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The paper presents a high-order, entropy-stable discretization of the Euler equations based
on the discontinuous Galerkin difference (DGD) method. DGD methods are similar to high-
order finite-volume schemes, but they are posed in a Galerkin finite-element framework. We
show how DGD discretizations can be constructed from diagonal-norm summation-by-parts
(SBP) discretizations. This connection to SBP operators allows us to leverage existing liter-
ature on SBP methods to easily prove the entropy-stability of the DGD method. Numerical
experiments are provided that verify the high-order accuracy of the DGD scheme as well as its
stability.

I. Introduction

Many computational fluid dynamics (CFD) researchers have advocated for high-order discretizations as a means
of increasing the efficiency of flow simulations. However, despite their potential for improved accuracy, high-order
methods are often less robust, which has discouraged practitioners from adopting them. To address this issue, there has
been increasing interest in entropy-stable discretizations, which offer a promising framework to improve the robustness
of high-order methods. This work proposes and investigates a particular entropy-stable discretization that aims to be
both robust and efficient.

Efficiency is an interplay between accuracy and computational cost. To achieve high-order accuracy, we consider a
variant of the Galerkin difference (GD) method proposed by Banks and Hagstrom [1]. Unlike conventional finite-element
methods, which increase accuracy by introducing additional degrees of freedom on each element, GD methods achieve
high-order accuracy by including neighboring degrees of freedom. The GD method was recently extended to two
space dimensions using a tensor-product construction in [2], and [3] presents robust approaches to handling complex
geometries with GD methods.

While the original GD formulation was based on piecewise continuous basis functions, the method has been
generalized to discontinuous basis functions and applied to symmetric hyperbolic systems [4]. In the current work, we
also use discontinuous basis functions. Furthermore, to apply the GD method on unstructured simplex meshes, we
follow the approach used in [5] and employ the idea of patch reconstruction.

In order to construct an entropy-stable discretization, we take advantage of the relationship between GD operators
and summation-by-parts (SBP) operators. SBP operators are finite-difference operators that mimic integration by
parts [6]. This property allows one to easily construct energy-stable SBP discretizations of linear partial-differential
equations; see for example, the reviews [7] and [8]. Perhaps more importantly, at least for the CFD community, SBP
operators can be combined with entropy-conservative flux funcitons [9–11] to construct high-order entropy-stable
discretizations of the Euler and Navier-Stokes equations [12–14].

As mentioned above, entropy-stable discretizations are seen as a potential way of addressing the issue of robustness
for high-order methods. While classic finite element methods satisfy a discrete entropy inequality [15, 16], this inequality
relies on exact integration of the semi-linear weak forms. Exact integration of these forms is difficult, if not impossible,
to achieve with the nonlinear flux functions present in the compressible Euler and Navier-Stokes equations. In contrast,
the entropy stability of SBP discretizations does not rely on exact integration, which is a significant advantage, especially
for under-resolved flows. In this study, we leverage the entropy-stable SBP discretization proposed in [17] to construct
an entropy-stable GD discretization.
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In summary, the goal of this work is two-fold. First, we want to demonstrate that entropy-stable GD discretizations
can be constructed on unstructured grids. Second, we hypothesize that GD discretizations may offer some advantages in
terms of efficiency compared to previously reported, entropy-stable SBP discretizations; thus, we conduct preliminary
studies that test this hypothesis.

The rest of the paper is organized as follows. Section II shows how summation-by-parts and Galerkin difference
methods are related by applying them to the constant-coefficient linear advection equation in one space dimension.
Once this relationship is established, we proceed to the entropy-stable GD discretization of the Euler equations in
Section III. In Section III, we also show that the GD discretization conserves entropy by leveraging existing SBP
entropy-conservation theory. Section IV presents the numerical experiments to verify the properties of our discretization
and compare it with a previously developed element-based SBP discretization. Finally, we conclude with a summary in
Section V.

II. Summation-by-parts and Galerkin differences

This section reviews summation-by-parts (SBP) and discontinuous Galkerkin difference (DGD) discretizations, with
the aim of illustrating the relationship between these schemes. To this end, we apply both discretizations to the linear
advection equation in one dimension, since the relationship between SBP and DGD is straightforward for this simple
model problem.

Consider the linear advection equation in one spatial dimension on the periodic domain Ω = [0,1]:

∂U

∂t
+
∂U

∂x
= 0, ∀ x ∈ [0,1],

U(x = 0, t) = U(x = 1, t).
(1)

For well-posedness, this partial differential equation (PDE) must be supplemented with an initial condition; however, for
the purpose of illustrating the relationship between the SBP and DGD discretizations of (1), it suffices to ignore initial
conditions for the time being.

A. SBP discretization of the linear advection equation
In one dimension, there are several possible ways we could discretize (1) using SBP operators. For instance, we could

use a uniform grid and apply the classical SBP operators proposed by Kreiss and Scherer [6]. However, element-based,
generalized-SBP operators [18] will prove more useful in order to relate SBP and DGD discretizations. Collocation
spectral-element operators using the Legendre-Gauss or Legendre-Gauss-Lobbato nodes are examples of generalized
SBP operators [19].

Before continuing, we briefly review the properties of generalized SBP operators. Suppose we want a difference
operator Dξ ∈ R

n×n that approximates the first derivative operator at a set of n nodes, Ξ = {ξi}ni=1, on the reference
interval [−1,1]. We can specify the accuracy of the difference operator precisely by indicating a set of linearly
independent functions for which the operator is exact. For instance, a degree p operator is exact for all polynomials in
Pp([−1,1]), where Pp([−1,1]) denotes the space of polynomials of degree p on the reference interval. Thus, if Dξ is a
degree p difference operator for the first derivative, then

n∑
j=1
(Dξ )i jP(ξj) =

∂P

∂ξ
(ξi), ∀ ξi ∈ Ξ, P ∈ Pp([−1,1]). (2)

The matrix Dξ is a degree p SBP (first-derivative) operator, if it satisfies the accuracy requirement (2) as well as the
following additional requirements:

• The operator has the factorization Dξ = H−1
ξ Qξ , where Hξ is a symmetric positive definite matrix.

• Qξ = Sξ + 1
2 Eξ , where ST

ξ = −Sξ is a skew symmetric matrix, and the symmetric matrix Eξ = ET
ξ satisfies

nκ∑
i=1

nκ∑
j=1
P(ξi)(Eξ )i jQ(ξj) = P(1)Q(1) − P(−1)Q(−1),

for all polynomials P,Q ∈ Pr ([−1,1]), where r ≥ p
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The significance of these requirements is that they ensure that Dξ mimics integration by parts in a discrete sense. For
further details see [18]. Note that Hξ is analogous to the mass matrix.

To use the SBP operator Dξ to (semi-) discretize the linear advection PDE, we first partition the domain into K
elements of uniform size, that is, Ω =

⋃K
κ=1Ωκ where Ωκ = [(κ − 1)h, κh] and h = 1/K . Next, we multiply (1) by a test

function and integrate over each element to obtain the weak formulation of the PDE: findU ∈ W(Ω) such that
K∑
κ=1

∫
Ωκ

V
∂U

∂t
dx −

K∑
κ=1

∫
Ωκ

∂V

∂x
U dx +

K∑
κ=1

∮
Γκ

VU nxdΓ = 0, ∀V ∈ W(Ω), (3)

where W(Ω) is an appropriate function space. Note that we have used integration-by-parts, on each element, to arrive at
the weak form.

We will discretize the weak form using so-called diagonal-norm SBP operators, that is, operators for which Hξ is
diagonal. For these operators the nodes Ξ and diagonal entries of Hξ define a degree q ≥ 2p − 1 quadrature rule [20].
Furthermore, the matrix Qξ of diagonal-norm operators is a degree 2p−1 exact discretization of the stiffness matrix [20].
Finally, when the first and last nodes in Ξκ coincide with the domain boundary in one dimension, Eξ can be constructed
to be an exact representation of the boundary integral.

After transforming the integrals in (3) to the reference interval [−1,1], we can approximate the weak form using the
SBP operator Dξ = H−1

ξ Qξ as follows:

K∑
κ=1

hvTκ Hξ
duκ
dt
−

K∑
κ=1

vTκ QT
ξ uκ +

K∑
κ=1

vTκ Eξuκ = 0, ∀vκ ∈ R
nκ ,

where uκ ∈ R
n and vκ ∈ R

n are the restriction of the solution and test function to the nodes of element κ. The weak
form can also be written in terms of global vectors and matrices as follows:

vTH
du
dt
− vTQT

x u + vTExu = 0, ∀ v ∈ RKnκ , (4)

where uT = [uT1 , u
T
2 , . . . , u

T
K ] is the concatenation of all the element-level solutions — similarly for the test function v

— and the global SBP operators are block diagonal matrices, with K blocks, defined by

H = h


Hξ

Hξ
. . .

Hξ


, Qx =


Qξ

Qξ

. . .

Qξ


, and Ex =


Eξ

Eξ
. . .

Eξ


. (5)

Finally, we emphasize that the SBP discretization needs to be modified in practice to couple the elements. Inter-
element coupling can be addressed using interior penalties, which are called simultaneous approximation terms (SATs)
in the SBP literature [21, 22]. We will consider such penalties when discretizing the Euler equation, but ignore them for
now in order to avoid complicating the comparison with the Galerkin difference method.

B. DGD discretization of the linear advection equation
In this section we review discontinuous Galerkin difference (DGD) methods in the context of the linear advection

equation. Note that high-order Galerkin difference (GD) methods were originally proposed in the context of continuous
basis functions [1]. In the present work, we take advantage on the recent extension of GD methods to discontinuous
basis functions [4, 5].

As before, consider the one dimensional domain Ω = [0,1] discretized into a uniform mesh of K elements with
subdomains Ωκ = [(κ − 1)h, κh], κ = 1,2 . . . ,K . The approximate DGD solution on element κ is given by

Ũκ(x) =
∑
j∈Sκ

ũ jPκ, j(x),

where ũ j denotes the discrete solution at the center of the jth element. The function Pκ, j(x) ∈ Pp(Ωκ) is the pth order
Lagrange interpolant that satisfies the interpolation conditions

Pκ, j(xi) =

{
1, xi = xj,
0, otherwise,
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(a) p = 0 (b) p = 2 (c) p = 4

Fig. 1 Discontinuous Galerkin difference basis functions, for degrees p = 0, p = 2, and p = 4, on a uniform
one dimensional grid. We have included more basis functions as p increases in order to clearly illustrate their
behavior away from the boundary.

where xi =
(
i − 1

2

)
h is the center of an element in the stencil Sκ of element κ. For an interior element, the stencil

includes κ itself and q elements on either side of κ. Consequently, in one dimension on uniform meshes, it is reasonable
to consider only even-order interpolants∗ of degree p = 2q. For elements near the boundary, we adopt a biased stencil
with a sufficient number of neighbors to construct a degree p interpolant, although this is not the only possible boundary
closure [1].

We can also define the DGD solution in terms of discontinuous basis functions. The basis function φ j(x),
corresponding to ũ j , can be found by differentiating Ũκ(x) with respect to ũ j , since the interpolant is linear; doing so
we find

φ j(x) =

{
Pκ, j(x), if xκ < x < xκ+1,and j ∈ Sκ,
0, otherwise.

Using this basis, we can express the DGD solution as a generalized linear model of the form

Ũ(x) =
K∑
j=1

ũ jφ j(x).

Figure 1 illustrates the DGD basis functions of degree p = 0, p = 2, and p = 4. Note that for p = 0, the DGD basis is
identical to a zeroth degree discontinuous Galerkin basis.

Using the definition of Ũ(x) above, let us now consider the DGD discretization of the linear advection problem.
Substituting the discrete solution into the weak form (3), and taking Ṽ(x) =

∑K
i=1 ṽiφi(x) as the test functions, we find

ṽT H̃
d ũ
dt
− ṽT Q̃T

x ũ + ṽT Ẽx ũ = 0, ∀ ṽ ∈ RK , (6)

∗The restriction to even-order interpolants is not justified in higher dimensions on unstructured grids, so we will consider both even- and odd-order
interpolants in that setting.
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where ũT = [ũ1, ũ2, . . . , ũK ] is the vector of solution coefficients, and the matrices in (6) are defined by

H̃i j =

K∑
κ=1

∫
Ωκ

φiφ j dx, (Q̃T
x )i j =

K∑
κ=1

∫
Ωκ

∂φi
∂x

φ j dx, and (Ẽx)i j =

K∑
κ=1

∮
Γκ

φiφ j nx dΓ. (7)

C. Relationship between the SBP and GD operators
In this section, we show how the GD matrices H̃, Q̃x and Ẽx are related to the corresponding SBP matrices. Consider

the mass matrix, whose entries are

H̃i j =

K∑
κ=1

∫
Ωκ

φiφ j dx =
∑

κ:i, j∈Sκ

∫
Ωκ

Pκ,iPκ, j dx,

where the latter sum is over all elements κ such that i, j ∈ Sκ . Next, since the product Pκ,iPκ, j is a degree 2p polynomial
on element κ, we can replace its integral with a quadrature based on a 2p-exact SBP norm†. To this end, let pκ, j ∈ Rn
denote the Lagrange interpolant Pκ, j(x) evaluated at the SBP nodes Ξ of element κ in reference space. Then

H̃i j =
∑

κ:i, j∈Sκ

hpTκ,iHξ pκ, j,

and the global GD mass matrix can be written as

H̃ = P̃THP̃,

where, for example, the (rectangular) prolongation matrix P̃ ∈ RnK×K for a degree p = 2 scheme has the structure

P̃ =



p1,1 p1,2 p1,3

p2,1 p2,2 p2,3

p3,2 p3,3 p3,4
. . .

. . .
. . .

pK ,K−2 pK ,K−1 pK ,K


.

Similarly, the GD stiffness and boundary operators are given by

Q̃x = P̃TQxP̃, and Ẽx = P̃TExP̃,

where Qx and Ex were defined in (5).
In summary, the GD discretization can be obtained from the SBP discretization by making the substitutions

u ← P̃ũ, and v ← P̃ṽ.

Performing these substitutions we obtain

ṽT
(
P̃THP̃

) d ũ
dt
− ṽT

(
P̃TQT

x P̃
)
ũ + ṽT

(
P̃TExP̃

)
ũ = 0, ∀ ṽ ∈ RK .

This strategy for constructing GD discretizations is useful, because we can leverage existing theory from the SBP
literature in order to prove properties about the discretization. For example, we will adopt similar substitutions to
construct and analyze the entropy-stable GD discretization of the Euler equations, which is presented in the next section.

III. Entropy-stable Galerkin difference discretization

This section presents our entropy-stable DGD discretization of the Euler equations. We begin with a brief review of
the Euler equations and their corresponding entropy function. Subsequently, in order to leverage existing theory for
SBP discretizations, we describe an entropy-conservative SBP discretization of the Euler equations that is suitable for
unstructured (simplex) grids. We then show how we convert the SBP discretization into the GD discretization, and
introduce suitable entropy-stable dissipation. Finally, we conclude the section by describing the patch definition and
reconstruction operator P̃ for the multidimensional case.

†Recall that a diagonal-norm SBP operator defines a 2p − 1 exact quadrature in general, so the requirement for a 2p exact quadrature may require
more SBP nodes than usual.
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A. The Euler equations and entropy
The strong form of the two-dimensional Euler equations is

∂U
∂t
+
∂Fx

∂x
+
∂Fy

∂y
= 0, ∀ x ∈ Ω, (8)

where, for the time being, the state variables are the conservative variables, U = [ρ, ρu, ρv, e]T , and the flux vectors are

Fx =


ρu

ρu2 + p
ρuv
(e + p)u


, Fy =


ρv

ρvu
ρv2 + p
(e + p)v


.

The pressure is defined by the callorically perfect ideal gas law as p = (γ − 1)[e − ρ
2 (u

2 + v2)], with γ = 1.4.
In addition to conserving mass, momentum, and energy, one can show that, in the absence of shocks, the Euler

equations conserve entropy [23, 24]:

d
dt

∫
Ω

S dΩ +
∫
∂Ω

(
Gxnx + Gyny

)
dΓ = 0, (9)

where S ≡ −ρs/(γ − 1) is the (mathematical) entropy, s = ln(p/ργ) is the thermodynamic entropy, and the entropy
fluxes in the x and y directions are Gx = uS and Gy = vS, respectively. More generally, when shocks are present,
the unique weak solution to the Euler equations dissipates (mathematical) entropy and the equality in (9) becomes an
inequality.

d
dt

∫
Ω

S dΩ +
∫
∂Ω

(
Gxnx + Gyny

)
dΓ ≤ 0, (10)

A discretization that mimics (9) is called entropy conservative, while a discretization that mimics (10) is called entropy
stable. It is advantageous, for both physical and mathematical reasons, to use discretizations that are entropy stable.
Physically, a discretization should respect (10) for consistency with the second-law of thermodynamics. Mathematically,
a discretization that mimics the inequality (10) gains a mechanism for nonlinear stability [25]. Note that entropy-
conservative schemes are valuable in this context because they provide a baseline scheme that can be readily made
entropy-stable through the introduction of an appropriate numerical dissipation.

B. Entropy-conservative SBP discretization
Recently, Fisher [12] and his collaborators [14, 26], demonstrated how SBP operators can be combined with

particular flux functions to achieve high-order, entropy conservative discretizations of the Euler equations. These
initial contributions focused on tensor-product finite-difference and spectral element methods, but the approach was
subsequently extended to more general elements [17, 27, 28]. In this work, we adopt the entropy conservative
discretization presented in Crean et al. [17], which is listed below in its weak formulation.

vTκ Hκ
duκ
dt
+ vTκ

[
Sx ◦ Fx(uκ, uκ)

]
1 + vTκ

[
Sy ◦ Fy(uκ, uκ)

]
1

+
1
2

∑
γ⊂∂Ωκ

vTκ

[
Eκνn ◦ Fn(uκ, uν)

]
1 = 0, ∀ vκ ∈ R

4nk .
(11)

Equation (11) introduces a number of new notations that are defined below; however, these definitions are necessarily
brief, so the interested reader is directed to [17] for additional details.

• As before, uκ and vκ are the solution and test vectors, respectively, restricted to element κ. Since there are four
state variables at each node, these vectors have 4nκ components.

• Hκ = Hκ ⊗ I4, where Hκ is the SBP norm matrix of element κ in physical space, I4 is the 4 × 4 identity, and ⊗
denotes the Kronecker product.

• Sx = Sx ⊗ I4 and Sy = Sy ⊗ I4, where Sx and Sy are the skew-symmetric parts of Qx and Qy , respectively, on
element κ in physical space.
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• Fx(uκ, uκ) is a 4nκ × 4nκ block matrix. The (i, j)th block is the 4 × 4 diagonal matrix

diag
[
F?

x (uκ,i, uκ, j)
]

where F?
x is a two-point, entropy-conservative flux function, and uκ,i holds the conservative variables at node i.

In this work we use the Ismail-Roe flux function [11] for F?
x . A similar definition applies for Fy(uκ, uκ).

• Eκνn = Eκνn ⊗ I4 where Eκνn ≡ RT
γκBγRγν = −(Eνκn )T and ν indicates the index of an element adjacent to κ on face γ.

In this work we use SBP operators for which Rγκ is a simple matrix of zeros and ones that extracts the degrees
of freedom from uκ that coincide with the quadrature nodes on face γ. Similarly, Rγν extracts the degrees of
freedom from the solution on the adjacent element ν, uν , that reside on the nodes of γ. Finally, Bγ is a diagonal
matrix holding the (strictly positive) quadrature weights for face γ.

• Fn(uκ, uν) is similar to Fx(uκ, uκ), except it is based on the entropy-conservative flux function evaluated between
pairs of nodes on the two elements κ and ν. Because of the particular form of Rγκ used in this work, the flux
function only needs to be computed for nodes of elements κ and ν that are coincident along the face γ.

In [17], it was shown that (11) satisfies semi-discrete conservation of entropy, which takes the following form on a
periodic domain:

K∑
κ=1

1THκ
d sκ
dt
= 0, (12)

where sκ ∈ R
nκ is the entropy S evaluated at the SBP nodes of element κ. We now set out to construct a DGD

discretization that also conserves entropy, and thus inherits a form of nonlinear stability.

C. Entropy-conservative GD discretization
As described earlier for the linear advection equation, we can construct a GD scheme from an SBP scheme by setting

u = P̃ũ and v = P̃ṽ. While this strategy can be applied to any linear PDE, the approach must be modified somewhat for
the Euler equations, if we are to retain entropy conservation.

For each element κ, let Sκ denote the set of neighboring elements used to interpolate to κ. Furthermore, let P̃κ be
the degree p exact prolongation matrix that interpolates from the barycenters of the elements in Sκ to the SBP nodes of
element κ. The procedure for selecting elements for Sκ and constructing P̃κ is described in Section III.E.

The key to constructing an entropy-stable DGD scheme is to ensure that the conservative variables are consistent
with the entropy variables at the nodes of the SBP discretization (11), where the entropy variables are defined by

W(U) ≡ ∂S

∂U =
[
γ−s
γ−1 −

1
2
ρ
p (u

2 + v2),
ρu
p ,

ρv
p , −

ρ
p

]T
.

Note that the entropy variable mapping is one-to-one [10], so we can equivalently write U(W). Returning to the
construction of the DGD scheme, there are two ways to achieve consistency between the conservative and entropy
variables at the level of the SBP nodes.

1) Rather than interpolating the conservative variables from the DGD degrees of freedom to the SBP nodes using
P̃κ , we instead convert to the entropy variables and interpolate these. Thus, if ũ is the vector of conservative
variables at the barycenter of the elements, then the conservative variables at the nodes of element κ in the SBP
discretization (11) are defined by

uκ(ũ) = u(P̃κ w̃(ũ)),

where w̃(ũ) is the vector of entropy variables at the element barycenters. In words, the interpolation proceeds by
converting from conservative variables to entropy variables at the GD degrees of freedom, interpolating the
entropy variables to the nodes of κ using P̃κ , and then converting back to conservative variables on κ. A similar
approach was used in [29, 30] for staggered-grid SBP discretizations and in [28] for entropy-stable DG methods.

2) Alternatively, we can simply adopt the entropy variables as the state variables. That is, the vector of unknowns
that we solve for is w̃. In this approach, the conservative variables at the SBP nodes of element κ are found using
the mapping

uκ(w̃) = u(P̃κ w̃).

We have chosen the second approach for this work. Using the entropy variables eliminates some computational
overhead and was more straightforward to implement with mfem [31], the finite-element library used to implement
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the discretizations. On the other hand, the second approach has implications for fully discrete entropy-stability and
conservation, which are the focus of ongoing research.

Let ũκ = uκ(w̃) and ṽκ = P̃κ ṽ be shorthand for the DGD trial and test functions mapped to element κ of the SBP
discretization. Then the entropy conservative DGD discretization is given by

ṽTκ Hκ
d ũκ
dt
+ ṽTκ

[
Sx ◦ Fx(ũκ, ũκ)

]
1 + ṽTκ

[
Sy ◦ Fy(ũκ, ũκ)

]
1

+
1
2

∑
γ⊂∂Ωκ

ṽTκ

[
Eκνn ◦ Fn(ũκ, ũν)

]
1 = 0, ∀ ṽ ∈ R4K .

(13)

We can easily show that (13) is entropy conservative on a periodic domain by leveraging the entropy-conservativeness
of the underlying SBP discretization. For example, if we replace the generic test function ṽ with the entropy variables at
the element barycenters, w̃, then we get the following result:

w̃T
κ Hκ

d ũκ
dt
+ w̃T

κ

[
Sx ◦ Fx(ũκ, ũκ)

]
1 + w̃T

κ

[
Sy ◦ Fy(ũκ, ũκ)

]
1

+
1
2

∑
γ⊂∂Ωκ

w̃T
κ

[
Eκνn ◦ Fn(ũκ, ũν)

]
1

=

K∑
κ=1

1THκ
d s̃κ
dt

= 0,

where s̃κ = s(P̃κ w̃) is the entropy S at the SBP nodes of element κ based on the interpolated entropy variables. To
arrive at the above result, we used the consistency between the conservative and entropy variables at the SBP nodes —
that is, ũκ = u(w̃κ)— and the equality (12).

D. Entropy-stable dissipation
When discontinuities are present in the flow, the mathematical entropy S should decrease across shocks and

the relevant global entropy condition is given by (10). Even for isentropic flows, adding entropy dissipation to the
discretization is often necessary to ensure optimal rates of convergence in the solution error. To address both of these
motivations, entropy-stable dissipation is added to the discretizations considered in this work.

First, consider the baseline SBP discretization (11). On each element κ, we introduce the following Lax-Friedichs-type
dissipation based on the jump in entropy-variables along the edge of each face.∑

γ∈∂Ωk

(R̄γκvκ)TBγΛγ(R̄γκwκ − R̄γνwν), (14)

where wκ = w(uκ) are the entropy variables at the nodes of element κ, and wν = w(uν) are the entropy variables at the
nodes of element ν. Recall that, for the particular operators used in this work, R̄γκ simply picks out the values from uκ
(or, in this case, wκ) where the element nodes and face nodes coincide. Thus, (R̄γκwκ − R̄γνwν) is merely the difference
in the entropy variables over the quadrature nodes of face γ.

The matrix Λγ is a block diagonal matrix with 4nγ rows and columns, where nγ is the number of nodes along face γ.
The ith block of this matrix is given by (in Matlab-like notation)

Λγ(4(i − 1) : 4i,4(i − 1) : 4i) =
[
|λmax |

∂U
∂W

]
ii

, ∀i = 1,2, . . . ,nγ,

where λmax is the spectral radius of the flux Jacobian in the normal direction at node i. The spectral radius and matrix
∂U/∂W are evaluated using a simple average of the two states on either side of the face at node i.

The dissipation (14) is added to the other terms on the left-hand side of (11), and this additional term ensures that
the total entropy is non-increasing. This claim is easy to show on a periodic domain by replacing vκ with wκ in (14) and
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summing over all elements:

K∑
κ=1

∑
γ∈∂Ωk

(R̄γκwκ)TBγΛγ(R̄γκwκ − R̄γνwν)

=
[
· · · (R̄γκwκ)TBγΛγ(R̄γκwκ − R̄γνwν) + · · · + (R̄γνwν)TBγΛγ(R̄γνwν − R̄γκwκ)

]
=

∑
γ

(R̄γκwκ − R̄γνwν)TBγΛγ(R̄γκwκ − R̄γνwν)

≥ 0,

where we used the positive-definiteness and symmetry of the Hessian ∂U/∂W and the quadrature weight matrix Bγ.
Note that the sum in the second-last line above is a sum over all faces γ in the mesh.

We can adapt the dissipation (14) to the DGD discretization in exactly the same way we adapted the entropy-
conservative SBP discretization (11). That is, we need only replace vκ , wκ , and wν with their interpolated values to
obtain the following expression for the DGD dissipation on element κ:∑

γ∈∂Ωk

(R̄γκ ṽκ)TBγΛγ(R̄γκ w̃κ − R̄γν w̃ν), (15)

where, as before, ṽκ = P̃κ ṽ are the interpolated test functions, and w̃κ = P̃κ w̃ are the entropy variables interpolated
to element κ. The DGD dissipation (15) retains the entropy stability of the baseline SBP dissipation, because of the
symmetry of the operator.

E. Patch definition and reconstruction operator
To implement the DGD method using the SBP discretization, we need high-order interpolation operators defined on

patches of elements. To construct these operators on unstructured triangular grids we rely on the patch reconstruction
approach proposed by Li et al. [5].

To illustrate the reconstruction procedure, consider a two dimensional domain Ω ⊂ R2 and its mesh Th with K
triangles. Here h = maxκ∈τh hκ is the maximum element diameter in the mesh Th. As described earlier, the DGD
solution on each element is associated with the element’s barycenter, although other sampling locations could be
considered. For each element κ ∈ Th, an element patch Sκ is constructed containing element κ itself and some
neighboring elements. We use |Sκ | to denote the number of elements in each patch Sκ and Xκ the coordinates of the
barycenters in the patch Sκ .

Before describing how we determine the elements in patch Sκ , let us define the prolongation/reconstruction operator
P̃κ . Consider a polynomial P ∈ Pp(Ω), and let ppatch denote this polynomial evaluated at the coordinates in Xk and let
pκ denote the same polynomial evaluated at the SBP quadrature nodes Ξκ of element κ. Then the prolongation operator
must satisfy

P̃κ ppatch = pκ,

for all P ∈ Pp(Ω). This accuracy condition can be expressed concisely as

P̃κV = Vκ (16)

where V ∈ R |Sκ |×n
∗ denotes a basis for Pp(Ω) evaluated at the patch barycenters, Xκ , and Vκ ∈ Rnκ×n

∗ is the basis
evaluated at the SBP nodes of κ. Note that n∗ = (p + 2)(p + 1)/2 is the dimension of Pp(Ω).

The matrix equation (16) consists of nκn∗ equations. The unknowns are the entries in P̃κ , of which there are nκ |Sκ |.
Therefore, a necessary (but not sufficient) condition for there to be a solution to (16) is that the number of elements in
the patch, |Sκ |, is greater than the number of basis functions n∗. In this work we ensure that |Sκ | ≥ n∗ and check that V
has full rank, and then we find the minimium-norm solution to (16).

To ensure a sufficient number of elements are in Sκ , the patches are constructed as follows. Consider the recursive
set definition

S0
κ = {κ},

S j
κ = S j−1

κ ∪ N(S j−1
κ ),
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(a) Initial element in patch (p = 0) (b) Patch for p = 1 (c) Patch for p = 2

Fig. 2 Patch construction

where N(S j−1
κ ) are the face-adjacent neighbors of all elements in the set S j−1

κ in the sense of graph theory. In other
words, S j

κ consists of all the elements in S j−1
κ plus all those elements that are adjacent along the face to any element

in S j−1
κ . The element patch Sκ is defined as the smallest index j such that |S j

κ | ≥ n∗. Figure 2 illustrates the patches
corresponding to P̃κ for degree p = 0, p = 1 and p = 2 reconstructions.

IV. Numerical Experiments
This section presents numerical experiments intended to verify the DGD discretization described in Section III. To

verify the accuracy of the discretization, the steady isentropic vortex problem is solved using the DGD discretization and
the results are compared against those obtained using the discontinuous SBP discretization. Subsequently, the entropy
stability of the DGD discretization is demonstrated using an unsteady isentropic vortex. We also use the unsteady vortex
to examine the spectra of the DGD operators.

A. Steady isentropic vortex problem
The two-dimensional isentropic vortex is a simple flow consisting of circular streamlines and radially varying density

and pressure. It is often used to verify accuracy because it has an analytical solution. Specifically, the exact solution for
the two-dimensional steady vortex problem is defined as

ρ(r) = ρi

[
1 +

γ − 1
2

M2
i

(
1 −

r2
i

r2

)] 1
γ−1

, u(r, θ) = ρ
√
γp
ρ

Ma sin θ,

v(r, θ) = −ρ
√
γp
ρ

Ma cos θ, e(r, θ) =
p

γ − 1
+

1
2
γpM2

a,

(17)

where r is the radial polar coordinate, and ri = 1 is the reference radius. The density and Mach number at ri are given
by ρi = 1 and Mi = 0.5, respectively. Here, u, v, e are calculated using the isentropic gas relations and Ma is the local
mach number given by

Ma =

√√√
2

γ − 1

[(
ρi
ρ

)γ−1 (
1 +

1
2
(γ − 1)M2

i

)
− 1

]
.

The domain for the steady-vortex verification is a quarter annulus: Ω = {(r, θ) | 1 ≤ r ≤ 3, 0 ≤ θ ≤ π/2}. The
mesh is created by generating an N × N quadrilateral mesh in polar-coordinate space and then splitting the quadrilaterals
into triangles. The triangles are then mapped to physical space using an isoparametric mapping of degree p + 1 for
an SBP/DGD discretization of degree p. Additional details regarding the mesh for the isentropic-vortex case can be
found in [32]. A sample mesh for N = 10 is shown in figure 3(a), and the density obtained using the SBP entropy-stable
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discretization is shown in Figure 3(b). The slip-wall boundary condition is applied along the inner radius at r = 1, and the
exact solution is applied to incoming characteristics on the remaining boundaries using the Roe numerical-flux function.
Finally, note that entropy variables are adopted as the state variables for both the DGD and D-SBP discretizations‡.

Figure 4 compares the L2 density error calculated from the DGD discretizations, for 1 ≤ p ≤ 4, as a function of
element size h. The L2 density error is defined by

L2 Error =

√√√
K∑
κ=1
(ρκ − ρ

exact
κ )THκ(ρκ − ρexactκ )

where ρκ is the density — as a function of the entropy variables — on the nodes of element κ obtained from either the
DGD or D-SBP discretizations. Recall that Hκ is the SBP norm matrix which defines a quadrature rule. The results
show that the D-SBP errors appear to approach the optimal p + 1 rate asymptotically for all polynomial degrees under
consideration. For the DGD errors, the degree p = 3 and p = 4 appear to be converging at close to optimal rates, while
the p = 1 and p = 2 schemes are super- and sub-optimal, respectively.

Accuracy versus element size provides an incomplete picture of the efficiency of the D-SBP and DGD schemes,
since the D-SBP scheme has more degrees of freedom on the same mesh. In order to compare the two discretizations
more fairly, we have plotted the L2 density error versus the number of degrees of freedom in Figure 5. For the DGD
discretization the number of degrees of freedom is simply the total number of elements, K . For the D-SBP scheme the
number of degrees of freedom is K times the number of nodes per element.

The results in Figure 5 reveal that the DGD discretization generally outperforms the D-SBP discretization when
error is measured in terms of degrees of freedom. In particular, while errors from the two discretizations are similar for
the lowest order p = 1 schemes, the DGD errors are significantly smaller for the higher order operators.

We emphasize that, while the number of degrees of freedom provides a better cost metric than element size, it is by
no means perfect. In particular, the number of degrees of freedom does not reflect the potential computational saving of
the DGD scheme due to its better spectral radius and conditioning; see, for example, the DGD spectra presented in the
next section. A more thorough comparison is the subject of on-going work.

(a) 2D curvilinear mesh (b) density for p = 3, N = 16

Fig. 3 Sample mesh and solution for the steady-vortex problem

B. Unsteady vortex problem
In this section we apply the DGD method to the two-dimensional unsteady isentropic vortex problem to verify that

the scheme is entropy conserative, if no dissipation is present, and entropy stable, if dissipation is present. The analytical
‡For steady problems, there is no difference between using the conservative and entropy variables for the D-SBP discretization.
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(a) D-SBP (b) DGD

Fig. 4 L2 solution error for the D-SBP and DGD schemes versus element size

Fig. 5 L2 error versus degree-of-freedoms for the DGD and D-SBP discretizations
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solution is defined as

ρ =

(
1 −

ε2(γ − 1)M2

8π2 exp ( f (x, y, t))
) 1

γ−1

, u = kρ
(
1 −

ε y

2π
exp

(
f (x, y, t)

2

))
,

v = kρ
ε x
2π

exp
(

f (x, y, t)
2

)
, e =

p
γ − 1

+
1

2ρ
(u2 + v2),

(18)

where f (x, y, t) = 1 − ((x − x0 − t)2 + (y − y0)
2), and the vortex is initially centered at (x0, y0) = (0.5,0.5). The Mach

number is M = 0.5, and ε = 1.0 is the vortex strength. The constant k is a scaling factor that controls the vortex speed,
and in the following simulations its value is 15.

The unsteady isentropic vortex problem is solved on the square domain Ω = {(x, y)|x ∈ [0,1], y ∈ [0,1]} with
periodic boundary conditions applied on all four edges. The analytical solution is imposed as the initial condition.
All simulations are run for a period of T = 1/k time units, which allows the vortex to return to its initial position of
(0.5,0.5). A sample mesh and the initial condition are shown in Figures 6(a) and 6(b), respectively.

(a) Example mesh (b) Initial condition corresponding to first entropy variable

Fig. 6 Mesh and initial condition for the unsteady vortex study

The simulations use the relaxation Runge-Kutta (RRK) [33] variant of the implicit midpont method to discretize the
time derivative. RRK methods respect the entropy conservation/stability of the spatial discretization. Furthermore, our
choice of the implicit midpoint method allows us to adopt a relatively large CFL number of 10.

Both entropy-conservative and entropy-stable DGD schemes were considered for this study in order to verify that
total entropy is conserved and dissipated, respectively. Figure 7(a) shows the time history of the spatially integrated
entropy,

∑
κ 1THκ s̃k , for the entropy-conservative scheme. The figure shows that entropy is conserved up to an error of

approximately 10−12, which is consistent with the tolerances used in the iterative solvers. Figure 7(b) plots the analogous
results for the entropy-stable DGD scheme. In this case, the entropy decreases monotonically, as predicted by the theory.
Moreover, we see that less entropy is dissipated as the solution degree p increases.

We conclude our study of the unsteady vortex by presenting the spectra of the DGD operators for this problem.
While the eigenvalues are not strictly relevant to the nonlinear entropy-stability of the DGD discretizations, the spectra
do provide insight into the potential efficiency of the schemes. Figures 8(a) and 8(b) show the eigenvalue distributions
of the matrices H−1J for the entropy-conservative and -stable schemes, respectively, where J is the Jacobian of the spatial
residual and H is the Jacobian of the temporal term. To normalize the results, the eigenvalues are scaled by the spectral
radius of the corresponding p = 1 operator.

The most notable feature of the eigenvalues is that the spectral radius does not grow significantly as the polynomial
degree increases. This suggests that a high-order DGD scheme can take large time steps relative toDG-type discretizations.
Granted, a disadvantage of the DGD discreization is that its mass matrix is neither diagonal nor block-diagonal, which
diminishes the appeal of explicit time marching schemes. Note that, while efficient solvers are available for the mass
matrix in tensor-product DGD schemes, this is not the case for the unstructured DGD scheme considered here.
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Finally, the careful reader will notice that the real part of some eigenvalues in figures 8(a) and 8(b) is positive.
According to linear stability, this would imply that the discretizations are unstable. However, this illustrates one of the
limitations of linear theory and does not contradict nonlinear entropy stability theory.

(a) Entropy conservative scheme (b) Entropy stable scheme

Fig. 7 Change in mathematical entropy

(a)

(b)

Fig. 8 Normalized eigenvalues from the entropy-conservative (upper row) and entropy stable (lower row) DGD
discretizations
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V. Conclusions
We have presented entropy-conservative and entropy-stable discontinuous Galerkin difference (DGD) discretizations

of the Euler equations on unstructured grids. To construct the DGD discretizations and establish their properties, we
leveraged existing SBP theory and used high-order projection operators to map the DGD test and trial functions from
the element centers to the nodes of the SBP discretization.

The accuracy of the DGD discretizations was verified using the steady isentropic vortex. Using the steady vortex,
we also demonstrated that the DGD discretization was more efficient than the baseline D-SBP discretization when the
L2 solution error was measured versus number of degrees of freedom.

We solved the unsteady isentropic vortex in order to verify the stability properties of the DGD discretizations. In
particular, we showed that entropy is conserved by the entropy-conservative DGD schemes, up to the accuracy of
the iterative methods used during each time step. Similarly, entropy was shown to decrease monotonically for the
entropy-stable DGD schemes. We also used the unsteady-vortex problem to investigate the spectra of the DGD operators.
The spectra have attractive distributions from the perspective of time-step restrictions, with limited dependence on
operator order of accuracy.
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