

Junaidfazal08@gmail.com Bc190202640@vu.edu.pk

CS606-Compiler Construction

(Solved Macq's)

LECTURE FROM (23 to 45)

FOR MORE VISIT **VULMSHELP.COME**

0304-1659294

AL-JUNAID TECH

CS619 PROJECTS

Availlable training courses

- HTML
- JQUERY
- PHPMYSQL
- JAVASCRIPT
- BOOTSTRAPS
- NODE.JS
- REACT.JS

CSS

PAID

LMS HANDLING

Contact Us:

+92 304 1659294

www.vulmshelp.com

junaidfazal08@gmail.com

ASSIGNMENTS, QUIZ & GDB

95% RESULTS ALL LMS ACTIVITIES

THE COLUMN TECHNICATION
1convert the relocatable machine code into absolute machine codeby linking library and relocatable objectfiles.
 Assembler Loader/link-editor Compiler Preprocessor
 2. Parsers take as input from lexical analyzer. Linker Token Instruction None of the given
3. The regular expression_denotes, the set of all strings of a's and b's of length two
 a* (a* b*)* (a b)(a b) 4is a regular expression for the set of all strings over the alphabet {a} that has an even number of a's. aa* (aa)* aa*a
5Phase supports macro substitution and conditional compilation. > Semantic > Syntax Preprocessing > None of given
6. In LL(1) parsing algorithm,_contains a sequence of grammar symbols. > Stack PG # 62
Link ListArrayNone of the given.
7. Consider the grammar

AL-JUNAID	TECH INSTIT	UTE
------------------	--------------------	-----

AL-JUNAI	D IECH INSIII UII
A → B (C D
$B \rightarrow h B$	3 €
$C \rightarrow C$	g g Ch i
D → AB	
First of A is	· -
	> h, g, i
, 11	gh
1/1/1	None of the given.
8. parsers neve	er shifts into an error state.
	> LS
102	> LT
	> LR
3.7/	> LP
9. In parser, the two L	L stand for
	Left-to-right scan of input
	> left-most derivation
	➤ Left-to-right scan of input and left-most
	derivation PG # 54
	None of the given
10. is elaborated t	o produce bindings.
	> Declaration
	> Expression
	> Command
	> None of the given
11.	A lexical analyzer generated byis
essentially a FSA.	0304 1037271
1 Vision	DexMexFex
W	> Dex
	► Mex
	> Fex
1) A lawical anal	> Lex
	yzer generated by lex is essentially a PDA (Push
Down Automaton).	

> True

> False

13.

AL-JUNAID	TECH I	NSTIT	UTE
------------------	---------------	-------	-----

he actions (shift, reduce) in a SLR(1) parser depend on a look ahead symbol (
Current input token
Next Input Token
Previous output Token
Previous Input Token.
The following grammar contains a
conflict. S $\rightarrow A \mid xb$
> Shift-Reduce
> First-Reduce
> Shift-First
> Reduce-Reduce
15. $S \rightarrow A \mid xb$
$A \rightarrow aAb \mid x$
This grammar contains a conflict.
Shift-Reduce
First-Reduce
> Shift-First
Reduce-Reduce
16. Consider the Following
$S \to AB$
> 2 > 3
(3) > 4 (4 - 16.59) > 4
is a register allocation technique that <i>always</i> finds
the minimal number of registers needed for aprocedure.
 Dangling reference
> Graph coloring
> Left Factoring
> Right Recursion
18. Graph coloring is a register allocation technique that operates at
individual basic blocks.
> True
> False

19. Graph coloring is a register allocation heuristic that usually
finds he minimal number of registers needed for aprocedure.
> True
> False
20. S → a S Sa c
This grammar is ambiguous.
> True
> False
21. When generating code at the basic block level, the
dependency graph must be converted to target code. By identifying
, instruction selection and instruction ordering can be performed
efficiently in a single pass.
Ladder sequences
> Physical sequences
> Logical sequences
> Token sequences
22can be considered a small compiler since it
transforms a source language (assembly) into a lessabstract
target language (binary object code)
> Parser
> Assembler
> Lexical analyzer
> Scanner
When memory allocator operates on
chunks which include some administrative part and a block of user
data. Theadministrative part includesflag for marking the chunk
as free or in-use.
> One > Two
> Two
> Three
> Four
24. parser transforms a stream
of tokens into an
➤ AST

AL-JUNAI	D TECH INSTITUTE
	> IST
	EST
	> ATS
25.	The parser generator yacc can
handle	grammars
	LL(1)
	LT(1) LS(1) LF(1)
26. The parser gene	rator yacc can handle LL(1) grammars.
> True	
> False	
The yacc parser	generator can handle LALR(1) grammars.
∑ True	
> False	
	mple code generation considers one AST
	target is a <i>register</i> machine, the code can be aversal of the AST, possibly introducing uning out of registers.
	> Depth-first
	Breadth-first
	> Depth-second
	Breadth-second
29.	A linker combines multiple
object files into a	executable object.
	Single 4-1659294
	> Double
	> Double > Triple > Quadruple
WY	
	e notationinstructs YACC to push a
computed attribute va	
	> \$\$ PG # 106
	> &&
	> ##
)	>
31. The following two i	tems

- ➤ Conditional jump PG # 115
- > While loop
- > Unconditional jump

37.I

n a CFG (Context Free Grammar) the set of terminal and non-terminal symbols must be.

- Disjoint
- > Logical
- > Relational
- > Joint

38. $S \rightarrow a \mid B$

B **→** Bb | €

The non-terminal B is left recursive.

- > True
- > False

39.

YACC contains built-in support for handling ambiguous grammars resulting in conflicts.

- > Shift-reduce
- > Shift-Shift
- > Reduce-reduce
- > Reduce-Shift
- > Segment-directed

43. When constructing an LR(1) parser we record for each item exactly in which context it appears, which resolvesmany conflicts present in_parsers based on FOLLOW sets.

- > SLR(1)
- > LRS(1)
- > RLS(1)
- > SLL(1)

44. Code generation module has to tackle____

- > Memory management
- > Instruction selection
- > Instruction scheduling
- > All of the given PG # 129

45. For convenience, lexical analyzers should read the complete_program into memory.

- > Input
- ➤ Output
- ➤ Input and output
- > Tokens
- 40. Considering the following grammar:

$$S \rightarrow A \mid x$$

$$A \rightarrow aAb \mid x$$

The grammar contains a __conflict.

- > Reduce-reduce
- > First-first
- > Shift-shift
- > Shift-reduce
- 41. SLR (1) parsers only reduce a production rule when the current input token is an element of the FOLLOW set ofthat rule.

$$S \rightarrow AB$$

$$A \rightarrow b \mid bB$$

- FOLLOW (A) contains 2 elements.
- > True
- > False
- 42. SLR (1) parsers only reduce a production rule when the current input token is an element of the FOLLOW set ofthat rule.

$$S \rightarrow AB$$

$$A \rightarrow a \mid aA$$

- FOLLOW (A) contains 2 elements.
- True
- > False

AL-JUNA	ID TECH I	NSTITUTE
43.		The order in which the
DAG is traversed c	an lead to	code
	➤ Better PG # 143	
	> Worse	
	➤ Large	
*T	➤ Garbage	Th-
44.	ITICII	Register allocation
problem uses the st		TIN DI
11/1/		<mark>G # 144</mark>
	Graph nodding	1 /2
	> Graph edging	3 / X
	> Graph patching	
	neans programs written i	in high-level languages to
ow-level	A L	
Object code	PG # 06	
> Byted code		
> Unicode		
Object code and	byte code	_
45.		In
*	s, Hierarchical analysis i	is also called
> Parsing		
Syntax analysis.		
Parsing and synt		
None of the give	en , , , , , , , , , , , , , , , , , , ,	
46.		J J J IR
(Intermediate Repr	esentation) stores the val	lue of its operand in
> Registers	PG # 10	(0)
> Memory	Viila - ho	Ip.Cc
> Hard disk	umsne	
None of the	given	
47	-	

exeme is a sequence of characters in the source program that is matched by the pattern for a.

> Linker

AL-	JUNAID TECH INSTITUTE
	> Token
	> Control flow
	> None of the given
48.	Parsers take as input from lexical analyzer.
	➤ Linker
	> Token
	> Instruction
	> None of the given
49.	What kind of abstract machine can recognize strings in a regular
set?	
	> <mark>DFA</mark>
11	> NFA
	> PDA
	None of the given
3 In DEA	A minimization, we construct onefor each group of states from
ie initial I	
io iiiitiai i	
	> State PG # 30
	> NFA
	> PDA Name of the given
50.	None of the given (I evice! Analyzer generator) is written in ieve
30.	(Lexical Analyzer generator), is written in java. > Flex
	the state of the s
	> Jlex PG # 31
	> Complex
	> None of the given
51.	In Flex
spec	ification file, different sections are separated by
	> %% PG # 31
	> &&
	> ##
	> None of the given
52.	Recursiveparsing is done for LL(1) grammar.

Decent

> Ascent

>	Forward
>	None of the given
56. Alterna	ative of the backtrack in parser is Look ahead symbol in
	> Input
	> Output
	> Input and output
	> None of the given
53.	Parser takes tokens
fror	n scanner and tries to generate
47	> Binary search tree
1	> Parse tree
10	Binary search tree and parse tree.
10	> None of the given
54.	In predictive parsing
tabl	e, the rows represents
7	> Terminals
	> Both non-terminal and terminal
	➤ Non-terminal PG # 62
	> None of the given
55.	A predictive parser is a top-down parser.
	> True
	> False
56.	In LL(1) parsing algorithm,
con	tains a sequence of grammar symbols.
	> Stack PG # 62
	 Stack PG # 62 Link list Array None of the given Bottom-up parsing uses only kinds
	> Array
	> None of the given
57.	Bottom up parsing uses onlykmas
of a	ections.
	> Two PG # 71
	> Three
	> Four
	> Five

58.	Bottom-up parsers handle a_class			
gramm	nar.			
>	Large PG # 49			
>	Small			
>	Medium			
>	None of the given			
59.	The shift action a terminal on the stack.			
>	Pushes PG # 73			
>	Pops			
>	Both push and pops			
	None of the given			
60.	Reduce action_zero or more symbols from the			
stack.				
	Pushes			
	Pops PG # 73			
	Both push and pops			
	None of the given			
61.	In compilers, linear analysis is			
	Lexical analysis			
>				
>	Lexical analysis and scanning			
>	None of the given			
62.	Back End of two-pass compiler			
uses	algorithm.			
>	O(n)			
>	$O(n \log n)$			
>	NP Complete Complete			
>	O(n) O(n log n) NP Complete None of the given			
63.	The Back End of a compiler			
consist	t of			
>	Instruction selection			
>	Register allocation			

- > Instruction scheduling
- > All of the given

64. In

Back End module of compiler, optimal register allocation uses .

- \rightarrow O(log n)
- \rightarrow O(n log n)
- NP-CompleteNone of the given

65.

lexeme is a sequence of characters in the source program that is matched by the pattern for a.

- > Linker
- > Token
- Control flow
- > None of the given
- is a regular expression for the set of all strings over the alphabets {a} that has an even number of a's.
 - > <mark>aa*</mark>
 - > (aa)*
 - > aa*a
 - > a(aa)*
- algorithm is used in DFA minimization. 67.
 - > James's
 - > Robert's
 - PG # 25 > Hopcroft's
 - > None of the given
- is an important component of semantic analysis. 68.
 - > Code checking
 - > Type checking
 - > Flush checking
 - > None of the given
- In, certain checks are performed to ensure that components of 69. a program fit together meaningfully.
 - > Linear analysis
 - > Hierarchical analysis
 - > Semantic analysis

HINAID TECH INCTITUTE

AL-JUNAID IECH INSIIIUIE
> None of the given
70read the input character and produce sequence of tokens as
output.
Lexical analyzer
> Parser
Symbol table
None of the given
71of a two-pass compiler is consist of instruction
selection, Register allocation and instructionscheduling.
> Backend
> Frontend
> Start
None of the given
72is evaluated to yield a value. > Command
> Expression
> Declaration
> None of the given
73. A parser transforms a stream of tokens into an AST (Abstract Syntax Tree).
➤ True
> false
74. A parser transforms a stream of characters into a stream of tokens.
> True
> False (12) U 5 U 4 - 1 0 5 9 2 9 4
75. A lexical analyzer transforms a stream of characters into a stream of
tokens.
 True False
76. S → a A
$A \rightarrow Aa \mid a$
This grammar is ambiguous.

> True > False

- 77. The regular expressions (a+|b)? and a+|b? describe the same set of strings.
 - True
 - > False
- 78. The regular expressions a*|b* and (a|b)* describe the same set of strings.
 - > True
 - > False
- 79. The regular expressions a+a and a*aa describe the same set of strings.
 - > True
 - > False
- 80. A lexical analyzer *generator* automatically construct a FSA (Finite State Automaton) that recognizes tokens. The generator is driven by a regular description
 - > True
 - > False
- 81. The transition table in a lexical analyzer records for each state (row) which token, if any, is recognized in that state. For each token there may be more than one "recognizing" row in the table.
 - > True
 - > False
- 82. A recursive descent parser is based on a PDA (Push Down Automaton).
 - > True
 - > False
- 83. A bottom-up parser creates the nodes in the AST in pre-order.
 - > True
 - > False
- 84. A top-down parser creates the nodes in the AST (Abstract Syntax Tree) in preorder.
 - > True
 - > False
- 85. A______parser creates the nodes in the AST in preorder.
 - > Top Down
 - \triangleright Bottom Up

- ➤ Middle Ware
- > Straight
- 86. The stack used in a bottom-up parser contains an alternating sequence of states and grammar symbols.
 - **True**
 - > False
 - The following two items 87.

 $A \rightarrow P \cdot O$

 $A \rightarrow PQ$

Can coexist in an LR item set.

- True
- False
- 88. The Following two Items

 $A \rightarrow x \cdot B$

 $B \rightarrow v$

Can coexist in an LR item set.

- > True
- > False
- The Following two Items 89.

 $B \rightarrow P \cdot P$

 $B \rightarrow Q \cdot Q$

Can coexist in an LR item set.

- > True
- > False

 $A \rightarrow aAb \mid x$

This is an LALR(1) grammar.

- > True
- > False
- 91. A linker combines multiple object files into a single executable object.
 - > True
 - > False
- 92. Data-flow equations can be solved efficiently by using bitwise boolean instructions (AND, OR, etc.).

- > True
- > False
- 93. Data-flow equations operate with IN, OUT, GEN, and KILL sets.
 - > True
 - > False
- 94. When threading an AST it might be necessary to introduce additional (join) nodes to ensure that each languageconstruct has a single exit point.
 - > True
 - > False
 - 95. An iterative interpreter operates on a threaded AST.
 - > True
 - > False
- 96. $S \rightarrow A \mid B$

A **→** € | aA

 $B \rightarrow b \mid bB$

FIRST(S) contains elements.

- > 2
- > 3
- > 4
- > None
- 97. The following set

$$S \rightarrow A \times \{\$\}$$

$$A \rightarrow \bullet a \{x\}$$

$$A \rightarrow \bullet aA \{x\}$$

is a valid LR(1) item set

- > True
- > False
- 98. S → Ab
 - A **→** Aa | €
 - > True
 - > False
- 99. The regular expressions a(b|c) and ab|ac describe the same set of strings.
 - > True

> False $100.S \rightarrow a \mid B$ $B \rightarrow Bb \mid E$ The non-terminal is left recursive. B a None of the given 101. In PASCAL_____ represent the inequality test. > None of the given 102. In parser the two LL stand(s) for_ > Left-to-right scan of input > left-most derivation > All of the given > None of the given 103. Consider the grammar $A \rightarrow B C D$ $B \rightarrow h B \mid epsilon$ $C \rightarrow C g | g | C h | i$ $D \rightarrow AB \mid epsilon$ First of C is g > h, i 104. Three-address codes are often implemented as a . . > Set of quadruples PG # 104 > Set of doubles > Set of Singles > None of the given

105. What does following statement represent? x[i] = y

- > Prefix assignment
- > Postfix assignment
- indexed assignment PG #107
- > None of the given
- 106. ____convert the reloadable machine code into absolute machine code by linking library and reloadable objectfiles.
 - > Assembler
 - Loader/link-editor
 - > Compiler
 - > Preprocessor
 - 107. Consider the following grammar,

$$A \rightarrow B C D$$
 $B \rightarrow h B \mid epsilon$
 $C \rightarrow C g \mid g \mid C h \mid i$
 $D \rightarrow AB \mid epsilon$
First of A is _____.

- \rightarrow h, g, i
- \triangleright g
- > h
- None of the given
- 108. One of the core tasks of compiler is to generate fast and compact executable code.
 - > True
- PG # 14
- > False
- 109. Compilers are sometimes classified as.
 - Single pass
 - Multi pass
 - ➤ Load and go
 - All of the given
- 110. In multi pass compiler during the first pass it gathers information about
 - Declaration

Al	L-JUNAID TECH INSTITUTE
>	Bindings
>	Static information
>	None of the given
111.	. We can get an LL(1) grammar by
> >	Removing left recurrence Applying left factoring
>	Removing left recurrence and Applying left factoring
>	None of the given
A	Consider the following grammar, S> aTUe T> Tbc/b U> d nd suppose that string "abbcde" can be parsedbottom-up by the sllowing reduction steps: (i) aTbcde (ii) aTde (iii) aTUe (iv) S So, what can be a handle from the following?
>	The whole string, (aTUe) PG # 68
>	The whole string, (aTbcde)

113. When generating a lexical analyzer from a token description, the item sets (states) are constructed by two typesof "moves": character

moves.

114. Which of the following statement is true about Two pass compiler.

The whole string, (aTde)

None of the given

E (empty string)

> Front End depends upon Back End

moves and

> none of given

(a)

AL-JUNAID IECH INSIIIUI
Back End depends upon Frond End PG # 5
> Both are independent of each other
None of the given
115. avoid hardware stalls and interlocks.Register allocation
 Instruction scheduling PG #10 Instruction selection
 None of given 116. Front end of two pass compiler takesas input.
Source code PG # 5
> Intermediate Representation (IR)
> Machine Code
> None of the Given
117. In Three-pass compileris used for code improvement or optimization.Front End
➤ Middle End PG # 10
➤ Back End
> Both Front end and Back end
of a two-pass compiler is consists of
Instruction selection, Register allocation and Instruction scheduling.
Back endPG # 9
> Front end
> Back end PG # 9 > Front end > Start > None of given
 None of given 119. NFA is easy to implement as compared to DFA. True
False PG # 19
120 In a transition table cells of the table contain the state

- > Reject state
- Next state PG #18
- Previous state
- > None of the given
- 121. The regular expressions a*|b* and (a|b)* describe the ____set of strings.
 - Same
 - Different
 - Onto
- 122. A canonical collection of sets of items for an augmented grammar, C is constructed as
 - For each set / in C and each grammar symbol X where goto (C, X) is empty and not in C add the set goto (C, X)to C.
 - The first set in C is the closure of $\{[S' --> .S]\}$, where S' is starting symbol of original grammar and S is the starting nonterminal of augmented grammar.
 - The first set in C is the closure of $\{[S' --> .S]\}$, where S is starting symbol of original grammar and S' is the Starting nonterminal of original grammar.
- translation statements can be conveniently specified in 123. The YACC
 - > Syntax-directed PG # 120 [p.con
 - > Image-directed
 - Sign-directed
 - > None of the given.
- 124. Attributes whose values are defined in terms of a node's own attributes, node's siblings and node's parent arecalled.
 - Inherited attributes PG # 92
 - Physical attributes
 - Logical attributes

<u>AL-JUNAID TECH INSTITUTE</u>

- > Un-synthesized attributes
- 125.Consider the grammar

$$A \rightarrow B C D$$

$$B \rightarrow h B \mid epsilon$$

$$C \rightarrow C g | g | C h | i$$

$$C \rightarrow C g | g | C h | 1$$

 $D \rightarrow AB | epsilon$
is ______.

Follow of B is

- g, h, i, \$

126. Consider the grammar A --> B C D

- $A \rightarrow B C D$
- $B \rightarrow h B \mid epsilon$
- $C \rightarrow C g | g | C h | i$
- $D \rightarrow AB \mid epsilon$

Follow of C is

- > g, h, i, \$ PG # 47
- > g, h, \$
- > h, i, \$
- > h, g, \$
- 127. The test of string is described by a rule called a, associated with token.
 - > Character
 - Loader
 - **Pattern**
 - > None of the given
- 128. Bottom up parsing is also called___
 - LR Parsing

PG # 70

<u>AL-JUNAID TECH INSTITUTE</u>

- > LT Parsing
- > LS Parsing
- > None of the given
- 129. A DFA can be reconstructed from NFA using the subset construction, similar to one used for
 - Lexical Analysis

PG # 82

- > Physical Analysis
- Logical Analysis
- > Parsing
- 130. Which of the following system software resides in the main memory always?
 - > Text editor
 - > Assembler
 - Linker
 - Loader
- 131. plays an important role in code optimization.
 - > DAG

PG # 143

- Lexical Analyzer
- > AGD
- Memory Management
- 132. LR parsers can handle grammars.
 - > Left-recursive PG # 63
 - > file-recursive
 - > End-recursive
 - > Start-recursive
- 133. Performing common sub expression elimination on a dependency graph requires the identification of nodeswith the same operator and operands. When using a hash table (with a hash

function based on operator and operands) all___nodes can be identified in linear time.

	Common
-	Commi

- Uncommon
- > Next
- > Previous
- 134. Linear IRs resembles pseudo-code for same
 - > Automated Machine
 - Mechanical machines
 - > Token machines
 - > Abstract machine PG # 100
- 135. Responsibility of _______is to produce fast and compact code.
- > Instruction selection
- Register allocation
- > Instruction scheduling
- None of given
- 136. Optimal registers allocation is an NP-hard problem.
- > True
- False Page no: 10
- 137. Left factoring of a grammar is done to save the parser from back tracking.
- True Page no:61
- > False
- 138. Recursive ______parsing is done for LL(1) grammar.
- Decent Page no : 47
- > Ascent
- > Forward
- Backward
- 139. If X is a terminal in A--> aX•?, then this transition corresponds to a shift of ____ from input to top of parse stack.

<u>AL-JUNAID TECH INSTITUTE</u>

- $\succ X$
- \triangleright A
- > a
- None of the given
- 140. An ----- does not need to examine the entire stack for a handle, the state symbol on the top of the stack contains all the information it needs.
- LR parser
- > RL parser
- ➤ BU parser
- None of the given
- 141. Suppose? begins with symbol X which may be a terminal (token) or non-terminal. The item can be written as A? Xa•?.
- > True
- > False
- 142. YACC parser generator builds up
- > SLR parsing table
- Canonical LR parsing table
- LALR parsing table
- None of the given
- 143. LR(1) parsing is--- base parsing.
- > DFA
- > CFG
- > PDA
- None of the given
- 144. The LR(1) parsers can not recognize precisely those languages in which one-symbol lookahead suffices to determine whether to shift or reduce.
- > True
- > False
- 145. S --> A | xb A --> aAb | x This grammar contains a reduce-reduce conflict.
- > True False
- 146. Following statement represents: if x relop y goto L
- > abstract jump
- Conditional Jump

- ➤ While Loop
- ➤ None Of Given
- 147. Left factoring is enough to make a grammar LL(1).
 - > True
 - > False
- S --> A B A --> e | aA B --> e | bB FIRST(S) contains 148. elements.

- Grammars with LL(1) conflicts can be made LL(1) by applying leftfactoring, substitution, and left-recursion removal. Left-factoring takes care of conflicts.
 - > FIRST/FIRST
 - > First/SECOND
 - > SECOND/FIRST
 - NONE OF THE GIVEN
- In an attribute grammar each production rule(N--> a) has a 150. corresponding attribute evaluation rule that describes how to compute the values of the attributes of each particular node N in the AST.
 - > Synthesized
 - > Complete
 - > Free
 - Bound
- 1shelp.com When constructing an LR(1) parser we record for each item 151. exactly in which context it appears, which resolves many conflicts present in parsers based on FOLLOW sets.
 - > SLR(1)
 - \triangleright LRS(1
 - > RLS(1)

L-JUNAID TECH INSTITUTE None of the Given Backpatching to translate flow-of-control statements in 152. pass. > one > two > three ➤ all of the given a string to the start symbol by 153. LR parsing inverting productions. Reduce > Shift > Adds ➤ None of the Given phase which supports macro substitution 154. and conditional compilation. > Semantic > Syntax > Preprocessing > None of the Given 155. Parser always gives a tree like structure as output > True

156. Lexer and scanner are two different phases of compiler

children of the node represent the operands.

tree in which each node represents an operator and

> False

> True

> False

> Parse

➤ Abstract Syntax

➤ Concrete Syntax

➤ None of the Given

157.

gr	Register allocation by graph coloring uses a register interference aphnodes in the graph are joined by an edge when the ranges of the values they represent overlap.
11 V	
	Two
	> Three
	> Four
	> Five
159.	In compilation process Hierarchical analysis is also called
1	➤ Parsing
1	> Syntax Analysis
	Both Parsing and Syntax analysis
Y /	None Of the Given
1.00	A 1' -'- P
160.	Ambiguity can easily be handled by Top-down Parser True
	> False
	Praise
161.	Front-end of a two pass compiler is consists of Scanner.
101.	> True
	> False
162.	LL(1) parsing is called non-predictive parsing.
	> True (10) 03 04 165 9 7 9 4 4
	> False
163.	In predictive parsing table the rows are
	Non-Terminal
	> Terminals
	Non-Terminal Terminals Both A and B None of the Given
1.7.4	None of the Given
164.	In LL1() parsing algorithmcontains a sequence of
gr	ammar symbols. Stack
	Link List
	> Array

- ➤ None of the Given
- 165. AST summarizes the grammatical structure with the details of derivations.
 - > True
 - > False
- 166. f X is a non-terminal in A? aX•?, then the interpretation of this transition is more complex because non-terminals do not appear in input
 - > Yes
 - > No
- 167. If / is a set of items for a grammar, then closure (/) is a set of items constructed from / by the following rule.
- If A --> aX.Y is in closure (/) and Y --> r is production, then add X --> r to closure (/).
- ➤ If A --> a.XY is in closure (/) and X --> r is production, then add X --> .r to closure (/).
- ➤ If A --> aXY. is in closure (/) and A --> r is production, then add X --> r to closure (/).
- None of these
- 168. NFA of LR(0) items means
- look-ahead one sybole
- > no look-ahead
- ➤ look-ahead all sybols
- None of the given
- 169. A grammar is LR if a----- shift reduce-reduce parser can recognize handles when they appear on the top of stack.
- ➤ left-to-reverse
- ➤ left-to-rise
- left-to-right
- None of the given.
- 170. The output from the algorithm of constructing the collection of canonical sets of LR(1) items will be the _____
- Original Grammar G
- Augmented grammar G'
- > Parsing table
- None of the given

TE GUITTE TE CIT II TO THE CITE
171. Reduction of a handle to the on the left hand side of the
grammar rule is a step along the reverse of a right most derivation.
> Terminal
> Non-terminal
172. NFA of LR(1) items means
> no look-ahead
> look-ahead one sybole
> look-ahead all sybols
> None of the given
173. performing common subexpression elimination on aa dependncy
graph requires the identification of nodes with the same operator and
operands.when using a hash table (with a hash function based on
operator and operands) allnodes can be identified in linear
time.
common
> uncommon
➤ next
previous
174. Linear IRs resemble pseudo-code for same
Automated Machine
Mechanical machines
> Token machines
> Abstract machine
175. The regular expressions a* b* and (a b)* describe theset of
strings.
Same
> Different USU4-1037274
Onto
176. Back patching to translate flow-of-control statements in
pass.
> one Page no : 111
> two
> three
all of the given
177. Consider the following grammar, S> aTUe T> Tbc/b U> d
And suppose that string "abbcde" can be parsed bottom-up by the
following reduction steps: (i) aTbcde (ii) aTde (iii) aTUe (iv) S So

what can be a handle from the following?

	The	whole	string,	(aTUe)	
--	-----	-------	---------	--------	--

- The whole string, (aTbcde)
- The whole string, (aTde)
- None of the given

178.	Yacc contains	built-in s	support fo	or handling	ambiguous	grammars
result	ing in	_conflict	ts.		VCD	

- > Shift-reduce
- > Shift-Shift
- Shift-second
- None of the given
- The following two items $A \rightarrow P \cdot Q B \rightarrow P \cdot Q$ can co-exist in an 179. item set.
- > LR
- > LS
- > LT
- > PR
- 180. The error handling mechanism of the yacc parser generator pushes the input stream back when inserting 'missing' tokens.
- > True
- > False
- Flow of values used to calculate synthesized attributes in the 181. parse tree is:
- **Bottom-up**
- Right to left
- > Top-Down
- ➤ Left to right
- A lexical analyzer transforms a stream of tokens. The tokens are 182. stored into symbol table for further processing by the parser.
- > True
- > False
- LR parsers can handle _____ grammars.
- Left-recursive Page no: 163
- ➤ file-recursive
- > End-recursive

<u>AL-JUNAID TECH INSTITUTE</u>

- > Start-recursive
- 184. For each language to make LL(1) grammar, we take two steps, 1st is removing left recurrence and 2nd is applying fin sequence.
- > True
- > False
- 185. Can a DFA simulate NFA?
- > Yes
- > No
- Sometimes
- > Depend upon nfa
- 186. Which of the statement is true about Regular Languages?
- Regular Languages are the most popular for specifying tokens.
- Regular Languages are based on simple and useful theory.
- Regular Languages are easy to understand.
- All of the given
- 187. The transition graph for an NFA that recognizes the language (a | b)*abb will have following set of states.
- **>** {0}
- **>** {0,1}
- **>** {0,1,2}
- **▶** {0,1,2,3}

not sure

- 188. Functions of Lexical analyzer are?
- > Removing white space
- Removing constants, identifiers and keywords
- > Removing comments
- ➤ All of the given
- 189. Consider the following grammar, S --> aTUe T --> Tbc/b U --> d And suppose that string "abbcde" can be parsed bottom-up by the following reduction steps: (i) aTbcde (ii) aTde (iii) aTUe (iv) S So, what can be a handle from the following?
- The whole string, (aTUe) Page no: 68
- ➤ The whole string, (aTbcde)
- ➤ The whole string, (aTde)
- None of the given
- 190. The LR(1) items are used as the states of a finite automaton (FA) that maintains information about the parsing stack and progress of a shift-reduce parser.

- > True Page no: 74 > False Flex is an automated tool that is used to get the minimized DFA 191. (scanner).
 - > True > False
 - We use ---- to mark the bottom of the stack and also the right 192. end of the input when considering the Stack implementation of Shift-Reduce Parsing.
- > Epsilon
- > #
- None of the given
- When generating a lexical analyzer from a token description, the 193. item sets (states) are constructed by two types of "moves": character moves and moves.
- E (empty string) Page no: 18
- > #
- > (a)
- > none of given
- Let a grammar G = (Vn, Vt, P, S) is modified by adding a unit 194. production S'--> S to the grammar and now starting non-terminals becomes S' and grammar becomes $G' = (Vn \cup \{S'\}, Vt, PU\{S' --> S\}, Vt, PU\{S' --> S\}$ S'). The Grammar G' is called the -----
- Augmented Grammar Page no: 76
- Lesser Grammar
- Anonymous Grammar
- 195. Parser takes tokens from scanner and tries to generate
 - ➤ Binary Search Tree
 - > Parse Tree
 - > Syntax Trace
 - None of the Given
 - In Flex specification file different sections are separated by 196.
 - > %% Page no: 26

\mathbf{A}	L-	JUNAID TECH INST	TTUTE
		&&	
		##	
	\triangleright	\\	
19′	7. In	DFA minimization we construct one	for each
	group	o of states from the initial DFA.	
	>	State Page no: 25	
		PDA	On
		N CC:	STIN
	4 1	None of Given	1/7
1.0			
198	8. In	termediate Representation (IR) stores the value	of its operand in
11			
P.Y		Registers	(Y
K.		Memory	
7 /	>	Hard Disk	
	>	Secondary Storage	
199. Ii			omponents of a
		together meaningfully.	
		r analysis	
		rchical analysis ntic analysis Page no: 33	
	None		
,	. (0110	N (3) 03 04 - 1659 292	
199	9.	Ais a top down parser.	-11
>	Predi	Ais a top down parser. ctive Parsing tive parser ctive parser of the given	01/
	React	rive parser	
		tive parser	
		of the given	• • • • •
200		Lexical Analyzer generator	is written in
<i>P</i> .	Java. Flex		
		Page no: 26	
	Comp		
	1		

TE COLUMN TECHNICATION
➤ None of given
201avoid hardware stalls and interlocks.
Register allocation
Instruction scheduling
> Instruction selection
None of given
202. Recursiveparsing is done for LL(1) grammar. > Decent
> Ascent
> Forward
➤ Backward
203. NFA of LR(1) items means
> no look-ahead
➤ look-ahead all symbols
> None
204. In the Parsing Table, the rows correspond to Parsing DFA states
and columns correspond to
➤ Terminals and Non-terminals
> Start Symbol and its derivation
➤ Handles and derivations
> None
205. A grammar is LR if a shift reduce-reduce parser can recognize
handles when they appear on the top of the stack
➤ left-to-reverse
➤ left-to-rise
 ▶ left-to-reverse ▶ left-to-rise ▶ left-to-right ▶ None
> None
206. Suppose? begins with symbol X which may be a terminal (token)
or non-terminal. The item can be written as A?Xa.?
> True
> False

<u>AL-JUNAID TECH INSTITUTE</u>

- 207. A handle is a substring that matches a____ side of production rule in the grammar.
 - right hand
 - > left hand
- 208. If T->XYZ is a production of grammar G then which of the following item indicates that a string derivable from X has been seen so far on the input and we hope to see a string derivable from YZ next on the input.
 - ➤ T->.XYZ
 - \rightarrow T->X.YZ
 - > T->XY.Z
 - ➤ T->XYZ.
- 209. In the canonical collection procedure, a DFA can not be constructed from NFA using the subset construction, similar to the one we used for lexical analysis.
 - > True
 - > False
- 210. Suppose ? begins with symbol X which may be a terminal (token) or non-terminal. The item can be written as ____
 - ➤ A?a.X?
 - ➤ **A?Xa.?**
 - > A?X?.
 - ➤ X?Aa.?
- 0304-1659294
- 211. If / is a set of items for grammar then closure(/) is a set of items constructed from / by the following rule.
 - Every item in / is in closure(/)
 - > Every item in / is not in closure(/)
 - ➤ Only one item in / is in closure(/)
 - None
- 212. NFA of LR(0) items means____
 - no look ahead symbol

- look ahead one symbol
- ➤ look ahead all symbols
- ➤ All of the given

