McTorch, a manifold optimization library for deep learning

Mayank Meghwanshi*
Pratik Jawanpuria*
Anoop Kunchukuttan*
Hiroyuki Kasai†
Bamdev Mishra*

* Microsoft, India
† The University of Electro-Communications, Japan
Our interest is the optimization problem of the form

$$\min_{x \in \mathbb{R}^n} f(x)$$
subject to
$$x^\top x = 1.$$

Assume that f is differentiable.
Manifold optimization generalizes unconstrained optimization to manifolds.

Solving
\[\min_{x \in \mathcal{M}} f(x), \]

where \(\mathcal{M} =: \{ x \in \mathbb{R}^n : x^\top x = 1 \} \)

is equivalent to

Unconstrained optimization over the (nonlinear) manifold \(\mathcal{M} \).
Applications
Principal components analysis (PCA) is on manifold of orthogonal matrices

Stiefel manifold models such orthogonal constraints
Recommender systems: low-rank matrix / tensor modeling

The Grassmann manifold is used to model such constraints

\[(n + m - r) r, \quad r \ll (m, n) \]
Learning continuous representations of hierarchies

Hyperbolic manifold is used to model hypernymy relationships

Figure from mnick.github.io.
Metric learning

Symmetric positive definite matrices form a manifold.
Most Euclidean optimization algorithms generalize well to manifolds

- Conjugate gradients.
- BFGS and Quasi-Newton methods.
- Non-smooth optimization on manifolds.
- Stochastic gradients w/o variance reduction.
- Preconditioning on manifolds.
There exist other independent toolboxes for optimization on manifolds

- Pymanopt: a Python toolbox for manifold optimization.

- Geomstats: a Python package for computations and statistics on manifolds.

- McTorch: a PyTorch extension to do manifold optimization for deep learning applications painlessly.
To know more about McTorch, visit our demo.
McTorch, a manifold optimization library for deep learning

Mayank Meghwanshi*
Pratik Jawanpuria*
Anoop Kunchukuttan*
Hiroyuki Kasai†
Bamdev Mishra*

* Microsoft, India
† The University of Electro-Communications, Japan