 
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∆ 

$ 

STACK 

To satisfy condition 5 
 
 
 
 
 
 
 
 
 
 
 
becomes 
 
 
 
 
 
 
 
 
 
To satisfy condition 5 
 
 
 
 
 
 
 
 
becomes 
 
 
  
 
 
 
 
 
 
To satisfy condition 6, it is supposed that the STACK is initially in the position shown below 
 

  

READ1 

  
a 

 

 

a 

b 
POP1 

READ3 

READ2 

READ1 

  
a 

 
b 

 

a 

 
a 

POP2 
READ2 

POP3 
READ3 

 

READ1   
a 

PUSH a 

PUSH b 

 

a 

b 
POP READ2 

READ1 

 
 

PUSH a 

PUSH b 

 

a 

b 

 

a 

a 

POP1 

POP2 

READ2 



Theory of Automata                                                                                                                               (CS402)          

                                                                                                           

 

© Copyright Virtual University of Pakistan 

 

121

Theory of Automata 

 
Lecture N0. 41 

Reading Material 
 

Introduction to Computer Theory   Chapter 15 

 

Summary 

Recap of PDA in conversion form, example of PDA in conversion form, joints of the machine, new pictorial 
representation of PDA in conversion form, summary table, row sequence, row language. 
 

Conversion form of PDA 
Definition 
A PDA is in conversion form if it fulfills the following conditions: 
There is only one ACCEPT state. 
There are no REJECT states. 
Every READ or HERE is followed immediately by a POP i.e. every edge leading out of any READ or HERE 
state goes directly into a POP state. 
No two POPs exist in a row on the same path without a READ or HERE between them whether or not there are 
any intervening PUSH states (i.e. the POP states must be separated by READs or HEREs). 
All branching, deterministic or nondeterministic occurs at READ or HERE states, none at POP states and every 
edge has only one label. 
Even before we get to START, a “bottom of STACK” symbol $ is placed on the STACK. If this symbol is ever 
popped in the processing it must be replaced immediately. The STACK is never popped beneath this symbol. 
Right before entering ACCEPT this symbol is popped out and left. 
The PDA must begin with the sequence   
 
 

 
 
The entire input string must be read before the machine can accept the word. 

  
 
Example 

Consider the following PDA accepting the language {a2nbn : n = 1,2,3, …} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Which may be converted to 
 
 

 
 

START PUSH $ 

  
$ 

HERE POP 

READ1 

START 

  

a 
 

 

$ 

∆∆∆∆ 

ACCEPT 

 
b 

b 
a 

PUSH a 

a 
POP1 POP2 READ2 

POP3 
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Any 
string 

onto the 

STACK 

Exactly 
one 

STACK 

character 

ONE or  
no input 

letter 

READ 
or HERE 

or 

ACCEPT 

START 
or READ 

or HERE 

PUSH POP READ TO FROM 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The above PDA accepts exactly the same language 
 
 
 
Note 
It may be noted that any PDA which is in conversion form can be considered to be the collection of path 
segments, where each path segment is of the following form 
 
 
 
 
 
 
 
 
START, READ, HERE and ACCEPT states are called the joints of the machine. Between two consecutive 
joints on a path exactly one character is popped and any number of characters can be pushed. 
The PDA which is in the conversion form can be supposed to be the set of joints with path segments in 
between, similar to a TG 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

POP4 START PUSH $ 

 

$ 

  
a 

 

 
$ 

∆∆∆∆ 

ACCEPT 

 

 

b 

 

a 

b 

 

a 

PUSH a 

PUSH a 

PUSH $ 

PUSH a 

a $ 

a 

READ1 POP1 HERE POP2 

POP6 POP5 

READ2 

POP3 

READ1 START 

  

 

ACCEPT 

  

 

 

   

HERE 

READ2 
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7 -- $ ∆ AT READ2 

6 -- a b HERE READ2 

5 -- a Λ READ2 HERE 

4 -- a b HERE READ1 

3 aa a a READ1 READ1 

2 a$ $ a READ1 READ1 

1 $ $ Λ READ1 START 

ROW 

Number 

PUSH 

What 

POP 

What 

READ 

What 

TO 

Where 

FROM 

Where 

The above entire machine can be described as a list of all joint-to-joint path segments, called summary table. 
The PDA converted to the conversion form has the following summary table 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider the word aaaabb. This word is accepted by the above PDA through the following path 

START−POP4−PUSH$−READ1−POP6−PUSH $−PUSH a−READ1−POP5−PUSH a−PUSH a− READ1− 

POP5−PUSH a−PUSH a−READ1−POP5−PUSH a−PUSH a−READ1−POP1− HERE−POP2−READ2−POP1− 

HERE−POP2−READ2−POP3−ACCEPT. 
The above path can also be expressed by the following path in terms of sequence of rows 
Row1 –Row2 –Row3 –Row3 –Row3 –Row4 –Row5 –Row6 –Row5 –Row7 
It can be observed that the above path is not only joint-to-joint consistent but STACK consistent as well. 
It may be noted that in FAs, paths correspond to strings of letters, while in PDAs, paths correspond to strings of 
rows from the summary table. 
 
Note 

It may be noted that since the HERE state reads nothing from the TAPE, therefore Λ is kept in the READ what 

column.  
It may also be noted that the summary table contains all the information of the PDA which is in the pictorial 
representation. Every path through the PDA is a sequence of rows of the summary table. However, not every 
sequence of rows from the summary table represents a viable path, i.e. every sequence of rows may not be 
STACK consistent. 
It is very important to determine which sequences of rows do correspond to possible paths through the PDA, 
because the paths are directly related to the language accepted, e.g. Row4 cannot be immediately followed by 
Row6 because Row4 leaves in HERE, while Row6 begins in Read2. Some information must be kept about the 
STACK before rows are concatenated. 
To represent a path, a sequence of rows must be joint-consistent (the rows meet up end to end) and STACK-

consistent (when a row pops a character it should be there at the top of the STACK). 

The next target is to define row language whose alphabet is ∑ = {Row1, Row2, …, Row7} i.e. the alphabet 
consists of the letters which are the names of the rows in the summary table. 
 
Note  
It may be noted that  the words of the row language trace joint-to-joint and STACK consistent paths, which 
shows that all the words of this language begin with Row1 and end in Row7. Consider the following row 
sequence Row5 Row5 Row3 Row6 

This is string of 4 letters, but not word of the row language because 
It does not represent a path starting from START and ending in ACCEPT state. 
It is not joint consistent. 
It is not STACK consistent. 
Before the CFG that generates the language accepted by the given PDA, is determined, the CFG that generates 
the row language is to be determined. For this purpose new nonterminals are to be introduced that contain the 
information needed to ensure joint and STACK consistency. 

It is not needed to maintain any information about what characters are read from the TAPE.  
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Theory of Automata 

 
Lecture N0. 42 

Reading Material 
 

Introduction to Computer Theory   Chapter 15 

 

Summary 
Row language, nonterminals defined from summary table, productions defined by rows, rules for defining 
productions, all possible productions of CFG for row language of the example under consideration, CFG 
corresponding to the given PDA 

  

Note 
As has already been discussed that the Row language is the language whose alphabet  

∑ = {Row1, Row2, …, Row7}, for the example under consideration, so to determine the CFG of Row language, 
the nonterminals of this CFG are introduced in the form Net(X, Y, Z)  

where X and Y are joints and Z is any STACK character. Following is an example of Net(X, Y, Z) 
 
 

 
 
If the above is the path segment between two joints then, the net STACK effect is same as POP Z. 
For a given PDA, some sets of all possible sentences Net(X, Y, Z) are true, while other are false. For this 
purpose every row of the summary table is examined whether the net effect of popping is exactly one letter. 
Consider the Row4 of the summary table developed for the PDA of the language {a2nbn} 
 

 
 
 
 
 
The nonterminal corresponding to the above row may be written as Net (READ1, HERE, a) i.e.Row4 is a single 
Net row.  
Consider the following row from an arbitrary summary table 
 
 
 
 
 
 
 
which shows that Row11 is not Net style sentence because the trip from READ9 to READ3 does not pop one 
letter form the STACK, while it adds two letters to the STACK. However Row11 can be concatenated with some 
other Net style sentences e.g. Row11Net(READ3, READ7, a)Net(READ7, READ1, b)Net(READ1, READ8, b) 
Which gives the nonterminal  
Net(READ9, READ8, b), now the whole process can be written as  

Net(READ9, READ8, b) → Row11Net(READ3, READ7,a) Net(READ7, READ1, b)Net(READ1, READ8, b) 
Which will be a production in the CFG of the corresponding row language. 
In general to create productions from rows of summary table, consider the following row in certain summary 
table 

 
 
 
 
 
 
 
 
then for any sequence of joint states S1, S2, …Sn, the production in the row language can be included as 

4 -- a b HERE READ1 

ROW 

Number 

PUSH 

What 

POP 

What 

READ 

What 

TO 

Where 

FROM 

Where 

11 abb b b READ3 READ9 

ROW 

Number 

PUSH 

What 

POP 

What 

READ 

What 

TO 

Where 

FROM 

Where 

i m1m2…mn w u READy READx 

ROW 

Number 

PUSH 

What 

POP 

What 

READ 

What 

TO 

Where 

FROM 

Where 

PUSH a 

  
Z 

PUSH b 
b 

 
a 

POP POP POP 
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Net(READx, Sn, w) → RowiNet(READy, S1, m1)…Net(Sn-1, Sn, mn) 
It may be noted that in CFG, in general, replacing a nonterminal with string of some other nonterminals does not 

always lead to a word in the corresponding CFL e.g. S → X|Y, X → ab, Y → aYY 

Here Y → aYY does not lead to any word of the language. 
Following are the three rules of defining all possible  productions of CFG of the row language 
The trip starting from START state and ending in ACCEPT state with the NET style  

Net(START, ACCEPT, $) gives the production of the form S → Net(START, ACCEPT, $)  
From the summary table the row of the following form 
 
 
 
 
 
 

Defines the productions of the form Net(X,Y,z) → Rowi 

For each row that pushes string of characters on to the STACK of the form  
 
 
 
 
 
 
 
then for any sequence of joint states S1, S2, …Sn, the production in the row language can be included as 

Net(READX,Sn, w) → RowiNet(READY, S1,m1) …Net(Sn-1, Sn, mn) 
It may be noted that this rule introduces new productions. It does not mean that each production of the form  

Nonterminal → string of nonterminals, helps in defining some word of the language. 
 
Note  
Considering the example of PDA accepting the language {a2nbn:n=1, 2, 3, …}, using rule1, rule2 and rule3 the 
possible productions for the CFG of the row language are  

S → Net(START, ACCEPT, $) 

Net(READ1, HERE, a) → Row4 

Net(HERE, READ2, a) → Row5 

Net(READ2, HERE, a) → Row6 

Net(READ2, ACCEPT, $) → Row7 

Net(START, READ1, $) → Row1Net(READ1, READ1, $) 

Net(START, READ2, $) → Row1Net(READ1,READ2, $) 

Net(START, HERE, $) → Row1Net(READ1, HERE, $) 

Net(START, ACCEPT, $) → Row1Net(READ1, ACCEPT, $) 

Net(READ1, READ1, $) → Row2Net( READ1, READ1, a)Net(READ1, READ1, $) 

Net(READ1, READ1, $) → Row2Net( READ1, READ2, a)Net(READ2, READ1, $) 

Net(READ1, READ1, $) → Row2Net( READ1, HERE, a)Net(HERE, READ1, $) 

Net(READ1, READ2, $) → Row2Net( READ1, READ1, a)Net(READ1, READ2, $) 

Net(READ1, READ2, $) → Row2Net( READ1, READ2, a)Net(READ2, READ2, $) 

Net(READ1, READ2, $) → Row2Net( READ1, HERE, a)Net(HERE, READ2, $) 

Net(READ1, HERE, $) → Row2Net( READ1, READ1, a)Net(READ1, HERE, $) 

Net(READ1, HERE, $) → Row2Net( READ1, READ2, a)Net(READ2, HERE, $) 

Net(READ1, HERE, $) → Row2Net( READ1, HERE, a)Net(HERE, HERE, $) 

Net(READ1, ACCEPT, $) → Row2Net( READ1,READ1,a)Net(READ1,ACCEPT, $)  

Net(READ1,ACCEPT, $) → Row2Net( READ1,READ2,a)Net(READ2,ACCEPT, $) 

Net(READ1, ACCEPT, $) → Row2Net( READ1, HERE, a)Net(HERE, ACCEPT, $) 

Net(READ1, READ1, a) → Row3Net( READ1, READ1, a)Net(READ1, READ1, a) 

Net(READ1, READ1, a) → Row3Net( READ1, READ2, a)Net(READ2, READ1, a) 

Net(READ1, READ1, a) → Row3Net( READ1, HERE, a)Net(HERE, READ1, a) 

Net(READ1, READ2, a) → Row3Net( READ1, READ1, a)Net(READ1, READ2, a) 

Net(READ1, READ2, a) → Row3Net( READ1, READ2, a)Net(READ2, READ2, a) 

Net(READ1, READ2, a) → Row3Net( READ1, HERE, a)Net(HERE, READ2, a) 

i -- z anything Y X 

ROW 

Number 

PUSH 

What 

POP 

What 

READ 

What 

TO 

Where 

FROM 

Where 

i m1m2…mn w u READy READx 

ROW 

Number 

PUSH 

What 

POP 

What 

READ 

What 

TO 

Where 

FROM 

Where 
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Net(READ1, HERE, a) → Row3Net( READ1, READ1, a)Net(READ1, HERE, a) 

Net(READ1, HERE, a) → Row3Net( READ1, READ2, a)Net(READ2, HERE, a) 

Net(READ1, HERE, a) → Row3Net( READ1, HERE, a)Net(HERE, HERE, a) 

Net(READ1, ACCEPT, a) → Row3Net( READ1, READ1,a)Net(READ1,ACCEPT,a) 

Net(READ1, ACCEPT, a) → Row3Net( READ1, READ2,a)Net(READ2,ACCEPT,a) 

Net(READ1, ACCEPT, a) → Row3Net (READ1, HERE,a)Net(HERE,ACCEPT,a) 
Following is a left most derivation of a word of row language 

S  ⇒ Net(START, ACCEPT, $)     … using 1 

  ⇒ Row1Net(READ1, ACCEPT, $)     … using 9 

 ⇒ Row1Row2Net(RD1,RD2, a)Net(RD2,AT, $)   … using 20 

 ⇒ Row1Row2Row3Net(RD1, HERE,a)Net (RD2,HERE,a)Net(RD2,AT,$)… using 27 

⇒ Row1Row2Row3Row4Net(HERE, RD2, a)Net(RD2, ACCEPT, $) … using 2 

⇒ Row1Row2Row3Row4Row5Net(HERE, ACCEPT, $)   … using 3 

⇒ Row1Row2Row3Row4Row5Row7     … using 5 
Which is the shortest word in the whole row language. 
It can be observed that each left most derivation generates the sequence of rows of the summary table, which are 
both joint- and STACK- consistent. 
Note: So far the rules have been defined to create all possible productions for the CFG of the row language. 

Since in each row in the summary table, the READ column contains Λ and ∆ in addition to the letters of the 
alphabet of the language accepted by the PDA, so each word of the row language generates the word of the 
language accepted by the given PDA. 
Thus the following rule 4 helps in completing the CFG corresponding to the given PDA 

Each row of the summary table defines a production of the form Rowi → a where in Rowi the READ column 
consists of letter a. 
Application of rule 4 to the summary table for the PDA accepting {a2nbn : n=1,2,3,…} under consideration adds 
the following productions 

Row1 → Λ 

Row2 → a 

Row3 → a 

Row4 → b 

Row5 → Λ 

Row6 → b 

Row7 → ∆ 

Which shows that the word Row1Row2Row3Row4Row5Row7 of the row language is converted to ΛaabΛ∆ = abb 
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Theory of Automata 

 
Lecture N0. 43 

Reading Material 
 

Introduction to Computer Theory   Chapter 16 

 

Summary 

Non-Context-Free-languages, Live Production, Dead Production, Theorem, self- embedded nonterminal, 
Pumping lemma for CFLs, Examples 
 

Non-Context-Free language 

There arises a question, whether all languages are CFL? The answer is no.  
Languages which are not Context-Free, are called Non-CFL. 
 
To prove the claim that all languages are not Context-Free, the study of machines of word production from the 
grammar is needed 
 

Live production: A production of the form nonterminal → string of two nonterminals is called a live production. 
 

Dead production: A production of the form nonterminal → terminal is called a dead production. 
 
It may be noted that every CFG in CNF has only these types of productions.  
 

Theorem 
If a CFG is in CNF and if there is restriction to use the live production at most once each, then only the finite 
many words can be generated. 
It may be noted that every time a live production is applied during the derivation of a word it increases the 
number of nonterminals by one. 
Similarly applying dead production decreases the nonterminals by one. Which shows that to generate a word, 
one more dead production are applied than the live productions e.g. 

           S ⇒ XY 

  ⇒aY 

 ⇒aa 
Here one live and two dead productions are used. 
In general, if a CFG in CNF has p live and q dead productions then all words generated without repeating any 
live production have at most (p+1) letters. 
 

Theorem 
If a CFG is in CNF with p live and q dead productions and if w is word generated by the CFG, having more than 
2p letters then any derivation tree for w has a nonterminal z which is used twice, where the second z is the 
descended from the first z. 
 
It can be observed from the above theorem that generation tree of word w has more than p rows. 
Self-embedded nonterminal 
A nonterminal is said to be self-embedded, if in a given derivation  
of a word, it ever occurs as a tree  
descendant of itself, as shown in figure aside 
 

 
 
 
 
 
 
 
 
 

S 

A X 

S A 
a 

a A X 

a S A 

b a 
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Here the nonterminal X is self-embedded. 
 
Note  
Consider the following CFG in CNF 

 S → AB 

 A → BC 

 C → AB 

 A → a 

 B → b 
and the derivation tree of the word bbabbb 
 

 
 
 
 
 
 
 
 
 
 
Note 
The part of tree enclosed in upper triangle is identical to that enclosed in lower triangle, there is still another 
option of replacing A by the same sequence of production shown in lower triangle. 
The above fact provides the following pumping lemma for the CFLs. 
 

Pumping lemma for CFLs 
Theorem 
If G is any CFG in CNF with p live productions, then every word w of length more than 2p can be partitioned 
into five substrings as w = uvxyz, where x is not null string and v and y are not both null string. 
Then all the words of the form uvnxynz, n = 1,2,3,… can also be generated by G. 
 
Example 
Consider the following CFG which is in CNF 

 S → PQ 

 Q → QS|b 

 P → a  
and a word abab generated by the above CFG with the  
following derivation tree 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S 

A B 

B C 

A B 

B C 

A B 

b 

b 

b 

b 

a b 

S 

P Q 

Q S 

P Q 
b 

a 

b a 

y 

u 

x 
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Then w can be broken up as w = uvxyz where u = a, v = Λ, x = b, y = ab, z = Λ 
Repeating the triangle from the second Q just as it descends from the first Q, the corresponding tree may be 
expressed as follows 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Which shows that uvvxyyz=aΛΛbababΛ=ababab belongs to the language generated by the given CFG. 
So, it can be generalized that words of the form uvnxynz, n=1,2,3,… belong to the language generated by the 
given CFG. 
 
Note 
It may be noted that the pumping lemma is satisfied by all CFLs and the languages which don’t hold this 
pumping lemma, can’t be Context Free languages. Such languages are non-CFLs. 
 
Example 
Consider the language  
L={anbncn :n=1,2,3,…}, let the language L be Context Free language and let the word w=a200b200c200 of length 
more than 2p, where p is the number of live productions of its CFG in CNF. 
 
Note 
It can be observed that no matter what choices are made for the substrings u,v,x,y and z, uv2xy2z can’t belong to 
L, as all the words in anbncn have 
 
Only one substring ab 
Only one substring bc 
No substring ac 
No substring ba 
No substring ca 
No substring cb 
For any n=1,2,3,… 
 

The above observations shows that if v or y is not single letter or Λ, then uv2xy2z may contain either two or 
more substrings ab or bc or one or more substrings ac or ba or ca or cb i.e. these strings may be in the number 
more than the number they are supposed to be. 

Moreover, if v and y are either single letter or Λ, then one or two of letters a,b,c will be increased, where as the 
other letter will not be increased in uv2xy2z, which shows uv2xy2z does not belong to L. 
Thus pumping lemma is not satisfied. Hence L is non CFL. 

S 

P S 

P Q 

a 
u 

Q S 

Q S 

P Q 

x 

y y 

b 

a b a b 
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It may be noted that the pumping lemma discussed for infinite regular language L, the word w can be 

decomposed into three parts w=xyz, such that all words of the form xy
n
z, n=1,2,3,…, belong to L. 

Similarly, the pumping lemma discussed for CFLs can also stated as 

If w is a large enough word in a CF: then, w can be decomposed into w=uvxyz such that all words of the 

form uv
n
xy

n
z belong to L 

It may be noted that proof of pumping lemma for regular languages needed that path of word w to be so large 
enough so that it contains a circuit and circuit can be looped as many times as one can. The proof of the 
pumping lemma for CFLs needs the derivation for w to be so large that it contains a sequence of productions 
that can be repeated as many times as one can. 
Moreover, the pumping lemma for regular languages does not hold for non regular language as that language 
does not contain both xyz and xyyz.  
Similarly pumping lemma for CFLs does not hold for non-CFL as that language does not contain both uvxyz 
and uvvxyyz. 
There is another difference between the pumping lemma for regular languages and that for CFLs that first one 
acts on machines while other acts on algebraic structures i.e. grammar. 
To achieve full power the pumping lemma for regular languages has modified by pumping lemma version II. 
Similarly, full power for pumping lemma for CFLs is achieved by stating the following theorem 

 
Theorem 
If L is a CFL in CNF with p live productions then any word W in L of length more than 2p can be decomposed 

as w=uvxyz  s.t. length(vxy) ≤ 2p, length(x) > 0, length(v)+length(y) > 0 
then the words of the form uvnxynz : n=1,2,3,… belong to L. 
 
Example 
Consider the language  
L= {anbmanbm :m,n=1,2,3,…} 
  ={abab,aabaab, abbabb, aabbaabb, aaabaaab,… } 
The first version of pumping lemma for CFLs may be satisfied by L, but to apply the second version of pumping 
lemma to L, let L be generated by CFG which is in CNF and has p live productions. 
Consider the word decomposing w into uvxyz where length(vxy) < 2p which shows that v and y can’t be single 
letters separated by clumps of other letter because the separator letter is longer than the length of whole 
substring vxy, which shows that uvvxyyz is not contained in L. Thus pumping lemma is not satisfied and L is 
non CFL. 
 

Example 

Consider the language EVENA i.e.  
EVENA=(aa)n =a2n ={aa, aaaa, aaaaaa, …} 
The grammar for this language must be  

 S → SS|aa and its CNF will be  

 S → SS|AA, A → a, the PDA for this grammar will be as under 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Its corresponding conversion form will be 
 

START PUSH S 

 ACCEPT  
∆∆∆∆ 

S 

PUSH A 

PUSH A 

PUSH S 

PUSH S 

S 

∆∆∆∆ 
 

A a 
READ1 READ2 POP 
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The summary table corresponding to the above PDA in conversion form can be expressed as 
 

 
 
 
 
 
 
 
 
 
 
 
 
Following are the productions defined from the summary table 

6 $ $ a HERE RAED1 

5 S S a HERE READ1 

4 -- A Λ READ1 HERE 

3 AA S Λ HERE HERE 

2 SS S Λ HERE HERE 

1 S$ $ Λ HERE START 

ROW PUSH POP READ TO FROM 

9 -- $ ∆ ACCEPT READ2 

8 $ $ Λ READ2 HERE 

7 A A a HERE READ1 

START 
PUSH $ 

 
$ 

 

 

 

PUSH S 

   

a a a 

A 

 

PUSH S 

S 

PUSH A 

A 

PUSH $ 

$ 

S 

PUSH A 

PUSH A 

PUSH S 

PUSH S 

  

S 

PUSH $ 

 

∆∆∆∆ 

 

$ 

ACCEPT 

$ 

POP 

READ1 

HERE 

POP 

POP 

READ2 

POP 

POP 

POP 

POP POP 

POP 
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 S → Net(START, ACCEPT, $) 

 Net(HERE, READ1, A) → Row4 

 Net(READ2, ACCEPT, $) → Row9 

 Net(START, X, $) → Row1 Net(HERE, Y, S)Net(Y, X, $) 

 Net(HERE, X, S) → Row2 Net(HERE, Y, S)Net(Y, X, S) 

 Net(START, X, S) → Row3 Net(HERE, Y, A)Net(Y, X, A) 

 Net(READ1, X, S) → Row5 Net(HERE, X, S) gives four productions 

 Net(READ1, X, $) → Row6 Net(HERE, X, $) gives four productions 

 Net(READ1, X, A) → Row7 Net(HERE, X, A) gives four productions 

 Net(HERE, ACCEPT, $) → Row8 Net(READ2, ACCEPT, $) 
Where X and Y are the corresponding joints 
In addition to 44 productions following 9 productions complete the required CFG 

 Row1 → Λ  

 Row2 → Λ  

 Row3 → Λ  

 Row4 → Λ  

 Row5 → a 

 Row6 → a  

 Row7 → a  

 Row8 → Λ  

 Row9 → Λ 
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Theory of Automata 

 
Lecture N0. 44 

Reading Material 
 

Introduction to Computer Theory   Chapter 18 

 

Summary 
Decidability, whether a CFG generates certain string (emptiness), examples, whether a nonterminal is used in 
the derivation of some word (uselessness), examples, whether a CFL is finite (finiteness), example, whether the 
given string is generated by the given CFG (membership), example, parsing techniques, top down parsing, 
example 

  

Decidablity  
Following are the decidable problems w.r.t. CFG 
Whether or not the given CFG generates any word? Problem of emptiness of CFL. 
Whether or not the given CFG generates the finite language? Problem of finiteness. 
Whether or not the given string w can be generated by the given CFG? Problem of membership. 

 
Following are algorithms showing that the answers to the above three questions are yes. 
 
Algorithm 1 (Emptiness) 

If the given CFG contains a production of the form S→Λ, then obviously the corresponding CFL is not empty. 

If the CFG contains the production of the form S→t, where t is a terminal or string of terminal then t is a word 
of the corresponding CFL and CFL is not empty. 
If the CFG contains no such production then 

For each nonterminal N with N→t, pick one production for N (if there are more than one) and replace N by t in 
the right side of each production wherever it lies. Remove all such productions from the CFG. Doing so the 
CFG will be changed, it will generate atleast one word of the old CFL. 
 
Repeat the process until either it eliminates S or no new nonterminal is eliminated. 
If S has been eliminated then CFG generates some words otherwise not. 
 
Example 

 S→AB, A →BSB, B→CC 

 C→SS 

 A→a|b 

 C →b|bb 

Step (1). Picking A→a, C →b, it can be written as 

  S→aB 

  A→BSB 

  A→bb 

  B→aaS 

  B→bb 

  C→SS 

Step (1). Picking B→bb and A→bb, it can be written as 

  S→abb 

  A→bbSbb 

  B→aaS 

  C→SS 

Since S→abb has been obtained so, abb is a word in the corresponding CFL. 
 
To determine whether the nonterminal X is ever used in the derivation of word from the given CFG, following 
algorithm is used 

 

Algorithm 2 (Uselessness) 
Find all unproductive nonterminals (the nonterminal is unproductive if it cannot produce a string of terminals). 
Eliminate all productions involving unproductive nonterminals. 
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Paint all X’s blue. 
If any nonterminal is in the left side of the production with any blue nonterminal in the right side, paint that 
nonterminal blue and paint that nonterminal blue at all occurrences of it throughout the grammar. 
Repeat step 4 until no new nonterminal is painted. 
If S is blue then X is useful member of CFG, otherwise not. 

 
Example 
Consider the following CFG 

 S→Aba | bAZ | b 

 A→Xb | bZa 

 B→bAA 

 X→aZa|aaa 

 Z→ZAbA 
To determine whether X is ever used to generate some words, unproductive nonterminals are determined. Z is 
unproductive nonterminal, so eliminating the productions involving Z. 

 S→Aba|b 

 A→Xb 

 B→bAA 

 X→aaa 
X is blue, so A is blue. Thus B and S are also blue. Since S is blue so X can be used to generate certain word 
from the given CFG. 
Note: It may be noted that a nonterminal is called useless if it cannot be used in a production of some word.  
Following algorithm is used to determine whether the given CFG generate the finite language 
 
Algorithm 3 (Finiteness) 
Determine all useless nonterminals and eliminate all productions involving these nonterminals. 
For each of the remaining nonterminals, determine whether they are self-embedded (using the following steps). 
Stop if a self-embedded nonterminal is discovered. 
To test whether X is self-embedded 

Change all X’s on the left side of the productions into a Greek letter Ψ and keep all X’s on the right side as such. 
Paint all X’s blue. 
If Y is any nonterminal on the left side of the production with X in the right side, then paint Y blue. 
Repeat step (c) until no new nonterminal is painted. 

If Ψ is painted, then the X is self-embedded, otherwise not. 
If any nonterminal, left in the grammar, after step 1, is self-embedded then the language generated is infinite, 
otherwise finite. 
 
Example 
Consider the CFG 

S→ABa|bAZ|b 

A→Xb|bZa 

B→bAA 

X→aZa|bA|aaa 

Z→ZAbA 
Here the nonterminal Z is useless, while all other are used in the derivation of some word. So eliminating the 
productions involving Z 
S→ABa|b 

A→Xb 

B→bAA 

X→bA|aaa 

Starting with nonterminal X. Replacing X on left side of the production by Ψ 

S→ABa|b 

A→Xb 

B→bAA 

Ψ →bA|aaa 

X is blue so A is blue and so Ψ is blue. Since A is blue, so B is blue and so S is blue. Since Ψ is blue so X is 
self-embedded and hence the CFG generates the infinite language. 
To determine whether a string is generated by the given CFG, following algorithm is used 
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N… xn-1 xn 

∂ ∂ 
∂ x3 x4 

N… x2 x3 

N… x1 x2 

All producing nonterminals  Substring 

 
Algorithm 4 (The CYK algorithm) 
This algorithm was invented by John Cocke and later was published by Tandao Kasami and Daniel H. Younger. 
Convert the given CFG in CNF. 
Let the string x under consideration has the form x=x1x2x3…xn where all xis may not be different. List all the 
nonterminals in the given CFG, say, S, N1,N2, … 
List the nonterminals that generates single letter substrings of x i.e. 
 
 

 
 
 
 
 
 
 
 
 
List the nonterminals that generates substrings of length 2 i.e. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Similarly, list of nonterminals generating substring of x of length 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Continuing the process, the nonterminals that generate x1x2x3…xn can be determined as  
 
 
 
 
 
 
If S is among the set of all producing nonterminals, then x can be generated by the CFG, otherwise not. 
 

N… xn 

∂ ∂ 

∂ x3 

N… x2 

N… x1 

All producing nonterminals  Substring 

N… xn-2 xn-1 xn 

∂ ∂ 
∂ x3 x4 x5 

N… x2 x3 x4 

N… x1 x2 x3 

All producing nonterminals  Substring 

N… x1 x2 x3…xn 

All producing nonterminals  Substring 
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S, A x = x1 x2 x3 

S, A x2 x3 

S, A x1 x2 

A x3 = a 

A x2 = a 

A x1 = a 

All producing nonterminals Substring 

Example 
Consider the following CFG in CNF 

S→AA 

A→AA 

A→a 
Let x = aaa. To determine whether x can be generated from the given CFG let x = x1x2x3 where x1 = x2 = x3 = a 
According to CYK algorithm, the list of nonterminals producing single letter double letter substrings of x and 
the string x itself, can be determined as follows 
 

 
 
 
 
 
 
 
 
 
 
 
 
Since S is in the list of producing nonterminals, so aaa can be generated by the given CFG. 
 

Parsing Techniques 

Recall the CFG for arithmetic expression 

S→S+S|S*S|number 
It was observed that the word 3+4*5 created ambiguity by considering its value either 23 or 35. To remove this 
ambiguity, the CFG was modified to  

S→(S+S)|(S*S)|number 
There arises a question that whether a new CFG can be defined without having parentheses with operator 
hierarchy (i.e. * before +)? The answer is yes. Following is the required PLUS-TIMES grammar 

S→E, E→T+E|T, T→F*T|F, F→(E)|i 
Where i stands for any identifier i.e. number or of storage location name (variable). Following is the derivation 
of i+i*i 

            S ⇒E 

   ⇒T+E 

  ⇒F+E 

   ⇒i+E 

  ⇒i+T 

    ⇒i+F*T 

  ⇒i+i*T 

   ⇒i+i*F 

  ⇒i+i*i 
 

Parsing of word 
Definition 
The process of finding the derivation of word generated by particular grammar is called parsing. 
There are different parsing techniques, containing the following three 
Top down parsing. 
Bottom up parsing. 
Parsing technique for particular grammar of arithmetic expression. 
 

Top down parsing 

Following is an example showing top down parsing technique 
 
Example 
Consider PLUS-TIMES grammar and a word i+i*i. 
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E 

T+E T 

F*T F 

S 

F*T+E F+E 

E 

T+E T 

S 

F*T 

F+E F*T+E 

i*T 

i+E i*T+E 
(4) 

(6) 

(2) 

As can be observed from the name of top down parsing, the parsing starts from the nonterminal S and the 
structure similar to that of total language tree is developed. The branches of the tree are extended till the 
required word is found as a branch. 
Some unwanted branches ( the branches that don't lead to the required word) are dropped. For the word i+i*i , 
the total language tree can be started as 
 

 
 
 
 
Which can further be extended to  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dropping the unwanted branches 1,3,5,7and 8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

E 

T+E T 

S 

F*T F 

F+E F*T+E 

(E)*T+E i*T+E 

(E)+E i+E 

(E)*T i*T 

(E) i (1) (2) 

(3) (4) 

(5) (6) 

(7) (8) 



Theory of Automata                                                                                                                               (CS402)          

                                                                                                           

 

© Copyright Virtual University of Pakistan 

 

138

i+E 

i+T+E i+T 

S 

i+F+E i+F*T+E 
(12) (9) 

i+F i+F*T 

(10) (11) 

E 

T+E 

F+E 

Since first two letters in branches 2 and 6 are not that in i+i*i , so 2 and 6 can be dropped and using left most 
derivation the nonterminal T is replaced as 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
since (9) gives more than five letters and (10) contains two + so (9) and (10) are dropped and left most 
nonterminal F is replaced as 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

i+E 

i+F*T i+F 

S 

i+i*T i+(E)*T 

(16) (13) 

i+i i+(E) 

(14) (15) 

E 

T+E 

F+E 

i+T 
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i+E 

S 

E 

T+E 

F+E 

i+T 

i+F*T 

i+i*T 

i+i*F*T i+i*F 

i+i*(E) i+i*i 

(13), (15) and (16) are again unwanted, so it can be written as 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The above tree confirms the required derivation 

                           S ⇒E 

   ⇒T+E 

  ⇒F+E 

   ⇒i+E 

  ⇒i+T 

   ⇒i+F*T 

  ⇒i+i*T 

   ⇒i+i*F 

  ⇒i+i*i 
Note 
It can be noted that Bottom Up Parsing can be determined similar to that of Top Down Parsing with the change 
that in this case, the process is started with the given string and the tree is extended till S is obtained. 
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Theory of Automata 

 
Lecture N0. 45 

Reading Material 
 

Introduction to Computer Theory   Chapter 19 

 

Summary 
Turing machine, examples, DELETE subprogram, example, INSERT subprogram, example. 
 

Turing machine 
The mathematical models (FAs, TGs, PDAs) that have been discussed so far can decide whether a string is 
accepted or not by them i.e. these models are language identifiers. However, there are still some languages 
which can’t be accepted by them e.g. there does not exist any FA or TG or PDA accepting any non-CFLs.  
Alan Mathison Turing developed the machines called Turing machines, which accept some non-CFLs as well, 
in addition to CFLs. 
 
Definition 
A Turing machine (TM) consists of the following 

An alphabet ∑ of input letters. 
An input TAPE partitioned into cells, having infinite many locations in one direction. The input string is placed 

on the TAPE starting its first letter on the cell i, the rest of the TAPE is initially filled with blanks (∆’s). 

 
 
 
 
 

 
 
A tape Head can read the contents of cell on the TAPE in one step. It can replace the character at any cell and 
can reposition itself to the next cell to the right or to the left of that it has just read.  Initially the TAPE Head is at 
the cell i. The TAPE Head can’t move to the left of cell i. the location of the TAPE Head is denoted by       . 
 

An alphabet Γ of characters that can be printed on the TAPE by the TAPE Head. Γ may include the letters of ∑. 

Even the TAPE Head can print blank ∆, which means to erase some character from the TAPE. 
Finite set of states containing exactly one START state and some (may be none) HALT states that cause 
execution to terminate when the HALT states are entered. 
A program which is the set of rules, which show that which state is to be entered when a letter is read form the 
TAPE and what character is to be printed. This program is shown by the states connected by directed edges 
labeled by triplet (letter, letter, direction). It may be noted that the first letter is the character the TAPE Head 
reads from the cell to which it is pointing. The second letter is what the TAPE Head prints the cell before it 
leaves. The direction tells the TAPE Head whether to move one cell to the right, R, or one cell to the left, L. 
 
Note  
It may be noted that there may not be any outgoing edge at certain state for certain letter to be read from the 
TAPE, which creates nondeterminism in Turing machines. It may also be noted that at certain state, there can’t 
be more than one out going edges for certain letter to be read from the TAPE. The machine crashes if there is 
not path for a letter to be read from the TAPE and the corresponding string is supposed to be rejected. 
To terminate execution of certain input string successfully, a HALT state must be entered and the corresponding 
string is supposed to be accepted by the TM. The machine also crashes when the TAPE Head is instructed to 
move one cell to the left of cell i. 
Following is an example of TM 
 
 
Example 
Consider the following Turing machine 

a b a ∆ ∝ 

i ii iii iv 
Input TAPE 

TAPE Head 
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aba aba 

2 
 

 1 

aba aba aba 

3 2 1 

aba∆ aba aba aba 

 

HALT 
3 3 2 1 

 
 
 
 

 
 
 
 
 
Let the input string aba be run over this TM 

 
 
 
 
 

 
 
Starting from the START state, reading a form the TAPE and according to the TM program, a will be printed 
i.e. a will be replaced by a and the TAPE Head will be moved one cell to the right. 
Which can be seen as 

 
 
 
 

 
 
This process can be expressed as  
 
 
 
 
 
At state 2 reading b, state 3 is entered and the letter b is replaced by b, i.e. 
 
 
 
 

At state 3 reading a, will keep the state of the TM unchanged. Lastly, the blank ∆ is read and ∆ is replaced by ∆ 
and the HALT state is entered. Which can be expressed as 
 

 
 
Which shows that the string aba is accepted by this machine. It can be observed, from the program of the TM, 
that the machine accepts the language expressed by (a+b)b(a+b)*. 
 

Theorem 
Every regular language is accepted by some TM. 
Example 
 
 
 
 
 
 
 
 
 
 

a b a ∆ ∝ 

a b a ∆ ∝ 

 
     

 

(a,a,R) 

 
     

 
3   

(b,b,R) 

(b,b,R) 

(b,b,R) 

(a,a,R) 

(∆,∆,R) 

2 1 START 

 

4 HALT 

 

i ii iii iv 
Input TAPE 

TAPE Head 

i ii iii iv 
Input TAPE 

TAPE Head 

 
     

 

 
     

  
     

 

  

(a,a,R) 

(∆,∆,R) 

(b,b,R) 

(b,b,R) 

(b,b,R) 

(b,b,R) 

(a,a,R) (a,a,R) (a,a,R) 

4 

2 

3 

5 HALT 1 START 
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Consider the EVEN-EVEN language. Following is a TM accepting the EVEN-EVEN language. 
 
It may be noted that the above diagram is similar to that of FA corresponding to EVEN-EVEN language. 
Following is another example 
 
Example 
Consider the following TM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The string aaabbbaaa can be observed to be accepted by the above TM. It can also be observed that the above 
TM accepts the non-CFL {anbnan}. 
 

INSERT subprogram 
Sometimes, a character is required to be inserted on the TAPE exactly at the spot where the TAPE Head is 
pointing, so that the character occupies the required cell and the other characters on the TAPE are moved one 
cell right. The characters to the left of the pointed cell are also required to remain as such.  
In the situation stated above, the part of TM program that executes the process of insertion does not affect the 
function that the TM is performing. The subprogram of insertion is independent and can be incorporated at any 
time with any TM program specifying what character to be inserted at what location. The subprogram of 
insertion can be expressed as 
 

 
 
 
 
 
 
 
The above diagrams show that the characters a,b and # are to be inserted, respectively. Following is an example 
showing how does the subprogram INSERT perform its function 
 
Example 
If the letter b is inserted at the cell where the TAPE Head is pointing as shown below 
  

∝ b X a b b X ∆ ∆∝ 

 
then, it is expressed as 
  

∝ b X a b b X ∆ ∆∝ 

 
 

 
 

 
     

  
     

  
     

 

 
     

  
     

  
     

 

 
     

   
(∆,∆,R) 

(a,*,R) 

(*,*,R) 
(a,a,L) 

(b,b,L) 
(a,∆,L) (a,∆,L) 

(∆,∆,L) 

(a,a,R) 

(b,a,R) 

(a,a,L) 

(b,b,R) 

(b,b,R) 

(a,a,R) 

6 

2 3 4 

5 

7 8 

9 HALT 1 START 

 
INSERT a 

 

 
INSERT # 

 
INSERT b 

 
INSERT b 
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Out 

In 
1 

2 

3 

4 5 

6 7 (a,a,L) 
(b,b,L) 

(X,X,L) 

(∆,a,R) 

(∆, ∆,L) 

(∆, X,R) 

(∆, b,R) 

(∆, b,R) 

(b,Q,R) 

(a,Q,R) 

(a,a,R) 

(a,X,R) 
(X,a,R) 

(a,b,R) 

(b,a,R) 

(b,b,R) 

(X,b,R) 

(b,X,R) 

(X,X,R) 

(Q, b,R) 

(X,Q,R) 

 

The function of subprogram INSERT b can be observed from the following diagram 
 

∝ b X b a b b X ∆ ∆∝ 

 
Following is the INSERT subprogram 
 

The subprogram INSERT 

Keeping in view the same example of inserting b at specified location, to determine the required subprogram, 
first Q will be inserted as marker at the required location, so that the TAPE Head must be able to locate the 
proper cell to the right of the insertion cell. The whole subprogram INSERT is given as 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is supposed that machine is at state 1, when b is to be inserted. All three possibilities of reading a, b or X are 
considered by introducing the states 2,3 and 4 respectively. These states remember what letter displaced during 
the insertion of Q. 
Consider the same location where b is to be inserted  
  

∝ b X a b b X ∆ ∆∝ 

 
 
After reading a from the TAPE, the program replaces a by Q and the TAPE Head will be moved one step right. 
Here the state 2 is entered. Reading b at state 2, b will be replaced by a and state 3 will be entered. At state 3, b 
is read which is not replaced by any character and the state 3 will not be left. 

At state 3, the next letter to be read is X, which will be replaced by b and the state 4 will be entered. At state 4, ∆ 

will be read, which will be replaced by X and state 5 will be entered. At state 5, ∆ will be read and without any 
change state 6 will be entered, while TAPE Head will be moved one step left. The state 6 makes no change 
whatever (except Q) is read at that state. However at each step, the TAPE Head is moved one step left. Finally, 
Q is read which is replaced by b and the TAPE Head is moved to one step right. 
Hence, the required situation of the TAPE can be shown as 
 
  

∝ b X a b b X ∆ ∆∝ 

 
 

DELETE subprogram 
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 (c,∆,R) 
(b,∆,R) 

(b,a,L) 

(∆,∆,L) 

(a,a,R) 
(b,b,R) 
(c,c,R) 

(c,∆,L) 

(c,b,L) 

(b,c,L) (a,b,L) 

(a,a,L) 

(∆,a,R) (∆,c,R) 
(∆,b,R) 

(c,a,L) 

(a,c,L) 

(b,b,L) 

(b, ∆,L) 

(c,c,L) 

In 

Out 

1 2 3 

5 4 6 

7 

(a,∆,R) 

Sometimes, a character is required to be DELETED on the TAPE exactly at the spot where the TAPE Head is 
pointing, so that the other characters on the right of the TAPE Head are moved one cell left. The characters to 
the left of the pointed cell are also required to remain as such.  
In the situation stated above, the part of TM program that executes the process of deletion does not affect the 
function that the TM is performing. The subprogram of deletion is independent and can be incorporated at any 
time with any TM program specifying what character to be deleted at what location. The subprogram of deletion 
can be expressed as 
 
Example 
If the letter a is to be deleted from the string bcabbc, shown below 
   

∝ b c a b b c ∆ ∆∝ 

 
then, it is expressed as 
  

∝ b c a b b X ∆ ∆∝ 

 
 
 
 
The function of subprogram DELETE can be observed from the following diagram 
   

∝ b c b b c ∆ ∆ ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ 

 
 
 
 
 
 
 
 
 
Following is the DELETE subprogram 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
The process of deletion of letter a from the string bcabbc can easily be checked, giving the TAPE situation as 
shown below 
   

∝ b c b b c ∆ ∆ ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ 

 

 

 
DELETE 


