CS606-Compiler Construction MID TERM MCQS

Prepared by: JUNAID MALIK

AL-JUNAID TECH INSTITUTE

www.vulmshelp.com

Language Courses Training Available

I'm providing paid courses in different languages within 3 Months,Certificate will be awarded after completion.

- HTML
- CSS
- JAVASCRIPT
- BOOTSTRAPS
- JQUERY
- PHP MYSQL
- NODES.JS
- REACT IS

LMS Handling Services

LMS Activities Paid Task

Assignments 95% Results

Quizes 95% Results

GDB 95% Results

For CS619 Project Feel Free To Contact With Me

Ph# 0304-1659294 Email: junaidfazal08@gmail.com

Question No 1

LL(1) parsing is called _____ parsing.

- Predictive
- Non-predictive
- Post-predictive
- Post determine

Question No 2

TECH INSTANCE One kind of predictive parser is the

- **Recursive descent parses**
- Bottom-up parser
- Natural parser
- Multilingual parser

Question No 3

Front-end of a two pass compiler consists of

- Code optimizer
- Scanner
- Parser
- Assembler

Question No 4

conversion is called The algorithm for Thompson's Construction.

Vulmshelp.

- DFA to RE
- RE to DFA
- RE to NFA
- CFG to NFA

Question No 5

convert the relocatable machine into absolute machine code by linking library and relocatable object files.

- Assembler
- Loader/link editor
- Compiler
- Preprocessor

Λ.,	estion	No	6
ŲΨ	esuon	TIU	U

The parser uses a stack to hold the frontier.

- Top-down
- **Bottom-up**
- Predicative
- LL(1) parsers

Question No 7

is the process of discovering a derivation for some sentence of a language.

- Compiling
- Scanning
- Parsing
- ParsingInterpretation

Question No 8

accepts a string if we can follow transitions labeled with characters in the string from start state to some accepting state.

- Finite automata.....(For More Visit)
- Regular expression
- Regular language
- Acceptor

Question No 9

⅓NFA-..___states. The general idea behind NFA-to-DFA construction is that each state corresponds to a set of states.

- DFA, NFA
- NFA, DFA
- NFA, FA
- CFG, NFA

Question No 10

Optimal registers allocation is

- NP-hard
- NP-complete
- Polynomial complete
- Multinomial complete

Question No 11

Majority of the algorithms employed in the back-end are

- Polynomial time
- NP-Complete
- Np
- None of the given 0304-1659294

Question No 12

In predictive parsing table, the rows are

- Non-terminals
- **Terminals**
- Both non-terminals and terminals
- Neither non-terminals nor terminals

Question No 13

Predictive parser accepts _____ grammars.

- LL(n+)
- LL(j-)
- **LL(k)**
- LL(K++)

Question No 14

and _____ actions are used by bottom-up parsing.

- Break and reduce
- Shift and break
- Shift and reduce
- Shift and expand

Question No 15

If the right-hand side of a production has k symbols, it has ______placeholder positions.

- k
- k+1
- k+2
- k+3

Question No 16

Lexical analyzer function is not _____

- Removing white space
- Removing constants, identifies and keywords
- Removing comments
- Register allocation

Question No 17

AL-JUNAID TECH INSTITUTE
Reduce action zero or more symbols from the stack.
 Pushes Pops Both pushes and pops Adds Question No 18 Parser determines if the input is well formed.
 Programmatically Logically Syntactically Mechanically
Question No 19
 Grammar with the property is called predictive grammar. LL(3) LL(2) LL(1) LL(n+)
Question No 20
The executable code typically runs as a in an Operating System Environment. • Process • Threads • Routine • Function
 Process Threads Routine
• Routine
• Function

Question No 21

In a transition table cells of the table contain the _____ state.

- Reject State
- Next State
- **Previous State**
- Same State

In parser the two LL stand(s) for ____

- Left-to-right scan of input
- Left-most derivation
- Left-to-right scan of input and left-most derivation
- Right to left scan of input

Question No 23

builds intermediate Representation (IR) for source The program.

- Scanner
- Parser
- Compiler
- Loader

Question No 24

Left factoring of a grammer is done to save the parser from

- Front tracking
 Back tracking
 Random tracking

Question No 25

In Flex specification file different sections are separated by

- **%%**
- &&
- ##
- //

Question No 26

Left factoring of a grammar is done to save the parser from ____

- Location tracking
- Front tracking
- **Back tracking**
- Random tracking

Question No 27

Lexer and scanner are _____ phase of compiler.

- Same
- Different
- Backend
- Middle end

Question No 28

Back End of two-pass compiler uses ______ algorithm.

- O(n)
- (n log n)
- (n log n)NP Complete
- O(n2)

Question No 29

The _____ contains a lot of unneeded information.

Parse tree

- Abstract syntax tree
- Complete tree
- Abstract syntax tree

Question No 30

start at the leaves and grows toward root of the parse tree.

- Top-down parser
- **Bottom-up parser**
- Vertical parser
- Horizontal parser

Question No 31

Typical compilation means programs written in high-level languages to lowlevel

- Object code PG # 06
- Byted code
- Unicode
- Object Code and byte code

Question No 32

Parsing and Syntax analysis o
None of given In compilation process, Hierarchical analysis is also called

- Parsing
- Syntax
- None of given

Question No 33

IR (Intermediate Representation) stores the value of its operand in

- Registers PG # 10
- Memory
- Hard disk
- None Of given

Question No 34

A lexeme is a sequence of characters in the source program that is matched by the pattern for a .

TECHINS

- Linker
- Token
- Control flow
- None of given

Question No 35

Parsers take ______ as Input from lexical analyzer.

- Linker
- Token
- Instructions
- None of the given

Question No 36

What kind of abstract machine can recognize strings in a regular set?

Vulmshelp

- DFA
- NFA
- PDA
- None of the given

Question No 37

TECH INST

In multi pass compiler, during the first pass it gathers information about

- **Declaration**
- Bindings
- Static information
- None of the given

Question No 38

In DFA minimization, we construct one for each group of states from the initial DFA.

- State PG # 30
- NFA
- PDA
- None of given

Question No 39

(Lexical Analyzer generator), is written in Java...

- Flex
- **Jlex PG # 31**
- Complex
- None of given

Question No 40

____ parsing is done for LL(I) grammar. Recursive

- Decent
- Ascent
- Forward
- None of the given

Question No 41

TECHIN

Alternative of the backtrack in parser is Look ahead symbol in

- Input
- Output
- Input and Output
- None of the given

Question No 42

Parser takes tokens from scanner and tries to generate

- Binary Search tree
- Parse tree
- Binary Search tree and Parse tree
- None of the given

Question No 43

In predictive parsing table, the rows represents _

- Terminals
- Both non-terminal and terminals
- Non-terminals PG # 62
- None of the given

Question No 44

In LL(I) parsing algorithm, contains a sequence of grammar symbols. Stack PG # 62
Link List
Array

- None of the given

Question No 45

Consider the grammar

 $\overline{A \longrightarrow BCD}$

 $B \longrightarrow h B \mid £$

 $C \longrightarrow Cg|g|Ch|i$

 $D \longrightarrow AB \mid \pounds$

First of A is .

- h, g, i
- 9
- h
- None of the given

Question No 46

Consider the grammar

 $A \longrightarrow BCD$

 $B \longrightarrow h B \mid £$

 $C \longrightarrow Cg|g|Ch|i$

 $D \longrightarrow AB \mid \pounds$

First of C is .

- g, i
- g
- h, i
- None of the given

Question No 47

Bottom-up parsing uses only _____ kinds of actions.

- Two PG # 71
- Three
- Four

• Five

Question No 48

The shift action a terminal on the stack.

Question No 49

Five

stion No 48

shift action ______ a terminal on ...

• Pushes PG # 73

• Pops

• Physical and pops

• Pops

• Pushes PG # 73

• Pops

• Pops

• Pops

• Pops

• Pops

• Pops

• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pops
• Pop Reduce _____ action zero or more symbols from the stack.

- Pushes
- **Pops PG # 73**
- Both push and pops
- None of the given

Question No 50

In compilers, linear analysis is also called

- Lexical analysis
- Scanning
- Lexical analysis and scanning
- None of the given

Back End of two-pass compiler uses _____ algorithm.

• O(n)

- $O(n \log n)$
- NP Complete
- None of the Given

Question No 52

The Back End of a compiler consist of

- **Instruction selection**
- Register allocation
- Instruction scheduling
- All of the given

Question No 53

In Back End module of compiler, optimal register allocation uses

- - $O(\log n)$ $O(n \log n)$
 - **NP-Complete**
 - None of the given

Question No 54

is a regular expression for the set of all strings over the alphabet {a} that has an even number of a's.

- (aa)*
- (aa)*a
- aa*a
- a*(aa)

Question No 55 0 0 3 0 4 - 16 5 9 2 9 4

25 algorithm is used in DFA minimization.

- James's
- Robert's
- Hopcroft's PG # 25
- None of given

Question No 56

is an important component of semantic analysis.

- Code checking
- Type checking PG # 39
- Flush checking
- None of the given

Question No 57

Consider the grammar

 $A \longrightarrow B C D$

hB|£

Cg|g|Ch|i

First of B is

- h, i
- h, £
- None of the given

Question No 58

Consider the grammar,

BCD $A \longrightarrow$

 $C \longrightarrow C g | g | C h | i$ $D \longrightarrow AB | £$ First of D is_

- h, g
- h, g, i, £

• None of the given

Question No 59

Parsers never shifts into an error state.

- LS
- LT
- LR
- LP

Question No 60

In_____, certain checks are performed to ensure that components of a program fit together meaningfully..

- Linear analysis
- Hierarchical analysis
- Semantic analysis
- None of given

Question No 61

read the input character and produce sequence of tokens as output.

- Lexical analyzer
- Parser
- Symbol table
- None of the given

Question No 62

. The regular expression _____denotes, the set of all strings of a's and b's of length two.

- a*
- $(a^* | b^*)^*$

- (a*b*)*
- $\bullet \quad (a|b)(a|b)$

Question No 63

of a two-pass compiler is consists of Instruction selection, Register allocation and Instruction scheduling.

- **Backend PG # 9**
- Frontend
- Start
- None of the Given

Question No 64

is evaluated to yield a value.

- Command
- **Expression**
- Declaration
- None of the given

Question No 65

Bottom-up parsers handle a _____ class of grammar.

- Large PG # 49
- Small
- Medium
 None of the given
 ion No 66

Question No 66

The input specification file to flax consists of----- section.

- 3
- 4

Question No 67

Lexer and scanner are two different phases of compiler.

- True
- False

Question No 68

In compiler linear analysis is also called.

- Lexical analysis
- Scanning
- Both lexical analysis and scanning
- None of the given

Question No 69

Which of the following statements is NOT true?

- The language accepted by finite automate are the languages denoted by regular expression.
- For every DFA there is a regular expression denoting its languages.
- For a regular expression r, there does not exit NFA with L(r) any transit that accept.
- None of the given.

Question No 70

Top – down parsing expands a ----- from the start symbol to the leaves.

- Parse tree
- Abstract Syntax tree
- Parse tree
- All of the given

Question No 71

A top-down purser starts with the ----- of the parse tree.

- Root
- Leaf
- Middle
- None of the given

Question No 72

Can a DFA simulate NFA?

- NO
- YES
- Sometimes
- Depends on NFA

Question No 73

Bottom- up parsing is also called------

- LR parsing
- LT parsing
- LS parsing
- SS parsing

Question No 74

The ----- is optimized for hardware it is to run on.

- C++ code
- C code
- Assembly code
- None of the given

Question No 75

Abstract syntax tree summarizes ----- without the details of derivation.

- Theory
- Grammatical structure
- Data
- None of the give

Question No 76

LR parsing----- a string to the start symbol by inverting production.

- Reduces
- Shifts
- Adds
- None of the given

Question No 77

Alternative to backtrack in top-down parser is -----

- Context free grammar
- Trees
- Look ahead
- None of the given

Question No 78

Typical compilation means programs written in high- level languages to low-languages-----.

- Object code Vulmshelp
- Byte Code
- Unicode
- Both object code and Byte code

Question No 79

The ----- Checks the stream of work (token) and their parts of speech for grammatical correctness.

- Parser
- Scanner
- Compiler
- None of the given

Question No 80

A grammar must be ----- before use for predicative parsing.

- Right factored
- Left factored
- Factored
- None of the given

Question No 80

Parser does not distinguish between valid and invalid sequences of token.

- True
- False

Question No 81

In Compilation process Hierarchical analysis is also called:

- Parsing
- Syntax analysis
- Both parsing and Syntax analysis
- None of the given

Question No 82

The pair <role, word> is given the name-----.

- Word
- Token
- Syntax
- None of the given

Question No 83

The back end maps intermediate Representation (IR) into target-----

- Object code
- Machine code
- Source code
- Linker

Question No 84

-----is evaluated to yield a value.

- Command
- Expression
- Declaration
- Declaration and Command

Question No 85

Front- end of a two pass compiler is consists of scanner.

- TRUE
- FALSE

Question No 86

The ----- returns a sequence of mating token at output (or an error) and it always return the longest matching token.

- Scanner
- Lexer
- Lexical analyzer

• All of the given

Question No 87

Question No 88

LR parsers can handle

- file-recursive
- End-recursive
- Start-recursive

Question No 89

convert the relocatable machine code into absolute machine code by linking library and relocatable object files.

- Assembler
- Loader/link-editor ©0304-1659294
- Compiler
- Preprocessor

Question No 90

Follow of C is

- g, h, i, \$
- g, h, \$
- h, i, \$

• h, g, \$

Question No 91

Consider the grammar A --> B C D

 $B \rightarrow h B \mid epsilon$

C --> C g | g | C h | i

D --> A B | epsilon

Follow of B is

- h
- g, h, i, \$

Question No 92

An important component of semantic analysis is

- Code checking
- type checking (Page 33)
- flush checking
- None of the given

Question No 93

_ represent the inequality test. represent the meq. In PASCAL

- None of the given

Question No 94

TECH -locks. Lexical Analyzer generator is written in Java.

- Flex
- **Jlex (Page 26)**
- Complex
- None of given

Question No 95

avoid hardware stalls and interlocks.

- Register allocation
- Instruction scheduling (Page 121)
- Instruction selection
- None of given

Question No 96

Consider the following grammar,

 $A \longrightarrow B \subset D$

B --> h B | epsilon

 $C \longrightarrow C g | g | C h | i$

D --> A B | epsilon

First of A is _____.

• h, g, i
• g

- None of the given

Question No 97	
Recursive	parsing is done for LL(1) grammar.
Descent (PageAscentForwardBackward	TECH INSTITUTE
Question No 98	
One of the core tasks code. • True • False	s of compiler is to generate fast and compact executable
Question No 99	
Left factoring of a gr	rammar is done to save the parser from back tracking.
TrueFalse	
Question No 100	
Responsibility of	is to produce fast and compact code.
Instruction seRegister allocaInstruction schNone of given	N. A. I. I. BOOK C. D. F. I. F.
Question No 101	
	algorithm is used in DFA minimization.

- James's
- Robert's
- Hopcroft's (Page 25)
- None of given

Question No 102

Compilers are sometimes classified as.

- Single pass
- Multi pass
- Load and go
- All of the given

Ouestion No 103

In multi pass compiler during the first pass it gathers information about

- Declaration
- Bindings
- Static information
- None of the given

Question No 104

Flex is an automated tool that is used to get the minimized DFA (scanner).

- True
- TrueFalse (Page 26)

Question No 105

In compilation process Hierarchical analysis is also called

Parsing

- Syntax analysis
- **Both Parsing and Syntax analysis**
- None of given

Question No 106

For each language to make LL(1) grammar, we take two steps, 1st is removing left recurrence and 2nd is applying left factoring in sequence.

- **True**
- False

Question No 107

is evaluated to yield a value.

- Command
- **Expression**
- Declaration
- **Declaration and Command**

Question No 108

Optimal registers allocation is an NP-hard problem.

- True
- **False**

Question No 109 0304-1659294

Parser takes tokens from scanner and tries to generate

Binary Search tree

- Binary Search tree
- Parse tree
- Syntax trace
- None of the given

Question No 110

Front end of two pass compiler takes as input.

- Source code (Page 5)
- Intermediate Representation (IR)
- Machine Code
- None of the Given

Question No 111

In in we construct one _____ for each group of states from the initial DFA.

- State (Page 25)
- NFA
- PDA
- None of given

Question No 112

In Three-pass compiler ______ is used for code improvement or optimization.

- Front End
- Middle End (Page 10)
- Back End
- Both Front end and Back end

Question No 113

of a two-pass compiler is consists of Instruction selection, Register allocation and Instruction scheduling.

- Back end (Page 10)
- Front end
- Start
- None of given

Question No 114

NFA is easy to implement as compared to DFA.

- True
- False (Page 19)

Question No 115

We can get an LL(1) grammar by

- Removing left recurrence
 Applying left factoring
 Removing left recurrence and Applying left factoring

Question No 116

Parser always gives a tree like structure as output

- True
- False

Question No 117

In Back End module of compiler, optimal register allocation uses

- O(log n)
- $O(n \log n)$
- O(n log n)N P-Complete (Page 10)
- None of the given

Question No 118

Lexer and scanner are two different phases of compiler Select correct option:

- True
- **False**

Question No 119

In Flex specification file different sections are separated by

- %% (Page 26)
- &&
- ##
- \\

Question No 120

_____ phase which supports macro substitution and conditional compilation.

- Semantic
- Syntax
- Preprocessing Click here for detail
- None of give

Question No 121

tree in which each node represents an operator and children of the node represent the operands.

- Abstract syntax (Page 100)
- Concrete syntax
- Parse
- None of the given 0304-1659294

Question No 122

In _____certain checks are performed to ensure that components of a program fit together meaningfully.

- Linear analysis
- Hierarchical analysis
- Semantic analysis (Page 33)
- None of given

Question No 123

In compiler linear analysis is also called.

Select correct option:

- Lexical analysis
- Scanning
- Both lexical analysis and scanning click here for details
- None of the given

Question No 124

Which of the following statement is true about Two pass compiler.

- Front End depends upon Back End
- **Back End depends upon Frond End (Page 5)**
- Both are independent of each other
- None of the given

Question No 125

Ambiguity can easily be handled by Top-down Parser

- True click here for detail
- False

Question No 126

Alternative of the backtrack in parser is Look ahead symbol in

- Input and Output
 None of the given

Ouestion No 127

Typical	compilation	means	programs	written in	high-level	languages to	low-
level	·						

- Object code
- Byte code
- Unicode
- Both Object Code and byte code (Page 2)

Question No 128

a string to the start symbol by inverting. LR parsing

- Reduces (Page 63)
- Shifts
- Adds
- None of the given

Ouestion No 129

In parser the two LL stand(s) for

- Left-to-right scan of input
- left-most derivation
- All of the given click here for detail
- None of given

Question No 130

class of grammars. Bottom-up parsers handle a

- Large (Page 63)
- Small
- Medium

Compilers are some times classified as.

• Single pass
• No. 1

- Multi pass
- Load and go

All of the given

Question No 132

The Back End of a compiler consist of

- **Instruction selection (Page 10)**
- Register allocation
- Instruction scheduling
- All of the given

Question No 133

Can a DFA simulate NFA?

- Yes click here for detail
- No
- Sometimes
- Depend upon nfa

Question No 134

Which of the statement is true about Regular Languages?

- Regular Languages are the most popular for specifying tokens.
- Regular Languages are based on simple and useful theory.
- Regular Languages are easy to understand.
- All of the given (Page 15)

Question no 135

In a transition table cells of the table contain the _____ state.

- Reject state
- Next state (Page 18)
- Previous state
- None of the given

Question No 136

The transition graph for an NFA that recognizes the language (a | b)*abb will trans...
; following set 6.

• {0}
• {0,1}
• {0,1,2}
• {0,1,2,3} (page 23) Not sure

*ion No 137

*reallyzer are? have following set of states.

Question No 137

Functions of Lexical analyzer are?

- All of the given click here for detail

Question No 138

method is known as Subset Construction Method.

- NFA TO DFA (Page 19)
- DFA
- DFA maximization
- None of given

Question No 139

Which one is NOT the Role of Run-Time System

- garbage collection

Ouestion No 140

• none of given (Page 11)

lestion No 140

mpiler Compiler information from one representation to another

- modified
- translate (Page 2)

AL-JUNAID TECH INSTITUTI

- execute
- extract

Question No 141

Front-end of a two pass compiler is consists of Scanner.

- True
- False (Page 12)

Question No 142

kinds of actions. Bottom-up parsing uses only

- Two (Page 64)
- Three
- Four
- Five

Question No 143

Bottom-up parsing is also called

- LR parsing (Page 63)
- LT parsing
- LS parsing
- SS parsing

Question No 144

Backtracking is a costly operation which is caused due to Left Recursion.

- True
- False

Question No 145

A non-recursive predictive parser is also called

• table-driven parser (Page 54)

- Abstract parser
- Conceptual parser
- None of the given

Question No 146

AST summarizes the grammatical structure with the details of derivations.

- True
- False (Page 8)

Question No 147

Backtrack is term associated with Top-down parsing.

- True (Page 42)
- False

Which of the following statement is true about Two-pass compiler.

- Front End depends upon Back End
- Back End depends upon Front End
- Both are independent of each other
- None
- 2. In a three-pass compiler, ____ is used for code improvement or optimization.
 - Front End
 - Middle End
 - Back End
 - Both Front End and Back End
- 3. In multi-pass compiler during the first pass, it gathers information about
 - Declaration
 - Bindings
 - Static information

- None
- 4. Which of the statement is true about Regular Languages?
 - Regular Languages are the most popular for specifying tokens.
 - Regular Languages are based on simple and useful theory.
 - Regular Languages are easy to understand
 - All of the given
- 5. The DFA uses its state to keep track of ____ the NFA can be in after reading each input symbol.
 - Accept state
 - Reject state
 - Next state
 - All possible states
- 6. In ____ certain check are performed to ensure that components of a program fit together meaningfully.

11 mehel

- Linear analysis
- Hierarchical analysis
- Semantic analysis
- None
- 7. Compilers are some times classifies as:
 - Single-pass
 - Multipass
 - Load and go
 - All of the given
- 8. In compiler, linear analysis is also called
 - Lexical analysis
 - Scanning
 - Both lexical analysis and scanning
 - None
- 9. In a transition table cells of the table contain the state.

- Reject state
- Next state
- Previous state
- None
- 10. In Back End module of the compiler, optimal register allocation uses .
 - O(log n)
 - $O(n \log n)$
 - NP-Complete
 - None
- 11. A non-recursive predictive parser is also called
 - table-driven parser
 - Abstract parser
 - Conceptual parser
 - None
- 12. The shift action a terminal on the stack
 - Pushes
 - Pops
 - Both pushes and pops
 - None
- 13. Bottom-up parsing is also called _
 - LR parsing
 - LT parsing
 - LS parsing
 - SS parsing
- 14. ____ of a two-pass compiler is consists of instruction selection, Register allocation and instruction scheduling
 - Backend
 - Frontend
 - Start

- None
- 15. Consider the grammar
- $A \rightarrow B C C$
- B -> h B | epsilon
- C -> C g | g | C h | i
- D -> A B | epsilon
- First of A is
 - h, g, i
 - g
 - h
- None

16. A -> B C C

B -> h B | epsilon

 $C \rightarrow C g | g | C h | i$

D -> A B | epsilon

Follow of A

- h, \$
- \$
- . i
- 0

17. A -> B C C

 $B \rightarrow h B \mid epsilon$

 $C \rightarrow C g | g | C h | i$

D -> A B | epsilon

Follow of C is

- g, h, i, \$
- g, h, \$
- h, i, \$
- h, g, \$

18. Left factoring of grammar is done to save the parser from backtracking.

- True
- False
- 19. Typical compilation means programs written in high-level languages to low-level ____
 - Object code
 - Byte code
 - Unicode
 - Object code and byte code
- 20. In compilation process, Hierarchical analysis is also called ____
 - Parsing
 - Syntax
 - Parsing and Syntax analysis
 - None
- 21. IR (Intermediate Representation) stores the value of its operand in
 - Registers
 - Memory
 - Hard disk
 - None
- 22. A lexeme is a sequence of characters in the source program that is matched by the pattern for a ____
 - Linker
 - Token
 - Control flow
 - None
- 23. Parsers take ____ as Input from lexical analyzer.
 - Linker
 - Token
 - Instructions
 - None
- 24. What kind of abstract machine can recognize strings in a regular set?
 - DFA
 - NFA
 - PDA
 - None

	E GOTTING TECHT IN STITLE IT
25. In	DFA minimization, we construct one for each group of states from
the ini	tial DFA.
• ;	State
•]	NFA
•]	PDA
•]	None
26.	(lexical Analyzer generator), is written in Java
•]	Flex
• (Jlex
	Complex
	None
27. In	flex specification file, different sections are separated by
	% %
Va.	&&
) · 7	##
•]	None
28. Re	ecursive parsing is done for LL(I) grammar.
•]	Descent y
• ,	Ascent
•]	Forward
•]	None
29. Al	ternative of the backtrack in parser is Look ahead symbol in
•]	Input Control of the
. (Output
•]	Input and Output
•]	None
30. Pa	rser takes tokens from scanner and tries to generate
•]	Binary Search Tree
•]	Parse tree
•]	Binary Search and Parse tree
•]	None
31. In	predictive parsing table, the rows represents
•	Terminals
•]	Both non-terminals and terminals

0304-1659294

AL-JUNAID TECH INSTITUTE
 Non-terminals
• None
32. In LL(I) parsing algorithm, contains a sequence of grammar symbols
• Stack
• Link list
 Array
• None
33. Consider the grammar
A -> B C D
B -> h B epsilon
$C \rightarrow C g g C h i$
D -> A B epsilon
First of C is
• g, i
• g
) h i

- None
- 34. Bottom-up parsing uses only ___ kinds of actions.
 - Two
 - Three
 - Four
 - Five
- 35. Reduce ____ action zero or more symbols from the stack.
 - Pushes
 - Pops
 - Both push and pops
 - None
- 36. Back End of two-pass compiler uses ____ algorithm
 - O(n)
 - $O(n \log n)$
 - NP complete
 - None
- 37. The Back End of a compiler consists of ____
 - Instruction selection
 - Register allocation

- Instruction scheduling
- All of given

38. ___ is a regular expression for the set of all strings over the alphabet {a} that has an even number of a's

- aa*
- (aa)*
- aa*a
- a(aa)*

39. ___ algorithm is used in DFA minimization.

- Jame's
- Robert's
- Hopcroft's y
- None

40. ___ is an important component of semantic analysis.

- Code checking
- Type checking
- Flush checking
- None

41. Consider the grammar

 $A \rightarrow B C D$

B -> h B | epsilon

C -> C g | g | C h | i

First of B is

- h, i
- h, epsilon
- g
- None

42. Consider the grammar

 $A \rightarrow B C D$

B -> h B | epsilon

 $C \rightarrow C g | g | C h | i$

D -> A B | epsilon

First of D is ____

- h, g
- h

<u> </u>	1	L-JUN.	<u>AID</u>	<u>TECH</u>	INSI	ITTU	JT'E
	•	h, g, i, epsilon					
	•	None					

43. parsers never shifts into an error state.

- LS
- LT
- LR
- LP

44. read the input character and produce sequence of tokens as output.

- Lexical analyzer
- Parser
- Symbol table
- None

45. The regular expression ____ denotes, the set of all strings of a's and b's of length two.

- a*
- $(a^*|b^*)^*$
- (a*b*)*
- (a|b)(a|b)

46. ___ is evaluated to yield a value.

- Command
- Expression
- Declaration
- None

47. Bottom-up parsers handle a class of grammar

- Large
- Small
- Medium
- None

48. LR parsers can handle grammars.

- Left-recursive
- File-recursive
- End-recursive
- Start-recursive

49. convert the relocatable machine code into absolute machine code by linking library and relocatable object files.

- Assembler
- Loader/link-editor
- Compiler
- Preprocessor
- 50. Consider the grammar
- $A \rightarrow B C D$
- $B \rightarrow h B \mid epsilon$
- $C \rightarrow C g \mid g \mid C h \mid i$
- $D \rightarrow A B \mid epsilon$

Follow of B is

- h
- g, h, i, \$
- g, i
- g
- 51. In PASCAL ____represent the inequality test.
 - :=
 - =
 - <>
 - None
- 52. avoid hardware stalls and interlocks.
 - Register allocation
 - Instruction scheduling
 - Instruction selection
 - None
- 53. One of the core tasks of compiler is to generate fast and compact executable code.
 - True
 - False
- 54. Responsibility of ____ is to produce fast and compact code.
 - Instruction selection
 - Register allocation
 - Instruction scheduling
 - None
- 55. Compilers are sometimes classified as
 - Single pass

- Multi pass
- Load and go
- All of given

56. Flex is an automated tool that is used to get the minimized DFA (scanner).

- True
- False

57. For each language to make LL(1) grammar, we take two steps, 1st is removing left recurrence and 2nd is applying left factoring in sequence.

- True
- False

58. Optimal registers allocation is an NP-hard problem.

- True
- False

59. Front end of two pass compiler takes as input.

- Source code
 - Intermediate Representation (IR)
 - Machine code
 - None

60. NFA is easy to implement as compared to DFA

- True
- False

61. We can get an LL(1) grammar by ____

- Removing left recurrence
- Applying left factoring
- Removing left recurrence and Applying left factoring
- None

63. Lexer and scanner are two different phases of compiler.

- True
- False

64. ____ phase which supports macro substitution and conditional compilation.

- Semantic
- Syntax
- Preprocessing

- None
- 65. ____ tree in which each node represents an operator and children of the node represent the operands
 - Abstract syntax
 - Concrete syntax
 - Parse
 - None
- 66. Ambiguity can easily be handled by top-down parser
 - True
 - False
- 67. LR parsing ___ a string to the start symbol by inverting productions.
 - Reduces
 - Shifts
 - Adds
 - None
- 68. In parser the two LL stand(s) for ____
 - Left-to-right scan of input
 - left-most derivation
 - All of the given
 - None
- 69. Can a DFA simulate NFA?
 - Yes
 - No
 - Sometimes
 - Depend upon NFA
- 70. The transition graph for an NFA that recognized the language (a|b)*abb will have following set of states.
 - {0}
 - {0, 1}
 - {0, 1, 2}
 - {0, 1, 2, 3}
- 71. Functions of Lexical analyzer are?
 - Removing white space
 - Removing constants, identifiers and keywords

- Removing comments
- All of given
- 72. method is known as subset construction method.
 - NFA to DFA
 - DFA
 - DFA maximization
 - None
- 73. Which one is NOT the Role of Run-Time System?
 - garbage collection
 - memory management
 - run time error checking
 - None
- 74. Compiler ____ information from one representation to another.
 - modified
 - translate
 - execute
 - extract
- 75. Front-end of a two pass compiler is consists of scanner.
 - True
 - False
- 76. Backtracking is a costly operation which is caused due to Left Recursion.
 - True
 - False
- 77. AST summarizes the grammatical structure with the details of derivations.
 - True
 - False
- 78. Backtrack is term associated with Top-down parsing.
 - True
 - False

0304-1659294