Abel and the Insolvability of the Quintic: Part 4

We now turn to the goal of this series namely to establish the fact that the general polynomial of degree 5 or higher is not solvable by radicals over its field of coefficients. Here Abel’s argument is quite terse and I have not been able to fully comprehend some parts of it. Also proof of some statements are not provided by Abel because it appeared quite obvious to him. We will provide here a proof which is based on Ruffini’s arguments and its later simplification by Wantzel.

The idea of the proof is to study the field extension $K = \mathbb{C}(x_1, x_2, \ldots, x_n)$ of $F = \mathbb{C}(s_1, s_2, \ldots, s_n)$ with regard to the symmetries under various permutations of the indeterminates x_i. Clearly the elements of the base field F are invariant under all the possible permutations of x_i. But the elements of field K are invariant only under the identity permutation. We need to analyze the behavior of a radical extension R of F which is contained in K with regard to invariance under the permutations of x_i.

Insolvability of the General Polynomial of Degree $n \geq 5$

Let the general polynomial of degree n be denoted by $P(x)$ with x_1, x_2, \ldots, x_n as its roots so that

$$P(x) = (x - x_1)(x - x_2) \cdots (x - x_n) = x^n - s_1 x^{n-1} + \cdots + (-1)^n s_n$$

where s_1, s_2, \ldots, s_n are the elementary symmetric functions of the roots x_i. The base field of the coefficients is $F = \mathbb{C}(s_1, s_2, \ldots, s_n)$ and clearly the splitting field of $P(x)$ over F is $K = \mathbb{C}(x_1, x_2, \ldots, x_n)$.

We start with a very surprising and curious result regarding the behavior of radical expressions with respect to two specific permutations of the x_i. In order to define these two permutations it is absolutely important that we have $n \geq 5$. Such permutations don’t exist if $n < 5$.

Theorem 12: Let $u, a \in K = \mathbb{C}(x_1, x_2, \ldots, x_n)$ and p be a prime number such that $u^p = a$. Let $n \geq 5$ and let σ, τ be two permutations of x_i’s defined as follows:

$$\sigma : x_1 \to x_2 \to x_3 \to x_1, x_i \to x_i \text{ for } i > 3$$

and

$$\tau : x_3 \to x_4 \to x_5 \to x_3, x_i \to x_i \text{ for } i = 1, 2 \text{ and } i > 5$$

If a is invariant under the permutations σ, τ then so is u.

Clearly if $a = 0$ then $u = 0$ and the theorem is trivially true in this case. So let $a \neq 0$ so that $u \neq 0$. Now we have $u^p = a$ so that $\sigma(u^p) = \sigma(a) = a$ or $(\sigma(u))^p = a = u^p$. We then have $(\sigma(u)/u)^p = 1$ so that $\sigma(u)/u$ is some p^{th} root of unity, say ω_σ and then we have $\sigma(u) = \omega_\sigma u$.
Applying the permutation σ to this equation we get
\[\sigma^2(u) = \sigma(\omega_\tau u) = \omega_\sigma \sigma(u) = \omega_\sigma^2 u \]
and similarly $\sigma^3(u) = \omega_\tau^3 u$. But σ^3 is the identity permutation and hence we get $\omega_\sigma^3 u = u$ so that $\omega_\sigma^3 = 1$.

Following exactly the same reasoning we get $\tau(u) = \omega_\tau u$ where ω_τ is some p^{th} root of unity and we have $\omega_\tau^3 = 1$. Now its time to do some permutation algebra. Clearly we have
\[\sigma \circ \tau : x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow x_5 \rightarrow x_1, x_i = x_i \text{ for } i > 5 \]
and
\[\sigma^2 \circ \tau : x_1 \rightarrow x_3 \rightarrow x_4 \rightarrow x_5 \rightarrow x_2 \rightarrow x_1, x_i = x_i \text{ for } i > 5 \]
Again we can see that
\[(\sigma \circ \tau)u = \omega_\sigma \omega_\tau u, \quad (\sigma^2 \circ \tau)(u) = \omega_\sigma^2 \omega_\tau u \]
Since both $(\sigma \circ \tau)^5$ and $(\sigma^2 \circ \tau)^5$ are identity permutations it follows that
\[(\omega_\sigma \omega_\tau)^5 = (\omega_\sigma^2 \omega_\tau)^5 = 1 \]
Also we have previously obtained
\[\omega_\sigma^3 = \omega_\tau^3 = 1 \]
Now it is clear that
\[\omega_\sigma = (\omega_\sigma^3)^2(\omega_\sigma \omega_\tau)^5(\omega_\tau^2 \omega_\tau)^{-5} = 1 \cdot 1 \cdot 1 = 1 \]
and
\[\omega_\tau = (\omega_\tau^3)^2 \omega_\tau^5(\omega_\sigma \omega_\tau)^{-5} = 1 \cdot 1 \cdot 1 = 1 \]
We thus have $\sigma(u) = \omega_\sigma u = u, \tau(u) = \omega_\tau u = u$ so that u is invariant under the permutations σ and τ.

We are now ready to prove the insolvability of the polynomial $P(x)$ by radicals if $n \geq 5$. We have the precise statement of the theorem as follows:

Theorem 13: If $n \geq 5$ then the general polynomial of degree n given by
\[P(x) = (x - x_1)(x - x_2) \cdots (x - x_n) = x^n - s_1 x^{n-1} + \cdots + (-1)^n s_n \]
is not solvable by radicals over $\mathbb{Q}(s_1, s_2, \ldots, s_n)$ nor over $\mathbb{C}(s_1, s_2, \ldots, s_n)$.

By theorem 6 of [this post](https://paramanand.math/abel-the-theorem-13) it is sufficient to show that the polynomial $P(x)$ is not solvable by radicals over $F = \mathbb{C}(s_1, s_2, \ldots, s_n)$. Let us suppose on the contrary that the polynomial $P(x)$
is solvable by radicals over F. This means there is a radical extension R of F which contains a root x_1 of $P(x)$. By renumbering of the x_i’s it is possible to ascertain that R contains x_1 in particular. Now by the theorem of natural irrationalities proved in the last post we can assume that R is contained in $K = \mathbb{C}(x_1, x_2, \ldots, x_n)$. Let the height of R over F be h. Clearly h cannot be zero as it would mean $R = F$ and hence every member of R including the root x_1 would have to be invariant under all the permutations of the x_i’s. Hence $h > 0$. Let $F = R_0 \subseteq R_1 \subseteq R_2 \subseteq \ldots \subseteq R_h = R$ be the tower of radical extensions leading from F to R. Here each R_i is a radical extension of height 1 of R_{i-1}.

Consider first the radical extension R_1 of height 1 over F. Clearly we have a member $u \in R_1$ and a prime p such that $R_1 = F(u)$ and $u^p = a \in F$ is not a p^{th} power in F. Clearly the element $a \in F$ is invariant under all the permutations of the x_i’s and since $n \geq 5$, the element a is invariant under the two permutations σ and τ defined in theorem 12 above. It follows from theorem 12 that the element u is also invariant under σ, τ. Since every element of F is also invariant under these two permutations it follows that every element of $F(u) = R_1$ is also invariant under σ, τ.

Now considering the field R_2 as a radical extension of height 1 over R_1 and repeating the same argument we see that every element of R_2 is also invariant under σ, τ. Continuing this process for each of the fields R_i we finally see that every member of $R_h = R$ is invariant under σ, τ. But we have $x_1 \in R$ which is clearly not invariant under σ and therefore we obtain a contradiction. It follows that our initial assumption of the solvability of $P(x)$ by radicals over F is wrong and thereby our proof is complete.

Note: The treatment of the insolvability of general polynomial of degree 5 or more in this series of posts is taken from the wonderful book *Galois Theory of Algebraic Equations* by Jean-Pierre Tignol. Readers are advised to go through this beautiful book for further development in these topics. This has been the first understandable presentation of Abel's proof I have found in literature and online articles. Most of the Modern Algebra textbooks totally ignore the contributions of Abel or just mention it as a historical note and straightaway jump onto the beautiful theories of Galois. Tignol's book discusses all the historical developments leading upto Galois Theory with the exposition of the contributions from various mathematicians like Gauss, Lagrange, Abel and finally Galois.