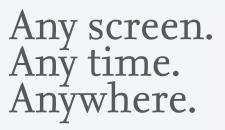
Netter's CONCISE NEUROANATOMY

UPDATED EDITION


MICHAEL RUBIN AND JOSEPH E. SAFDIEH

ELSEVIER

F. Netters

Activate the eBook version of this title at no additional charge.

Expert Consult eBooks give you the power to browse and find content, view enhanced images, share notes and highlights-both online and offline.

Unlock your eBook today.

- 1 Visit expertconsult.inkling.com/redeem
- 2 Scratch off your code
- 3 Type code into "Enter Code" box
- 4 Click "Redeem"
- 5 Log in or Sign up
- 🜀 Go to "My Library"

It's that easy!

Scan this QR code to redeem your eBook through your mobile device:

Place Peel Off Sticker Here

For technical assistance: email expertconsult.help@elsevier.com call 1-800-401-9962 (inside the US) call +1-314-447-8200 (outside the US)

ELSEVIER

Use of the current edition of the electronic version of this book (eBook) is subject to the terms of the nontransferable, limited license granted on expertconsult.inkling.com. Access to the eBook is limited to the first individual who redeems the PIN, located on the inside cover of this book, at expertconsult.inkling.com and may not be transferred to another party by resale, lending, or other means.

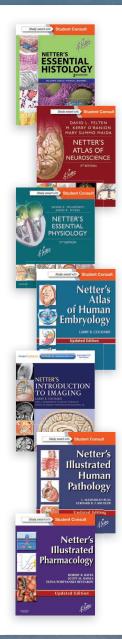
ELSEVIER

NETTER: It's How You Know Anatomy.

Entire Collection Now Available!

Netter Collection of Medical Illustrations, 2nd Edition

The Netter Collection of Medical Illustrations, Dr. Frank H. Netter's decades of work devoted to depicting each of the major body systems, has been updated and brought into modern context. The second edition of the legendary "green books" offers Netter's timeless work, now arranged and enhanced by modern text and radiologic imaging. Contributions by field-leading doctors and teachers from worldrenowned medical institutions are supplemented with new illustrations created by master artistphysician Carlos Machado and other top medical illustrators working in the Netter tradition.


Netter's Correlative Imaging Series

The **Netter's Correlative Imaging** series pairs classic Netter and Netter-style illustrations with imaging studies and succinct descriptions to provide you with a richer understanding of human anatomy. These comprehensive, normal anatomy atlases cover all major sections of the body, featuring illustrated plates side-by-side with the most common imaging modalities for each region.

Learn more at elsevierhealth.com

ELSEVIER

Explore more essential resources in the **NETTER BASIC SCIENCE COLLECTION!**

Netter's Essential Histology

With **Student Consult** Access By William K. Ovalle, PhD, and Patrick C. Nahirney, PhD Bring histologic concepts to life through beautiful Netter illustrations!

Netter's Atlas of Neuroscience

With **Student Consult** Access By David L. Felten, MD, PhD, M. Kerry O'Banion, MD, PhD, and Mary Summo Maida, PhD Master the neuroscience fundamentals needed for the classroom and beyond.

Netter's Essential Physiology

With **Student Consult** Access By Susan E. Mulroney, PhD, and Adam K. Myers, PhD Enhance your understanding of physiology the Netter way!

Netter's Atlas of Human Embryology

With **Student Consult** Access *By Larry R. Cochard, PhD* A rich pictorial review of normal and abnormal human prenatal development.

Netter's Introduction to Imaging

With **Student Consult** Access *By Larry R. Cochard, PhD, et al.* Finally...an accessible introduction to diagnostic imaging!

Netter's Illustrated Human Pathology

With **Student Consult** Access *By L. Maximilian Buja, MD, and Gerhard R. F. Krueger, PhD* Gain critical insight into the structure-function relationships and the pathological basis of human disease!

Netter's Illustrated Pharmacology

With **Student Consult** Access By Robert B. Raffa, PhD, Scott M. Rawls, PhD, and Elena Portyansky Beyzarov, PharmD Take a distinct visual approach to understanding both the basic science and clinical applications of pharmacology.

Shop online at elsevierhealth.com

Netter's Concise Neuroanatomy – UPDATED EDITION

Michael Rubin, MD, FRCP(C) Professor of Clinical Neurology Weill Cornell Medical College New York, New York

Joseph E. Safdieh, MD Vice Chairman for Education Associate Professor of Neurology Weill Cornell Medical College Medical Director, Neurology Clinic New York, New York

Illustrations by Frank H. Netter, MD

Contributing Illustrators John A. Craig, MD Carlos A.G. Machado, MD James A. Perkins, MS, MFA

ELSEVIER

ELSEVIER

1600 John F. Kennedy Blvd. Ste 1800 Philadelphia, PA 19103-2899

Netter's Concise Neuroanatomy – UPDATED EDITION

Copyright © 2017, 2007 by Elsevier Inc.

All rights reserved. No part of this book may be produced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without permission in writing from the publishers. Permissions for Netter Art figures may be sought directly from Elsevier's Health Science Licensing Department in Philadelphia PA, USA: phone 1-800-523-1649, ext. 3276 or (215) 239-3276; or email H.Licensing@elsevier.com.

Notice

Neither the Publisher nor the Authors assume any responsibility for any loss or injury and/or damage to persons or property arising out of or related to any use of the material contained in this book. It is the responsibility of the treating practitioner, relying on independent expertise and knowledge of the patient, to determine the best treatment and method of application for the patient.

The Publisher

Working together to grow

Library of Congress Cataloging-in-Publication Data

Names: Rubin, Michael, 1957- author. | Safdieh, Joseph E., author. | Netter, Frank H. (Frank Henry), 1906-1991, illustrator.

Title: Netter's concise neuroanatomy/Michael Rubin, Joseph E. Safdieh ; illustrations by Frank H. Netter ; contributing illustrators John A.

Craig, Carlos A.G. Machado, James A. Perkins.

Description: Philadelphia, PA : Elsevier, [2017] | Includes index.

Identifiers: LCCN 2016016617 | ISBN 9780323480918 (pbk. : alk. paper)

Subjects: | MESH: Nervous System—anatomy & histology | Nervous System Diseases | Atlases

Classification: LCC QP361 | NLM WL 17 | DDC 612.8-dc23 LC record available at https://lccn.loc.gov/2016016617

Acquisitions Editor: Elyse O'Grady Developmental Editor: Marybeth Thiel Publishing Services Manager: Linda Van Pelt Project Manager: Priscilla Crater Design Direction: Lou Forgione

 Printed in China
 Ibraries in developing countries

 Last digit is the print number: 9
 8
 7
 6
 5
 4
 3
 2
 1
 ELSEVIER
 BOOK AID International
 Sabre Foundation

 To my wife, Annette. Without you, little would be possible. Even less would be worthwhile. —M.R.

In honor of my wife, Esther, who is a source of unyielding support and devotion. In memory of Mrs. Audrey Nasar, who served as a constant source of inspiration for me.

—J.S.

This page intentionally left blank

Preface

Neuroanatomy is the key to neurology; a solid grounding in neuroanatomy goes a long way in solving any neurodiagnostic challenge. Many fine neuroanatomy textbooks are available, some large, some small. What makes this text unique is the unparalleled Netter series of diagrams, coupled with the relevant points that the student needs to master, all presented in a clear, simplified, straightforward, tabulated format. Easy to grasp and review at a glance, they offer the student what (s)he needs to know without being overburdened with the details needed primarily by the board-certifying neurologist.

Arranged, for the most part, using the standard anatomic approach found in most texts, this atlas is designed to be broadly applicable to medical, dental, allied health and undergraduate neuroanatomy courses. Netter's illustrations provide an illustrative venue for understanding neuroanatomy, a science that is nothing if not visual. Netter's rich illustrations say more than words, while the text, primarily in tabular and point form, supplements and highlights the important aspects of the figures which you, the student, must master.

Acknowledgments

We would like to thank the reviewers who, anonymously, have helped us improve this text to the best of our ability. Any errors that remain are, of course, our own. Our developmental editor, Marybeth Thiel, has patiently worked with us in getting this atlas completed in a timely fashion, and has demonstrated that writing a book can be an enjoyable pastime. Michael Rubin would like to thank his father, a retired cardiologist and outstanding clinician in his own right, for being his guiding light, teacher, and exemplar of what it means to be a teacher and physician. Joseph Safdieh would like to thank his parents for their perpetual support. Finally, we both owe our thanks to Paul Kelly who, though unable to see this to completion, was the initiator of the project and to him we owe our gratitude.

Michael Rubin Joseph Safdieh This page intentionally left blank

Michael Rubin, M.D., F.R.C.P.(C), is Professor of Clinical Neurology at the Joan and Sanford I. Weill Medical College of Cornell University and Director of the Neuromuscular Service and Electromyography Laboratory at New York Presbyterian Hospital-Cornell Medical Center, Dr. Rubin has been Director of the Neurology Clerkship at Weill-Cornell since 1996 and has received several teaching awards from medical students and neurology residents. In 2002, he was awarded the Teacher Recognition Certificate of the AB Baker Section on Education from the American Academy of Neurology, given to nationally recognized neurologic educators, and he has served as an Associate Examiner for the American Board of Psychiatry and Neurology. In addition to his clinical neurology practice and medical education focus at the student and resident level, Dr. Rubin directs the EMG Fellowship for post-residency trainees. His research interests encompass therapeutic clinical trials in the area of diabetic and HIV-associated peripheral neuropathy. Dr. Rubin is an assistant editor of Neurology Alert, a monthly survey of developments in neurologic medicine. A nonpracticing ordained orthodox rabbi, he enjoys giving a nightly Talmud class at his synagogue.

Joseph E. Safdieh, MD, is Associate Professor of Neurology and Vice Chairman for Education in the Department of Neurology at Joan and Sanford I. Weill Medical College of Cornell University and Associate Attending Neurologist at New York Presbyterian Hospital. He serves as Director of the Neurology Clerkship at Weill Medical College of Cornell University and Director of Outpatient Training for the Neurology Residency Program at New York Presbyterian Hospital. He has received numerous awards for his academic and teaching achievements. He is a member of Phi Beta Kappa and Alpha Omega Alpha. Dr. Safdieh received his bachelor's degree in neuroscience and his medical degree from New York University. He completed his neurology residency training at the Weill Cornell Campus of New York Presbyterian Hospital, where he also served as chief resident in neurology. This page intentionally left blank

Frank H. Netter was born in 1906, in New York City. He studied art at the Art Student's League and the National Academy of Design before entering medical school at New York University, where he received his MD degree in 1931. During his student years, Dr. Netter's notebook sketches attracted the attention of the medical faculty and other physicians, allowing him to augment his income by illustrating articles and textbooks. He continued illustrating as a sideline after establishing a surgical practice in 1933, but he ultimately opted to give up his practice in favor of a full-time commitment to art. After service in the United States Army during World War II, Dr. Netter began his long collaboration with the CIBA Pharmaceutical Company (now Novartis Pharmaceuticals). This 45-year partnership resulted in the production of the extraordinary collection of medical art so familiar to physicians and other medical professionals worldwide.

Icon Learning Systems acquired the Netter Collection in July 2000 and continued to update Dr. Netter's original paintings and to add newly commissioned paintings by artists trained in the style of Dr. Netter. In 2005, Elsevier, Inc. purchased the Netter Collection and all publications from Icon Learning Systems. There are now over 50 publications featuring the art of Dr. Netter available through Elsevier, Inc.

Dr. Netter's works are among the finest examples of the use of illustration in the teaching of medical concepts. The 13-book *Netter Collection of Medical Illustrations,* which includes the greater part of the more than 20,000 paintings created by Dr. Netter, became and remains one of the most famous medical works ever published. *The Netter Atlas of Human Anatomy,* first published in 1989, presents the anatomical paintings from the Netter Collection. Now translated into 16 languages, it is the anatomy atlas of choice among medical and health professions students the world over.

The Netter illustrations are appreciated not only for their aesthetic qualities, but, more importantly, for their intellectual content. As Dr. Netter wrote in 1949 "... clarification of a subject is the aim and goal of illustration. No matter how beautifully painted, how delicately and subtly rendered a subject may be, it is of little value as a *medical illustration* if it does not serve to make clear some medical point." Dr. Netter's planning, conception, point of view, and approach are what inform his paintings and what makes them so intellectually valuable.

Frank H. Netter, MD, physician and artist, died in 1991.

This page intentionally left blank

Acknowledgments

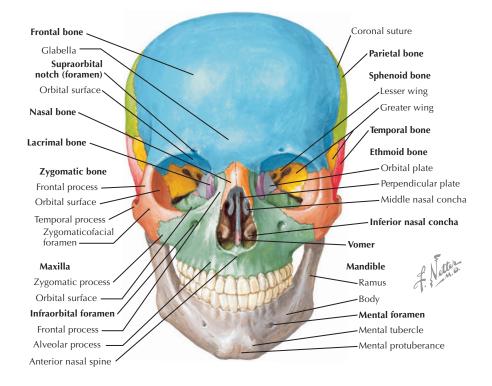
The Netter collection of medical illustrations contains a rich assortment of art depicting the complexities of the structure and function of the nervous system. The success of these illustrations is because of close collaboration of content expert and artist. Dr. Frank Netter's most comprehensive collection of neuroanatomy artwork is found in Volume 1, Part 1 of *The Netter Collection of Medical Illustrations*. Since Dr. Netter's passing, several artists have continued in the Netter tradition, working with leaders in various specialties to update some of the Netter plates and to develop new ones that reflect current scientific thought and clinical practice. In preparing *Netter's Atlas of Human Neuroscience*, David Felten, M.D., Ph.D. worked with artists John Craig, M.D. and Jim Perkins to create 117 new illustrations and modify 35 others for the Netter collection of medical illustrations. The creation of these fine images owes much to Dr. Felten who was the content expert for these illustrations, many of which appear in this book. Elsevier thanks them for their contributions to the collection without which many of the illustrations contained in this book would not have been available for reuse and modification.

This page intentionally left blank

Netter's Concise Neuroanatomy

Table of Contents

1 Bony Coverings of the Brain and Spinal Cord	1
2 Gross Anatomy of the Brain and Spinal Cord	31
3 Blood Vessels of the Brain and Spinal Cord	51
4 Cerebrospinal Fluid and Coverings of the Brain	79
5 Medulla Oblongata	89
6 Pons	109
7 Midbrain (Mesencephalon)	129
8 Thalamus	137
9 Basal Ganglia	145
10 Cerebellum	155
11 Cerebral Cortex	167
12 Hypothalamus	181
13 Limbic System	201
14 Cranial Nerves I-XII	213
15 Major Sensory and Motor Pathways	265
16 Reticular Formation	293
17 Anatomy of the Peripheral Nervous System: Upper Extremity	303
18 Anatomy of the Peripheral Nervous System: Lower Extremity	341
19 Autonomic Nervous System	367
Index	393


This page intentionally left blank

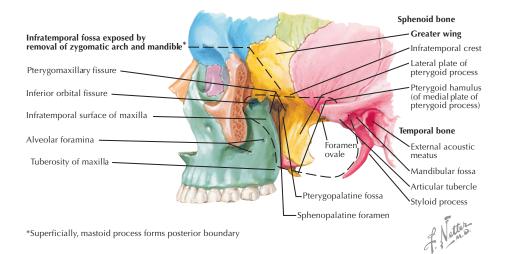
CHAPTER 1 Bony Coverings of the Brain and Spinal Cord

Skull: Anterior View	2
Orbit: Anterior View	3
Skull: Lateral View	4
Skull: Lateral Radiograph	6
Skull: Midsagittal View	7
Calvaria	9
Base of Skull: from Below	11
Base of Skull: from Above	12
Bony Framework of Head and Neck	14
Surface Anatomy Back	15
Vertebral Column	16
Cervical Vertebrae: Atlas and Axis	18
Cervical Vertebrae	20
External Craniocervical Ligaments	22
Internal Craniocervical Ligaments	23
Thoracic Vertebrae	25
Lumbar Vertebrae	26
Vertebral Ligaments of Spinal Column	28
Sacrum and Coccyx	30

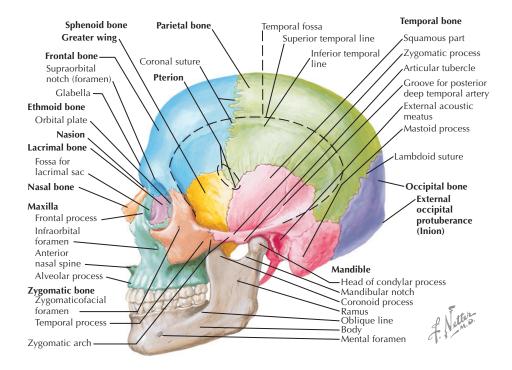
SKULL: ANTERIOR VIEW

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Supraorbital notch	Transmits supraorbital nerve	A useful pressure point for evaluation of arousability in a comatose patient
Infraorbital foramen	Transmits infraorbital nerve	Supplies the skin of lower eyelid, cheek, side of nose, and upper lip
Mental foramen	Transmits mental nerve	Mental neuropathy causes a numb chin and may be a symptom of underlying malignancy; requires aggressive evaluation

ORBIT: ANTERIOR VIEW


STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Optic foramen	Transmits optic nerve (CN-II) and ophthalmic artery	Compression of CN-II causes blindness
Superior orbital fissure	Transmits oculomotor nerve (CN- III), trochlear nerve (CN-IV), and nasociliarly branches of ophthalmic division of trigeminal nerve (V ₁) and abducens nerve (CN-VI)	Tolosa-Hunt syndrome: idiopathic inflammatory process involving superior orbital fissure, causing eye pain and ophthalmoplegia from involvement of CN-III, -IV, and -VI
Inferior orbital fissure	Transmits maxillary nerve, venous plexus channels, fascicles from pterygopalatine ganglion	Trigeminal neuralgia (tic douloureux) usually involves maxillary and mandibular divisions of trigeminal nerve, rarely ophthalmic division

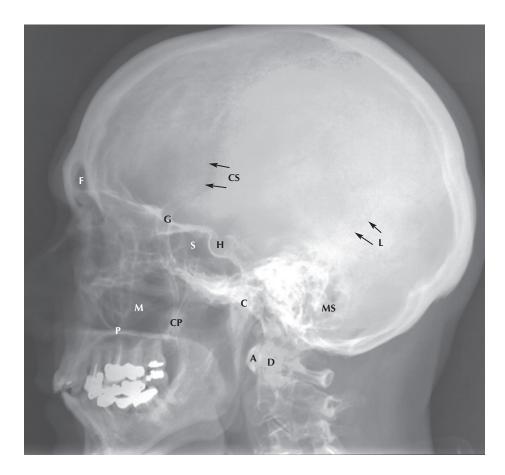
Right orbit: frontal and slightly lateral view



SKULL: LATERAL VIEW

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Zygomatic bone	Yokes temporal (zygon), sphenoid (greater wing), frontal, and maxillary bones	Sphenoid wing is a common site of origin of meningioma
Pterion	Point where greater wing of sphenoid meets anteroinferior angle of parietal bone	Beneath the pterion lies the anterior branch of the middle meningeal artery, often injured from skull fracture
Nasion	Depression in midline at root of nose	Falx cerebri begins here and extends posteriorly to the inion
Inion	Identical to external occipital protuberance, junction of head and neck	Line joining nasion over skull to inion indicates the position of underlying falx cerebri, superior sagittal sinus, and longitudinal interhemispheric cerebral fissure

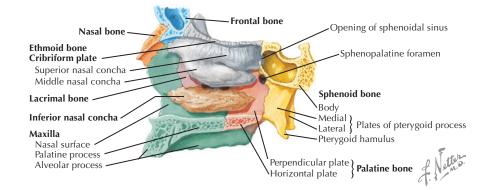
SKULL: LATERAL VIEW continued



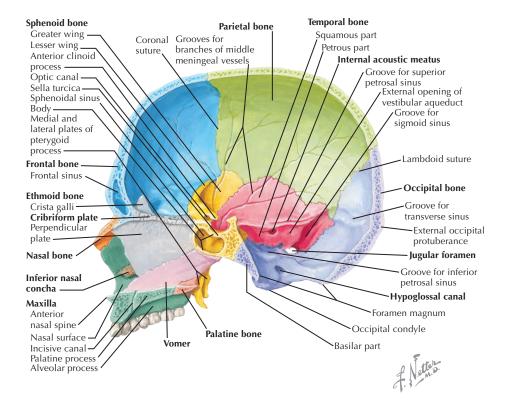
Bony Coverings of the Brain and Spinal Cord

SKULL: LATERAL RADIOGRAPH

CLINICAL NOTE:

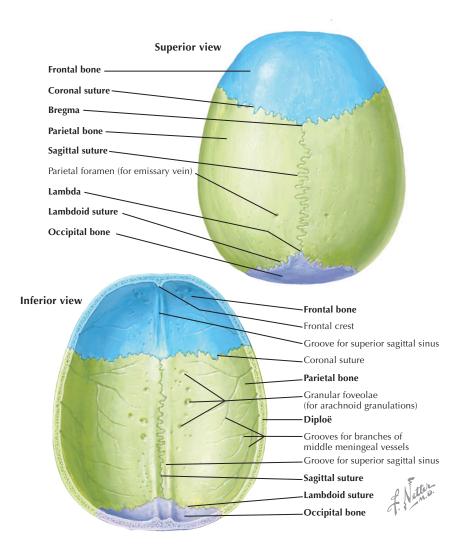

Enlargement of sella turcica on skull x-ray suggests pituitary tumor.

- A Anterior arch of atlas (CI vertebra)
- C Condyle of mandibleCP Coronoid process of
- CS Coronal suture
- D Dens of axis (C2 vertebra)
- F Frontal sinus
- G Greater wing of sphenoid
- H Hypophyseal fossa (sella turcica)
- L Lambdoid suture
- M Maxillary sinus
- MS Mastoid air cells
- P Palatine process of maxilla
- S Sphenoid sinus


SKULL: MIDSAGITTAL VIEW

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Internal acoustic (auditory) meatus	Transmits facial nerve (CN- VII), vestibulocochlear nerve (CN-VIII), and internal auditory artery	Internal acoustic meatus is near the cerebellopontine angle. Tumors in this region cause facial weakness (CN-VII nerve compression), deafness, tinnitus, and vertigo (CN-VIII nerve compression).
Jugular foramen	Lodges superior bulb of internal jugular vein and transmits glossopharyngeal nerve (CN-IX), vagus nerve (CN-X), and spinal accessory nerve (CN-XI)	Jugular foramen syndrome affects CN-IX, -X, -XI, causing hoarseness (vocal cord paralysis), dysphagia, deviation of soft palate to normal side, posterior pharyngeal wall anesthesia, trapezius and sternocleidomastoid weakness. May be due to posterior fossa tumor, vertebral artery aneurysm, or, on leaving the skull, internal carotid artery dissection.
Hypoglossal canal	Transmits hypoglossal nerve (CN-XII)	Hypoglossal nerve lesions (Lou Gehrig's disease, polio) cause tongue atrophy, weakness, and fasciculations.
Cribriform plate	Transmits olfactory nerves (CN-I) from nasal mucosa to olfactory bulb	Meningiomas of cribriform plate cause unilateral anosmia.

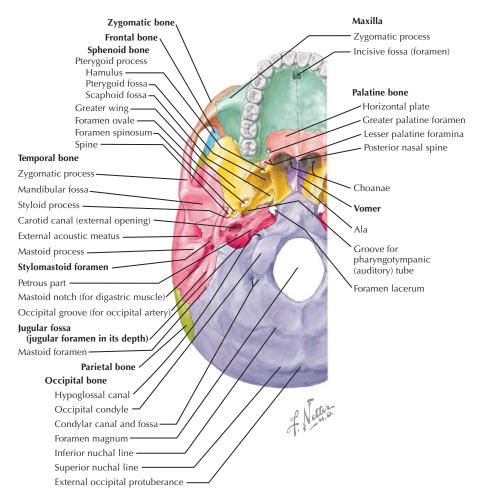
Bony Coverings of the Brain and Spinal Cord


SKULL: MIDSAGITTAL VIEW continued

CALVARIUM

STRUCTURE	ANATOMIC NOTES	
Calvarium	Skullcap	
	Roof of the cranium is formed by frontal, parietal, and occipital bones	
Frontal bone	Meets parietal bones at coronal suture	
Parietal bones	Meet each other at midline sagittal suture, meet occipital bones at lambdoid suture	
Bregma	Meeting point of sagittal suture and coronal suture	
Lambda	Meeting point of sagittal suture and lambdoid suture	
Vertex of skull	Highest point, lies in midline of sagittal suture	
Skull bones	Possess outer and inner lamellae separated by diploe: layer of cancellous bone	

CALVARIUM continued

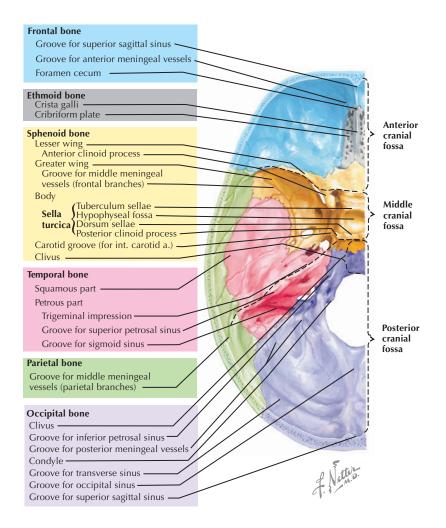


BASE OF SKULL: FROM BELOW

STRUCTURE	ANATOMIC NOTES
Incisive foramen	Transmits nasopalatine nerve terminal branches
Greater and lesser palatine foramina	Transmit corresponding nerves and arteries
Stylomastoid foramen	Transmits CN-VII
Jugular fossa	Lodges superior bulb of internal jugular vein

CLINICAL NOTES:

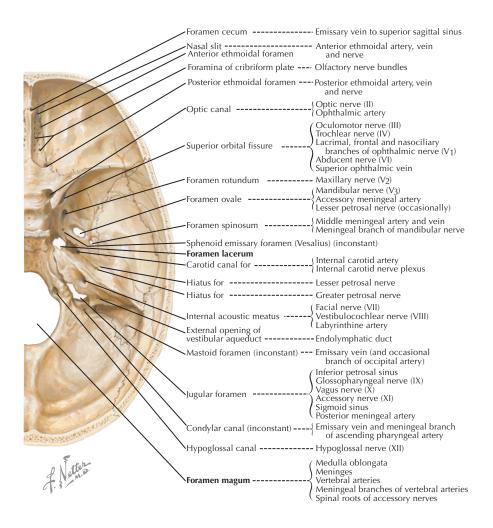
- Paget's disease may cause basilar invagination of skull base, resulting in lower cranial nerve (CN-IX, -X, -XI, -XII) abnormalities, high spinal myelopathy, and cerebellar findings.
- Nasopharyngeal carcinoma can spread from the nasopharynx along the skull base, picking
 off individual cranial nerves along its course and causing multiple cranial
 mononeuropathies, usually the trigeminal nerve (CN-V) and CN-VI, with resulting facial
 numbness (CN-V) and horizontal diplopia (CN-VI).


Bony Coverings of the Brain and Spinal Cord

BASE OF SKULL: FROM ABOVE

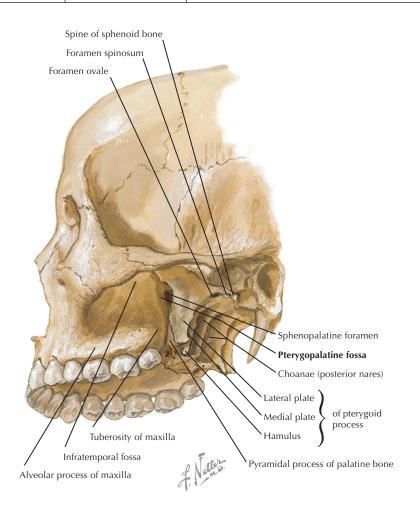
STRUCTURE	ANATOMIC NOTES
Anterior cranial fossa	Houses the frontal lobes
Middle cranial fossa	Houses the temporal lobes
Posterior cranial fossa	Houses the cerebellum, pons, and medulla
Sella turcica	Houses the pituitary gland

CLINICAL NOTES:

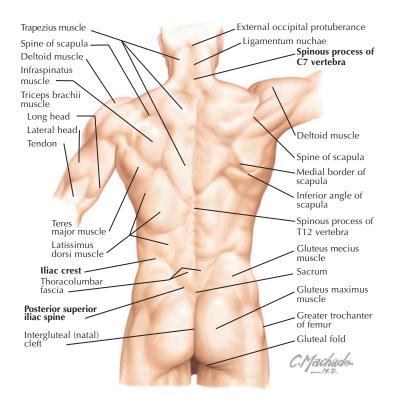

Lesser sphenoid wing meningiomas may expand medially to involve cavernous sinus (affecting CN-III, -IV, and -VI), anteriorly into orbit causing exophthalmos, or laterally into temporal bone, causing bulging of bone.

BASE OF SKULL: FROM ABOVE continued

CLINICAL NOTES:


- Chronic meningeal diseases often involve the skull base (internally).
- Multiple cranial mononeuropathies occur as a result of contiguous spread of process with involvement of cranial nerves.
- Differential diagnoses include infection, autoimmune, and neoplasms.
- Foramen lacerum: Internal carotid artery enters foramen through carotid canal and then turns upward and forward into cavernous sinus.

Bony Coverings of the Brain and Spinal Cord


BONY FRAMEWORK OF HEAD AND NECK

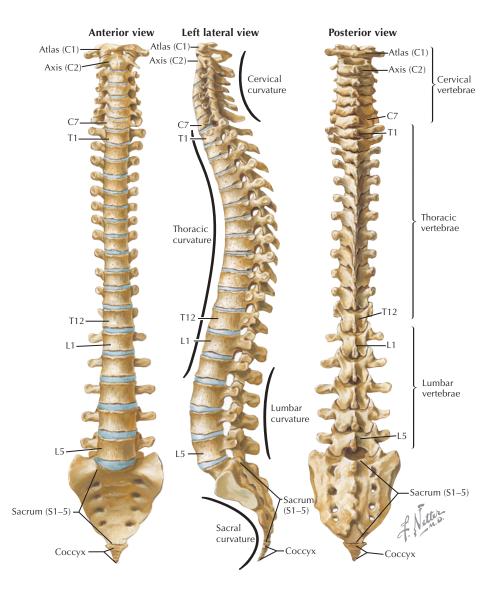
STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Pterygopalatine fossa	Small space behind and below the orbital cavity	 Communicates: Laterally with infratemporal fossa through pterygomaxillary fissure Medially with nasal cavity through sphenopalatine foramen Superiorly with skull through foramen rotundum Anteriorly with orbit through inferior orbital fissure

SURFACE ANATOMY BACK

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Spinous process of C7 vertebra	Vertebra prominens	First spinous process to be felt; 1-6 are covered by ligamentum nuchae
Iliac crests	Horizontal line joining their highest point corresponds to L3-4 interspace	Landmark for lumbar puncture
Posterior superior iliac spines	Horizontal line joining them passes through S2 spinous process	Subarachnoid space with cerebrospinal fluid extends to this level

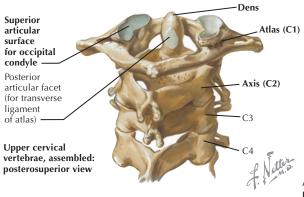
VERTEBRAL COLUMN

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
33 Vertebral bodies	7 Cervical, 12 thoracic, 5 lumbar, 5 fused sacral, 4 fused coccygeal	Increase in size caudally due to increasing weight they bear
Intervertebral discs	Between each vertebrae but lacking between occiput and atlas and between atlas and axis	Act as shock absorbers for spinal column
C7	Called vertebra prominens because it is the longest cervical spinous process	Highest spinous process palpable is C7


LEVEL	CORRESPONDING STRUCTURE	
C2-3	Mandible	
C3	Hyoid bone	
C4-5	Thyroid cartilage	
C6	Cricoid cartilage	
C7	Vertebra prominens	
Т3	Spine of scapula	
Т8	Point of inferior vena cava piercing diaphragm	
T10	Xiphisternal junction	
T10	Point of esophagus entering stomach	
T12	Point of aorta entering abdomen	
L1	End of spinal cord	
L3	Subcostal plane	
L3-4	Umbilicus	
L4	Bifurcation of aorta	
L4	Iliac crests	
S2	End of dural sac	

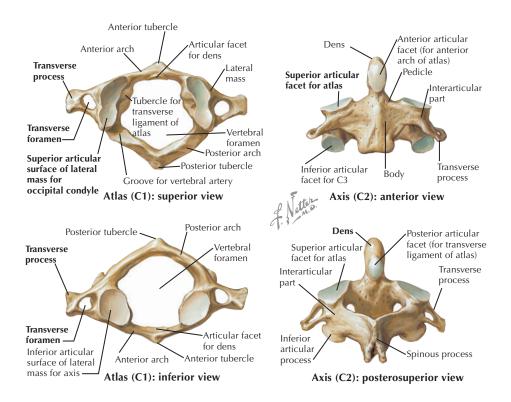
From Hansen, J.T., & Lambert, D.R. (2006). Netter's Clinical Anatomy. Philadelphia, Elsevier.

CLINICAL NOTES:


- Lumbar disc herniation is more frequent than cervical herniation.
- Disc between L5 and S1 vertebrae is the most common herniated disc.
- As one ascends, lumbar discs herniate with decreasing frequency in sequence (i.e., L4-5 more often than L3-4 > L2-3 > L1-2).
- Thoracic discs represent 0.5% of all surgically verified disc protrusions.
- Lower four thoracic interspaces are the most frequently involved.
- Lumbar puncture is done at L3-4 interspace, or the space above or below, to avoid puncturing the spinal cord that ends at L1-2 interspace.

VERTEBRAL COLUMN continued

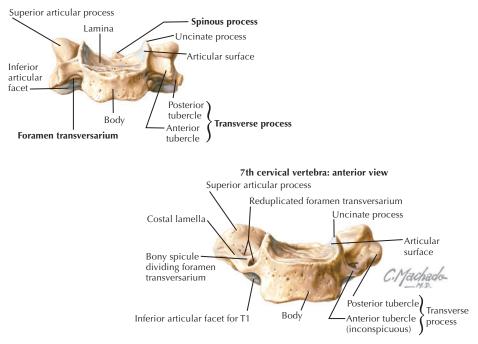
CERVICAL VERTEBRAE: ATLAS AND AXIS


STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Atlas	First cervical vertebra Has no body Forms ring enclosing vertebral foramen Transverse processes pierced by transverse foramen for vertebral artery Occipital condyles of skull	Paget's disease may cause basilar invagination (upward bulging of occipital condyles), causing neck shortening, cerebellar signs, and myelopathy
	rest on superior articular facets of atlas	
Axis	Second cervical vertebra	Hangman fracture, suffered in hanging death, involves fracture of C2, axis, with or without subluxation (slippage) of C2 on C3 and causes death by paralyzing breathing
Dens	Tooth-like process, projects upward from body	Forms a pivot around which atlas and skull can rotate
	A divorced portion of atlas that has united with axis	

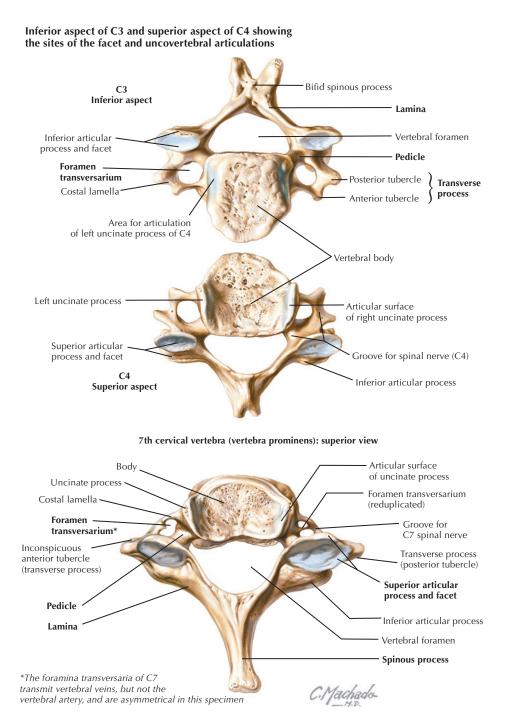
Radiograph of atlantoaxial jointALateral masses of atlas (CI vertebra)DDens of axis (C2 vertebra)

CERVICAL VERTEBRAE: ATLAS AND AXIS continued

Bony Coverings of the Brain and Spinal Cord

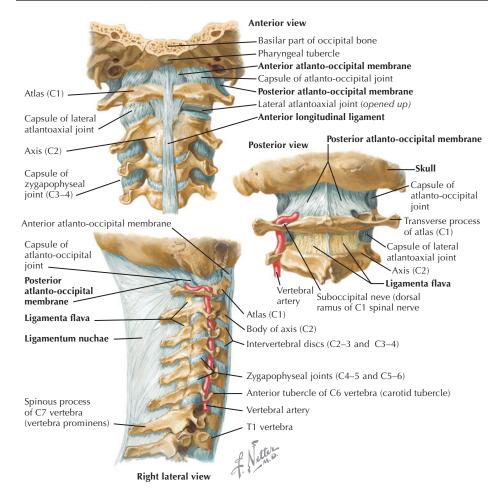

CERVICAL VERTEBRAE

STRUCTURE	ANATOMIC NOTES	
Cervical vertebra C1-7	Foramen in transverse processes for vertebral artery, which passes anterior to transverse process of C7 and runs upward from C6 to C1	
Pedicles	Project posterolaterally from body of vertebra	
Laminae	Directed medially and fuse posteriorly as spinous process	
Superior and inferior articular facets	Lie at the junction of pedicle and lamina	
Intervertebral foramina	Bordered by pedicles above and below, by intervertebral discs anteriorly, and by facets and facet joints posteriorly	


CLINICAL NOTES:

- Dorsal and ventral spinal nerve roots fuse in the intervertebral foramen to form spinal nerve.
- Most common cervical herniated disc is C6-7 (70%).
- Next most common is C5-6 disc (20%), followed by C4-5 and C7-T1 (10%).

4th cervical vertebra: anterior view

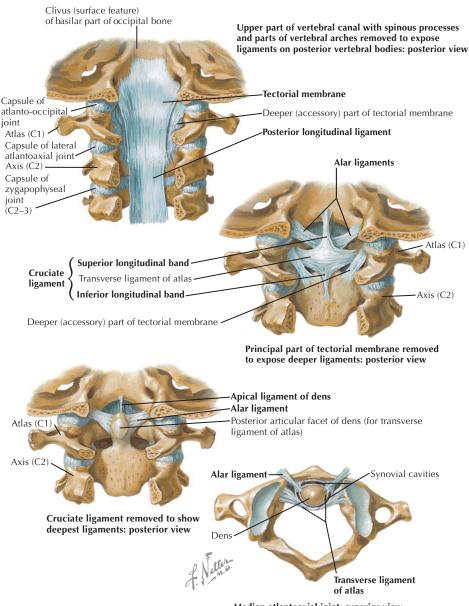


CERVICAL VERTEBRAE continued

EXTERNAL CRANIOCERVICAL LIGAMENTS

STRUCTURE	ANATOMIC NOTES
Anterior longitudinal ligament	Runs anterior to vertebrae from base of skull to sacrum
Posterior longitudinal ligament	Runs within vertebral canal, posterior to vertebral body, from base of skull to sacrum (not shown)
Anterior atlanto- occipital membrane	Connects anterior margin of foramen magnum with anterior arch of atlas. It is the continuation of anterior longitudinal ligament
Posterior atlanto- occipital membrane	Connects posterior margin of foramen magnum with posterior arch of atlas
Ligamentum nuchae	Runs from external occipital protuberance to posterior tubercle of atlas and spinous processes of all cervical vertebrae
Ligamentum flavum	Connects laminae of adjacent vertebrae but is absent between skull and atlas

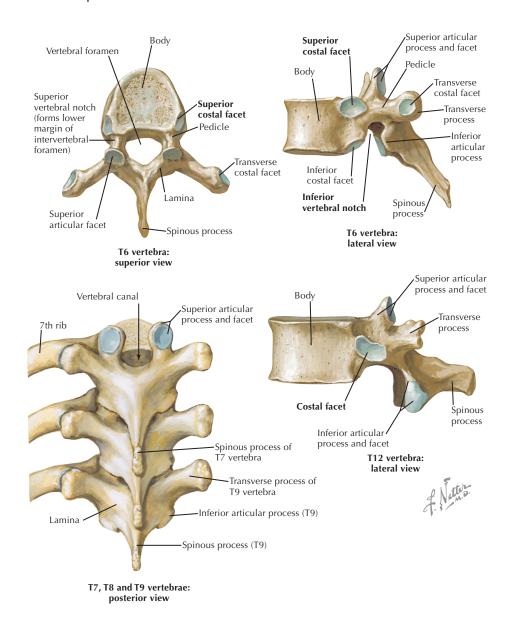
INTERNAL CRANIOCERVICAL LIGAMENTS


STRUCTURE	ANATOMIC NOTES
Posterior longitudinal ligament	Runs along posterior surface of vertebral bodies along anterior aspect of the vertebral canal
Tectorial membrane	Upward continuation of posterior longitudinal ligament; runs from posterior surface of dens to anterior/lateral margins of foramen magnum
Alar ligament	Connects dens (odontoid process) to the medial side of occipital condyles
Apical ligament	Connects apex of dens to the anterior margin of foramen magnum
Transverse ligament of atlas	Connects (right and left) lateral masses of atlas
Superior longitudinal fascicle	Runs from transverse ligament to basilar part of occipital bone
Inferior longitudinal fascicle	Runs from transverse ligament to posterior surface of body of axis
Cruciform (cruciate) ligament	Composed of transverse ligament of atlas and superior and inferior longitudinal fascicle

CLINICAL NOTE:

Alar ligament prevents excessive head rotation.

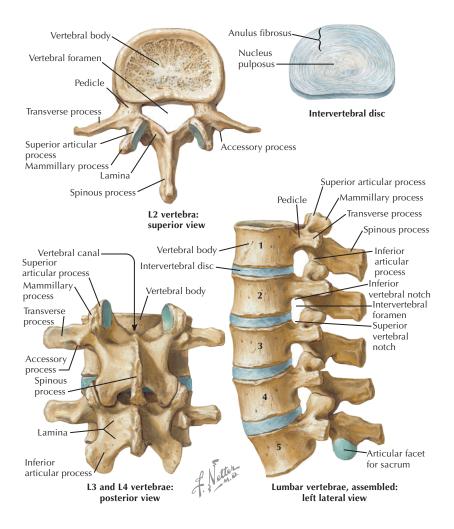
Bony Coverings of the Brain and Spinal Cord


INTERNAL CRANIOCERVICAL LIGAMENTS continued

Median atlantoaxial joint: superior view

THORACIC VERTEBRAE

- Vertebral bodies of all thoracic vertebrae have superior and inferior costal facets for ribs.
- Transverse processes of thoracic vertebra T1-10 also have transverse costal facets for ribs.

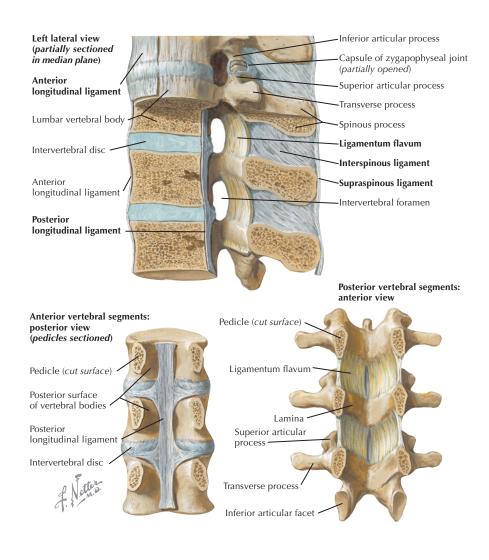

LUMBAR VERTEBRAE

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Lumbar vertebrae	Largest individual vertebra L5 is largest lumbar vertebra	As one ascends, lumbar discs herniate with decreasing frequency in sequence (i.e., L4-5 more often than L3-4 $>$ L2-3 $>$ L1-2)
Intervertebral discs	Composed of annulus fibrosus and nucleus pulposus	Disc between L5-S1 vertebrae is most common herniated disc

CLINICAL NOTES:

- Intervertebral discs make up 25% of the length of the vertebral column.
 With aging, discs desiccate and lose height. Hence aging is associated with becoming shorter.
- Lumbar disc herniation is more frequent than cervical herniation.

LUMBAR VERTEBRAE continued

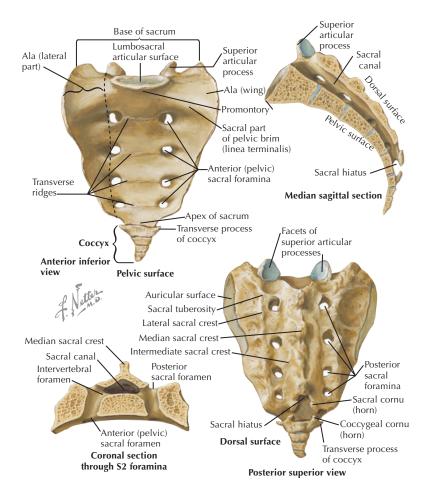


STRUCTURE	ANATOMIC NOTES
Anterior longitudinal ligament	Runs anterior to vertebrae from base of skull to sacrum
Posterior longitudinal ligament	Runs within vertebral canal, posterior to vertebral body, from the base of the skull to the sacrum
Ligamentum flavum	Connects adjacent laminae
Supraspinous ligament	Connects the tips of the vertebral spines throughout the spinal column
Interspinous ligament	Runs between adjacent spines throughout the spinal column, anterior to the supraspinal ligament

CLINICAL NOTE:

• Ligamentum nuchae, present in the neck only, are greatly thickened supraspinous and interspinous ligament.

VERTEBRAL LIGAMENTS OF SPINAL COLUMN continued



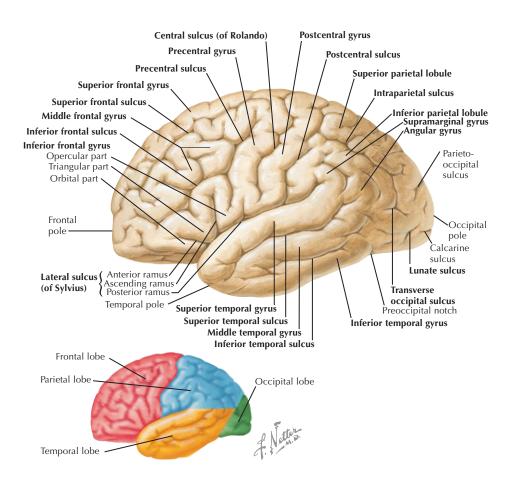
NETTER'S CONCISE NEUROANATOMY 29

STRUCTURE	ANATOMIC NOTES	
Sacrum	Consists of 5 fused vertebrae, wedge-shaped, narrow inferior apex articulates with coccyx	
Соссух	Formed by fusion of 4 rudimentary tail vertebrae	

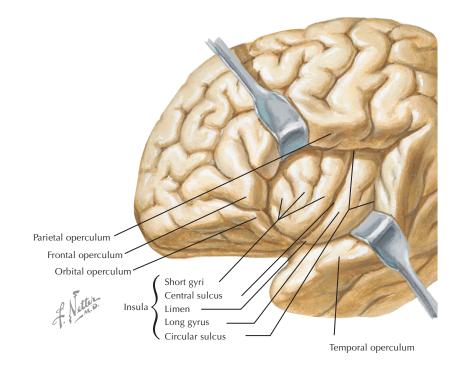
CLINICAL NOTES:

- First four sacral nerve root ventral rami exit through four ventral pelvic sacral foramina to join the sacral plexus.
- First four sacral nerve root dorsal rami exit through four dorsal sacral pelvic foramina to supply the lower paraspinal muscles and skin.

CHAPTER 2 Gross Anatomy of the Brain and Spinal Cord


Lateral Surface of the Brain	32
Insula (insular cortex)	34
Medial Surface of the Brain	35
Inferior Surface of the Brain	37
Brainstem: Medial View	39
Brainstem: Anterior and Ventral Views	40
Brainstem: Posterolateral View	42
Cerebellum: Superior and Inferior Surfaces	44
Spinal Cord In Situ	45
Spinal Cord: Anterior View	46
Section Through Spinal Cord at Various Levels	47
Principal Tracts of Spinal Cord	48

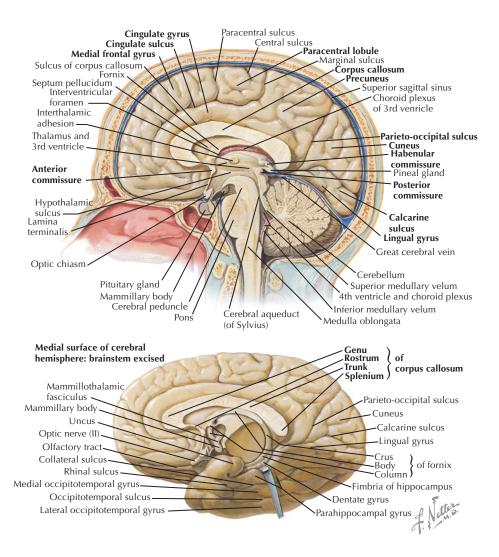
LATERAL SURFACE OF THE BRAIN


NOTABLE LATERAL SULCI		
Structure Anatomic Notes		
Lateral (Sylvian) fissure	Separates the temporal lobe from frontal and parietal lobes	
Central (Rolandic) sulcus Separates the frontal lobe from the parietal lobe		

CORTICAL LOBES: LATERAL VIEW			
Lobe	Notable Gyri	Notable Sulci	Notable Functions
Frontal	Superior frontal gyrus Middle frontal gyrus Inferior frontal gyrus Precentral gyrus	Superior frontal sulcus Inferior frontal sulcus Precentral sulcus	Motor control, expressive speech, personality, drive
Parietal	Postcentral gyrus Superior parietal lobule Inferior parietal lobule: • Supramarginal gyrus • Angular gyrus	Postcentral sulcus Intraparietal sulcus	Sensory input and integration, receptive speech
Temporal	Superior temporal gyrus Middle temporal gyrus Inferior temporal gyrus	Superior temporal sulcus Inferior temporal sulcus	Auditory input and memory integration
Occipital		Transverse occipital sulcus Lunate sulcus	Visual input and processing

LATERAL SURFACE OF THE BRAIN continued

STRUCTURE	ANATOMIC NOTES
Circular sulcus of the insula	Surrounds and demarcates the insula
Central sulcus of the insula	Divides the insula into anterior and posterior parts
Limen	The apex of the insula at its inferior margin
Short gyri and long gyrus	Gyri of the insula

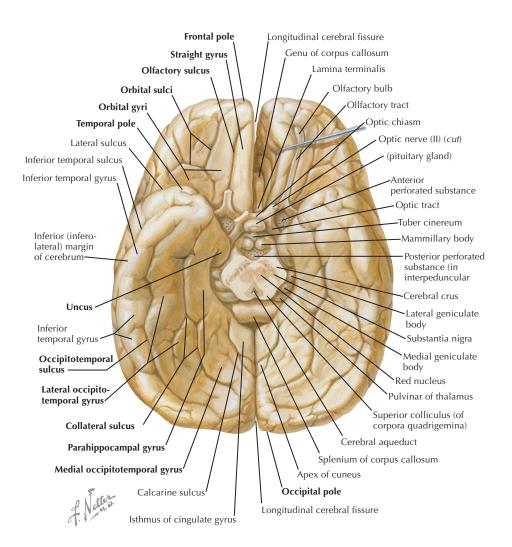

MEDIAL SURFACE OF THE BRAIN

MEDIAL CORTICAL STRUCTURES		
Structure	Anatomic Notes	Functional Significance
Medial frontal gyrus	Medial portion of frontal lobe	Involved in motivation
Cingulate sulcus	Separates medial frontal gyrus from cingulate gyrus	
Cingulate gyrus	C-shaped gyrus, which loops around the corpus callosum	Involved in emotion as part of limbic system
Paracentral lobule	Medial extension of precentral and postcentral gyri	Controls motor and sensory function of legs
Precuneus	Part of the medial extension of parietal lobe	
Parieto-occipital sulcus	Prominent sulcus separating parietal and occipital lobes	
Cuneus	Superior portion of medial occipital lobe	Functions in visual processing
Calcarine sulcus	Separates occipital lobe into (upper) cuneus and (lower) lingua	Primary visual center lies on banks of this sulcus
Lingual gyrus	Inferior portion of medial occipital lobe	Functions in visual processing

INTERHEMISPHERIC CONNECTIONS (COMMISSURES)		
Commissure	Anatomic Notes	
Anterior commissure	Contiguous and below the rostrum of corpus callosum	
Corpus callosum	Large, C-shaped major conduit between 2 hemispheres	
	Has following components:	
	Rostrum-tapered extension from genu; forms part of the floor of the lateral ventricle	
	Genu-curves anterior to the lateral ventricle	
	Trunk (body)-largest portion; forms the roof of the lateral ventricle	
	Splenium-the posterior-most portion	
Posterior commissure	Crosses at the upper end of the cerebral aqueduct	
Habenular commissure	Small commissure crossing superior to the pineal gland	

2 Gross Anatomy of the Brain and Spinal Cord

MEDIAL SURFACE OF THE BRAIN continued



INFERIOR SURFACE OF THE BRAIN

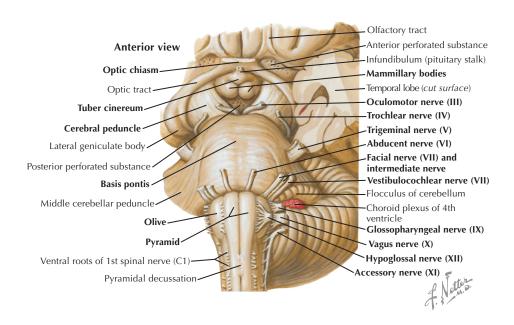
CORTICAL STRUCTURES			
Structure	Anatomic Notes	Functional Significance	
Frontal pole	Anterior-most portion of frontal lobe	Vulnerable to injury during head trauma	
Straight gyrus (gyrus rectus)	Most medial and inferior gyrus of frontal lobe		
Olfactory sulcus	Separates straight gyrus from more lateral orbital gyri	Olfactory tract travels with this sulcus	
Orbital gyri and sulci	Form the floor of frontal lobes; rest on the roof of orbits		
Temporal pole	Anterior-most portion of temporal lobe	Vulnerable to injury during head trauma	
Uncus	Medial-most bulb-shaped projection of temporal lobe	If swollen may compress the ipsilateral midbrain, causing contralateral hemiparesis	
Parahippocampal gyrus	Large inferomedial temporal lobe gyrus	Involved in emotion as part of the limbic system	
Collateral sulcus	Separates parahippocampal gyrus from medial occipitotemporal gyrus		
Medial occipitotemporal gyrus	Lies lateral to parahippocampal gyrus		
Occipitotemporal sulcus	Separates medial and lateral occipitotemporal gyri		
Lateral occipitotemporal gyrus	Forms inferolateral border of temporal lobe; contiguous with inferior temporal gyrus		
Occipital pole	Posterior-most portion of the occipital lobe	Vulnerable to injury during head trauma	

2 Gross Anatomy of the Brain and Spinal Cord

INFERIOR SURFACE OF THE BRAIN continued

BRAINSTEM: MEDIAL VIEW

COMPONENT	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE AND CLINICAL NOTES
Midbrain	Encircles the cerebral aqueduct Dorsal tectum composed of superior and inferior colliculi Ventral tegmentum contains nuclei of cranial nerve III (CN-III) and CN- IV, red nucleus, substantia nigra, and cerebral peduncles (which contain fibers of corticospinal tract)	Serves as the center for vertical gaze and the pupillary light reflex In Parinaud's syndrome of the dorsal midbrain compression, upgaze is impaired Degeneration of the substantia nigra is responsible for Parkinson's disease
Pons	Pontine tectum lies anterior to fourth ventricle Contains nuclei of CN-V, -VI, -VII, and -VIII Pontine tegmentum forms large, conspicuous bulge and contains fibers of corticospinal tract	Serves as the center for horizontal gaze Tegmental pontine lesions can cause weakness of all four extremities and the face, with preserved consciousness, known as the <i>locked-</i> <i>in syndrome</i> , and sometimes mistaken for a coma
Medulla oblongata	Lowest portion of brainstem, between pons and spinal cord Contains nuclei of CN-IX, -X, -XI, and -XII Corticospinal tract and dorsal column decussation occurs here	Controls visceral and autonomic functions in the body Large, compressive lesions can lead to respiratory arrest and death

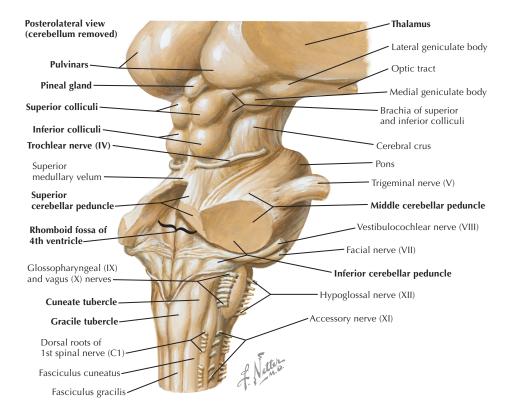

Median sagittal section Posterior commissure Body of fornix-Habenular commissure Thalamus (in Pineal gland 3rd ventricle) Interventricular Splenium of corpus callosum foramen (Monro) Great cerebral vein (of Galen) Anterior commissure -Lamina terminalis-Hypothalamic sulcus-**Cerebral peduncle** Cerebral aqueduct Superior colliculus Tectal (quadrigeminal) plate Superior medullary velum Inferior colliculus Pons Inferior medullary velum Medial longitudinal fasciculus-4th ventricle Choroid plexus of 4th ventricle f. Netter. Medulla oblongata / Median aperture (foramen of Magendie) -Pyramidal decussation Choroid plexus of 4th ventricle Central canal of spinal cord Tonsil of cerebellum

2 Gross Anatomy of the Brain and Spinal Cord

BRAINSTEM: ANTERIOR AND VENTRAL VIEWS

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE AND CLINICAL NOTES
Optic chiasm	Two optic nerves join at the optic chiasm, partly decussate, and become optic tracts	Upward pressure on chiasm from pituitary masses can cause specific visual-field deficit involving both temporal fields
Tuber cinereum	Connects the hypothalamus to the pituitary stalk	Lesions cause hypopituitarism
Mammillary bodies	Ball-like inferior projections of the hypothalamus	Involved in memory and emotion as part of the limbic system
Cerebral peduncle	Contains the corticospinal tract	Cerebral peduncle and CN-III can be compressed by nearby uncus
Oculomotor nerve (CN-III)	Exits the midbrain ventrally	
Trochlear nerve (CN-IV)	Exits the midbrain dorsally, crosses midline, and loops around to the ventral surface	Only cranial nerve to exit dorsally; innervates superior oblique muscle
Basis pontis	Large "belly of the pons" is conspicuous on this view	Contains motor fibers from the corticospinal tract
Trigeminal nerve (CN-V)	Pierces and exits the basis pontis	Controls sensations of the face, mouth, tongue, and teeth as well as muscles of mastication
Abducens nerve (CN-VI)	Exits pons inferomedially	Innervates lateral rectus muscle
Facial and vestibulo- cochlear nerves	Exit together at the cerebellopontine angle	Facial nerve innervates most facial muscles
(CN-VII and CN-VIII)		Vestibulocochlear nerve mediates hearing and balance
Pyramid	Medial bulge of medulla	Contains fibers of corticospinal tract
	<i>Note:</i> The two pyramids decussate in inferior medulla	
Olive (inferior)	Conspicuous lateral bulge of medulla	Involved in important cerebellar pathway, called <i>triangle of Guillain</i> and Mollaret
Glossopharyngeal, vagus and spinal accessory nerves (CN-IX, -X, and -XI)	Exit the medulla, posterior and lateral to olive and anterior to fasciculus cuneatus, as individual rootlets, which join to form nerves	CN-IX and CN-X control swallowing; CN-X provides parasympathetic input to the heart, lungs, and gut; CN-XI innervates the sternocleidomastoid and trapezius
Hypoglossal nerve (CN-XII)	Exits between olive and pyramid as individual rootlets, which join to form the nerve	Innervates most muscles in the tongue

BRAINSTEM: ANTERIOR AND VENTRAL VIEWS continued

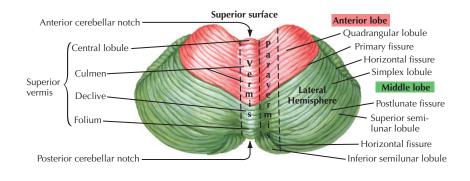


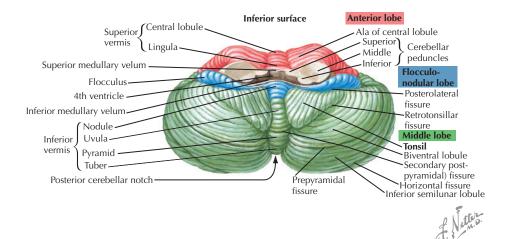
2 Gross Anatomy of the Brain and Spinal Cord

BRAINSTEM: POSTEROLATERAL VIEW

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL AND CLINICAL NOTES
Thalamus	Large structure composed of many nuclei; sets deep in the brain, above the brainstem	Most nuclei function as relay centers between the cortex and subcortical structures
Pulvinar	Posterior-most nucleus of the thalamus	Involved in central visual processing
Pineal gland	Midline structure, dorsal to the upper midbrain	Can compress the dorsal midbrain, causing Parinaud's syndrome: poor upgaze, nystagmus, and eyelid retraction
Superior colliculus	Upper bulge from the midbrain tectum	Functions in generation of saccades
Inferior colliculus	Lower bulge from the midbrain tectum	Part of auditory relay input from the inner ear to the temporal lobe
Trochlear nerve	Exits the midbrain in this view	Innervates superior oblique
Superior cerebellar peduncle (<i>cut</i>)	Upper of 3 large conduits of information between the cerebellum and other structures	Contains mainly cerebellar output to the thalamus and red nucleus
Middle cerebellar peduncle (<i>cut</i>)	Middle of 3 large conduits of information between the cerebellum and other structures	Contains mainly input fibers to the cerebellum from the pons
Inferior cerebellar peduncle	Lower of 3 large conduits of information between the cerebellum and other structures	Contains mainly input fibers to the cerebellum from vestibular systems and spinal cord
Rhomboid fossa of fourth ventricle	Forms floor of 4th ventricle; the 2 median eminences bulge into it	
Fasciculus gracilis	Medial-most tract in the medulla	Contains fibers from medial portion of dorsal column of spinal cord; mediates discriminative touch, joint position, and vibration from legs
Fasciculus cuneatus	Lies lateral to the fasciculus gracilis in medulla	Contains fibers from the lateral portion of dorsal column of spinal cord; mediates discriminative touch, joint position, and vibration from arms
Cuneate and gracile tubercles	Visible bulge of respective nuclei	

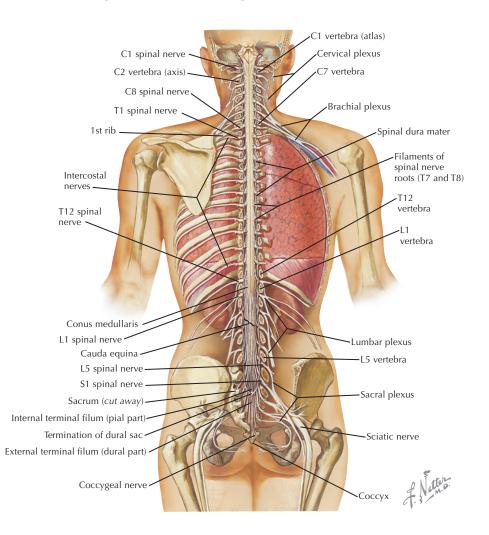
BRAINSTEM: POSTEROLATERAL VIEW continued




2 Gross Anatomy of the Brain and Spinal Cord

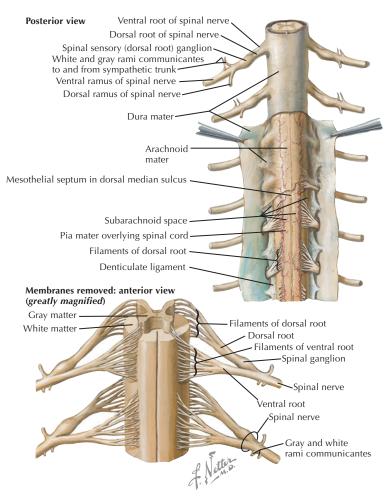
CEREBELLUM: SUPERIOR AND INFERIOR SURFACES

The cerebellum is formed by two hemispheres and a single median vermis.


CEREBELLAR LOBE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Anterior	Separated from the middle lobe by primary fissure	Becomes atrophic in alcoholics
Middle	Lies posterior and inferior to anterior lobe; separated from it by primary fissure Tonsil is its inferior and medial-most projection	Cerebellar tonsil lies just lateral to the medulla; if displaced by pressure, can compress medulla, causing death; called <i>tonsillar herniation</i>
Flocculonodular	Flocculus is separated from the middle lobe by postero- lateral fissure	Involved in balance by communicating with the vestibular system
	Nodule is part of the vermis	

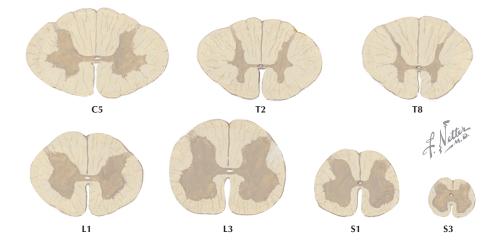
SPINAL CORD IN SITU

- Downward continuation of medulla oblongata, with transition located at the foramen magnum
- Descends through the spinal canal, protected by bony structures
- Tapers as conus medullaris at L1 level
- · Terminates as filum terminale, a slender, fibrous thread that ends in the coccyx
- · Has 31 segments, each associated with paired spinal nerves
- Has 31 paired spinal nerves: 8 cervical, 12 thoracic, 5 lumbar, 5 sacral, and 1 coccygeal
- Lumbar and sacral nerves collectively termed *cauda equina*, because they resemble a horse's tail
- C1-7 nerves exit spinal canal above their respective vertebral level
- C8-L5 nerves exit spinal canal below their respective vertebral level



2 Gross Anatomy of the Brain and Spinal Cord

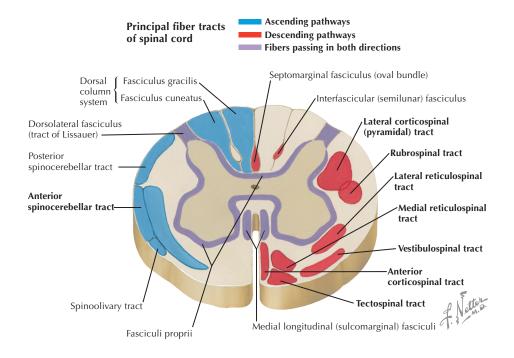
SPINAL CORD: ANTERIOR VIEW


- Each spinal nerve is formed from the joining of dorsal ventral root filaments (rootlets).
- Dorsal roots carry sensory input.
- · Ventral roots carry motor output to skeletal muscle.
- Spinal cord consists of gray and white matter.
- Gray matter is H-shaped and contains dorsal and ventral horns.
- Dorsal horns are involved in sensation.
- · Ventral horns contain motor neurons, which innervate skeletal muscle.
- White matter contains compact axon columns ascending or descending the spinal cord.
- Spinal ganglia (dorsal root ganglia) contain the cell bodies of incoming sensory neurons.

Spinal Membranes and Nerve Roots

SECTION THROUGH SPINAL CORD AT VARIOUS LEVELS

- More gray matter is in the cervical and lumbosacral cord than in the thoracic cord.
- Levels associated with arms and legs have more gray matter.
- Amount of white matter increases from sacral to cervical as sensory fibers are added at each level.
- The volume of motor fibers decreases at each descending level from cervical to sacral levels as they synapse on lower motor neurons.



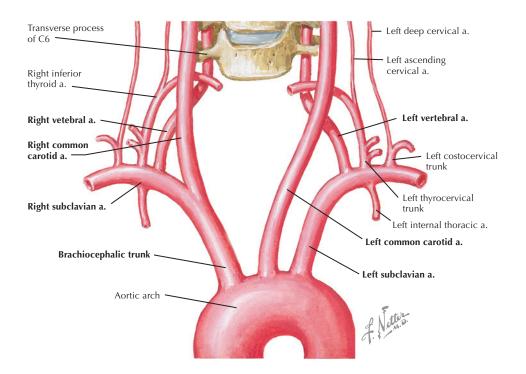
PRINCIPAL TRACTS OF THE SPINAL CORD

MAJOR ASCENDING PATHWAYS		
Tract	Destination	Function
Fasciculus gracilis	Nucleus gracilis in medulla	Discriminative touch, joint position, and vibration from legs
Fasciculus cuneatus	Nucleus cuneatus in medulla	Discriminative touch, joint position, and vibration from arms
Posterior (dorsal) and anterior (ventral) spinocerebellar	Cerebellum	Provide cerebellum with proprio- ceptive input from muscle and skin receptors
Spinothalamic	Ventral posterolateral nucleus of thalamus	Pain and temperature
Spinoreticular	Reticular formation in brainstem	Contributes to emotional connotation of pain

MAJOR DESCENDING PATHWAYS		
Tract	Origin	Function
Lateral corticospinal	Contralateral motor cortex	Controls muscle activity by innervating motor neurons
Anterior corticospinal	Ipsilateral motor cortex	Minor pathway compared with lateral corticospinal tract
		Controls muscle activity by innervating motor neurons
Rubrospinal	Contralateral red nucleus	Controls proximal muscles, especially flexors
Lateral vestibulospinal	Ipsilateral lateral vestibular nucleus	Involved in postural control (especially related to head movements) by inhibiting axial flexor muscles and stimulating axial extensor muscles
Lateral and medial reticulospinal	Ipsilateral and contralateral reticular formations	Modulate state of muscle spindles
Tectospinal	Superior colliculus	Moves head reflexively in response to significant auditory, visual or tactile stimuli

PRINCIPAL TRACTS OF THE SPINAL CORD continued

This page intentionally left blank

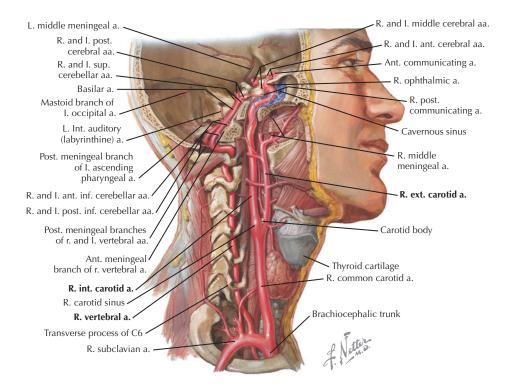

CHAPTER 3 Blood Vessels of the Brain and Spinal Cord

Branches of the Aorta	
Arterial Supply to Brain and Meninges	
Meningeal Arteries	55
The Circle of Willis	57
Arteries of Brain: Basal View	59
Arteries of Brain: Frontal View	61
Arteries of Brain: Coronal Section	62
Arterial Distribution of the Brain: Lateral View	63
Arterial Distribution of the Brain: Medial View	64
Arterial Distribution by Color	
Vertebrobasilar System	66
Venous Sinuses	67
Superficial Veins	69
Deep and Subependymal Veins	
Deep Veins	
Veins of the Posterior Cranial Fossa	
Blood Supply to the Spinal Cord	
Distribution of Anterior and Posterior Spinal Arteries	
Radicular Arteries	75
Veins of Spinal Cord and Vertebrae	

3 Blood Vessels of the Brain and Spinal Cord

BRANCHES OF THE AORTA

ORDER	ARTERY	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
1st	Left subclavian	1st branch is left vertebral artery	Atherosclerosis can lead to shunting of blood away from the vertebral artery and to the arm, leading to symptoms of vertebral insufficiency and possible stroke. This is known as <i>subclavian steal</i> .
2nd	Left common carotid	Ascends the neck in carotid sheath before dividing into external and internal carotid arteries (bifurcation)	Atherosclerosis can occur at bifurcation, a common cause of stroke.
3rd	Brachiocephalic trunk	Divides to form right common carotid and right subclavian arteries	
		Right vertebral artery is a branch of right subclavian artery	

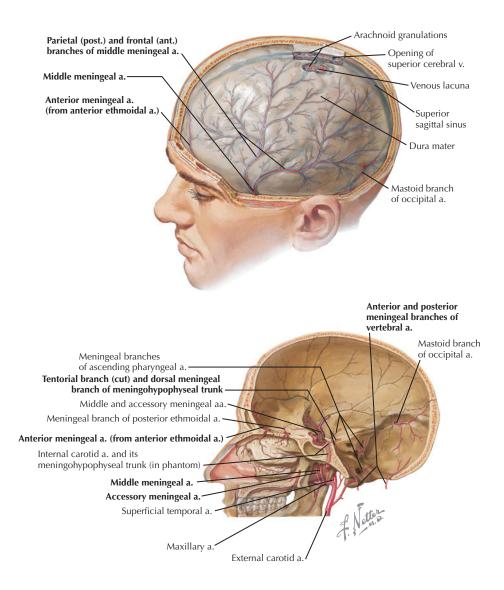


ARTERIAL SUPPLY TO BRAIN AND MENINGES

The brain and meninges derive all arterial supply via two arterial systems: carotid and vertebrobasilar.

ARTERY	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
External carotid (ECA)	Has multiple extracranial branches	Supplies the face, tongue, and anterior meninges
Internal carotid (ICA)	 Has no extracranial branches Segments: Cervical: ascends the neck posterior and medial to ECA Petrous: bends to assume horizontal position, traversing the petrous portion of temporal bone Cavernous: runs in cavernous sinus near CN-III, -IV, -V, and -VI Supraclinoid: ascends posteriorly and laterally and terminates as middle and anterior cerebral arteries 	Via its branches, supplies anterior circulation of the brain, including frontal, parietal, most of temporal lobes, and basal ganglia
Vertebral artery	 Arises from subclavian artery Segments: Prevertebral: ascends neck muscles to enter the bony canal within the spine at C6 through the foramen transversarium Cervical: ascends the cervical spine through foramina in transverse processes Atlantic: exits cervical spine at level of atlas (C1) and bends posteriorly to reach the dura Intracranial: ascends anterior to the medulla and joins the contralateral vertebral artery to form basilar artery 	Via its branches, supplies posterior circulation of the brain, including brainstem, cerebellum, thalamus, and occipital and inferior temporal lobes

ARTERIAL SUPPLY TO BRAIN AND MENINGES continued

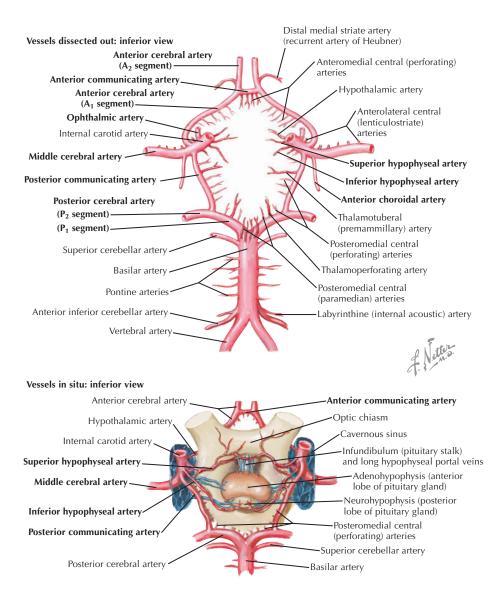

MENINGEAL ARTERIES

Meningeal arteries supply the dura mater and are located in the outer portion of the dura mater.

ARTERY	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Middle meningeal	Branch of the ECA system via maxillary artery Enters skull via foramen spinosum	Injury to this vessel from head trauma can cause an epidural hematoma, which can lead to death by downward displacement of brain structures; known as herniation
	Has frontal and parietal branches	
Accessory meningeal and anterior meningeal	Arise from ECA system	Supply portions of dura
Tentorial and meningeal branches of the meningohypophyseal trunk	Arise from ICA system	Supply a small segment of dura
Anterior and posterior meningeal branches of vertebral artery		Supply dura in posterior fossa, below the tentorium cerebelli

3 Blood Vessels of the Brain and Spinal Cord

MENINGEAL ARTERIES continued

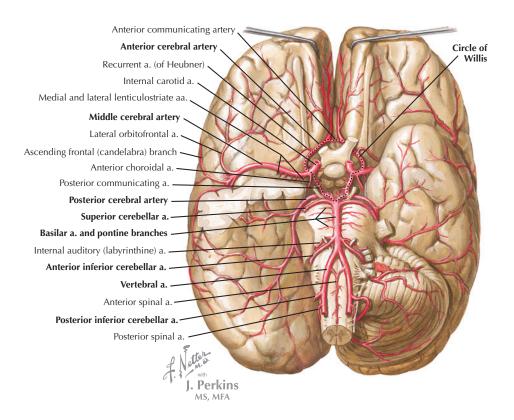

THE CIRCLE OF WILLIS

The circle of Willis is an anastomotic arterial network located at the base of the brain, surrounding the optic tracts, pituitary stalk, and basal hypothalamus. Major arterial feeders are the ICA and basilar artery.

ARTERY	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Superior and inferior hypophyseal	Early branches of ICA	Supplies pituitary gland
Ophthalmic	Branch of ICA; runs with	Supplies optic nerve and retina
	optic nerve into orbit	Embolus from ICA can lodge in this artery, causing monocular blindness
Posterior communicating	Connects ICA to posterior cerebral artery (PCA)	Connects anterior circulation to posterior circulation
		Runs parallel and near CN-III; so aneurysms can lead to pupillary and oculomotor problems
Anterior choroidal	Branch of ICA	Supplies optic tract, posterior limb of internal capsule, and lateral geniculate body
Anterior cerebral	Terminal branch of ICA	Supplies medial cortical structures and caudate
Middle cerebral	Terminal branch of ICA	Supplies lateral cortical structures and most of basal ganglia and posterior limb of internal capsule
Anterior communicating	Connects the two anterior cerebral arteries (ACAs)	Forms anterior-most portion of circle of Willis
Posterior cerebral	Terminal branch of the basilar system	Supplies occipital and inferior temporal lobe and the thalamus

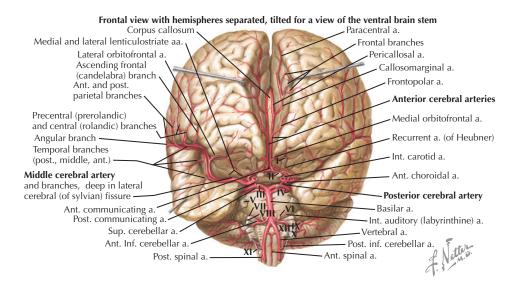
3 Blood Vessels of the Brain and Spinal Cord

THE CIRCLE OF WILLIS continued



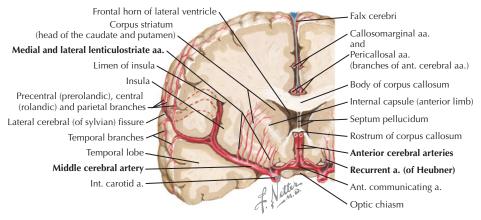
ARTERIES OF THE BRAIN: BASAL VIEW

ARTERY	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Vertebral	The paired vertebral arteries ascend the medulla ventrally and join at the pontomedullary junction to form the basilar artery	Dissection and thrombosis of the vertebral artery in the neck can cause strokes by occlusion or dislodgement of embolic material
Posterior inferior	Long, circumferential artery, branch of the vertebral artery	Supplies a portion of the cerebellum and dorsolateral medulla
cerebellar (PICA)		Strokes in this distribution cause crossed sensory loss, vertigo, dysarthria, dysphagia, and Horner's syndrome
Basilar	Ascends basis pontis ventrally	Basilar occlusion can lead to
	Gives off small penetrating branches to basis pontis	infarction of basis pontis, causing a "locked-in" syndrome
	Terminates by dividing into the 2 PCAs	
Anterior inferior cerebellar (AICA)	Long circumferential artery, branch of the basilar artery	Supplies a portion of the cerebellum and dorsolateral pons
Superior cerebellar (SCA)	Long circumferential artery, branch of the basilar artery	Supplies superior surface of cerebellum and part of midbrain


3 Blood Vessels of the Brain and Spinal Cord

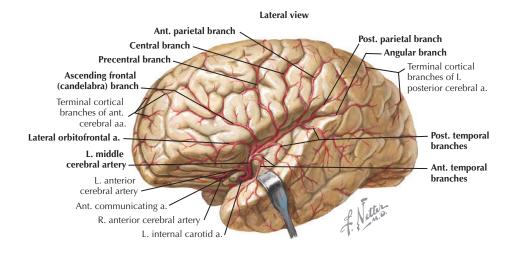
ARTERIES OF THE BRAIN: BASAL VIEW continued

ARTERIES OF THE BRAIN: FRONTAL VIEW

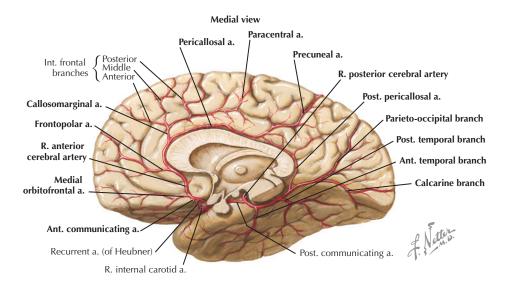

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Oculomotor nerve (CN-III)	Exits upper midbrain ventrally, between the PCA and SCA; then runs parallel to the posterior communicating artery	Aneurysms of the posterior communicating artery can compress CN-III, causing a dilated pupil on that side.
Middle cerebral artery (MCA)	Courses through the sylvian fissure, exiting laterally over the frontal, parietal, and temporal cortex	MCA has a large area of distribution along lateral cortex. Deep branches supply the basal ganglia and internal capsule.
Anterior cerebral arteries	Paired ACAs run in parallel and loop around the midline just above the corpus callosum	ACA has a large area of distribution along the medial frontal and parietal cortex.

ARTERIES OF THE BRAIN: CORONAL SECTION

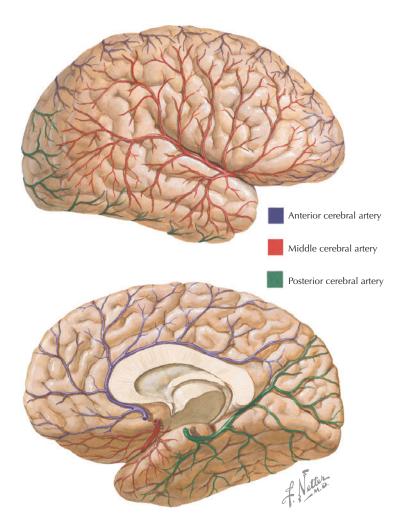
ARTERY	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Medial and lateral lenticulostriate	Thin, deep vessels that arise from the MCA in sylvian fissure	Supply basal ganglia and internal capsule Small vessels that can be occluded in diseases involving small vessels, such as diabetes and hypertension
Recurrent (of Heubner)	Small, deep branch of the ACA	Supplies a portion of the head of caudate and anterior limb of internal capsule
		May be damaged during surgery for ACA aneurysms


Coronal section through the head of the caudate nucleus

ARTERIAL DISTRIBUTION OF THE BRAIN: LATERAL VIEW


The MCA divides into two major divisions within the lateral (Sylvian) fissure.

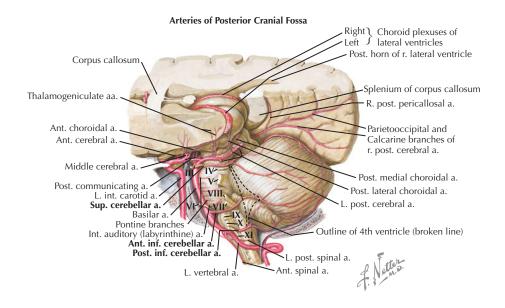
MCA DIVISION	BRANCHES	FUNCTIONAL SIGNIFICANCE
Superior	Lateral orbitofrontal artery	Supplies most of the lateral frontal lobes, including the primary motor cortex in the precentral gyrus and expressive language area
	Ascending frontal branch	
	Precentral branch	
	Central branch	
Inferior	Anterior temporal branches	Supplies the superior temporal and parietal lobes, including the primary sensory cortex in the
	Posterior temporal branches	postcentral gyrus and receptive speech area
	Angular branch	
	Posterior parietal branch	
	Anterior parietal branch	


ARTERIAL DISTRIBUTION OF THE BRAIN: MEDIAL VIEW

ARTERY	BRANCHES	FUNCTIONAL SIGNIFICANCE
ACA	Anterior communicating artery Medial orbitofrontal artery Frontopolar artery Pericallosal artery, which terminates as the precuneal artery Callosomarginal artery, which has multiple inferior frontal branches and then terminates as the paracentral artery	Cortical ACA branches supply medial frontal and parietal lobes. Some of these areas are involved in leg strength and sensation, so ACA strokes can cause contralateral leg weakness and numbness.
PCA	Posterior communicating artery Anterior temporal branch Posterior temporal branch Posterior pericallosal artery Calcarine branch Parieto-occipital branch	Cortical PCA branches supply occipital lobes and inferior surface of temporal lobes. PCA strokes usually cause visual field deficits.

ARTERIAL DISTRIBUTION BY COLOR

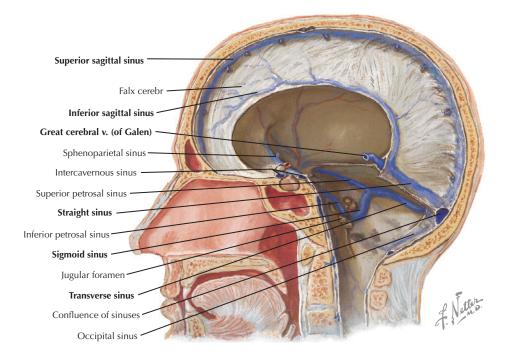
CEREBRAL ARTERY	FUNCTIONAL SIGNIFICANCE
ACA	Distribution is mainly medial Supplies regions of the brain controlling motor and sensory function to the leg as well as motivation and judgment
MCA	Extensive lateral cortical distribution Supplies regions of the brain controlling motor and sensory function to the arm and face as well as speech, personality, and motivation
РСА	Occipitotemporal distribution Supplies regions of the brain controlling visual input and higher- level visual processing



3 Blood Vessels of the Brain and Spinal Cord

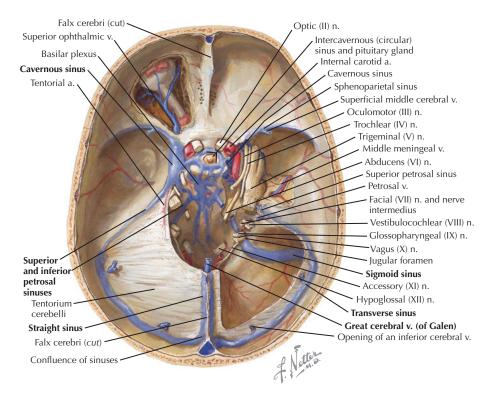
VERTEBROBASILAR SYSTEM

- Long, circumferential vessels supply cerebellum. They all loop around the brainstem, supplying dorsal and lateral portions.
- Ventral portions of the brainstem are supplied by short, penetrating branches off the vertebrobasilar system.

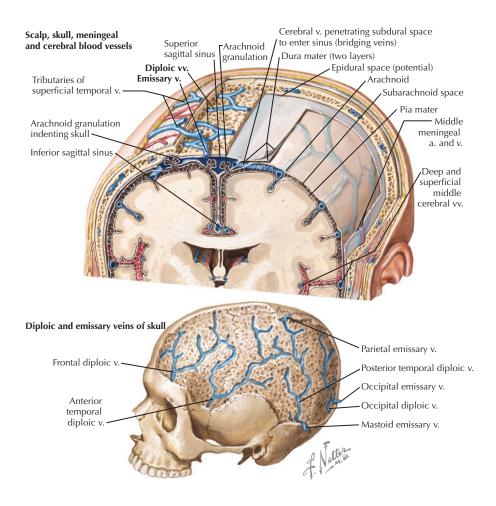

LONG CIRCUMFERENTIAL ARTERIES	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
PICA	Branch of vertebral artery Loops around medulla laterally to supply the cerebellum	Supplies inferior surface of cerebellum, choroid plexus of 4th ventricle, and much of the lateral medulla
AICA	Branch of basilar artery Loops around the caudal pons to supply the cerebellum	Supplies more anterior portions of inferior cerebellum and part of caudal pons
SCA	Branch of the basilar artery Loops around the upper pons to supply the cerebellum	Supplies the superior portion of the cerebellum and portions of the pons and midbrain

VENOUS SINUSES

- Venous sinuses are located between the inner and outer layers of dura.
- Sinuses serve as conduits to drain venous blood from the brain to the jugular venous system.

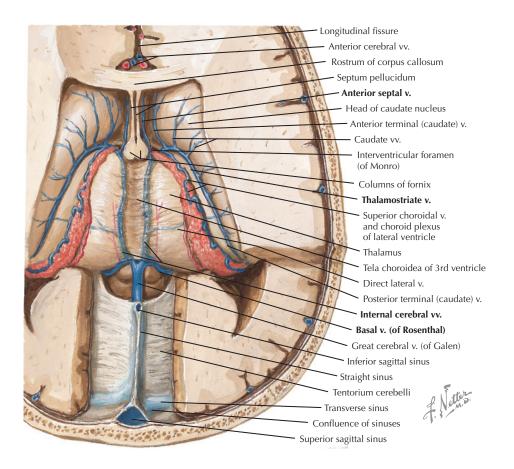

VENOUS SINUS	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Superior sagittal	Follows the interhemispheric fissure and joins the straight sinus at the confluence of	Drains venous blood from the scalp, skull, and the meningeal and cerebral veins
	sinuses	Collects reabsorbed cerebrospinal fluid (CSF) from arachnoid granulations
		Thrombosis can cause increased intracranial pressure resulting from backup of venous drainage
Inferior sagittal	Follows the base of falx cerebri and joins the great cerebral vein of Galen to form the straight sinus	Drains deeper veins

3 Blood Vessels of the Brain and Spinal Cord

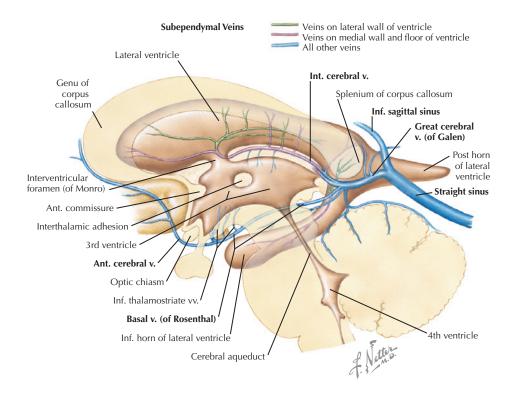

VENOUS SINUSES continued

VENOUS SINUS	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Cavernous	Contains CN-III, -IV, -V and -VI Drains superior ophthalmic vein and drains into petrosal sinuses	Thrombosis can cause cranial nerve damage and venous backup in the retina.
Superior petrosal	Drains cavernous sinus and drains into transverse sinus	
Inferior petrosal	Drains venous blood from cavernous sinus and brainstem and drains into internal jugular vein	
Straight	Drains inferior sagittal sinus and great cerebral vein and then drains into the confluence of sinuses	
Transverse	Large structure that drains venous blood from the confluence of sinuses and drains into sigmoid sinus	Thrombosis can cause increased intracranial pressure due to backup of venous drainage.
Sigmoid	S-shaped sinus that drains blood from the transverse sinus. As it exits the jugular foramen, it becomes the internal jugular vein	

SUPERFICIAL VEINS


VEINS	ANATOMIC NOTES
Superficial cerebral	Located in the pia mater, they arise from the substance of brain and drain into venous sinuses
Meningeal	Follow meningeal arteries between the dura and skull and drain into venous sinuses
Diploic and emissary	Thin venous channels located between inner and outer layers of calvaria Include the frontal, anterior, and posterior temporal veins and the occipital diploic veins
	Drain into venous sinuses via small emissary veins

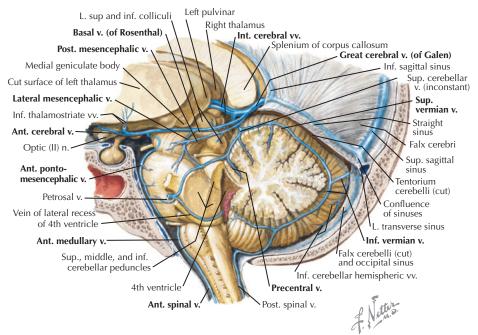
DEEP AND SUBEPENDYMAL VEINS


Deep veins collect venous blood from deep structures and eventually drain into venous sinuses.

VEINS	ANATOMIC NOTES	
Anterior septal	Drains deep white matter of the frontal lobe	
Thalamostriate	Drains caudate, internal capsule, and deep white matter of the parietal lobe	
Internal cerebral	Formed by union of the anterior septal and thalamostriate veins	
Basal vein of Rosenthal	Joins internal cerebral vein to form the great cerebral vein of Galen	

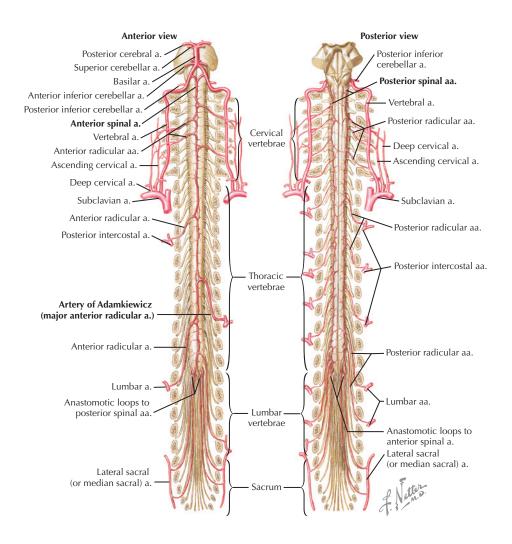
DEEP VEINS

VEINS	ANATOMIC NOTES
Subependymal	Drain venous blood from subependymal regions, which are adjacent to the ventricular wall. They all eventually drain into the great cerebral vein of Galen or the inferior sagittal sinus.
Anterior cerebral	Medial vein that drains the medial frontal lobe and anterior portion of corpus callosum and drains into the basal vein of Rosenthal



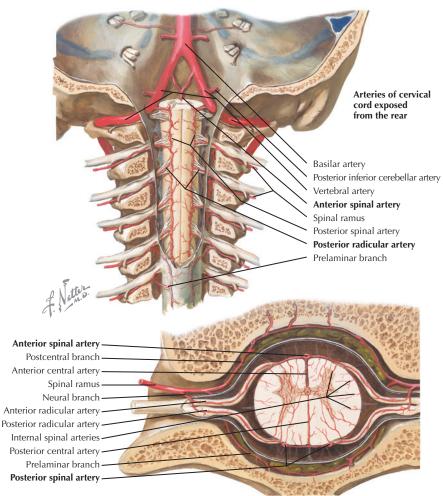
3 Blood Vessels of the Brain and Spinal Cord

VEINS OF THE POSTERIOR CRANIAL FOSSA


GROUP	VEINS	STRUCTURES DRAINED
Superior	Precentral vein, which drains into the great cerebral vein	Drain superior cerebellum and upper brainstem
	Superior vermian vein, which drains into the great cerebral vein	
	Posterior mesencephalic vein, which runs parallel to the basal vein	
	Lateral mesencephalic vein, which drains into the basal or posterior mesencephalic vein	
Anterior	Anterior spinal vein becomes anterior medullary vein, which becomes anterior pontomesencephalic vein, which drains into the anterior cerebral vein	Drain the anterior brainstem and cerebellar hemispheres
	There are many other small named and unnamed veins that are not shown	
Posterior	Inferior vermian vein drains into straight sinus and forms anastomosis with the superior vermian vein	Drain the inferior vermis and cerebellar
	Superior and inferior cerebellar hemispheric veins drain superomedial and inferomedial cerebellar surfaces, respectively	hemispheres

Veins of Posterior Cranial Fossa

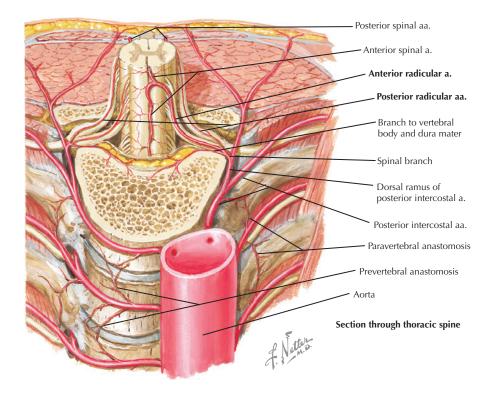
BLOOD SUPPLY TO THE SPINAL CORD


- Anterior and paired posterior spinal arteries branch off vertebral arteries.
- · All spinal arteries receive additional supply from radicular arteries off the aorta.
- Major anterior radicular artery (of Adamkiewicz) supplies anterior spinal artery from T8 to the conus.
- Spinal cord segments from T3 to T7 are most vulnerable to ischemia because of the minimal arterial input from radicular vessels at these levels.

3 Blood Vessels of the Brain and Spinal Cord

DISTRIBUTION OF ANTERIOR AND POSTERIOR SPINAL ARTERIES

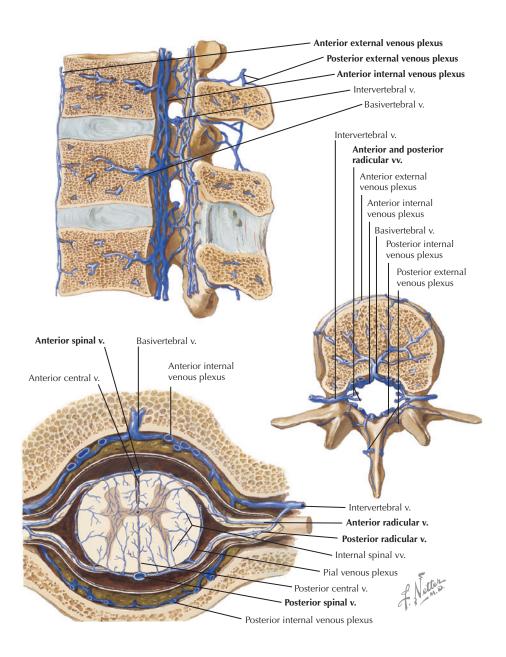
ARTERY	FUNCTIONAL SIGNIFICANCE
Anterior spinal	Supplies anterior $\frac{2}{3}$ of spinal cord Infarcts cause leg weakness and loss of pain sensation below the level of the lesion with spared vibration and proprioception (posterior column function)
Posterior spinal	Supplies posterior columns Occlusion would cause loss of vibration and proprioception below the level of the lesion



Arteries of spinal cord diagrammatically shown in horizontal section

RADICULAR ARTERIES

- Radicular arteries arise from the aorta in the thoracic region.


- They branch into anterior and posterior radicular arteries.
 Anterior radicular arteries supply the anterior spinal artery.
 Posterior radicular arteries supply the posterior spinal artery.

VEINS OF SPINAL CORD AND VERTEBRAE

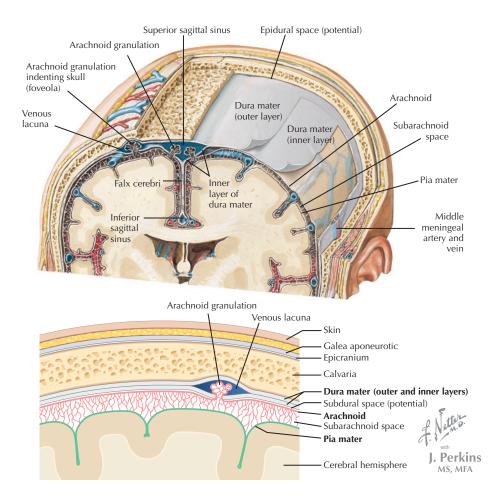
VENOUS STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
External venous plexus	Anterior external venous plexus lies anterior to the vertebral bodies	Venous plexuses are valveless, allowing infection and malignant tissue access to the spine.
	Posterior external venous plexus lies over the vertebral laminae	
Internal venous plexus	A network of veins in the epidural space of the spinal cord	
	Basivertebral veins drain the vertebral bodies and join the various plexus	
Anterior and posterior spinal veins	Adjacent to anterior and posterior spinal arteries	All spinal veins eventually drain into intervertebral veins, which exit the spinal canal via intervertebral foramina.
Anterior and posterior radicular veins	Adjacent to anterior and posterior radicular arteries.	

VEINS OF SPINAL CORD AND VERTEBRAE continued

This page intentionally left blank

Cerebrospinal Fluid and Coverings of the Brain

Meninges	
Ventricular System	82
The Fourth Ventricle	
Cerebrospinal Fluid Circulation	86

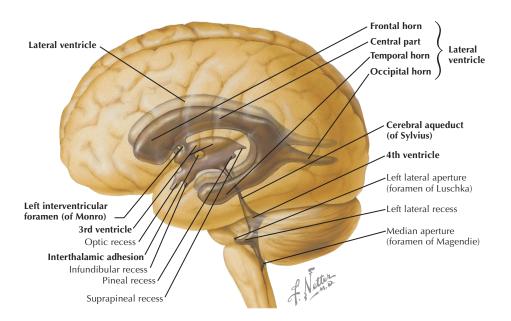

4 Cerebrospinal Fluid and Coverings of the Brain MENINGES

In addition to the protection of the skull, the brain is protected and surrounded by a set of coverings known as the *meninges*.

LAYER	LOCATION	ANATOMIC NOTES	CLINICAL NOTES
Dura mater	Outermost layer	Leathery consistency Lies just under the inner surface of the skull	Epidural hematomas form between the dura and the skull. They are typically caused by injury to the middle meningeal artery.
		Has 2 layers separated by potential space	Subdural hematomas form between the dura and the arachnoid. They are typically caused by rupture of bridging veins.
Arachnoid mater	Middle layer	Fine, lacy membrane, deep to the dura mater Contains cerebrospinal fluid (CSF) and cerebral arteries	Subarachnoid hemorrhages form between the arachnoid and the pia. They are most commonly caused by rupture of an aneurysm of a cerebral artery.
Pia mater	Inner layer	Thin membrane	
		Adheres to contours of the cerebral cortex	

Cerebrospinal Fluid and Coverings of the Brain 4

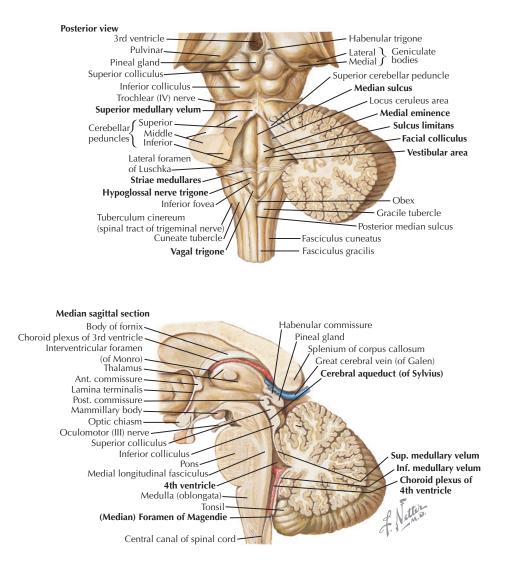
MENINGES continued



NETTER'S CONCISE NEUROANATOMY 81

VENTRICULAR SYSTEM

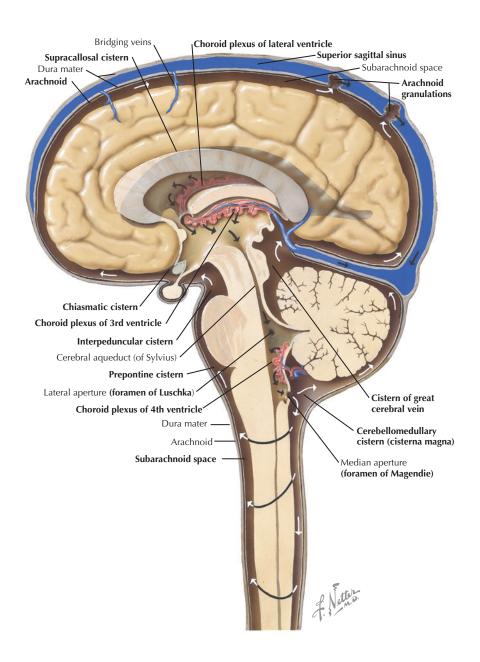
VENTRICLE	ASSOCIATED STRUCTURE	ANATOMIC NOTES	CLINICAL NOTES
Lateral	Cortex	C-shaped structure Frontal horns are most anterior and are inferior to the corpus collosum Temporal horns are inferior and lie in close relationship to the hippocampus	Obstruction of flow at 1 or both foramina of Monro can cause enlargement of the ventricles called <i>noncommunicating</i> <i>hydrocephalus.</i>
		Occipital horns are small posterior extensions CSF exits into the third ventricle via paired	
		foramina of Monro	
Third	Thalamus and hypothalamus	Thin midline structure between the thalami Interrupted by the interthalamic adhesion, which connects the 2 thalami	
Cerebral aqueduct	Midbrain	Thin tubelike structure that connects 3rd to 4th ventricles	Because of its small size, it can be compressed, causing noncommunicating hydrocephalus.
Fourth	Pons and medulla	Rhombus-shaped structure Extends from the upper pons to lower medulla Roofed by the cerebellum	Hemorrhages or masses in the pons or cerebellum can compress the 4th ventricle, causing acute hydrocephalus, which causes headache and may progress to coma.


VENTRICULAR SYSTEM continued

THE FOURTH VENTRICLE

FEATURE	DESCRIPTION	
CSF entry	From the cerebral aqueduct	
	CSF is also produced by the choroid plexus of the 4th ventricle	
CSF exit	To the subarachnoid cisterns via laterally placed foramina of Luschka and medially placed foramen of Magendie	
	Small amount of CSF continues into the central canal of the spinal cord	
Roof	Formed by the superior and inferior medullar vela, which are thin white-matter structures that lie below the superior and inferior cerebellar peduncles	
Floor	Shaped like a rhombus	
	Most visible when the cerebellum and cerebellar peduncles are removed	
	Important structures:	
	 Striae medullares: separates the upper pontine portion from the lower medullary portion 	
	Median sulcus: vertical sulcus that divides the floor symmetrically	
	 Medial eminence: longitudinal elevation lateral to the medial sulcus. Its superior part is formed by the locus ceruleus, a bluish nucleus that produces norepinephrine 	
	 Facial colliculus: overlies the abducens nucleus and facial nerve in the pons 	
	Sulcus limitans: a sulcus that lies lateral to the medial eminence	
	Vestibular area: overlies the vestibular nuclei in the pons and medulla	
	Hypoglossal trigone: overlies the hypoglossal nucleus in the medulla	
	Vagal trigone: overlies nuclei of the vagal and hypoglossal nerves	

THE FOURTH VENTRICLE continued

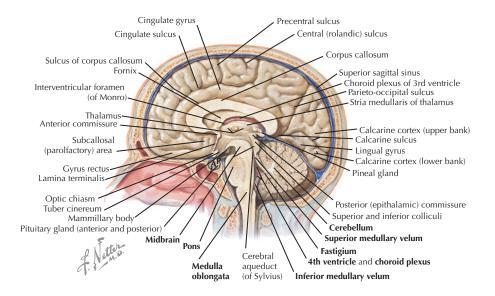


CEREBROSPINAL FLUID CIRCULATION

- · Flows freely through the ventricular system
- Formed in the highly vascular choroid plexus located in the lateral ventricles, third ventricle, and fourth ventricle
- Exits the ventricular system in the medulla, through the foramina of Luschka and Magendie
- After exiting the ventricular system, CSF flows in the subarachnoid cisterns at the base of the brain, which include the following:
 - The cerebromedullary cistern (cisterna magna)-around the medulla
 - The prepontine cistern-anterior to the pons
 - The interpeduncular cistern-anterior to the midbrain
 - The chiasmatic cistern-surrounds the optic chiasm
 - The cistern of the lateral fossa (not shown)
 - The cistern of the great cerebral vein (cisterna ambiens)—between the corpus collosum and the cerebellum
- In addition, some of the CSF flows in the subarachnoid space around the spinal cord. Because the spinal cord ends in the upper lumbar spine, but the subarachnoid space ends in the sacrum, there is a lumbar cistern, where fluid is removed during lumbar puncture.
- CSF eventually reaches the supracollosal cistern, where it is absorbed into the superior sagittal sinus through arachnoid granulations.
- Diseases of the subarachnoid space, such as meningitis and subarachnoid hemorrhage, can clog the arachnoid granulations, leading to decreased CSF reabsorption and subsequent hydrocephalus.

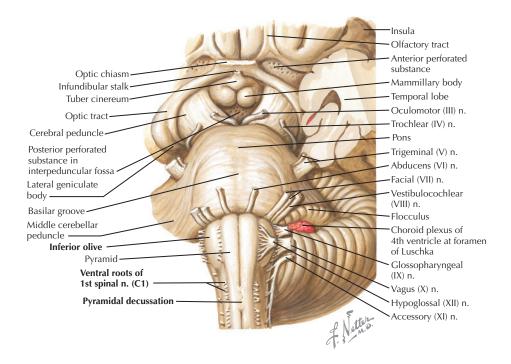
Cerebrospinal Fluid and Coverings of the Brain 4

CEREBROSPINAL FLUID CIRCULATION continued

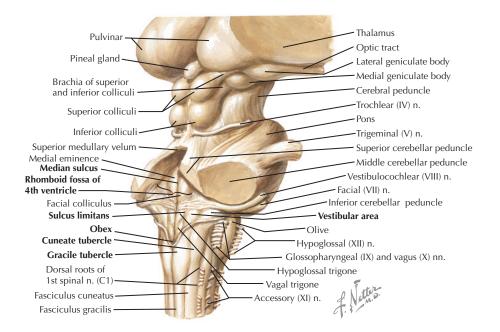

This page intentionally left blank

CHAPTER 5 Medulla Oblongata

Gross Brainstem: Midsagittal View	90
Gross Brainstem: Anterior View	91
Gross Brainstem: Posterolateral View	92
Cranial Nerves and Nuclei of Medulla	93
Medulla: Spinal Cord Transition	95
Medulla: Dorsal Column Nuclei Level	96
Medulla: Obex Level	98
Medulla: Inferior Olive Level	
Trigeminal System: Longitudinal Brainstem View	101
Medulla: Vestibular Nuclei Level	102
Intracranial Occlusion of Vertebral Artery	
Medulla: Brainstem Reticular Formation	
Medulla-pontine Junction: Cochlear Nuclei Level	106
Lower Motor Neuron Organization in Medulla	107


GROSS BRAINSTEM: MIDSAGITTAL VIEW

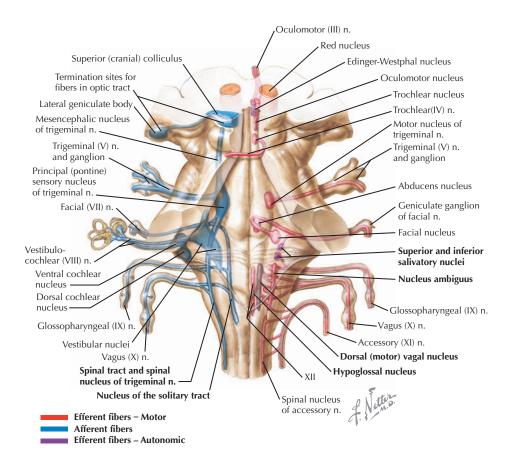
STRUCTURE	ANATOMIC NOTES
Superior medullary velum	Roofs pontine part of ventricle
Inferior medullary velum	Roofs medullary part of ventricle
Fastigium	Apex in the cerebellum toward which superior and inferior medullary velum extend
Roof of 4th ventricle	Formed by the cerebellum and superior and inferior medullary velum


GROSS BRAINSTEM: ANTERIOR VIEW

STRUCTURE	ANATOMIC NOTES
Pyramidal decussation	Marks the transition from spinal cord to lower medulla
Caudal medulla	Rostral to highest cervical rootlets
Inferior olivary nuclei	Oval eminences posterolateral to pyramids that give medulla characteristic appearance above the transition zone

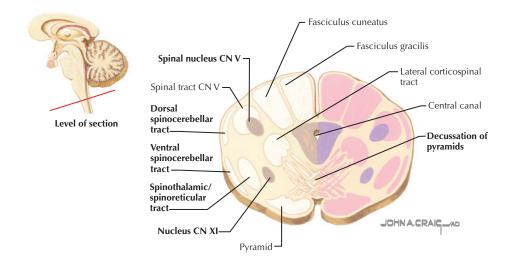
GROSS BRAINSTEM: POSTEROLATERAL VIEW

STRUCTURE	ANATOMIC NOTES
Rhomboid fossa	Forms floor of 4th ventricle, overlying the pons and medulla
Fourth ventricle	Extends from the central canal of the cervical cord to the cerebral aqueduct of the midbrain
Median sulcus	Divides the rhomboid fossa into symmetrical halves
Sulcus limitans	Divides each half of the rhomboid fossa into medial eminence and lateral vestibular area. Vestibular nuclei lie beneath the vestibular area
Obex	Caudal junction of walls of 4th ventricle
Cuneate and gracile tubercles	Lie caudal to 4th ventricle



CRANIAL NERVES AND NUCLEI OF MEDULLA

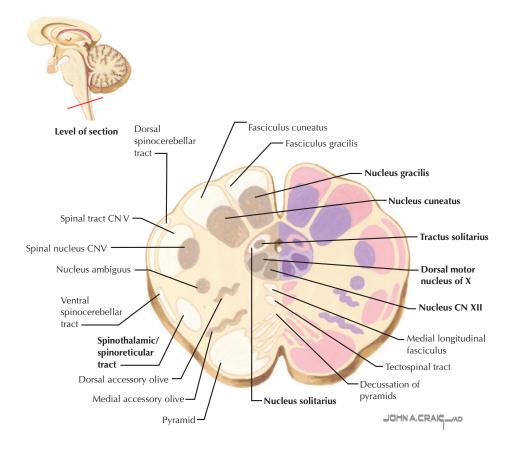
STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Descending (spinal trigeminal) nucleus of CN-V	Continuation of substantia gelatinosa of cervical spinal cord	Conveys pain, thermal, and tactile sense from face, forehead, and mucous membranes of nose and mouth
Nucleus of the solitary tract	Solitary nuclei of both sides merge at obex to form	Rostral part (<i>gustatory nucleus</i>) receives taste from CN-VII and CN-IX.
	commissural nucleus of vagus	Caudal part receives visceral afferents from CN-X (GI tract, pulmonary, and carotid sinus afferents)
Inferior (CN-IX) salivatory nucleus	Impossible to distinguish from reticular neurons	Innervates otic ganglion, via lesser petrosal nerve, to stimulate parotid gland
Dorsal vagal nucleus (CN-X)	Occupies medial portion of vagal trigone in floor of 4 th ventricle	Gives rise to preganglionic parasympathetic fibers
Nucleus ambiguus	Column of cells in reticular formation, midway between spinal trigeminal nucleus and inferior olive	Caudal pole gives rise to cranial root of spinal accessory nerve (CN-XI)
Hypoglossal nerve (CN-XII)	18-mm column of motor cells in central grey of median eminence	Innervates somatic skeletal muscles of tongue


5 Medulla Oblongata

CRANIAL NERVES AND NUCLEI OF MEDULLA continued

MEDULLA: SPINAL CORD TRANSITION

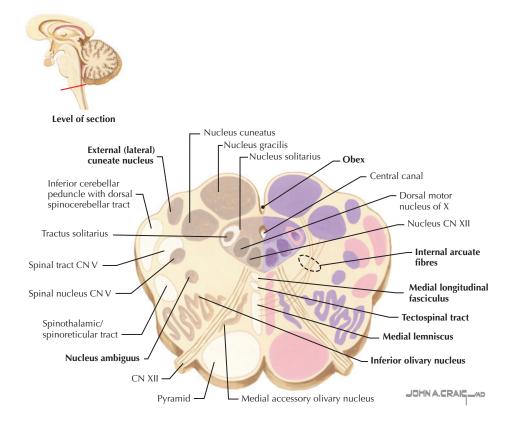
STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Decussation of pyramids (corticospinal tracts)	Conspicuous external demarcation of medulla into the spinal cord	90% of each descending corticospinal tract crosses to the opposite side at this point
Spinal nucleus of CN-V	Rostral continuation of substantia gelatinosa of the cervical cord	Lesions here result in a loss of pain and thermal sense in the area innervated by the trigeminal nerve
Dorsal spinocerebellar tract	Uncrossed pathway from periphery to cerebellar vermis Enters inferior cerebellar peduncle	Used in fine coordination of posture and movement of individual limb muscles
Ventral spinocerebellar tract	Predominantly crossed pathway (in cat) from periphery to anterior lobe of cerebellum Ascends to pons and enters superior cerebellar peduncle	Conveys information regarding movement and posture of the whole limb
Spinothalamic tract	Crossed pathway of pain and temperature sense	Injury results in contralateral loss of pain and temperature sense
Nucleus CN-XI (spinal accessory nerve)	Spinal portion arises from the anterior horn cell column of C1-5, enters the skull through the foramen magnum, joins the cranial portion of nerve, and exits via the jugular foramen with CN-IX and CN-X	Innervates sternocleidomastoid and trapezius muscles



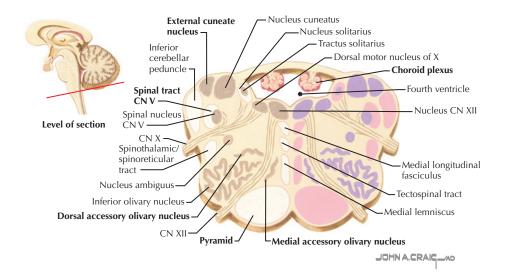
5 Medulla Oblongata

MEDULLA: DORSAL COLUMN NUCLEI LEVEL

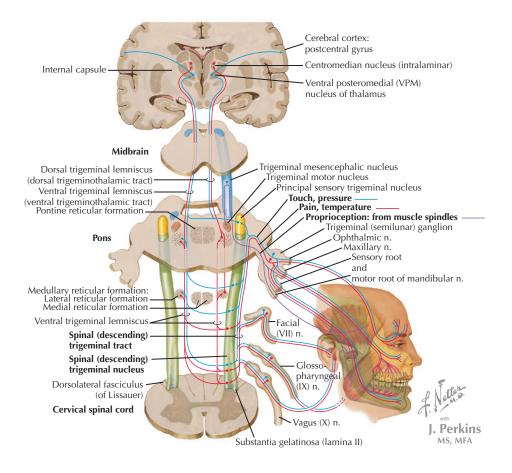
STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Nucleus gracilis	Fasciculus gracilis fibers synapse in this nucleus	Conveys position and vibration sensation from the leg
Nucleus cuneatus	Fasciculus cuneatus fibers synapse in this nucleus	Conveys position and vibration sensation from the arm
Tractus solitarius	Extends rostrally to lower pons	Vagal visceral afferents travel in the tractus solitarius and synapse in the nucleus solitarius
Nucleus solitarius (rostral)	Gustatory nucleus	Receives taste fibers from CN-VII and CN-IX
Nucleus solitarius (caudal)	Vagal visceral afferents synapse in the nucleus solitarius	Receives general visceral afferents from the vagus (carotid sinus, thoracic and abdominal viscera)
Dorsal motor nucleus of CN-X	Gives rise to efferent preganglionic parasympathetic fibers	Innervates thoracic and abdominal viscera
Spinothalamic tract	Posterolateral spinothalamic tract fibers are from the lower body; anteromedial fibers from the arm and neck	Injury results in contralateral loss of pain and temperature sense
Hypoglossal nucleus (CN-XII)	Forms column 18 mm long in central gray; fibers emerge from the medulla between pyramid and inferior olivary complex	Lesion results in weakness and atrophy of the ipsilateral half of the tongue


MEDULLA: DORSAL COLUMN NUCLEI LEVEL continued

MEDULLA: OBEX LEVEL

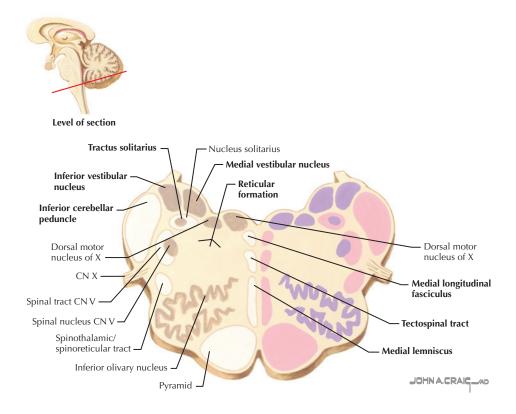

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Obex	Lies between the area postrema on each side of 4th ventricle	Area postrema is an emetic chemoreceptor trigger zone
Internal arcuate fibers	Myelinated fibers that sweep ventromedially from the nucleus gracilis and cuneatus to form contralateral ascending medial lemniscus	Crossing provides anatomic basis for sensory representation of half the body in the contralateral cerebral cortex
Medial longitudinal fasciculus (MLF)	Extends from the upper midbrain to spinal levels	Mediates conjugate horizontal eye movements
Tectospinal tract	Arises from the superior colliculus and terminates mostly in the upper 4 cervical segments	Mediates reflex postural movements in response to visual and perhaps auditory stimuli
Medial lemniscus	Contains 2nd-order neurons of the posterior column pathway	Mediates position and vibration sensation
Inferior olivary nucleus	Fibers enter the contralateral inferior cerebellar peduncle and end as climbing fibers in the cerebellar cortex	Largest medullary cerebellar relay nucleus, receiving input from cortex, red nucleus, pons, and spinal dorsal column
Nucleus ambiguus	Caudal pole of the nucleus ambiguus is nucleus of CN XI	Caudal parts give rise to cranial part of CN-XI fibers
		Rostral parts give rise to CN-IX fibers to stylopharyngeus
External (lateral) cuneate nucleus	Medullary equivalent of the dorsal nucleus of Clarke of spinal cord (which gave rise to uncrossed fibers of the dorsal spinocerebellar tract)	Gives rise to cuneocerebellar tract, the upper-limb equivalent of the dorsal spinocerebellar tract

MEDULLA: OBEX LEVEL continued


MEDULLA: INFERIOR OLIVE LEVEL

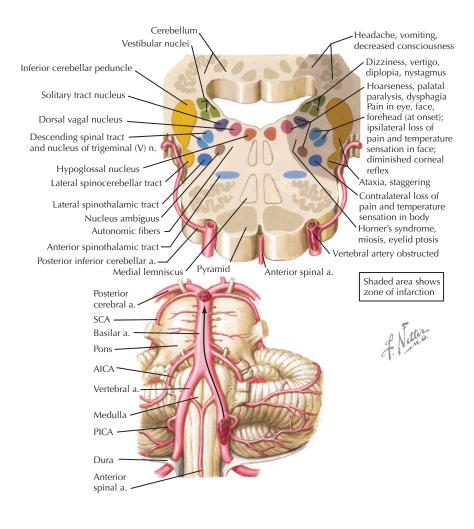
STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
External cuneate nucleus	Medullary equivalent of the dorsal nucleus of Clarke; gives rise to uncrossed cuneocerebellar fibers	Upper-limb equivalent of the posterior spinocerebellar tract
Spinal tract of CN-V	Afferent trigeminal fibers enter the upper pons and descend the dorsolateral brainstem as spinal trigeminal tract	Tractotomy may relieve severe pain of trigeminal neuralgia
Dorsal accessory olivary nucleus	Project largely to the cerebellar vermis	Modulates cerebellar processing
Medial accessory olivary nucleus	Project largely to the cerebellar vermis	Modulates cerebellar processing
Pyramid	Conveys descending corticospinal fibers	Lesion results in contralateral hemiparesis
Choroid plexus	Projects into the caudal part of the 4th ventricle	Main site of cerebrospinal fluid (CSF) formation
		Renews entire CSF 4-5 times per day

TRIGEMINAL SYSTEM: LONGITUDINAL BRAINSTEM VIEW

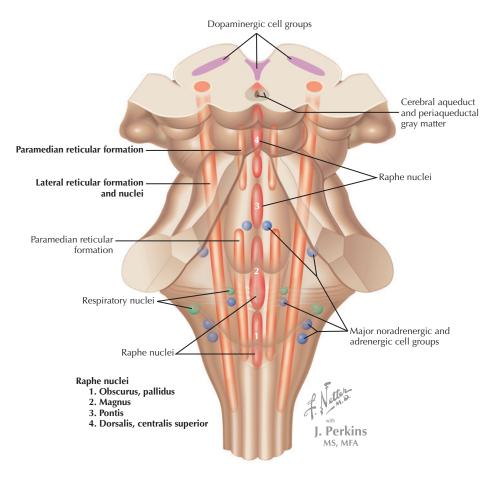

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Spinal (descending) trigeminal nucleus	Merges with the substantia gelatinosa in dorsal spinal gray matter	Mediates pain, temperature, and tactile sense from the face, forehead, muscosa of the nose and mouth
Spinal (descending) trigeminal tract	Close to the spinothalamic tract	Due to the proximity of these 2 tracts, injury to this area (stroke) results in crossed hemianalgesia of the face and body (one side of the face and the opposite side of the body have impaired pain sensation)

MEDULLA: VESTIBULAR NUCLEI LEVEL

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Reticular formation	Constitutes a matrix throughout the lower brainstem, within which	Involved in consciousness and alertness
	nuclei and tracts are embedded	Brainstem stroke results in coma due to injury of this region
Tractus solitarius	Constitutes a descending bundle of visceral afferents comparable to the spinal trigeminal tract, which contains general somatic afferents	Surrounded by, and synapses in, the nucleus solitarius, which rostrally subserves taste (i.e., the gustatory nucleus), and caudally subserves cardiorespiratory function and general visceral sensation
Inferior and medial vestibular nuclei	Two of the 4 vestibular nuclei. Due to the rostrocaudal extent of nuclei, only 2 can be seen in any single section	Innervate semicircular canals, utricle, and saccule Involved in balance and orientation in space
Inferior cerebellar peduncle	Formed by tracts and fibers from the medulla and spinal cord: the spinocerebellar and olivocerebellar tracts, lateral reticular, arcuate, and cuneate nuclei fibers	Most cerebellar afferents enter via inferior and middle cerebellar peduncles, conveying stretch, vestibular, visual, and other impulses
Medial lemniscus	Carries dorsal column sensation to the ventroposterlateral nucleus of the thalamus	Lesion results in contralateral loss of position and vibration sensation
Tectospinal tract	Originates in the superior colliculus, crosses in the midbrain, descends through anterior funiculus of the cervical spinal cord	Believed to play a role in head turning in response to light stimulation
Medial longitudinal fasciculus (MLF)	Contains fibers from all vestibular nuclei: descending vestibular MLF fibers project mainly to cervical spinal levels, ascending vestibular MLF fibers project to nuclei of extraocular muscles	Ascending MLF fibers in the pons also contain CN-VI internuclear neurons that cross to the contralateral CN-III nucleus to mediate conjugate horizontal eye movements


MEDULLA: VESTIBULAR NUCLEI LEVEL continued

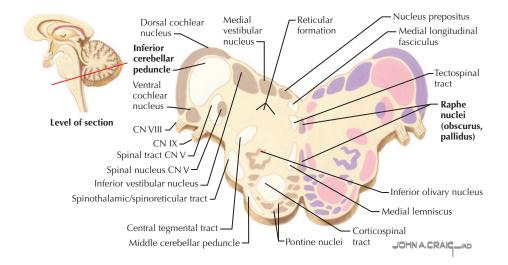
5 Medulla Oblongata


INTRACRANIAL OCCLUSION OF VERTEBRAL ARTERY

Lateral medullary infarction is due to vertebral artery (80%) or posterior inferior cerebellar artery (20%) occlusion and involves a wedge of medulla posterior to inferior olives. Characteristic of medullary lesions is crossed sensory disturbance: loss of pain and temperature on one side of the face and on the opposite side of the body. This is accounted for by involvement of descending trigeminal tract or nucleus and crossed lateral spinothalamic tract on one side of the brainstem. This crossed phenomenon would not occur with involvement in the upper medulla, pons, and midbrain because at these levels the crossed trigeminothalamic tract and lateral spinothalamic tract run together. A lesion at these levels will cause pain and temperature loss of both the face and body on the side opposite the lesion.

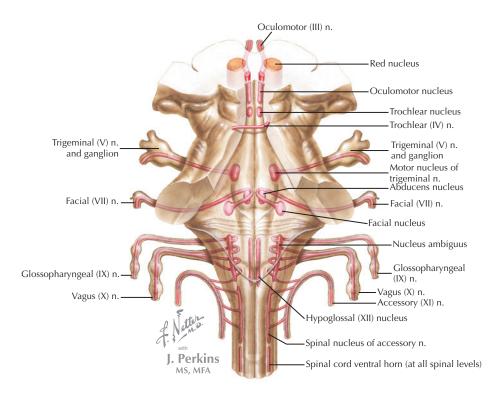
MEDULLA: BRAINSTEM RETICULAR FORMATION

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Reticular formation	Morphologic region from the low medulla through the hypothalamus into the septal region	Constitutes a matrix embedded with nuclei and tracts
Medullary reticular formation	Consists of paramedian, central, and lateral nuclear groups	Reticular formation is involved in wakefulness
	Afferent fibers from spinothalamic, auditory, trigeminal, and vestibular pathways spinoreticular, cerebelloreticular, and corticoreticular projections	Brainstem infarction involving reticular formation results in coma
	Efferent fibers from medullary reticular formation project to the thalamus, cerebellum, and spinal cord	



5 Medulla Oblongata

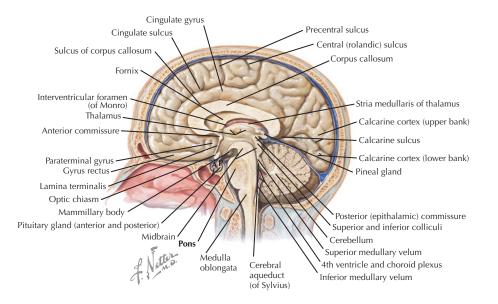
MEDULLA-PONTINE JUNCTION: COCHLEAR NUCLEI LEVEL


- Raphe nuclei are situated along midline of medulla, pons, and midbrain.
- Midbrain and pontine serotonergic cells project to the diencephalon and cerebral cortex.

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Medullary raphe nuclei	Include nucleus raphe magnus, obscurus, pallidus	Synthesize serotonin, project to the spinal cord
Inferior cerebellar peduncle	Contains mostly crossed olivocerebellar fibers, also posterior spinocerebellar tract	Olivocerebellar fibers may convey information regarding interneuron activity at spinal and brainstem levels
		Posterior spinocerebellar tract conveys impulses from muscle stretch receptors and touch and pressure receptors in the skin

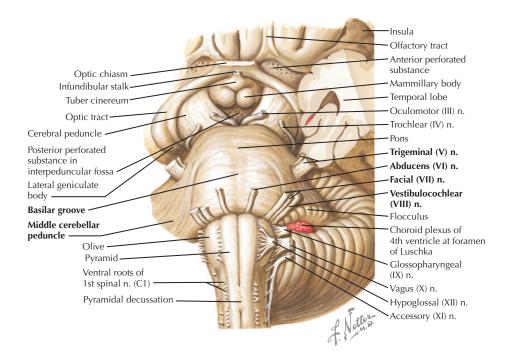
LOWER MOTOR NEURON ORGANIZATION IN MEDULLA

- Lower motor neurons (LMNs) are found in the spinal cord, medulla, pons, and midbrain.
- LMNs send axons into the cranial nerves, terminating on skeletal muscle fibers, and allow for voluntary movement.

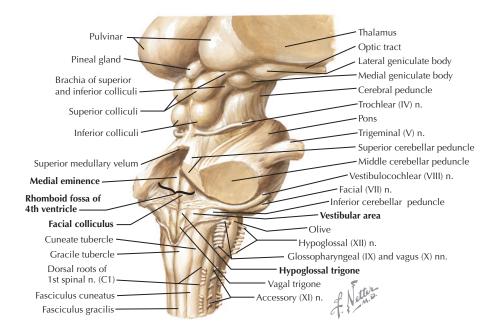

This page intentionally left blank

CHAPTER 6 Pons

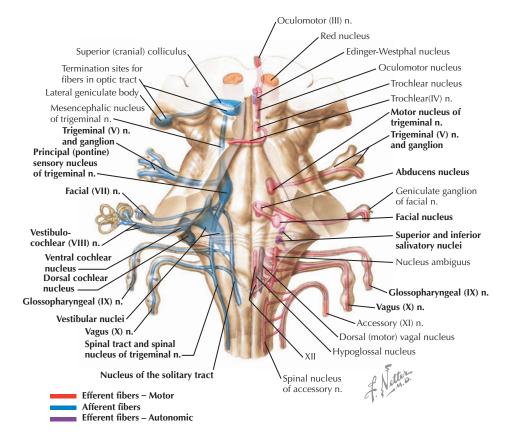
Gross Brainstem: Midsagittal View	110
Gross Brainstem: Anterior View	111
Gross Brainstem: Posterolateral View	112
Cranial Nerves of Pons	113
Level of Cochlear Nucleus	114
Level of Facial Nucleus	115
Central Control of Eye Movements	117
Nystagmus	119
Level of Facial Genu	120
Level of the Trigeminal Nuclei	122
Parabrachial Nuclei: Control of Respiration	124
Pons-midbrain Junction: CN-IV	125
Raphe Nuclei	126
Rostral Pons	127


GROSS BRAINSTEM: MIDSAGITTAL VIEW

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Pons (metencephalon)	Separated from the midbrain by superior pontine sulcus and from the medulla by inferior pontine sulcus	Largest portion of the brainstem
Basis pontis	Massive ventral portion; composed of descending tracts, pontine nuclei, and transversely oriented fibers projecting to the cerebellum	Among most common sites for hypertensive bleed; results in locked-in state
Tegmentum (anterior to ventricle)	Smaller dorsal part; contains reticular formation as central core, continuous with reticular formation of medulla and midbrain	Reticular formation is crucial for maintenance of awake state

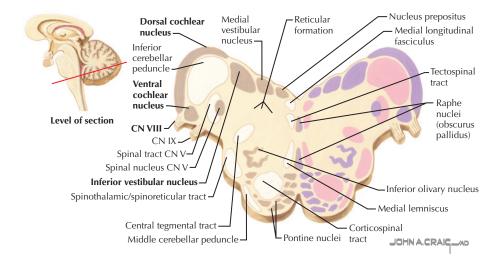

GROSS BRAINSTEM: ANTERIOR VIEW

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Basilar groove (sulcus)	Anterior midline depression	Indicates position of basilar artery
Middle cerebellar peduncle	Formed by predominantly transverse fibers in the ventral pons	Most important pathway from cerebral cortex to contralateral cerebellum, via pontine relay nuclei
Trigeminal nerve (CN-V)	Largest cranial nerve Passes through rostral parts of the middle cerebellar peduncle to reach its nuclei	Supplies muscles of mastication, tensor tympani, tensor veli palatini, mylohyoid, anterior belly of digastric, and facial sensation
Abducens nerve (CN-VI)	Nucleus lies in floor of 4th ventricle	Nerve often is stretched with increased intracranial pressure, resulting in horizontal diplopia
Facial nerve (CN-VII) and vestibulocochlear nerve (CN-VIII)	Exit and enter at cerebellopontine angle (junction of pons, medulla, and cerebellum)	May be compressed with cerebellopontine angle tumors


GROSS BRAINSTEM: POSTEROLATERAL VIEW

STRUCTURE	ANATOMIC NOTES
Rhomboid fossa	Forms floor of 4th ventricle, overlying pons and medulla
Fourth ventricle	Extends from the central canal of the cervical cord to the cerebral aqueduct of the midbrain
Vestibular nuclei	Lie beneath the vestibular area
Facial colliculus, hypoglossal trigone	Lie within the medial eminence
Lateral portion of medial eminence	Formed by the abducens nucleus

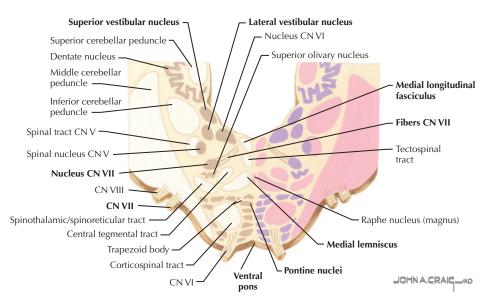
CRANIAL NERVES OF PONS


- Lower motor neurons of pons are localized in the following:
 - Medial column (CN-VI)
 - Lateral column (CN-V, -VII)
- Preganglionic parasympathetic nuclei are located laterally in the superior (CN-VII) salivatory nucleus.
- Secondary sensory nuclei include the following:
 - Main sensory nucleus of CN-V
 - Descending nucleus of CN-V
 - Vestibular and cochlear nuclei (CN-VIII)
 - Nucleus solitarius (CN-VII, -IX, -X)

Pons

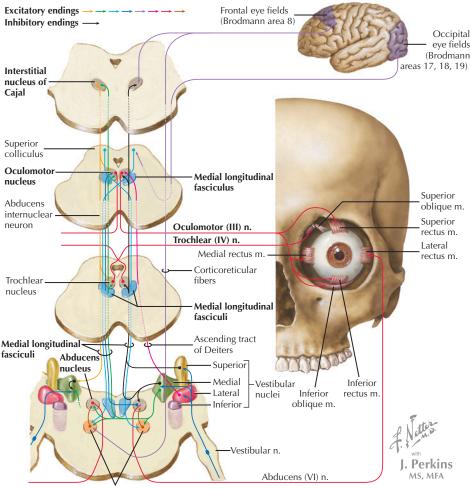
LEVEL OF THE COCHLEAR NUCLEUS

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
CN-VIII	Runs from the internal auditory meatus to the cerebellopontine angle	Vestibular nerve mediates equilibrium and spatial orientation; cochlear nerve mediates audition.
	Cochlear division enters the brainstem lateral and caudal to vestibular division	
Cochlear nerve (division)	Fibers terminate in the dorsal and ventral cochlear nuclei, on the lateral surface of the inferior	Basal cochlear fibers (high tones) end in the dorsal part of the dorsal cochlear nucleus.
	cerebellar peduncle	Apical cochlear fibers (low tones) end in the ventral part of the dorsal cochlear nucleus and in the ventral nucleus.
Dorsal and ventral cochlear nuclei	Fibers project bilaterally to the superior olive, trapezoid body, and lateral lemniscus	Once fibers project bilaterally, unilateral lesion will not result in deafness.
Vestibular nerve (division)	Enters the cerebellopontine angle medial to the cochlear nerve	Acoustic neuromas almost always originate on this division of the 8th
	Passes dorsally between the inferior cerebellar peduncle and spinal trigeminal tract	nerve.
	Distributes to vestibular nuclei: inferior (largest number), superior, medial, lateral	


LEVEL OF THE FACIAL NUCLEUS

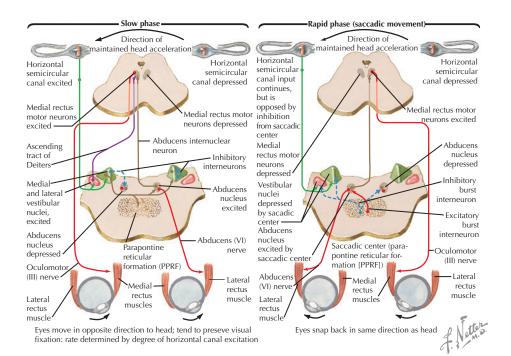
STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Dorsal pons (pontine tegmentum)	Rostral continuation of the medullary reticular formation	Contains cranial nuclei CN-V to CN-VIII, reticular nuclei, and ascending and descending tracts
Medial lemniscus	Lies anterior to the pontine tegmentum	Second-order neurons for position and vibration sensation
Vestibular nuclei	Present in floor of 4th ventricle throughout caudal pons	Posterior circulation ischemia affecting these nuclei result in vertigo, nausea, and vomiting
CN-VII motor nucleus	Pear-shaped mass in the lateral part of the reticular formation	Bell's palsy results from inflammation of CN-VII axons after they leave brainstem
CN-VII root fibers	Form the intramedullary loop around the abducens nucleus, medial to lateral	Both CN-VI and CN-VII would be affected by a lesion in the intramedullary loop area, such as multiple sclerosis, stroke, or tumor
Medial longitudinal fasciculus (MLF)	Contains: Ascending fibers from vestibular nuclei projecting to extraocular muscle nuclei, CN-VI internuclear neurons that cross and terminate in CN-III nuclear complex	Lesions of MLF most commonly seen in multiple sclerosis
Intermediate nerve	Enters pons between CN-VII and vestibular nerve (hence "intermediate")	Conveys taste from anterior ² / ₃ of the tongue via chorda tympani nerve, terminating on rostral part of solitary (gustatory) nucleus (nucleus solitarius)
Ventral pons	Consists of transverse and longitudinal fiber bundles	Longitudinal: corticospinal, corticobulbar, corticopontine
be	between pontine nuclei	Transverse: axons of pontine nuclei crossing to the other side to form middle cerebellar peduncle
Pontine nuclei	Grouped into lateral, medial, dorsal, and ventral nuclear masses	Functions vary from balance to wakefulness

LEVEL OF THE FACIAL NUCLEUS continued


Level of section

CENTRAL CONTROL OF EYE MOVEMENTS

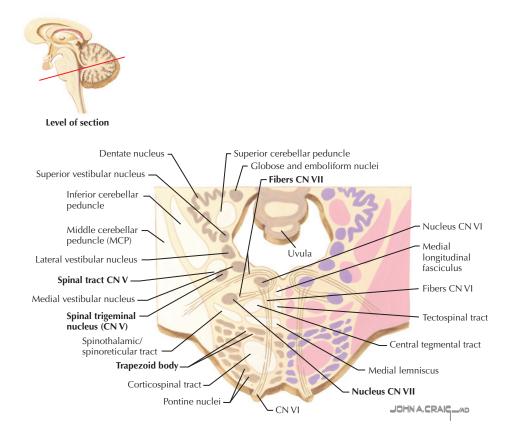
STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Paramedian pontine reticular formation (PPRF)	Projects directly to the abducens nucleus	Horizontal gaze center
	Input:	Unilateral lesion causes paralysis
	 Vestibular nuclei 	of ipsilateral gaze
	 Superior colliculus 	
	 Frontal eye fields 	
	 Interstitial nucleus of Cajal 	
	Supplies:	Bilateral PPRF lesions may impair
	 Ipsilateral CN VI 	both horizontal and vertical gaze
	 Contralateral CN III via MLF 	
	 VI nuclear interneurons for medial rectus 	
Interstitial nucleus of Cajal	Lies lateral to the MLF in rostral midbrain	Coordinates vertical and oblique eye movements


CENTRAL CONTROL OF EYE MOVEMENTS continued

Parapontine reticular formation (lateral gaze center)

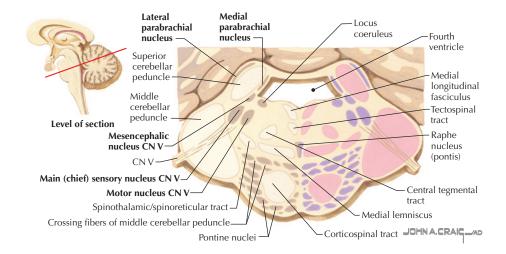
NYSTAGMUS

- Alternating back and forth eye movement
- Optokinetic nystagmus: activated by tracking mechanisms
- · Vestibular nystagmus: involves vestibular projections via MLF
- Slow phase (drift): caused by asymmetrical input from the following:
 - Semicircular canals
 - Vestibular nuclei
 - Vestibular cerebellum
 - Fast phase (saccade): provoked return to forward position



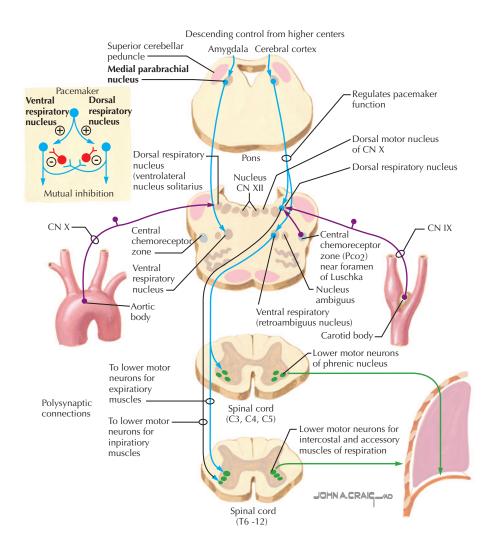
Pons 6

LEVEL OF FACIAL GENU

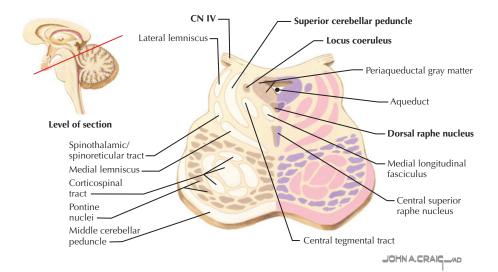

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Trapezoid body	Transverse fibers in ventral pontine tegmentum	Second-order neurons from the cochlear nuclei
	Fibers arise from ventral cochlear nucleus	
	Most fibers cross to the other side, through the medial lemniscus	
	Reach the ventrolateral tegmentum, turn sharply longitudinally	
	Form lateral lemniscus	
	Lateral lemniscus terminates in the inferior colliculus	
Motor nucleus of CN-VII	Forms column in ventrolateral tegmentum, dorsal to superior olive, ventromedial to spinotrigeminal nucleus	Supplies axons to the muscles of facial expression
CN-VII root fibers	Make sharp lateral bend around rostral abducens nucleus	Emerge from brainstem near caudal pons, at CP angle, where
	Pass ventrolaterally, medial to the spinotrigeminal complex, lateral to the superior olive	may be compressed by CP angle tumors
Spinal trigeminal nucleus (CN-V)	Forms long column medial to spinal trigeminal tract	Mediates pain sensation to face. Throughout, face is upside down:
	Rostrally merges with main sensory nucleus of CN-V	jaw dorsal, forehead ventral
	Caudally blends into <i>substantia</i> gelatinosa	
	Axons cross to contralateral medial lemniscus	
	Terminate in the ventroposteromedial (VPM) nucleus of thalamus	

LEVEL OF FACIAL GENU continued

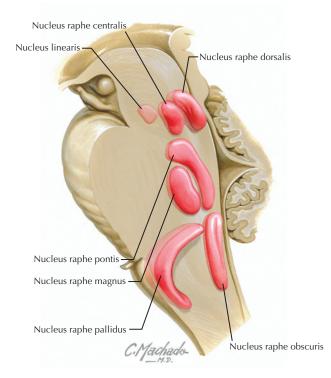
LEVEL OF THE TRIGEMINAL NUCLEI


STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Main sensory nucleus of CN-V	Axons travel crossed and uncrossed to VPM nucleus of thalamus	Mediates touch and pressure, distributed as in spinal trigeminal nucleus
Mesencephalic nucleus of CN-V	Slender cell column near lateral margin of the central gray of the upper 4th ventricle and cerebral aqueduct	Mediates proprioception from teeth, periodontium, muscles of mastication, and joint capsules; controls force of bite
	Unique because primary sensory neurons are in this brainstem nucleus, not in the trigeminal ganglion	
	Central pathway remains obscure	
Motor nucleus of CN-V	Ovoid column medial to main sensory nucleus and motor root	Supplies muscles of mastication (masseter, temporalis, medial and lateral pterygoids), tensor tympani and veli palatini, mylohyoid, and anterior belly of digastric
Parabrachial nuclei	Juxtaposed to brachium conjunctivum (superior cerebellar peduncle)	Synaptic station for gustatory pathways

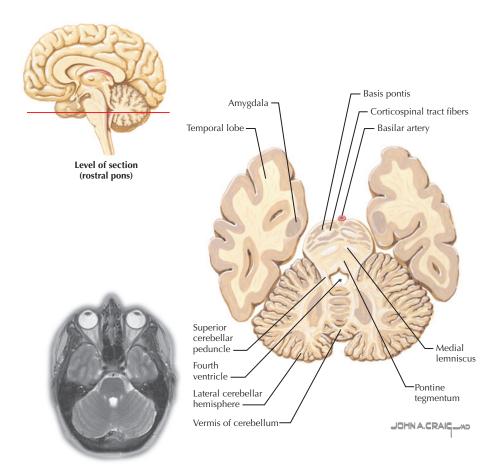
PARABRACHIAL NUCLEI: CONTROL OF RESPIRATION


STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Parabrachial nuclei (PBN)	Contains neuromelanin- containing catecholamine neurons	Believed to play a role in autonomic regulation
	Fibers connect with hypothalamus, amygdala, stria medullaris, brainstem nuclei	
Medial PBN	Together with a lateral segment, makes up PBN	Acts as respiratory pacemaker to regulate dorsal respiratory nucleus (DRN) (lateral nucleus solitarius) and ventral respiratory nucleus (VRN) (nucleus retroambiguus)
Dorsal respiratory nucleus axons	Cross and terminate on phrenic nerve cervical cord motor neurons and thoracic cord motor neurons	Supplying inspiratory respiratory muscles
Ventral respiratory nucleus axons	Cross and terminate on thoracic cord motor neurons	Supplying expiratory respiratory muscles

PARABRACHIAL NUCLEI: CONTROL OF RESPIRATION continued


PONS-MIDBRAIN JUNCTION: CN-IV

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Pons-midbrain junction (isthmus rhombencephali)	Fourth ventricle narrows, resembles cerebral aqueduct Roof consists of superior medullary velum	Coma and central neurogenic hyperventilation result with pathology at this level
CN-IV	Decussates in the superior medullary velum	Supplies superior oblique muscle
Superior cerebellar peduncle	Lies medial to the lateral lemniscus Arises from dentate, emboliform, and globose nuclei of cerebellum Decussates in midbrain, ends in red nucleus and VL nucleus of thalamus	Forms the most important efferent system from the cerebellum
Locus ceruleus	Pigmented cells near periventricular gray of upper 4th ventricle	Lost in Parkinson's disease
Nuclei of raphe region	Part of brainstem nuclei of reticular formation, which also include parmedian, medial, and lateral reticular nuclear groups	Contain serotonin (5-hydroxytryptamine, 5-HT).

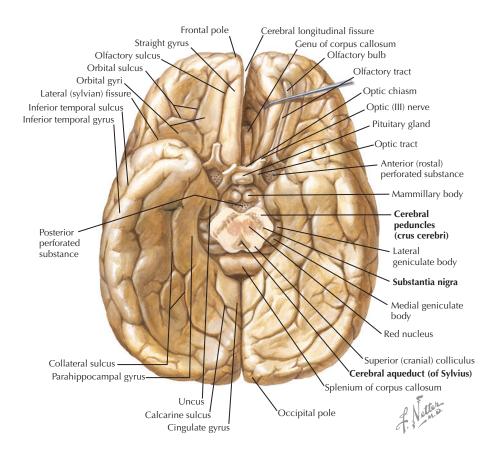

RAPHE NUCLEI

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Raphe nuclei	Situated along the midline of medulla, pons, midbrain	Caudal group involved in pain mechanisms; rostral group involved with wakefulness, alertness, and sleep
Inferior central nucleus	Appears at the pontomedullary junction and caudal pons; represents the rostral part of the nucleus raphe magnus	Electrical stimulation of this nucleus inhibits spontaneous activity of thalamic neurons in cats
Nucleus raphe pontis	Rostral to the inferior central nucleus	Receives vestibular input and is involved in the generation of saccadic eye movements
Superior central nucleus (i.e., median raphe nucleus)	Rostral extension of the pontine raphe nuclei	Together with dorsal nucleus, give rise to principal serotonin ascending fibers
Dorsal nucleus of raphe	On each side of midline, dorsal to MLF, merges with dorsal tegmental nucleus	Together with superior central nucleus, give rise to principal serotonin ascending fibers

ROSTRAL PONS

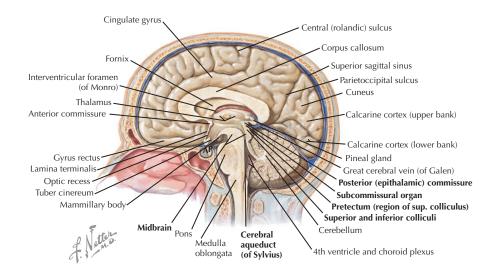
MAGNETIC RESONANCE IMAGING: CROSS-SECTIONAL CORRELATION

This page intentionally left blank

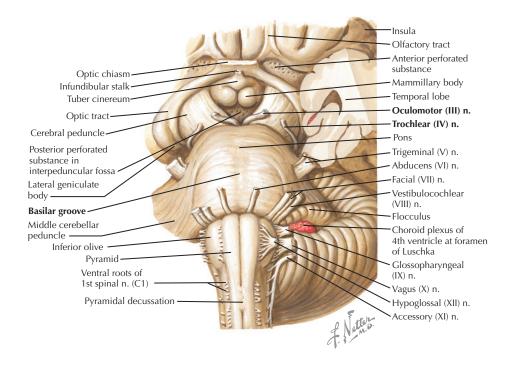

CHAPTER 7 Midbrain (Mesencephalon)

Midbrain In Situ	
Gross Brainstem: Midsagittal View	131
Gross Brainstem: Anterior View	132
Cranial Nerves of Midbrain	
Lower Midbrain	
Upper Midbrain	
Coronal Section through Substantia Nigra	

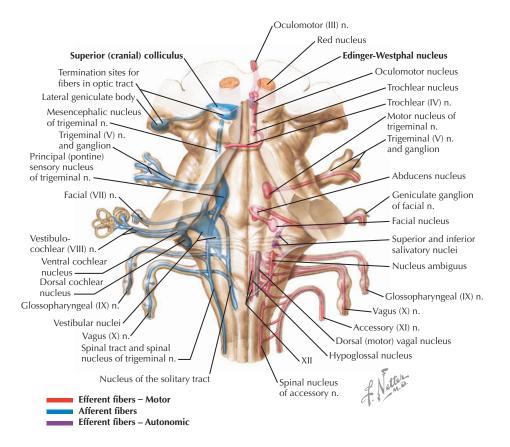
7 Midbrain (Mesencephalon)


MIDBRAIN IN SITU

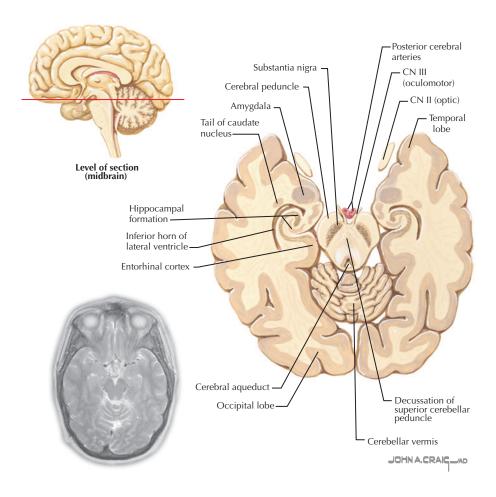
STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Tectum	Dorsal to cerebral aqueduct	Lesions here cause pupils to be in midposition and light- fixed, but to spontaneously fluctuate in size.
Crura cerebri	Separated from tegmentum by pigmented nuclear mass, the substantia nigra	Loss of pigmented cells characteristic of Parkinson's disease
Tegmentum	Located centrally Cerebral aqueduct is surrounded by central gray matter that separates tectum from tegmentum	Rostral continuation of the pontine tegmentum
Cerebral peduncle	Dorsal part is tegmentum Ventral part is crus cerebri	Denotes ¹ / ₂ of the midbrain, excluding tectum


GROSS BRAINSTEM: MIDSAGITTAL VIEW

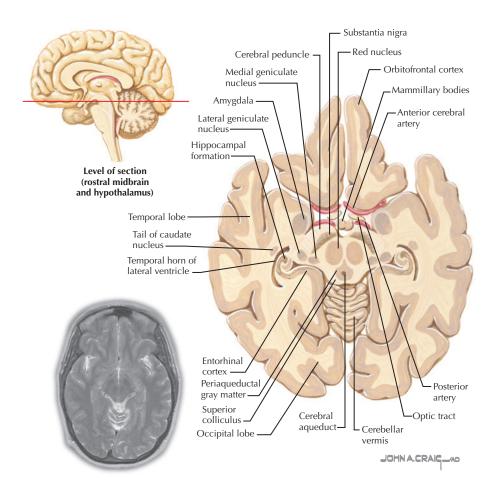
STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Superior colliculus region	Known as pretectum	Superior colliculi influence the position of the head and eyes in response to visual, auditory, and somatic stimuli
Inferior colliculi	3 main nuclei: • Central • Pericentral • External	Relay nuclei transmitting auditory information to medial geniculate body, thence to primary auditory cortex
Pretectal region	Immediately rostral to superior colliculus at the posterior commisure level	Principal midbrain center involved in pupillary light reflex
Posterior commisure	Region of transition from midbrain to diencephalon	Lesions here produce bilateral eyelid retraction and impaired vertical eye movement
Subcommisural organ	Modified ependymal plate in the roof of the cerebral aqueduct, immediately beneath posterior commisure	Function in humans is unknown


GROSS BRAINSTEM: ANTERIOR VIEW

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Basilar groove (sulcus)	Anterior midline depression	Indicates position of basilar artery
Oculomotor nerve (cranial nerve [CN]-III)	Emerges from interpeduncular fossa between the crura cerebri	Weber syndrome: CN-III palsy with contralateral hemiparesis resulting from involvement of CN-III and crus cerebri (descending corticospinal tract)
Trochlear nerve (CN-IV)	Exits dorsal midbrain, crosses in superior medullary velum, and courses anteriorly around brainstem	Longest, most delicate cranial nerve Often injured in head trauma, causing diplopia and head tilt

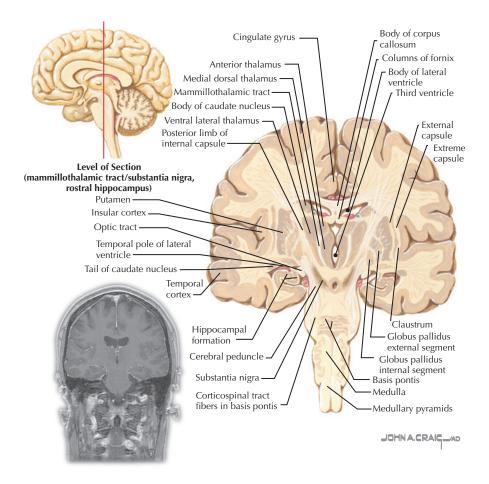

CRANIAL NERVES OF MIDBRAIN

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Nucleus of Edinger- Westphal (CN-III)	Preganglionic parasympathetic nucleus Gives rise to uncrossed parasympathetic fibers	Involved in accommodation and pupillary light reflex
Superior colliculus	Receive input from optic tract	Visual way station, together with lateral geniculate body
Inferior colliculus	Receives input from cochlear nuclei and other accessory auditory nuclei	Auditory way station, together with medial geniculate body


LOWER MIDBRAIN

MAGNETIC RESONANCE IMAGING (MRI): CROSS-SECTIONAL CORRELATION

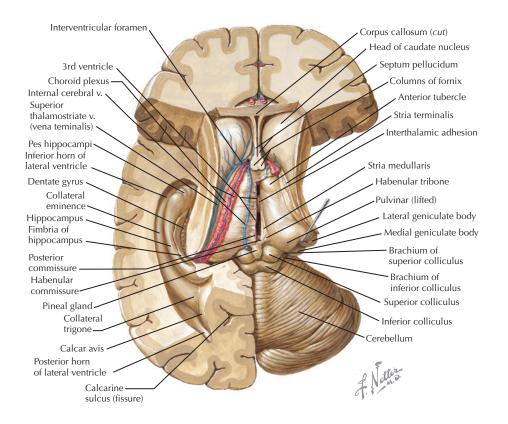
UPPER MIDBRAIN


MRI: CROSS-SECTIONAL CORRELATION

7 Midbrain (Mesencephalon)

CORONAL SECTION THROUGH SUBSTANTIA NIGRA

MRI: CROSS-SECTIONAL CORRELATION

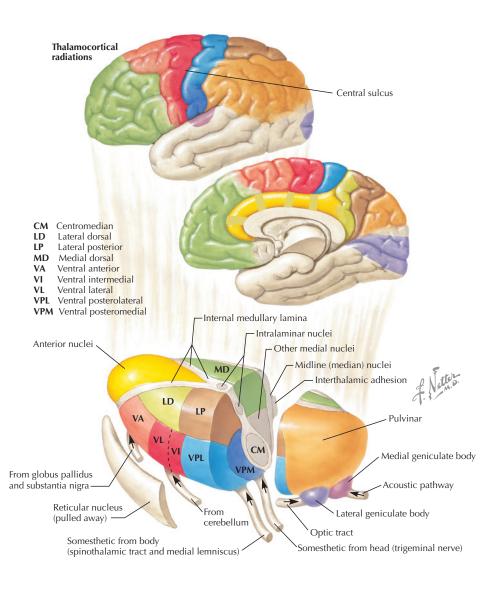

chapter 8 Thalamus

Thalamus In Situ	138
Thalamic Nuclei	139
Thalamus in Horizontal Section	141
Thalamus in Coronal Section	142

8 Thalamus

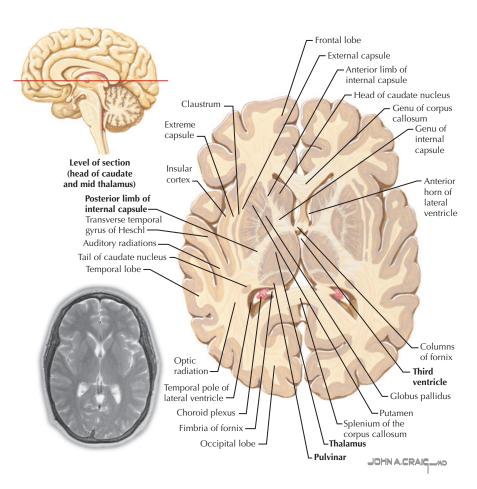
THALAMUS IN SITU

Location	Paired, medially placed, deep egg-shaped nuclear structures that form part of the lateral wall of the 3rd ventricle
Architecture	Composed of multiple nuclei, which receive input from many cortical and subcortical structures
Function	Functions as the "gateway to the cortex." Sensory input, other than olfaction, relays through the thalamus before reaching the cortex. All output to the cortex from the cerebellum and basal ganglia relays through the thalamus. The thalamus also relays limbic input to the cortex
Clinical Significance	Due to its multiple functions, damage to the thalamus can cause many problems, including sensory abnormalities, visual-field deficits, and behavioral changes
	Lesions to the sensory area can cause numbness on the contralateral body and face



THALAMIC NUCLEI

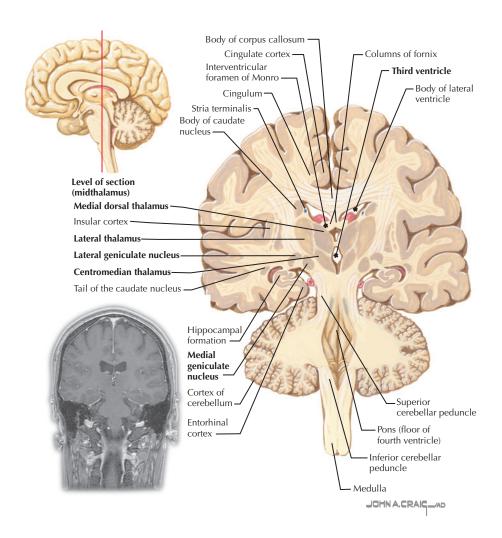
- The thalamus is composed of many nuclei, which have motor, sensory, and limbic connections.
- Some nuclei are nonspecific in nature.


NUCLEUS	INPUT(S)	OUTPUT(S)	FUNCTION
Sensory Nuclei			
Ventroposterolateral (VPL)	Spinothalamic tract Medial lemniscus	Primary sensory cortex	Somatic sensation for contralateral body
Ventroposteromedial (VPM)	Trigeminothalamic tract, pontine taste area	Primary sensory cortex	Somatic sensation for contralateral face, taste
Medial geniculate (MGN)	Brachium of the inferior colliculus	Primary auditory cortex	Hearing
Lateral geniculate (LGN)	Optic tract	Primary visual cortex	Vision
Pulvinar	Lateral geniculate body (LGB), medial geniculate body (MGB), superior and inferior colliculi	Visual association cortex	Visual processing
	Motor Nuclei		
Ventrolateral (VL)	Cerebellum and basal ganglia	Primary motor cortex	Modulation and coordination of movement
Ventroanterior (VA)	Basal ganglia	Premotor cortex	Initiation and planning of movement
Ventrointermedial (VI)	Cerebellum	Primary motor cortex	Coordination of movement
Limbic and Nonspecific Projection Nuclei			
Anterior (Ant)	Mammillothalamic tract	Cingulate cortex	Memory storage and emotion
Mediodorsal (MD)	Temporal lobe, amygdala, hypothalamus	Prefrontal cortex	Motivation, drive, emotion
Centromedian (CM)	Slow pain pathways	Nonspecific cortical projections	Emotional content of pain

THALAMIC NUCLEI continued

THALAMUS IN HORIZONTAL SECTION

- Thalami form the lateral walls of the third ventricle.
- Posterior limb of the internal capsule separates thalamus from the lentiform nucleus.
- Pulvinar is demonstrated in the artwork below.



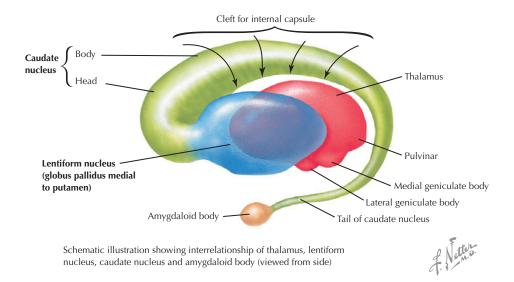
8 Thalamus

THALAMUS IN CORONAL SECTION

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Thalamus	Individual nuclei are anatomically separated. The thalamus defines the borders of the 3rd ventricle	
LGN of the thalamus	Comma-shaped, lateral nucleus of the thalamus	Serves as the visual relay center from the optic tract to occipital cortex. Lesions can cause visual field defects
MGN of the thalamus	Medial to the lateral geniculate nucleus	Serves as the auditory relay center from the inferior colliculus to auditory cortex
MDN of the thalamus	Most dorsal and medial nucleus; forms part of the wall of the 3rd ventricle	Part of the limbic system
CM thalamus	Located ventral to the MDN	Involved in the central modulation and perception of pain
Lateral thalamus	Contains multiple nuclear structures, including the VL and VPL	Involved in motor and sensory relays

THALAMUS IN CORONAL SECTION continued

This page intentionally left blank

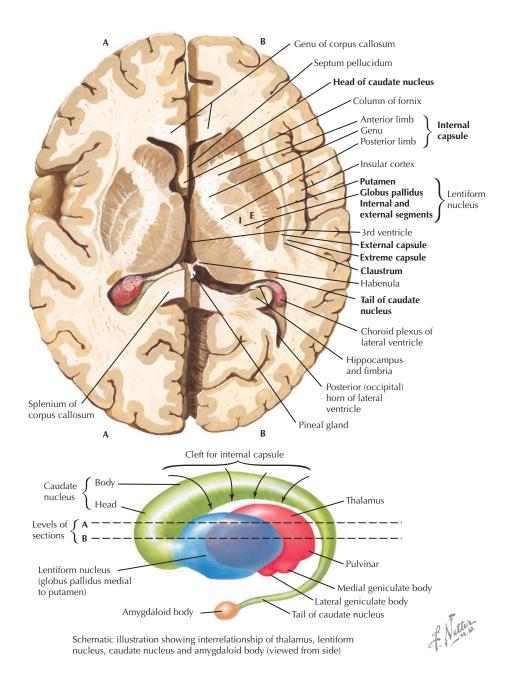

chapter 9 Basal Ganglia

146
147
149
151
153
154

9 Basal Ganglia

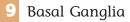
BASAL GANGLIA: OVERVIEW

Function	Involved in the initiation and modulation of movement	
Organization	Deep set of nuclear structures	
	Receive input from the cerebral cortex, process it, and relay back to the cerebral cortex via the thalamus	
Structures	Caudate nucleus, putamen, globus pallidus (internal and external segments), subthalamic nucleus, substantia nigra	
Disease Status	Diseases can lead to a paucity of movement (hypokinetic states) or abnormal movements (hyperkinetic states)	

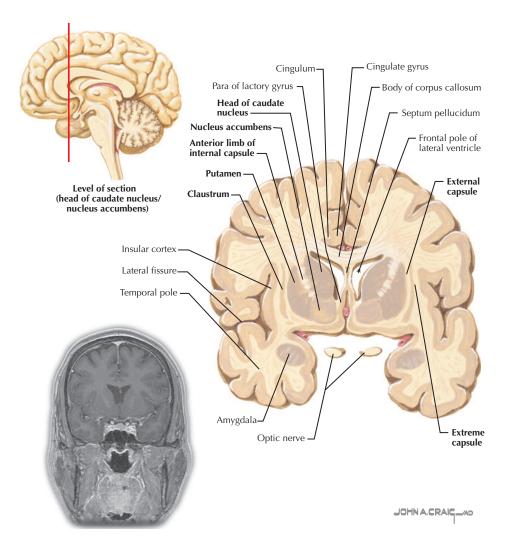


AXIAL VIEW OF THE BRAIN AT THE LEVEL OF THE BASAL GANGLIA

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Caudate nucleus*	C-shaped structure that is lateral to the lateral ventricle	Serves as the major input nucleus of the basal ganglia
	The <i>head of the caudate</i> bulges into the frontal horn of the lateral ventricle	Degeneration of the caudate is typical of Huntington's disease and can be easily appreciated on
	The <i>body of the caudate</i> sweeps into a C shape with the lateral ventricle	computed tomography scans, with loss of the normal indentation into the lateral ventricle
	The <i>tail of the caudate</i> is located in the temporal lobe superior and lateral to the temporal horn of the lateral ventricle	
Internal capsule	U-shaped in axial sections	Important white matter structure
	The anterior limb separates the head of the caudate nucleus from the lentiform nucleus (putamen and	that conduits information from the basal ganglia, thalamus, and cerebellum to cortex
	globus pallidus)	The posterior limb contains the descending upper motor neurons
	The posterior limb separates the thalamus from the globus pallidus	from the cortex
	The genu is the bend that connects the anterior and posterior limbs	
Putamen*	Lens-shaped structure lateral to the globus pallidus	Although separated by the internal capsule, the putamen is
	Anteriorly and inferiorly, it is connected to the caudate	histologically and functionally equivalent to the caudate
	Together the putamen and caudate are called the <i>corpus striatum</i>	
Globus pallidus (GPe and GPi)*	Composed of an internal (GPi) and an external (GPe) segment	The GPi serves as the major output nucleus of the basal ganglia system
	Conspicuously pale, hence the name, which means "pale globe"	The GPe is part of the internal circuitry of the basal ganglia
	Together, putamen and globus pallidus are called the <i>lentiform nucleus</i>	
External capsule	Thin white matter band lateral to putamen	
Claustrum	Thin gray matter band lateral to the external capsule	Function not well elucidated
Extreme capsule	Thin white matter band lateral to claustrum	


*Structures of the basal ganglia

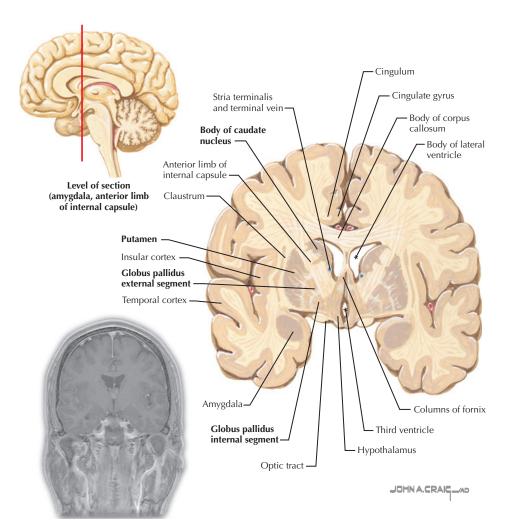
AXIAL VIEW OF BRAIN AT THE LEVEL OF THE BASAL GANGLIA continued



CORONAL VIEW OF THE BRAIN AT THE LEVEL OF THE HEAD OF THE CAUDATE

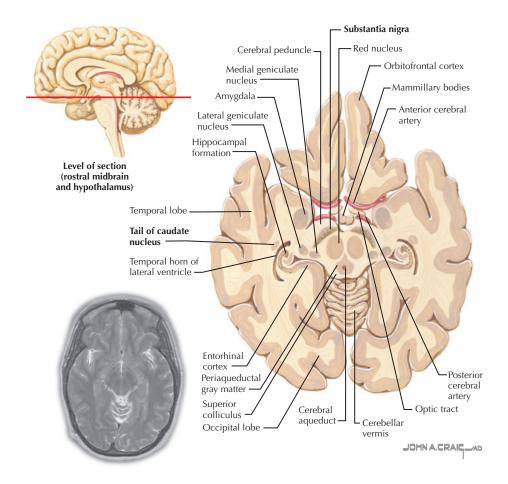
STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Nucleus accumbens	Ventral nuclear structure located at the junction of the caudate and putamen	Involved in modulation of emotions by communicating with the limbic system
		Implicated in addiction behaviors
Head of the caudate nucleus	Note again that it bulges into the frontal horn of the lateral ventricle	
Anterior limb of the internal capsule	In this coronal view, it can be seen separating the caudate and putamen	Contains fibers traveling from cerebellum and basal ganglia to the cortex
	Note the bands of gray matter connecting the caudate and putamen	
Putamen	At this anterior level, the globus pallidus is not yet visible	
External capsule, claustrum, extreme capsule	Again, note the relationship of these 3 structures to each other	

CORONAL VIEW OF THE BRAIN AT THE LEVEL OF THE HEAD OF THE CAUDATE *continued*



CORONAL VIEW OF THE BRAIN AT THE LEVEL OF THE ANTERIOR LIMB OF THE INTERNAL CAPSULE

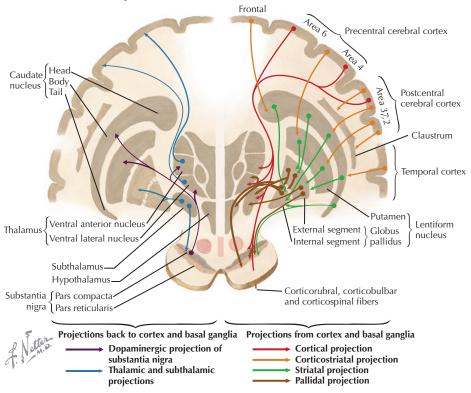
STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Body of caudate	Note that the caudate tapers in size from the head to the body	The body and head have similar functions as the input zone of the basal ganglia
GPi segment	The innermost segment of the globus pallidus	Functions as an output nucleus of the basal ganglia to thalamus, en route to the cortex
GPe segment	The outermost segment of the globus pallidus	Functions as an intrinsic nucleus, relaying information from striatum to other structures in basal ganglia
Putamen	Lateral to the globus pallidus Note that the putamen and globus pallidus are closely positioned and lens-shaped, known together as the <i>lentiform nucleus</i>	Although close to globus pallidus, the putamen is histologically and functionally equivalent to the caudate


9 Basal Ganglia

CORONAL VIEW OF THE BRAIN AT THE LEVEL OF THE ANTERIOR LIMB OF THE INTERNAL CAPSULE *continued*

AXIAL VIEW OF THE BRAIN THROUGH THE MIDBRAIN

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Substantia nigra	Located in the ventral midbrain Appears brown owing to neuromelanin pigmentation Has two internal subdivisions called the <i>pars compacta</i> and <i>pars</i> <i>reticularis</i>	Pars compacta has dopamine- producing neurons, which project to the striatum and facilitate movement. Pars reticularis, like the GPi, is an output nucleus of the basal ganglia. Degeneration of the substantia nigra causes Parkinson's disease.
Tail of the caudate nucleus	Can be seen here in its expected location, superior and lateral to the temporal horn of the lateral ventricle	



9 Basal Ganglia

CONNECTIONS OF THE BASAL GANGLIA

ANATOMIC NOTES	PATHWAYS	FUNCTIONAL SIGNIFICANCE
Basal ganglia are involved in a complex set of loop pathways Basic principle is that all loops follow the following general path: cortex->basal ganglia-> thalamus->cortex <i>Input</i> All input to basal ganglia goes to striatum (caudate, putamen, nucleus accumbens) <i>Output</i> All output from basal ganglia comes from GPi and substantia nigra pars reticulata (SNr)	Two distinct pathways through basal ganglia: <i>Direct pathway</i> Facilitates movement cortex->striatum->GPi + SNr->thalamus-> cortex <i>Indirect pathway</i> Inhibits movement cortex->striatum-> GPe->subthalamic nucleus->GPi + SNr-> cortex	Dopamine from pars compacta of the substantia nigra facilitates movement by exciting direct pathway and suppressing indirect pathway. In Parkinson's disease, dopaminergic neurons in the pars compacta of substantia nigra degenerate, causing decreased speed of movements, known as <i>bradykinesia</i> .

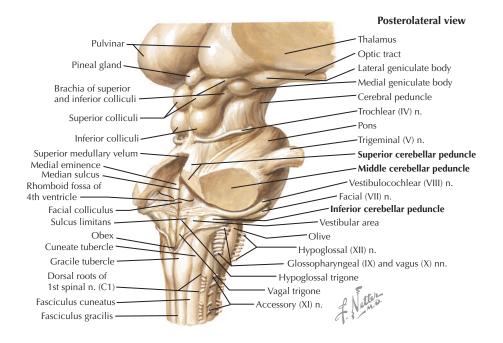
Connections of Basal Ganglia

CHAPTER 10 Cerebellum

Overview of the Cerebellum	
Cerebellar Peduncles	157
Cerebellar Anatomy	158
Interior of Cerebellum	160
Cerebellar Cortex Types	
Functional Subdivisions of the Cerebellum	
Cerebellar Input	
Cerebellar Output	

OVERVIEW OF THE CEREBELLUM

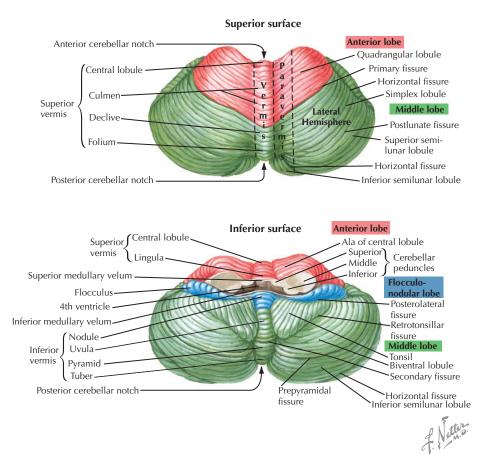
Location	Posterior fossa, below the tentorium cerebelli
Architecture	Similar to cerebrum, contains folded cortex, white matter, and deep nuclear structures
Function	Major function is to coordinate and stabilize movement Important in maintenance of balance
Clinical Significance	Cerebellar diseases can cause poor coordination, slurred speech, and gait imbalance
	Midline lesions tend to cause more gait problems


Midsagittal View of Brain

CEREBELLAR PEDUNCLES

- In this dorsal view of the brainstem, the cerebellum has been removed to expose its three peduncles.
- Cerebellum communicates with rest of the nervous system through its peduncles.

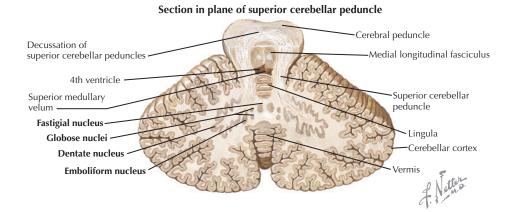
PEDUNCLE	ALTERNATE NAME	FUNCTIONAL SIGNIFICANCE
Superior cerebellar peduncle	Brachium conjuctivum	Primarily carries output from cerebellum
Middle cerebellar peduncle	Brachium pontis	Exclusively carries input to cerebellum
Inferior cerebellar peduncle	Restiform body	Primarily carries input to cerebellum



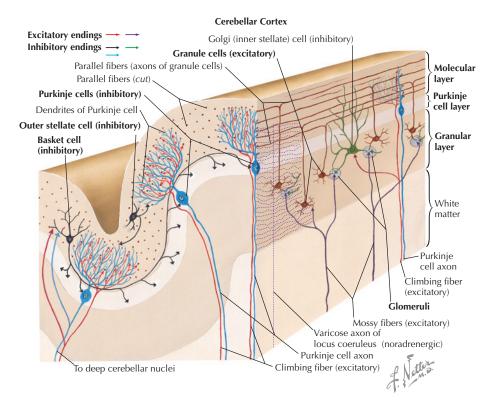
CEREBELLAR ANATOMY

CEREBELLAR SURFACE ANATOMY			
Cerebellar Lobe	Associated Lobules	Anatomic Notes	Functional Significance
Anterior lobe	Quadrangular Ala of central lobule	Separated from the middle lobe by primary fissure	Becomes atrophic in alcoholics
Middle lobe	Simplex Superior semilunar Inferior semilunar Biventral Tonsil	Lies posterior and inferior to anterior lobe, separated from it by primary fissure Tonsil is its inferior and medial-most projection	Cerebellar tonsils lie just lateral to the medulla and, if displaced by pressure, can compress the medulla, causing death, called tonsillar herniation
Flocculonodular lobe	Flocculus Nodule of the vermis	Flocculus is separated from the middle lobe by posterolateral fissure	Involved in balance by communicating with vestibular system

FISSURES OF THE MIDDLE LOBE		
Fissure	Anatomic Notes	
Postlunate	Separates simplex from superior semilunar lobule	
Horizontal	Separates superior and inferior semilunar lobules	
Prepyramidal	Separates inferior semilunar from biventral lobule	
Retrotonsillar	Separates biventral lobule from tonsil	


CEREBELLAR ANATOMY continued

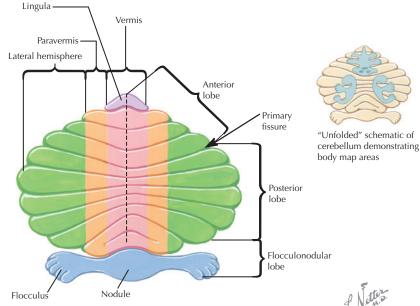
INTERIOR OF CEREBELLUM


- The cerebellum has cortex, white matter, and deep nuclei.
- The cerebellar cortex is folded into folia, collectively forming the arbor vitae cerebelli.
- Input to the cerebellum goes mainly to the cerebellar cortex.
- Output from the cerebellum comes from deep nuclei.

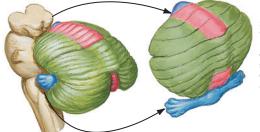
DEEP NUCLEUS	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Dentate nucleus	Largest, lateral-most, deep nucleus	Receives input from the lateral hemispheres and outputs via the superior cerebellar peduncle
Globose nuclei Emboliform nucleus	Collectively known as the <i>interposed nuclei</i>	Receive input from paravermian regions and send output via the superior cerebellar peduncle
Fastigial nucleus	Medial-most deep nucleus	Receives input from the vermis and flocculonodular lobe and outputs via the juxtarestiform body of the inferior cerebellar peduncle

CEREBELLAR CORTEX TYPES

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Purkinje cell	Large, flask-shaped cells uniformly arranged along the upper margin of granular layer	All impulses entering the cerebellar cortex must converge on these cells to reach efferent cerebellar pathways
	Purkinje cell axons are the only ones to emerge from the cerebellar cortex and enter the white matter	γ -aminobutric acid (GABA) is neurotransmitter released at synapse
Basket cell	Situated in the molecular layer, in the vicinity of Purkinje cell bodies	Gives rise to branching dendrites, which ascend in the molecular layer to produce a fan-shaped field in sagittal plane, and to axons which arborize around somata of 10 Purkinje cells
Granule cell	Fills granular layer which has appearance of packed chromatic nuclei with irregular light spaces called cerebellar islands or glomeruli which are complex synaptic structures	Prodigious in number (3-7 million granule cells/mm ³ of granular layer)
Outer stellate cell	Situated in molecular layer	Establish synaptic contacts with Purkinje cell dendrites


FUNCTIONAL SUBDIVISIONS OF THE CEREBELLUM

The cerebellum can be divided into functional lobes:


- Lateral hemispheres
- Paravermis
- · Vermis and flocculonodular lobe

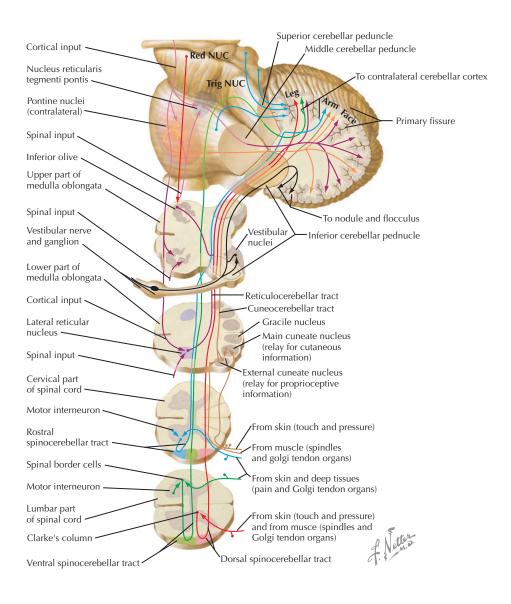
The cerebellum has somatotopic organization:

- Body is represented three timesEach hemisphere and the vermis have a somatotopic map

"Unfolded" schematic of cerebellum demonstrating regions and lobes

JOHN A.CRAK

Schema of theoretical "unfolding" of cerebellar surface in derivation of above diagram


CEREBELLAR INPUT

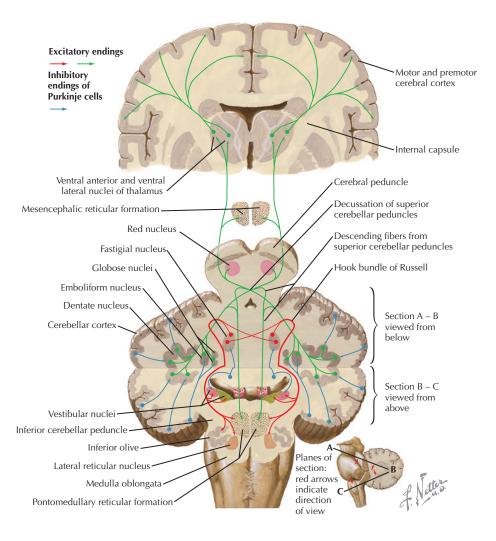
- Input to the cerebellum arises from multiple locations in the nervous system.
- Input from the spinocerebellar tracts provides unconscious proprioception.
- Inputs from the vestibular system provides information about acceleration and head position.
- Inputs from the motor cortex provides information about motor function.
- · Cerebellum uses all input to assist in coordinating smooth motor function and balance.
- All input to the cerebellum from spinal cord is from the ipsilateral body.
- The ventral spinocerebellar tract double crosses.

PEDUNCLE	INPUT(S) TO CEREBELLUM	
Superior	Ventral spinocerebellar tract	
	Midbrain tectum (colliculi)	
	Trigeminal system	
Middle	Cerebral cortex (motor and sensory) via pontine nuclei	
Inferior	Dorsal spinocerebellar tract	
	Rostral spinocerebellar tract	
	Cuneocerebellar tract	
	Reticulocerebellar tract	
	Inferior olive	
	Trigeminal system	
	Vestibular system	

10 Cerebellum

CEREBELLAR INPUT continued

CEREBELLAR OUTPUT

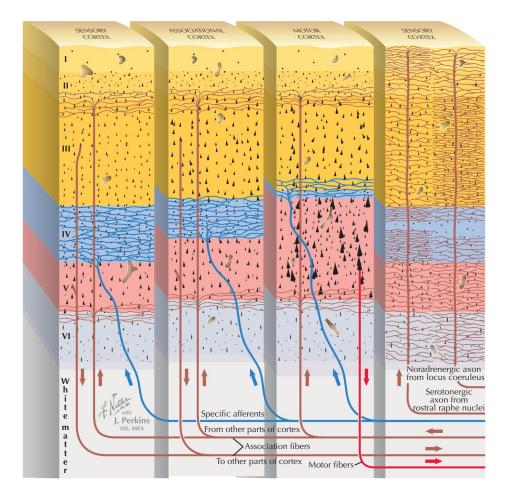

- Output from the cerebellum comes from deep nuclei.The flocculonodular cortex also outputs directly to vestibular nuclei.

PEDUNCLE	CEREBELLAR OUTPUT(S)	
Superior	Thalamus (ventrolateral [VL] nucleus)	
	Red nucleus	
	Reticular formation	
Middle	None	
Inferior	Vestibular nuclei (via hook bundle of Russel)	
	Reticular formation	

CEREBELLAR CIRCUITRY BY FUNCTIONAL LOBE				
Functional Lobe	Input	Deep Nucleus	Output	Function
Lateral hemispheres	Motor and sensory cortex	Dentate	Thalamus VL to the premotor cortex	Coordinates movement by influencing the corticospinal tract
Paravermis	Muscle spindles and Golgi tendon organs via spinocerebellar tracts	Interposed (globose and emboliform)	Red nucleus	Modulates movement by influencing rubrospinal tract
Vermis and flocculonodular lobe	Vestibular system	Fastigial and vestibular nuclei	Vestibular system	Modulates balance and truncal stability

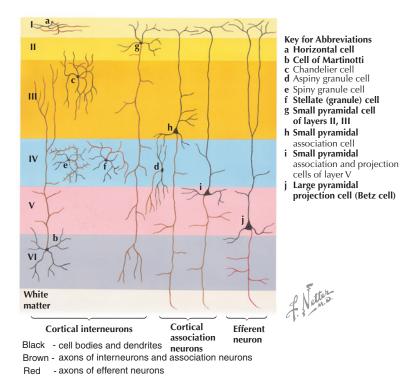
10 Cerebellum

CEREBELLAR OUTPUT continued

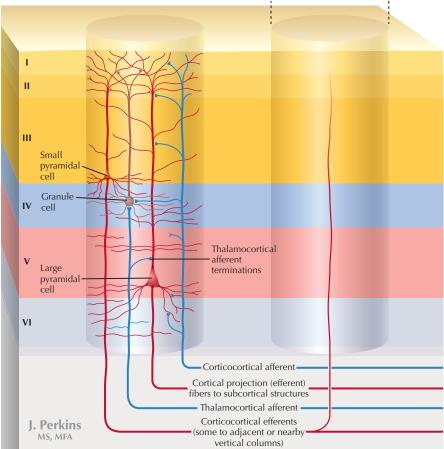

Cerebral Cortex

Layers of the Cerebral Cortex	168
Cortical Neuronal Cell Types	169
Sensory Cortex Vertical Columns	170
Neuronal Origins of Efferent Cortical Connections	171
Commissural and Other Association Fiber Systems	172
Major Cortical Association Bundles	174
Hippocampal Formation	176
Entorhinal Cortex	178
Olfactory Cortex	179

11 Cerebral Cortex

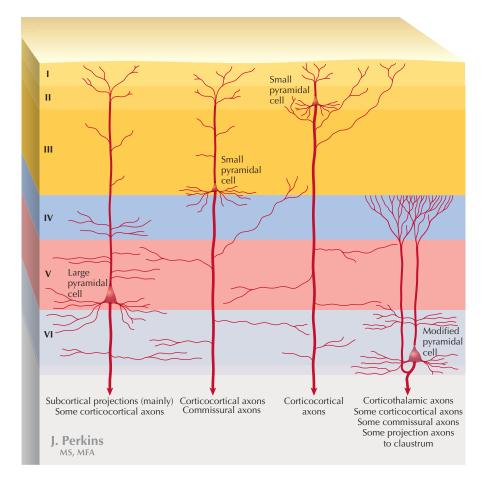

LAYERS OF THE CEREBRAL CORTEX

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Sensory cortex	Large granule cell layers (granular cortex) for receiving input	Receives afferent fibers and terminals from other parts of nervous system (e.g., thalamocortical)
Association cortex	Most association fibers arise from superficial layers of cortex	Axons interrelate cortical regions of same or opposite hemisphere
Motor cortex	Most projection neurons arise from deeper layers of cortex	Contains projection neurons to other parts of the neuraxis (e.g., corticospinal, corticobulbar)


CORTICAL NEURONAL CELL TYPES

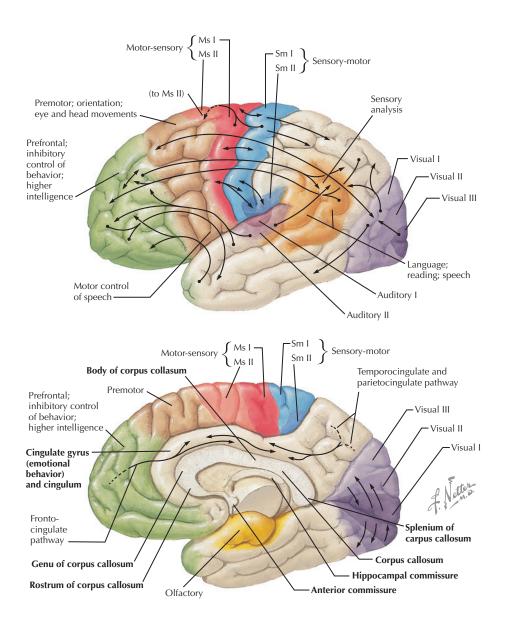
STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Stellate (granule) cells	Small bodies, localized dendritic trees All layers of cortex, most in layer IV	Receiving neurons for thalamic input Modulate excitability of other cortical neurons
Pyramidal cells	Varied cell bodies Large basal and apical dendritic branching patterns run perpendicular to the cortical surface and arborize in upper layers.	Projection neurons (e.g., corticobulbar, corticoreticular, corticothalamic tracts)
Cells of Martinotti	Small triangular cells present in all cortical layers	Intracortical neuron
Horizontal cell (of Cajal)	Small fusiform cells present mostly in superficial cortical layer	Intracortical neuron
Betz cell	Giant pyramidal cells	Concentrated in Brodmann area 4, primary motor cortex Give rise to corticospinal tract

SENSORY CORTEX VERTICAL COLUMNS


STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Vertical cell columns in sensory and visual cortex	Neurons of particular column are all related to same peripheral receptive field	Constitute elementary functional cortical unit Neurons of same vertical column are activated by same peripheral stimulus

Vertical columns (0.5-1.0 mm wide)

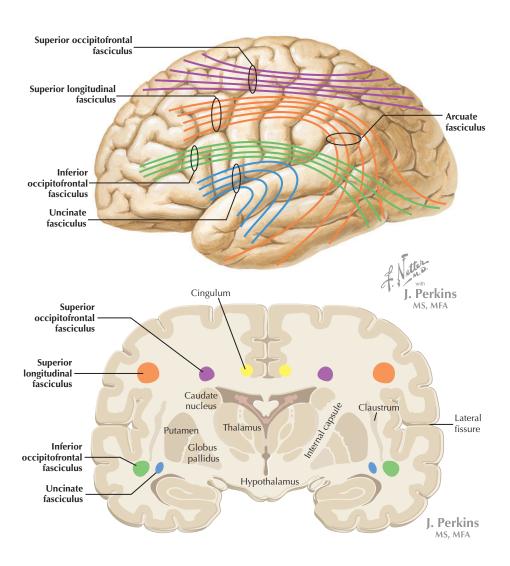
NEURONAL ORIGINS OF EFFERENT CORTICAL CONNECTIONS


STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Corticocortical columns	Same size as functional columns of sensory cortex	Delineated by pattern of termination of association and commissural fibers Afferent fibers converge from multiple vertical columns to create vast mosaic of cortical connections

COMMISSURAL AND OTHER ASSOCIATION FIBER SYSTEMS

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Corpus callosum: genu	Interconnects prefrontal cortex	Enables the reorganization of cerebral functions to compensate for disruption caused by lateralized brain insult
Corpus callosum: rostral part of body	Interconnects premotor and supplementary motor cortices	Callosotomy surgery for seizure control sections this region
Corpus callosum: middle part of body	Interconnects primary motor and primary and secondary somatic sensory areas	Sectioning during callosotomy results in left-sided neglect, aphasia, and disorders of visuospatial transfer
Corpus callosum: caudal part of body	Interconnects posterior parietal cortex	Interhemispheric transfer of tactile information
Corpus callosum: splenium	Interconnects temporal and occipital cortices	Lesion in splenium causes "pure" word blindness (alexia without agraphia): inability to read aloud, understand written script, and often to name colors
		Conversation, repetition, and writing remain intact
Anterior commissure	Interconnects 2 temporal lobes	Sectioned along with anterior ² / ₃ of the corpus callosum during surgery for seizure control
Hippocampal commissure	Interconnects 2 hippocampi	Temporal lobe discharges may not propagate through corpus callosum or hippocampal commissure, resulting in little interhemispheric coherence, and supporting a multisynaptic route for seizure spread
Cingulum	White-matter core of cingulate gyrus	Important for emotional functions
	Long-association fiber system connecting the anterior perforated substance and the parahippocampal gyrus	

COMMISSURAL AND OTHER ASSOCIATION FIBER SYSTEMS continued

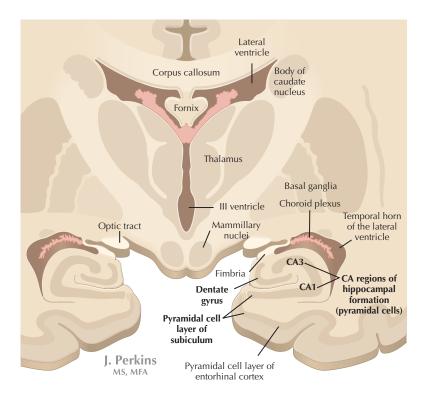


11 Cerebral Cortex

MAJOR CORTICAL ASSOCIATION BUNDLES

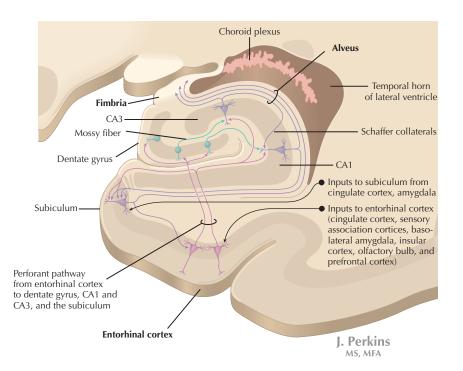
STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Superior Iongitudinal fasciculus	In the lateral part of the hemisphere above the insula	Long-association fiber system connecting the frontal lobe with the parietal, occipital, and temporal lobes
Arcuate fasciculus	Part of the superior longitudinal fasciculus sweeping around insula, connecting Broca's speech area in inferior frontal gyrus and Wernicke's area in superior temporal gyrus	Lesions here result in conduction aphasia. Speech output is normal, comprehension is preserved, but repetition is severely affected
Occipitofrontal fasciculus	Two subdivisions: • Superior bundle • Inferior bundle	Connects frontal lobe with temporal and occipital lobes
Superior bundle	Dorsolateral to lateral ventricle, between corpus callosum, internal capsule, and caudate nucleus	Its existence is subject to controversy
Inferior bundle	Lateral to the temporal horn of the lateral ventricle, below the lateral ventricle and insular cortex	Links the orbital cortex and anterior temporal cortex
Uncinate fasciculus	Component of inferior occipitofrontal fasciculus, courses at the bottom of the sylvian fissure	Connects the inferior frontal gyrus with the anterior temporal lobe

MAJOR CORTICAL ASSOCIATION BUNDLES continued

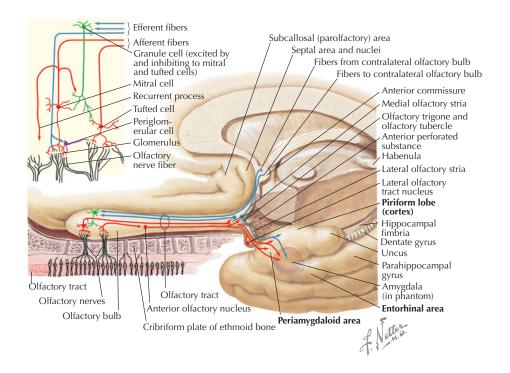


11 Cerebral Cortex

HIPPOCAMPAL FORMATION


STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Hippocampal formation	Consists of: • Dentate gyrus • Hippocampus • Subiculum	Involved in consolidation of short- term memory into long-term traces
Dentate gyrus	 3-Layer structure, like the hippocampus: Molecular Pyramidal Polymorphic (stratum oriens, most superficial) 	Output of the dentate gyrus does not leave the hippocampal formation
Hippocampus	In the 1500s, called <i>hippocampus</i> because of its resemblance to a seahorse Later called <i>Ammon's horn</i> (cornu ammonis, or CA) because of its resemblance to a ram's horn (the Egyptian deity Ammon)	Divided into fields: CA 1-4 Pyramidal cells of CA1 (Sommer's sector) highly sensitive to anoxia and ischemia, and are a trigger zone for some forms of temporal lobe epilepsy
Subiculum	3 layers, like rest of hippocampal formation	Axons of pyramidal neurons, like those of the hippocampus, contribute to the output of hippocampal formation

HIPPOCAMPAL FORMATION continued

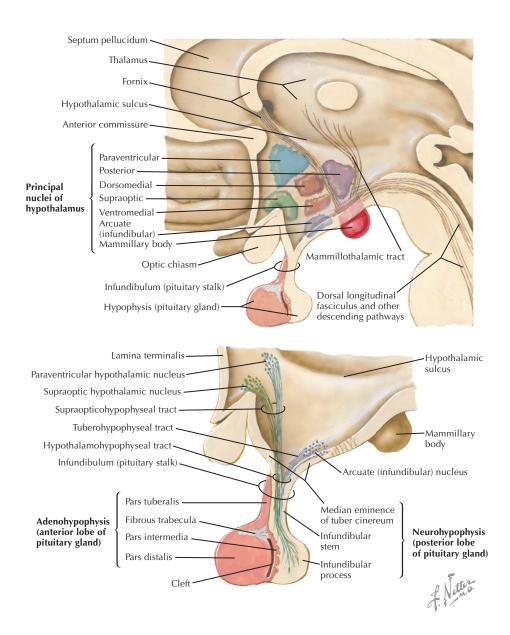

ENTORHINAL CORTEX

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Alveus	Axons of pyramidal neurons gather at the ventricular surface of the hippocampus as alveus	Myelinated envelope surrounding the hippocampal formation
Fimbria	Alveus fibers converge to form flattened ribbon of white matter, the fimbria	Traced posteriorly, the fimbria, at posterior limit of hippocampus, arches under splenium of corpus callosum to form the crus of the fornix
Entorhinal cortex	Bulk of extrinsic input to hippocampal formation comes from the entorhinal cortex	Information from many cortical areas (visual, auditory, sensory) converge here and is conveyed to the hippocampus

OLFACTORY CORTEX

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Olfactory cortex	Located in temporal lobe Composed of: • Pyriform cortex • Periamygdaloid area • Part of entorhinal area	Exceptionally small area in humans; concerned with conscious perception of olfactory stimuli
Pyriform cortex	Projects fibers to entorhinal cortex	Major link between the olfactory regions of the temporal and frontal lobes
Periamygdaloid area	Dorsal and rostral to the amygdala	Intimately related to the prepyriform area
Entorhinal area	Rostral part of parahippocampal gyrus, corresponding to Brodmann area 28	Constitutes a secondary olfactory cortex projecting to hippocampal formation, insula, and frontal cortex

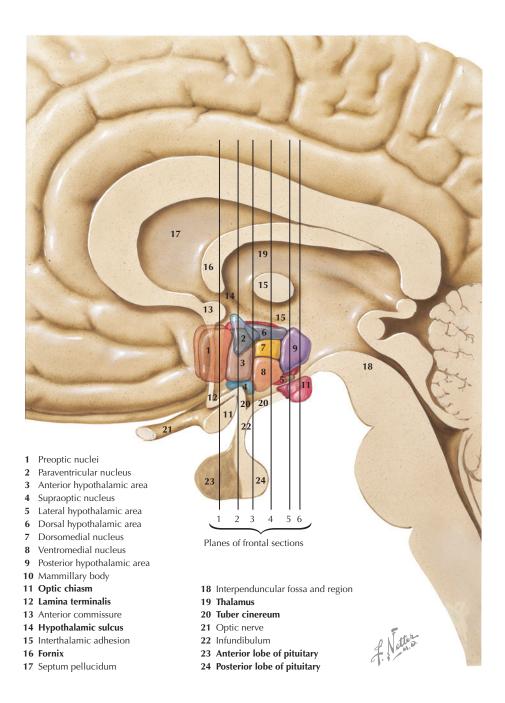
This page intentionally left blank


CHAPTER 12 Hypothalamus

Anatomy of the Hypothalamus	
The Hypothalamus in Relation to Other Medial Structures	184
Hypothalamic Nuclei	186
Preoptic and Anterior (Supraoptic) Zone Nuclei	188
Tuberal Zone Nuclei	
Posterior (Mammillary) Zone Nuclei	
Hypothalamic Pathways	194
Summary of Hypothalamic Input and Output	
Posterior Pituitary	
Anterior Pituitary	

ANATOMY OF THE HYPOTHALAMUS

Location	Located in ventral diencephalon along the walls of 3rd ventricle, below the hypothalamic sulcus and above the pituitary gland	
	Anterior border is the lamina terminalis	
	Lateral border is indistinct	
Architecture	Composed of a collection of nuclei and fiber tracts	
	In the sagittal plane can be divided into periventricular, medial, and lateral zones	
	Connected to multiple parts of the nervous system	
Function	Serves as a central regulator of homeostasis	
	Controls the autonomic nervous system, visceral functions; participates in the limbic system	
	Regulates appetite, temperature, thirst, stress response, lactation, and cardiorespiratory function	
Clinical Significance	Lesions can lead to autonomic, emotional, or endocrine dysfunction, including precocious puberty	


ANATOMY OF THE HYPOTHALAMUS continued

THE HYPOTHALAMUS IN RELATION TO OTHER MEDIAL STRUCTURES

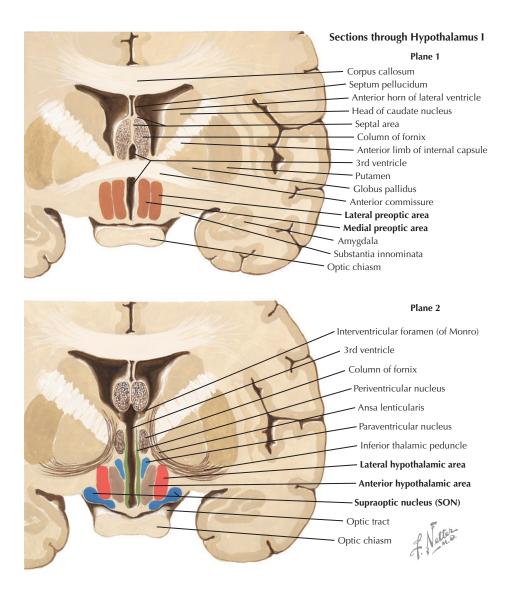
STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE AND CLINICAL NOTES	
Thalamus	Like the hypothalamus, the thalamus is a diencephalic structure	As structures lining the 3rd ventricle, both the medial thalamus and hypothalamus can be damaged in thiamine deficiency	
	Located above the hypothalamic sulcus lateral to the 3rd ventricle		
Hypothalamic sulcus	A groove in the wall of the 3rd ventricle, which separates the thalamus superiorly from the hypothalamus inferiorly		
Fornix	In sagittal section, it swings above and around the thalamus	Damage to this structure can cause problems with emotions and memory	
	Separates medial from lateral hypothalamus.	The pathway from the hippocampus to the mammillary bodies is part of the	
	Carries hippocampal output to the hypothalamic mammillary body	Papez circuit of the limbic system	
Lamina terminalis	Represents the anterior end of the neural tube and the anterior border of the hypothalamus	Location of the rostral neural tube closure	
Optic chiasm	Lies below the hypothalamus and above the pituitary	Pituitary lesions can compress the optic chiasm, causing visual-field deficits, specifically a bitemporal field cut	
Tuber cinereum	Layer of hypothalamic gray matter that forms the floor of the 3rd ventricle and descends to form the infundibulum		
Anterior lobe of pituitary	The anterior portion of the pituitary gland	Produces and secretes various hormones into the systemic circulation;	
gland	Also known as adenohypophysis	regulates the endocrine system. Its function is regulated by releasing factors from the hypothalamus	
Posterior lobe of pituitary	The posterior portion of the pituitary	Secretes 2 hormones, vasopressin and oxytocin, which are produced in the	
gland	Also known as neurohypophysis	hypothalamus	
	Direct extension of the hypothalamus, connected via the infundibulum		

THE HYPOTHALAMUS IN RELATION TO OTHER MEDIAL STRUCTURES continued

HYPOTHALAMIC NUCLEI

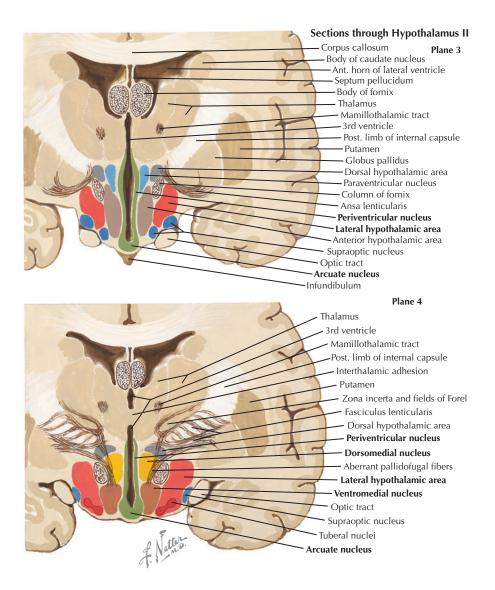
- · Composed of medial and lateral zones separated by the fornix as it traverses hypothalamusCan also be divided into anterior to posterior zones

NUCLEUS	ZONE
Medial preoptic	Preoptic
Lateral preoptic	Preoptic
Supraoptic	Anterior (supraoptic)
Suprachiasmatic	Anterior (supraoptic)
Anterior hypothalamic area	Anterior (supraoptic)
Paraventricular	Anterior (supraoptic)
Dorsomedial	Tuberal
Ventromedial	Tuberal
Arcuate	Tuberal
Dorsal hypothalamic area	Tuberal
Posterior hypothalamic area	Posterior (mammillary)
Mammillary bodies	Posterior (mammillary)
Lateral hypothalamic area	Spans anterior, tuberal, and posterior
Periventricular	Spans anterior and tuberal


HYPOTHALAMIC NUCLEI continued

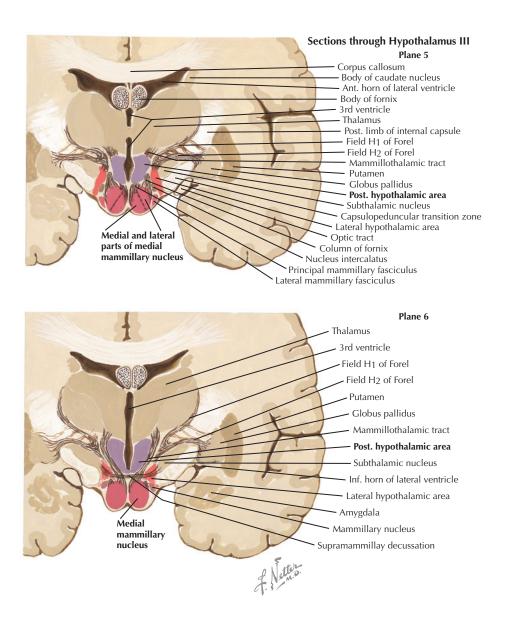
PREOPTIC AND ANTERIOR (SUPRAOPTIC) ZONE NUCLEI

NUCLEUS	FUNCTION	
Medial preoptic	Regulates the parasympathetic nervous system	
Lateral preoptic	Not clearly established; involved in sleep, sexual function, and reward behaviors	
Supraoptic	Produces vasopressin (antidiuretic hormone), which is transported via axons to the posterior pituitary. Vasopressin causes vasoconstriction and water retention	
Anterior hypothalamic area	Involved in temperature, appetite, and sexual regulation. Regulates the parasympathetic nervous system	
Paraventricular	Produces oxytocin, which is transported via axons to the posterior pituitary; oxytocin causes uterine contractions and milk ejection	
Suprachiasmatic (not shown)	Receives input from the retina; controls the circadian rhythm, partly by influencing the pineal gland	
Lateral hypothalamic area	Involved in appetite, thirst, and temperature regulation	


PREOPTIC AND ANTERIOR (SUPRAOPTIC) ZONE NUCLEI continued

TUBERAL ZONE NUCLEI

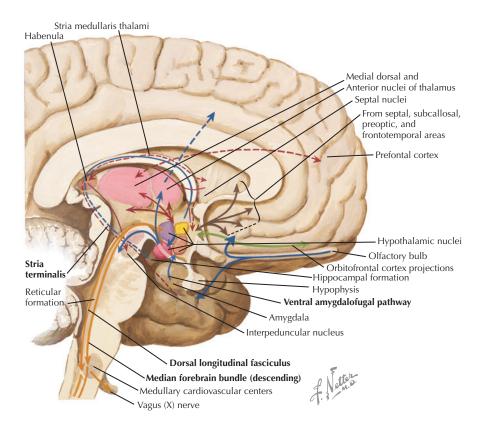
NUCLEUS	FUNCTION	
Dorsomedial	Represents the satiety center of the brain	
	Lesions can lead to obesity	
Ventromedial	Involved in emotions and rage responses	
Arcuate	Produces dopamine which inhibits prolactin release from the anterior pituitary	
	Involved in appetite regulation	
Periarcuate area	Produces β-endorphins	
Periventricular	Produces releasing and inhibiting factors, which are sent to the median eminence for release into hypothalamic-pituitary portal system and control hormone release from the anterior pituitary	
Lateral hypothalamic area	Involved in appetite, thirst, and temperature regulation	


TUBERAL ZONE NUCLEI continued

POSTERIOR (MAMILLARY) ZONE NUCLEI

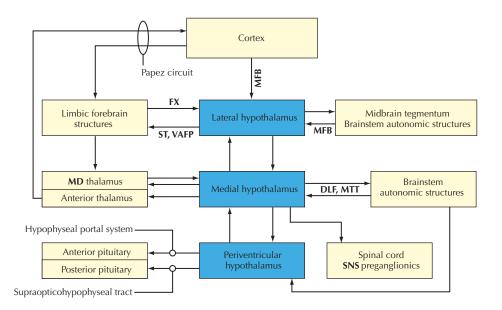
NUCLEUS	FUNCTION	
Posterior hypothalamic area	Regulates the sympathetic nervous system; involved in the response to cold	
Medial and lateral mammillary nuclei	Integral part of the limbic system	
,	Receive hippocampal input via the fornix and project to the anterior nucleus of the thalamus	
	Damage causes inability to form new memories; can be damaged by thiamine deficiency, common in alcoholics, known as <i>Wernicke-</i> <i>Korsakoff syndrome</i>	

POSTERIOR (MAMILLARY) ZONE NUCLEI continued


HYPOTHALAMIC PATHWAYS

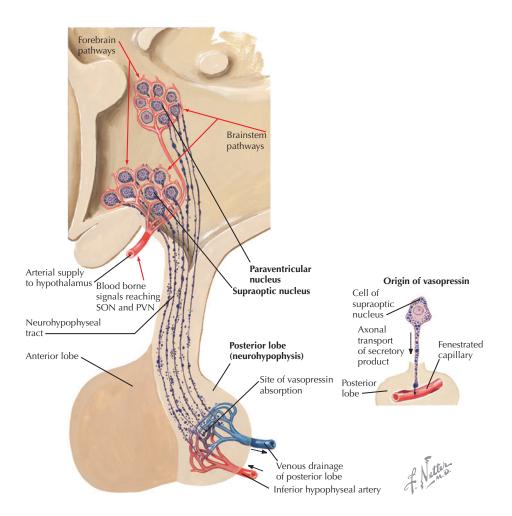
The hypothalamus is integrally connected with multiple parts of the nervous system.

SELECTED AFFERENT PATHWAYS			
Input	Pathway	Destination	Function
Retina	Retinohypothalamic	Suprachiasmatic nucleus	Sets the circadian rhythm
Median dorsal thalamus		Multiple nuclei	Limbic-emotional modulation
Cerebral cortex	Median forebrain bundle	Lateral hypothalamus	Limbic-emotional modulation
Amygdala	Stria terminalis Ventral amygdalofugal	Multiple nuclei	Limbic-emotional modulation Olfactory input modulation
Hippocampus	Fornix	Medial mamillary	Memory formation Part of Papez circuit
Brainstem autonomic structures	Medial forebrain bundle Dorsal longitudinal fasciculus	Multiple nuclei	Autonomic modulation


SELECTED EFFERENT PATHWAYS			
Output Nucleus	Pathway	Destination	Function
Paraventricular and supraoptic	Supraopticohypophyseal tract	Posterior pituitary	Delivery of vasopressin and oxytocin
Multiple regions		Median eminence	Release of releasing and inhibiting factors for anterior pituitary
Lateral hypothalamus	Median forebrain bundle	Septal nuclei	Limbic-emotional modulation
Medial mammillary	Mammillothalamic tract	Thalamus (anterior nucleus)	Part of Papez circuit
Periarcuate area	β-endorphin pathway	Multiple subcortical and brainstem	Modulates stress responses
Multiple regions	Medial tegmental tract	Reticular formation, tegmental nuclei	Modulation of arousal and autonomic systems

HYPOTHALAMIC PATHWAYS continued

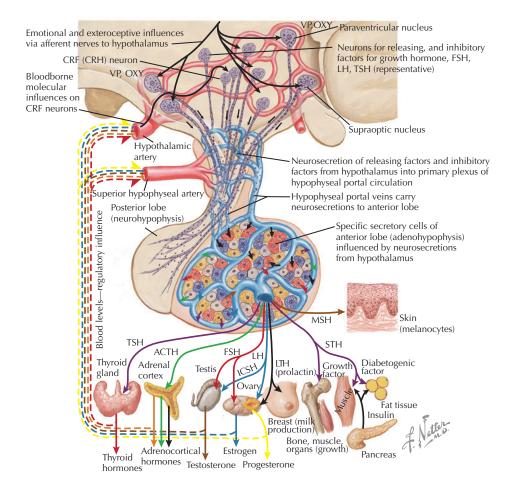
SUMMARY OF HYPOTHALAMIC INPUT AND OUTPUT


KEY HYPOTHALAMIC PATHWAYS

- DLF = Dorsal longitudinal fasciculus
- **MFB** = Median forebrain bundle
- ST = Stria terminalis
- VAFP = Ventral amygdalofugal pathway
- MD = Medial dorsal nucleus of thalamus FX = Fornix
- **MTT** = Mammillothalamic tract
- **SNS** = Sympathetic nervous system

POSTERIOR PITUITARY

Location	Is a direct extension of the hypothalamus, connected via the infundibulum
Architecture	Composed of descending axons from the supraoptic and paraventricular nuclei of hypothalamus
Function	Secretes oxytocin and vasopressin (antidiuretic hormone, or ADH) into the systemic circulation through fenestrated capillaries
Clinical Significance	Oxytocin causes uterine contractions during childbirth. Vasopressin causes water retention by the kidney and vasoconstriction. In severe brain injuries, damage can cause failure of ADH release, known as diabetes insipidus. Brain lesions can also cause the syndrome of inappropriate antidiuretic hormone (SIADH), leading to dilution of blood and low sodium


ANTERIOR PITUITARY

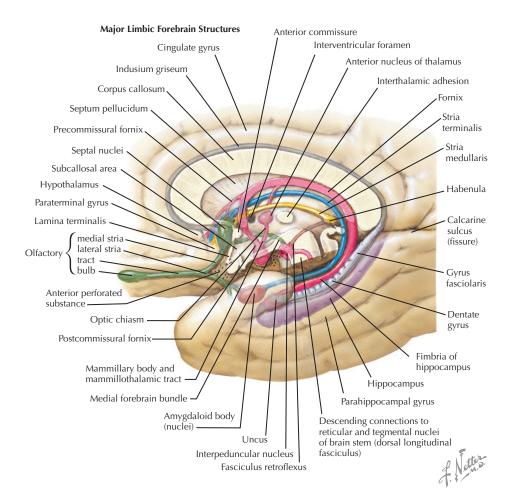
- Diffuse hypothalamic neurons release factors that are transported to the median eminence.
- These factors are released into the hypophyseal portal veins and influence the anterior pituitary.
- Unlike the posterior pituitary, the anterior pituitary is not a direct extension of the hypothalamus.

HYPOTHALAMIC RELEASING FACTORS (SELECTED)			
Factor	Effect on Pituitary	Function	
Thyrotropin-releasing hormone (TRH)	Stimulates release of thyroid- stimulating hormone (TSH)	Stimulates thyroid gland to secrete thyroxine and tri- iodothyronine	
Growth hormone— releasing hormone (GHRH)	Stimulates release of growth hormone (GH)	Stimulates the liver to produce insulin-like growth factor I	
Gonadotropin- releasing hormone (GnRH)	Stimulates release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH)	Modulates puberty, menstrual cycle, menopause and sexual drive	
Corticotropin-releasing hormone (CRH)	Stimulates release of adrenocorticotropic hormone (ACTH)	Stimulates the adrenal grand to secrete cortisol	
Dopamine	Inhibits release of prolactin	Modulates lactation	
Somatostatin	Inhibits release of GH and TSH	Regulates thyroid and growth hormones	

Hypothalamus 12

ANTERIOR PITUITARY continued

This page intentionally left blank

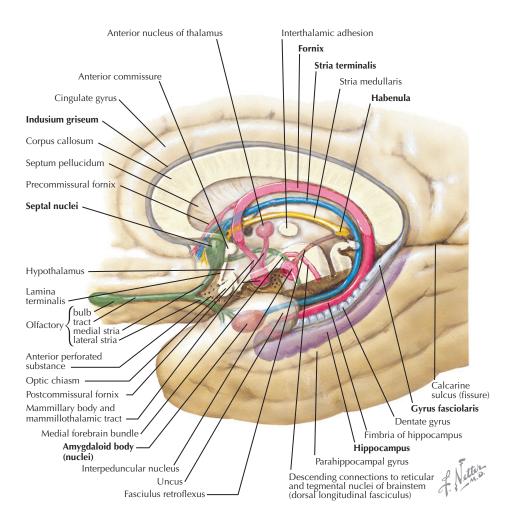

CHAPTER 13 Limbic System

General Features of the Limbic System	
Major Limbic Forebrain Structures	203
Hippocampus	205
Major Hippocampal Inputs and Outputs	207
Amygdala	208
Cingulate Cortex	211

13 Limbic System

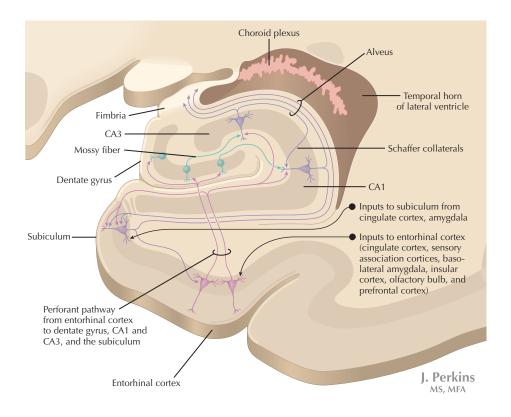
GENERAL FEATURES OF THE LIMBIC SYSTEM

Location	A system of nuclear structures and tracts found in a ring that encircles the thalamus	
Architecture	Composed of multiple structures that interact with each other and have significant connections with other cortical and subcortical structures	
Function	Serves a major central regulator of emotional control and memory encoding	
Clinical Significance	Damage can lead to aggression, apathy, or anterograde amnesia (inability to form new memories).	

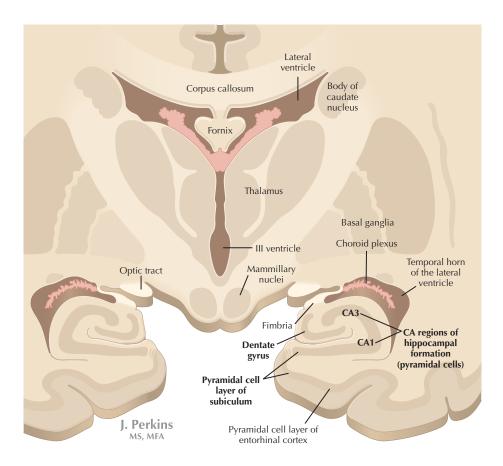


MAJOR LIMBIC FOREBRAIN STRUCTURES

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE AND CLINICAL NOTES
Hippocampus	Lies deep in the medial temporal lobe, medial to the temporal horn of the lateral ventricle	Major regulator of the limbic system, especially memory encoding
Fornix	C-shaped structure that extends from the hippocampus, travels inferior to the corpus callosum, and dives down to mammillary bodies	Carries output from the hippocampus to mammillary bodies of the hypothalamus and to septal nuclei
Amygdala	Almond-shaped structure located anterior to the hippocampus deep	Involved in emotional responses, including rage
	in the temporal lobe	Lesions can cause behavioral outbursts or docility
Stria	Thin C-shaped tract connecting	Major output from amygdala
terminalis	amygdala to the hypothalamus and basal forebrain	Involved in autonomic response to fear, rage, and other emotions
Habenula	Small nuclear structure, rostral to the pineal gland	Part of the epithalamus; major input from the septal nucleus and thalamus via the stria medullaris
		Major output to the interpeduncular nucleus via the fasciculus retroflexus
Septal nuclei	Set of nuclear structures rostral to the anterior commissure	Functions as the pleasure center of the brain
		Communicates with the hippocampus, amygdala, and hypothalamus

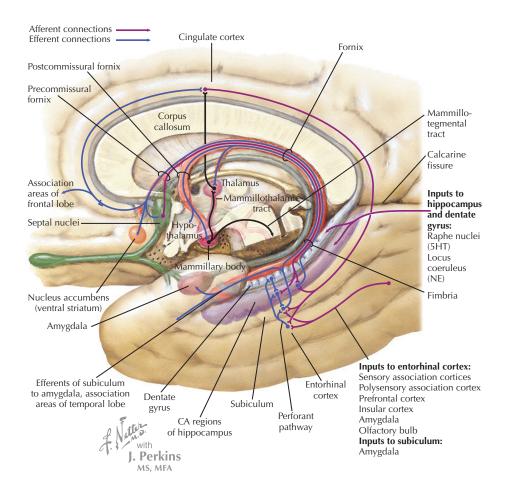

13 Limbic System

MAJOR LIMBIC FOREBRAIN STRUCTURES continued



HIPPOCAMPUS

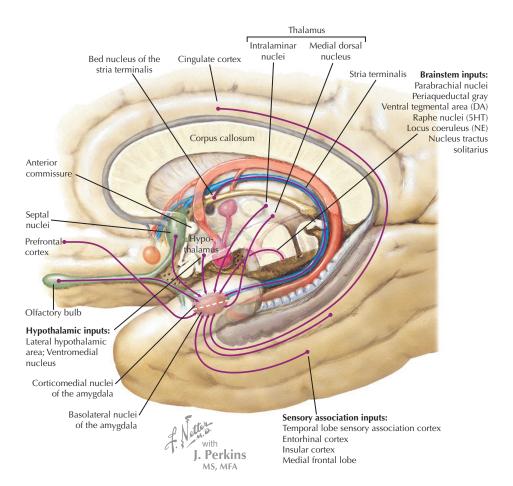
Location	Medial to the temporal horn of the lateral ventricle in the deep anterior temporal lobe	
Architecture	Seahorse-shaped structure composed of the dentate gyrus, CA regions, and subiculum. Unlike most of the cortex, the hippocampus has 3 neuronal layers	
Circuitry	Internal circuitry: entorhinal cortex \rightarrow dentate gyrus \rightarrow CA3 \rightarrow CA1 \rightarrow subiculum \rightarrow entorhinal cortex	
	Major external circuit (Papez circuit): hippocampus \rightarrow fornix \rightarrow mammillary bodies \rightarrow anterior nucleus of thalamus \rightarrow cingulate cortex \rightarrow temporal cortex \rightarrow hippocampus	
	Other input and output involving the amygdala, olfactory system, septal nuclei, and sensory association areas	
Function	Subserves memory encoding using Papez circuit	
	Involved in emotional modulation, but this is not its major function	
Clinical Significance	Bilateral hippocampal damage can occur with anoxia or paraneoplastic syndromes. Clinically, patients develop amnestic syndromes	



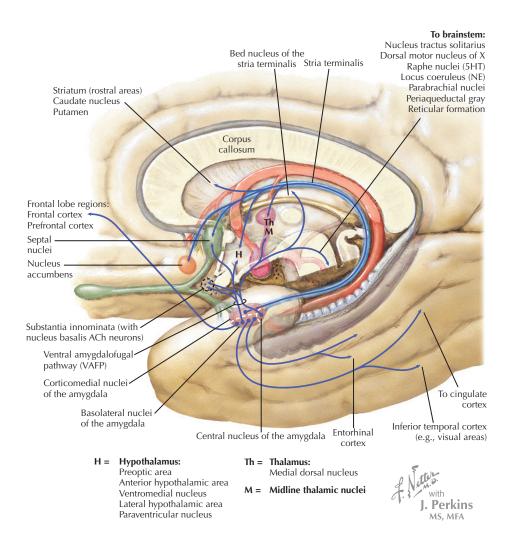
HIPPOCAMPUS continued

MAJOR HIPPOCAMPAL INPUTS AND OUTPUTS

HIPPOCAMPAL INPUTS	HIPPOCAMPAL OUTPUTS
Septal nuclei→fornix→dentate and CA regions (cholinergic input vital for memory and degenerates in Alzheimer's disease)	Subiculum→fornix→mammillary bodies
Multiple cortical areas—entorhinal cortex—dentate gyrus	CA1/CA3→fornix→septal nuclei, nucleus accumbens, hypothalamus, cingulate cortex, frontal lobes

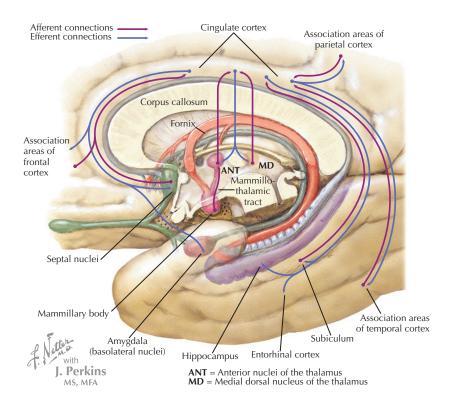


AMYGDALA


Location	Almond-shaped structure located anterior to the hippocampus in the anterior portion of the medial temporal lobe	
Architecture	Composed of 3 sets of nuclei: • Basolateral nuclei • Corticomedial nuclei • Central nucleus	
Inputs	Major inputs include highly processed sensory stimuli from the temporal lobe, direct olfactory information, and limbic and autonomic information from the orbitofrontal lobe, cingulate gyrus, hypothalamus, and midbrain tegmentum	
Outputs	Major outputs include the hypothalamus (via the ventral amygdalofugal pathway), thalamus, striatum, septal nuclei (via stria terminalis), hippocampus, and multiple cortical areas	
Function	Regulates the emotional interpretation of environmental and internal stimuli, especially relating to fear and anger	
Clinical Significance	Lesions of the amygdala can cause behavioral abnormalities. Bilateral amygdala damage causes emotional blunting, hyperphagia, and hypersexuality, known as Klüver-Bucy syndrome	

Limbic System 13

AMYGDALA continued



AMYGDALA continued

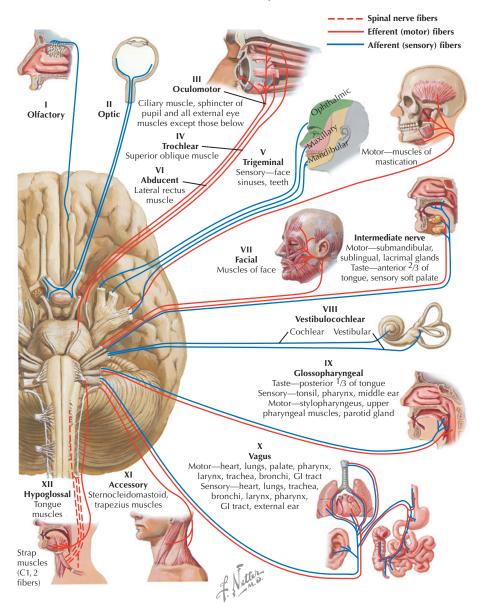
CINGULATE CORTEX

Location	Located above the body of the corpus callosum	
Architecture	C-shaped deep cortical structure	
Inputs	Major input received from the anterior nucleus of the thalamus as a part of Papez circuit	
	Receives input from association cortices, septal nuclei, and subiculum	
Outputs	Output to the entorhinal cortex is part of the Papez circuit. Outputs to association cortices, septal nuclei, and thalamus	
Function	Cortical regulation of basic autonomic functions, including respiration, circulation, and digestion. Also involved in behavior and emotional modulation of pain	
Clinical Significance	Lesions can cause indifference to pain and social indifference. May be involved in depression	

This page intentionally left blank

Cranial Nerves I-XII

Cranial Nerves: Overview	215
Olfactory Nerve (CN-I)	217
Optic Nerve (CN-II)	220
Optic Tract (CN-II)	222
Oculomotor Nerve (CN-III)	223
Oculomotor Nerve (CN-III): Parasympathetic Component	225
Trochlear Nerve (CN-IV)	227
Trigeminal Nerve (CN-V)	231
Trigeminal Nerve Nuclei	232
Trigeminal Nerve Motor and Sensory Branches	234
Trigeminal Neuralgia (Tic Douloureux)	237
Abducens Nerve (CN-VI)	238
Control of Eye Movements	239
Facial Nerve (CN-VII)	241
Facial Nerve Cranial Nerve VII	243
Facial Nerve Sensory	246
Vestibulocochlear Nerve (CN-VIII): Auditory Component	248
Vestibulocochlear Nerve (CN-VIII): Vestibular	250

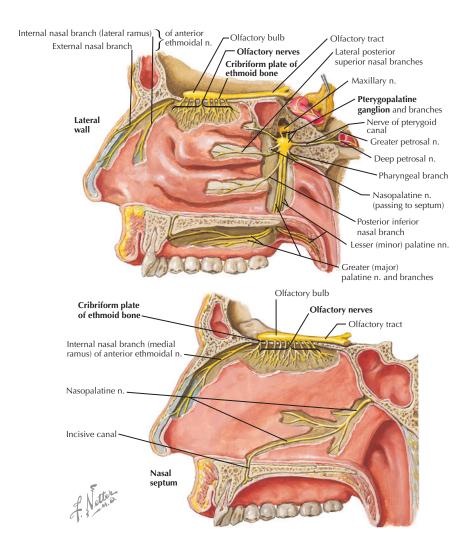

Causes of Vertigo	252
Glossopharyngeal Nerve (CN-IX)	253
Glossopharyngeal Nerve (CN-IX): Visceral Motor	255
Glossopharyngeal Nerve (CN-IX): Visceral Sensory	256
Glossopharyngeal Nerve (CN-IX): General Sensory	257
Vagus Nerve (CN-X)	259
Accessory Nerve (CN-XI)	261
Hypoglossal Nerve (CN-XII)	263

CRANIAL NERVES: OVERVIEW

- So-called because they emerge from the cranium
 Carry 6 modalities, 3 motor and 3 sensory

ANATOMIC MODALITY	FUNCTIONAL SIGNIFICANCE
Somatic motor nerves	Innervate muscles that develop from somites
Branchial motor nerves	Innervate muscles that develop from branchial arches
Visceral motor nerves	Innervate viscera, including glands and smooth muscles
General sensory nerves	Mediate touch, pain, temperature, pressure, vibration, proprioception
Visceral sensory nerves	Sensory input from viscera
Special sensory nerves	Smell, vision, taste, hearing, balance

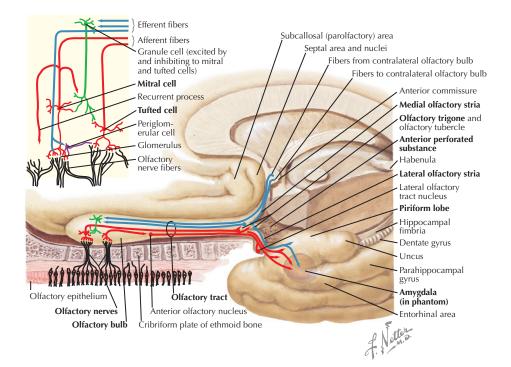
CRANIAL NERVES: OVERVIEW continued



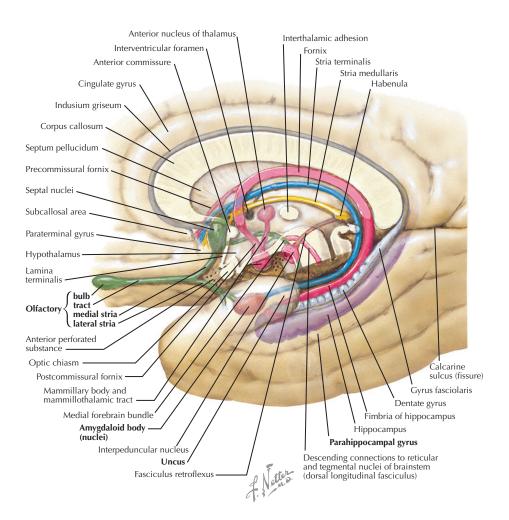
Cranial Nerves (Motor and Sensory Distribution): Schema

OLFACTORY NERVE (CN-I)

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Olfactory nerves	Axons traverse the cribriform plate of ethmoid to synapse in the olfactory bulb	Special sensory—smell


Head trauma can shear the olfactory nerves as they traverse cribriform plate, resulting in a loss of sense of smell. More severe head trauma may fracture cribriform plate, again resulting in transection of the olfactory nerves with loss of sense of smell.

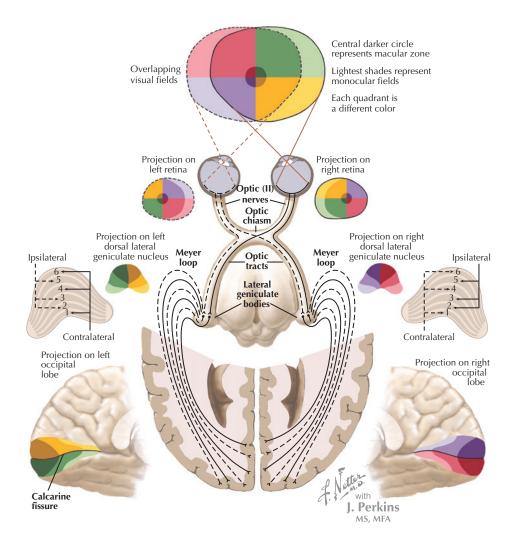
OLFACTORY NERVE (CN-I) continued


STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Rhinencephalon	"Nose brain"	Central nervous system (CNS) structures involved in olfaction
Olfactory cells	Sensory receptors	Transmit sensation via olfactory nerves to bulb
Olfactory bulb	Lies on the cribriform plate of ethmoid bone, near the rostral extent of the floor of anterior cranial fossa	Contains cell bodies of secondary sensory neurons for relay of olfaction
Mitral cells Tufted cells	Secondary sensory neurons whose axons form olfactory tract	Compression of olfactory tract can cause unilateral loss of smell (anosmia)
Olfactory trigone	Divergence of olfactory tract into medial and lateral stria just rostral to the anterior perforated substance	Prepyriform cortex and periamygdaloid area receive fibers from the lateral olfactory stria and constitute primary olfactory cortex

Meningioma in the floor of the anterior cranial fossa can compress the olfactory bulb or tract and cause unilateral loss of smell (anosmia).

OLFACTORY NERVE (CN-I) continued

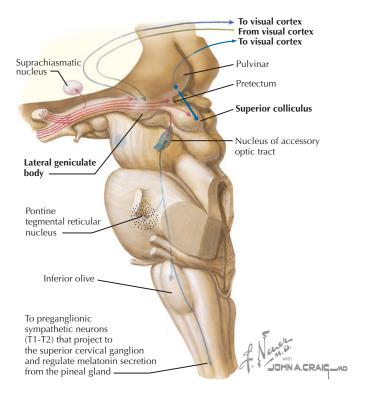
STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Olfactory tract	Most axons of the tract pass via the lateral olfactory stria to the lateral olfactory area: uncus, parahippocampal gyrus, amygdala	Uncus, parahippocampal gyrus, and amygdala are common sites for seizure focus, causing an aura of a sense of smell at onset
Lateral olfactory stria, uncus, and medial parahippocampal gyrus	Comprises the pyriform (pear-shaped) lobe	Olfactory "hallucinations" caused by irritation of the uncus, parahippocampal gyrus, or amygdala; called <i>uncinate fits</i> and may precede a generalized convulsion



OPTIC NERVE (CN-II)

	OPTIC NERVE (CN-II)		
Structure	Anatomic notes	Functional Significance	
Optic nerve	Enters the cranial fossa through the optic foramen	Special sensory: vision from the contralateral visual field	
	Four quadrants of nerve correspond to 4 quadrants of the retina; upper- quadrant retinal fibers remain superior; lower quadrant retinal fibers remain lower; macular fibers are in the center of CN II	Visual-field defects affecting only 1 eye indicate retinal or optic nerve pathology	
		Optic nerve lesion causes central scotoma in the ipsilateral eye (central macular fibers) and contralateral temporal-field defect	
Optic chiasm	Nasal retinal fibers cross in the chiasm, upper retinal fibers cross dorsally, lower retinal fibers cross ventrally	Chiasmal lesions, usually compressive, produce bitemporal visual-field defects (nasal retinal fiber involvement)	
Optic tract	Superior retinal quadrant fibers occupy medial optic tract, inferior retinal quadrant fibers occupy lateral optic tract	Optic tract lesion produces homonymous hemianopia that is incongruous (not identical in both eyes)	
Lateral geniculate body	Origin of geniculocalcarine tract, optic radiations; passes through the retrolenticular portion of the internal capsule to end in the striate cortex (area 17)	Lesions of the lateral geniculate body cause strikingly incongruous visual-field defects	
Optic radiations: dorsal fibers	Pass almost directly back to the striate cortex (area 17) on the medial surface of occipital lobes on both banks of the calcarine fissure	Lesion in the retrolenticular portion of the internal capsule can produce motor and sensory impairment, with homonymous hemianopia	
Optic radiations: ventral fibers	First turn forward and downward into temporal lobe, spread out over the rostral part of the inferior (temporal) horn of lateral ventricle, then loop backward, running close to the outer wall of the temporal horn of the lateral ventricle to occipital cortex (the Meyer loop)	Stroke or tumor involving the temporal lobe can affect the Meyer loop, resulting in contralateral upper quadrantanopia ("pie in the sky") visual-field deficit	
Occipital pole	Macula projects here	Macular sparing, retention of central 5 degrees of visual field, occurs with occipital lobe infarction due to the middle cerebral artery's contribution to this cortical area	

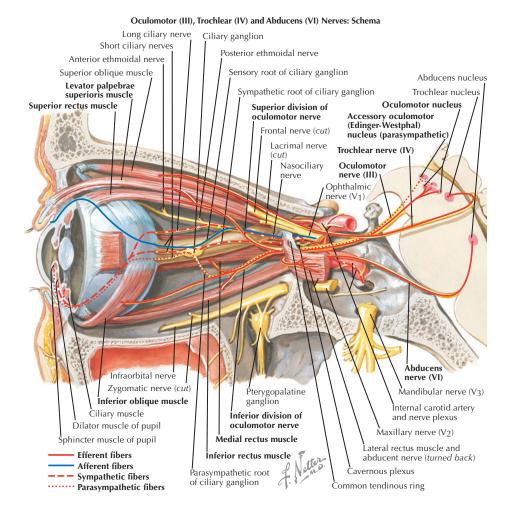
- Light from the upper half of the visual field falls on the lower half of the retina and vice versa.
- Light from the temporal half of the visual field falls on the nasal half of the retina and vice versa.


OPTIC NERVE (CN-II) continued

14 Cranial Nerves I-XII

OPTIC TRACT (CN-II)

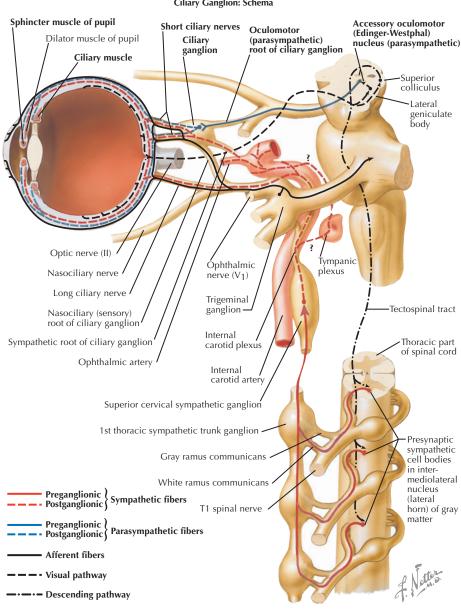
ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Sweeps out and back, around the hypothalamus and rostral crus cerebri	Pituitary tumor may compress the chiasm, resulting in bitemporal hemianopia
Most fibers terminate in the lateral geniculate body Small portion continue as brachium of the superior colliculus to the superior colliculi	Fibers from the upper retinal quadrants (lower visual field) terminate in the medial lateral geniculate, and those from the lower retinal quadrants (upper visual field) terminate in the lateral part of the lateral geniculate
Medial half of the lateral geniculate project to the superior lip of the calcarine fissure via the superior portion of the optic radiation	Transmits vision from the upper retinal quadrant (lower visual field)
Lateral half of the lateral geniculate project to the inferior lip of the calcarine fissure via the inferior portion of optic radiation (the Meyer loop)	Transmits vision from the lower retinal quadrant (upper visual field)



OCULOMOTOR NERVE (CN-III)

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Oculomotor nucleus	Located at the level of superior colliculus	Somatic motor fibers from the oculomotor nucleus combine with parasympathetic fibers from the Edinger-Westphal nucleus to form CN-III.
Oculomotor nerve (CN-III)	Passes anteriorly between the posterior cerebral and superior cerebellar arteries, pierces the dura, and enters cavernous sinus In sinus, CN-III runs along the lateral wall, superior to the trochlear nerve (CN-IV), enters the orbit through the superior orbital fissure, and splits into superior and inferior divisions	Superior division supplies the superior rectus and levator palpebrae superioris. Inferior division supplies the inferior and medial recti and inferior oblique.

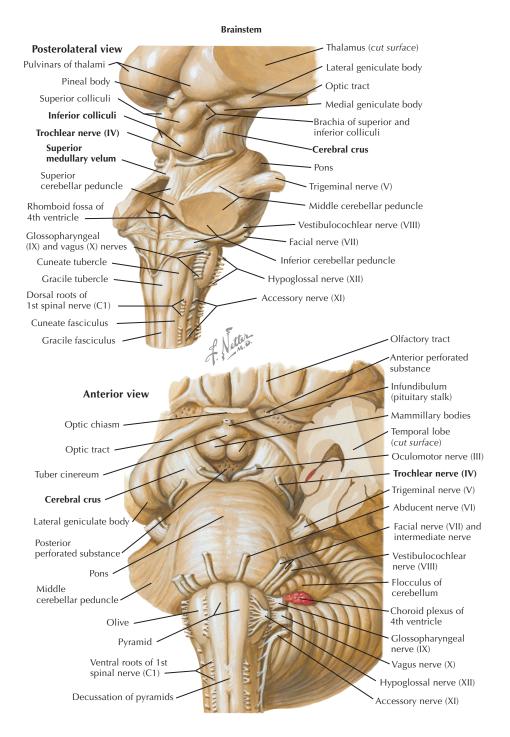
Diabetic third-nerve palsy causes unilateral painful diplopia with weakness of the superior, inferior, and medial recti and the inferior oblique, but it spares the pupil because pupillary fibers run along the outer layer of the nerve and diabetes causes ischemia, which is most profound in the inner layers of the nerve. Compression of CN-III by a posterior cerebral artery aneurysm results in dilated pupil and ophthalmoplegia involving the superior, medial, and inferior recti and the inferior oblique. The pupil is affected because the nerve is compressed from the outside, which is where the pupillary fibers run.


OCULOMOTOR NERVE (CN-III) continued

OCULOMOTOR NERVE (CN-III): PARASYMPATHETIC COMPONENT

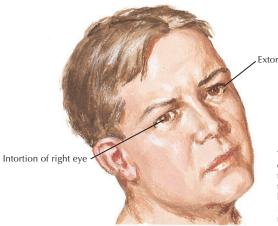
STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Edinger-Westphal nucleus	Dorsal to oculomotor complex Innervates sphincter of pupil and ciliary muscles via ciliary ganglion Fibers run with CN-III to enter the orbit. There they leave the nerve and terminate in the ciliary ganglion near the apex of the cone of extraocular muscles	Visceral motor
Postganglionic axons	Leave ciliary ganglion as 6-10 short ciliary nerves and enter the eye along with sympathetic fibers In eyeball, fibers run forward between the choroid and sclera to terminate in sphincter muscle of the pupil (iris)	Iris sphincter muscle encircles the pupil and pulls toward the center, causing the pupil to constrict Ciliary muscles cause a change in the shape of the lens for additional refraction on near gaze

OCULOMOTOR NERVE (CN-III): PARASYMPATHETIC COMPONENT continued

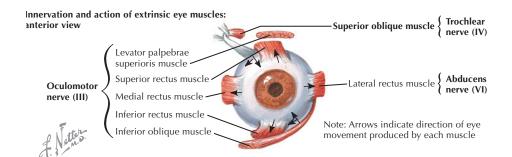

Ciliary Ganglion: Schema

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Trochlear nucleus	In midbrain tegmentum, at the level of the inferior colliculus, ventral to the aqueduct	Somatic motor
Trochlear nerve	Axons leave the trochlear nucleus in the caudal midbrain	Supplies the superior oblique Susceptible to injury following
	Course dorsally and caudally around the aqueduct	head trauma, resulting in vertical diplopia with head tilt
	Decussate in the superior medullary velum	to the opposite side to correct superior oblique weakness
	Exit brainstem dorsally, caudal to the inferior colliculus	
	Cross to the opposite side (the left trochlear nucleus gives rise to the right trochlear nerve and vice versa)	
	Curve around the cerebral peduncle (crus)	
	Pass between posterior cerebral and superior cerebellar arteries with CN-III	
	Pierce the dura and enter the cavernous sinus with CN-III, -V1, and -VI	
	Run along the lateral wall, inferior to CN-III	
	Continues through the superior orbital fissure, close to the roof of the orbit, to the superior oblique	

See pages 223-4 for Oculomotor and Abducens Nerves: Schema.

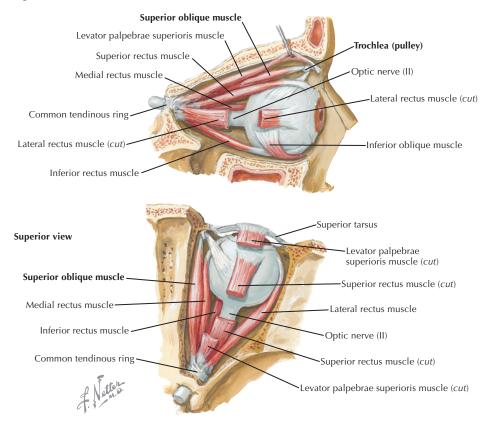

14 Cranial Nerves I-XII

TROCHLEAR NERVE (CN-IV) continued

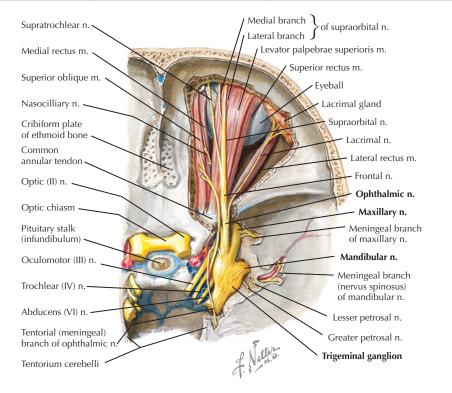

TROCHLEAR NERVE (CN-IV) continued

ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
So-called because of the "trochlea" (pulley) through which the superior oblique muscle passes to reach the eyeball insertion site	Causes inward rotation (intortion) and downward and lateral movement of eye
Smallest nerve, 2400 axons, versus 1 million in the optic nerve	In addition to vertical diplopia, when patient looks down, injury to the trochlear nerve results in a head tilt to the unaffected side as patients correct their (extorted) affected eye by intorting their good eye toward the affected side
Only cranial nerve to exit the dorsal brainstem	
Only nerve in which all lower motor axons decussate	
Nerve with longest intracranial course is 7.5 cm	

Extortion of left eye

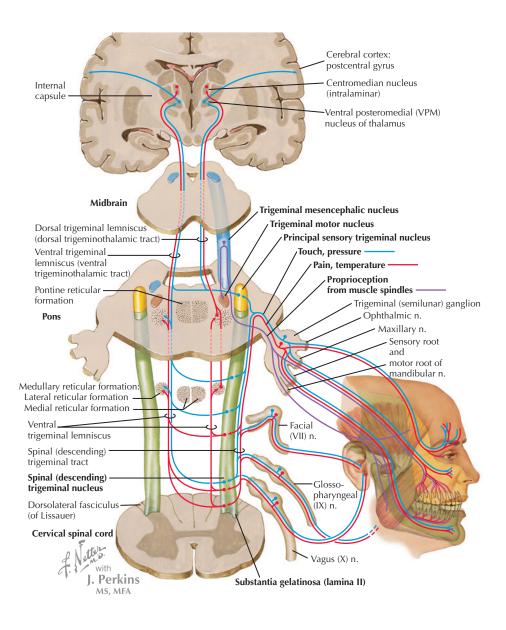

There is a left trochlear palsy, causing left eye extorsion, "clockwise" rotation as you look at the patient, and a rotational misalignment of the eyes causing diplopia. To compensate, the head tilts to the unaffected right side. This intorts the right eye resulting in rotational realignment of the (both) eyes.

14 Cranial Nerves I-XII

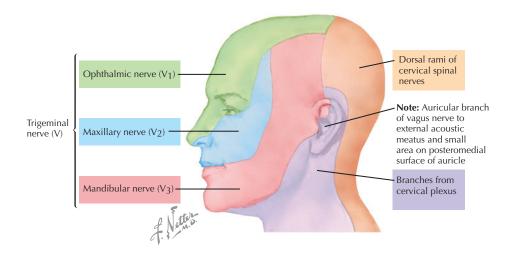

TROCHLEAR NERVE (CN-IV) continued

Right lateral view

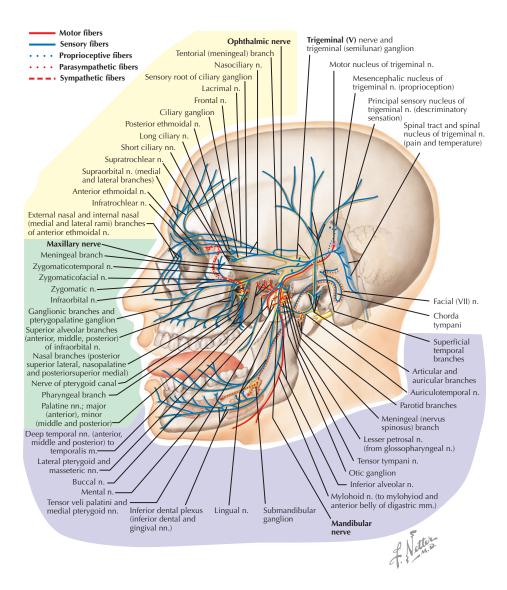
TRIGEMINAL NERVE (CN-V)


STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Trigeminal nerve	Emerges from the midlateral pons as a large sensory root and a smaller motor root	Branchial motor to muscles of mastication, tensor tympani and palatini, mylohyoid, and anterior belly of digastric
Trigeminal sensory ganglion	Sits in a depression (Meckel's cave) in the floor of the middle cranial fossa	General sensory to the face, anterior scalp to the vertex of the skull, conjunctiva, globe of eye, mucous membranes of the paranasal, nasal, and oral cavities, anterior 2 / ₃ of the tongue, part of the external tympanic membrane, meninges of the anterior and middle cranial fossa
Trigeminal nerve	 3 divisions exit the cranial fossa: V₁ (ophthalmic division) through superior orbital fissure V₂ (maxillary division) 	V_1 and V_2 run through the cavernous sinus before exiting the cranial fossa Motor root travels with V_3
	 through foramen rotundum V₃ (mandibular division) through foramen ovale 	

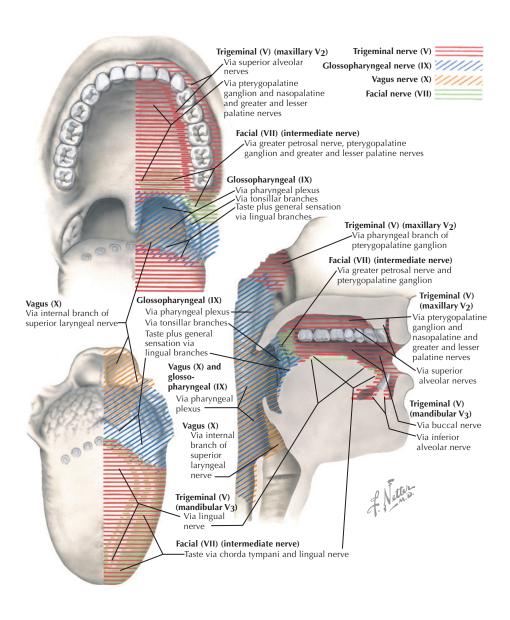
TRIGEMINAL NERVE NUCLEI


STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE	
Motor (masticator) nucleus	Midpons, medial to the main sensory nucleus	Controls muscles of chewing, swallowing, and hearing	
	Input from corticobulbar fibers, reticular neurons, and collaterals from the mesencephalic root and other trigeminal afferents		
Sensory nucleus	Extends from midbrain to the spinal cord C2, largest grouping of cranial nerve nuclei, consisting of mesencephalic, principal sensory, and spinotrigeminal nuclei	Lesion involving this nucleus anywhere along its course (multiple sclerosis, stroke, tumor) impairs facial sensation	
Mesencephalic	Column of primary sensory neurons	Carries proprioception from	
nucleus	Only primary sensory neurons in humans that reside within the central nervous system (CNS)	muscles of mastication and facial expression, for control of bite and facial movements	
Principal sensory trigeminal nucleus	In pons near the entry point of the nerve	Carries fine touch, pressure, and vibration sensations from the face	
Spinotrigeminal nucleus	Long cell column extending from the caudal pons to the upper cervical spinal cord, where it merges with the substantia gelatinosa of the dorsal gray matter	Carries pain and temperature mainly, also crude touch	

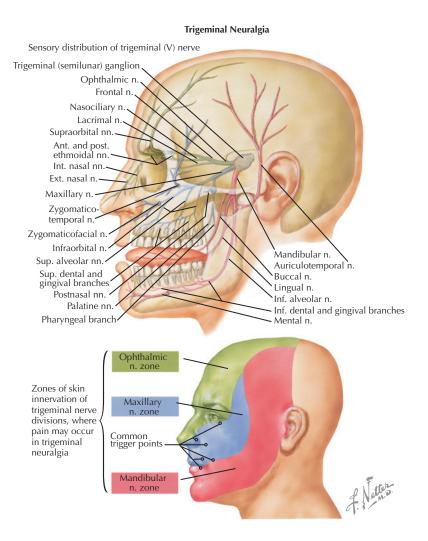
TRIGEMINAL NERVE NUCLEI continued



TRIGEMINAL NERVE MOTOR AND SENSORY BRANCHES

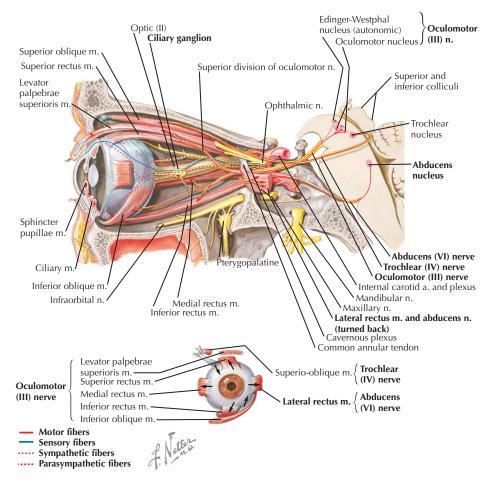

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Efferent motor fibers	Exit the pons medial to sensory root to join sensory V_3 branches outside the cranium to form mandibular nerve	Mediates chewing, swallowing, and reflexive control of hearing
V1 (ophthalmic division)	Exits through the superior orbital fissure	Mediates sensation from conjunctiva, cornea, orbit, dorsal aspect of the nose, upper eyelid, forehead to the vertex of skull, ethmoid, and frontal sinuses; proprioception from the extraocular and facial muscles of the eyelid and forehead
V ₂ (maxillary division)	Exits through the foramen rotundum	Mediates sensation from maxilla and overlying skin, including the upper lip, side of nose, medial cheek, nasal cavity, palate, nasopharynx, and meninges of the anterior and middle cranial fossa
V3 (mandibular division)	Exits through the foramen ovale	Mediates sensation from the buccal region, including the mucous membrane of the mouth, gums, the side of the head, scalp, entire lower jaw including teeth, gums, anterior $2/3$ of the tongue, chin, lower lip, and meninges of the anterior and middle cranial fossa

TRIGEMINAL NERVE MOTOR AND SENSORY BRANCHES continued



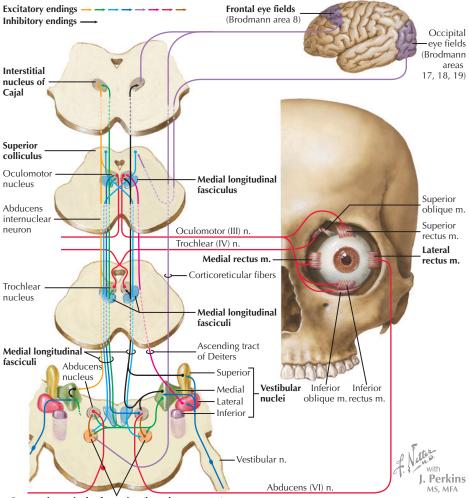
TRIGEMINAL NERVE MOTOR AND SENSORY BRANCHES continued

TRIGEMINAL NEURALGIA (TIC DOULOUREUX)


- Stabbing pain in distribution of V₁ or V₂, rarely V₃
- · Lasts seconds or a minute or two but so intense that the patient winces, hence called tic
- · Paroxysms recur frequently, day or night, for weeks at a time
- No sensory or motor loss present on examination
- Aberrant vascular course of superior cerebellar artery, crossing the trigeminal branch, often cited as cause
- Most often, no lesion is identified, and etiology is labeled idiopathic

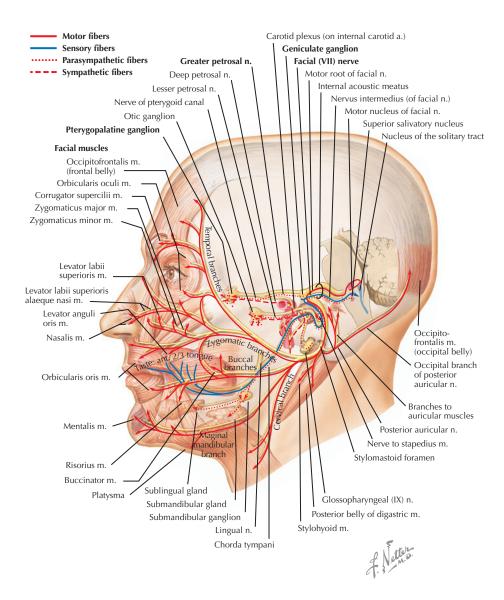
14 Cranial Nerves I-XII

ABDUCENS NERVE (CN-VI)


STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Abducens nucleus	Located in the pontine tegmentum close to midline, just ventral to 4th ventricle	Somatic motor to lateral rectus Mediates eye abduction
Abducens nerve	Axons leave the nucleus, course ventrally through the tegmentum to exit at the junction of pons and medulla, near the midline In subarachnoid space of posterior fossa, runs anterolaterally, pierces the dura lateral to the dorsum sella, enters the cavernous sinus, lateral to carotid artery, medial to CN-III, -IV, -V ₁ , and -VI, continues through the medial portion of the superior orbital fissure, to the lateral rectus	With cavernous sinus thrombosis, headache, ptosis, ocular palsy, eye pain, and sensory loss over the forehead occur due to involvement of these nerves

CONTROL OF EYE MOVEMENTS

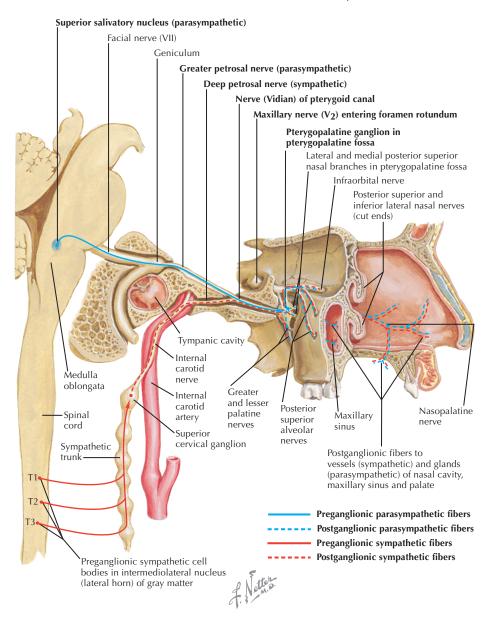
STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Paramedian pontine reticular formation (PPRF)	Input: • Vestibular nuclei • Superior colliculus • Frontal eye fields • Interstitial nucleus of Cajal	Horizontal gaze center Because stimulation of the frontal eye field causes eye deviation to the opposite side by stimulating the contralateral PPRF, stroke involving frontal eye field results in conjugate eye deviation to same side of the lesion due to inability to look to opposite side
PPRF	Supplies: • Ipsilateral CN-VI to the lateral rectus • Contralateral CN-III via CN-VI nuclear interneurons and/or PPRF to the medial rectus, through the medial longitudinal fasciculus	Unilateral pontine stroke involving PPRF results in inability to move eyes ipsilaterally, to side of lesion Transiently, the eyes may be contralaterally deviated due to uninhibited action of the contralateral PPRF moving eyes to that side. Nystagmus occurs when the patient looks to intact field of movement, with quick phase directed toward that side
Interstitial nucleus of Cajal	Projects axons to spinal cord and contralateral interstitial nucleus of Cajal	Axial muscle control and coordinates vertical and oblique eye movements


CONTROL OF EYE MOVEMENTS continued

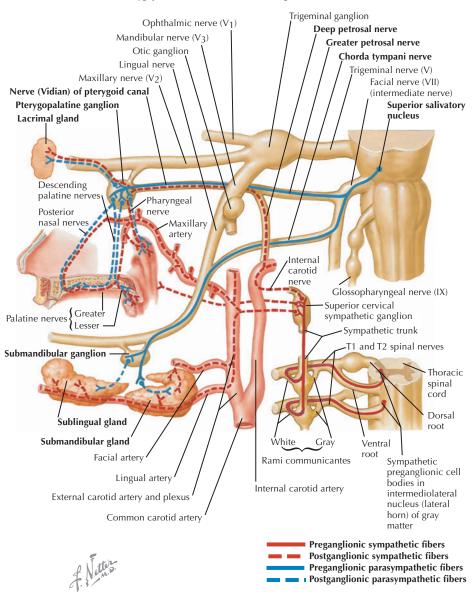
Parapontine reticular formation (lateral gaze center)

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Facial nerve	Emerges at the pontomedullary junction and enters the internal auditory meatus Bell's palsy: acute facial must paralysis due to herpes simp virus I infection of CN-VII	
Branchial motor fibers	Emerge at the stylomastoid foramen, pass through the parotid gland Innervates stapedius, stylohyc posterior digastric, and facial muscles	
Visceral motor fibers	In petrous bone: preganglionic parasympathetic axons in the greater petrosal nerve, which branch off to pterygopalatine ganglion	Innervates lacrimal, submandibular, and sublingual glands and mucous membranes of the nose and palate
General sensory fibers	Accompany those of the auricular branch of vagus CN-X	Supply skin of the concha of the auricle and a small area behind the ear
Special sensory	As CN-VII courses through the petrous portion of the temporal bone, it displays a swelling, the geniculate ganglion (nerve cell bodies of taste fibers of tongue)	Taste from anterior $^{2}/_{3}$ of the tongue and the hard and soft palate (enter through chorda tympani), carrying taste from (and parasympathetic motor to) the tongue
Corticobulbar fibers	Project bilaterally to the portion of the facial nucleus that innervates forehead muscles but, to remaining (lower) facial muscles, projects only contralaterally	Lesion of cortical fibers thus causes contralateral weakness of facial muscles but spares the forehead; so-called upper motor neuron CN-VII or central CN-VII weakness

FACIAL NERVE (CN-VII) continued


FACIAL NERVE CRANIAL NERVE VII

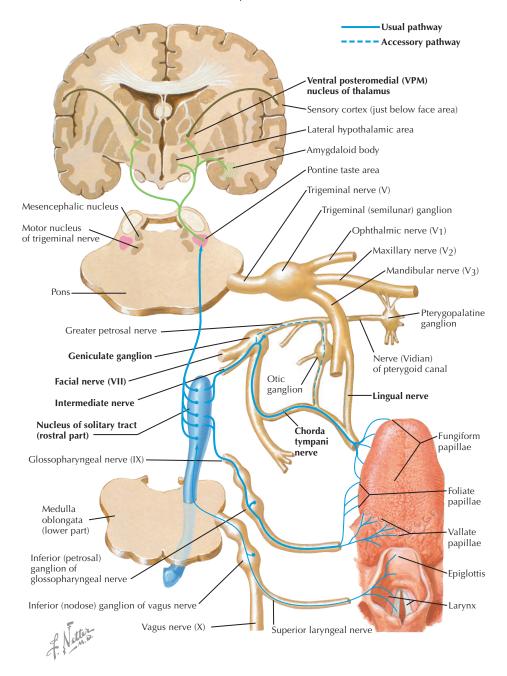
STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Visceral motor	Cell bodies (preganglionic autonomic motor neurons) are scattered in the pontine tegmentum, called the superior salivatory nucleus, influenced by the hypothalamus	Parasympathetic to lacrimal, submandibular, and sublingual glands and the mucous membranes of the nose and palate
Superior salivatory nucleus (SSN)	Impulses from the limbic system enter the hypothalamus and are relayed via the dorsal longitudinal fasciculus to the SSN	Efferents from the SSN travel in the nervus intermedius and divide in the facial canal into the greater petrosal (to lacrimal and nasal glands) and chorda tympani (submandibular and sublingual glands)
Greater petrosal nerve	Exits the petrous bone via greater petrosal foramen to reach the foramen lacerum to reach the pterygoid canal to join deep petrosal nerve to become the nerve of the pterygoid canal, which opens into the pterygopalatine fossa from which the pterygopalatine ganglion is suspended from V ₂	Preganglionic parasympathetic axons in the nerve of pterygoid canal synapse in pterygopalatine ganglion; postganglionic fibers go via V ₂ branches to lacrimal and mucous glands
Chorda tympani	Joins the lingual branch of V_3 after V_3 passes through the foramen ovale Travels to the lateral floor of the mouth	Contains efferent preganglionic parasympathetic (secretomotor) fibers to the submandibular ganglion; relayed as postganglionic fibers to the submandibular and sublingual glands. Most fibers carry taste (see below)


14 Cranial Nerves I-XII

FACIAL NERVE CRANIAL NERVE VII continued

Autonomic Innervation of Nasal Cavity

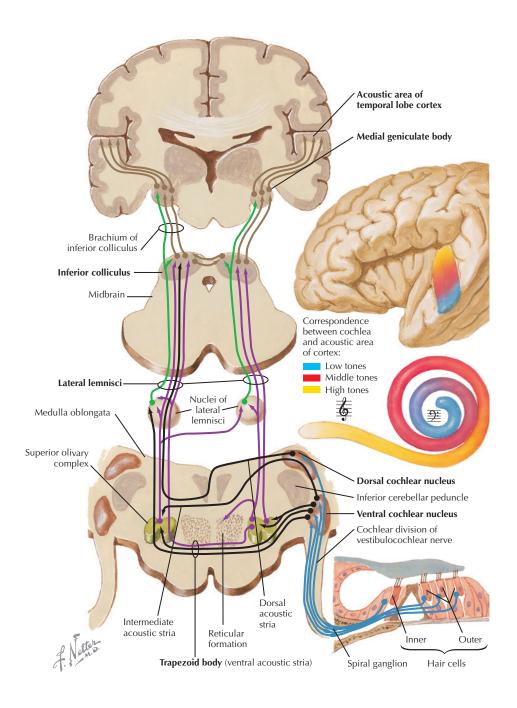
FACIAL NERVE CRANIAL NERVE VII continued


Pterygopalatine and Submandibular Ganglia: Schema

FACIAL NERVE SENSORY

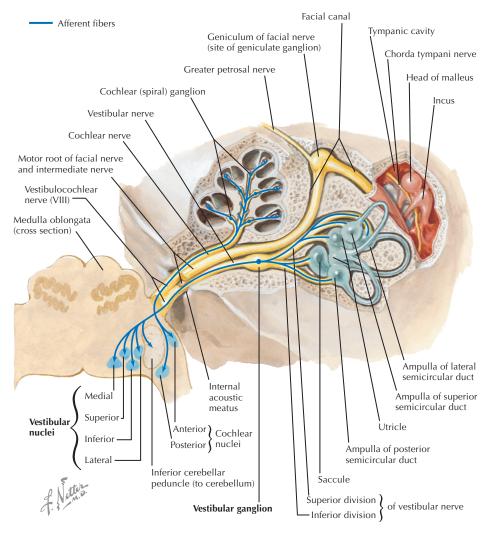
STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
General sensory fibers	Cell bodies of these fibers are in geniculate ganglion in temporal bone. Impulses enter the brainstem via the intermediate nerve (sensory root of CN-VII), synapse in the spinotrigeminal tract, project to contralateral ventroposterolateral (VPL) thalamus, then to sensory cortex.	For skin of the concha of the auricle and small area behind ear, supplements V ₃
Special sensory fibers	Cell bodies of these fibers are in the geniculate ganglion in temporal bone Peripheral processes run with the lingual nerve, then separate to become chorda tympani, which joins the facial nerve in petrous temporal bone.	Taste from anterior $^2\!/_3$ of the tongue and hard and soft palate
	Fibers enter the brainstem at the caudal pons with intermediate nerve (sensory root of CN-VII); enter the tractus solitarius, synapse in the rostal nucleus solitarius (gustatory nucleus), and ascend to the bilateral ventroposterior (VP) thalamus and then to the posterior internal capsule to the cortex.	

FACIAL NERVE SENSORY continued


Taste Pathways: Schema

VESTIBULOCOCHLEAR NERVE (CN-VIII): AUDITORY COMPONENT

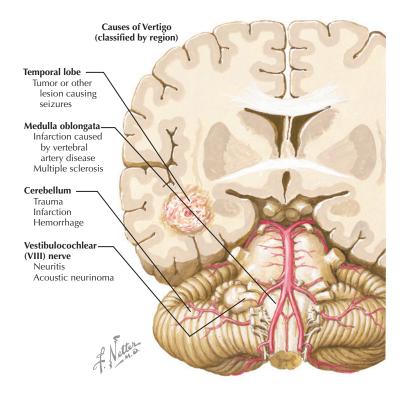
STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
CN-VIII (vestibular and auditory components)	Enters the brainstem at the cerebellopontine angle	Special sensory nerve Auditory from the cochlea, balance from semicircular canals
CN-VIII (cochlear primary sensory neuron cell bodies)	Lie around modiolus (center) of the cochlea, where they constitute cochlear (spiral) ganglion	Their central processes form auditory component of CN-VIII
CN-VIII axons	Travel through the internal auditory meatus with CN- VII to enter pontomedullary junction, just lateral to CN-VII, and synapse in the cochlear nuclei	Peripheral lesion (e.g., compression by cerebellopontine angle tumor) produces ipsilateral deafness
Second-order cochlear neurons	Mostly cross via trapezoid body and ascend the contralateral lateral lemniscus to synapse in the inferior colliculus, then to medial geniculate (thalamus), and then through the internal capsule to the acoustic cortex (transverse temporal gyri of Heschl)	Because of the bilaterality of ascending pathways, central lesions (stroke, tumor) do not produce deafness but produce bilateral hearing reduction, which is worse on the contralateral side


VESTIBULOCOCHLEAR NERVE (CN-VIII): AUDITORY COMPONENT continued

VESTIBULOCOCHLEAR NERVE (CN-VIII): VESTIBULAR

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
CN-VIII vestibular primary sensory neuron cell bodies	Lay in the vestibular ganglion	Central processes form the vestibular component of CN-VIII mediating balance
CN-VIII axons	Travel through the internal auditory meatus with cochlear division and CN-VII to enter the pontomedullary junction, just lateral to CN-VII, and synapse in the vestibular nuclear complex in the floor of the 4th ventricle	 Second-order vestibular neurons send axons to: The cerebellum (vestibulocerebellar tract) to coordinate balance Lower motor neurons in the brainstem and spinal cord (vestibulospinal tract) to antigravity muscles Medial longitudinal fasciculus (MLF) to maintain orientation in space
Second-order vestibular neurons	 Send axons to: Cerebellum via vestibulocerebellar tract Lower motor neurons in the brainstem and spinal cord via vestibulospinal tract Descending medial longitudinal fasciculus (MLF) 	Vestibulocerebellar tract coordinates balance Vestibulospinal tract innervates antigravity muscles for balance MLF maintains orientation in space

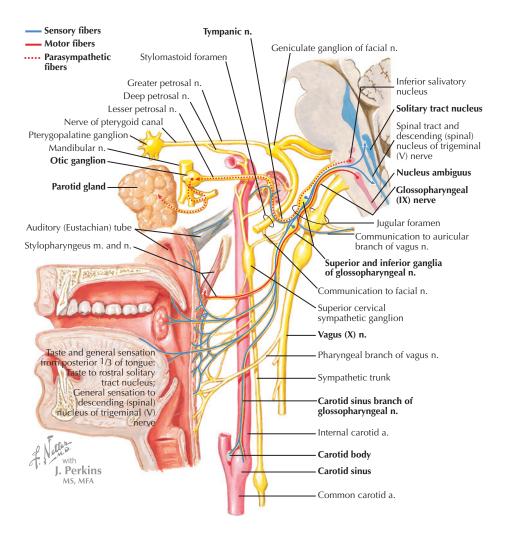
VESTIBULOCOCHLEAR NERVE (CN-VIII): VESTIBULAR continued



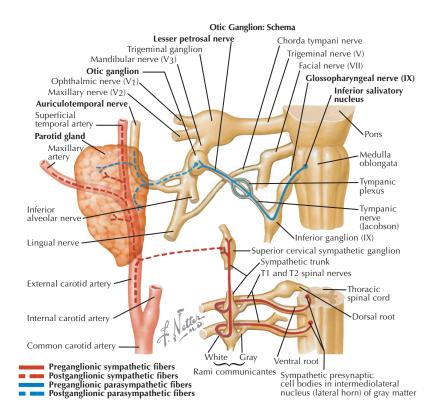
Vestibulocochlear Nerve (VIII): Schema

14 Cranial Nerves I-XII

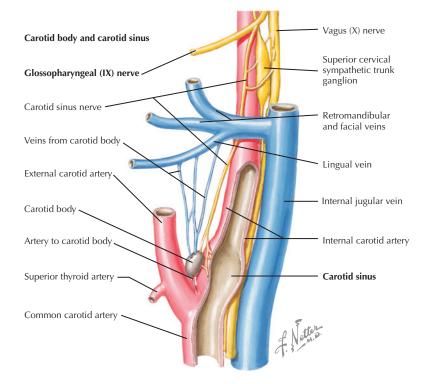
CAUSES OF VERTIGO


STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Cerebellopontine angle	CN-VII and CN-VIII found here	Tumors (acoustic neuroma) can compress CN-VIII and CN-VII, causing vertigo, tinnitus, deafness, and facial asymmetry
Medulla	Lateral medulla co- localizes: • Vestibular nuclei • Spinothalamic tract • Sympathetic tract • CN-IX and-X fibers • Spinocerebellar fibers • Descending nucleus V	Lateral medullary infarction (Wallenberg's syndrome) include: • Nystagmus, vertigo, nausea, vomiting • Contralateral hemisensory loss of pain and temperature • Ipsilateral Horner's syndrome • Hoarseness, dysphagia • Ipsilateral ataxia
	 Nucleus solitarius 	 Ipsilateral pain, burning, and impaired sensation of the face Loss of taste

GLOSSOPHARYNGEAL NERVE (CN-IX)

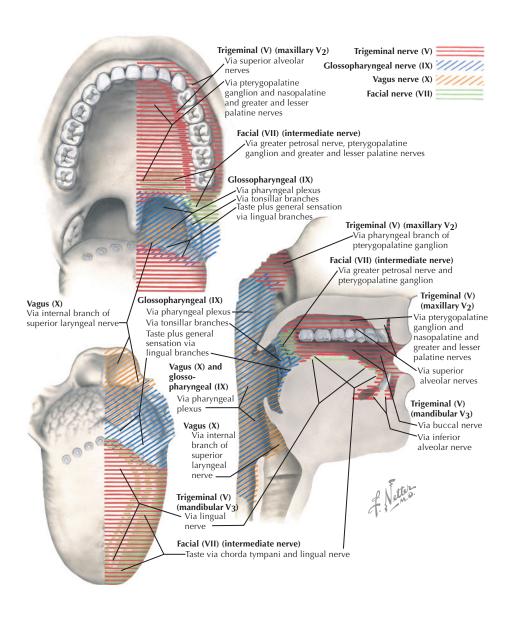

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
CN-IX	Emerges from the medulla between the inferior olive and inferior cerebellar peduncle	Branchial motor-innervates the stylopharyngeus
	In jugular fossa, the tympanic nerve is given off	Visceral motor supplies preganglionic parasympathetic fibers to the otic ganglion, which sends fibers to the parotid gland
	Main trunk then exits the jugular foramen containing the superior and inferior glossopharyngeal ganglia (i.e., nerve cell bodies for general visceral and special visceral sensation)	General sensory—sensation posterior 1/3 tongue, skin of external ear, internal surface of tympanic membrane
		Visceral sensory—mucous membranes of the pharynx, middle ear, unconscious sensory input from the carotid body and sinus
		Special sensory—taste posterior $\frac{1}{3}$ tongue
Inferior glosso- pharyngeal ganglion	Located in the jugular foramen, central fibers enter the brainstem and travel through the solitary tract to the rostral solitary tract nucleus (gustatory nucleus) in medulla	Mediates taste posterior $\frac{1}{3}$ tongue
Rostral solitary tract nucleus (gustatory	Axons of these cells ascend central tegmental tract to the bilateral ventroposteromedial (VPM) nucleus of the thalamus.	Central lesions do not affect taste
nucleus)	From thalamus they ascend through the posterior limb of the internal capsule to the postcentral gyrus	
Corticobulbar fibers	Synapse <i>bilaterally</i> on lower motor neurons in the rostral nucleus ambiguus	Because of bilaterality, central lesions affecting the descending fibers do not affect the stylopharyngeus
CN-IX	Emerges from medulla between the inferior olive and inferior cerebellar peduncle, passes laterally in the posterior fossa to exit the jugular foramen anterior to CN-X and CN-XI and descends in the neck to the stylopharyngeus	Elevates the pharynx during swallow and speech

GLOSSOPHARYNGEAL NERVE (CN-IX) continued


GLOSSOPHARYNGEAL NERVE (CN-IX): VISCERAL MOTOR

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Intracranial CN-IX preganglionic parasympathetic neurons	Located in the inferior salivatory nucleus in medulla Axons join CN-IX and exit jugular foramen	Visceral motor: supplies otic ganglion, which sends postganglionic parasympathetic fibers to the parotid gland
Extracranial CN-IX preganglionic parasympathetic neurons	Branches to form the lesser petrosal nerve that travels back into the cranium through a small canal to reach the middle cranial fossa and descend through the foramen ovale to synapse in otic ganglion (immediately below foramen ovale) From otic ganglion, postganglionic fibers join auriculotemporal nerve	Supply the secretomotor fibers to the parotid gland

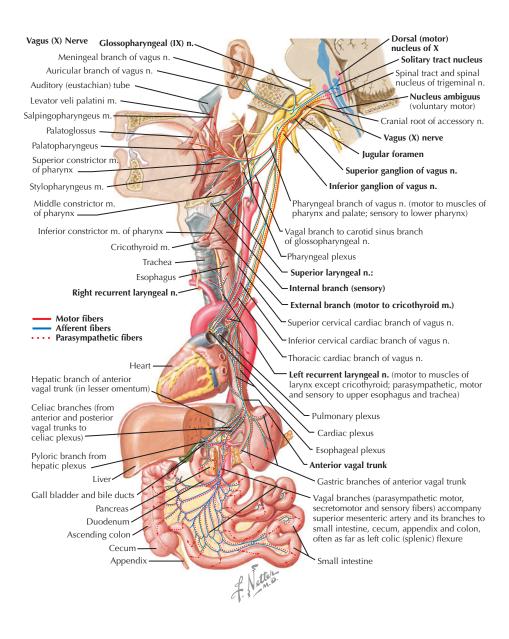
GLOSSOPHARYNGEAL NERVE (CN-IX): VISCERAL SENSORY


STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
CN-IX	Information is relayed from the carotid sinus nerve to the inferior ganglion of CN-IX, to the solitary tract, to the caudal solitary nucleus, to the reticular formation and hypothalamus for appropriate reflex responses	Chemoreceptors in the carotid body monitor blood oxygen Baroreceptors in the carotid sinus monitor arterial blood pressure

GLOSSOPHARYNGEAL NERVE (CN-IX): GENERAL SENSORY

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
CN-IX	Cell bodies located in superior or inferior glossopharyngeal ganglion	Superior glossopharyngeal ganglion: contains primary sensory neurons mediating cutaneous sensation from area back of ear. central processes of these cells enter the spinal trigeminal tract and nucleus
		Inferior glossopharyngeal ganglion: contains cell bodies of visceral afferent fibers. Conveys touch, pain, and temperature from eustachian tube, posterior ¹ / ₃ tongue, tonsil, and upper pharynx
CN-IX Secondary neurons	Cross the midline of the medulla and ascend to the VP nucleus of the thalamus	Same pathway is probably used for touch and pressure and is important for gag reflex
	Tertiary neurons thence project to the postcentral sensory gyrus	

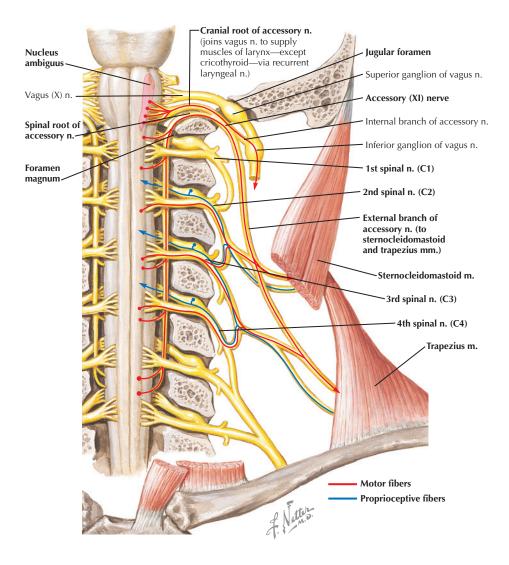
GLOSSOPHARYNGEAL NERVE (CN-IX): GENERAL SENSORY continued



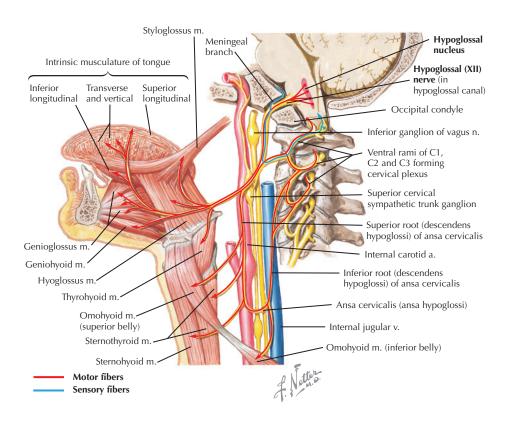
VAGUS NERVE (CN-X)

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
CN-X	Emerges from the medulla as several rootlets, converge into 2 roots, exit cranial fossa through jugular foramen	Branchial motor—striated muscle of pharynx (palatoglossus), larynx, and soft palate (except tensor veli palatini and stylopharyngeus)
	In the neck, the vagus nerve lies between the internal jugular vein and internal carotid artery	Visceral motor—smooth muscles and glands of pharynx, larynx, thoracic and abdominal viscera
		General sensory—skin of back of ear, external auditory meatus, external tympanic membrane
		General visceral sensory—input from viscera
		Special visceral sensory—input from periepiglottal taste buds
Superior (jugular) and inferior (nodosal) vagal ganglia	Two sensory ganglia of vagus, located on the nerve in the jugular foramen	Superior (jugular) ganglion contains cells that give rise to general sensory afferents
	Inferior ganglion is joined by fibers from the nucleus ambiguus, which traveled with CN-XI	Inferior (nodosal) ganglion contains cells that give rise to both general and special visceral sensory afferents
Dorsal motor nucleus of X	Preganglionic parasympathetic nerve cell bodies of CN-X; gets input from hypothalamus, olfactory system, reticular formation, solitary tract nucleus	Secretomotor center (visceral motor) of CN-X sends preganglionic parasympathetic fibers to postganglionic cells that innervate all thoracic and abdominal viscera down to the left colic (splenic) flexure
Solitary tract nucleus	Visceral sensory input enters the nucleus and projects to the reticular formation, hypothalamus, and thalamus	Rostral part (gustatory nucleus) receives taste from CN-VII and CN-IX (special visceral sensory)
		Caudal part receives mainly general visceral afferents from CN-X
Recurrent and internal laryngeal	Internal laryngeal unites with the external laryngeal to form the superior laryngeal nerve, which travels up CN-X to the inferior vagal ganglion	Internal laryngeal nerve–visceral sensory afferent from the larynx as far as the vocal cords
nerves		External laryngeal-branchial motor to cricothyroid muscle
		Recurrent laryngeal nerve—branchial motor to all laryngeal muscles except cricothyroid, and visceral sensory afferent from larynx below vocal cords, and mucous membranes of the upper trachea
Auricular branch	Enters the superior vagal ganglion	Carries sensation from the ear

14 Cranial Nerves I-XII


VAGUS NERVE (CN-X) continued

ACCESSORY NERVE (CN-XI)

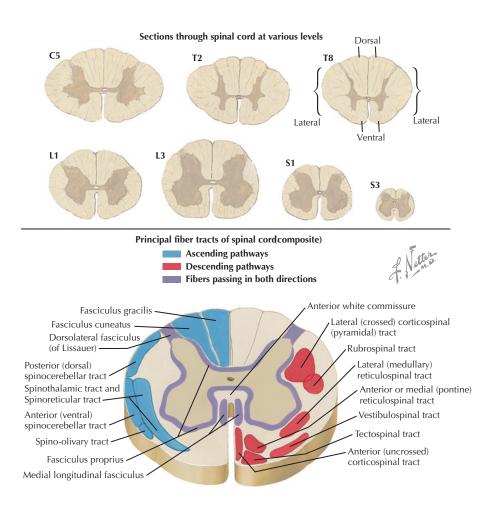

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
CN-XI	Accessory nerve has cranial root and spinal root (both motor) that briefly run together as they enter jugular foramen	Branchial motor to trapezius and sternocleidomastoid (SCM)
Spinal root	Lower motor neurons located in spinal cord segments C1-5 Axons ascend through the foramen magnum, exit the jugular foramen, and enter their muscles	Radical neck surgery for cancer often involves dissection of cervical lymph nodes. As they are closely associated with accessory nerve, injury to this nerve is common and results in shoulder droop (trapezius), and weakness of head turning to the contralateral side (SCM)
Cranial root	Cell bodies reside in the caudal part of nucleus ambiguus Axons from this nucleus briefly join the spinal root of CN-XI, pass through the jugular foramen, and join CN-X to form the motor component of recurrent laryngeal nerve	May be involved in motor-neuron disease, poliomyelitis, syringobulbia

ACCESSORY NERVE (CN-XI) continued

HYPOGLOSSAL NERVE (CN-XII)

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
CN-XII	Corticobulbar fibers descend to the contralateral hypoglossal nucleus	Somatic motor to all tongue muscles except palatoglossus (CN-X)
CN-XII	Axons emerge between the olive and pyramid (preolivary sulcus) as a number of rootlets which converge and exit cranial fossa through the hypoglossal (anterior condylar) foramen	Complete interruption of the nerve results in paralysis of the ipsilateral side of the tongue with concomitant atrophy and muscle fasciculations (lower motor neuron lesion)
CN-XII	Passes laterally and downward to between the internal carotid artery and internal jugular vein, loops anteriorly above the hyoid, to innervate tongue	Occasionally damaged in neck surgery Rarely, carotid artery aneurysm may compress nerve

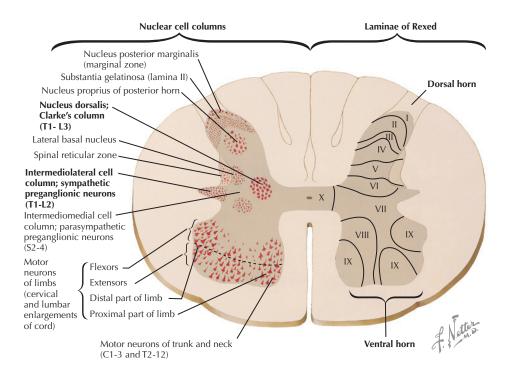
This page intentionally left blank

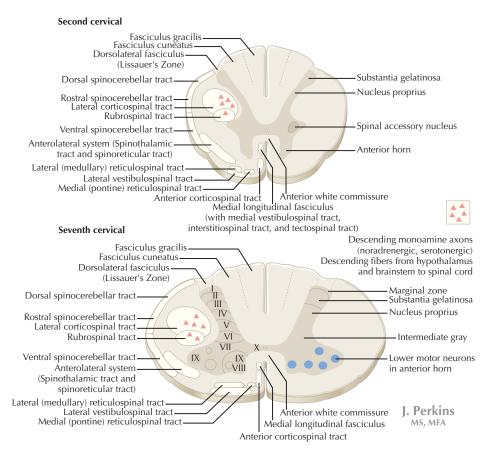

CHAPTER 15 Major Sensory and Motor Pathways

266
267
269
270
271
272
273
275
277
278
279
280
281
282
283
285
287
289
290
291

15 Major Sensory and Motor Pathways

SPINAL CORD PATHWAYS

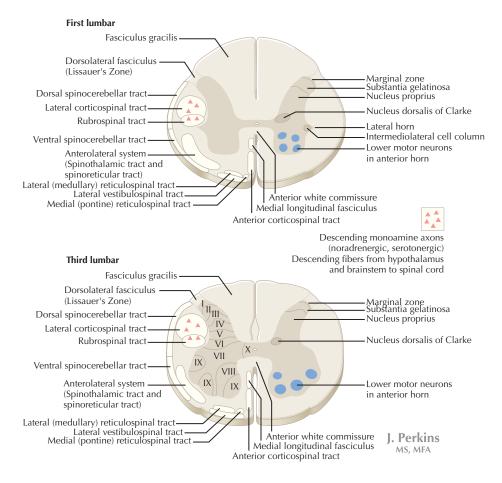

White matter is divided into *dorsal* (top of each spinal cord cross-sectional drawing), *ventral* (bottom of each spinal cord cross-sectional drawing), and *lateral* (sides of each spinal cord cross-sectional drawing) columns (funiculi), each containing multiple fiber tracts.


SPINAL CORD CYTOARCHITECTURE

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Gray matter	matter Butterfly-shaped pattern Divided into dorsal, intermediate, and ventral horns	Contains cell bodies of neurons (e.g., anterior horn cells of lower motor neurons)
		In amyotrophic lateral sclerosis, these cells degenerate
Dorsal horn	Larger at cervical and lumbosacral enlargements owing to innervation of arm and leg	Site of major sensory processing
Intermediolateral gray	Lateral horn seen from T1-L2 and S2-4	Preganglionic sympathetic (T1-L2) and parasympathetic (S2-4) neurons reside here
Ventral horn	Larger at cervical and lumbosacral enlargements owing to innervation of arm and leg	Anterior horn cells reside here
Laminae of Rexed	System of architectural classification	Most precise and widely used method for describing cell groups in the spinal cord
Nucleus dorsalis (of Clarke)	Cell column in the medial portion of lamina VII	Receives collaterals of dorsal roots from the entire body except the head and neck Functionally related primarily to the legs and lower trunk
	Begins to be well defined at the C8 level	
	Gives rise to the uncrossed posterior spinocerebellar tract	

SPINAL CORD CYTOARCHITECTURE continued

SPINAL CORD LEVELS: CERVICAL



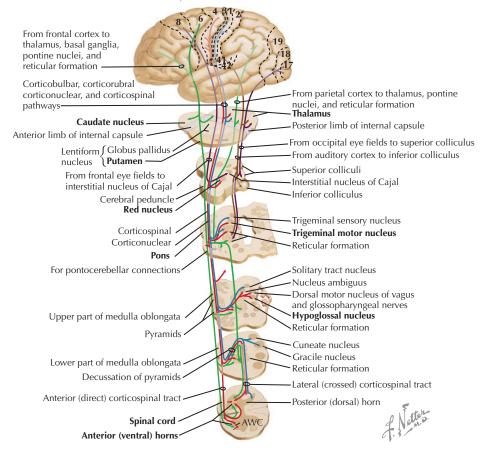
SPINAL CORD LEVELS: THORACIC

Second thoracic

SPINAL CORD LEVELS: LUMBAR

SPINAL CORD LEVELS: SACRAL

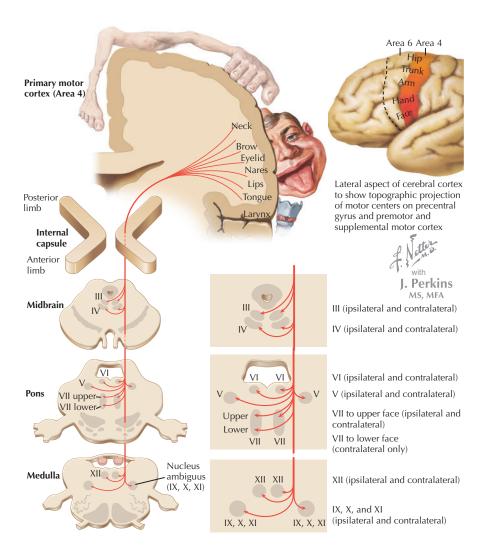
First sacral


CORTICAL EFFERENT PATHWAYS

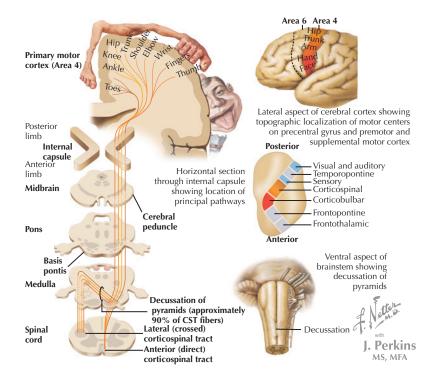
BRODMANN AREA	PROJECTS TO	ANATOMIC NOTES
4 and 6 (motor and premotor cortex)	Basal ganglia (caudate, putamen) Thalamus: ventroanterior (VA), ventrolateral (VL) Red nucleus Pontine nuclei Motor cranial nuclei Spinal cord ventral horn	Corticostriate projections Corticothalamic projections Corticorubral projections Corticopontine projections Corticobulbar tract bilaterally Corticospinal tract, mainly contralaterally
3, 1, and 2 (sensory cortex)	Secondary sensory nuclei Thalamus	Regulate incoming lemniscal projections
8 (frontal eye fields)	Superior colliculus Horizontal (paramedian pontine reticular formation [PPRF]) and vertical-gaze centers in the brainstem Interstitial nucleus of Cajal	Coordinate voluntary eye and head movement

15 Major Sensory and Motor Pathways

CORTICAL EFFERENT PATHWAYS continued

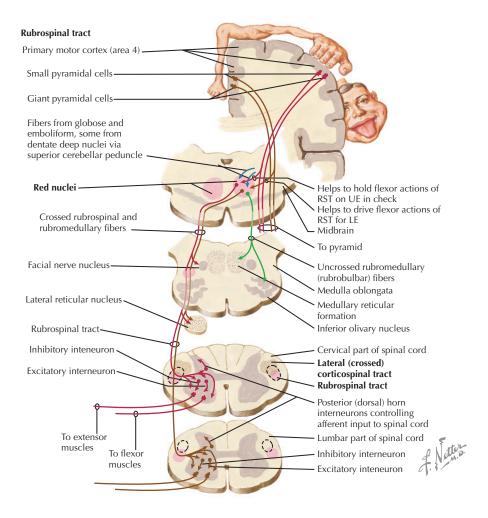

Cerebral Cortex: Efferent Pathway

CORTICOBULBAR PATHWAYS


STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Corticobulbar pathways	Arise mainly from precentral and postcentral gyri	Project to sensory relay nuclei, reticular formation, and certain cranial motor nuclei
Sensory relay nuclei	Include: • Nucleus gracilis • Nucleus cuneatus • Sensory trigeminal nuclei • Solitary nucleus	Transmit sensory information from periphery to higher cortical centers
Corticoreticular fibers	 Project bilaterally to: Nucleus reticularis gigantocellularis in the medulla Nucleus reticularis pontis oralis in the pons 	Important in arousal and maintenance of the awake state
Corticobulbar pathways to the motor cranial nerve	Largely bilateral Include: • Laryngeal muscles • Pharyngeal muscles • Palatal muscles • Muscles of mastication • Extraocular muscles • Upper facial muscles (muscles that, as a rule, cannot be contracted voluntarily on one side)	Pseudobulbar palsy results from bilateral lesions of the corticobulbar system Characterized by weakness of chewing, swallowing, breathing, and speaking, without muscle atrophy

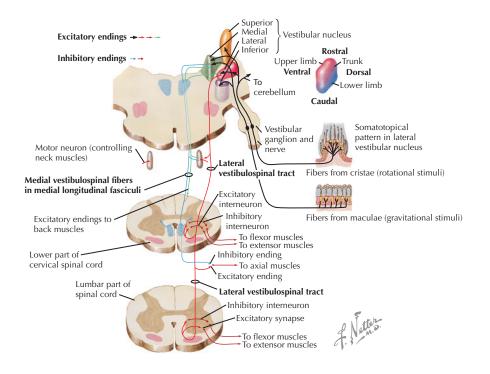
CORTICOBULBAR PATHWAYS continued

CORTICOSPINAL TRACT


ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Originates in the primary motor cortex (area 4), premotor cortex (area 6), postcentral gyrus (areas 3a, 3b,1, and 2), and parietal cortex (area 5)	Largest descending system in humans >1,000,000 fibers 70% myelinated
Descends through the corona radiata, internal capsule, cerebral peduncle, basis pontis, and medullary pyramid	Occlusion of small penetrating vessels in these areas results in lacunar infarction and causes contralateral hemiparesis
90% decussate in pyramid to descend in the lateral corticospinal tract of cord Synapse on anterior horn cells	Infarct or tumor in pyramid will cause ipsilateral tongue paralysis and contralateral hemiparesis
10% do not decussate in the pyramid Most of these descend in the anterior corticospinal tract, cross in the cervical spine, and synapse on the contralateral anterior horn cells to the arms and neck	It is not possible clinically to recognize lesions specifically involving anterior corticospinal tract

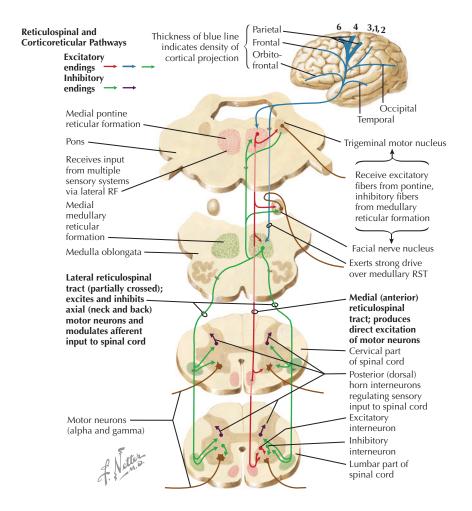
15 Major Sensory and Motor Pathways

RUBROSPINAL TRACT


ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Arises from cells in the red nucleus, and crosses the median raphe in the ventral tegmental decussation	Red nucleus lesion results in rubral (wing- beating) tremor
Descends to spinal levels anterior to the lateral corticospinal tract	Controls muscle tone in the flexor muscle groups
Terminates on the anterior horn cells	

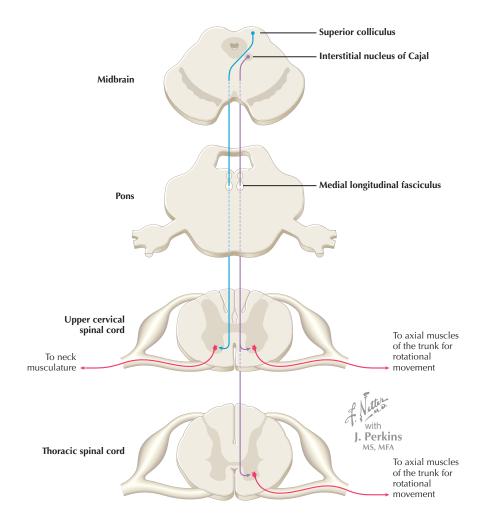
VESTIBULOSPINAL TRACT

The vestibulospinal tracts work with the reticulospinal tracts to control tone and posture.


STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Lateral vestibulospinal tract	Arises from the lateral vestibular nucleus Descends the anterior part of the lateral funiculus of the spinal cord Terminates on the ipsilateral anterior horn cells	Associated with the extensor musculature to control tone and posture
Medial vestibulospinal tract	Arises from the medial vestibular nucleus	Inhibits the cervical spinal motor neurons controlling the neck and trunk

15 Major Sensory and Motor Pathways

RETICULOSPINAL AND CORTICORETICULAR PATHS


STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Pontine reticulospinal tract	Descends ipsilaterally Arises from nuclei in the medial pontine reticular formation (pontis caudalis and oralis)	Distinct extensor bias, reinforcing lateral vestibulospinal tract to regulate tone and posture
Medullary reticulospinal tract	Descends bilaterally Arises from nucleus gigantocellularis	Distinct flexor bias, reinforcing the corticospinal and reticulospinal tracts to regulate tone and posture

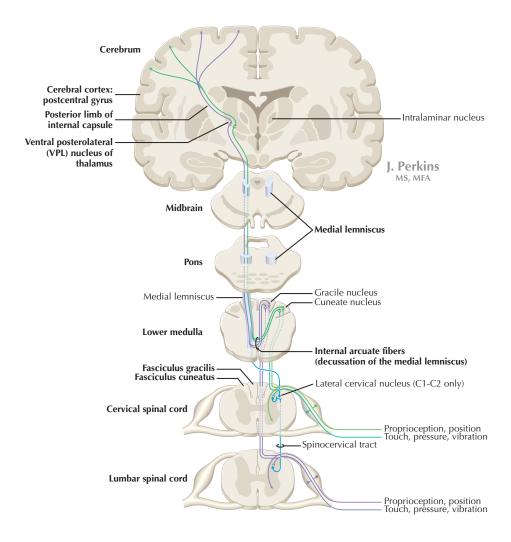
280 NETTER'S CONCISE NEUROANATOMY

TECTOSPINAL TRACT AND MEDIAL LONGITUDINAL FASCICULUS (MLF)

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Tectospinal tract	Arises from the superior colliculus Descends contralaterally ventral to the MLF	Mediates reflex and visual tracking for head and neck movement
	Terminates mainly in upper 4 cervical spinal segments	
Interstitiospinal tract	Arises from the interstitial nucleus of Cajal	Terminates on spinal motor neurons associated with rotational trunk movement
	Descends in the ipsilateral MLF	

ASCENDING SPINAL CORD PATHWAYS

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Unmyelinated and small myelinated axons	Terminate in laminae I and V	Origin of the spinothalamic tract
Myelinated axons	Ascend the posterior columns	Mediate vibration and position

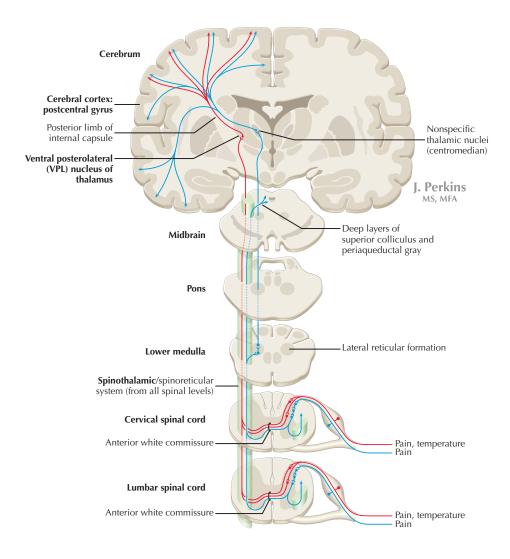


POSTERIOR WHITE COLUMNS

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Myelinated axons	Enter the dorsal horn, ascend the fasciculus gracilis (medial, from leg) and cuneatus (lateral, from arm) to medullary nuclei	Mediate touch, vibration, position Posterior column lesion (B ₁₂ deficiency, demyelinating multiple sclerosis plaque) results in ataxia
Second-order neurons	Cross ventromedially as internal arcuate fibers Turn upward as medial lemniscus Medial lemniscus ascends to ventroposterolateral nucleus (VPL) of thalamus	Mediate touch, vibration, position Thalamic infarct results in contralateral numbness May cause contralateral pain syndrome
Third-order neurons	From the thalamus ascend the posterior limb internal capsule to terminate in the sensory cortex	Cortical infarction results in loss of cortical sensation, including graphesthesia, stereognosis

Major Sensory and Motor Pathways

POSTERIOR WHITE COLUMNS continued

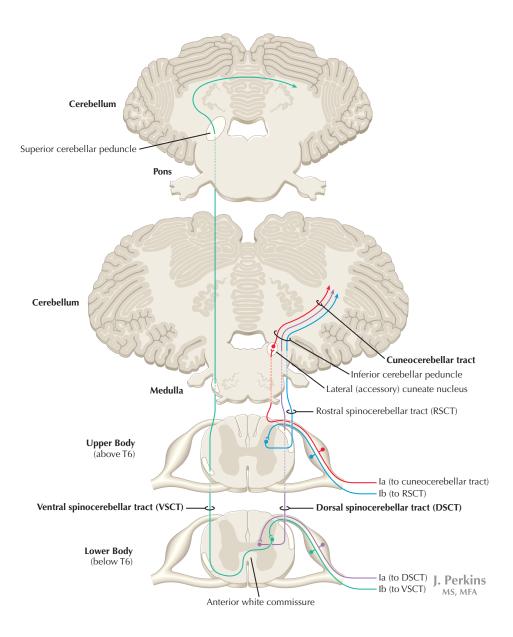


SPINOTHALAMIC AND SPINORETICULAR TRACT

- Unilateral section of the spinothalamic tract produces contralateral sensory loss to a level 1 segment below the lesion owing to oblique crossing of fibers.
 Unilateral lesions do not markedly affect anogenital region.

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Peripheral receptors for pain and temperature	Send central processes to the zone of Lissauer	Small-fiber neuropathy results in painful feet
Cells in laminae I, IV, and V	Give rise to axons that cross in anterior white commissure	Syrinx in the central canal interrupts these fibers with loss of pain and temperature in affected segments
Spinothalamic tract	Ascends in the contralateral lateral funiculus as the lateral spinothalamic tract	Compression of this tract affects pain and thermal sense below level of pathology
	Lateroposterior fibers represent the lower body; medial anterior fibers represent arms and neck	
Spinoreticular tract	Ascends in the spinal cord with the spinothalamic tract	Processes information related to slow, excruciating pain
	Projects to the brainstem reticular formation, thalamus, and cortex	

SPINOTHALAMIC AND SPINORETICULAR TRACT continued

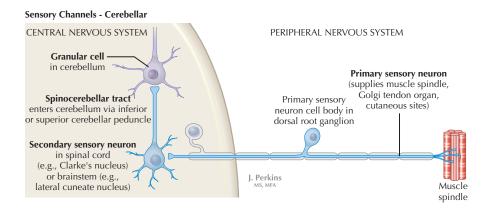

SPINOCEREBELLAR PATHWAYS

- Dorsal and cuneocerebellar tracts remain ipsilateral.
 Ventral spinocerebellar tract crosses twice, once in anterior commissure, again in cerebellum, thus remaining ultimately ipsilateral.

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Ventral (anterior) spinocerebellar tract	Crosses in the anterior commissure, ascends to the superior cerebellar peduncle (brachium conjunctivum)	Conveys impulses from the lower body Golgi tendon organ via Ib afferents
	Crosses again in cerebellum to contralateral cortex	Equivalent in the upper body is the rostral spinocerebellar tract
Dorsal (posterior) spinocerebellar tract	Projects to the ipsilateral nucleus dorsalis (Clarke column) and remains ipsilateral	Conveys impulses below T6 from muscle spindles and Golgi tendon organ via Ia, Ib, and II
	Nucleus dorsalis axons form the dorsal (posterior) spinocerebellar tract	fibers Equivalent in the upper body is the cuneocerebellar tract
	Ascends to the inferior cerebellar peduncle to the cerebellar cortex	
Cuneocerebellar tract	Cervical dorsal root fibers synapse in the accessory cuneate nucleus	Clarke's column is not present above C8 but is replaced by
	Second-order neurons form the cuneocerebellar tract	accessory cuneate nucleus Equivalent in lower body is dorsal
	Remains ipsilateral and travels with the dorsal spinocerebellar tract to the cerebellum	(posterior) spinocerebellar tract

Major Sensory and Motor Pathways

SPINOCEREBELLAR PATHWAYS continued

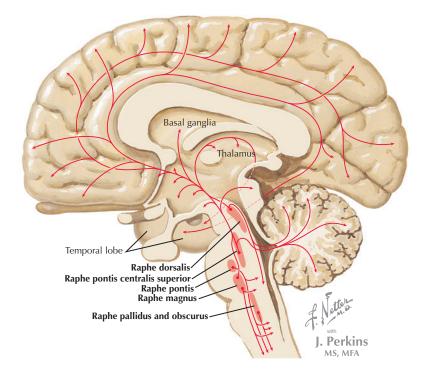


SPINOCEREBELLAR SYNAPTIC PATHWAY

Primary somatosensory axons transmit information from the following:

- Muscle spindles
- Golgi tendon organs
- Touch and pressure receptors

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Dorsal and ventral spinocerebellar tract	Enter via the dorsal root Convey information to the ipsilateral cerebellum	Carry information from T6 and below
Rostral spinocerebellar tract and cuneocerebellar tract	Enter via the dorsal root Convey information to the ipsilateral cerebellum	Carry information from above T6

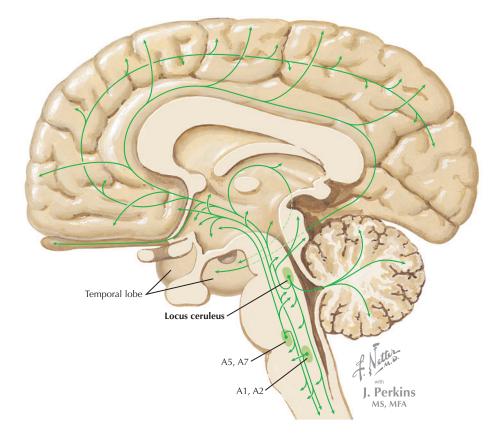


15 Major Sensory and Motor Pathways

RAPHE NUCLEI AND SEROTONERGIC PATHWAYS

- Main source of serotonin to central nervous systemImportant for wakefulness and sleep

STRUCTURE	ANATOMIC NOTES
Raphe dorsalis nucleus	Projects upward to the substantia nigra, lateral geniculate body, pyriform lobe (anteromedial temporal lobe), olfactory bulb, amygdaloid nuclear complex
	Projects downward to the locus ceruleus and parabrachial nucleus surrounding the superior cerebellar peduncle
Raphe pontis centralis superior (median	Projects upward to the interpeduncular nucleus, mammillary bodies, hippocampal formation
raphe) nucleus	Projects downward to the cerebellum (via middle cerebellar peduncle), locus ceruleus, pontine reticular formation
Nucleus raphe pontis	Projects to the brainstem and spinal cord
Nucleus raphe magnus	Projects, via the dorsal longitudinal fasciculus, to the dorsal motor nucleus of X, nucleus solitarius, spinal trigeminal nucleus, spinal cord (substantia gelatinosa)
Nucleus raphe pallidus and obscurus	Project to the spinal cord


LOCUS CERULEUS (NORADRENERGIC PATHWAYS)

- Provides noradrenergic innervation to most of central nervous systemBelieved to play role in regulation of respiration and in rapid eye movement (REM) sleep

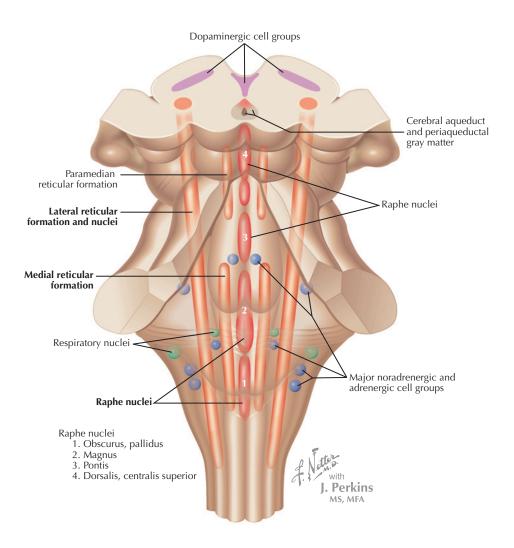
STRUCTURE	ANATOMIC NOTES	
Locus ceruleus (nucleus pigmentosus)	Small nucleus in the upper pons, near the periventricular gray of the upper 4th ventricle	
Descending pathway	Fibers descend in the anterior and lateral funiculi, largely uncrossed, ending in the anterior horn, intermediate gray, and ventral half of the posterior horn	
Ascending pathway	Fibers ascend through the midbrain, lateral to the MLF, and ventrolateral to central gray	
	In caudal diencephalon, fibers enter the medial forebrain bundle, via the mammillary peduncle, to and through the lateral hypothalamus	
	Fibers continue rostrally to the anterior commissure, divide, and innervate the diencephalon and telencephalon	
	Stria medullaris component turns caudally to innervate the midline thalamus	
	Stria terminalis component supplies the amygdaloid nuclear complex	
	Most rostral fibers pass from the medial forebrain bundle to the external capsule to frontal cortex	

15 Major Sensory and Motor Pathways

LOCUS CERULEUS (NORADRENERGIC PATHWAYS) continued

CHAPTER 16 Reticular Formation

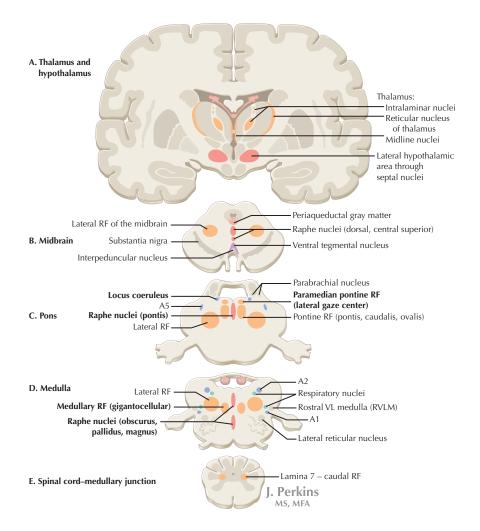
Reticular Formation: Overview	
Reticular Nuclei	
Major Afferent and Efferent Connections of the	
Reticular Formation	
Sleep Wake Control	
Noradrenergic Pathways	
Serotonergic Pathways	
Central Cholinergic Pathways	

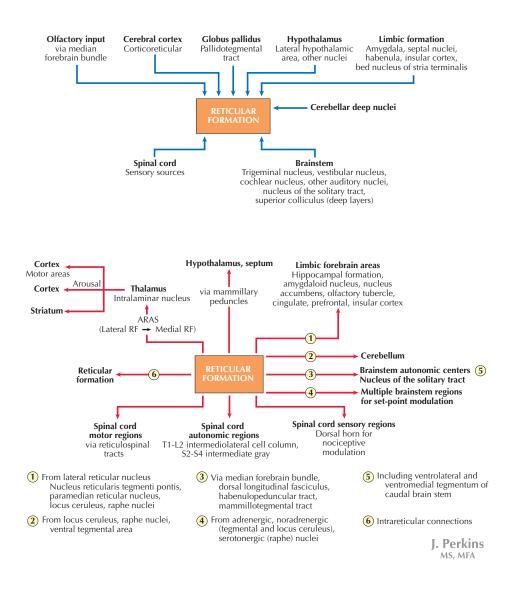

16 Reticular Formation

RETICULAR FORMATION: OVERVIEW

- A somewhat diffuse collection of neurons and nerve fibers extending from the caudal medulla, beginning just above the pyramidal decussation, to the rostral midbrain, and continuous with the subthalamic zona incerta and thalamic nuclei
- · Essentially a matrix within which nuclei and tracts are embedded
- Neurons within the reticular formation discharge in relation to multiple stimuli, including sensory input, pain and escape behavior, conditioning and habituation, arousal, complex motivational states, rapid eye movement (REM) sleep, eye movements, respiration, and locomotion

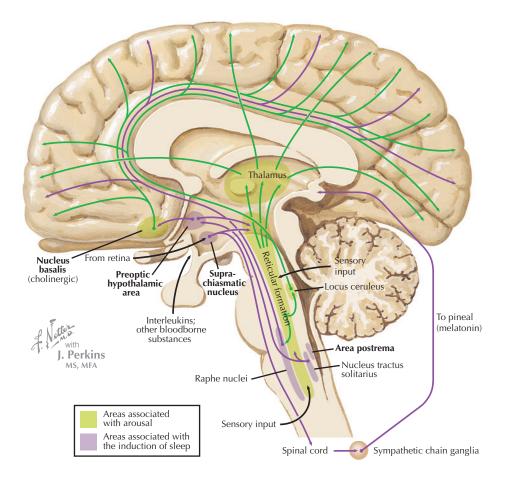
STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Lateral group nuclei	Includes: • Nucleus reticularis lateralis in the medulla	Relate to locomotion and autonomic regulation
	Nucleus reticularis parvocellularis in the pons and medulla	
	 Parabrachial and pedunculopontine in the pons and midbrain 	
	Cuneiform and subcuneiform in the midbrain	
Medial group	Includes:	Descending connections play a
nuclei	 Nucleus reticularis gigantocellularis in the medulla 	role in motor control, ascending connections play a role in consciousness and alertness
	 Nucleus reticularis pontis caudalis and oralis in the pons 	
Column of	Includes:	Caudal nuclei concerned with
raphe nuclei	 Raphe obscurus and pallidus in medulla 	pain mechanisms; rostral nuclei relate to sleep, wakefulness, and alertness
	 Raphe magnus in pons and medulla 	
	 Dorsal raphe and superior central nuclei in midbrain 	


OVERVIEW continued

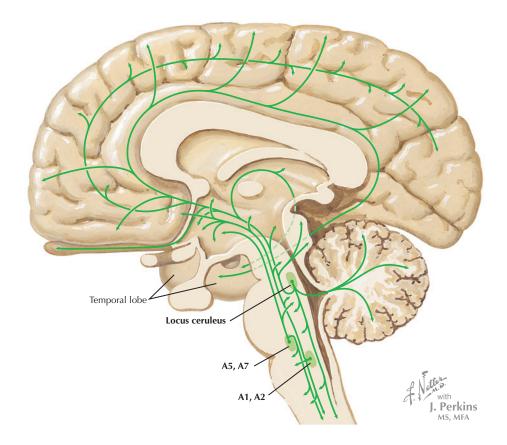

16 Reticular Formation

RETICULAR NUCLEI

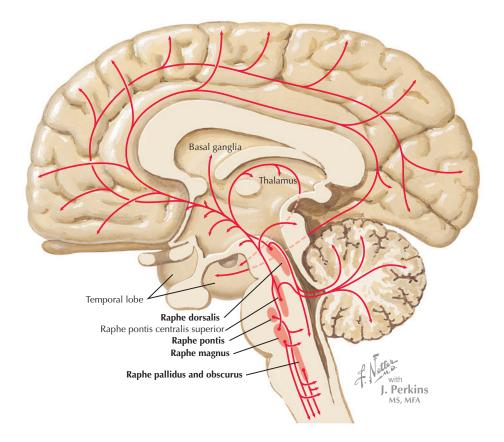
STRUCTURE	FUNCTIONAL SIGNIFICANCE
Nucleus reticularis gigantocellularis	Reticulospinal regulation of spinal cord lower motor neurons
Paramedian pontine reticular formation (PPRF)	Lateral gaze center
Raphe nuclei	Rostral nuclei are part of ascending reticular activating system concerned with sleep, wakefulness, and alertness
Locus ceruleus	Ascending noradrenergic system involved in attention, mood, and sleep-wake state



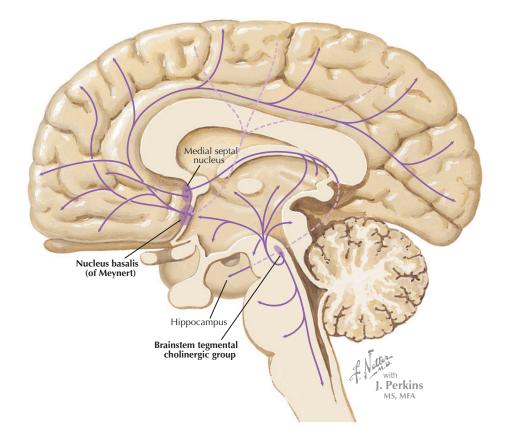
MAJOR AFFERENT AND EFFERENT CONNECTIONS OF THE RETICULAR FORMATION


SLEEP WAKE CONTROL

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Area postrema	Rostral to obex on each side of 4th ventricle	Associated with sleep induction. Also emetic chemoreceptor trigger zone
Suprachiasmatic nucleus of hypothalamus	Dorsal to the optic chiasm, close to the ventral part of the 3rd ventricle	Lesioning eliminates circadian rhythm of sleep-wake cycle
Preoptic hypothalamic area	Periventricular grey of most rostral part of 3rd ventricle	Receives fibers that carry sleep- inducing peptides enkephalin and endorphin
Nucleus basalis	Rostrally lies under cortex of anterior perforated substance	These cholinergic projection neurons are lost in Alzheimer's disease


NORADRENERGIC PATHWAYS

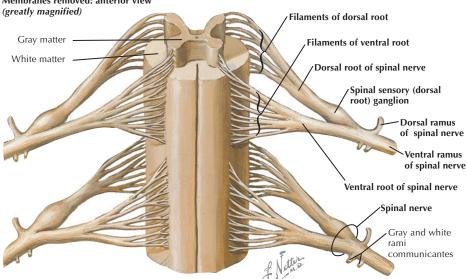
STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Locus ceruleus	Gives rise to 3 major ascending tracts: • Central tegmental tract • Dorsal longitudinal fasciculus • Medial forebrain bundle	Ascending system involved in modulation of attention, sleep-wake state, and mood
Groups A1-A7 (lateral tegmental noradrenergic system)	Noradrenergic cell groups scattered in pons and medulla	Axons directed to the spinal cord/ brainstem (modulate sympathetic function) and diencephalon/ telencephalon (sleep-wake state)


SEROTONERGIC PATHWAYS

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Groups B1-B7	Serotonergic neurons within the raphe nuclei of the medulla, pons, and midbrain	Regulate diverse physiologic processes including sleep, aggressive behavior, neuroendocrine function
Raphe dorsalis	Projects to the entire forebrain	Plays a role in psychiatric disorders: depression, anxiety, obsession- compulsion
Raphe pontis, magnus, pallidus, and obscurus	Project to the cerebellum, medulla, spinal cord	Inhibit dorsal horn neurons that give rise to the spinothalamic tract, modulating pain input

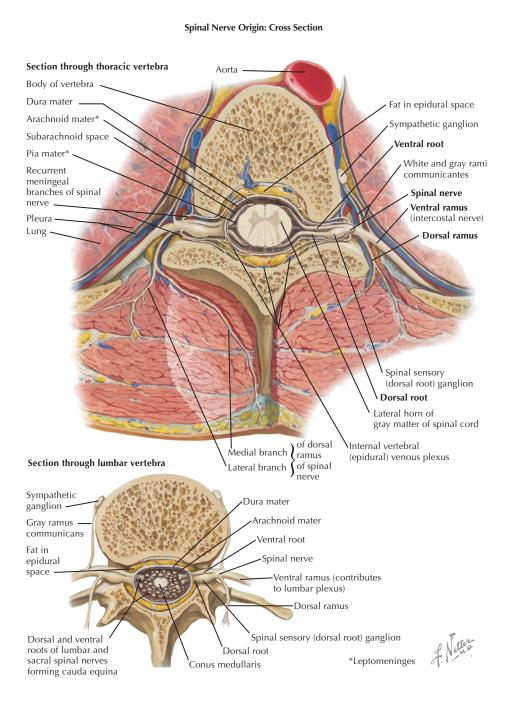
CENTRAL CHOLINERGIC PATHWAYS

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE	
Brainstem tegmental group	Includes pedunculopontine reticular nucleus and adjacent lateral dorsal tegmental nucleus	cular rrsal Role in arousal and movement Pedunculopontine nucleus is affected in progressive supranuclear palsy	
Nucleus basalis	Located in basal forebrain	Sends axons to almost the entire cerebral cortex	
Medial septal nucleus	In subcallosal area, rostral to the anterior commissure	Provides interaction between the limbic and diencephalic structures Lesions in mice produce rage, hyperemotionality, heightened activity	



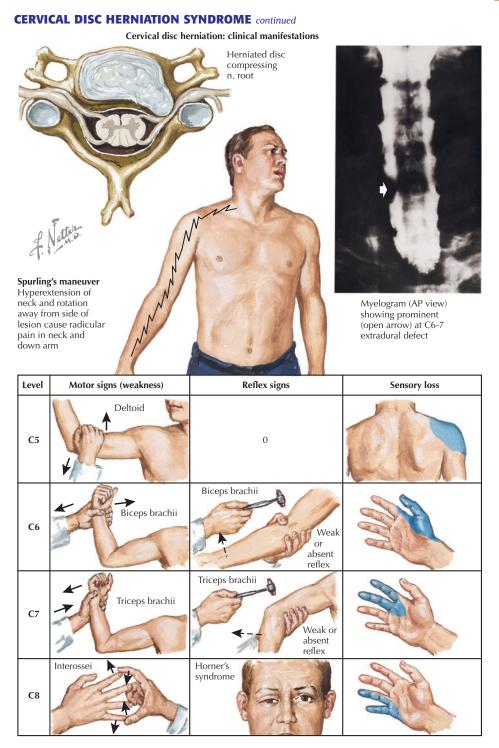
This page intentionally left blank

CHAPTER 17 Anatomy of the Peripheral Nervous System: Upper Extremity


Cervical Root Anatomy		
Cervical Disc Herniation Syndrome	306	
Cervical Plexus	308	
Brachial Plexus Components	310	
Brachial Plexus	312	
Brachial Plexopathy	314	
Thoracic Outlet	315	
Nerves of the Brachial Plexus	316	
Median Nerve (to Wrist)	320	
Median Nerve (Hand)	323	
Ulnar Nerve (to Wrist)	326	
Ulnar Nerve: Hand	328	
Radial Nerve	330	
Posterior Interosseous Nerve		
Superficial Radial Nerve	335	
Musculocutaneous Nerve	337	
Lateral Cutaneous Nerve of Forearm	339	

- · Filaments (rootlets) emerge from the spinal cord and combine to form the dorsal and ventral spinal nerve roots.
- Nerve roots fuse in the intervertebral foramen, distal to the dorsal root ganglion, to form short spinal nerves.
- C1 to C7 spinal nerves pass above the same-numbered cervical vertebrae to exit the spinal canal.
- C8 passes under C7 and above the T1 vertebra; T1 exits between T1 and T2 vertebrae.
- Spinal nerves divide into the dorsal and ventral ramus (plural, rami) on exiting foramen (except for C1, which has no dorsal ramus).
- Dorsal rami supply the skin and paraspinal muscles (except for C1, which has no cutaneous supply).
- The C2 dorsal ramus becomes the greater occipital nerve.
- · Ventral rami of C1-4 form the cervical plexus.
- Ventral rami of C5-8 and T1 form the brachial plexus.

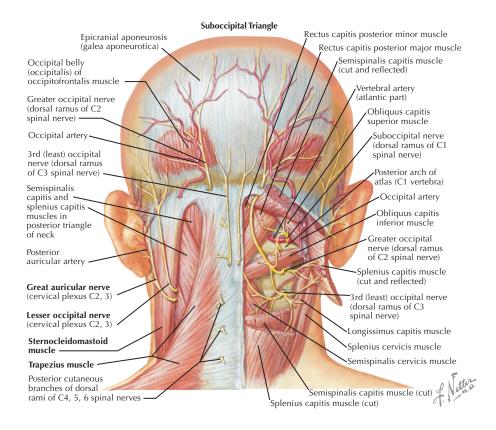
Membranes removed: anterior view


CERVICAL ROOT ANATOMY continued

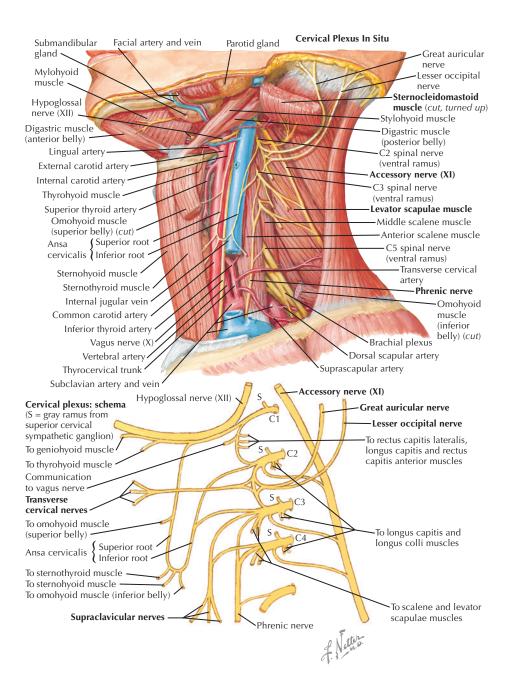
DISC LEVEL	ROOT AFFECTED	WEAKNESS	NUMBNESS	REFLEX AFFECTED
C3-4	C4	None	Epaulet	None
C4-5	C5	Rhomboid, supraspinatus, infraspinatus, deltoid, biceps, brachioradialis	Skin over deltoid muscle	Biceps, brachioradialis
C5-6	C6	C5 muscles above and extensor carpi radialis longus (ECRL), supinator, pronator teres	Thumb	Biceps, brachioradialis
C6-7	C7	Triceps, wrist and finger extensors, flexor carpi radialis (FCR), pronator teres	Middle (3rd) finger	Triceps
C7-T1	C8	C7 muscles above and finger flexors, flexor carpi ulnaris (FCU), intrinsic hand muscles	Fingers 4 and 5 and hypothenar eminence	Triceps, finger flexor reflex
T1-2	T1	Intrinsic hand muscles	Medial elbow region	Finger flexor reflex

Patients with radiculopathy infrequently lose sensation over the entire dermatome; rather, the sensory abnormality is confined to "signature areas."

Anatomy of the Peripheral Nervous System: Upper Extremity 17


CERVICAL PLEXUS

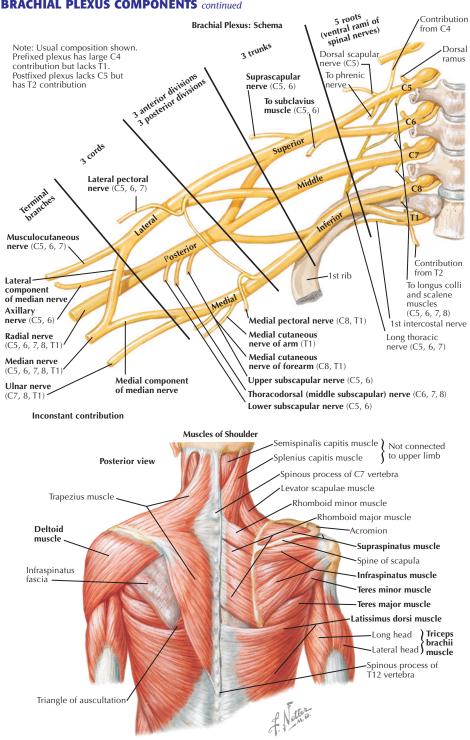
The cervical plexus has four cutaneous branches that emerge from the posterior border of the sternocleidomastoid.


- The great(er) auricular (C2-3) supplies skin over the angle of the mandible, parotid, mastoid, and auricle
- Lesser occipital (C2-3) supplies the lateral part of the occiput and medial surface of the auricle
- Supraclavicular (C3-4)
- The transverse cervical nerve (transverse cutaneous of neck) (C2-3) supplies skin over the anterior and lateral neck from the mandible to the sternum

The cervical plexus has several muscular branches:

- Phrenic nerve (C3-4-5 to diaphragm)
- Accessory nerve: receives branches from the cervical plexus; these branches ascend to enter the foramen magnum, join cranial nerve (CN)-XI, and exit through the jugular foramen with CN-IX and -X. This nerve supplies the trapezius and sternocleidomastoid
- The levator scapulae (C3-4) raises the medial border of the scapula and braces the shoulder backward
- Short, muscular branches to adjacent muscles

CERVICAL PLEXUS continued



BRACHIAL PLEXUS COMPONENTS

NERVE	ROOT(S)	MUSCLE INNERVATED (ACTION)	SENSORY DERMATOME	
	Upper Trunk			
Suprascapular	C5-6	Supraspinatus (first 15 degrees of shoulder abduction), infraspinatus (external rotation)	None	
To the subclavius	C5-6	Subclavius (depresses the clavicle and steadies it during shoulder movement)	None	
		Lateral Cord		
Lateral pectoral	C5-7	Upper part of the pectoralis major	None	
Musculocutaneous	C5-6	Elbow flexors: biceps brachii, coracobrachialis, brachialis	Lateral aspect of forearm	
Lateral component of median	C5-6 (C7 from middle trunk)	Pronator teres, flexor carpi radialis (FCR)	Median hand	
Posterior Cord				
Thoracodorsal	C6-8	Latissimus dorsi	None	
Upper subscapular	C5-6	Subscapularis	None	
Lower subscapular	C5-6	Subscapularis, teres major	None	
Axillary	C5-6	Deltoid, teres minor	Patch of skin over deltoid	
Radial	C5-8	All radial muscles	Lateral 3 and $\frac{1}{2}$ dorsal hand	
Medial Cord				
Medial pectoral	C8-T1	Lower part pectoralis major, pectoralis minor	None	
Medial cutaneous nerve of the arm	C8-T1	None	Medial aspect of the arm	
Medial cutaneous nerve of the forearm	C8-T1	None	Medial aspect of the forearm	
Ulnar	C8-T1	All ulnar muscles	Medial 1 and ½ hand	
Medial component of median	C8-T1	Flexor digitorum superficialis (FDS), flexor pollicis longus (FPL), flexor digitorum profundus (FDP) I and II, lumbricals, opponens pollicis, abductor pollicis brevis, flexor pollicis brevis (superficial head) (LOAF)	None	

Anatomy of the Peripheral Nervous System: Upper Extremity 17

BRACHIAL PLEXUS COMPONENTS continued

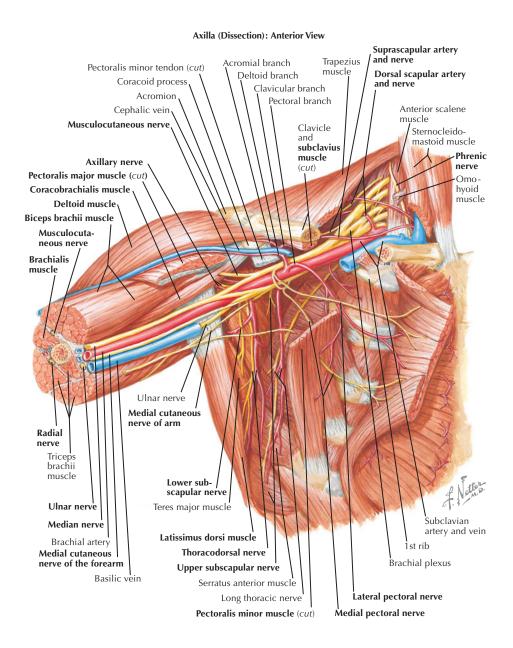
17 Anatomy of the Peripheral Nervous System: Upper Extremity BRACHIAL PLEXUS

The brachial plexus forms from the ventral rami of C5-8 and T1:

- C5 and C6 ventral rami join to form the superior (upper) trunk.
- C7 ventral ramus continues alone to form the middle trunk.
- C8 and T1 ventral rami join to form the inferior (lower) trunk.

Each trunk divides into an anterior and posterior division:

- All three posterior divisions join to form the posterior cord.
- Anterior divisions of the superior and middle trunks join to form the lateral cord.
- The anterior division of the inferior trunk continues as the medial cord.

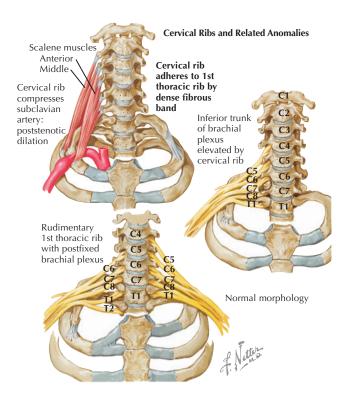

In the neck, the brachial plexus lies between the anterior and medial scalene muscles and above the first rib:

- It emerges behind the lower part of the sternocleidomastoid.
- It passes under the clavicle, over the first rib, to reach the axilla.
- The T1 ramus and lower trunk lie on pleura over the lung apex, and the trunk curves over the first rib to reach the axilla.

The dorsal scapular nerve supplies the rhomboid (elevates the medial border of the scapula and pulls it medially); it arises from the C5 ventral ramus.

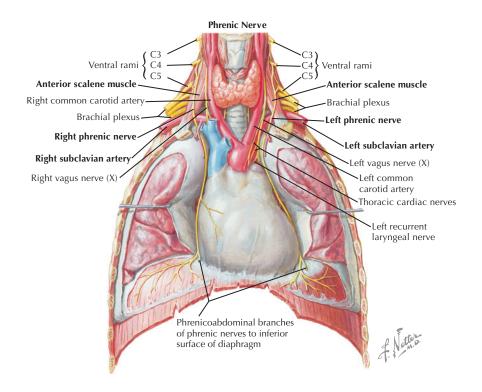
- The phrenic nerve supplies the diaphragm; it arises from the ventral rami of C3-5.
- The long thoracic nerve supplies the serratus anterior; it arises from the ventral rami of C5-7.

BRACHIAL PLEXUS continued

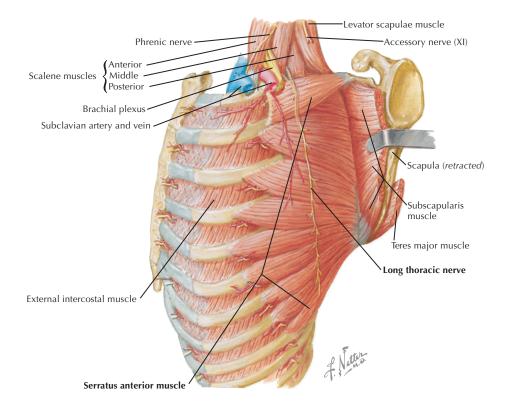


BRACHIAL PLEXOPATHY

Causes of brachial plexopathy include the following:

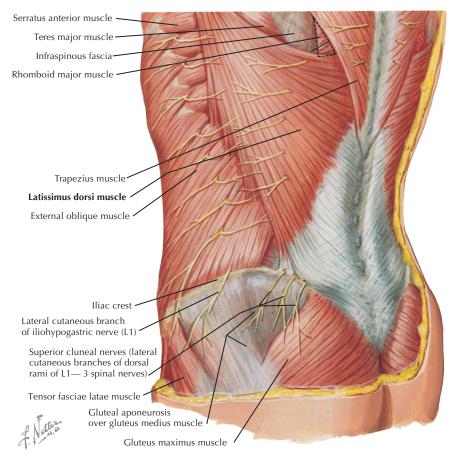

- Trauma
- Tumor invasion
- Radiation-induced
- Acute brachial plexus neuropathy (brachial neuritis, neuralgic amyotrophy, Parsonage-Turner syndrome)
- Cervical rib (see Thoracic Outlet Syndrome to follow)
- · Hereditary neuropathy with liability to pressure palsies

WEAKNESS PATTERN IN FOCAL BRACHIAL PLEXOPATHY		
Upper Trunk	Supraspinatus and infraspinatus, deltoid, biceps, brachioradialis (BR)	
Middle Trunk	Latissimus dorsi, radial muscles (except BR), pronator teres, FCR	
Lower Trunk	Intrinsic hand muscles, FCU, FDS, FPL, FDP	
Lateral Cord	Biceps, FCR, pronator teres	
Posterior Cord Radial muscles, deltoid, latissimus dorsi		
Medial Cord	Intrinsic hand muscles, FCU, FDP, FPL	



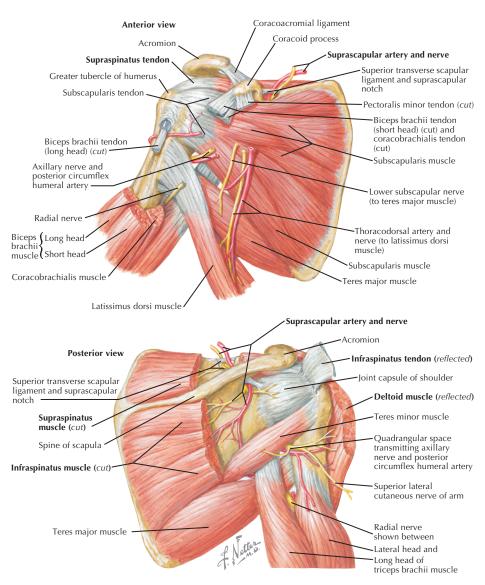
THORACIC OUTLET

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Thoracic outlet	This area contains the lower portions of the anterior and middle scalene muscles, the 1st rib, and the clavicle.	Thoracic outlet syndrome (TOS) denotes:Arterial compromise of the subclavian artery (arterial TOS)
	The brachial plexus and subclavian artery and subclavian vein pass through it. The apex of the lung projects into it from below.	 Venous compromise of the subclavian vein (venous TOS) Neurologic compromise of the brachial plexus (neurologic TOS) with the lower trunk of the brachial plexus being stretched over a rudimentary cervical rib or fibrous band (lower trunk brachial plexopathy) Combinations of the above Patients experience: Wasting and weakness of the hand Paresthesias over the medial forearm and hand
		 Aching of arm (pain is unusual)



NERVE	ROOTS	SUPPLIES	COURSE	INJURY
Long	C5-7 ventral	Serratus	Down the anterolateral chest wall to digitations of serratus anterior	Results in
thoracic	rami directly	anterior		winged scapula

NERVES OF THE BRACHIAL PLEXUS continued

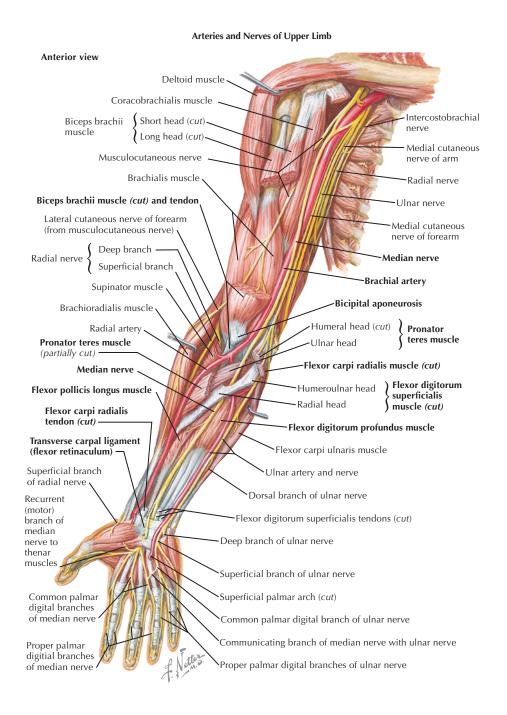

NERVE	ROOTS	SUPPLIES	COURSE	INJURY
Thoracodorsal	C6-8 ventral rami, posterior cord	Latissimus dorsi	Runs down on the subscapularis to reach latissimus dorsi muscle	Weakness of arm extension and adduction

Posterolateral Abdominal Wall

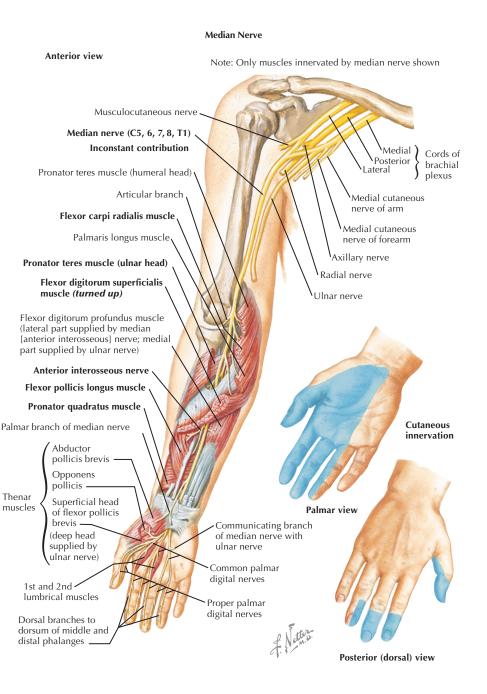
NERVE	ROOTS	SUPPLIES	COURSE	INJURY
Suprascapular	C5-6 ventral rami, upper trunk	Supraspinatus and infraspinatus	Under the trapezius, through the suprascapular notch to the supraspinous fossa, and then around the spinoglenoid notch	Results in wasting and weakness of the supraspinatus (first 15 degrees of shoulder abduction) and infraspinatus (external [lateral] rotation of the shoulder)
Axillary nerve	C5-6 ventral rami, posterior cord	Deltoid muscle and skin over the deltoid muscle	Below the shoulder joint, around the posterior and lateral surface of the humerus, deep to the deltoid	Results in wasting and weakness of deltoid with weak shoulder abduction

NERVES OF THE BRACHIAL PLEXUS continued

Scapulohumeral Dissection


17 Anatomy of the Peripheral Nervous System: Upper Extremity

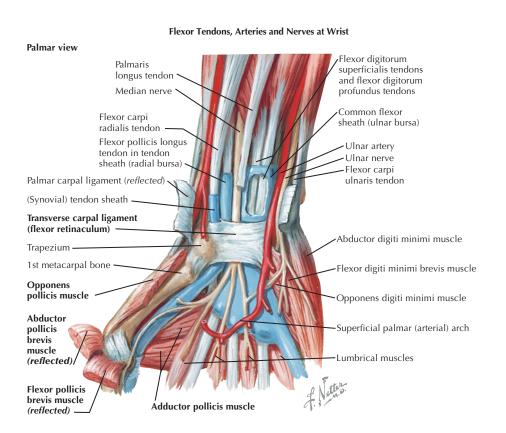
MEDIAN NERVE (TO WRIST)


Roots	C5-T1
Trunk of Brachial Plexus	Upper, middle, lower
Division of Brachial Plexus	Anterior division of the upper, middle, and lower trunk
Cord of Brachial Plexus	Lateral and medial
Course from Axilla to Hand	Union of the lateral and medial cord of the brachial plexus (See page 311)
	Lateral wall of axilla to the medial upper arm Crosses the antecubital fossa medial to the biceps tendon and brachial artery Passes beneath the bicipital aponeurosis (site of entrapment) Between the heads of the pronator teres (site of entrapment) Under the FDS sublimis bridge Descends the forearm between the FDS and FDP Enters the hand under the carpal ligament (the most common site of entrapment)
Muscles Innervated and Function	None above the elbow Pronator teres: pronates/flexes forearm FCR—flexes/abducts hand at wrist FDS—flexes the middle phalanx of fingers 2-5 Anterior interosseous nerve FPL—flexes distal phalanx of thumb* FDP—2 and 3: flexes distal phalanx fingers 2-3* Pronator quadratus—pronates forearm*
Sensory Branches and Dermatome	No sensation above the wrist Palmar cutaneous branch (arises above the wrist): supplies the thenar eminence
Injury	 May be injured at: Axilla-compression by crutches, anterior shoulder dislocation Upper arm-sleep palsy, knife wounds, tourniquet, humerus fracture Elbow-supracondylar ligament, elbow dislocation, injection injury Pronator teres-produces pronator teres syndrome with weakness of median innervated muscles distal to pronator teres Anterior interosseous neuropathy-fibrous band, radius fracture Carpal tunnel syndrome (below the wrist)
Clinical Notes	Anterior interosseous neuropathy results in "O" sign due to inability to flex DIP joint of index finger (FDP 2) and IP joint of thumb (FPL). Median neuropathy at elbow causes clumsy or weak fingers 1-4 Tinel sign may be seen at site of lesion Median hand sensory symptoms occur with lesion at or above wrist

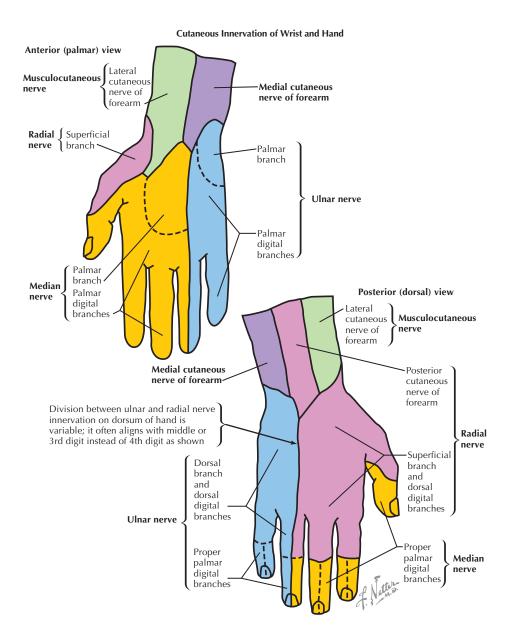
*The anterior interosseous nerve arises from the median nerve as it emerges between the two heads of the pronator teres. It supplies the FPL, FDP 2 and 3, and the pronator quadratus.

MEDIAN NERVE (TO WRIST) continued

17 Anatomy of the Peripheral Nervous System: Upper Extremity MEDIAN NERVE (TO WRIST) continued

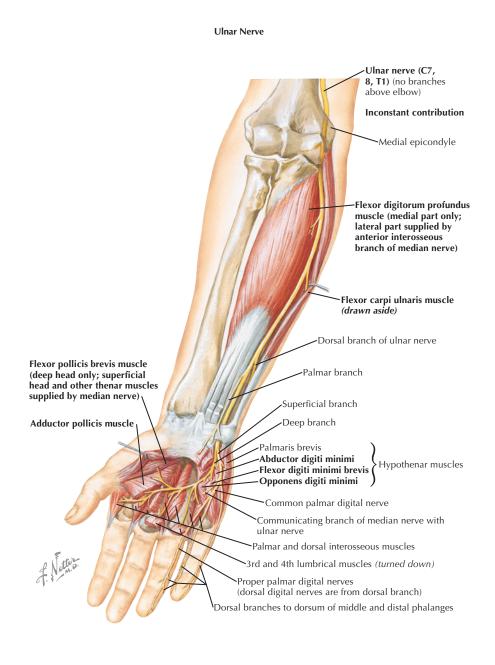


MEDIAN NERVE (HAND)


Course in the Hand	Enters the hand through the carpal tunnel
	Distal to the tunnel, it divides into 2 major branches: lateral and medial terminal branches
	Lateral terminal branch divides into common digital nerves to supply thumb and lateral side of index finger through proper palmar digital nerves
	Medial terminal branch divides into common digital nerves to supply the medial index, finger 3, and lateral finger 4 through proper palmar digital nerves
Muscles Innervated	Branch to thenar eminence
and Function	Abductor pollicis brevis—abducts thumb at carpometacarpal and metacarpophalangeal (MCP) joints
	Opponens-pulls the thumb metacarpal (MC) medially and forward
	Flexor pollicis brevis-flexes MCP joint of thumb
	Lumbricals 1,2-flex MCP, extend IP joints
Sensory Branches and Dermatome	Digital branches: Palmar surface of thumb, fingers 2, 3, lateral half of finger 4 and associated palm and dorsal tips of lateral 3 and $\frac{1}{2}$ fingers
Disorders	Carpal tunnel syndrome
Clinical Notes	Paresthesiae and pain, particularly at night
	Relief by shaking hand
	Symptoms often worsen with hand activities
	Three times more common in women
	Dominant hand often first affected
	Often bilateral
Differential Diagnosis	C6 or C7 radiculopathy
	TOS
	A

Mnemonic for median innervated intrinsic hand muscles is LOAF:

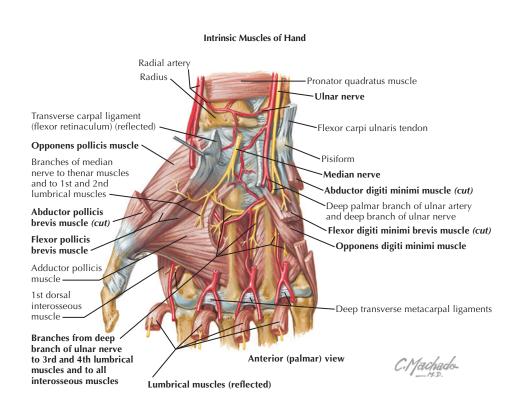
- Lumbricals
- Opponens pollicis
 Abductor pollicis brevis
 Flexor pollicis brevis



MEDIAN NERVE (HAND) continued

Roots	C8-T1
Trunk of Brachial Plexus	Lower
Division of Brachial Plexus	Anterior division of the lower trunk
Cord of Brachial Plexus	Medial
Course from Axilla to Hand	Medial cord brachial plexus Lateral wall of axilla Medial upper arm Behind the medial epicondyle of humerus Under the FCU aponeurosis Runs down the forearm between the FDP (posterior) and FCU (anterior) Enters the hand through the Guyon canal (between pisiform and hook of hamate)
Muscles Innervated	 Above the elbow, no branches Below the elbow, in forearm; only 2 branches: FCU-flex/adduct hand at wrist FDP-flex distal interphalangeal (DIP) joint of fingers 4 and 5
Sensory Branches and Dermatome	Palmar cutaneous (arises midforearm, crosses the wrist, not through the Guyon canal)—supplies proximal medial palm below wrist Dorsal cutaneous (arises 5 cm above the wrist, winds dorsally around wrist)—supplies the ulnar dorsum of the hand and dorsal fingers 5 and medial half of 4
Disorders	Old elbow fracture-tardy ulnar palsy Acute trauma-fracture, dislocation of elbow External pressure at elbow Soft tissue elbow masses-ganglia, lipoma, epidermoid cyst
Clinical Notes	Sensory symptoms in the ulnar innervated hand and fingers Pain at the elbow or ulnar innervated parts of hand or diffuse in the arm Clumsy or weak fingers Tinel sign over nerve at the region of injury Ulnar hand sensory loss Ulnar claw deformity
Anatomic Notes	Only 2 ulnar innervated muscles above the wrist: FCU and FDP 4 and 5 All ulnar-innervated muscles have a C8-T1 root supply

ULNAR NERVE (TO WRIST) continued

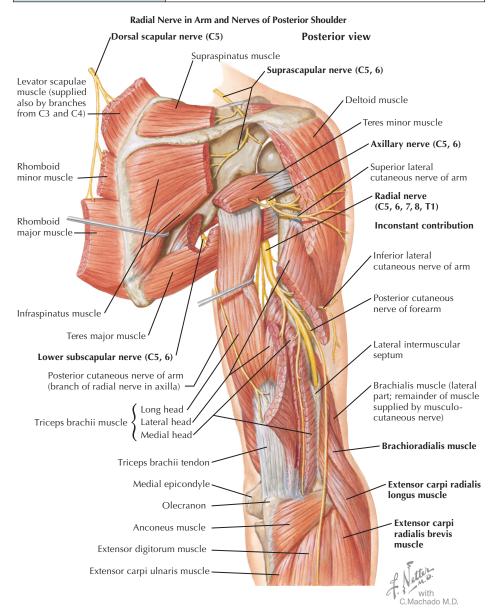


17 Anatomy of the Peripheral Nervous System: Upper Extremity

ULNAR NERVE: HAND

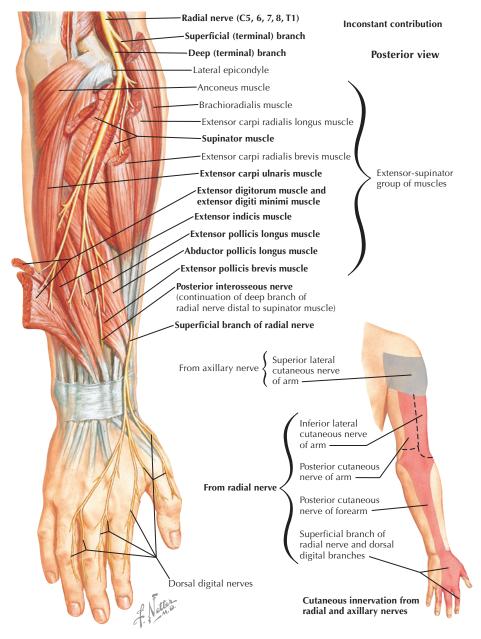
Course in the Hand	Enters the hand through the Guyon canal (between the pisiform and the hook of hamate)
	Distal to the tunnel, gives branch to palmaris brevis
	Then divides into the superficial and deep terminal branches
	Superficial terminal branch (mainly sensory) supplies the distal ulnar border of the palm and then divides into 2 palmar digital nerves that innervate medial 1 and $\frac{1}{2}$ fingers
	Deep terminal branch (purely motor) supplies the opponens digiti minimi, then curves laterally deep to the flexor tendons, supplying the hypothenar muscles, interossei, lumbricals 3 and 4, and terminates in the thenar eminence, supplying the adductor pollicis and the ulnar head of the flexor pollicis brevis
Muscles	Opponens digiti minimi rotates the 5th MC slightly
Innervated and Function	Abductor digiti minimi abducts the 5th finger at MCP joint
Tuntuon	Flexor digiti minimi flexes 5th finger at MCP joint
	Dorsal interossei abduct fingers away from finger 3
	Palmar interossei adduct fingers toward finger 3
	Lumbricals 3 and 4 flex the MCP and extend IP joints
	Adductor pollicis adducts thumb at the carpometacarpal (CMC) and MCP joint
	Deep (ulnar head) of the flexor pollicis brevis (FPB) flexes the MCP of the thumb
Sensory Branches and Dermatome	Superficial terminal branch supplies distal ulnar border of the palm and then divides into 3 palmar digital branches to supply finger 5 and ulnar half of 4
Disorders	Compression in the Guyon canal
	Compression of the deep terminal branch distal to the hypothenar muscle innervation
Clinical Notes	Atrophy of intrinsic ulnar innervated muscles (varies with the precise site of lesion)
	Weakness of intrinsic ulnar innervated muscles (varies with the precise site of lesion)
	Ulnar distribution sensory loss (varies with the precise site of lesion)
Differential	Ulnar neuropathy at the elbow
Diagnosis	Amyotrophic lateral sclerosis
	C8-T1 radiculopathy
	•

ULNAR NERVE: HAND continued


17 Anatomy of the Peripheral Nervous System: Upper Extremity

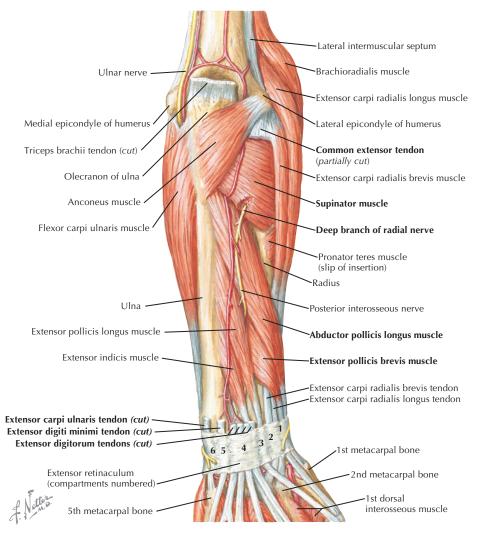
RADIAL NERVE

Roots	C5-T1
Trunk of Brachial Plexus	Upper, middle, lower
Division of Brachial Plexus	Posterior divisions of the upper, middle, and lower trunk
Cord of Brachial Plexus	Posterior
Course from Axilla to	Medial humerus
Elbow	Laterally around the spiral groove
	Lateral humerus below the deltoid insertion
	Enters the forearm between the biceps and the brachioradialis
	Divides into deep motor (posterior interosseous) and superficial radial sensory nerves
Muscles Innervated and	Above elbow branches:
Function	Triceps extends the elbow
	Brachioradialis flexes the elbow in neutral position
	 Extensor carpi radialis longus and brevis extend and abduct hand at the wrist
	At the level of the elbow joint, it divides into superficial sensory branch that supplies sensation to the dorsum of the hand and lateral 3 and $\frac{1}{2}$ fingers and a motor branch (posterior interosseous) to:
	 Supinator supinates forearm
	 Extensor digitorum extends fingers 2-5
	 Extensor digiti minimi extends little finger
	 Extensor carpi ulnaris extends and adducts hand at wrist
	Abductor pollicis longus abducts thumb at the CMC joint
	Extensor pollicis longus extends distal phalanx of thumb
	Extensor pollicis brevis extends MCP joint of thumb
	Extensor indicis extends index finger
Sensory Branches and Dermatome	Posterior cutaneous nerve of the arm arises in the upper spiral groove and supplies the posterior aspect of arm
	Lower lateral cutaneous nerve of the arm arises in the lower spiral groove and supplies lateral aspect of arm below deltoid mass
	Posterior cutaneous nerve of the forearm arises in the lower spiral groove and supplies posterior of forearm
Disorders	Axilla—crutch palsy
	Upper arm-humerus fracture, tourniquets, injections, muscular exertion
	"Saturday night palsy"
	Supinator syndrome-affects posterior interosseous nerve and causes fingerdrop


RADIAL NERVE continued

Clinical Notes	Wristdrop if the lesion is in the spiral groove Fingerdrop if the lesion affects the posterior interosseous nerve	
Differential Diagnosis	C7 radiculopathy	
	Posterior cord brachial plexopathy	

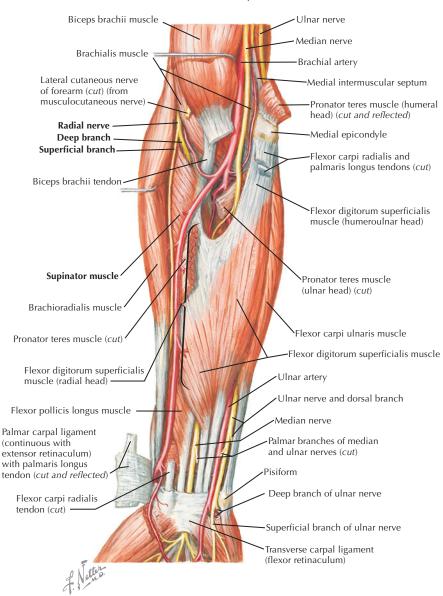
17 Anatomy of the Peripheral Nervous System: Upper Extremity RADIAL NERVE continued


Radial Nerve in Forearm

POSTERIOR INTEROSSEOUS NERVE

Roots	C6-8
Trunk of Brachial Plexus	Upper, middle, lower
Division of Brachial Plexus	Posterior divisions of upper, middle, lower trunk
Cord of Brachial plexus	Posterior
Course in Arm	Dorsolaterally around the neck of radius through supinator Enters supinator through "arcade of Frohse" Runs between superficial and deep parts of supinator Runs between the deep and superficial extensor muscles Terminates at the dorsum of the wrist
Muscles Innervated and Function	Supinator supinates forearm Extensor digitorum extends fingers 2-5 Extensor digiti minimi extends the little finger Extensor carpi ulnaris extends and adducts the hand at the wrist Abductor pollicis longus abducts thumb at the CMC joint Extensor pollicis longus extends the distal phalanx of the thumb Extensor pollicis brevis extends the MCP joint of the thumb Extensor indicis extends the index finger
Sensory Branches and Dermatome	None
Disorders	Radius fracture or dislocation Soft tissue masses Forearm laceration Idiopathic
Clinical Notes	Fingerdrop, no wristdrop Sensation normal
Differential Diagnosis	Extensor tendon rupture to the thumb and fingers (as in rheumatoid arthritis) Tennis elbow

17 Anatomy of the Peripheral Nervous System: Upper Extremity **POSTERIOR INTEROSSEOUS NERVE** *continued*



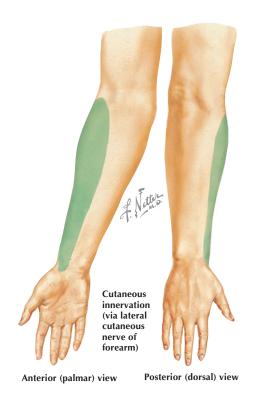
Muscles of Forearm (Deep Layer): Posterior View

Anatomy of the Peripheral Nervous System: Upper Extremity **17** SUPERFICIAL RADIAL NERVE

Root	C6
Trunk of Brachial Plexus	Fibers pass through the upper trunk to reach the posterior division
Division of Brachial Plexus	Posterior
Cord of Brachial Plexus	Derives from the radial nerve, which comes off the posterior cord
Course from Elbow to Hand	Passes over the supinator
	Along the lateral radius in lower 3rd of the forearm
	Over the dorsolateral wrist
Muscles Innervated and Function	None
Sensory Branches and Dermatome	Terminal digital branches
	Dorsolateral hand and fingers 1-3
Disorders	Wrist–compression by handcuffs, tight cast
Clinical Notes	Sensory disturbance in distribution of nerve
	May be associated with causalgia

17 Anatomy of the Peripheral Nervous System: Upper Extremity SUPERFICIAL RADIAL NERVE continued

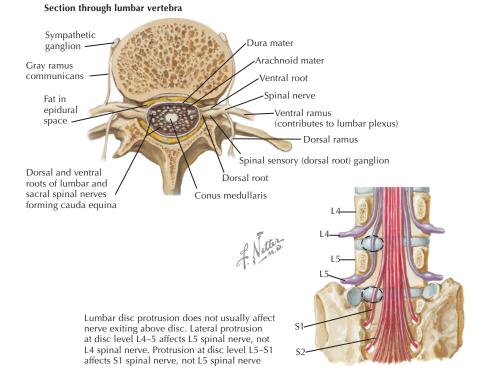
Muscles of Forearm (Intermediate Layer): Anterior View


Roots	C5-6
Trunk of Brachial Plexus	Upper
Division of Brachial Plexus	Anterior division of the upper trunk
Cord of Brachial Plexus	Lateral
Course from Axilla to Hand	Arises from lateral cord brachial plexus
	Pierces coracobrachialis
	Courses down anterior arm between biceps and brachialis
	Crosses anterior elbow lateral to biceps tendon
	Continues as lateral cutaneous nerve of forearm
Muscles Innervated and Function	Biceps brachii supinates forearm and flexes the elbow
	Coracobrachialis flexes the arm
	Brachialis flexes the elbow
Sensory Branches and Dermatome	Lateral cutaneous nerve of forearm
	Lateral forearm from elbow to wrist
Disorders	Shoulder dislocation
	Strenuous exercise
	Following general anesthesia
	Brachial neuritis (Parsonage-Turner syndrome)
Clinical Notes	Weak, wasted biceps with weak elbow flexion
	Numbness over the radial aspect of forearm
Differential Diagnosis	Biceps tendon rupture
	C6 radiculopathy

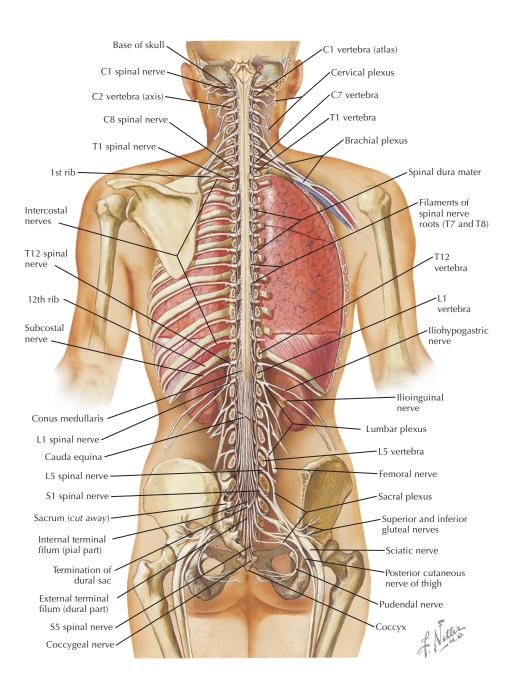
17 Anatomy of the Peripheral Nervous System: Upper Extremity MUSCULOCUTANEOUS NERVE continued

LATERAL CUTANEOUS NERVE OF FOREARM

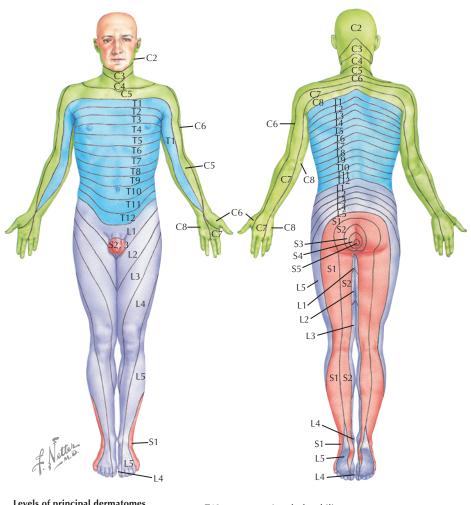
Roots	C5 ventral ramus through the upper trunk, lateral cord
Supplies	Skin over the lateral forearm from elbow to wrist
Course	At the elbow lateral to the biceps tendon, crosses the cephalic vein, continues as the lateral cutaneous nerve of forearm (also called the <i>lateral antebrachial cutaneous nerve of forearm</i>)
Injury	May be injured during venipuncture
	Results in numbness over the radial aspect of the forearm


This page intentionally left blank

CHAPTER 18 Anatomy of the Peripheral Nervous System: Lower Extremity

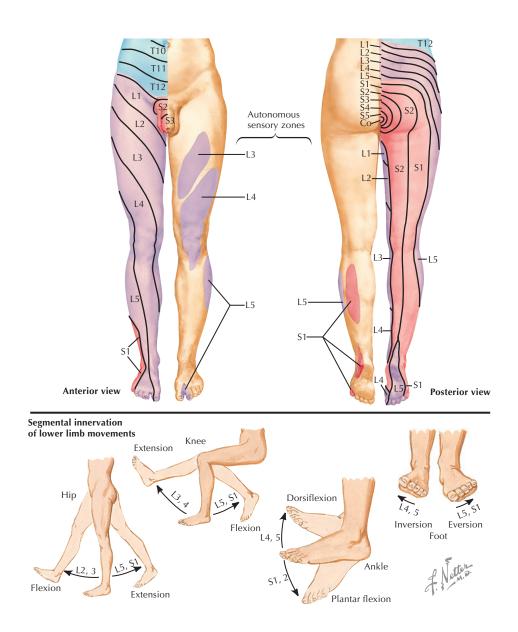

Lumbar and Sacral Root Anatomy	342
Lumbosacral Radiculopathy (Dermatomes and	
Segmental Innervation)	345
Lumbosacral Plexus In Situ	347
Lumbar Plexus	348
Sacral Plexus	350
Obturator Nerve	352
Femoral Nerve	354
Lateral Cutaneous Nerve of the Thigh	356
Sciatic Nerve	358
Common Peroneal Nerve	360
Tibial Nerve	362
Plantar Nerves and Foot Sensory	

LUMBAR AND SACRAL ROOT ANATOMY

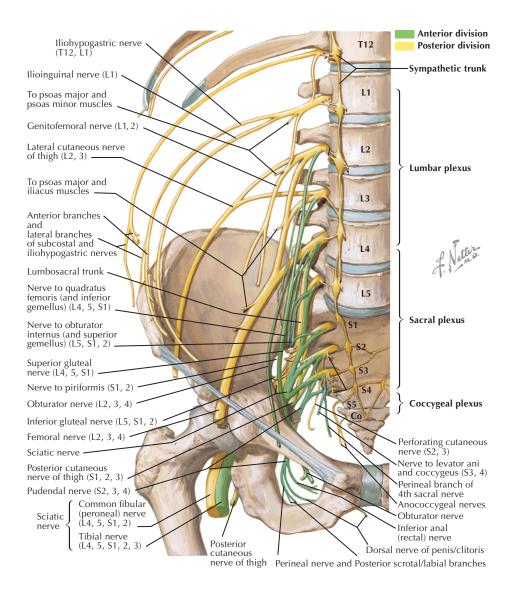

- Lumbar and sacral nerve roots arise from the conus medullaris, then travel downward and laterally to intervertebral foramen from which they exit the spinal canal.
- Lumbar nerve roots fuse in the intervertebral foramen, distal to the dorsal root ganglion, and form spinal nerves.
- Lumbar nerve roots pass below the pedicle of same-numbered vertebra but above the level of the disc to exit the spinal canal (i.e., L4 root exits below L4 pedicle, above the level of the disc). Therefore, a herniated lumbar disc compresses the root which exits at the next lower level (i.e., L4 disc herniation compresses the L5 root).
- · Lumbar spinal nerves divide into dorsal and ventral rami on exiting foramen.
- Ventral rami pass into the lumbar plexus, and dorsal rami supply the skin and paraspinal muscles.
- · Sacral ventral and dorsal roots fuse within the spinal canal to form sacral spinal nerves.
- · Sacral spinal nerves divide within the spinal canal into ventral and dorsal rami.
- Ventral rami exit through the ventral pelvic sacral foramina to join the sacral plexi.
- Dorsal rami exit through the dorsal sacral pelvic foramina to supply the lower paraspinal muscles and skin.

LUMBAR AND SACRAL ROOT ANATOMY continued

18 Anatomy of the Peripheral Nervous System: Lower Extremity **LUMBAR AND SACRAL ROOT ANATOMY** *continued*

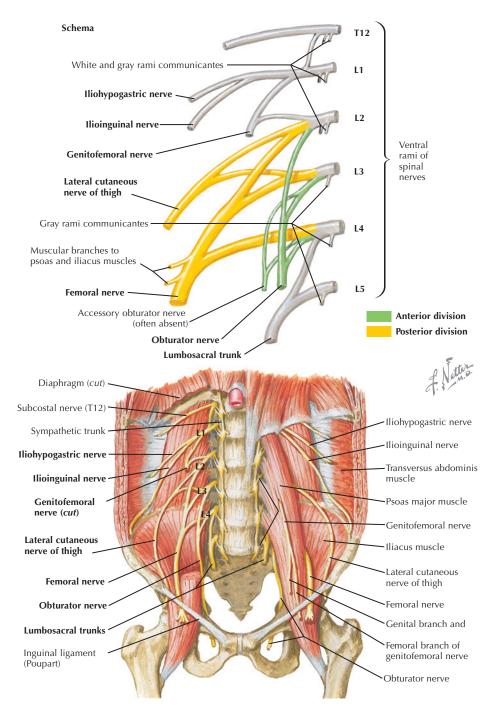


C5 C5, 6, 7 C8, T1 C6 C6, 7, 8 C8	Clavicles Lateral parts of upper limbs Medial sides of upper limbs Thumb Hand Ring and little fingers	T10 T12 L1, 2, 3, 4 L4, 5, S1 L4 S1, 2, L5 S1	Level of umbilicus Inguinal or groin regions Anterior and inner surfaces of lower limbs Foot Medial side of great toe Posterior and outer surfaces of lower limbs Lateral margin of foot and little toe
		, ,	


LUMBOSACRAL RADICULOPATHY (DERMATOMES AND SEGMENTAL INNERVATION)

ROOT	REFLEX LOSS	SENSORY LOSS	MAJOR WEAKNESS	PAIN	MAIN DIFFERENTIAL DIAGNOSES
L2	None	Upper anterior thigh	Hip flexion	Anterior thigh	Femoral neuropathy
L3	Patella	Anterior knee	Hip flexion Knee extension Hip adductors	Anterior knee	Femoral neuropathy Obturator neuropathy
L4	Patella	Medial calf	Knee extension Ankle dorsiflexion	Medial calf	Femoral neuropathy Obturator neuropathy Common peroneal neuropathy
L5	None	Dorsal and medial foot Lateral calf	Ankle inversion, dorsiflexion Large-toe dorsiflexion	Lateral calf, dorsomedial foot, buttocks/posterior thigh	Common peroneal neuropathy
S1	Achilles	Plantar and lateral foot	Ankle plantarflexion Hip extension Knee flexion	Plantar and lateral foot, buttocks/ posterior thigh	Tibial neuropathy

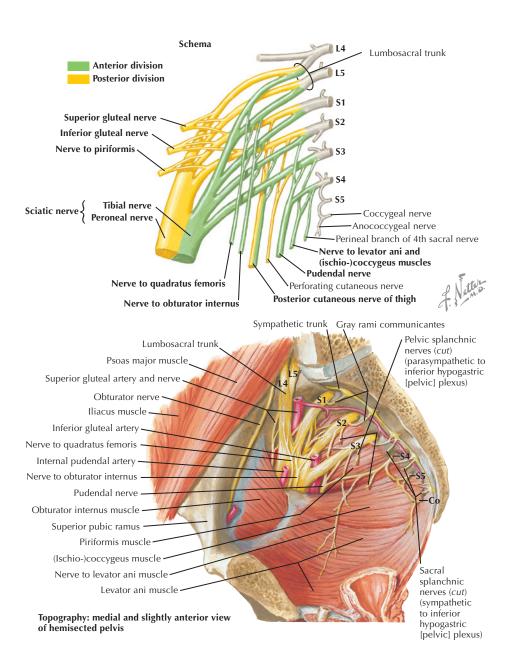
LUMBOSACRAL RADICULOPATHY (DERMATOMES AND SEGMENTAL INNERVATION) continued


LUMBOSACRAL PLEXUS IN SITU

18 Anatomy of the Peripheral Nervous System: Lower Extremity **LUMBAR PLEXUS**

NERVE	ROOT(S)	MUSCLE(S) INNERVATED (ACTION)	SENSORY DISTRIBUTION
lliohypogastric	L1	Transversus abdominus (supports the abdominal wall)	Lateral gluteal Above the pubis
		Internal oblique (supports the abdominal wall)	
Ilioinguinal	L1	None	Superomedial thigh and genitalia
Genitofemoral	L1-L2	Cremaster	Genitalia and skin over the femoral triangle
Lateral cutaneous nerve of the thigh	L2-L3	None	Lateral thigh
Femoral	L2-L4	Psoas, pectineus (hip flexors)	Anteromedial thigh
		Iliacus (hip flexor and internal rotator)	Terminal branch (saphenous) supplies the medial leg
		Quadriceps femoris (knee extensors)	
		Sartorius (hip flexor, abductor and external rotator)	
		Articularis genus (retracts bursa as knee extends)	
Obturator	L2-L4	Adductors longus, brevis and magnus (hip adductors)	Inferomedial thigh
		Gracilis (hip adductor)	
		Obturator externus (hip external rotator)	
		External oblique (supports abdominal wall)	
Accessory obturator (variable)	L2-L4	Psoas (hip flexor)	None
Lumbosacral trunk	L4-L5	Contributes to sacral plexus	

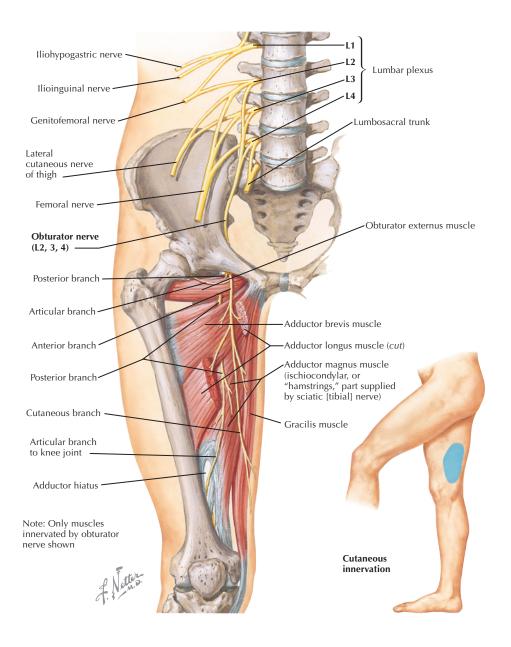
LUMBAR PLEXUS continued



18 Anatomy of the Peripheral Nervous System: Lower Extremity

SACRAL PLEXUS

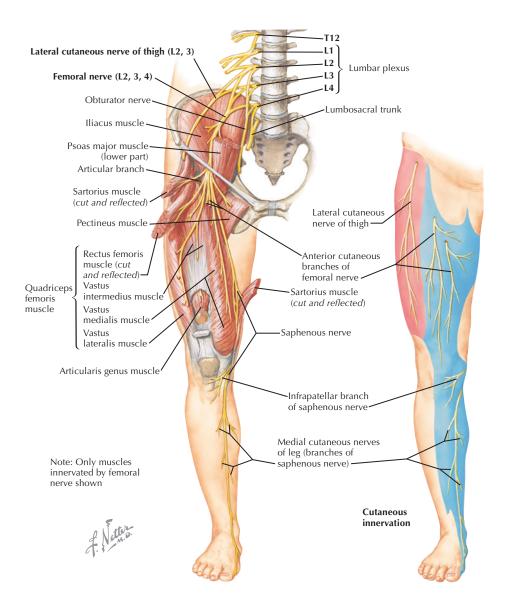
NERVE	ROOT(S)	MUSCLE(S) INNERVATED (ACTION)	SENSORY DISTRIBUTION
Sciatic	L4-S3	Main trunk: hamstrings group (knee flexors) Tibial division (<i>see page 362</i>) Peroneal division (<i>see page 360</i>)	None from the main trunk Tibial and peroneal divisions supply the entire lower leg except the medial portion
Nerve to quadratus femoris	L4-S1	Quadratus femoris (hip external rotator) Inferior gemellus (hip external rotator)	None
Nerve to obturator internus	L5-S2	Obturator internus (hip external rotator) Superior gemellus (hip external rotator)	None
Pudendal	S2-4	 Perineal branch: Bulbospongiosis (controls urination, ejaculation) Ischiocavernosus (controls urination, ejaculation) Urethral sphincter (controls urination, ejaculation) Urogenital diaphragm (supports pelvic floor) 	Perineum
		Inferior rectal branch—external anal sphincter (controls defecation)	Perianal skin Penis/Clitoris
Nerve to coccygeus	S3-S4	penis/clitorisno muscles Coccygeus (supports pelvic floor) Levator ani (supports pelvic floor)	None
Superior gluteal	L4-S1	Gluteus medius (hip abductor) Gluteus minimus (hip abductor) Tensor fascia lata (hip abductor, external rotator)	None
Inferior gluteal	L5-S2	Gluteus maximus (hip extensor)	None
Nerve to piriformis	S2	Piriformis (hip external rotator)	None
Posterior femoral cutaneous	S1-S3	None	Posterior thigh


SACRAL PLEXUS continued

18 Anatomy of the Peripheral Nervous System: Lower ExtremityOBTURATOR NERVE

Roots	L2, L3, L4	
Course	Forms in psoas muscle	
	Descends through psoas	
	Enters thigh by passing through obturator foramen	
Muscles Innervated	Adductor longus (hip adductor)	
	Adductor brevis (hip adductor)	
	Adductor magnus (hip adductor component)	
	Gracilis (hip adductor)	
	Obturator externus (hip external rotator)	
	External oblique (supports abdominal wall)	
Sensory Innervation	Small patch of skin on the inferomedial thigh	
Selected Disorders	Rarely damaged, but damage can be caused by:	
	Pelvic fractures	
	Hip replacement surgery	
	Obturator hernias	
	Pelvic masses	
	Parturition	
Clinical Notes	Hip adduction is weak	
	Patch of parasthesias and/or numbness in medial thigh	
Differential Diagnosis	Lumbar plexus or L3/L4 lesion also involves quadriceps group (<i>knee extension</i>) and patellar reflex	

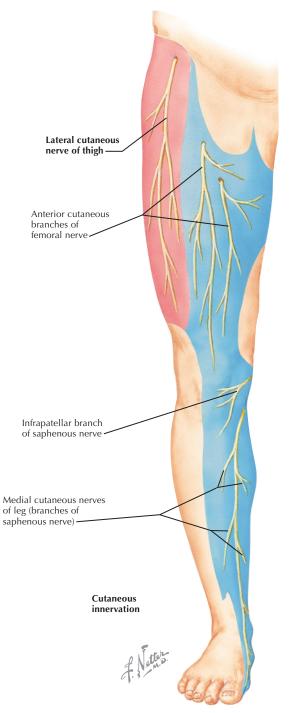
OBTURATOR NERVE continued



18 Anatomy of the Peripheral Nervous System: Lower Extremity

FEMORAL NERVE

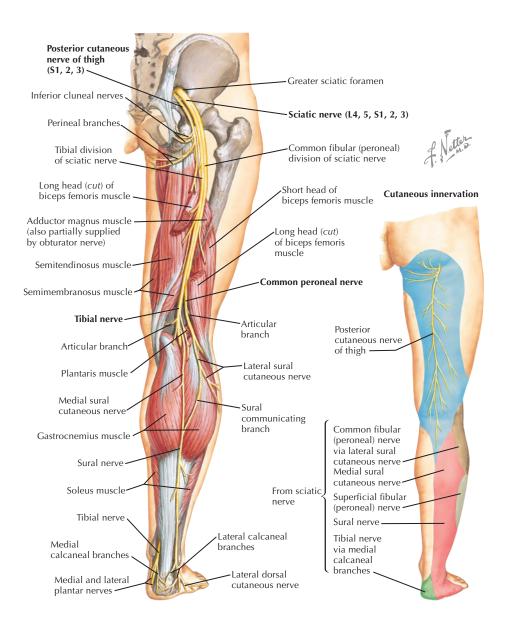
Roots	L2, L3, L4
Course	Forms in psoas muscle
	Descends between psoas and iliacus mucles
	Passes under the inguinal ligament, lateral to the femoral artery and vein
	Branches off to supply individual muscles
	Terminal branch (saphenous nerve) descends within quadriceps in the subsartorial canal emerging above the knee, then descends down the medial leg, crossing the medial malleolus and ending in inner foot
Muscles	Psoas, pectineus (hip flexors)
Innervated	Iliacus (hip flexor and internal rotator)
	Quadriceps group (knee extensors):
	Rectus femoris
	Vastus lateralis
	Vastus intermedius
	Vastus medialis
	 Sartorius (hip flexor, abductor and external rotator)
	Articularis genus (retracts bursa as knee extends)
Sensory Innervation	Anteromedial thigh via anterior cutaneous branches
	Medial knee via infrapatellar branch of saphenous
	Medial leg and medial malleolus via saphenous
Selected Disorders	Can be damaged with:
	 Pelvic, inguinal hernia, and hip surgery
	Femoral artery catheterization
	Childbirth (from the lithotomy position)
	 Hematomas in iliacus muscle
	 Diabetes usually causes lumbar plexopathy, may involve only femoral nerve
	 Saphenous nerve can be damaged at the knee (arthroscopy) and in the leg (varicose vein procedures)
Clinical Notes	Weakness mainly noted in knee extension
	Patellar reflex hypoactive or absent
	Sensory involvement variably present but should involve anteromedial thigh and medial leg
Differential Diagnosis	L3-4 radiculopathy or lumbar plexopathy would involve hip adduction and hip flexion (iliopsoas mainly innervated by upper lumbar plexus branches).


FEMORAL NERVE continued

LATERAL CUTANEOUS NERVE OF THE THIGH

Roots	L2, L3	
Course	Variable course:	
	Emerges lateral to the psoas, crossing the iliacus	
	 Passes under the lateral part of the inguinal ligament 	
	 May cross the anterior superior iliac spine or run in close proximity 	
	Crosses over the upper part of the sartorius muscle	
	 Terminates in the cutaneous branches 	
Muscles Innervated	None (purely sensory nerve)	
Sensory Innervation	Lateral thigh	
Selected Disorders	Can be damaged during surgery of retroperitoneum, iliac fossa, or inguinal region	
	Compression by tight clothing or belts	
	Usually no clear cause found	
Clinical Notes	Syndrome known as meralgia paresthetica	
	Pain and numbness in lateral thigh	
	Usually numbness in smaller area than pain	
	No weakness	
Differential Diagnosis	L2 radiculopathy causes numbness in the lateral and anterior upper thigh	
	L2 radiculopathy may cause weakness of hip flexion	
	Lumbar plexopathy causes more extensive numbness with weakness	
	Femoral neuropathy causes numbness in the anterior thigh and medial leg, knee extension weakness, and depressed patellar reflex	

LATERAL CUTANEOUS NERVE OF THE THIGH continued

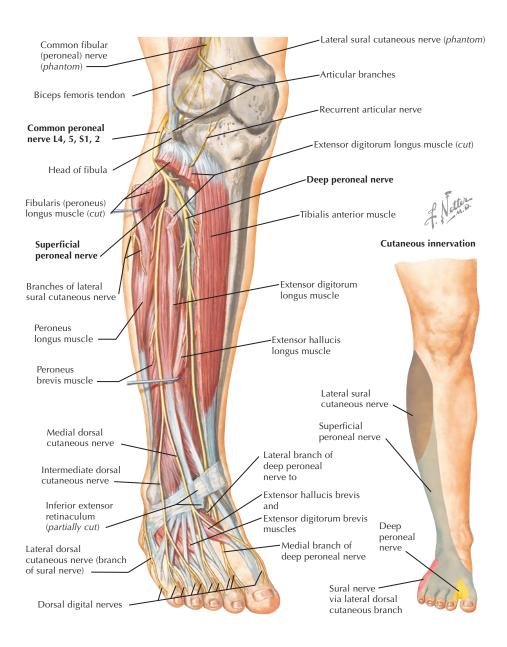


18 Anatomy of the Peripheral Nervous System: Lower Extremity

SCIATIC NERVE

Roots	L4-5 (lumbosacral trunk), S1, S2, S3
Course	Forms from the lumbosacral trunk and upper sacral plexus
	Travels down the inner wall of the pelvis
	Exits the pelvis through greater sciatic foramen
	Passes under the piriformis muscle
	Passes between the ischial tuberosity and greater trochanter of the femur
	Divides just above the popliteal fossa into the common peroneal (lateral trunk) and tibial nerve (medial trunk)
Muscles	Semitendinosus (medial trunk)
Innervated	Semimembranosus (medial trunk)
	Long head of the biceps femoris (medial trunk)
	Short head of the biceps femoris (lateral trunk)
	Adductor magnus (hip extensor component)
	Terminal branches of sciatic (tibial and common peroneal nerves) supply all muscles below the knee
Sensory Innervation	None from the sciatic trunk, although terminal branches (tibial and common peroneal nerves) supply much of the lower leg and foot
Selected	Hip trauma/fractures and hip surgeries
Disorders	Prolonged pressure against the nerve
	Gluteal hematomas
	Needle injury from injections into the buttock
	Thigh hematomas
	Femur fractures
Clinical Notes	Weakness of knee flexion if the lesion is proximal (gluteal region)
	Weakness of any muscles below the knee
	Usually weakness is variable below the knee and involves the common peroneal more than the tibial innervated muscles. Sciatic neuropathy may mimic common peroneal neuropathy
Differential	Difficult to differentiate from lumbosacral plexopathies
Diagnosis	Sacral plexopathies usually involve the pudendal nerve and posterior cutaneous nerve of the thigh
	Lumbosacral radiculopathies usually present with back pain
	Imaging pelvis/thigh with computed tomography (CT)/magnetic resonance imaging (MRI) helps to rule out hematomas
	Electromyography (EMG) is helpful in localization

SCIATIC NERVE continued

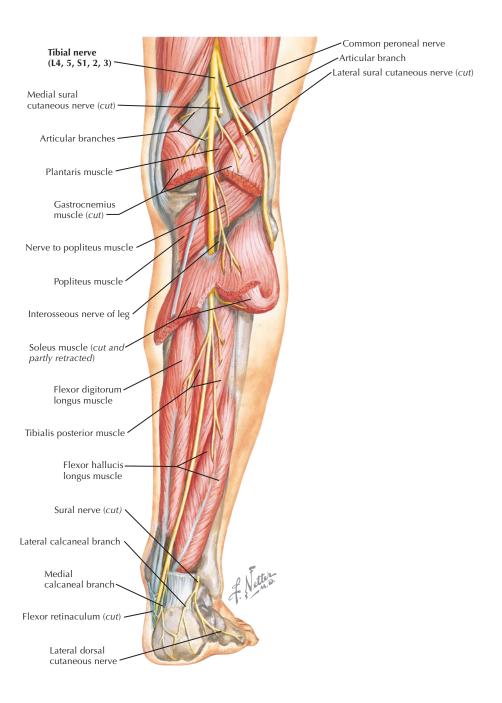


18 Anatomy of the Peripheral Nervous System: Lower Extremity

COMMON PERONEAL NERVE

Roots	L4, L5, S1, S2
Course	Formed from the lateral trunk of the sciatic nerve after its bifurcation in the distal thigh
	Passes anterolaterally around the neck of the fibula, close to the skin
	Pierces the peroneus longus and runs through the fibular tunnel formed by this muscle
	Divides in the upper leg into the superficial and deep peroneal nerves
	Superficial branch runs down the leg with the fibula
	Deep branch runs deeper in the leg between the tibialis anterior and toe extensors
Muscles Innervated	Deep peroneal nerve: • Tibialis anterior (foot dorsiflexion)
	Extensor hallicus longus (first toe dorsiflexion)
	• Extensor digitorum longus (dorsiflexion of last four toes)
	Peroneus tertius (foot dorsiflexion and eversion)
	Extensor hallicus brevis (first toe dorsiflexion)
	Extensor digitorum brevis (dorsiflexion of last 4 toes)
	Superficial peroneal nerve:
	 Peroneus longus (foot eversion)
	Peroneus brevis (foot eversion)
	Peroneus tertius (foot eversion)
Sensory Innervation	Proximal lateral leg via the lateral sural nerve
milervation	Distal lateral leg and dorsal foot via the superficial peroneal nerve
	Dorsal interdigital space between toes 1 and 2 via the deep peroneal nerve
Selected Disorders	Most commonly injured by external compression against the fibular head
Disorders	Frequent causes include:
	Habitual leg crossing
	Anesthesia, coma, positioning during sleep
	Below knee casts
	Prolonged squatting
Clinical Notes	"Footdrop" caused by weak foot dorsiflexion with high-stepping gait
	Weak foot eversion
	Sensory loss in the lateral leg and dorsal foot if complete Isolated lesion of the deep peroneal nerve causes footdrop with numbness
	only in the webspace between first 2 toes
Differential	L5 radiculopathy
Diagnosis	Lumbosacral trunk compression (difficult labor)
	Sciatic neuropathy

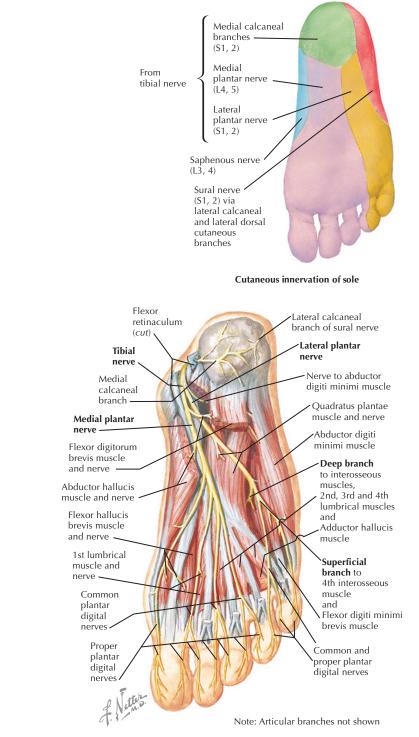
COMMON PERONEAL NERVE continued


18 Anatomy of the Peripheral Nervous System: Lower Extremity

TIBIAL NERVE

Course Formed from the medial trunk of the sciatic nerve after its bifurcation in distal thigh Passes through the popliteal fossa between two heads of gastrocnemius Runs down the leg deep to the soleus Terminates in the tarsal tunnel as medial and lateral plantar nerves Muscles Innervated Soleus (ankle plantarflexor) Gastrocnemius (ankle plantarflexor) Plantaris (ankle plantarflexor) Popliteus (knee flexion) Tibialis posterior (foot inversion) Flexor hallicus longus (plantarflexor of the 1st toe) Flexor digitorum longus (plantarflexion of the lateral 4 toes) Via plantar divisions, supplies all foot muscles in the sole Medial plantar: Abductor hallicus (first toe abductor) Flexor digitorum brevis (flexor of lateral 4 toes) First lumbrical (flexes metatarsophalangeal joint, extends interphalangeal joint) Flexor hallicus brevis (first toe plantarflexor) Lateral plantar: Abductor digiti minimi (abducts 5th toe) Quadratus plantae (flexes metatarsophalangeal joint, extends interphalangeal 2-4 (flexes metatarsophalangeal joint, extends	
Runs down the leg deep to the soleus Terminates in the tarsal tunnel as medial and lateral plantar nervesMuscles InnervatedSoleus (ankle plantarflexor) Gastrocnemius (ankle plantarflexor) Plantaris (ankle plantarflexor) Popliteus (knee flexion) Tibialis posterior (foot inversion) Flexor hallicus longus (plantarflexor of the 1st toe) Flexor digitorum longus (plantarflexor of the lateral 4 toes) Via plantar divisions, supplies all foot muscles in the sole Medial plantar: 	s
Muscles InnervatedSoleus (ankle plantarflexor) Gastrocnemius (ankle plantarflexor) Plantaris (ankle plantarflexor) Popliteus (knee flexion) Tibialis posterior (foot inversion) Flexor hallicus longus (plantarflexor of the 1st toe) Flexor hallicus longus (plantarflexor of the 1st toe) Flexor digitorum longus (plantarflexion of the lateral 4 toes) Via plantar divisions, supplies all foot muscles in the sole Medial plantar: • Abductor hallicus (first toe abductor) • Flexor digitorum brevis (flexor of lateral 4 toes) • First lumbrical (flexes metatarsophalangeal joint, extends interphalangeal joint)• Flexor hallicus brevis (first toe plantarflexor) Lateral plantar: • Abductor digiti minimi (abducts 5th toe) • Quadratus plantae (flexes metatarsophalangeal joint, extends • Lumbricals 2-4 (flexes metatarsophalangeal joint, extends	
Muscles Soleus (ankle plantarflexor) Gastrocnemius (ankle plantarflexor) Plantaris (ankle plantarflexor) Plantaris (ankle plantarflexor) Popliteus (knee flexion) Tibialis posterior (foot inversion) Flexor hallicus longus (plantarflexor of the 1st toe) Flexor digitorum longus (plantarflexor of the 1st toe) Flexor digitorum longus (plantarflexion of the lateral 4 toes) Via plantar divisions, supplies all foot muscles in the sole Medial plantar: Abductor hallicus (first toe abductor) • Flexor digitorum brevis (flexor of lateral 4 toes) • First lumbrical (flexes metatarsophalangeal joint, extends interphalangeal joint) • Flexor hallicus brevis (first toe plantarflexor) Lateral plantar: • Abductor digiti minimi (abducts 5th toe) • Quadratus plantae (flexes toes) • Lumbricals 2-4 (flexes metatarsophalangeal joint, extends	
InnervatedGastrocnemius (ankle plantarflexor) Plantaris (ankle plantarflexor) Popliteus (knee flexion) Tibialis posterior (foot inversion) Flexor hallicus longus (plantarflexor of the 1st toe) Flexor digitorum longus (plantarflexion of the lateral 4 toes) Via plantar divisions, supplies all foot muscles in the sole Medial plantar: 	
Gastrochemius (ankle plantarflexor) Plantaris (ankle plantarflexor) Popliteus (knee flexion) Tibialis posterior (foot inversion) Flexor hallicus longus (plantarflexor of the 1st toe) Flexor digitorum longus (plantarflexion of the lateral 4 toes) Via plantar divisions, supplies all foot muscles in the sole Medial plantar: • Abductor hallicus (<i>first toe abductor</i>) • Flexor digitorum brevis (<i>flexor of lateral 4 toes</i>) • Flexor digitorum brevis (<i>flexor of lateral 4 toes</i>) • First lumbrical (<i>flexes metatarsophalangeal joint, extends interphalangeal joint</i>) • Flexor hallicus brevis (<i>first toe plantarflexor</i>) Lateral plantar: • Abductor digiti minimi (<i>abducts 5th toe</i>) • Quadratus plantae (<i>flexes toes</i>) • Lumbricals 2-4 (<i>flexes metatarsophalangeal joint, extends</i>	
 Popliteus (knee flexion) Tibialis posterior (foot inversion) Flexor hallicus longus (plantarflexor of the 1st toe) Flexor digitorum longus (plantarflexion of the lateral 4 toes) Via plantar divisions, supplies all foot muscles in the sole Medial plantar: Abductor hallicus (<i>first toe abductor</i>) Flexor digitorum brevis (<i>flexor of lateral 4 toes</i>) First lumbrical (<i>flexes metatarsophalangeal joint, extends interphalangeal joint</i>) Flexor hallicus brevis (<i>first toe plantarflexor</i>) Lateral plantar: Abductor digiti minimi (<i>abducts 5th toe</i>) Quadratus plantae (<i>flexes metatarsophalangeal joint, extends</i> 	
 Tibialis posterior (foot inversion) Flexor hallicus longus (plantarflexor of the 1st toe) Flexor digitorum longus (plantarflexion of the lateral 4 toes) Via plantar divisions, supplies all foot muscles in the sole Medial plantar: Abductor hallicus (<i>first toe abductor</i>) Flexor digitorum brevis (<i>flexor of lateral 4 toes</i>) First lumbrical (<i>flexes metatarsophalangeal joint, extends interphalangeal joint</i>) Flexor hallicus brevis (<i>first toe plantarflexor</i>) Lateral plantar: Abductor digiti minimi (<i>abducts 5th toe</i>) Quadratus plantae (<i>flexes metatarsophalangeal joint, extends</i> 	
 Flexor hallicus longus (plantarflexor of the 1st toe) Flexor digitorum longus (plantarflexion of the lateral 4 toes) Via plantar divisions, supplies all foot muscles in the sole Medial plantar: Abductor hallicus (<i>first toe abductor</i>) Flexor digitorum brevis (<i>flexor of lateral 4 toes</i>) First lumbrical (<i>flexes metatarsophalangeal joint, extends interphalangeal joint</i>) Flexor hallicus brevis (<i>first toe plantarflexor</i>) Lateral plantar: Abductor digiti minimi (<i>abducts 5th toe</i>) Quadratus plantae (<i>flexes metatarsophalangeal joint, extends</i>) 	
 Flexor digitorum longus (plantarflexion of the lateral 4 toes) Via plantar divisions, supplies all foot muscles in the sole Medial plantar: Abductor hallicus (first toe abductor) Flexor digitorum brevis (flexor of lateral 4 toes) First lumbrical (flexes metatarsophalangeal joint, extends interphalangeal joint) Flexor hallicus brevis (first toe plantarflexor) Lateral plantar: Abductor digiti minimi (abducts 5th toe) Quadratus plantae (flexes metatarsophalangeal joint, extends 	
 Via plantar divisions, supplies all foot muscles in the sole Medial plantar: Abductor hallicus (<i>first toe abductor</i>) Flexor digitorum brevis (<i>flexor of lateral 4 toes</i>) First lumbrical (<i>flexes metatarsophalangeal joint, extends interphalangeal joint</i>) Flexor hallicus brevis (<i>first toe plantarflexor</i>) Lateral plantar: Abductor digiti minimi (<i>abducts 5th toe</i>) Quadratus plantae (<i>flexes metatarsophalangeal joint, extends</i>) Lumbricals 2-4 (<i>flexes metatarsophalangeal joint, extends</i>) 	
 Medial plantar: Abductor hallicus (first toe abductor) Flexor digitorum brevis (flexor of lateral 4 toes) First lumbrical (flexes metatarsophalangeal joint, extends interphalangeal joint) Flexor hallicus brevis (first toe plantarflexor) Lateral plantar: Abductor digiti minimi (abducts 5th toe) Quadratus plantae (flexes toes) Lumbricals 2-4 (flexes metatarsophalangeal joint, extends 	
 Abductor hallicus (first toe abductor) Flexor digitorum brevis (flexor of lateral 4 toes) First lumbrical (flexes metatarsophalangeal joint, extends interphalangeal joint) Flexor hallicus brevis (first toe plantarflexor) Lateral plantar: Abductor digiti minimi (abducts 5th toe) Quadratus plantae (flexes toes) Lumbricals 2-4 (flexes metatarsophalangeal joint, extends 	
 Flexor digitorum brevis (flexor of lateral 4 toes) First lumbrical (flexes metatarsophalangeal joint, extends interphalangeal joint) Flexor hallicus brevis (first toe plantarflexor) Lateral plantar: Abductor digiti minimi (abducts 5th toe) Quadratus plantae (flexes toes) Lumbricals 2-4 (flexes metatarsophalangeal joint, extends 	
 First lumbrical (flexes metatarsophalangeal joint, extends interphalangeal joint) Flexor hallicus brevis (first toe plantarflexor) Lateral plantar: Abductor digiti minimi (abducts 5th toe) Quadratus plantae (flexes toes) Lumbricals 2-4 (flexes metatarsophalangeal joint, extends 	
interphalangeal joint) • Flexor hallicus brevis (first toe plantarflexor) Lateral plantar: • Abductor digiti minimi (abducts 5th toe) • Quadratus plantae (flexes toes) • Lumbricals 2-4 (flexes metatarsophalangeal joint, extends	
Lateral plantar: • Abductor digiti minimi (<i>abducts 5th toe</i>) • Quadratus plantae (<i>flexes toes</i>) • Lumbricals 2-4 (<i>flexes metatarsophalangeal joint, extends</i>	
 Abductor digiti minimi (<i>abducts 5th toe</i>) Quadratus plantae (<i>flexes toes</i>) Lumbricals 2-4 (<i>flexes metatarsophalangeal joint, extends</i>) 	
 Quadratus plantae (flexes toes) Lumbricals 2-4 (flexes metatarsophalangeal joint, extends) 	
Lumbricals 2-4 (flexes metatarsophalangeal joint, extends	
interphalangeal joint)	
Abductor hallicus (abuducts 1st toe)	
Flexor digiti minimi brevis (flexes 5th toe)	
Dorsal interossei (abduct toes)	
Plantar interossei (adduct toes)	
Sensory Posterolateral calf via medial sural and sural nerves	
Innervation Most of sole via calcaneal and plantar branches	
Selected Compression by Baker's cysts of knee	
Disorders Distal tibial nerve can be damaged by foot and ankle trauma	
Tarsal tunnel syndrome	
Clinical Notes Weakness of plantarflexion, foot inversion, toe flexion	
Hypoactive or absent Achilles tendon reflex	
Numbness/tingling in distribution of sural, calcaneal, or plantar nerves	
Differential S1 or S2 radiculopathy	
Diagnosis May be difficult to differentiate from partial sciatic neuropathy	

Anatomy of the Peripheral Nervous System: Lower Extremity 18


TIBIAL NERVE continued

PLANTAR NERVES AND FOOT SENSORY

Roots	L4, L5, S1, S2		
Course	Two plantar nerves (medial and lateral) form from bifurcation of tibial nerve in tarsal tunnel medial to Achilles tendon		
	Traverse sole of foot and end as interdigital branches		
Muscles Innervated	Medial plantar nerve:		
	Abductor hallicus (1st-toe abductor)		
	 Flexor digitorum brevis (flexor of lateral 4 toes) 		
	 First lumbrical (flexes metatarsophalangeal joint, extends interphalangeal joint) 		
	 Flexor hallicus brevis (1st-toe plantarflexor) 		
	Lateral plantar nerve:		
	 Abductor digiti minimi (abducts 5th toe) 		
	Quadratus plantae (flexes toes)		
	 Lumbricals 2-4 (flexes metatarsophalangeal joint, extends interphalangeal joint) 		
	Abductor hallicus (abuducts first toe)		
	 Flexor digiti minimi brevis (flexes 5th toe) 		
	Dorsal interossei (abduct toes)		
	Plantar interossei (adduct toes)		
Sensory Innervation	Most of the anterior $\frac{2}{3}$ of the sole of the foot		
	Calcaneal nerve supplies posterior $\frac{1}{3}$		
Selected Disorders	Nerves can be damaged within tarsal tunnel by:		
	• External compression by hard casts or tight shoes		
	Ankle trauma		
	Endocrinopathies (hypothyroidism, acromegaly)		
Clinical Features	Tarsal tunnel syndrome: foot pain, paresthesias, sensory loss in distribution of one or both plantar nerves		
	Weakness difficult to detect as short-toe flexors less clinically important than long-toe flexors		

PLANTAR NERVES AND FOOT SENSORY continued

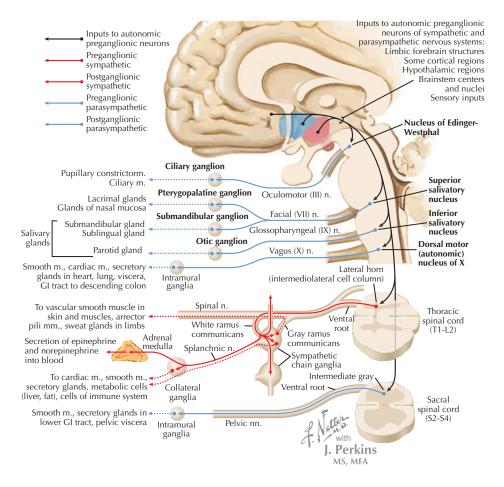
This page intentionally left blank

CHAPTER 19 Autonomic Nervous System


Autonomic Nervous System Schema	368
Parasympathetic Autonomic Cranial Nuclei: Overview	370
Autonomic Distribution to the Eye	371
Pterygopalatine and Submandibular Ganglia	373
Parotid Gland Innervation	374
Dorsal Motor Nucleus of CN-X	375
Parasympathetic Autonomic Sacral Nuclei	376
Sympathetic System	377
Sympathetic Innervation of Thoraco-abdominal-pelvic Viscera	379
Abdominal Sympathetic Autonomic Nerves and Ganglia	381
Autonomic Nerves in Head and Neck	383
Schematic of Autonomic Nerves in Head and Neck	384
Autonomic Innervation of Limbs	385
Autonomic Innervation of Stomach	386
Autonomic Innervation of Intestines	387
Autonomic Innervation of Urinary Bladder	389
Autonomic Innervation of Male Reproductive Organs	390
Autonomic Innervation of Female Reproductive Organs	391

AUTONOMIC NERVOUS SYSTEM SCHEMA

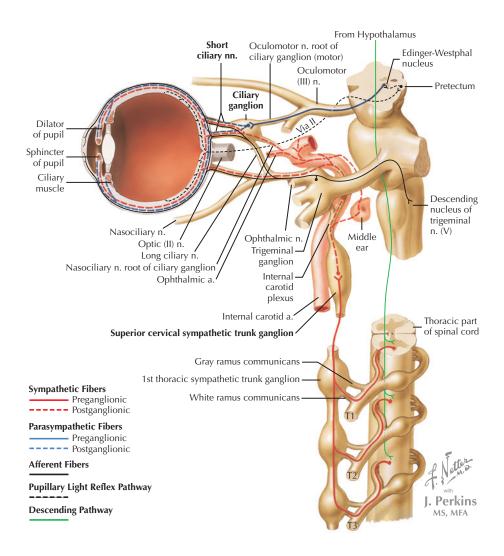
STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Peripheral autonomic nervous system	2-Neuron chain:PreganglionicPostganglionic	Responsible for visceral or vegetative functions
Preganglionic parasympathetic neurons	Arise in the brainstem (cranial nerve (CN)-III, -VII, -IX, -X) and spinal cord S2-4 (craniosacral)	Largest source of preganglionic parasympathetic fibers is the vagus nerve (CN-X)
Preganglionic sympathetic neurons	Arise in spinal cord T1-L2 Exiting fibers enter the sympathetic chain and terminate on the paravertebral and prevertebral ganglia	Cell bodies located in intermediolateral cell column give cord characteristic appearance in cross section
Postganglionic parasympathetic neurons	Cell body lies in intramural ganglion near the organ innervated	Neurotransmitter: acetylcholine
Postganglionic sympathetic neurons	Cell body lies in the sympathetic (paravertebral) chain and collateral (prevertebral) ganglia	Neurotransmitter: norepinephrine, except acetylcholine at the sweat glands


The neurotransmitter for all preganglionic autonomic fibers is acetylcholine.

AUTONOMIC NERVOUS SYSTEM SCHEMA continued

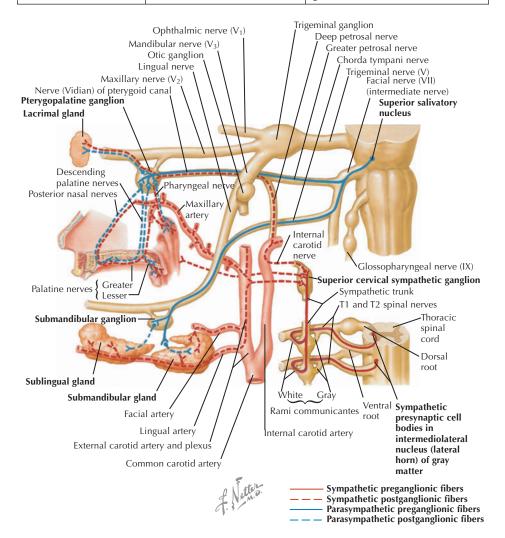
PARASYMPATHETIC AUTONOMIC CRANIAL NUCLEI: OVERVIEW

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Nucleus of Edinger-Westphal	Preganglionic parasympathetic nucleus; fibers synapse in ciliary ganglion	Innervate ciliary muscle (accommodation) and iris sphincter (pupillary constriction)
Superior salivatory nucleus	Fibers exit with CN-VII, synapse on pterygopalatine and submandibular ganglia	Secretomotor innervation to lacrimal and nasal mucosal glands
Inferior salivatory nucleus	Exits with CN-IX, synapses on otic ganglion	Secretomotor innervation to parotid gland
Dorsal motor nucleus of CN-X	Fibers synapse on the terminal ganglia in thoracic and abdominal viscera	Innervates thoracic and abdominal viscera

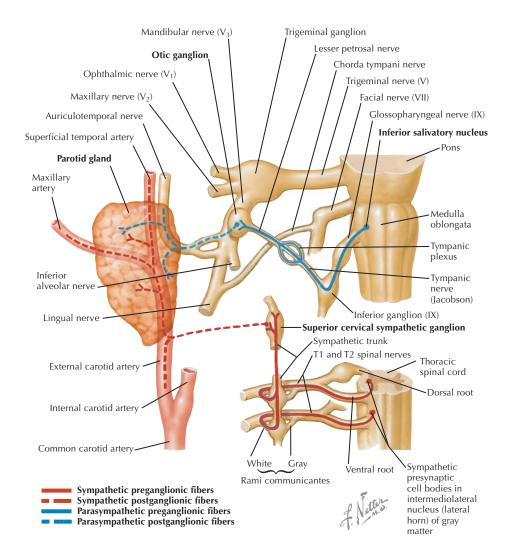


AUTONOMIC DISTRIBUTION TO THE EYE

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Ciliary ganglion (parasympathetic)	Sends short ciliary nerves to the ciliary body and the iris of the eye	Accommodation for near vision Constriction of pupil
Superior cervical ganglion (sympathetic)	Innervated by preganglionic sympathetic fibers from T1-2 intermediolateral cell column (ciliospinal center of Budge) Postganglionic fibers follow the internal carotid artery to the eye, and external carotid artery to sweat glands of face	Dilates pupil Innervates Muller's muscle in upper and lower eyelid Sweating on ipsilateral face


- Pupillary light reflex: light shined into one eye activates CN-II. CN-II fibers synapse in the superior colliculus, thence to the nucleus of Edinger-Westphal bilaterally via the posterior commissure. Efferent limb travels through CN-III bilaterally to constrict pupils.
- Horner's syndrome: ptosis, miosis, and anhydrosis resulting from interruption of sympathetic pupillomotor pathway. Anhydrosis occurs only with lesions proximal to the carotid artery bifurcation because the external carotid carries the sudomotor axons.

AUTONOMIC DISTRIBUTION TO THE EYE continued

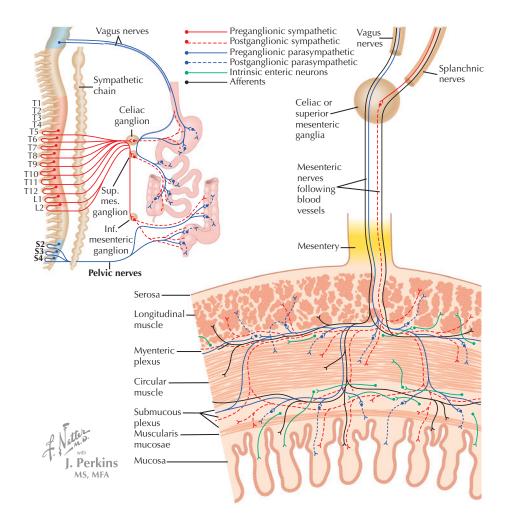

PTERYGOPALATINE AND SUBMANDIBULAR GANGLIA

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Pterygopalatine ganglion (parasympathetic)	Supplied by the superior salivatory nucleus	Lacrimal and nasal mucosal gland secretion
Submandibular ganglion (parasympathetic)	Supplied by the superior salivatory nucleus	Sublingual and submandibular gland secretion
Superior cervical ganglion (sympathetic)	Innervated by preganglionic sympathetic fibers from T1-2 intermediolateral cell column	Innervates blood vessels in, and causes low level secretion of, lacrimal and nasal mucosal glands, sublingual and submandibular glands

PAROTID GLAND INNERVATION

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Otic ganglion (parasympathetic)	Supplied by inferior salivatory nucleus	Parasympathetic secretomotor innervation to parotid gland
Superior cervical ganglion (sympathetic)	Innervated by preganglionic sympathetic fibers from T1-2 intermediolateral cell column	Sympathetic innervation to blood vessels in, and low level secretion of, the parotid gland
	Third-order neuron ascends external carotid artery to parotid	

DORSAL MOTOR NUCLEUS OF CN-X


STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Dorsal motor nucleus of CN-X (parasympathetic)	Fibers synapse on the terminal ganglia in thoracic and abdominal viscera	Parasympathetic innervation to the thoracic and abdominal viscera
Lungs and bronchi	Postganglionic cell bodies in the pulmonary plexus ganglia	Constriction of air passages
Heart	Postganglionic cell bodies in the intracardiac atrial ganglia	Decreased pulse and myocardial activity
Esophagus	Postganglionic cell bodies in the myenteric plexus	Increased peristalsis and motility
Stomach to transverse colon	Postganglionic cell bodies in the myenteric plexus	Increased peristalsis and motility

Glossopharyngeal (IX) n. Dorsal (motor) nucleus of X Meningeal branch of vagus n. Auricular branch of vagus n.. Solitary tract nucleus Auditory (Eustachian) tube Levator veli palatini m. Nucleus ambiguus (voluntary motor) Vagus nerve (X) Jugular foramen Superior constrictor Superior ganglion of vagus n. m. of pharynx · Inferior ganglion of vagus n. Stylopharyngeus m. Pharyngeal branch of vagus n. Inferior constrictor m. of pharynx -Cricothyroid m. Pharyngeal plexus Trachea -Superior laryngeal n. Esophagus ' Right recurrent laryngeal n. Superior cervical cardiac branch of vagus n. Heart -Thoracic cardiac branch of vagus n. Hepatic branch of anterior Left recurrent laryngeal n. vagal trunk (in lesser omentum) Pulmonary plexus Celiac branches (from anterior and posterior vagal trunks Cardiac plexus to celiac plexus). Esophageal plexus Anterior vagal trunk Pyloric branch from hepatic plexus. Gastric branches of anterior vagal trunk Vagal branches Efferent fibers Afferent fibers ··· Parasympathetic fibers

19 Autonomic Nervous System

PARASYMPATHETIC AUTONOMIC SACRAL NUCLEI

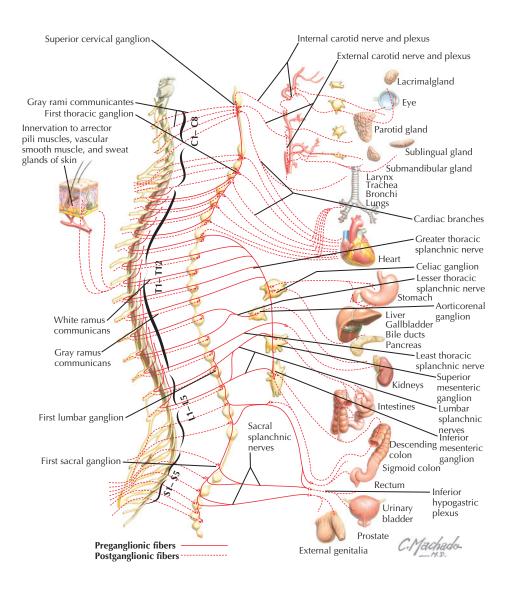
STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Autonomic nuclei of intermediate gray in S2-4 spinal cord segments (parasympathetic)	 Fibers synapse in: Hemorrhoidal and myenteric ganglia Ganglia along aorta and internal iliac arteries Ganglia along vesical branches of internal iliac artery 	Innervates: • Descending colon and rectum (peristalsis) • Sex organs (erection) • Urinary bladder (sphincter relaxation and bladder wall contraction)



SYMPATHETIC SYSTEM

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Sympathetic trunks (paravertebral ganglia)	2 symmetrical, ganglionated cords along the anterolateral vertebral column, running from the base of the skull to the coccyx	Second-order neuron runs from the intermediolateral cell column (ILCC) to sympathetic prevertebral or paravertebral ganglia
Prevertebral ganglia	Irregular ganglionic masses surrounding visceral branches of aorta	Third-order neuron runs from paravertebral and prevertebral ganglia to end organ
White ramus communicans	Myelinated, 2nd-order, preganglionic fibers from the ILCC enter sympathetic trunk to terminate on the paravertebral or prevertebral ganglia	Limited to T1-L2
Gray ramus communicans	Every spinal nerve receives 1 from the sympathetic trunk	Unmyelinated, 3rd-order, postganglionic fibers. Innervate blood vessels, arrector pili muscles, and glands of body wall

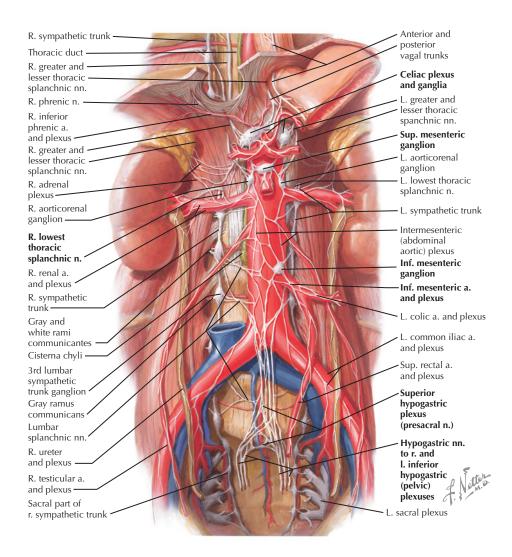
First-order neuron begins in the posterolateral hypothalamus, descends the reticular formation dorsolateral to the red nuclei, through the lateral pons and medulla and synapses on intermediolateral cell column (ILCC) from T1-L2.


SYMPATHETIC SYSTEM continued

SYMPATHETIC INNERVATION OF THORACO-ABDOMINAL-PELVIC VISCERA

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
C8-T2 (3) intermediolateral cell column	Superior cervical sympathetic ganglia	Iris: pupillary dilation
T1-2 intermediolateral cell column	Superior and middle cervical sympathetic ganglia	Lacrimal gland: vasomotor to blood vessels and low level glandular secretion
T1-3 (4) intermediolateral cell column	Superior and middle cervical sympathetic ganglia	Submandibular and sublingual gland: vasomotor to blood vessels, and low level glandular secretion
T1-3 (4) intermediolateral cell column	Superior and middle cervical sympathetic ganglia	Parotid gland: vasomotor to blood vessels, and low level glandular secretion
T1-3 intermediolateral cell column	3 cervical sympathetic ganglia	Sweat glands in head and neck: secretion
T1-5 intermediolateral cell column	Inferior cervical and thoracic T1-5 sympathetic ganglia	Lungs and bronchi: dilation
T1-5 (6,7) intermediolateral cell column	3 cervical and thoracic T1-6 sympathetic ganglia	Cardiac: increased pulse rate and myocardial activity
T1-6 intermediolateral cell column	Thoracic T(1-3) 4-6 sympathetic ganglia	Esophagus: decreased motility
T5-T11 intermediolateral cell column	Celiac and superior mesenteric plexus	Stomach to transverse colon: decreased motility
T12-L3 intermediolateral cell column	Lumbar and inferior mesenteric plexus	Descending colon and rectum: decreased motility
T10-L2 intermediolateral cell column	Lumbar, sacral, and inferior mesenteric plexus	Sex organs: ejaculation
T12-L2 intermediolateral cell column	Lumbar and inferior mesenteric plexus	Urinary bladder: sphincter contraction and bladder wall relaxation
L1-2 intermediolateral cell column	Lumbar and sacral sympathetic ganglia	Sweat glands: secretion Leg blood vessels: arteriolar constriction (generally)

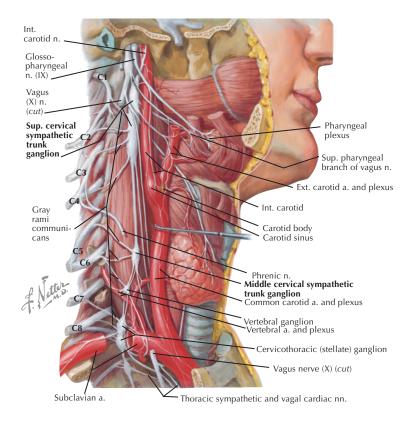
SYMPATHETIC INNERVATION OF THORACO-ABDOMINAL-PELVIC VISCERA continued

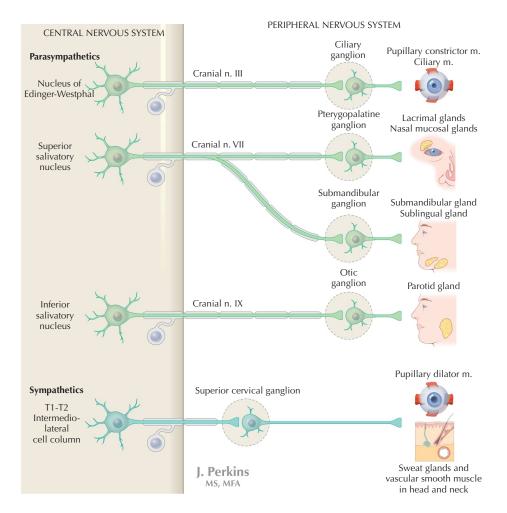


ABDOMINAL SYMPATHETIC AUTONOMIC NERVES AND GANGLIA

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Greater splanchnic nerve	Arises from T5-9 Correspond to the white ramus communicans	Preganglionic fibers that innervate the celiac plexus
Lesser splanchnic nerve	Arises from T10-11 Correspond to white ramus communicans	Preganglionic fibers that innervate the celiac plexus
Celiac plexus	Surrounds celiac and superior mesenteric arteries	Largest autonomic plexus Contains celiac and superior mesenteric ganglia
Hypogastric plexus	Unpaired	Innervates pelvic viscera

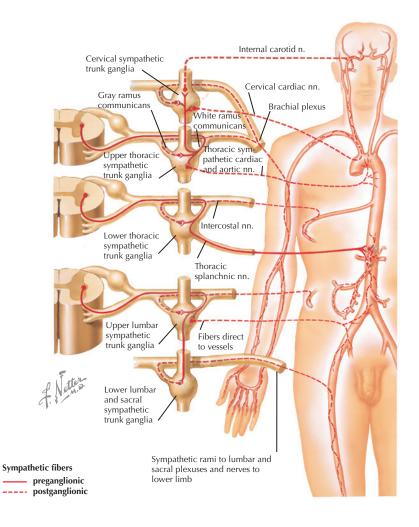
White ramus communicans: Preganglionic sympathetic fibers that arise from the intermediolateral cell column T1-L2, leave the spinal cord via ventral roots of T1-L2, then leave the spinal nerve as the white ramus communicans, enter the sympathetic trunk, and terminate on cells in the prevertebral and paravertebral ganglia.


ABDOMINAL SYMPATHETIC AUTONOMIC NERVES AND GANGLIA continued


AUTONOMIC NERVES IN HEAD AND NECK

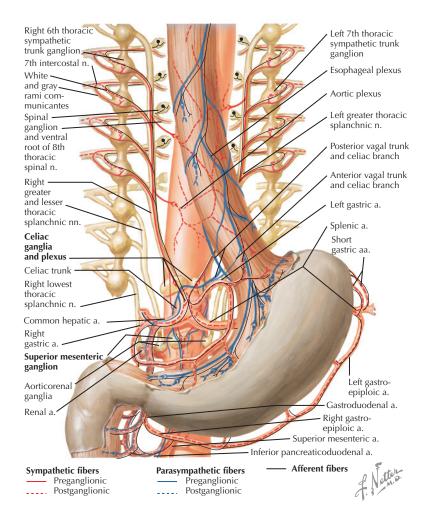
STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Superior cervical ganglion	Largest of paravertebral ganglia	Gives rise to 3rd-order fibers to lower 4 cranial and upper 4 cervical nerves, pharynx, external and internal carotid arteries
Middle cervical ganglion	Lies near C6 vertebra	Often absent
Inferior cervical ganglion	Lies near the lower border of C7 vertebra. Often fuses with 1st thoracic ganglion to form the stellate ganglion	Furnishes gray rami communicantes to C7-T1

Gray ramus communicans: Each spinal nerve receives a gray ramus communicans from the sympathetic trunk that consists of unmyelinated postganglionic fibers that innervate blood vessels, glands, and arrector pili muscles.


SCHEMATIC OF AUTONOMIC NERVES IN HEAD AND NECK

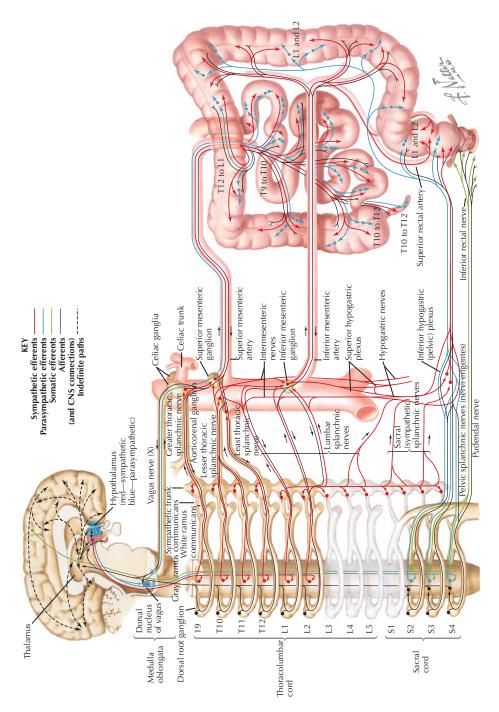
AUTONOMIC INNERVATION OF LIMBS

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
T1-L2 intermediolateral cell column	Sends preganglionic fibers to sympathetic chain ganglia, which send postganglionic fibers into the peripheral nerves	Vascular smooth muscle: constriction Sweat glands: secretion Arrector pili: pilomotor contraction, goosebumps, or raise hair

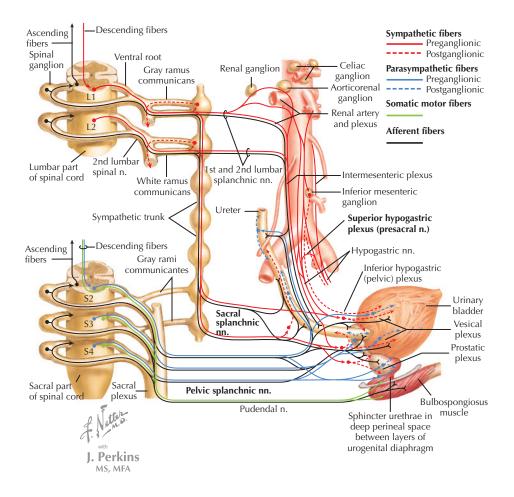

Autonomic innervation of the limbs derives only from the sympathetic nervous system.

19 Autonomic Nervous System

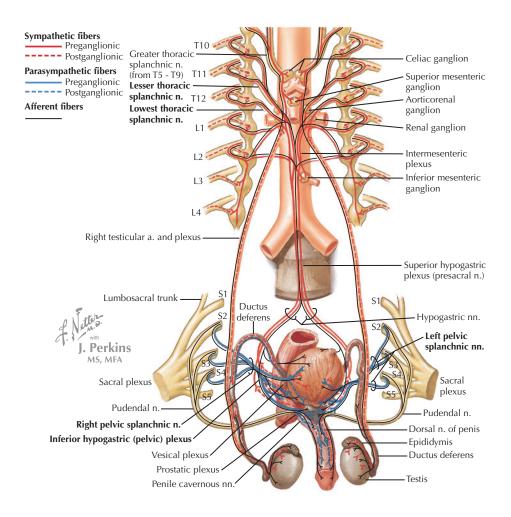
AUTONOMIC INNERVATION OF STOMACH


STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
Celiac and superior mesenteric ganglia (sympathetic)	Greater and lesser thoracic splanchnic nerves provide preganglionic input to ganglia	Decreases peristalsis and secretomotor (e.g., gastrin, HCl) activity
Celiac branches of vagus (parasympathetic)	Supply stomach and proximal duodenum	Increases peristalsis and secretomotor activity and relaxes associated sphincters

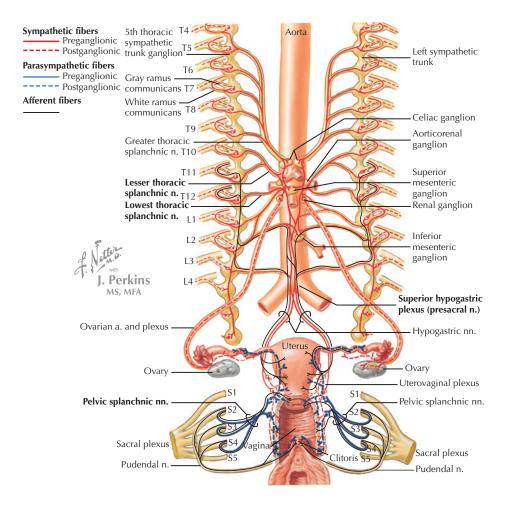
AUTONOMIC INNERVATION OF INTESTINES


STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
T5-11 intermediolateral cell column (sympathetic)	Distributes to the superior and inferior mesenteric and celiac ganglia	Decreases peristalsis and secretomotor (fluid secretion) activity
Vagus nerve, S2-4 intermediate gray (parasympathetic)	Distributes to the intramural ganglia	Increases peristalsis and secretomotor activity and relaxes involuntary sphincters

AUTONOMIC INNERVATION OF INTESTINES continued


AUTONOMIC INNERVATION OF URINARY BLADDER

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
L1-2 intermediolateral cell column (sympathetic)	Through sacral splanchnic nerves to hypogastric plexus	Relax detrusor and contract trigone and internal sphincter
S2-4 intermediate gray (parasympathetic)	Through pelvic splanchnic nerves to intramural ganglia of bladder wall	Contract detrusor and relax trigone and internal sphincter to empty bladder


AUTONOMIC INNERVATION OF MALE REPRODUCTIVE ORGANS

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
T10-L2 intermediolateral cell column (sympathetic)	Via thoracic and upper lumbar splanchnic nerves to superior hypogastric plexus	Contraction of vas deferens and prostate capsule and contraction of the bladder sphincter to prevent retrograde ejaculation
S2-4 intermediate gray (parasympathetic)	Via pelvic splanchnic nerves to inferior hypogastric plexus	Vascular dilation to initiate and maintain erection

AUTONOMIC INNERVATION OF FEMALE REPRODUCTIVE ORGANS

STRUCTURE	ANATOMIC NOTES	FUNCTIONAL SIGNIFICANCE
T10-L2 intermediolateral cell column (sympathetic)	Via the thoracic and upper lumbar splanchnic nerves to the superior hypogastric plexus	Contraction of the uterus. Also supplies vaginal arteries, vestibular glands, and erectile tissue
S2-4 intermediate gray (parasympathetic)	Via pelvic splanchnic nerves to the inferior hypogastric plexus	Muscular and mucous coat of the vagina and urethra; stimulates erectile tissue of the vestibular bulb and clitoris and supplies vestibular glands

A

ACA. See Anterior cerebral arteries ACTH. See Adrenocorticotropic hormone Adenohypophysis, 183 Adrenocorticotropic hormone (ACTH), 198-199 AICA. See Anterior inferior arteries Amygdala, 139, 203-204, 208-210 Anterior cerebral arteries (ACA), 57-58, 61, 62 branches/functional significance of, 64, 65 Anterior inferior arteries (AICA), 59-60, 66 Anterior vagal trunk, 375 Aorta, branches of anatomic notes/arteries/ order/functional significance of, 52 brachiocephalic trunk artery within, 52 left common carotid artery within, 52 left subclavian artery within, 52 Aponeurosis, bicipital, 321 Area postrema, 298 Arms, 310, 313, 338-339 Artery(ies), 324. See also Veins of Adamkiewicz, 73 anterior cerebral, 57-58, 61, 62 branches/functional significance of. 64, 65 anterior choroidal, 57-58 basilar, 59-60 brachiocephalic trunk, 52 cerebellar anterior inferior, 59-60, 66 superior, 59-60, 66 cerebral, 80-81 communicating anterior, 57-58 posterior, 57-58 external carotid, 53-58 hypophyseal inferior, 52-53 superior, 57-58 internal carotid, 53-58 lateral/medial lenticulostriate, 62 left common carotid, 52 left subclavian, 52 meningeal, 55-56

Artery(ies) (Continued) middle cerebral, 57-58, 61, 62 functional significance of, 65 inferior, 63 superior, 63 occipital, 308 ophthalmic, 57–58 posterior cerebral, 52-53, 57-58 branches/functional significance of, 64, 65 posterior communicating, 57-58 posterior inferior, 59-60, 66 radicular, 75 recurrent (of Heubner), 62 spinal anterior, 74 posterior, 74 subclavian left, 315 right, 315 suprascapular, 319 vertebral, 53-56, 59-60 intracranial occlusion of, 104 Atlantoaxial joint, 18 Autonomic nervous system abdominal sympathetic autonomic nerves/ ganglia and, 381-382 autonomic innervation of female/male reproductive organs, 390-391 of intestines, 387-388 of limbs, 385 of stomach, 386 of urinary bladder, 389 autonomic nerves, in head/neck, 383-384 distribution to eye and, 371-372 dorsal motor nucleus and, 375 parasympathetic autonomic cranial nuclei and, 370 parasympathetic autonomic sacral nuclei and, 376 parotid gland innervation and, 374 pterygopalatine/ submandibular ganglia and, 373 schema, 368-369

Autonomic nervous system (Continued) sympathetic innervation of thoracoabdominalpelvic viscera and, 379–380 sympathetic system and, 377–378 Axilla, 313 Axons, 248 DRN, 123–124 myelinated, 283–284 postganglionic, 224–225 VRN, 123–124

B

Back surface anatomy of anatomic notes/ functional significance/ structures of, 15 iliac crests in, 15 posterior superior iliac spines in, 15 spinous process of C7 vertebra in, 15 vertebral column of anatomic notes/ functional significance/ structures of, 16 anterior view of, 17 clinical notes on. 16 intervertebral discs of, 16 left lateral view of, 17 levels within, 16 posterior view of, 17 Basal ganglia axial view of, 147-148 brain/midbrain, 153 caudate/coronal view and, 149-150 connections of, 154 coronal view of brain at level of IC's anterior limb and, 151-152 overview of, 146 substantia nigra and, 154 Bone(s) ethmoid, 2, 5, 7-8 base of skull and, 12 frontal, 2, 7-8, 11 base of skull and, 12 calvarium and, 9, 10 inion (external occipital protuberance) in, 4, 5 lacrimal, 2, 5, 7 maxillary, 4 nasal, 2, 5, 7

Bone(s) (Continued) occipital, 5, 8, 10, 11 base of skull and, 12 palatine, 7-8 parietal, 2, 4-5, 8 base of skull and, 12 calvarium and, 9, 10 pterion, 4, 5 skull, 9–10 sphenoid, 2, 4-8 base of skull and, 12 greater wing of, 6 temporal, 2, 4-5, 8, 11 base of skull and, 12 zvgomatic, 2, 4-5 Brachial plexopathy, 314 Brachial plexus, 310-313, 316-319, 320-322 Brain. See also Cerebellum; Cerebrospinal fluid: Meninges; Midbrain arterial distribution of by color, 65 lateral view of, 63 medial view of, 64 arterial supply to, anatomic notes/arteries/ functional significance of, 53-54 arteries basal view of. 59-60 coronal section of, 62 frontal view of, 61 axial view of, 153 Circle of Willis and, anatomic notes/arteries/ functional significance of, 57-58 external capsule of, 147-148, 149-150 head of caudate nucleus coronal view of, basal ganglia and, 149-150 inferior surface of anatomic notes/ functional significance/ structures of, 37-38 collateral sulcus within. 37-38 frontal pole within, 37-38 lateral occipitotemporal gyrus within, 37-38 medial occipitotemporal gyrus within, 37-38 occipital pole within, 37-38

Brain (Continued) occipitotemporal sulcus within, 37-38 olfactory sulcus within, 37-38 orbital gyri/sulci within, 37-38 parahippocampal gyrus within, 37-38 straight gyrus (gyrus rectus) within, 37-38 temporal pole within, 37-38 uncus within, 37-38 insula (insular cortex) anatomic notes/ structures of, 34 central sulcus of. 34 circular sulcus of, 34 limen of, 34 long/short gyrus of, 34 internal capsule (IC) of, 147-148, 149-150, 151-152 lateral surface of anatomic notes/ structures of, 32 central (rolandic) fissure and, 32-33 cortical lobes and, 32-33 frontal lobes and, 32-33 lateral (Sylvian) fissure and, 32-33, 63 occipital lobes and, 32-33 parietal lobes and, 32-33 temporal lobes and, 32 - 33medial surface of anatomic notes/ functional significance/ structures of. 35 - 36anterior commissure within, 35-36, 172-173 calcarine sulcus within, 35-36 cingulate gyrus within, 35-36 cingulate sulcus within, 35-36 corpus callosum within, 35-36 cortical structures of, 35-36 cuneus within, 35-36

Brain (Continued) frontal gyrus within, 35-36 habenular commissure within, 35-36 interhemispheric connections (commissures) between, 35-36 lingual gyrus within, 35-36 paracentral lobule within, 35-36 parieto-occipital sulcus within, 35-36 posterior commissure within, 35-36 precuneus of, 35-36 midsagittal view of, 156 stem and medulla oblongata anterior view of, 90 midsagittal view of, 90 stem, anterior/ventral views of anatomic notes/clinical notes/functional significance/ structures of. 40-41 basis pontis within, 40-41 cerebellar peduncle and, 40-41, 130 mammillary bodies within, 40-41 olive (inferior) within, 40-41 optic chiasm within. 40-41 pyramid within, 40-41 tuber cinereum within. 40-41 stem, gross anterior view of, 111, 132 medulla oblongata and, 90-92 midsagittal view of, 110, 131 posterolateral view of, 112 stem, medial view of anatomic notes/clinical notes/ components/ functional significance of, 39 medulla oblongata within. 39 midbrain within, 39 pons within, 39, 101

Brain (Continued) stem, posterolateral view of anatomic notes/ functional significance/ structures of, 42-43 cuneate/gracile tubercles within, 42-43 fasciculus cuneatus within, 42-43 fasciculus gracilis within, 42-43 inferior cerebellar peduncle within, 42-43, 102-103, 106 inferior colliculi within, 42-43 middle cerebellar peduncle within, 42-43, 111 pineal gland within, 42-43 pulvinar within, 42-43 rhomboid fossa of fourth ventricle within, 42-43, 112 superior cerebellar peduncle within, 42-43, 125 superior colliculi within, 42-43 stem, trigeminal longitudinal, 101 veins of deep, 70, 71 posterior cranial fossa, 72 superficial, 69 venous sinuses of, anatomic notes/functional significance of. 67-68 ventricular system within, anatomic, clinical notes/associated structures of, 82-83 vertebrobasilar system of. anatomic notes/ arteries/functional significance of, 66 Bronchi, 375

C

Calvarium, 9 anatomic notes/structures of, 9–10 bregma and, 9, 10

Calvarium (Continued) coronal suture of. 10 diploë and, 9, 10 frontal bone of, 9, 10 inferior view of. 10 lambda and, 9, 10 lambdoid suture and, 9, 10 parietal bone of, 9, 10 sagittal suture of, 10 superior view of, 10 vertex of skull and, 9, 10 Carcinomas, nasopharyngeal, 11 Cell(s) basket, 161 Betz, 169 granule, 161 horizontal (of Cajal), 169 of Martinotti, 169 Purkinje, 161 pyramidal, 169, 177 layer of subiculum, 205-206 stellate (granule), 169 outer, 161 sympathetic presynaptic, 373 types, cortical neuronal, 169 Centromedian nucleus (CM), 139-140, 142-143 Cerebellar peduncle anterior/ventral views of brainstem and, 40-41, 130 inferior input to cerebellum and, 157, 163-164 output from cerebellum and, 165-166 within posterolateral view of brainstem, 42-43, 102-103, 106 middle input to cerebellum and, 157. 163-164 output from cerebellum and, 165-166 within posterolateral view of brainstem, 42-43, 111 superior input to cerebellum and, 157, 163-164 output from cerebellum and, 165-166 within posterolateral view of brainstem, 42-43,

125

Cerebellum, 48-49, 104, 139-140 anatomic notes/cerebellar lobes/functional significance of, 44, 158-159 anatomy of, 158-159 cortex types within, 161 functional subdivisions of, 162 inferior/superior surfaces of, ΔΔ input to, 163 inferior cerebellar peduncle and, 157, 163–164 middle cerebellar peduncle and, 157, 163-164 superior cerebellar peduncle and, 157, 163-164 interior of, 160 lobes of anterior, 158-159 flocculonodular. 158-159, 165 middle, 158-159 output from inferior cerebellar peduncle and, 165-166 middle cerebellar peduncle and, 165-166 superior cerebellar peduncle and, 165-166 overview of, 156 vertebrobasilar system of, anatomic notes/ arteries/functional significance of, 66 vestibular, 119 Cerebrospinal fluid (CSF), 80 circulation, 86-87 entry/exit, 84 Cervical disc herniation syndrome, 306-307 Cervical plexus, 308-309 Cervical root anatomy, 304-305 Cervical spinal cord, 93-94, 101, 269 Cervical vertebrae, 45, 73 anatomic notes/functional significance/ structures of, 18, 20 - 21atlas of, 18-19 axis of, 18-19

Cervical vertebrae (Continued) clinical notes on. 20 dens of. 18-19 4th, 20 7th, 20, 21 spinal process within, 21 superior articular facet/ process within, 21 upper, 18 Cholinergic pathways, central, 301 Chorda tympani, 235, 243-245, 247 Choroid plexus, 100, 138, 206 Cingulum, 172-173, 176 Circle of Willis, 57-58 Claustrum, 147-148, 149-150 CM. See Centromedian nucleus CN. See Cranial nerves Coccyx, 17, 45 anatomic notes/structures of. 30 clinical notes on, 30 Colliculi inferior. 139-140 within brainstem, 42-43 midbrain, 131, 133 superior, 139-140 within brainstem, 42-43 midbrain, 131, 133 Colon, transverse, 375 Corpus callosum, 172-173 Cortex, 168 alveus and, 178 association, 168 cerebellar, 146, 176 cerebral commissural/other association fiber systems of, 172-173 hippocampal formation and, 176-177 lavers of, 168 major cortical association bundles within. 174-175 neuronal origins of efferent, 171 cingulate, 211 entorhinal, 107, 178 fimbria and, 178 gateway to, 138 insula (insular cortex) anatomic notes/ structures of, 34 central sulcus of, 34 circular sulcus of, 34 limen of, 34 long/short gyrus of, 34

Cortex (Continued) motor. 168 olfactory, 179 outputs, 139-140 pyriform, 170 sensory, 168 vertical columns of, 170 visual, 170 Cortical efferent pathways, 273-274 Corticobulbar pathways, 275-276 Corticoreticular pathways, 280 Corticospinal tract, 277 Corticotropin-releasing hormone (CRH), 198-199 Cranial nerves (CN), 107, 238, 263. See also specific nerves I. 217-219 II. 222 III, 40-41, 61, 133, 223-225 IV, 40-41, 107, 227-230 V, 40-41, 93-94, 107, 111, 120-122, 231-236 motor/sensory branches of, 234-236 VI, 40-41, 107, 111, 121, 224, 238 VII, 40–41, 96–97, 104, 107, 111, 115-116, 120-121, 224, 236, 238, 241-245 VIII, 40-41, 111, 114 auditory component of, 248-249 vestibular, 250-251 IX, 40-41, 95, 107, 236, 253-254 general sensory of, 257-258 visceral motor of, 255 visceral sensory of, 255 X. 107. 259-260 XI, 95, 107, 261-262 XII, 40-41, 93-94, 96-97, 104, 107, 263 accessory nerves and, 107, 261-262 eye movements and, 239-240 facial nerves and, 236, 241-245 sensory, 246-247 glossopharyngeal nerves and, 107, 236, 253-254 general sensory of, 257-258 visceral motor of, 255

Cranial nerves (CN) (Continued) visceral sensory of, 255 of midbrain. 133 nuclei of medulla and, anatomic notes/ functional significance/ structures of, 93-94 oculomotor nerves and, 40-41, 61, 223-225 olfactory nerves and, 217-219 optic nerves and, 220-221 optic tract and, 222 overview of, 215-216 of pons, 113 trigeminal nerves and, 40-41, 107, 111, 231-233 motor/sensory branches of, 234-236 trigeminal neuralgia (tic douloureux) and, 237 trochlear nerves and, 40-41, 107. 227-230 vestibulocochlear nerves and auditory component of, 248-249 vestibular, 250-251 Craniocervical ligaments external anatomic notes/ structures of, 22 anterior view of, 22 posterior view of, 22 internal anatomic notes/ structures of. 23 - 24clinical notes on, 23 CRH. See Corticotropin-releasing hormone CSF. See Cerebrospinal fluid

D

Dentate gyrus, 176–177, 205–206, 207 Dermatomes, 344–346 Dopamine, 198–199 Dorsal respiratory nucleus (DRN), 123–124 DRN. See Dorsal respiratory nucleus

Е

ECA. See External carotid arteries Edinger-Westphal (CN-III) nerves, 133, 224–225 Esophagus, 375

External carotid arteries (ECA), 53–58 Eye. See also Orbit autonomic distribution to, 371–372 movements alternate, 119 central control of, 117–118 cranial nerves and, 239–240 muscles, 229–230

F

Facial genu anatomic notes/functional significance/ structures of, 120-121 trapezoid body and, 120-121 Fasciculus arcuate, 174-175 cuneatus, 42-43 gracilis, 42-43 medial longitudinal, 98-99, 102-103, 115-116, 160 occipitofrontal, 174-175 superior longitudinal, 174-175 uncinate, 174-175 Fibers, 376 afferent, 372, 375 corticobulbar, 241-245 corticoreticular, 275-276 dorsal, 220-221 efferent, 375 motor, 238 branchial, 241-245 efferent, 234-236 visceral, 241–245 parasympathetic, 235, 238, 244-245, 368-369, 375 postganglionic, 372, 373, 374 preganglionic, 372, 373, 374 proprioceptive, 235 root CN-VII, 120-121 CN-VI, 121 sensory, 235, 238 general, 241-245, 246-247 special, 246-247 sympathetic, 235, 238, 244-245. 368-369

Fibers (Continued) postganglionic, 372, 373, 374 preganglionic, 372, 373, 374 ventral, 220-221 Follicle-stimulating hormone (FSH), 198-199 Foot sensory, 364-365 Foramen lacerum, 13 magnum, 13 ovale, 4 transversarium, 20, 21 Forearms, 310, 313, 332, 334, 336, 339 Fornix, 184-185, 203-204 FSH. See Follicle-stimulating hormone

G

Ganglia, 373, 376, 377, 381-382 Ganglion ciliary, 370, 371, 372 otic, 370, 374 pterygopalatine, 370, 373 submandibular, 370, 373 superior cervical, 371 sympathetic trunk, 372, 373, 374 GHRH. See Growth hormonereleasing hormone Glands parotid, 374 sublingual, 373 submandibular, 373 Globus pallidus external, 147-148, 151-152 internal, 147-148, 151-152 Glossopharyngeal nerves, 7, 40-41 IX, 107, 236, 253-254 general sensory of, 257-258 visceral motor, 255 visceral sensory of, 256 GnRH. See Gonadotropinreleasing hormone Gonadotropin-releasing hormone (GnRH), 198-199 GPe. See Globus pallidus, external GPi. See Globus pallidus, internal Gray ramus communicans, 383 Growth hormone-releasing hormone (GHRH), 198-199

Н

Habenula, 203-204 Hands LOAF and, 323 median nerves of, 323-325 ulnar nerves of, 310, 328-329 Head autonomic nerves in, 383-384 -body framework anatomic notes/ functional significance/ structures of, 14 pterygopalatine fossa in, 14 Hippocampus, 176–177 inputs/outputs of, 207 limbic system and, 203-204, 205-207 Hypoglossal nerves, 7 CN-XII, 40-41, 93-94, 107, 263 Hypoglossal trigone, 112 Hypophyseal fossa (sella turcica), 6, 12 Hypothalamus, 139, 152, 296 anatomy of, 181-183 anterior pituitary and, 198-199 anterior (supraoptic) zone/ preoptic nuclei and, 188-189 input/output of, 196 nucleus of, 186-187 posterior (mammillary) zone, 192-193 tuberal zone, 190-191 pathways to afferent, 194-195 efferent, 194-195 key, 196 posterior pituitary and, 197 principal nuclei of, 183 in relation to median structures, 184-185

I

ICA. See Internal carotid arteries Inferior nasal concha, of skull, 2, 8 Internal carotid arteries (ICA), 53–58 Interstitiospinal tract, 281 Intestines, 387–388

L

Lamina, 21 terminalis, 184-185 Lateral geniculate body (LGB), 139-140, 148, 220-221 Lateral geniculate nucleus (LGN), 139-140. 142-143 LGB. See Lateral geniculate body LGN. See Lateral geniculate nucleus LH. See Luteinizing hormone Ligament(s) alar, 23-24 apical, 23-24 of atlas, transverse, 23-24 cruciform (cruciate), 23-24 interspinous, 29 posterior longitudinal, 23-24, 29 supraspinous, 29 transverse carpal, 311 vertebral, of spinal column, 28-29 Ligamentum flavum, 22, 29 nuchae, 22, 28 Limbic system amygdala and, 208-210 cingulate cortex and, 211 general features of, 202 hippocampus and, 203-204, 205-207 major structures within, 203-204 Limbs, 385 LMNs. See Lower motor neurons Locus ceruleus (noradrenergic pathways), 290-291, 299 Lower motor neurons (LMNs) in medulla, 107 of Pons, 113 Lumbar plexus, 348-349 Lumbar vertebrae, 73, 342-344 anatomic notes/functional significance/ structures of, 26-27 clinical notes on, 25 section through, 305 Lumbar/sacral root, 342-344 Lumbosacral plexus in situ, 347 Lumbosacral radiculopathy, 345-346 Lungs, 375 Luteinizing hormone (LH), 198 - 199

Μ

Magnetic resonance imaging (MRI), 127 of midbrain lower, 134 through substantia nigra, 136 upper, 135 Mandible, 5 Maxilla alveolar process of, 14 in skull, 5, 7-8, 11 tuberosity of, 14 MCA. See Middle cerebral arteries MD. See Mediodorsal nucleus Medial geniculate nucleus (MGN), 139-140, 142-143 Medial lemniscus, 102-103, 115-116, 139-140 Medial longitudinal fasciculus (MLF), 98-99, 102-103, 115-116, 160 Median geniculate body (MGB), 139-140, 148 Mediodorsal nucleus (MD), 139-140, 142-143 Medulla, 296 brainstem reticular formation and, 105 dorsal column nuclei level and, 96–97 inferior olive level of, 100 LMNs in, 107 nuclei of anatomic notes/ functional significance/ structures of, 93-94 cranial nerves and, 93-94 obex level of, 98–99 oblongata/gross brainstem anterior view of, 91 caudal medulla of, 91 cuneate/gracile tubercles of, 92 fastigium of, 90 inferior medullary velum of, 90 inferior olivary nuclei of, 91 median sulcus of, 92 midsagittal view of, 90 obex of, 92 posterolateral view of, 92 pyramidal decussation of, 91

Medulla (Continued) rhomboid fossa of, 92 sulcus limitans of, 92 superior medullary velum of, 90 -Pontine junction, cochlear nuclei level and, 106 spinal cord transition and, 95 vestibular nuclei level and, 102-103 Meninges anatomic, clinical notes/ laver/location of. 80-81 arachnoid mater of, 80-81 arterial supply to, anatomic notes/arteries/ functional significance of, 53–56 dura mater of, 80-81 pia mater of, 80-81 Mesencephalon. See Midbrain MGB. See Median geniculate body MGN. See Medial geniculate nucleus Midbrain (mesencephalon), 101 axial view of, 153 basilar groove (sulcus) of, 132 cranial nerves of, 133 crura cerebri and, 130 inferior colliculi of, 131, 133 junction/pons, 125 lower, 134 nucleus of, 232-233 oculomotor nerves and, 132 posterior commissure of, 131 pretectal region of, 131 in situ, 130 subcommissural organ of, 131 substantia nigra of, 136, 153, 154, 233 superior colliculi of, 131, 133 tectum and, 130 tegmentum and, 130 trochlear nerves and, 132 upper, 135 Middle cerebral arteries (MCA), 57-58, 61, 62 functional significance of, 65 inferior, 63 superior, 63 MLF. See Medial longitudinal fasciculus MRI. See Magnetic resonance imaging

Muscle(s) abductor digiti minimi, 327, 329 pollicis, 324, 327, 329, 334 brachial plexus, 310-313, 316-319, 320-322 brachialis, 313, 316-319 brachioradialis, 331 coracobrachialis, 313 deep branch, 336 deltoid, 311, 313, 319 extensor carpi radialis brevi. 331 longus, 331, 332 extensor pollicis brevi, 334 eye, 229-230 flexor carpi radialis, 321-322, 327 digiti minimi brevis, 327, 329 digitorum profundus, 321 pollicis brevis, 327, 329 pollicis longus, 321-322 of forearm, 334, 336 inferior obligue, 224 infraspinatus, 311, 319 innervated, 326–327, 328 function and, 320-322 latissimus dorsi, 311 levator palpebrae superioris, 224 levator scapulae, 315 lumbrical, 329 musculocutaneous, 313 opponens digiti minimi, 327 pollicis, 329 pectoralis major, 313 minor, 313 posterolateral abdominal wall, 317-319 pronator teres, 321-322 rectus inferior, 224 medial, 224 scalene anterior, 315, 316 middle, 316 posterior, 316 of shoulder, 311 spindles, 101 sternocleidomastoid, 308 subscapularis, 316 superficial branch, 336 superior rectus, 224 supinator, 334, 336

Muscle(s) (Continued) supraspinatus, 311, 319 Teres major, 311 trapezius, 308 triceps brachii, 311

Ν

Nasal cavity, 244 Neck autonomic nerves in, 383-384 -body framework, 14 anatomic notes/ functional significance/ structures of, 14 pterygopalatine fossa in, 14 Nerve(s). See also Neurons; specific nerves abdominal sympathetic autonomic, 381-382 abducent, CN-VI, 40-41, 107, 111, 224, 238 accessory, 7 XI, 107, 261-262, 309 of arm medial cutaneous, 310, 313 musculocutaneous. 338-339 axillary, 310, 313, 318, 331 of brachial plexus, 310-313, 316-319, 320-322 cervical, transverse, 309 coccygeal, 45, 350 dorsal, 20 facial, 7, 40-41, 107 CN-VII, 236, 241-245 CN-VI, 111 nerve sensory, 246-247 femoral, 349, 354–355 cutaneous, posterior, 350 of forearm. 332 lateral cutaneous, 339 medial cutaneous, 310, 313, 339 genitofemoral, 349 gluteal inferior. 350 superior, 350 great auricular, 308 iliohypogastric, 349 ilioinguinal, 349 intercostal, 45 intermediate, 115 lateral, cutaneous (of thigh), 356-357 lateral pectoral, 310 to levator ani, 351

Nerve(s) (Continued) lingual, 247 mandibular, 235 maxillary, 3, 235 medial pectoral, 310 median, 311 hand, 323-325 to wrist. 320-322 motor branchial, 215-216 somatic, 215-216 visceral, 215-216, 243-245 musculocutaneous. 310-311, 337-338 obturator, 349, 352-353 internus, 350, 351 occipital greater, 308 lesser, 308 olfactory, 7 CN-I, 217-219 ophthalmic, 235 pectoral lateral, 313 medial, 313 peroneal, 351 common, 359, 360-361 petrosal, greater, 243-245 phrenic, 316 left, 315 right, 315 to piriformis, 350 plantar lateral, 365 medial, 365 plantar foot sensory of, 364-365 posterior cutaneous (of thigh), 351, 359 interosseous, 333-334 pudendal, 350, 351 to quadratus femoris, 350 radial, 310-311, 313, 330-332 superficial, 335-336 roots, 46 sciatic, 45, 350, 358-359 sensory general, 215-216 special, 215–216 visceral, 215-216 spinal, 20, 40-41, 45-46, 95, 305, 349 to subclavius, 310 supraclavicular, 309 suprascapular, 310, 318, 319, 331 thoracic, long, 316

Nerve(s) (Continued) thoracodorsal, 310 tibial, 351, 359, 362-363 ulnar hand, 310-311, 328-329 to wrist, 326-327 vagus, 40-41, 236, 375 CN-X, 107, 259-260 at wrist, 324 Neurohypophysis, 183 Neuron(s), 247, 248. See also Fibers; Nerves cortical association, 169 cortical inter, 169 efferent, 169 lower motor in medulla, 107 of Pons, 113 parasympathetic postganglionic, 368-369 preganglionic, 368-369 second-order neurons, 283-284 sympathetic postganglionic, 368-369 preganglionic, 368-369 third-order neurons, 283-284 Noradrenergic pathways. See Locus ceruleus Nucleus, 238 ambiguus, 93-94, 98-99, 104 anterior, 139-140 hypothalamic, 186–187, 188-189 supraoptic zone, 188-189 arcuate, 186-187 basalis, 298, 301 basolateral, 208-210 of Cajal, interstitial, 117-118, 239-240 caudate, 146, 147-148 body of, 151-152 head of, 149-150 tail of, 152 central, 208-210 inferior, 126 superior, 126 centromedian, 139-140, 142-143 CN-XI, 95 cochlear, 106, 113 dorsal/ventral, 114 level of, 114 corticomedial, 208-210 cuneatus, 96-97 dentate, 160, 176-177

Nucleus (Continued) dorsal accessory olivary, 100 dorsal hypothalamic, 186-187 dorsal motor, 370, 375 dorsal vagal, 93–94, 104 dorsomedial, 186-187 of Edinger-Westphal (CN-III), 133, 224-225 emboliform, 160 exterior (lateral) cuneate, 98-99, 100 facial, 115-116 fastigial, 160 globose (interposed), 160 gracilis, 96–97 hypoglossal (CN-XII), 96-97, 104 hypothalamic, 186-187, 190-191 inferior olivary, 98–99 intermediolateral, 373 lateral geniculate, 139-140, 142-143 lateral group, 294-295 lateral hypothalamic, 186-187, 188-189 lentiform, 146, 148 limbic/nonspecific projection, 139-140 mammillary, 186-187 posterior, 192-193 medial accessory olivary, 100 medial geniculate, 139-140, 142-143 medial group, 294–295 medial preoptic, 186-187, 188-189 medial septal, 301 mediodorsal, 139-140, 142-143 mesencephalic, 232–233 motor, 120-121, 139-140, 232-233 oculomotor, 223-225 parabrachial, 122 medial, 123-124 respiration and, 123–124 parasympathetic, 113 autonomic cranial, 370 autonomic sacral, 376 paraventricular, 186-187, 188-189 periventricular, 186–187, 190-191 pontine, 115-116 posterior hypothalamic, 186-187 principal hypothalamic, 183 pulvinar, 139-140

Nucleus (Continued) Raphe, 105, 106, 125-126, 210, 290, 294-295 red, 113 respiratory, 105 dorsal, 123–124 ventral, 123-124 reticular, 296 salivatory inferior, 93-94, 370 superior, 243-245, 370, 375 sensory, 139-140, 232-233 relay, 275 secondary, 113 septal, 203-204, 207 solitarius, 113 caudal, 96-97 rostral, 96-97 of solitary tract, 93-94, 104 spinal (descending) trigeminal, 101, 104 CN-V, 120-121, 122 spinotrigeminal, 232–233 suprachiasmatic, 186-187, 188-189 of hypothalamus, 298 supraoptic, 186-187 thalamic motor, 139-140 sensory, 139-140 trigeminal nerve, 232-233 trochlear, 227-228 tuberal zone, 190-191 ventroanterior, 139-140 ventrointermedial, 139-140 ventrolateral, 139-140 ventromedial, 186-187 ventroposterolateral, 139-140 ventroposteromedial, 139-140, 247 vestibular, 112, 113, 115-116 inferior/medial, 102-103, 104 nystagmus and, 119 Nystagmus rapid phase (saccadic movement) of, 119 slow phase of, 119 vestibular nucleus and, 119

0

Oculomotor nerves, 3, 113 CN-III, 40-41, 61, 223-225 midbrain and, 132 Optic chiasm, 184-185, 220-221

Optic nerves cranial nerves and, 220–221 orbit and, 3 Optic tract (CN-II), 222 Orbit. See also Eye anterior view of right interior orbital fissure in, 3 optic foramen within, 3 superior orbital fissure in,

P

Paget's disease, 11 Parabrachial nucleus (PBN), 122 medial, 123-124 respiration and, 123-124 Paramedian pontine reticular formation (PPRF). 117-118, 239-240 Paravermis, 165 PBN. See Nucleus; Parabrachial nucleus PCA. See Posterior cerebral arteries Pedicle, 21 Peripheral nervous system anatomy of common peroneal nerves and, 359, 360-361 femoral nerves and. 354-355 lateral cutaneous nerves (of thigh) and, 356-357 lumbar plexus and, 348-349 lumbar/sacral root. 342-344 lumbosacral plexus in situ and, 347 lumbosacral radiculopathy in, 345-346 obturator nerves and, 349, 352-353 plantar nerves/foot sensory and, 364-365 sacral plexus and, 350-351 sciatic nerves and, 358-359 tibial nerves and, 351, 359, 362-363 upper extremity of brachial plexopathy in, 314

Peripheral nervous system (Continued) brachial plexus in, 310-313. 316-319. 320-322 central disc herniation syndrome and. 306-307 cervical plexus in, 308-309 cervical root anatomy in, 304-305 lateral cutaneous nerve of forearm and. 339 median nerve (hand) and, 323-325 median nerve (to wrist) and, 320-322 musculocutaneous nerve and 337-338 posterior interosseous and, 333-334 radial nerve and, 310-311, 313, 330-332. 335-336 thoracic outlet and, 315 ulnar nerve (hand) and, 310, 328-329 ulnar nerve (to wrist) and, 326-327 PICA. See Posterior inferior arteries Pituitary glands anterior lobe of, 183, 184-185 posterior lobe of. 183. 184-185 Pons, 156, 247, 296 within brain stem, medial view of, 39, 101 cranial nerves of, 113 dorsal, 115-116 gross brainstem and anterior view of, 111 midsagittal view of, 110 posterior view of, 112 LMNs of, 113 -midbrain junction, 125 rostral, 127 ventral, 115-116 Posterior cerebral arteries (PCA), 52-53, 57-58 branches/functional significance of, 64, 65 Posterior inferior arteries (PICA), 59-60, 66

Posterior white columns, 283–284 PPRF. See Paramedian pontine reticular formation Prolactin, 198–199 Pterygopalatine fossa, 4, 14 Pterygopalatine ganglion, 370 Pupillary light reflex pathway, 372 Putamen, 147–148, 149–150

R

Radiograph of atlantoaxial joint, 18 lateral, of skull, 6 Reproductive organs female, 391 male, 390 Respiration, 123–124 Reticular formation, 296 afferent/efferent connections of. 297 lateral, 105 medulla /brainstem, 105 /vestibular nuclei level, 102-103 overview of, 294-295 paramedian, 105 paramedian pontine, 117-118, 239-240 Reticulospinal pathways, 280 Rhomboid fossa of fourth ventricle, 42-43, 112 of medulla oblongata/gross brainstem, 92 Rubrospinal tract, 278

S

Sacrum, 17, 45, 73 anatomic notes/structures of, 30 clinical notes on, 30 SCA. See Superior cerebellar arteries Sella turcica. See Hypophyseal fossa Serotonergic pathways, 290, 300 Shoulders, 331 Sinuses, venous anatomic notes/functional significance of, 67-68 cavernous, 68 inferior petrosal, 68 inferior sagittal, 67 sigmoid, 68 straight, 68 superior petrosal, 68

Sinuses, venous (Continued) superior sagittal, 67 transverse, 68 Skull, 22 anterior view of anatomic notes/ functional significance/ structures of, 2, 3 inferior nasal concha of, infraorbital foramen and, 2.5 mental foramen and, 2, 5 supraorbital notch of, 2, 5 base of from above, 12-13 anatomic notes/ structures of, 11, 12 anterior cranial fossa at. 12 from below, 11 clinical notes regarding, 11.13 ethmoid bone and, 12 frontal bone and, 12 incisive foramen at, 11 jugular fossa at, 11 middle cranial fossa at, 12 occipital bone and, 12 palatine bone at, 11 parietal bone and, 12 posterior cranial fossa at, 12 sella turcica at. 12 sphenoid bone and, 12 stylomastoid foramen at, 11 temporal bone and, 12 bones, 9-10 calvarium and, 9 bregma and, 9, 10 coronal suture of, 10 diploë and, 9, 10 frontal bone of, 9, 10 inferior view of, 10 lambda and, 9, 10 lambdoid suture and, 9, 10 parietal bone of, 9, 10 sagittal suture of, 10 superior view of, 10 vertex of skull and, 9, 10 lateral radiograph of, 6

Skull (Continued) lateral view of anatomic notes/ functional significance/ structures of, 4 exposure of infratemporal fossa in, 4 inion (external occipital protuberance) in, 4, 5 nasion in, 4, 5 pterion in. 4 sphenoid bone in, 2, 4-8 temporal bone in, 2, 4-5, 8, 11 zygomatic bone in, 2, 4-5 midsagittal view of anatomic notes/ functional significance/ structures of, 7-8 cribriform plate in, 7-8 hypoglossal canal in, 7-8 internal acoustic (auditory) meatus in, 7-8 jugular foramen in, 7-8 vertex of, calvarium and, 9, 10 Sleep-wake control, 298 Somatostatin, 198–199 Sphenopalatine foramen, 4 Spinal column clinical notes on, 28 vertebral ligaments of, 28-29 Spinal cord anterior view of, 46 arteries of anterior/posterior, 74 radicular, 75 blood supply to, 73 cervical, 93-94, 101 cytoarchitecture, 267-268 levels cervical, 269 lumbar, 271 sacral, 272 thoracic, 270 -medullary junction, 296 pathways, 266 ascending, 282 principal tracts of major ascending pathways as, 48-49

Spinal cord (Continued) major descending pathways as, 48-49 in situ, 45 transition and medulla, 95 at various levels, 47 veins of, 76-77 Spinal nerves, 20, 46 accessory (CN-IX/X/XI), 40-41, 95 C8, 45 C1, 45 L5. 45 L1, 45 S1, 45 T1, 45 T12, 45 Spinal (descending) trigeminal tract, 101 Spinocerebellar pathways anatomic/functional significance/ structures of, 287-288 synaptic, 289 Spinoreticular tract, 285-286 Spinothalamic tract, 285-286 Sternocleidomastoid, 308–309 Stomach, 375, 386 Stria terminalis, 203-204 Subiculum, 176-177 Substantia nigra basal ganglia and, 154 of midbrain, 136, 153, 154, 233 Superior cerebellar arteries (SCA), 59-60, 66 т Tectospinal tract, 102-103, 281 Tendons common extensor, 334 flexor, 324 Thalamic nucleus

Thalamic nucleus motor, 139–140 sensory, 139–140 Thalamus, 42–43, 146, 184–185, 209–210, 296 architecture/clinical significance/function/ location of, 138 CM of, 142–143 in coronal section, 142–143 in horizontal section, 141 lateral, 142–143 LGN of, 142–143 MD of, 142–143 MGN of, 142–143 in situ, 138

Thigh, 351, 356-357, 359 Thoracic vertebrae, 73 inferior/superior costal facets of, 25 section through, 305 T1-10, 25 Thoracoabdominal-pelvic viscera, 379-380 Thyroid-stimulating hormone (TSH), 198–199 Thyrotropin-releasing hormone (TRH), 198-199 Tic douloureux. See Trigeminal neuralgia TRH. See Thyrotropin-releasing hormone Triceps, 311 Trigeminal nerves, 11 CN-V, 40-41, 107, 111, 231-236 motor/sensory branches of, 234-236 Trigeminal neuralgia (tic douloureux), 237 Trochlear nerves, 3, 42-43, 224 CN-IV, 40-41, 107, 227-230 midbrain and, 132 TSH. See Thyroid-stimulating hormone Tuber cinereum, 184-185

U

Urinary bladder, 389

V

VA. See Ventroanterior nucleus Vein(s). See also Arteries anterior cerebral, 71 anterior septal, 70 deep/subependymal, 70 diploic acid emissary, 69 meningeal, 69 posterior cranial fossa, 72 Vein(s). See also Arteries (Continued) radicular anterior, 76-77 posterior, 76-77 of Rosenthal, basal, 70 spinal anterior, 76–77 posterior, 76-77 subependymal, 70, 71 superficial, 69 thalamostriate, 70 venous plexus external, 76–77 internal, 76–77 of vertebrae, 76-77 Ventral respiratory nucleus (VRN), 123-124 Ventricle(s) anatomic, clinical notes/associated structures of. 82-83 cerebral aqueduct and, 82-83 fourth, 82-83, 92 CSF entry/exit of, 84-85 descriptions/features of, 84-85 floor of, 84-85 rhomboid fossa of, 42-43, 112 roof of, 84-85, 90 lateral, 82-83 third, 82-83 Ventroanterior nucleus (VA), 139-140 Ventrointermedial nucleus (VI), 139-140 Ventrolateral nucleus (VL), 139-140 Ventroposterolateral nucleus (VPN), 139-140

Ventroposteromedial nucleus (VPM), 139-140, 247 Vermis, 165 Vertebrae. See also Back; Cervical vertebrae; Lumbar vertebrae; Spinal column: Spinal cord; Thoracic vertebrae arteries of, 53-56, 59-60 intracranial occlusion of, 104 C7, 15 veins of, 76-77 Vertigo, 252 Vestibulocochlear nerves, 7 CN-VIII, 40-41, 111, 114 auditory component of, 248-249 vestibular, 250-251 CN-VII, 40-41, 115-116 Vestibulospinal tract, 279 VI. See Nucleus: Ventrointermedial nucleus VL. See Nucleus; Ventrolateral nucleus Vomer, 2, 8, 11 VPM. See Nucleus: Ventroposteromedial nucleus VPN. See Ventroposterolateral nucleus VRN. See Ventral respiratory nucleus

W

White ramus communicans, 377, 381 Wrists, 320–322, 324, 326–327