

AL-JUNAID TECH INSTITUTE

www.vulmshelp.com

Language Courses Training Available

I'm providing paid courses in different languages within 3 Months,Certificate will be awarded after completion.

- HTML
- CSS
- JAVASCRIPT
- •BOOTSTRAPS
- JQUERY
- PHP MYSQL
- NODES.JS
- REACT JS

LMS Handling Services

LMS Activities Paid Task

Assignments 95% Results

Quizes 95% Results

GDB 95% Results

For CS619 Project Feel Free To Contact With Me

Ph# 0304-1659294 Email: junaidfazal08@gmail.com

1.	The sequence of merge sort algorithm is:	
	a. Divide Combine-Conquer	
	b. Conquer-Divide-Combine	
	c. Divide-Conquer-Combine Page 27	
	d. Combine-Divide-Conquer	
2.	In Knapsack Problem, limitation is that an item can eit	her
	be put in the bag or not. Fractional items are not allowed.	
	a. 0	
	b. 1	
	c. 0/1 Page 91	
	d. Fractional	1
3.	In Selection algorithm, we assume pivot selection takes theta	1
1	running time.	1
	a. n Page - 36	1
A4	b. n2	
Y	c. n3	
	d. log (n)	
4.	In Heap Sort algorithm (using max heap), when every time	
	maximum elements removed from top	
	a. We call merge Sort Algorithm	
	b. it becomes Order n2 Algorithm	
	c. Divide and Conquer strategy helps us	
	d. We are left with a hole Page – 41	
5.		
	q x r, then each entry in resultant matrix takes time.	
	a. O (q) Page - 84	
	a. O (q) Page - 84 b. O (1) c. O (p x q) d. O (q x r)	
	c. O (p x q)	
	d. O (q x r)	
AL-	L-JUNAID INSTITUTE OF GROUP	

<u> </u>	AL-JUNAID TECH INSTITUT
6.	is a method of solving a problem in which we check all
	possible solutions to the problem to find the solution we need.
	a. Plane-Sweep Algorithm
	b. Sorting Algorithm
	c. Brute-Force Algorithm google
	d. Greedy approach
7 .	The worst case running time of Quick sort algorithm
	a. Cannot be quadratic
	b. Is quadratic
	c. Is always Exponential
	d. Is linear
8.	In max heap (for Heap Sort algorithm), when every time maximum
4	element is removed from top we replace it with leaf in the tree.
1	a. second last
A	b. Last Page -41
Ž,	c. First
	d. Any
9.	Quick sort algorithm was developed by -
	a. AlferdAho
	b. Sedgewick
	c. John Vincent Atanasoff
	d. Tony Hoare – Google wikipedia
10	. If Matrix-A has dimensions "3x2" and Matrix-B has dimensions
	"2x3", then multiplication of Matrix-A and Matrix-B will result a
	new Matrix-C having dimensions.
	a. 3x2
	b. 2x3 c. 2x2
	d. 3x3 http://www.calcul.com/show/calculator/matrix-multiplication
11	. For comparison-based sorting algorithms, it is possible to sort more efficiently than Omega n log(n) time.
	a. Always
	a.,a, o

b. Not

c. Sometimes

d. Sometimes not
12. Dynamic Programming approach is usually useful in solving
optimization problems.
a. True
b. False
13. In Sorting the key value or attribute from an ordered domain.
a. Must be page 39
b. Not always
c. May be
d. Occasionally
14. Result of asymptotical analysis of n(n -3) and 4n*n is that
a. n(n-1) is asympt <mark>oti</mark> cally Less
b. n(n-1) is asymp <mark>totically Greater</mark>
c. Both are asymptotically Not equivalent
d. Both are asymptotically Equivalent page 23 (4n*n= 4n²)
15. Floor and ceiling are to calculate while analyzing
algorithms a. Very easy
b. Usually considered difficult P-31
c. 3rd Option is missing
d. 4th Option is missing
16 of reference is an important fact of current processor technology.
a. Defining
b. Assigning
c. Formality
d. Locality
17. In max-heap, largest element is stored at root node. Where is
the smallest element stored? a. Right Node b. Leaf Node
a. Right Node
b. Leaf Node
c. Middle Node
d. Left Node

HIMAID TECH INCTITUTE

AL-JUNAID IECH INSIIIUIE
18. In average-case time analysis of Quick sort algorithm, the most balanced
case for partition is when we divide the list of elements into
a. Equal no. of pieces as of input elements
b. Single piece exactly
c. Two nearly equal pieces
d. Three nearly equal pieces
19. Which of the following is calculated with Big O notation?
a. Medium bounds
b. Upper bounds Page - 25
c. Lower bounds
d. Both upper and lower bounds
20. Edit distance algorithm based on strategy
a. Greedy
b. Dynamic Programming Page - 81
c. Divide and Conquer
d. Searching
21. In Heapsort Algorithm, total time taken by heapify procedure is
a. O (log n) Page-43
b. O (log2 n)
c. O (n log n)
d. O (n2 log n) 22. Al-Khwarizmi was a/an
a. Artist
b. Mathematician P-7
c. Astronomer
d. Khalifah
23. When matrix A of 5x3is multiply with metric B of 3x4 then the
number of multiplication required is: Not found exactly
a. 15
b. 12
c. 36

Not Found exactly but as per formula at page 84,

d. 60

AL-JUNAID TECH INSTITUTE 24 Pseudo code of algorithms are to be read by

24. PS6	eudo code of algorithms are to	o be read by
a	ı. People	Page -12
b	o. RAM	
С	. Computer	
d	I. Compiler	
	TO THE	here the number of sub-problems is Just
_	i. 1	P-34
C	o. 2 s. 3	10/77
d	l. 4	
26. Whe	en a recursive algorithm revisits t	the same problem over and over
agai	n, we say that the optimization p	robl <mark>em h</mark> as sub-problems.
W a	ı. Overlapping – Go	oogle Search
Vy b	o. Over costing	
) c	c. Optimized	V
d	I. Three	
27. Siev	e technique is <mark>very</mark> important speci	al case of Divide-and-Conquer strategy.
a	ı. True	P-34
b	o. False	
28. In o	rder to say anything meaning	gful about our algorithms, it will
be i	mportant for us to settle on a	<u> </u>
а	. Java Program	
b	o. C++ Program	
С	. Pseudo program	1659294
d	I. Mathematical model of com	putation P-10
29. Mer	ge sort is based on	shelp.com
а	. Brute-force	1 210
b	o. Plan-sweep	shell
С	. Axis-sweep	
d	I. Divide and Conquer	P-27

30. What time does Merge Sort algorithm take in order to sort an	_
array of 'n' numbers?	
a. (n)	
b. (log n)	
c. (n^2)	
d (n la m m) Canada Canada 24 la Mara Cant	
d. (n log n) Google Search 31. In Heap Sort	
31. algorithm, the first step is to	
a. Call Build-Heap procedure Page - 46	
b. Sort the array in descending order	
c. Call Heapify procedure	
d. Find the number of input elements 32. The definition of theta-notation relies on proving asymptotic bound.	À
32. The definition of theta-notation relies on proving asymptotic bound. a. One	
b. Lower	b
	ζ,
c. Upper d. Both lower & upper Page - 25	
d. Both lower & upper Page - 25 33. In merge sort algorithm, to merge two lists of size n/2 to a list of size n, take	•
time.	3
a. Theta (n) Page - 32	
b. Theta log(n)	
c. Theta log2(n)	
d. Theta n log(n)	
34. We can make recursive calls in Fibonacci Sequence.	
a. Infinite (1997) 3 (14-16-59) 9 4	
b. Finite google	
b. Finite google c. Only one d. Zero	
d. Zero	
35. Following is NOT the application of Edit Distance problem.	
a. Speech recognition	
b. Spelling Correction	
c. Ascending Sort Page - 76	
d. Computational Molecular Biology	

	,,,
36. In plane sweep approach, a vertical lin	ne is swept across the 2d-
plane and structure is used for holdin	g the maximal points lying
to the left of the sweep line.	
a. Array	
b. Queue	
c. Stack	Page - 18
d. Tree	1 17
37. When a heapify procedure is applied to	the root node to restore the
heap, then at each level, the compariso	
a. It will take (log n).	1/2
b. It can not be predicted	1/2
c. It will take O (1).	Page - 43
d. Time will vary according to the r	
38 time is the maximum running ti	
a. Worst-case	Page - 13
b. Average-case	
c. Best-case	
d. Good-case	
39. Efficient algorithm requires less comp	outational
a. Memory	
b. Running Time	
c. Memory and Running Time	Page - 9
d. Energy	
40. For average-case time analysis of Qui	ick sort algorithm, Pivot
selection is on average basis from	59794
a. half of the input values	11
b. all possible random values	Page - 50
c. Pivot is input separately	10.0
d. values greater than 5	ell
41. Selection algorithm takes theta	
a. (n2)	
b. (n)	Page - 37
c. log(n)	
d. n log(n)	

42. Recurrence can be described in terms of a tree.			
a. Yes Page - 31			
b. No			
43. Time complexity of Dynamic Programming based algorithm for			
computing the minimum cost of Chain Matrix Multiplication is			
a. Log n			
b. n			
c. n^2 (n square)			
d. n^3 (n cube) Page -90			
44. The Iteration method is used for			
a. Comparing sorting algorithms only			
b. Solving Recurrence relations Page 31			
c. Merging elem <mark>ents</mark> in Merge sort			
d. Dividing ele <mark>ments</mark> in Merge so <mark>rt</mark>			
45. In 3-Dimensional space, a point P has coordinate(s).			
a. (X, Y)			
b. (X, 0)			
c. (0, Y)			
d. (X,Y, Z)			
46. Chain matrix multiplication problem can be solved through strategy.			
a. Dynamic programming Page - 85			
b. Greedy			
c. Divide and conquer			
d. Sorting			
47. Merge sort have running timerunning time of Heap sort. Not found exactly			
a. Greater than			
b. Less than Google			
c. Equal to			
d. Different than			
48. Median is not useful measure of central tendency of given input			
set especially when the distribution of values is highly skewed.			
a. True			
b. False Page – 34			

based sorting algorithms always takes Omega nlog (n) time.			
a. True		(pg 46 not very clear)	
b. False		(pg is not toly clour)	
	notation allows us to state only the a	asymptotic bounds.	
a. Midd	le TIOT		
b. Lowe	r Page 25	Th.	
c. Uppe		11/10-	
d. Both	lower & upper	TIVITA	
4 190	r & upperSorting can be in		
a. Incre	asing order only	4/7	
b. Decre	easing order only	- //	
	Increasing and Decreasing ord lom order	er GOOGLR Search	
52. Radix sort	performs sorting the numbers	digit (s) at a time.	
a. One	Pa	<mark>age - 71</mark>	
b. Two			
c. Three	9		
d. All			
53. Quicksort is a/an and sorting algorithm.			
a. Not i	n place, not stable one		
b. In pla	ice , not stable one	Page - 54	
c. In pla	ace , stable one		
d. Not i	n place , stable one		
54. Consider t	hree matrices X,Y,Z of dimension	ons 1x2, 2x3,3x4	
respective	ly. The number of multiplication	ns of (XY) Z is:	
a. 18	As per lecture slides	001/	
b. 32	W. Will 1 a	10.0	
c. 24	vulmshe		
d. 30			
55. In Fibonac	ci Sequence, unnecessary repeti	tions do not exist at all.	
a. True			
b. False	Pa	<mark>age – 74</mark>	

56. It is not a Fibonacci sequence . 1,1,1,2,3,5,8,13,21,34,55,		
a. True Page - 73		
b. False		
57. Heap sort is a/ an and sorting algorithem.		
a. Not in place, not stable one		
b. In place , not stable one Page - 54		
c. In place , stable one		
d. Not in place , stable one		
58. Identify the True Statement		
 a. The knapsack problem does not belong to the domain of 		
optimization problems.		
b. The knapsack problem belongs to the domain of optimization		
problems. Page - 91		
c. The Knapsack problem cannot be solved by		
using dynamic programming		
d. The knapsack problem is optimally solved by using		
brute force algorithm.		
59. In Dynamic Programming, our approach is to		
a. Develop the solution in a top-down fashion		
b. Express the problem non-recursively		
c. Build the solution in a bottom-up fashion Page - 75		
d. Input several sub-problems simultaneously		
60. Counting sort is suitable to sort the elements in range 1 to K;		
a. K is large		
b. K is small Page - 57		
c. K may be large or small		
d. None		
61. We can multiply two matrices A and B only when they are		
compatible which means		
a. Number of columns in A must be equal to number of rows in B.		
it seems Correct as per page 84		
b. Number of rows and columns do not matter		

AL.	-JUNAID TECH I	NSTITUTE
C.	Number of columns in A must be equal t	to number of columns in B
d.	. Number of rows in A must be equal	to number of rows in B
32. Matr	rix multiplication is a (n) ope	eration.
a.	. Commutative	
b.	. Associative Page 1	age 85
C.	. Neither commutative nor associative	e
d.	. Commutative but not associative	Th.
3. In Dy	ynamic Programming approach, solution	on is modified / changed
a.	. Always once	
b.	. At each stage google a	and wikipedia
	Only for specific problems	1/7
d.	. At 4 th stage only	- \ \ \ \ \ \
64. In Kn	napsack problem, the goal is to put items in	the Knapsack such that
the va	ralue of the items is subject to v	veight limit of knapsack.
a.	. Minimized	
b.	. Decreased	
C.	. Maximized Pa	<mark>age - 91</mark>
d.	. None of the given options	
65. An ir	n-place so <mark>rti</mark> ng algorith <mark>m is</mark> one that __	uses
addi	itional array for storage.	
a.	. Always	
b.	. Permanently	
C.	. Does not Pa	<mark>age - 54</mark>
d.	. Sometime	
66. Mem	noization is a part of Dynamic Program	mming Strategy.
a.	. True Pa	<mark>age - 74</mark>
	. False	(0)
	trix A of dimension 2x4 is multiply with mat	rix B of dimension 4x3, then
the c	dimension of resultant matrix is N	ot found exactly
a.	. 2x4	

It seems correct as per second last Para of page 84

b. 4x3c. 3x4d. 2x3

AL-JUNAID I	ECH INSTITUTE
68. In Dynamic Programming a	pproach, we do not store the solution
to each sub-problem in cas	e if it reappears.
a. True	
b. False	Page - 75
69. Dynamic Programming is a p	problem-solving approach in which
a. Problem is solved in Z	'ero time
b. Solution is developed	only at final stage
c. Both are correct	TICII IVC
d. Both are incorrect	google
70. In Fibonacci sequence, each te	erm is calculated by previous terms.
a. Subtracting, Two	17
b. Adding, Three	
c. Adding, Two	Page - 73
d. Multiplying, Two	
71. Selection sort is not an in-p	lace sorting algorithm.
a. True	Page - 54
b. False	
72. If there are θ (n ²) entries in edit	distance matrix then the total running time is:
a. θ (n)	
b. θ (1)	
c. θ (n ²)	Page – 84
d. θ (n logn)	
73. The only way to convert a s	tring of i characters into the empty
string is with i deletions, re	presented as
a. E(0.j) =j	14-1659294
b. E(i.j) = 1	Page - 78
c. E(0.i) = j	CO2
d. E (i.0)=l	
	ulation of the matrix chain multiplication
problem will store the solution	ons of each sub problem in an
a. Array	
b. Table	Page - 86
c. Variable	
d. class	

75. We can use the optimal substructure property to devise a
formulation of the edit distance problem.
a. Selective
b. Optimum
c. Iterative
d. Recursive Page - 78
76. Sorting is performed on the basis of
a. Computational resources
b. Asymptotic notation
c. Summation
d. Some key value of attribute page- 39
77. In Heap Sort algorithm, we call Build-heap procedure
a. Only once page 46
b. Twice
c. Thrice
d. As many times as we need
78. Radix sort is not a non-comparative integer sorting algorithm.
a. True Google Search
b. False
79. In the statement "output P[1].x, P[1].y", the number of times
elements of P are accessed is
a. 1
b. 2 page 14
c. 3
d. 4 (S)()3()4-1659294
80. The main purpose of mathematical analysis is measuring the required by the algorithm.
a. Space
b. Execution time
c. Inputs & outputs
d. Execution time and memory
a. Execution time and memory

AL-JUNAID TECH INSTITUT
81 provides us more accurate result when input values a
not closer with each other
a. Average
<mark>b. Median</mark> P-34
c. Mode
d. Mean
82. The process of ends when you are left with such tiny
pieces remaining that it is trivial to solve them.
a. Brute-force
b. Plan-sweep
c. Divide and Conquer P-27
d. Axis-sweep
83 overcomes the limitations of by
working as per positional notations of numbers.
a. Counting sort, Radix sort
b. Radix sort, Counting sort P-71
84. Memorization is a part of Dynamic Programming strategy.
a. True
b. False
85. Rank of an element can be defined as
a. One minus the number of elements that are smaller
b. Two plus the number of elements that are greater
c. One plus the number of elements that are smaller P-34
d. Two minus the number of elements that are smaller
86. If the time complexity of an algorithm is given by O (1),
then its time complexity would be a. Polynomial b. Exponential c. Constant - Wikipedia
a. Polynomial
b. Exponential
d. Average
87. Quick sort is a recursive algorithm.

Wikipedia; Google

<mark>a. True</mark> b. False

88. The asymptotic growth of n(n+1)/2 is:
a. O(n ²) As the n^2 term has the largest contribution, the Big-O complexity is O(n^2)
b. O(n)
c. O(n+2)
d. O(n log n)
89. Approach of solving geometric problems by sweeping a line
across the plane is called sweep.
a. Line
b. Plane Page 18
c. Cube
d. Box
90. As per algorithm of Dynamic Programing, we need to store
a. First sub-problem only
b. Best solution only
c. Intermediate sub-problems Pg:75
d. Final solution only
91. In Sieve technique, we solve the problem
a. In recursive manner Pg:34
b. Non recursively
c. Using Merge Sort algorithm
d. Using Brute force technique
92. One of the limitation in 0/1 knapsack is that an item can either be
in the bag or not.
a. Use
b. Put Pg:91 c. Move
d. Store
93. Which one is not passed as parameter in Quick sort algorithm?
a. End of the array
b. Middle of the array
c. Array (containing input elements) Google
d. Start of the array
a. Start Start array

94. In the analysis of Selection	n algorithm, we get the convergent
a. Harmonic	
b. Linear	
c. Arithmetic	
d. Geometric	Pg:37
95. A Random Access Mac	hine (RAM)is an idealized machine
withrandom access me	mory.
a. Infinite large	Pg:10
b. 512 MB	
c. 256 MB	1/7
d. 2 GBs	4/7
96. While analyzing Selection	on algorithm, we make a number of
passes, in fact it could	be as many as
a. n(n+1)	
b. log(n)	Pg:37
c. n/3	
d. n/4	
	chine (RAM), instructions are executed in
a. Parallel	
b. Batch	
c. One by One	Pg:10
d. Multiple times	
A Section 1	ank of an element will be its position
a. First	2211122201
b. final	Pg:34
c. Second last	
d. Last	CO112
99. The worst-case running	
sort an array of n eleme	ents.
a. O(log n)	
b. O(n)	
c. O(n log n)	page 40 and google
d. O(n)	

100.	f(n) and g(n) are asymptotically equivalent. This means			
tl	hat they have essentially the same			
	a. Results			
	b. Variables			
	c. Size			
	d. Growth rates			
101.	An algorithm is a mathematical entity. Which is independent of			
	a. Programming language			
	b. Machine and Programming language			
	c. Compiler and Programming language			
	d. Programming language Compiler and Machine P:07			
102.	In Quick sort algorithm, Pivots form	A		
1	a. Stack	Þ		
N	b. Queue			
A.	c. Binary Search Tree P:49	P		
Y	d. Graph	1		
103.	Counting sort is suitable for sorting the elements within range 1 to P. where			
	a. P is large			
	b. P is small P-57			
	c. P is very large			
	d. P is undetermined			
104.	In asymptotical analysis of n'(5 2)-3, as n becomes large,			
tl	he dominant (fastest growing) term is some constant times			
	a. n_1			
	b. n (S)()3()4-1659794			
	c. n+1			
	d. n*n P-23			
105.	c. n+1 d. n*n P-23 Items are not allowed in the 0/1			
	knapsack. a. Lighter			
	b. Fractional P-91			
	c. Whole			
	d. Weighty			

AL-J	UNAID	TECH	INSTI	TUTE
	_		_	

106.	Fibonacci Sequence was nar	ned on	_, a famous
m	athematician in 12th Century		
	a. Fred Brooks		
	b. Grady Booch		
	c. Leonardo Pisano	P-73	
	d. Edgar F. Codd	OTT	
107.	In Heap Sort algorithm, we be	uild for	ascending sort.
	a. Max heap	P-41	Non
	b. Min heap		10/12
108.	Bubble sort is not an in-place	e sorting algo	rithm.
A	a. True		4/7
2	<mark>b. False</mark>	P-54	
109.	In partition algorithm, the su	barray	has elements
W	hich are greater than pivot ele	ement x.	
NA	a. A[pr]		
Y	b. A[pq-1]		
	c. A[q]		
	d. A[q+1r]	P-46	
110.	In Heap Sort algorithm, if heap prop	erty is violated	
	a. We call Build heap proced	lure P-43	
	b. We call Heapify procedure	θ /	
	c. We ignore		
	d. Heap property can never	be violated	
111.	is not a characteristic	of Random A	Access Machine.
	a. Single-Processor P-	10 659	194
	b. Assigning a value to a va	riable	1.CO111
	c. Locality of reference		00%
	d. Executing an arithmetic in		
112.	The only way to convert an e	mpty string ir	nto a sting of j
C	haracters is by doing j inserti	ons, represen	ted as
	a. E(i,j) = 1		
	b. E(I,0) = I		
	c. E(0,j) = j page 78		
	d. E(1,j)= j		

113. In Selection problem, the Sieve technique works in
a. Non-recursive manner
b. Constant time
c. Phases page 34
d. One complete go
114. Algorithm is a sequence of computational steps that
the input into output.
a. Merge
b. Assign
c. Transform page 7
d. Integrate
115. If pj dominates pi and pi dominates ph then pj also dominates
ph, it means dominance relation is
a. Transitive page 18
b. Non Transitive
c. Equation
d. Symbolic
116. To find maximal points in brute-force algorithm each point of
the space is compared against of that space.
a. One other point
b. All other points page 11
c. Few other points
d. Most of the other points
117. In the following code the statement "cout< <j;"executes< td=""></j;"executes<>
times. for (j=1; j<=5; j = j+2)
cout< <j;< td=""></j;<>
a. 5 times
b. 2 times
times. for (j=1; j<=5; j = j+2) cout< <j; 2="" 3="" 5="" a.="" b.="" c.="" td="" times="" times<=""></j;>
d. 0 times

118. In merge sort algorithm, we split the array around the
index q. a. Entring
b. Mid page 17
c. Exiting
d. Summing
119. In Selection problem, the Sieve technique
a. Add some more input items each time
b. Do not work recursively
c. Do not uses Divide and Conquer approach
d. Eliminates undesired data items each time
120. Consider three matrices X, Y, Z of dimensions 1 x 2, 2 x 3,
3 x 4 respectively. The number of multiplications of X(YZ) is .
a. 16
b. 32
c. 26
d. 32 page 84
121. In Heap Sort algorithm, the total running time for Heapify procedure is
a. Theta (log n)
b. Order (log n)
c. Omega (log n)
d. O(1) i.e. Constant time
122. The sieve technique works where we have to find
items(s) from a large input.
a. Single page 34
b. Two c. Three d. Similar
c. Three
123. In Dynamic Programming based solution of Knapsack Problem,
if we decide to take an object i , then we gain
a. W(Total Weight of Knapsack)
b. V (Total Value of all items)
c. vi (Value of object i) page 93
d. Nome of the given option

A	L-JUNAID TECH INSTITUTE
124.	While Sorting, the order domain means for any two input elements x and y
	satisfies only.
	a. x < y page 39
	b. x > y
	c. x = y
	d. All of the above
125. —	For solving Selection problem, we introduced Sieve technique due to
	a. Using Decrease and Conquer strategy page 34
	b. Avoiding to sort all input data
	c. Eliminating Rank of an element
	d. Using Brute-force approach
126.	is one of the few problems, where provable lower
b	ounds exist on ho <mark>w fas</mark> t we can sort.
N.	a. Searching
(4	b. Sorting page 38
7	c. Both Searching & sorting
	d. Growing
127.	In plane sweep approach, a vertical line is swept across
tł	ne 2d-plane from
	a. Right to Left
	b. Left to Right page 18
	c. Top to Bottom
	d. Bottom to top
128.	In generating Fibonacci sequence, we can avoid unnecessary repetitions by
_	process
	a. Tokenization
	b. Memorization page 43
	a. Tokenization b. Memorization c. Randomization d. Memorization
	d. Memorization
129.	

page 14

a. Small

c. Large d. Infinity

b. Medium

130. Dynamic programming comprises of
a. Recursion only
b. Repetition only
c. Recursion with Repetition
d. No Repetition but Recursion page 75
131. The function f(n)=n(logn+1)/2 is asymptotically equalient t nlog n :Here Lower
Bound means function f(n) grows asymptotically at as fast as nlog n.
a. Least page 23
b. Normal
c. Most
d. At
132. Counting sort has time complexity.
a. O(n+k)
b. O(n) page 58
c. O(k)
d. O(nlogn)
133. Due to left complete nature of binary tree, the heap can be stored in
a. Array page 40
b. Structures
c. Link List
d. Stack
134. Single item from a larger set of
a. Constant
b. Pointers
c. Phases (S)()3()4-(659)94
d. n items page 34
135. In the clique cover problem, for two vertices to be in the same
group, they must be each other.
a. Apart from
b. Far from
c. Near to
d. Adjacent to page 76

136. How much time merge sort takes for an array of numbers?	
a. T(n^2)	
b. T(n)	
c. T(log n)	
d. T(n log n) page 40	
137. In in-place sorting algorithm is one that uses arrays for storage.	
a. No additional array page 54	
b. An additional array	
c. Both of above may be true according to algorithm	
d. More than 3 arrays of one dimension	
138. Brute-force algorithm for 2D-Maxima is operated by comparing	
pairs of points.	1
a. Two	
b. Some	٧.
c. Most	1
d. All page 18	
139. While Sorting, the ordered domain means for any two input	
elements x and y satisfies only.	
a. x > y	
b. x < y	
c. x = y	
d. All of the above page 38 140. Quick sort is.	
a. Stable & in place	
b. Not stable but in place page 54 c. Stable but not in place	
d. Some time stable & some times in place	
c. Stable but not in place d. Some time stable & some times in place 141. Which may be a stable sort? a. Merger	
a. Merger	
b. Insertion	
c. Both above page 54	
d. None of the above	

142.	For the Sieve Technique we take time.
	a. T(nk) page 34
	b. IT(n / 3)
	c. n^2
	d. n/3
143.	Continuation sort is suitable to sort the elements in range 1 to k.
	a. K is Large
	b. K is not known
	c. K may be small or large
	d. K is small page 54
144.	Asymptotic growth rate of the function is taken over
	se running time
1	a. Best
	b. Worst page 14
MA.	c. Average
7	d. Normal
145.	The sieve technique is a special case, where the number of
su	ıb problems is just.
	a. 5
	b. Many
	c. 1 page 34
	d. Few
146.	In Quick sort, we don't have the control over the sizes of recursive calls.
	a. True page 49
	b. False (5) 3 4 - 6 5 9 7 9 4
	c. Less information to decide
	d. Ether true or false
147.	Before sweeping a vertical line in plane sweep approach, in start sorting
of	the points is done in increasing order of their coordinates
	a. X page 18
	b. Y
	c. Z
	d. X , Y

HINIAID TECH INCTITUTE

$\underline{\mathbf{A}}$	L-JUNAID IECH INSIIIUIE
148.	Random access machine or RAM is a/an.
	a. Machine build by Al-Khwarizmi
	b. Mechanical machine
	c. Mathematical model page 10
	d. Electronics machine
149.	The Huffman codes provide a method of encoding data
ir	nefficiently when coded using ASCII standard.
	a. True
	b. False page 99
150.	A heap is a left-complete binary tree that confirms to the
	a. increasing order only
	b. decreasing order only
4	c. heap order page 40
	d. log n order
151.	If we associate (x, y) integers pair to cars where x is the speed of the car and
Уу	is the negation of the price. High y value for a car means a car.
7	a. Fast
	b. Slow
	c. Expensive
	d. Cheap
152.	Which one of the following sorting algorithms is the fastest?
	a. Merge sort
	b. Quick sort
	c. Insertion sort
	d. Heap sort
153.	Quick sort algorithm divide the entire array into sub arrays.
	a. 2
	a. 2 b. 3 c. 4 d. 5
	c. 4 VIII mahell
	d. 5
154.	In brute force algorithm, we measure running time T(n) based on
	a. Average-case time and best-case time
	b. Worst-case time and average-case time page 46
	c. Worst-case time and best-case time
	d. Best-case time and staring-case time

155.	For 2D Maxima problem. Plane Sweep algorithm first of all
	a. Sorts all points
	b. Delete some points
	c. Output the elements
	d. Pushes all points on stack
156.	There are entries in the Edit Distance Matrix
	a. e (n)
	b. ө (n₂)
	c. e (n+2)
	d. e (n + 100)
157.	Which symbol is used for Omega notation?
yı.	a. (O)
1	b. (e)
V	<mark>c. (Ω)</mark>
MA	d. (@)
158.	Selection sort is a sorting algorithm
	a. In-place page 54
	b. Not In-Place
	c. Stable
	d. in-partition
	In Dynamic Programming based solution of knapsack problem,
to	compute entries of 'V', we will imply a(n) approach.
	a. Subjective
	b. Inductive
	c. Brute Force
	d. Combination
160.	We do not need to prove comparison-based sorting
а	lgorithms by mathematically. It always takes time.
	a. Big Oh nlog(n)
	b. Omega nlog(n) NOT SURE
	c. Omega n(n^2)
	d. Theta nlog(n)

AL-JUNAID TECH INSTITUTE
161. Merge sort is a/an and sorting algorithm
a. Not in-place, not stable one
b. In-place, not stable one
c. In-place, stable one
d. Not in-place, stable one page 54
162. Cubic function will a quadratic function.
a. Prove
b. be equal to
c. overtake Page 25
d. find
163. Insertion sort is a sorting algorithm
a. Unstable
b. In-place Page 54
c. Not In-Place
d. in-partition
164. To check whether a function grows faster or slower than the other
function, we use some asymptotic notations, which is
a. Big-oh notation
b. Theta notation
c. Omega notation
d. All of the given 165. Asymptotic growth of 8n^2 + 2n – 3 is:
a. $\Theta(n^2 + n)$
b. Θ (n^2) page 14 c. Θ(8n^2) 4 – (Δ –
d. Θ(8n^2 + 2n)
166. In the analysis of algorithms, plays an important role.
a. text analysis
b. time
c. growth rate
d. money

167.	In inductive approach of knapsack problem, we consider 2 cases,
C	Or
	a. Median, Mode
	b. Recursive, Iterative
	c. Leave object, Take object page 93
	d. Sequentially. Parallel
168.	Random Access Machine (RAM) can execute instructions
	a. only logical
	b. parallel
	c. only arithmetic
	d. logical and arithmetic
169.	Using algorithm, efficiency is not given much importance
	a. Greedy
N	b. Merge sort
A.	c. Processing as there is no algorithm by this name
Y	d. Brute Force
170.	Bubble sort takes theta in the worst case
	a. (n2) page 39
	b. (n)
	c. log(n)
	d. nlog(n)
171.	If matrix A of dimension $p \times q$ is multiply with matrix B of
d	imension q × r, then dimension of resultant matrix is:
	a. p×q
	b. p × r page 84 4 - 16 5 5 2 5 4
	c. q×r
	d. r×p
172.	
_	to store the results of intermediate sub-problems
	a. table (Page 75)
	b. variable
	c. stack
	d. loop

73.	is in-place sorting algorithm.
	a. Bubble sort (Page 54)
	b. Merge sort
	c. Linear search
	d. Binary Search
74.	Which one of the following problems can be solved using dynamic problem?
	a. Bubble sort problem
	b. Matrix chain multiplication problem page 85
	c. Greedy search problem
	d. Fractional knapsack problem
75.	In chain matrix multiplication, solutions of the sub-problems are stored in a
) <u> </u>	
1	a. Array
V	b. Table page 86
Y	c. Tree
Y	d. Link list
176.	What is the average running time of a quick sort algorithm?
	a. O(n^2)
	b. O(n)
	c. O(n log n) (Page 49)
	d. O(log n)
	Sorting Algorithms having O running time are
C	onsidered to be slow ones.
	a. (n)
	b. (n^2) (Page 39)
	c. (nlog(n))
	d. (log(n))
78. _	While solving Selection problem, in Sieve technique we partition input data
	a. In increasing order
	b. In decreasing order
	c. According to Pivot
	d. Randomly

AL-JUNAID TECH INSTITUTE
179 is the process of avoiding unnecessary repetitions
by writing down the results of recursive calls and looking them
up again if we need them later.
a. Loop
b. Memoization page 74
c. Recursion
d. Function
180. In average-case time the probability of seeing input is denoted by
a. p{I}-
b. p[l]
c. p <i></i>
d. p(i) page 13
181. While applying the Sieve technique to selection sort, how to
choose a pivot element.
a. Through mean
b. Linear
c. Randomly page 35
d. Sequentially
182. Number of of the pseudo code are counted to measure
the running time.
a. Inputs
b. Outputs
c. Steps page 13
d. Pages
183. Developing a dynamic programming algorithm generally involves
separate steps.
a. One b. Two page 75 c. Three d. Four
b. Two page 75
c. Three
d. Four
184. 8n^2+2n+3 will exceed c28(n), no matter how large we make
a. n
b. 2n
c. c2 page 25
d, this quadratic equation

185.	The running time of quick sort algorithm
	a. Is impossible to compute
	b. Has nothing to do with pivot selection
	c. Is Random upon each execution
	d. Greatly influenced by the selection of pivot page 49
186.	involves breaking up the problem into sub problems
W	hose solutions can be combined to solve the global problem.
	a. Complexity Theory
	b. Dynamic programming solution
	c. Divide and Conquer Strategy page 34
2	d. Greedy Algorithms
187.	In we have to find rank of an element from given input.
1	a. Merge sort algorithm
V	b. Selection problem page 34
Ad	c. Brute force technique
Y	d. Plane Sweep algorithm
188.	How many steps are involved to design the dynamic programming strategy?
	a. 2
	b. 3
	c. 1
	d. 4 page 92
189.	In Bucket sort, if there are duplicates then each bin can be
	replaced by a a. Stack
	b. Linked list page 69
	c. Hash table 0504-1659294
	d. Heap
190.	In merge sort algorithm, we split the array to find index q.
	a. from start W
	b. midway page 28
	c. from end
	d. both from start or end

191. Find the maximum value of the items which can carry using knapsack Knapsack weight capacity = 50.

Item Weight Value

11070

22020

33080

470 200

- a. 280
- b. 100
- c. 90
- d. 200
- 192. In 2-d maxima problem a point p is said to be dominated by point q if

a.
$$p.x \leq q.x$$

- b. p.x <= q.x and p.y <= q.y page 17
- c. p.y <= q.y
- d. $p.x \ge q.x$ and $p.y \ge q.y$
- 193. Sorting can be in _____
 - a. Increasing order only
 - b. Decreasing order only
 - c. Both increasing and decreasing order
 - d. Random order
- 194. Recurrence can be described in terms of
 - a. Array
 - b. Linear
 - c. Tree page 31
 - d. Graph
- 195. The brute-force algorithm for 2D-Maxima runs in order O(__) time.
 - a. n
 - b. n(log n)
 - c. n*n page 18
 - d. n3

196.	In plane sweep approach of solving geometric problems, a
_	is swept across the plane.
	a. Line page 18
	b. Plane
	c. Cube
	d. Box
197.	Which of the following is calculated with Big Omega notation?
	a. Medium bounds
	b. Upper bounds
	c. Lower bounds Page - 25
	d. Both upper and lower bounds
198.	is always based on divide and conquer strategy.
1	a. Bubble sort
	b. Selection sort
A.	c. Pigeon sort
Y	d. Quick sort page 46
199.	If a matrix has three rows and two columns, then dimensions
0	f matrix will be:
	a. 3x2
	b. 2x3
	c. 3x3
	d. 2x2
200.	Asymptotic notations are used to describe of an algorithm.
	a. Length
	b. running time google
	c. size
	c. size d. compile time
201.	Catalan numbers are related the number of different on 'n' nodes.
	a. Arrays
	b. linked lists
	c. binary trees page 85
	d. functions

AL-JUNAID TECH INSTITUT	E
-------------------------	---

202. Applying the sieve technique to selection problem,
element is picked from array.
a. Output
b. Total
c. Input
d. Pivot page 35
203. Dynamic Programming approach is usually useful in solving
problems.
a. Normal
b. Optimization google
c. Array
d. Loop
204. In recursive formulation of knapsack
Problem: V [0, j] = for j>=0
a1
b. 0 page 93
c. 1
d. 2
205 is a linear time sorting algorithm.
a. Merge sort
b. Radix sort page 71
c. Quick sort
d. Bubble sort
206. Quick sort is one of the sorting algorithm.
a. Fastest page 19
b. Slowest
b. Slowest c. Major d. Average
207. The time assumed for each basic operation to execute on
RAM model of computation is a. Infinite
b. Continuous c. Constant page 10
<mark>c. Constant </mark>
u. vai labi c

208. In Sieve Technique, we know the item of
interest. a. True
b. False page 34
209. While analyzing algorithms, and usually
considered difficult to calculate.
a. Finite, Infinite
b. Floor, ceiling google
c. Row, Column
d. Graph, Tree
210. While analysis of the brute-force maxima algorithm, an array
sorted in the reverse order is the type of case inpu
a. Best
b. Worst page 14
c. Somewhat bad
d. Average
211 is not useful measure of central tendency of given
input set especially when the distribution of values is highly skewed.
a. Mean
b. Mode
c. Average
 d. Median page 34 212. In asymptotical analysis of n(n-3) and 4n*n, as n becomes large,
the dominant (fastest growing) term is some constant times
a. n+1
b. n-1 c. n <mark>d. n*n page 23</mark>
c. n
d. n*n page 23
213. In addition to passing in the array itself to Merge Sort
algorithm, we will pass in other arguments which are indices.
<mark>a. Two</mark> b. Three
c. Four
d. Five
u. i ive

214. In 2d-maximal problem,	a point is said to be if it is not
dominated by any other p	oint in that space.
a. Member	
b. Minimal	
c. Maximal	P-11
d. Joint	TOTA
215. Counting sort assumes the	at the numbers to be sorted are in the range
a. K to n where n is lar	ge
b. 1 to k where k is sma	all (P-57)
c. K to n where k is sm	all
d. k to n where n is sm	all
216. Insertion sort is an efficiency of electric number of electric nu	cient algorithm for sorting a ements
a. Large	P-39
b. Small	
c. Extra large	
d. Medium	
217. If the indices passed to	merge sort algorithm are
then this means that there	e is only one element to sort.
a. Small pa	<mark>age 28</mark>
b. Large	
c. Equal	
d. Not Equal	
	each item must be entirely accepted
or rejected, is called	problem.
a. Fractional	Imshelp.com
b. 0-1 P-92	Imaha Di
c. Linear	Imsile
d. Optimal	

219. If the time complexity of an algorithm is O(n). then it is called
time complexity.
a. Linear Wikipedia
b. Constant
c. Average
d. Exponential
220. In the case of analysis does not depend upon on
the distribution of input.
a. Merge sort
b. Quick sort
c. Insertion sort
d. Heap sort
221. We can use the Property to devise a recursive
formulation of the edit distance problem.
a. Small substructure
b. Algorithmic
c. Real
d. Optimal substructure page 78
222. The following sequence is called
1,2,3,5,8,13 <mark>,21</mark> ,34,55,
a. Optimize sequence
b. Fibonacci sequence page 73
c. Optimal sequence
d. Overlapping sequence
223. Which one sorting algorithm is best suited to sort an array
of 2 million elements?
a. Bubble sort b. Insert sort c. Merge sort
b. Insert sort
c. Merge sort
u. Quick Soft
e. Ridx Sort page 71

be able to _,
a. Skip input elements somehow
b. Select two or more pivots page 34
c. Skip any sub-array completely
d. Eliminate recursive calls
225. The problem with the brute-force algorithm is that is uses
in pruning out de
a. Worst-case time
b. No intelligence page 18
c. Outside looping
d. Artificial intelligence
226. In chain matrix multiplication, the order of the matrices
a. Can be changed
b. Can not be changed page 85
c. is equal
d. is reverse
227. In quick sort algorithm, we choose pivot
a. Always the smallest element
b. Greater than 5
c. Randomly page 35
d. Less than 5
228. In Heap Sort algorithm. Heapify procedure is in nature.
a. Recursive
b. Non-Recursive page 43
c. Fast
d. Slow
229. When matrix A of 5x 3 is multiplied with matrix B of 3 x 4 then
the number of multiplications required will be
a. 15
b. 12
c. 36
<mark>d. 60</mark>

A	L-JUNAID TECH INSTITUTE
230.	An algorithm is said to be correct if for every instance,
it	halts with the correct
	a. Input, Output page 13
	b. Design, Analysis
	c. Value, Key
	d. Key, Analysis
231.	In chain matrix multiplication, table is filled
to	o find the multiplication of matrix.
	a. row wise
A	b. column wise
2	c. diagonally
1	d. bottom-to-up page 86
232.	If we have an equation 8n2+7f*n + 5f + 6 then is large, term
W	ill be muchxxxxxxxthe n term and will dominate the running time.
Y	a. f g (n)
	b. g (n) * 2
	c. n * 2 page 23
	d. f (n)
233.	For quick sort algorithm. Partitioning takes theta
	a. (n)
	b. log(n)
	c. n log (n)
	d. n2log (n)
234.	In Heap Sort algorithm, the maximum levels an element can move upward is
_	
	a. Theta (log n) page 43 b. Big-ch (log n) c. Omega (log n)
	b. Big-ch (log n)
	c. Omega (log n)
005	a. v (1) i.e. Constant time
235.	programming is essentially recursion without repetition.
	a. Fast b. Dynamic page 75
	U 17800000. 0808/5

c. Array

d. n (log n)

236. In heap sort algorithm, the total running time for heavily procedure is _.

- Big-oh(log n)
- O (1) i.e. Constant time
- Theta (log n)
- Omega (log n)
 237. Quick sort algorithm is required a lot of comparison in the _____
 condition.
- Worse case
- Best and average case
- Average case
- Best case
 - 238. In heap sort algorithm (using max heap). When every time maximum element is removed from top.
- Divide and conquer strategy helps us
- We are left with a lot
- We call merge sort algorithm
- It becomes order n2 algorithm
 239. In average-case time analysis of quick sort algorithm,
 The most balanced case for partition is where we divide the list of element into
- Three nearly equal pieces
- Single piece exactly
- Two nearly piece
- Equal no. of piece as of input element 240. Consider three matrices X,Y,Z dimensions 1×2.2×.3×4 respectively. The number of multiplication of (XYZ) is:
- 32

A]	L-JUNAID TECH INSTITUTE
	30
•	24
•	
	241. Quicksort is a/an and sorting algorithm.
•	In-place, not stable one
•	Not in-place, stable one
•	In-place, stable one
•	Not in-place, not stable one
4	242items are not allowed in the 0/1 knapack.
, • j	Lighter
N.	Whole
×V	Weighty
Ç. •	Fractional
- 1	243. The main purpose of mathematical analysis is measuring the
	required by the algorithm.
•	Space
•	Execution time and memory
•	Input & output
•	Execution time
	244. Execution time of an algorithm can be measured by
•	Divide and conquer approach
•	Both brute force and divide and conquer approach
•	Mathematical analysis Brute force approach 245. Quick sort is based on strategy.
•	Brute force approach
	210. (01011 2011 12 201210 11
•	Graph theory
•	Divide-and-conquer
•	Dynamic programming

- Dynamic programming
- Greedy approach

AL-JUNAID TECH INSTITUTE 246. A sorting algorithm is called as _____ if duplicate element

remain in the same relative position after sorting.

- O(n) algorithm
- Stable
- Parallel
- Complex 247. Which one sorting algorithm is best suited to sort an array of 2 million elements?
- Insert sort
- Quick sort
- Merge sort
- **Bubble** sort 248. We can use the property to devise a recursive formulation of the edit distance problem.
- Algorithm
- Small substructure
- Optimal substructure
- Real
 - 249. While sorting. The ordered domain means for any two input elements x and y satisfies only.
- All of the above
- x > y
- x < y
- $\mathbf{x} = \mathbf{y}$

8n2 + 2n - 3 will eventually exceed c2*(n) no matter how large we make .

- 2n
- this equation

<u> </u>	L-JUNAID ILCH INSIII UIL	
•	c2	
	251 is a method of solving a problem in which we check	
	all possible solution to the problem to find the solution we need.	
•	Sorting algorithm	
•	Greedy approach	
•	Plane-sweep algorithm	
•	Brute-force algorithm	
	252. In quick sort algorithm, provost form	
•	Graph	
•	Stack	
•	Binary search tree	
y	Queue	
7.	253. In asymptotical analysis of $n(n-3)$ and $4n*n$, as n becomes large,	
	the dominant (fastest growing) term is some constant time	
•	n+1	
•	<mark>n*n</mark>	
•	n	
•	n-1	
	254. If Matrix-A has dimensions "3×2" and Matrix-B has dimensions	
	"2×3", then multiplication of Matrix –A and Matrix-B will result a	
	new Matrix-C having dimensions	
•	2×3	
•	2×2	
•	2×2 3×2 3×3 255 Replace approximation is a separation on an idealized RAM.	
•	3×3	
	255. Boolean operation is a operation on an idealized KAIVI	
_	model of computation.	
•	Advance	
•	Normal	

- Basic
- Starting
 256. There are entries in the Edit Distance Matrix.
- \bullet $\Theta(n^2)$
- O (n+100)
- O (n)
- O (n+2)
 - 257. Counting sort is suitable for sorting the elements within range 1 to P. where

TECH INC

- P is undetermined
- P is small
- P is very large
- P is large
 - 258. Suppose we have 4 matrices A,B,C,D. what is correct expansion of m[1,2] in chain matrix multiplication?
- m[1,2] = m[1,1] + m[2,2] + p0 . p1. p3
- $m[1,2] = m[1,1] + m[2,2] + p0 \cdot p1 \cdot p3$
- m[1,2] = m[1,1] + m[2,2] + p0 . p1. p3
- m[1,2] = m[1,1] + m[2,2] +p0 . p1. p3
 259. Which one is not passed as parameter in Quick Sort algorithm?
- Array (containing input elements)
- Middle of the array
- Start of the array
- End of the array
 260. In asymptotical analysis of n*(5+2)-3. As n becomes large, the dominant (fastest growing) term is some constant times
- n+1
- n*n
- n

AL-JUNAID	TECH INSTITUTE
------------------	----------------

THE SCHOOL TECH MISTING IN
• n_1 261 For values of a pay algorithm is foot arough
261. For values of n, any algorithm is fast enough.
• Medium
• Small
• Infinity
• Large
262. Dynamic programming algorithms often use some kind of
to store the result of intermediate sub-problems.
• Stack
• Loop
• Table
Variable
263. In selection problem, the Sieve technique works in
One complete go
• Constant time
Non-recursive manner
• Phases
264. In heap Sort algorithm, the maximum levels an element can mov
upward is
• Theta (log n)
• O (1) i.e. Constant time
• Omega (log n)
• Big-oh (log n)
265. While analysis of the brute-force maxima algorithm, an array
storted in the reverse order is the type of case input.
• Worst
• Best
• Somewhat

- Average

What type of instructions Random Access Machine (RAM) can execute?

- ► Algebraic and logic
- ► Geometric and arithmetic

► Arithmetic and logic (Page 10)

- ► Parallel and recursive
- For Chain Matrix Multiplication we can not use divide and conquer approach because, 267.

► We do not know the optimum k (Page 86)

- ► We use divide and conquer for sorting only
- ► We can easily perform it in linear time
- ► Size of data is not given

268. What is the total time to heapify?

- ➤ O(log n) (Page 43)
- O(n log n)
- ► O(n2 log n)
- ➤ O(log2 n)

is a graphical representation of an algorithm 269.

- notation
 - notation
 - ➤ Flowchart
 - ► Asymptotic notation
- A RAM is an idealized machine with 270. random-access memory.
 - ▶ 256MB
 - ► 512MB
 - ➤ an infinitely large (Page 10)
 - ▶ 100GB
- 271. What type of instructions Random Access Machine (RAM) can execute? Choose best answer
- ► Algebraic and logic
- ► Geometric and arithmetic

► Arithmetic and logic

- ► Parallel and recursive
- What is the solution to the recurrence T(n) = T(n/2)+n.
 gn)
 (Page 37) 272.
- ► O(logn)

► O(n) (Page 37)

- ► O(nlogn)
- ► O(n 2)