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This paper explores the effectiveness of the recently developed surrogate modeling method, the Adaptive Hybrid

Functions, when applied in conjunction with different sampling techniques and different sample sizes. The Adaptive

Hybrid Functions is a hybrid surrogate modeling method that seeks to exploit the advantages of each component

surrogate. To explore its effectiveness, the Adaptive Hybrid Functions is applied to model four disparate complex

engineering systems, namely: 1) wind farm power generation, 2) product platform planning (for universal electric

motors), 3) three-pane window heat transfer, and 4) onshore wind farm cost estimation. The effectiveness of the

following three distinct sampling techniques is investigated: 1) Latin hypercube sampling, 2) Sobol’s quasi-random

sequence, and3) theHammersley sequence sampling.Cross-validation is used to evaluate the accuracyof the resulting

surrogate models. It was observed that the Sobol’s sequence and the Latin hypercube sampling techniques provided

better accuracy in the case of high-dimensional problems, whereas the Hammersley sequence sampling technique

performed better in the case of low-dimensional problems. It was further observed that a monotonic increase in

modeling accuracy is not necessarily accomplished by simply increasing the sample size for different problems.

Overall, the Adaptive Hybrid Functions provided acceptable to high accuracy in representing complex system

behavior.

Nomenclature

CDi = crowding distance of the ith point on the base model
Ct = total annual cost of a wind farm per kilowatt installed
Δx10 = full width at one-tenth maximum
di = adaptive distance between the ith corresponding point

on the boundary and the base model
~fAHF = function value estimated by Adaptive Hybrid Functions

~ferbf
= function value estimated by extended radial basis

functions
~fkri = function value estimated by Kriging

~fqrsm
= function value estimated by quadratic response surface

method
~frbf = function value estimated by radial basis functions
ηfarm = farm efficiency

λikj = commonality constraint

ndim = number of variables
nint = number of integer variables
nt = number of test points
Pfarm = power generated by a wind farm
Pi�x� = measure of accuracy of the ith surrogate at point x
_Qw = the heat flux through the inner pane

ρ = local density of input data
wi = weight of the ith component surrogate in the hybrid

surrogate

I. Introduction

C OMPLEX systems, such as human bodies, aerospace systems,
energy systems, and wireless networking generally tend to be

highly interdisciplinary. Understanding, designing, building, and
controlling these complex systems remain a central challenge in
academia and industry [1]. The determination of complex underlying
relationships between system parameters from a limited number of
simulated and/or recorded data can be accomplished using advanced
interpolating/approximating functions, also known as surrogates.
Engineering design systems often present varying levels and nature
of complexities over the domain under consideration. These
complexities may entail high nonlinearities, function discontinuity,
and a regional scarcity of data. Hybrid surrogate models can
provide a powerful solution to such systems. In the hybrid surrogate
modeling paradigm, characteristically differing surrogate models are
intelligently aggregated to offer a robust modeling solution.
Since 1990, advances in function estimation methods and

approximation-based optimization have progressed remarkably.
Surrogate models are extensively used in the analysis and optimiza-
tion of computationally expensive simulation-based models.
Surrogate modeling techniques have been used for a variety of
applications in multidisciplinary design optimization to reduce the
analysis time and to improve the tractability of complex analysis
codes [2,3]. Surrogate modeling has been shown to be an effective
approach in the development of aerospace systems, which often
involves finite element analysis, computational fluid dynamics
(CFD), and other computationally intensive analyses. For instance,
surrogatemodeling has been applied to airfoil shape optimization [4],
wing box design [5], and diffuser shape optimization [6].
The literature offers a wide variety of surrogate modeling

techniques, including: 1) polynomial response surface method [7],
2) Kriging [8,9], 3) radial basis functions (RBF) [10], 4) extended
radial basis functions (E-RBF) [11,12], 5) artificial neural networks
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[13], 6) support vector regression (SVR) [14,15], and 7) hybrid
surrogate modeling methods [16–19]. Table 1 provides a list of
standard sampling techniques, surrogate modeling methods, and
function-coefficient estimation methods, which extends the
preexisting work in Ref. [13].
More recently, researchers have presented the development of a

combination of different approximate models into a single hybrid
model for developing weighted-average surrogates [16,17,20–24].
Zerpa et al. [16] showed one application using an ensemble of
surrogate models to construct a weighted-average surrogate for the
optimization of alkaline–surfactant–polymer flooding processes.
They found that the weighted average surrogate provided better
performance than individual surrogates. Goel et al. [17] combined
three surrogate models (polynomial response surface, Kriging, and
radial basis neural network), and used the generalized mean square

cross-validation error of individual surrogate models to select
appropriate weight factors. Acar and Rais-Rohani [21] treated the
selection of weight factors in the general weighted-sum formulation
of an ensemble as an optimization problem with the objective to
minimize an error metric. The results showed that the optimized
ensemble provided more accurate predictions than the stand-alone
surrogate models. Acar [23] investigated the efficiency of using
various local error measures for constructing an ensemble of
surrogate models, and also presented the use of the pointwise cross-
validation error as a local error measure. Zhou et al. [24] used a
recursive process to obtain the values of weights in which the values
of surrogate weights are updated in each iteration until the last
ensemble achieves a desirable prediction accuracy. Zhang et al. [18]
developed a high-fidelity surrogate modeling technique, the
Adaptive Hybrid Functions (AHF), by adaptively combining the
favorable characteristics of different surrogate models. In this paper,
we are extending the work on AHF by investigating 1) its
applicability to engineering design systems and 2) its performance
variations with the type of sampling technique and sample size.
Complex engineering systems, which can be highly nonlinear and

computationally expensive, present significant challenges to accurate
representation through surrogate modeling. At the same time, the
choice of appropriate sampling techniques is generally considered
critical to the performance of any surrogate modeling approach. It
would be helpful to investigate the effectiveness of a surrogate model
through complex system modeling in conjunction with distinct
sampling techniques.
The recently developed hybrid surrogate modeling method, the

AHF, combines the component surrogate models by characterizing
and evaluating the localmeasure of accuracy of each model. A novel
crowding distance-based trust region (CD-TR) was proposed to
capture both the global trend and the local variations of the system
behavior. The weights of the component surrogates are adaptively
selected based on the measure of accuracy of each surrogate in the
trust region. This paper explores the original AHFmethodology by 1)
applying the AHF to complex engineered systems design and
economic system design problems; 2) implementing three represen-
tative sampling techniques: Latin hypercube sampling (LHS),
Sobol’s quasi-random sequence, and the Hammersley sequence
sampling (HSS); and 3) investigating the effects of sample size and
problem dimensionality on the accuracy of the surrogate model.

The remainder of this paper is organized as follows: Sec. II briefly
introduces the AHF methodology; Secs. III and IV respectively
present the formulations of the complex problems and the
experimental design strategy; and the results of the AHF surrogate
modeling are discussed in Sec. V.

II. Adaptive Hybrid Functions

The AHF methodology was recently developed by Zhang et al.
[18,25]. The AHF formulates a trust region based on the density of
available sample points, and adaptively combines characteristically
differing surrogate models. The weight of each contributing
surrogate model is represented as a function of the input domain
based on a local measure of accuracy for that surrogate model. Such
an approach exploits the advantages of each component surrogate,
thereby, capturing both the global and the local trends of complex
functional relationships. In this paper, the AHF combines the three
component surrogate models, 1) RBF, 2) E-RBF, and 3) Kriging, by
characterizing and evaluating the local measure of accuracy of each
model. The key components of the hybrid surrogate modeling
methodology include: 1) generation of the component surrogates
(RBF, E-RBF, and Kriging in this paper); 2) determination of a CD-
TR: numerical bounds of the estimated parameter (output) as a
function of the independent parameters (input vector) over the
feasible input space (Fig. 1, step A.2); 3) characterization of the local
measures of accuracy (using kernel functions) of the estimated
function value, and the representation of the corresponding kernel
function parameters as functions of the input vector (Fig. 1, stepA.3);
and 4) weighted aggregation of the function values estimated by the
individual surrogates, based on their local measures of accuracy.
The key components of the training process of the AHF are

illustrated in Fig. 1 and discussed in the following sections.

A. Generation of Component Surrogates

Different interpolating surrogate models (component surrogates)
are constructed. The selected component surrogate models are
intended to be locally accurate, with greater accuracy in the region
close to the training points. Three component surrogates are

Fig. 1 The framework of the AHF surrogate model [18].

Table 1 Techniques for response surface development

Sampling/design of experiments Surrogate modeling Coefficient estimation

(Fractional) factorial Polynomial (linear, quadratic) Least-squares regression
Central composite Splines (linear, cubic) Best weighted least-squares regression
Latin hypercube Kriging Best linear predictor
Hammersley sequence RBF Log likelihood
Uniform designs Extended RBF Multipoint approximation
Sobol’s sequence SVR Adaptive response surface
Random selection Neural network Back propagation
Box–Behnken Hybrid models Entropy
Plackett–Burman Linear unbiased predictor
Orthogonal arrays

644 ZHANG ETAL.

D
ow

nl
oa

de
d 

by
 S

Y
R

A
C

U
SE

 U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n 

Fe
br

ua
ry

 1
9,

 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
20

08
 



constructed based on the set of training pointsD using Kriging, RBF,
and E-RBF. We can also integrate other standard surrogates that are
locally accurate. For each test point, the estimated function vector is
represented as ~f � f ~fkri ~frbf ~ferbfg. The parameters ~fkri, ~frbf , and
~ferbf represent functionvalues estimated by theKriging, theRBF, and
the E-RBF methods, respectively.
The three component surrogates are expected to offer different

levels of numerical fidelity and tractability. In general, Kriging
models are more accurate for nonlinear problems [3]. The RBF
approach can accurately model scattered multivariate data. The RBF
method is also generally easier to construct compared to Kriging
[2,11] because the parameters in Kriging are typically determined
through suboptimization (via maximum likelihood estimation or
cross-validation). The E-RBF approach provides additional degrees
of freedom compared to RBF, in order to ensure certain desirable
properties, such as nonlinearity and convexity. However, E-RBF
involves a significantly larger number of parameters compared
to RBF.

1. Kriging

The general form of the Kriging surrogate model is given
in [26]

~f�x� � G�x� � Z�x� (1)

where ~f�x� is the unknown function of interest, G�x� is the known
approximation (usually polynomial) function, and Z�x� is the
realization of a stochastic process with a zero mean and a nonzero
covariance. The �i; j�th element of the covariance matrix of Z�x� is
given as

COV�Z�xi�; Z�xj�� � σ2zRij (2)

where Rij is the correlation function between the ith and the jth data
points, and σ2z is the process variance. In the present paper, aGaussian
function is used as the correlation function, defined as

R�xi; xj� � Rij � expf−Σndk�1θk�xik − x
j
k�

2g (3)

where θk is distinct for each dimension, and these unknown
parameters are generally estimated by solving a nonlinear
optimization problem. In this paper, we use an efficient MATLAB
implementation of the Kriging surrogate, the design and analysis of
computer experiments, developed by Lophaven et al. [27]. The order
of the global polynomial trend function is specified to be zero in
this paper.

2. Radial Basis Functions

RBFs are expressed in terms of the Euclidean distance, r ���x − xi��, of a point x from a given data point xi. The multiquadric

function [10,28] is adopted in this paper, which is defined as

ψ�r� �
����������������
r2 � c2

p
(4)

where c > 0 is a prescribed real valued parameter. The final
approximation function is a linear combination of these basis
functions across all the data points, as given by

~f�x� �
Xnp
i�1

σiψ
���x − xi��� (5)

where σ;is are the unknown coefficients (to be determined), and np
denotes the number of training points.

3. Extended Radial Basis Functions

The E-RBF [11] approach uses a combination of the radial and the
nonradial basis functions (N-RBFs). The N-RBFs are not functions
of the Euclidean distance, r. Instead, they are functions of individual

coordinates of generic points x relative to a givendata point xi, in each
dimension separately.We define the coordinate vector as ξi � x − xi,
which is a vector of nd elements, each corresponding to a single
coordinate dimension. Thus, ξij is the coordinate of any point x
relative to the data point xi along the jth dimension. The N-RBF for
the ith data point and the jth dimension is denoted by ϕij. It is
composed of three distinct components, as given by

ϕij�ξij� � αLijϕ
L�ξij� � αRijϕ

R�ξij� � βijϕ
β�ξij� (6)

where αLij, α
R
ij, and βij are coefficients to be determined for the given

problem. The E-RBF approach presents a linear combination of RBF
and N-RBF. The approximation function takes the form

~f�x� �
Xnp
i�1

σiψ

�����x − xi
����
�
�
Xnp
i�1

Xnd
j�1
fαLijϕL�ξij�

� αRijϕ
R�ξij� � βijϕ

β�ξij�g (7)

where ϕL, ϕR, and ϕβ are components of the N-RBF. The vectors αL,
αR, and β, defined above, contain ndnp elements each, and the vector
σ contains np coefficients.

B. Crowding Distance-Based Trust Region

The CD-TR is formulated using the following two-step procedure:
1) the determination of the base model using smooth functions and
2) the formulation of trust region boundaries.

1. Determination of Base Model

The base model is developed using smooth functions to obtain a
global approximation for the given set of points,D. This base model
is intended to capture the global trend of the training points, thereby,
addressing the global accuracy for the overall surrogate. This
research constructs the base model using the quadratic response
surface method (QRSM). The coefficients of the QRSM are
determined using the least-squares method. However, the basemodel
also has the flexibility to use other smooth functions (regression
functions).

2. Formulation of Trust Region Boundaries

In this step, a trust region is formulated for surrogate modeling
based on the density of sample points, which we call the CD-TR. A
set of points are selected on the base model, and the crowding
distance is evaluated for each point. The trust region boundaries of the
surrogate model are adaptively constructed according to the base
model and the estimated crowding distances of the training points.
The basemodel is relaxed along either directions of the output axis to
obtain the boundaries of the surrogate.
Crowding distance is used to evaluate the density of training points

surrounding any point on the base model. A larger crowding distance
value at a point reflects a lower sample density (fewer points around
that point), and themeasure of accuracy of a surrogate is expected to
be relatively lower around that point. Therefore, we need wider
boundaries at that point. Based on the crowding distancevalue at each
point on the basemodel, we construct adaptive boundaries of the CD-
TR. In this paper, the crowding distance of the ith point on the base
model (CDi) is evaluated by

CDi �
Xnp
j�1

���xj − xi���2 (8)

where np is the number of training points used. A parameter ρ is
defined to represent the local density of input data, which is given by

ρi � 1

CDi
(9)

The parameter, ρ, is then normalized to obtain α;is, as given by
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αi �
max�ρ� − ρi

max�ρ� −min�ρ� (10)

The adaptive distance di between the ith corresponding point on the
boundary and the base model along either directions of the output
axis is expressed as

di � �1� αi� ×max
j∈D
j ~fqrsm�xj� − yjj (11)

where D represents the original training data set. In Eq. (11), the
index, j, represents training points, and the index, i, represents a
uniform set of points selected on the base model. In Eq. (11), the
adaptive distance is divided into two parts:
1) maxj∈Dj ~fqrsm�xj� − yjj is a constant that ensures that all of the

training points are located between the boundaries.
2)αi ×maxj∈Dj ~fqrsm�xj� − yjj is an adaptive distance based on the

distance coefficients (α;is).
Crowding distance is evaluated with respect to each of the selected

points based on which α is previously formulated. The extent of the
boundary region is scaled using the maximum of the training data
deviation from the base model. Here, ~fqrsm�xj� is the output value of
the jth training point estimated by QRSM and j ~fqrsm�xj� − yjj is the
distance from the jth training point to the base model along the
direction of the output axis. Subsequently, we obtain two sets of
points, DU and DL, for constructing the two boundaries. QRSM is
adopted to estimate the upper and the lower boundary surfaces, using
the generated data pointsDU andDL, respectively. The probabilities
associated with individual component surrogates are determined
within these trust region boundaries.
The use of crowding distance for evaluating the density of training

points can be modified and adopted by other surrogate modeling
techniques. For othermethods on ensemble of surrogates, researchers
can also use the idea of trust regions based on local error measures,
such as prediction variance [16] or pointwise cross-validation
error [23].

C. Accuracy Measure of Surrogate Modeling

With the CD-TR, it is important to be able to determine the
measure of accuracy of the estimated function value at any given
point in the trust region. Based on the value of the measure of
accuracy, we can adaptively combine different component surrogate
models. A metric is developed, which we call the accuracy measure
of surrogate modeling, to represent the uncertainty in the estimated
function value.
Function estimation is performed between the two boundary

surfaces, using a local measure of accuracy technique. The
uncertainty in the estimated function value at a location in the input
variable domain is modeled using a kernel function. This kernel
function is expressed as a function of the output parameter. The
corresponding coefficients of the kernel function are represented as
functions of the input vector, thereby, characterizing the measure of
accuracy of the estimated function over the entire input domain.
The kernel function used to represent the measure of accuracy

must have the following properties:
1) The kernel function value must be a maximum of one at the

actual output, y�xi�.
2) The kernel function must be equal to the specified small

tolerance value at the upper and the lower boundaries of the trust
region.
3) The functionmust increasemonotonically from either boundary

to the actual output value.
4) The function must be continuous.
The following kernel function is adopted for use in representing

the measure of accuracy. This kernel function, which satisfies the
specified requirements, is expressed as

P�z� � a exp

�
−
�z − μ�2
2σ2

�
(12)

where the amplitude coefficient a is specified as one; the coefficients
μ and σ represent the mean and the standard deviation of the kernel

function, respectively. Note that other kernel functions that have
similar properties can also be used to represent the measure of
accuracy.
The distance between the two boundaries is normalized. At each

training data point, xi, the output value at the lower and upper
boundaries, fiL�xi�, and fiU�xi�, respectively, are also normalized. It
is assumed that the estimated measure of accuracy (kernel function)
is a maximum of 1 at the actual output value y�xi�, and aminimum of
0.1 at the boundaries (within the trust region). The actual output value
of a training point does not necessarily occur midway between the
two boundaries. To ensure the continuity of the kernel function, the
function is divided into two parts, with distinct standard deviations
and the same mean. Then, the kernel function is represented as

P�xi� �

8>><
>>:
a exp

	
− �y�x

i�−μ�xi��2
2σ2

1
�xi�



if 0 ≤ y�Xi� < μ�Xi�

a exp

	
− �y�x

i�−μ�xi��2
2σ2

2
�xi�



if μ�Xi� ≤ y�Xi� ≤ 1

(13)

where the parameters σ1 and σ2, controlled by the full width at one-
tenth maximum (Δx10) requirement, are given by

σ1�xi� �
Δz10�xi�
2

���������������
2 ln 10
p � 2�μ�xi� − fiL�xi��

2
���������������
2 ln 10
p

� 2μ�xi�
2

���������������
2 ln 10
p � μ�xi����������������

2 ln 10
p (14)

and

σ2�xi� �
Δz10�xi�
2

���������������
2 ln 10
p � 2�fiU�xi� − μ�xi��

2
���������������
2 ln 10
p

� 2�1 − μ�xi��
2

���������������
2 ln 10
p � 1 − μ�xi����������������

2 ln 10
p (15)

where

P�μ� 0.5Δz10� �
1

10
(16)

From Eq. (13), the measure of accuracy coefficient μ�xi� is
determined for the ith training point. The coefficient μ is expressed in
terms of input variables xij using a polynomial response surface.

D. Ensemble of Component Surrogates

The AHF surrogate model is formulated by the adaptive selection
of weights for the three component surrogate models (RBF, E-RBF,
and Kriging). The AHF is a weighted summation of function values
estimated by the component surrogates, as given by

~fAHF �
Xns
i�1

wi�x� ~fi�x� (17)

where ns is the number of component surrogates combined into the
AHF, and ~fi�x� represents the value estimated by the ith component
surrogate. The generic weight wi is expressed in terms of the
estimated measure of accuracy, which is given by

wi�x� �
Pi�x�Pns
i�1 Pi�x�

(18)

wherePi�x� is themeasure of accuracy of the ith surrogate at point x.

III. ComplexEngineered Systems andEconomic System

The AHF is applied to complex engineering systems and an
economic system, which are 1) wind farm power generation,
2) product platform planning (for universal electric motors), 3) three-
panewindow heat transfer, and 4) onshorewind farm cost estimation.
The attributes of the four examples discussed in this paper offer
similarities to other aerospace engineering problems. For instance,
wind energy and aerospace (e.g., aircraft, missiles, and launch
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vehicles) involve similar disciplinary systems. In addition, product
platform planning concepts are also widely used in the design of
aircraft.

A. Wind Farm Power Generation

The power generated by a wind farm is an intricate function of the
configuration and location of the individual wind turbines. The power
generationmodel used in this paper is adopted fromRef. [29]. The flow
pattern inside awind farm is complex, primarily due to thewake effects
and the highly turbulent flow. The power generated by a wind farm
(Pfarm) comprised of N wind turbines is evaluated as a sum of the
powers generated by the individual turbines,which is expressed as [29]

Pfarm �
XN
j�1

Pj (19)

Accordingly, the farm efficiency can be expressed as

ηfarm �
PfarmP
N
j�1 P0j

(20)

where P0j is the power that turbine–j would generate if operating as a
stand-alone entity for the given incoming wind velocity. Detailed
formulation of the power generation model can be found in Ref. [29].
The power generation is a function of the location coordinates of

each turbine. With the turbine type and operating conditions
remaining fixed, the x − y coordinates are the design variables for
wind farm layout optimization. In this paper, a hybrid surrogate is
developed using AHF to represent the net power generation as a
function of the turbine location coordinates. In the case of awind farm
comprised of N turbines, the power generation model presents a 2N
dimensional problem.
The power generation model is a complex combination of

nonlinear submodels, including the wake model, the wake overlap
model, and the turbine power response model. The overall farm
power generation function is, thus, a highly nonlinear function that
generally does not have a straightforward analytical expression. In
addition, owing to the inherent nature of the layout design approach,
the power generation function is also expected to be multimodal.
With respect to thewind farm layout design problem, four cases are

considered: 1) a wind farm with 4 turbines (8 variables), 2) a wind
farm with 9 turbines (18 variables), 3) a wind farm with 16 turbines
(32 variables), and 4) awind farmwith 25 turbines (50 variables). The
GE-1.5MW-xle [30] turbine is chosen as the specified turbine type
for all cases.

B. Product Platform Planning (for Universal Electric Motors)

A product family is a group of related products that are derived
from a common product platform to satisfy a variety of market niches
[31]. The sharing of a common platform by different products is
expected to result in 1) reduced overhead, 2) lower per product cost,
and 3) increased profit. The recently developed comprehensive
product platform planning (CP3) framework [32] formulated a
generalized mathematical model to represent the complex platform
planning process.
The CP3 model formulates a generic equality constraint (the

commonality constraint) to represent the variable-based platform
formation. The presence of a combination of integer variables
(specifically binary variables) and continuous variables can be
attributed to the combinatorial process of platform identification.
The nonlinearity of this problem is attributed to the nonlinear
performance functions and nonlinear constraints in the physical
system of the products. The process of testing whether a product
family (comprising N products and n design variables) satisfies this
commonality constraint is explained in Fig. 2. In this figure, the black
arrows represent the process direction, and the grey arrows represent
the flow of information (on an as-needed basis). The details of the
CP3 model can be found in [32,33].

The net performance of the universal motor family is estimated as

fperf �
1

10

X10
k�1

ηk (21)

where ηk is the efficiency of themotor k, which is a function of design
variables.
In the case of a scaling product family, where each product

comprises n parts, the commonality index (CI) can be simplified to

CI � 1 −
Rλ − n
n�N − 1� (22)

whereRλ is the rank of the commonalitymatrix λ. The expression of λ
can be found in Ref. [32].
The first equality constraint is termed the commonality constraint

[Eq. (23)], which involves the parameters λikj .
XTΛX � 0, where

Λ�

2
66666666666666666666666666666664

P
k≠1

λ1k1 · · · −λ1N1 0 0 0 0 0 0 0 0

..

. ..
. ..

.
0 0 0 0 0 0 0 0

−λN11 · · ·
P
k≠N

λNk1 0 0 0 0 0 0 0 0

0 0 0 ..
. ..

. ..
. ..

. ..
.

0 0 0

0 0 0 ..
. P
k≠1

λ1kj · · · −λ1Nj
..
.

0 0 0

0 0 0 ..
. ..

. ..
. ..

. ..
.

0 0 0

0 0 0 ..
.

−λN1j · · ·
P
k≠N

λNkj
..
.

0 0 0

0 0 0 ..
. ..

. ..
. ..

. ..
.

0 0 0

0 0 0 0 0 0 0 0
P
k≠1

λ1kn · · · −λ1Nn

0 0 0 0 0 0 0 0 ..
. ..

. ..
.

0 0 0 0 0 0 0 0 −λN1n · · ·
P
k≠N

λNkn

3
77777777777777777777777777777775
(23)

where k � 1; 2; : : : ; N; and j � 1; 2; : : : ; n;

X� �x11 x21 · · · xN1 · · · x1j x2j · · · xNj · · · x1n x2n · · · xNn �T

λklj �
	
1; if λkkj � λllj � 1 and xlj � xkj
0; otherwise



∀ k ≠ l

Fig. 2 The process of applying the commonality constraint.
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λkkj �
	
1; if the jth variable is included in product − k
0; if the jth variable is NOT included in product − k

where l � 1; 2; : : : ; N; and j � 1; 2; : : : ; n;
The net constraint violation fc�X� is determined by

fc�X� �
Xp
j�1

max�gj; 0� �
Xq
k�1

max�hk − ϵ; 0� (24)

where g and h represent the inequality and equality constraints related
to the physical design of theproduct, respectively. The functionsgj and
hk represent the normalized values of the jth inequality constraint and
kth equality constraint, respectively. The parameter ϵ represents the
tolerance specified to relax each equality constraint.
In this paper, surrogates are developed to model the key criteria

functions involved in the design of a family of universal electric
motors. Universal motors are frequently used in a variety of
applications, e.g., electric drills and saws, blenders, vacuum cleaners,
and sewing machines [32]. In product family design, the overall
objective is to design a family of motors that have high efficiencies
and low masses, as well as a high degree of commonality among
them. Each motor is subjected to additional design constraints. The
design of each motor involves seven design variables; the
corresponding variable limits are given in Table 2.
The complexities of the performance objective and the net system

constraint of the product platform planning problem depend on the
system complexity of the products being designed. The case study in
this paper corresponds to the design of a family of universal electric
motors for which the performance function and the system constraint
are fairly nonlinear. The commonality constraint is nonlinear and
multimodal. Overall, the product platform planning problem, thus,
presents a set of four complex nonlinear criterion functions.
The AHF method is used to represent the performance objective

(fperf), the CI, and the two constraints (system constraint and
commonality constraint) as functions of the design variables. In the
case of universal electric motors, the total number of design variables
is �Npro � 1� × 7, where Npro represents the number of product
variants in the family. Three cases have been considered: 1) 2
products (21 variables), 2) 3 products (28 variables), and 3) 4
products (35 variables).

C. Three-Pane Window Heat Transfer

The performance of the three-pane window varies with climatic
conditions [34]. The heat transfer through thewindow is a function of
environmental conditions and the window material and dimensions.
The constant indoor temperature and thewindow design are specified
in this paper. A simplified schematic of the three-pane window is
shown in Fig. 3.
The heat transfer simulation model of the side channels and the air

gap is created using the CFD software Fluent. The model simulates
the steady-state heat transfer process. In this study, the middle tinted
pane is made of a generic bronze glass, and the other two panes are
made of clear glass. The CFD simulation of the three-panewindow is
computationally expensive.
To reduce the computational expense of the Fluent model, a

surrogate model is developed using the AHF. The inputs for the
surrogate model are 1) the atmospheric temperature, 2) the wind
speed, and 3) the solar radiation. The output of the surrogate model is
the heat flux through the inner pane, _Qw.

D. Onshore Wind Farm Cost Model

A response surface-based wind farm cost (RS-WFC) model was
developed inRef. [35]. TheRS-WFCmodel, for onshorewind farms in
theUnitedStates,was implemented usingE-RBF.TheRS-WFCmodel
estimates the total annual cost of a wind farm per kilowatt installed,Ct.
In theRS-WFCmodel,CLC,CLT , andCLM represent thewageper hour
for the construction labor, the technician labor, and the management
labor, respectively; N is the number of turbines in a farm; andD is the
rotor diameter. The wind turbine lifetime (in years), n, the number of
years financed, nfi, the percentage financed, θ, and the interest rate, η,
are constants specified as 20 years, 10 years, 80%, and 10%,
respectively. Figure 4 shows the inputs and the outputs of the RS-
WFC model.
In this paper, the total annual cost of awind farm is estimated using

the AHFmethod. The input parameters to the total annual cost model
are 1) the number and 2) the rated power of wind turbines installed in
a wind farm, and the output is the total annual cost of a wind farm.
Data points collected for the state ofNorthDakota are used to develop
the cost model, thereby, showing the effectiveness of the AHF
method in economic application.
It is important to note that the CD-TR estimation is particularly

useful for problems when the user does not have control over
sampling, when the sample comprises commercial data or data from
prior experiments. The wind farm cost data is not generated through
the design of experiments, and hence the RS-WFC model is suitable
for illustrating the effectiveness of the CD-TR concept in the AHF
surrogate.

IV. Experimental Designs

Sampling techniques are used to select a specified number of data
points over the design domainwhere the expensive system function is
evaluated. The choice of an appropriate sampling technique is
generally critical to the performance of a surrogate modeling
approach. However, in several practical situations, the designer does
not have full control over the choice of design samples (e.g., surrogate
development from recorded data). In these situations, it is important
to select a surrogate modeling approach whose performance is less
sensitive to the sampling technique used. The following three
representative sampling techniques are used to study their effects on
the performance of the resulting surrogates.

A. Latin Hypercube Sampling

Latin Hypercube Sampling (LHS) is a strategy for generating
random sample points. A Latin Hypercube sample set containing np
sample points (between zero and one) overm dimensions is a matrix
of np rows andm columns. Each row corresponds to a sample point.
Thevalues of thenp points in each column are randomly selected, one
from each of the intervals �0; 1∕np�, �1∕np; 2∕np�; : : : ; and �1 −
1∕np; 1� [36]. Different criteria can be applied to generate uniform
representation, such as maximizing the minimum distance between
points and reducing the correlation between points. It is important to

Fig. 3 Schematic of the three-pane window [34].

Table 2 Design variable limits of the electric motors

Design variable Lower limit Upper limit

Number of turns on the armature (Na) 100 1500
Number of turns on each field pole (Nf) 1 500
Cross-sectional area of the armature wire (Awa) 0.01 mm2 1.00 mm2

Cross-sectional area of the field pole wire (Awf) 0.01 mm2 1.00 mm2

Radius of the motor (ro) 10.00 mm 100.00 mm
Thickness of the stator (t) 0.50 mm 10.00 mm
Stack length of the motor (L) 1.00 mm 100.00 mm

648 ZHANG ETAL.

D
ow

nl
oa

de
d 

by
 S

Y
R

A
C

U
SE

 U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n 

Fe
br

ua
ry

 1
9,

 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
20

08
 



note that the basic LHS method without any optimality criterion is
adopted in this paper for a fair comparison of sampling methods.

B. Sobol’s Quasi-Random Sequence Generator

Sobol’s sequences [37] use a base of two to form successively finer
uniform partitions of the unit interval and reorder the coordinates in
each dimension. The algorithm for generating Sobol’s sequences is
discussed in Ref. [38].

C. Hammersley Sequence Sampling

HSS is based on the representation of a decimal number in the
inverse radix format, where the radix values are chosen as the first
(m − 1) prime numbers, m being the number of dimensions. A
detailed description of this technique can be found in [39]. The
Hammersley sequence provides a highly uniform set of sample points
containing np points in a m-dimensional unit hypercube.
LHS is useful if one desires a sample that is predominantly random

but is uniform in each dimension separately. We also specifically
investigate whether the uniformity properties in Sobol’s and the HSS
methods indeed translate into higher accuracy.

D. Sampling Strategy for Problems

For the engineering design problems in this paper, the training data
and the test data are obtained through simulation. Four sample sizes
are considered: 1) 5 times, 2) 10 times, 3) 15 times, and 4) 20 times of
the given problem dimension (the number of input variables) for each

sampling technique. Table 3 lists the details of the design of
experiments. The variable limits are given in Table 4. For the onshore
wind farm cost problem, available cost data is used [40].
LHS generates different sets of sample points everytime it is

initiated. For the engineering-design problems, a set of 100 different
experimental designs with the LHS method are used to account for
the randomness of the LHS.

Two types of integer variables are involved in the product family
problem. The first type of integer variables are physical design
variables, including 1) the number of turns on the armature, Na and
2) the number of turns on each field pole,Nf (see Table 2). For these
two integer variables, a set of real numbers are generated using a
sampling method and rounded to the nearest integers. The second
type of integer variables are commonality design variables. The
values of the second type of integer variables (zj in Table 4) belong to
a feasible set of integers, Z � �0; 1; · · · ; 2Npro�Npro−1� − 1�. It is
seen from Table 1 that: for two products, zj ∈ f0; 1g; for three
products, zj ∈ f0; 1; 2; 4; 7g; and for four products, zj ∈ f0; 1; 2;
4; 7; 8; 12; 16; 18; 28; 32; 33; 42; 52; 63g. To sample points from the
set zj, we generate a set of real numbers between 1 and p and round
the numbers to the nearest feasible integers, ẑj. Here, p is the number
of elements in the feasible set Z, e.g., p � 2 for two products, p � 5
for three products, andp � 15 for four products. Finally, wemap the
value of ẑj to the value of the variable zj, using the followingmapping
rules: 1) f1; 2g → f0; 1g for two products; 2) f1; 2; 3; 4; 5g →
f0; 1; 2; 4; 7g for three products; and 3) f1; 2; : : : ; 15g →
f0; 1; 2; 4; 7; 8; 12; 16; 18; 28; 32; 33; 42; 52; 63g for four products.

V. Numerical Experiments

A. Selection of Parameters

Through numerical experiments, it was found that the following
prescribed coefficient values generally produced more accurate
function estimations. We set c � 0.9 for the RBF approach. We use
c � 0.9 and λ � 4.75 for the E-RBF approach. The parameter t of the
E-RBF approach is fixed at two (second degree monomial). For the
Kriging approach, the bounds on the correlation parameters in the
nonlinear optimization, θl and θu, are selected to be 0.1 and 20,
respectively. During the cross-validation process, the number of
subsets (q) is specified to be five. The prescribed values are
summarized in Table 5.

Fig. 4 The input and output of the RS-WFC model.

Table 4 The limits of design variables

Problem Variable limits

Wind farm 1 0 < xi < 7D0, 0 < yi < 3D0, where i � 1; 2; 3; 4
Wind farm 2 0 < xi < 2 × 7D0, 0 < yi < 2 × 3D0, where i � 1; 2; : : : ; 9
Wind farm 3 0 < xi < 3 × 7D0, 0 < yi < 3 × 3D0, where i � 1; 2; : : : ; 16
Wind farm 4 0 < xi < 4 × 7D0, 0 < yi < 4 × 3D0, where i � 1; 2; : : : ; 25
Product family 1 x1j , x

2
j (see Table 3), zj ∈ f0; 1g, where j � 1; 2; : : : ; 7

Product family 2 x1j , x
2
j , x

3
j (see Table 3), zj ∈ f0; 1; 2; 4; 7g, where j � 1; 2; : : : ; 7

Product family 3 x1j , x
2
j , x

3
j , x

4
j (see Table 3), zj ∈ f0; 1; 2; 4; 7; 8; 12; 16; 18; 28; 32; 33; 42; 52; 63g, where j � 1; 2; : : : ; 7

Three-pane window 259 K < Tout < 309 K, 0 < U < 21.5 m∕s, 0 < Esolar < 1000 W∕m2

Table 3 Experimental design for each problem

Engineering problem N∕Npro
a nint a ndim a Sample size (training points) No. of test points

5 × ndim 10 × ndim 15 × ndim 20 × ndim
Wind farm 1 4 0 8 40 80 120 160 100
Wind farm 2 9 0 18 90 180 270 360 200
Wind farm 3 16 0 32 160 320 480 640 320
Wind farm 4 25 0 50 250 500 750 1000 500
Product family 1 2 11 21 105 210 315 420 210
Product family 2 3 13 28 140 280 420 560 280
Product family 3 4 15 35 175 350 525 700 350
Three-pane window — 0 3 15 30 45 60 216

aN: No. of turbines for wind farm; ndim: No. of variables; Npro: No. of products for product family;
nint: No. of integer variables.
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B. Performance Criteria

The overall performance of the trained surrogate can be evaluated
using both global and local error measure metrics. The most
prominent approaches [2] include 1) split sample, 2) cross-validation,
and 3) bootstrapping.

1. Split Sample

In a split sample strategy, the sample points are divided into
training and test points. The former is used to construct the surrogate,
and the latter is used to test the performance of the surrogate. The
overall performance of the surrogate can be evaluated using three
standard performance metrics: 1) root mean square error (RMSE)
[8,41], which provides a global error measure over the entire design
domain; 2) maximum absolute error (MAE), which is indicative of
local deviations; and 3) relative accuracy error (RAE), which is also
indicative of local deviations. To compare the results of different
problems, we normalize the RMSE and theMAEmeasures using the
actual function values. The RMSE is given by

RMSE �
�����������������������������������������������
1

nt

Xnt
k�1
�f�xk� − ~f�xk��2

s
(25)

where f�xk� represents the actual function value at the test point xk,
~f�xk� is the corresponding function value estimated by the surrogate,
and nt is the number of test points chosen for evaluating the error
measure. The normalized RMSE (NRMSE) is given by

NRMSE �

�����������������������������������������������Pnt
k�1 �f�xk� − ~f�xk��2Pnt

k�1 �f�xk��2

s
(26)

The MAE and NMAE are expressed as

MAE � max
k
jf�xk� − ~f�xk�j (27)

NMAE � maxkjf�xk� − ~f�xk�j����������������������������������
1
nt

Pnt
k�1 �f�xk��2

q (28)

The RAE is evaluated at each test point, as given by

RAE�xk� � j
~f�xk� − f�xk�j

f�xk� × 100% (29)

2. Cross-Validation

Cross-validation is a technique that is used to analyze and improve
the robustness of a surrogatemodel. Cross-validation error is the error
estimated at a data point, when the response surface is fitted to a
subset of the data points not including that point (also called the
leave-one-out strategy). Avector of cross-validation errors, ~e, can be
obtained, when the response surfaces are fitted to all otherp-1 points.
This vector is also known as the prediction sum of squares (the
PRESS vector).
The leave-one-out strategy is computationally expensive for a large

number of points, which can be overcome by the q-fold strategy. The
q-fold strategy involves 1) splitting the data randomly into q
(approximately) equal subsets, 2) removing each of these subsets in
turn, and 3) fitting the model to the remaining q-1 subsets. A loss
functionL can be computed tomeasure the error between the predictor
and the points in the subset that are set aside at each iteration; the
contributions to L are then summed up over the q iterations.
More formally, when the mapping, ζ∶1; · · · , n → 1; · · · ; q,

describes the allocation of the n training points to one of the q,
subsets, and f̂−ζ�i��x� (of the predictor) is obtained by removing the
subset ζ�i�, the cross-validation measure is given by

PRESSSE �
1

n

Xn
i�1
�y�i� − f̂−ζ�i��x�i���2 (30)

Hastie et al. [42] recommended using compromise values of q � 5 or
q � 10. Using fewer subsets generally has an additional advantage of
reducing the computational cost of the cross-validation process by
reducing the number of models that have to be fitted.

C. Results and Discussion

In this section, the effectiveness of the AHF surrogate is explored
by investigating: 1) the surrogate accuracy, 2) the impact of sampling
technique and sample size; 3) the impact of problem dimensionality,
and 4) the computational cost.

1. Surrogate Model Accuracy

The surrogatemodeling results of thewind farm power generation,
the product family, and the three-pane window are given in
Tables A1–A5 (in the Appendix). We compare the values of the
RMSE, MAE, and PRESS. The maximum and minimum values of
the RMSE, MAE, and PRESS for each problem are presented in
boldface and with underscore, respectively. The measured values
with the LHS method are the average of 100 different experimental
designs. The NRMSE and NMAE are shown in Fig. 5. In the case of
wind farm power generation, we averaged the RMSE and MAE
values of all four wind farms to get the average values of the NRMSE
and NMAE. For the product platform planning problem, the average
of the RMSE andMAEvalues of the 12 cases is presented. In Figs. 5a
and 5b, each bar represents the NRMSE (or NMAE) value estimated
for a problem when specific sampling methods and sample sizes are

Table 5 Parameter selection for the AHF

Method Parameter value

E-RBF λ � 4.75, c � 0.9, t � 2
RBF c � 0.9
Kriging θl � 0.1, θu � 20
Cross-validation q � 5

Wind farm Product family Three−pane
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Engineering problems

N
R

M
S

E

Sobol:5X
Sobol:10X
Sobol:15X
Sobol:20X
HSS:5X
HSS:10X
HSS:15X
HSS:20X
LHS:5X
LHS:10X
LHS:15X
LHS:20X

Wind farm Product family Three−pane
0

0.5

1

1.5

2

2.5

Engineering problems

N
M

A
E

Sobol:5X
Sobol:10X
Sobol:15X
Sobol:20X
HSS:5X
HSS:10X
HSS:15X
HSS:20X
LHS:5X
LHS:10X
LHS:15X
LHS:20X

a) NRMSE b) NMAE
Fig. 5 Normalized error measures for the wind farm, product family, and three-pane window problems.
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used. We make the following important observations from Tables
A1–A5 and Fig. 5:
1) For thewind farmpower generation problem (for 4, 9, 16, and 25

turbines), the maximum RMSE is 0.0709, the maximum MAE is
0.4725, and the maximum PRESS is 0.0048.
2) In the case of the product platform planning problem (for two,

three, four products), the surrogates representing the first constraint
function have relatively larger RMSE,MAE, and PRESS values than
other surrogates representing the performance objective, the CI
function, and the other constraint functions. This deviation can be
attributed to the high nonlinearity of the first constraint function.
3) The NRMSE and NMAE values (in Fig. 5) show that the

accuracy of the AHF surrogate for the wind farm and the three-pane
window problems is higher than that for the product family problem.
Box plots are used to illustrate the variations of the 100 LHS

experimental designs. Figures 6–8 show the box plots of the three
performance metrics (RMSE, MAE, and PRESS) of surrogates for
the three engineering problems (four-turbine wind farm, product
family with two products, and three-pane window).
In a box plot, 1) the central mark is the median; 2) the edges of the

box are the 25th and 75th percentiles; 3) the ends of the vertical lines
indicate the minimum and maximum data values, or 1.5 times of the
interquartile in each direction if the limit of the data fall beyond
1.5 times of the interquartile range; and 4) the points outside the ends
of the lines are outliers.

2. Effect of Sampling Technique and Sample Size

Figures 9–11 illustrate the variations in the average RMSE, MAE,
and PRESS values (across all functions and sampling techniques) as a
function of the corresponding sample sizes. In the case of wind farm
power generation, we averaged the values of RMSE, MAE, and
PRESS computed for the four wind farms,when any particular sample
size is used. The standard deviation of each error metric is also
computed. The error bar at each point is 25% of the corresponding
standard deviation value. For the product platform planning problem,
the average RMSE, MAE, and PRESS values among the 12 cases are
presented for this purpose. In this case, the error bar at each point is 2%
of the corresponding standard deviation value. Expectedly, it is
observed that the accuracies of the three problems are improved with
an increase in the sample size; however, beyond a certain sample size,
the improvement is marginal.
1) In the case of the three-panewindow, it can be seen fromFigs. 9a

and 9b that the HSS technique performs better than the LHS and
Sobol’s techniques.
2) For the wind farm power generation model, the LHS technique

performs better than the other two sampling techniques (Figs. 10a
and 10b).
3) For the product family problem (with universal motors), a

conclusive comparison of the sampling technique performances
could not be readily accomplished. In terms of the RMSE values

5X 10X 15X 20X
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0.035

0.04

0.045

0.05

Sam

a) RMSE b) MAE c) PRESS

ple size
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S
E
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0.1
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M
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5X 10X 15X 20X
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x 10
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Fig. 6 Box plots of RMSE, MAE, and PRESS of surrogates for the four-turbine wind farm problem (100 experimental designs).
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a) RMSE b) MAE c) PRESS

Fig. 7 Box plots of RMSE, MAE, and PRESS of surrogates for the objective of two-products family problem (100 experimental designs).
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Fig. 8 Box plots of RMSE, MAE, and PRESS of surrogates for the three-pane window problem (100 experimental designs).
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(Fig. 11a), both the LHS and Sobol provide good performance.
However, the HSS yields better (smaller) MAE values (Fig. 11b).
We observe that the standard deviationvalues ofRMSE,MAE, and

PRESS for the wind farm power generation and product family
problems are relatively large. Such large standard deviation values
can be attributed to the significant difference in the number of input
variables.

3. Effect of Problem Dimensionality

We comment on the effect of problem dimensionality on the

accuracy of the hybrid surrogate. For each wind farm (with different

numbers of turbines), the mean and standard deviation values of

RMSE, MAE, and PRESS for all four sampling sizes are estimated.

Figure 12 shows the effect of increasing problem dimensionality on

5X

a) RMSE b) MAE c) PRESS
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Fig. 9 Effect of sample technique and size on surrogate modeling accuracy for three-pane window model.
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Fig. 10 Effect of sample technique and size on surrogate modeling accuracy for wind power problem.
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Fig. 11 Effect of sample technique and size on surrogate modeling accuracy for product family model.
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Fig. 12 Effect of problem dimensionality on surrogate modeling accuracy for wind power problems.
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the corresponding surrogate model performance. The mean values

are represented by different markers. The error bar at each point is

75% of the standard deviation value. The number of input variables

increases proportionally, when the number of turbines increases from

4 to 25. It is observed from Fig. 12 that:
1) In the case of the Sobol’s and the LHS sampling techniques, the

values of RMSE, MAE, and PRESS decrease when the dimension
increases.
2) In the case of the HSS technique, the AHF method has a high

accuracy for the relatively lower dimensional problems (Figs. 12a
and 12b).

4. Computational Cost

The total computational cost for constructing the AHF surrogate is
higher than that for constructing the component surrogates (Kriging,
RBF, or E-RBF), while the computational cost in terms of number of
actual system evaluations is the same. Hence, the increase in the
accuracy of the estimated output accomplished by the AHF approach
does not demand an appreciable increase in the computational cost.
Such positive attributes further illustrate the applicability of the AHF
method to model a wide variety of complex systems.
The AHF surrogate is formulated by following three major steps

(steps A−C in Fig. 1). To further investigate the computational cost,
we compare the computational time of the three steps. Table 6
shows the computational time of the three steps for the three-
pane window model. We observe that steps A and B take up most of
the computational time. It is also observed that when the number

of training points increases, the relative computational time of
step A decreases, and the relative computational time of step B
increases.

5. Response Surface-Based Wind Farm Cost Model

The RS-WFCmodel development is not preceded by the design of
experiments. There are 60 training points and 15 test points for the
development of the wind farm cost model (Table 7). The values of
RMSE,MAE, and PRESS are shown in Table 7. The PRESS value is
estimated using all the training points and test points. The RAE value
results show that the largest RAE value is approximately 0.48%, and
the smallest RAE value is approximately 0.01% (estimated at test
point 8). This example shows that the AHF surrogate can also be
successfully employed to develop relationships between parameters
using recorded or measured data.

VI. Conclusions

This paper presented applications of the Adaptive Hybrid
Functions (AHF) to model complex engineering and economic
systems. Three representative sampling techniques (Latin hypercube
sampling [LHS], Sobol’s quasi-random sequence, and the
Hammersley sequence sampling [HSS]) were selected to study their
impact on the quality of the resulting surrogates. The influences of
sample size and problem dimensionality on the performance of the
resulting surrogate model was also investigated.
The results show that the accuracy of the surrogatemodel generally

improves with an increase in the sample size (which is expected);
however, a few exceptions to this trend was also observed. The AHF
method maintains a relatively higher accuracy for high-dimensional
problems when Sobol’s and the LHS sampling techniques are used,
whereas the AHF method maintains a relatively higher accuracy for
low-dimensional problems when the HSS technique is used. In
addition, the increased accuracy of the AHF approach is not
accompanied by a significant increase in computational cost. These
case studies successfully establish the wide applicability of the AHF
method.
The problems and challenges involved in the four problems are

representative, and similarities can be found between the four
problems and other engineering problems, such as in aerospace and
automotive engineering. The implementation of surrogate-based
optimization in other complex engineered and economic systems,
using these surrogate models, should further establish the true
potential of the AHF method. In addition, an exploration of how
sensitive the surrogate accuracy is to the user-defined parameters in
the individual surrogates and the AHF settings would also be an
important topic for future work.

Table 6 Computational time of steps A–C in the AHF
for the three-pane window problem

Sample size Step A Step B Step C

15 43% 54% 3%
30 40% 58% 2%
40 35% 63% 2%
60 30% 69% 1%

Table 7 Experimental designs for the

wind farm cost estimation

Parameter Value

No. of variables 2
No. of training points 60
No. of test points 15
RMSE 0.2470
MAE 0.5916
PRESS 0.9565

Table A1 Results of the AHF surrogate modeling for the wind farm power generation model

Problem No. of training points Sobol HSS LHS

RMSE MAE PRESS RMSE MAE PRESS RMSE MAE PRESS

5 × ndim 0.0587 0.1774 0.0048 0.0356 0.1204 0.0006 0.0373 0.1208 0.0015
Wind farm 1 10 × ndim 0.0403 0.1843 0.0026 0.0360 0.0950 0.0008 0.0336 0.1066 0.0011
4 Turbines 15 × ndim 0.0423 0.1797 0.0017 0.0308 0.1159 0.0007 0.0319 0.0987 0.0011

20 × ndim 0.0426 0.1601 0.0016 0.0310 0.0915 0.0009 0.0309 0.0938 0.0010
5 × ndim 0.0342 0.1034 0.0017 0.0340 0.1155 0.0004 0.0247 0.0790 0.0007

Wind farm 2 10 × ndim 0.0264 0.0959 0.0009 0.0368 0.1379 0.0005 0.0235 0.0773 0.0006
9 Turbines 15 × ndim 0.0257 0.0875 0.0008 0.0278 0.1062 0.0005 0.0231 0.0760 0.0005

20 × ndim 0.0254 0.0785 0.0007 0.0262 0.1006 0.0004 0.0229 0.0752 0.0006
5 × ndim 0.0230 0.0871 0.0011 0.0441 0.1174 0.0006 0.0188 0.0644 0.0004

Wind farm 3 10 × ndim 0.0199 0.0831 0.0006 0.0373 0.1387 0.0002 0.0178 0.0626 0.0004
16 Turbines 15 × ndim 0.0193 0.0755 0.0005 0.0427 0.2084 0.0002 0.0175 0.0605 0.0004

20 × ndim 0.0191 0.0772 0.0004 0.0367 0.1229 0.0002 0.0174 0.0611 0.0003
5 × ndim 0.0231 0.0814 0.0007 0.0610 0.1529 0.0004 0.0168 0.0657 0.0003

Wind farm 4 10 × ndim 0.0178 0.0710 0.0004 0.0565 0.1812 0.0002 0.0160 0.0642 0.0003
25 Turbines 15 × ndim 0.0166 0.0612 0.0004 0.0709 0.4725 0.0002 0.0159 0.0622 0.0003

20 × ndim 0.0166 0.0585 0.0003 0.0541 0.2978 0.0002 0.0158 0.0610 0.0002
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Table A2 Results of the AHF surrogate modeling for the two-products family problem

Problem No. of training points Sobol HSS LHS
RMSE MAE PRESS RMSE MAE PRESS RMSE MAE PRESS

5 × ndim 0.5814 2.4371 0.4256 0.6249 1.9922 0.2439 0.5898 2.5148 0.4111
Two products 10 × ndim 0.5464 2.4196 0.3220 0.4660 2.2218 0.3432 0.5439 2.4338 0.3371
Objective 15 × ndim 0.5252 2.4443 0.2950 0.4547 2.1015 0.2761 0.5190 2.3721 0.3253

20 × ndim 0.5127 2.4201 0.2578 0.4150 2.1498 0.2222 0.5002 2.3646 0.2984
5 × ndim 0.0700 0.1813 0.0044 0.0489 0.1241 0.0038 0.0706 0.1772 0.0044

Two products 10 × ndim 0.0686 0.1703 0.0039 0.0409 0.1329 0.0011 0.0688 0.1701 0.0040
Commonality 15 × ndim 0.0685 0.1691 0.0038 0.0396 0.1331 0.0007 0.0685 0.1678 0.0039

20 × ndim 0.0681 0.1653 0.0038 0.0359 0.1309 0.0005 0.0678 0.1651 0.0038
5 × ndim 1.3669 7.3977 2.7425 1.4026 6.6388 1.2698 1.3476 7.4885 2.0555

Two products 10 × ndim 1.2887 7.7741 2.0228 1.3560 6.0880 1.8955 1.2870 7.5353 1.8253
Constraint 1 15 × ndim 1.2572 7.1684 1.7952 1.2995 7.2284 0.9545 1.2500 7.4374 1.7262

20 × ndim 1.2331 7.2238 1.6565 1.2534 6.7623 0.8641 1.2174 7.3513 1.6105
5 × ndim 0.0507 0.1586 0.0040 0.0629 0.1762 0.0028 0.0538 0.1845 0.0032

Two products 10 × ndim 0.0492 0.1531 0.0029 0.0516 0.1688 0.0025 0.0506 0.1774 0.0028
Constraint 2 15 × ndim 0.0479 0.1450 0.0028 0.0485 0.1849 0.0021 0.0488 0.1746 0.0027

20 × ndim 0.0463 0.1453 0.0024 0.0460 0.1846 0.0017 0.0474 0.1683 0.0025

Table A3 Results of the AHF surrogate modeling for the three-products family model

Problem No. of training points Sobol HSS LHS
RMSE MAE PRESS RMSE MAE PRESS RMSE MAE PRESS

5 × ndim 0.6193 5.3032 0.2488 0.7285 4.5999 0.3069 0.8499 5.5758 0.8367
Three products 10 × ndim 0.5520 4.9811 0.2089 0.5571 4.4519 0.1644 0.5451 4.8623 0.2173
Objective 15 × ndim 0.5421 4.8942 0.1825 0.5033 3.9131 0.1480 0.5262 4.7993 0.1960

20 × ndim 0.5088 4.7585 0.1629 0.5197 4.2039 0.1439 0.5071 4.7278 0.1849
5 × ndim 0.0587 0.1635 0.0028 0.0680 0.2024 0.0016 0.0848 0.2605 0.0088

Three products 10 × ndim 0.0524 0.1589 0.0026 0.0557 0.1548 0.0007 0.0515 0.1521 0.0023
Commonality 15 × ndim 0.0512 0.1532 0.0024 0.0521 0.1535 0.0007 0.0507 0.1571 0.0022

20 × ndim 0.0506 0.1808 0.0024 0.0503 0.1445 0.0007 0.0502 0.1501 0.0021
5 × ndim 0.9974 5.6228 1.4164 1.0173 4.7166 0.5065 1.1534 6.0866 1.6415

Three products 10 × ndim 0.9273 5.3516 0.9859 0.9352 4.2291 0.5825 0.8831 5.3038 0.8942
Constraint 1 15 × ndim 0.8589 5.3763 0.9515 0.9902 4.9851 0.4871 0.8606 5.2719 0.8171

20 × ndim 0.8226 4.8800 0.8331 0.9360 4.8892 0.5234 0.8347 5.0819 0.7717
5 × ndim 0.0281 0.0892 0.0011 0.0333 0.1560 0.0004 0.0319 0.1312 0.0012

Three products 10 × ndim 0.0270 0.1036 0.0009 0.0329 0.1289 0.0005 0.0265 0.1098 0.0008
Constraint 2 15 × ndim 0.0269 0.1101 0.0008 0.0308 0.1201 0.0005 0.0259 0.1052 0.0007

20 × ndim 0.0264 0.1051 0.0008 0.0281 0.1013 0.0004 0.0255 0.1041 0.0007

Table A4 Results of the AHF surrogate modeling for the four-products family model

Problem No. of training points Sobol HSS LHS
RMSE MAE PRESS RMSE MAE PRESS RMSE MAE PRESS

5 × ndim 0.4305 3.0440 0.2001 0.5203 2.3004 0.1425 0.4097 3.0843 0.1969
Four products 10 × ndim 0.3922 3.1585 0.1458 0.4824 2.2122 0.0989 0.3810 3.0316 0.1593
Objective 15 × ndim 0.3730 3.0890 0.1370 0.5018 3.0059 0.0991 0.3664 2.9856 0.1516

20 × ndim 0.3602 3.0410 0.1259 0.3788 2.7134 0.0832 0.3544 2.9188 0.1393
5 × ndim 0.0725 0.2511 0.0060 0.0782 0.2156 0.0020 0.0661 0.1956 0.0045

Four products 10 × ndim 0.0610 0.1852 0.0045 0.0847 0.2653 0.0014 0.0635 0.1858 0.0040
Commonality 15 × ndim 0.0603 0.1704 0.0045 0.0859 0.3494 0.0012 0.0630 0.1841 0.0038

20 × ndim 0.0596 0.1734 0.0042 0.0902 0.2354 0.0014 0.0627 0.1792 0.0038
5 × ndim 0.7158 3.4054 0.7837 0.9240 4.2043 0.2965 0.7315 3.3778 0.6218

Four products 10 × ndim 0.6885 3.3460 0.6066 0.8930 3.1446 0.3117 0.6802 3.2089 0.5400
Constraint 1 15 × ndim 0.6474 3.2213 0.4805 1.0753 5.2102 0.3543 0.6592 3.1552 0.5064

20 × ndim 0.6317 3.4038 0.4788 0.7328 2.8579 0.3002 0.6446 3.1720 0.4838
5 × ndim 0.0199 0.0630 0.0004 0.0255 0.1065 0.0002 0.0199 0.0647 0.0004

Four products 10 × ndim 0.0191 0.0562 0.0004 0.0231 0.0946 0.0002 0.0189 0.0623 0.0004
Constraint 2 15 × ndim 0.0186 0.0540 0.0004 0.0315 0.1349 0.0002 0.0184 0.0602 0.0004

20 × ndim 0.0184 0.0532 0.0004 0.0225 0.0845 0.0002 0.0184 0.0631 0.0004

Table A5 Results of the AHF surrogate modeling for the three-pane window model

Problem No. of training points Sobol HSS LHS
RMSE MAE PRESS RMSE MAE PRESS RMSE MAE PRESS

5 × ndim 1.2942 6.0306 0.1703 1.1885 6.3210 1.0498 1.1352 5.2712 1.0974

Three-pane window 10 × ndim 0.9081 5.3257 0.1200 0.7702 3.2753 0.2372 0.8891 4.3869 0.4240
15 × ndim 0.8562 4.3830 0.1534 0.7348 2.9090 0.3439 0.8644 4.3716 0.3256
20 × ndim 0.8884 4.5566 0.0713 0.6761 3.4442 0.1359 0.8613 4.3423 0.3300
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Appendix: Results of the AHF Surrogate Modeling

The surrogatemodeling results of thewind farm power generation,
the product family, and the three-pane window are given in
Tables A1–A5.
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