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Frequentism and Bayesianism



Frequentism and Bayesianism

Perhaps nothing is more antithetical to Bayesianism than p-values:

• P-values are defined by the frequentist logic of repeated randomizations.

• P-values connote a binary decision theory that either rejects or fails to

reject a single hypothesis on the basis of its p-value.

• Bayesianism does not reject or fail to reject a single hypothesis on the

basis of its p-value.

• Bayesianism defines likelihood functions that ascribe probability to data,

which researchers use to update prior beliefs that are defined over all

possible hypotheses.
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Sampling Theory



Sampling Theory

• Let’s imagine that we are taking a sample of size n from a population of

y1, . . . , yN . We can denote this random sample by Y1, . . . ,Yn.

• Y1, . . . ,Yn are random variables because the value of Yi we observe could

be any value in the population of y1, . . . , yN so long as each y1, . . . , yN has

a sample inclusion probability defined on the open interval from 0 to 1.

• We have n parameters we want to estimate, which is the mean, µi , of the

population from which Yi was drawn for all Yi = Y1, . . . ,Yn in the sample.

• If each unit in the population from which we are sampling has the same

sample inclusion probability (i.e., sample inclusion probabilities are

uniformly distributed over all 1, . . . ,N units in the population), then

E [Y1] = µy .

• If all Y1, . . . ,Yn random variables are independent and identically

distributed (i.i.d), then E [Y1] = · · · = E [Yn] = µy .
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Sampling Theory Continued

Consider the population of y1, . . . , yN units and each unit’s respective sample

inclusion probability:

y 1 0 0 0 1 1 1 1

Pr 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

Table 1: y Values in the Population and Uniform Sample Inclusion Probabilities

Then, Yi ∼ Bernouli:

Pr (Yi = yi ) =

πyi (1− π)1−yi if yi = 0, 1

0 otherwise.

With sample inclusion probabilities uniformly distributed over all yi , . . . , yN

units in the population, π = 0.625 = y = 5
8
.

The set of events in Yi is identical to the unique values of y1, . . . , yN . And if

we have uniform sample inclusion probabilities, the probability associated with

each Yi = yi is equivalent to the relative frequency of that value of y in the

population. 5



Sampling Theory Continued

y 1 0 0 0 1 1 1 1

Pr 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3

Table 2: y Values in the Population and Nonuniform Sample Inclusion Probabilities

Yi ∼ Bernouli:

Pr (Yi = yi ) =

πyi (1− π)1−yi if yi = 0, 1

0 otherwise.

With sample inclusion probabilities nonuniformly distributed over all yi , . . . , yN

units in the population, π = 0.7 6= y = 5
8
.
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Sampling Theory and Likelihood Theory



Likelihood Theory

y 1 0 0 0 1 1 1 1

Pr 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

Table 3: y Values in the Population and Uniform Sample Inclusion Probabilities

The likelihood function for the observed value yi is:

Li (yi | π) = πyi (1− π)1−yi

If sample inclusion probabilities for Yi are uniformly distributed over all

y1, . . . , yN units in the population, then a hypothesis about the parameter π

ensures that π is also a hypothesis about the population from which you are

sampling.

If random variables Y1, . . . ,Yn are independent and identically distributed, then

the joint likelihood function for all units in the sample is:

L (y1, . . . , yn | π) =
n∏

i=1

πyi (1− π)1−yi
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Bayesian Confirmation Theory



Bayesian Confirmation Theory

• We have a set of hypotheses that pertain to values of π and a subjective

credence (probability) function defined over all values of π in the

parameter space.

• We have a likelihood function through which each hypothesis ascribes a

probability to the sample data.

• We update our credences about π via Bayesian conditionalization:

C (H | e) =
PrH (e)C (H)

C (e)
,

where C (e) = Prh1 (e)C (h1) + · · ·+ Prhn (e)C (hn).
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Hypothetical Experiment



Hypothetical Experiment I

Table 4: Experimental Outcomes

z yc yt

1 ? 1

0 0 ?

0 0 ?

1 ? 1

1 ? 0

0 1 ?

1 ? 1

1 ? 1

0 0 ?

0 0 ?
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Hypothetical Experiment I Continued

• Hyc = {0, 1
10
, 2

10
, 3

10
, 4

10
, 5

10
, 6

10
, 7

10
, 8

10
, 9

10
, 1}

• Hyt = {0, 1
10
, 2

10
, 3

10
, 4

10
, 5

10
, 6

10
, 7

10
, 8

10
, 9

10
, 1}

• E.g., Hyc = 5
10

:

Pr (e | H) =

(
n

k

)
πk(1− π)n−k ,

where n ∈ N is the number of sample observations, k ∈ {0, . . . , n} is the

number of 1s, n− k ∈ {0, . . . , n} is the number of 0s, and π ∈ [0, 1] is the

proportion of 1s in the population of experimental subjects (as specified by

any given hypothesis).

Pr (e | H) =

(
5

1

)(
1

2

)1(
1− 1

2

)5−1

= (5)

(
1

2

)(
1

16

)
= 0.15625.
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Hypothetical Experiment II

• But what about when the support of yc , yt is not {0, 1}?

• If sample inclusion probabilities for Yi are uniformly distributed across all y1, . . . , yN units in

the population, then E [Yi ] = µy . But how can a hypothesis about the value of µy ascribe

probability to sample data without imposing a probability model on the data generating

process?

Table 5: Experimental Population of yc and yt Values

yc yt
18 10

20 12

38 30

48 40

11 3

58 50

43 35

48 40

30 22

36 28
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Figure 1: Distribution of Control and Treatment Potential Outcomes in Experimental Population
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How can we define prior beliefs over hypotheses and update those beliefs

after observing data without invoking probability models for the data

generating process?
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Exact P-Values



Exact P-Values

• In the hypothetical experiment above, there are
(

10
5

)
= 252 permutations

in which 5 out of 10 units could be assigned to treatment while the other

5 out of 10 units are assigned to control.

Table 6: Treatment Assignment Permutations

z1 z2 . . . z251 z252

1 1 . . . 0 0

1 1 . . . 0 0

1 1 . . . 0 0

1 1 . . . 0 0

1 0 . . . 1 0

0 1 . . . 0 1

0 0 . . . 1 1

0 0 . . . 1 1

0 0 . . . 1 1

0 0 . . . 1 1
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Exact P-Values

Pr {t(Z; yc) ≥ T} ≡∑
z∈Ω

[t(Z; yc) ≥ T ]Pr(Z = z),

where

[event] =

1 if event occurs,

0 otherwise.

(Rosenbaum, 2002)
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Exact P-Values

There are
(

10
5

)
= 252 treatment assignment vectors z ∈ Ω. But what is the

probability associated with each z ∈ Ω?

Proposition

In the context of complete random assignment, the probability associated with

each
(
Z = z ∈ Ω

∣∣ nt) is:
Pr
(
Z = z ∈ Ω

∣∣ nt) ≡ n∏
i=1
π
zi
i (1−πi )

(1−zi )

|Ω|∑
i :ωi∈Ω


(
|ω|∏

i :zi∈ω

nt∏
i=1
πi

) |ω′|∏
j :zj∈ω′

nc∏
j=1

(1−πj)


.
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Worked Out Example



Worked Out Example

To illustrate the type of analysis for which I advocate, consider the

aforementioned hypothetical experiment:

Table 7: Experimental Outcomes

z yc yt y

1 ? 10 10

0 20 ? 20

0 38 ? 38

1 ? 40 40

1 ? 3 3

0 58 ? 58

1 ? 35 35

1 ? 40 40

0 30 ? 30

0 36 ? 36
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Worked Out Example

The observed difference-in-means test-statistic is

(y | z = 1)− (y | z = 0)

=
(10 + 40 + 3 + 35 + 40)

5
−

(20 + 38 + 58 + 30 + 36)

5

= 25.6− 36.4

= −10.8,

where yi , the observed outcome for each of the i = 1, . . . , 10 units, is a realization of the random

variable Yi = Ziyit + (1− Zi ) yic .
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Worked Out Example

Let’s say that the researcher wants to assess the probability of the observed

test statistic, −10.8, or greater (in terms of absolute value) if a given

hypothesis were true.

For the purposes of exposition, assume that there are only 4 hypotheses.

• H1: The unit level causal effect is 0 for all 10 experimental subjects;

• H2: The unit level causal effect is −5 for all experimental subjects;

• H3: The unit level causal effect is −8 for all subjects;

• H4: The unit level causal effect is −10 for all subjects.

Assign an equal prior probability of 1
4

to each of the four causal hypotheses.
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Worked Out Example

In order to assess the evidential support for hypotheses H1, H2, H3 and H4, the

first step is to fill in the full schedule of potential outcomes as if each of the

respective hypothesis were true:

z yc yt yt − yc

1 10 10 0

0 20 20 0

0 38 38 0

1 40 40 0

1 3 3 0

0 58 58 0

1 35 35 0

1 40 40 0

0 30 30 0

0 36 36 0

z yc yt yt − yc

1 15 10 -5

0 20 15 -5

0 38 33 -5

1 45 40 -5

1 8 3 -5

0 58 53 -5

1 40 35 -5

1 45 40 -5

0 30 25 -5

0 36 31 -5

Table 8: Potential Outcomes Under (from Left to Right) H1 : 0, H2 : −5
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Worked Out Example

z yc yt yt − yc

1 18 10 -8

0 20 12 -8

0 38 30 -8

1 48 40 -8

1 11 3 -8

0 58 50 -8

1 43 35 -8

1 48 40 -8

0 30 22 -8

0 36 28 -8

z yc yt yt − yc

1 20 10 -10

0 20 10 -10

0 38 28 -10

1 50 40 -10

1 13 3 -10

0 58 48 -10

1 45 35 -10

1 50 40 -10

0 30 20 -10

0 36 26 -10

Table 9: Potential Outcomes Under (from Left to Right) H3 : −8 and H4 : −10
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Worked Out Example

• For all null hypotheses, the expected value of the difference-in-mean yc

values between treatment and control units over all 252 treatment

assignment permutations is always 0.

• That is, by considering only treatment and control units’ yc values, the

difference in mean yc values between units assigned to treatment and units

assigned to control is, by construction, equal to 0 in expectation.
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Figure 2: Randomization Distributions Under Each of the Null Hypotheses
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Worked Out Example: P-Values

1. 78
252 = 13

42 ≈ 0.3095238 for H1

2. 146
252 = 73

126 ≈ 0.5793651 for H2

3. 200
252 = 50

63 ≈ 0.7936508 for H3

4. 232
252 = 58

63 ≈ 0.9206349 for H4.
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Posterior Credences

One can then calculate the posterior credences in each of the four hypotheses

as follows:

1. C (H1) =
PH1

(e)

C(e)
C(H1) =

(
( 13

42 )
( 41

63 )

)(
1
4

)
≈
(

0.3095238
2.603175

)
≈ 0.1189024.

2. C (H2) =
PH2

(e)

C(e)
C(H2) =

(
( 73

126 )
( 41

63 )

)(
1
4

)
≈
(

0.5793651
2.603175

)
≈ 0.2225609.

3. C (H3) =
PH3

(e)

C(e)
C(H3) =

(
( 50

63 )
( 41

63 )

)(
1
4

)
≈
(

0.7936508
2.603175

)
≈ 0.304878.

4. C (H4) =
PH4

(e)

C(e)
C(H4) =

(
( 58

63 )
( 41

63 )

)(
1
4

)
≈
(

0.9206349
2.603175

)
≈ 0.3536585.
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Worked Out Example: Discussion

• The prior credences of H3 (the true hypothesis) and H4 both increase after

observing experimental evidence, but H4 increases by more than H3.

• The true hypothesis, H3, does not have the highest p-value among the

four hypotheses. H4 has the highest p-value of 58
63
≈ 0.9206349.

• In general, the null hypothesis that is exactly equal to the mean difference

in observed yt and yc values—in this case, −10.8—will always have the

highest two-sided p-value, which will always be 1.

• In expectation, the observed test statistic will be −8, and whenever the

observed test statistic is −8, the p-value of the hypothesis that the mean

unit-level causal effect is −8 will always be 1.
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Worked Out Example: Discussion

Figure 3: Randomization Distribution of Difference-in-Means Test-Statistic
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Worked Out Example: Discussion

• The p-value of the hypothesis equal to the expected value is 1, but the

expected p-value of the true hypothesis, H : −8, is not 1.

• The expected difference-in-means test statistic is −8, but that value

occurs in only 6 out of the 252 permutations.

• A difference-in-means test statistic of −10, by contrast, occurs in 8 out of

the 252 permutations even though −8 is the true average causal effect

and −10 is not.

• By the finite central limit theorem, the randomization distribution

converges to a normal distribution as the size of the experiment’s finite

population approaches infinity, in which case the expected test statistic

(which is equal to the truth) is also the modal (most frequent) test

statistic.

• Insofar as the randomization distribution is approximately normal, then the

modal observed difference-in-means test statistic is −8, which implies that

the true hypothesis will have the highest p-value more times than will any

false hypothesis.
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Conclusion

• The random assignment of experimental units to treatment and control

yield exact p-values based only on that random assignment process and

the outcome the researcher seeks to measure, not probability models of

the DGP.

• Exact p-values substitute for only the likelihood function in which

hypotheses ascribe probabilities to individual data (as opposed to p-values

that reflect the probabilities hypotheses ascribe to the observed test

statistic or greater under repeated randomizations).

• Bayesianism’s incorporation of researchers’ prior beliefs over all hypotheses

remains in the approach offered herein.

• Researchers are thus able to update prior beliefs about all hypotheses via

Bayesian conditionalization instead of relying on the conventional

frequentist decision calculus in which only a single hypothesis is either

rejected or not rejected.
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Further Questions



Conclusion

• Are there any problems with using p-values to define the probability a

hypothesis ascribes to empirical data?

• What about external validity?
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