
Reproducing Real NDN Experiments using Mini-CCNx

Carlos M. S. Cabral, Christian Esteve Rothenberg, Maurício Ferreira Magalhães
Faculty of Electrical and Computer Engineering (FEEC)
University of Campinas (UNICAMP), São Paulo, Brazil

{cabral,chesteve,mauricio}@dca.fee.unicamp.br

ABSTRACT

This demo presents Mini-CCNx as a new experimentation
tool for the NDN (Named Data Networking) model. Rooted
in recent container-based emulation and resource isolation
techniques developed to foster research in SDN/OpenFlow,
Mini-CCNx features a number of contributions to support
and facilitate NDN experiments using the project’s official
code base at scale. In addition to integrating all the available
pieces of code, the platform offers experimenter-friendly con-
figuration interfaces tailored to NDN and allows to run arbi-
trary topologies with hundreds of nodes without sacrificing
high-fidelity results. We demonstrate how Mini-CCNx is ca-
pable of reproducing experiments on the NDN testbed using
dynamic routing protocols (OSPFN) and multicast content
delivery (NDNVideo). We import the whole NDN testbed
topology including annotated links and show how the ob-
tained results match published results. The experience sug-
gests that Mini-CCNx can be a helpful experimental plat-
form prior to going to a real deployment, altogether reduc-
ing time and costs, and yielding early insights on the end
application behavior, routing configuration needs, caching
characteristics, protocol performance, and so on.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Network com-
munications

Keywords

ICN, NDN, CCN, emulation, prototyping, routing

1. INTRODUCTION
Experimentally driven research in Information-Centric Net-

working (ICN) is crucial to the evaluation of open research
issues in this area, such as routing protocols, forwarding
strategies, caching techniques, content-centric application
development and so on.

Ideally, it would be interesting to have a testing and deve-
lopment platform with characteristics such as (i) flexibility –

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ICN’13, August 12, 2013, Hong Kong, China.
ACM 978-1-4503-2179-2/13/08.

Figure 1: Three NDN nodes connected using Mini-
CCNx containers

it should be possible to rapidly create several scenarios using
different configuration parameters, (ii) scalability –it should
be possible to create topologies with a sufficiently high num-
ber of nodes, (iii) low-cost –the platform should be able to
run in a commodity laptop/desktop or single Amazon EC2
instance, and (iv) realism –the behavior should be similar to
a real deployment, the code executed within the tool should
be the same as the one on real hardware/testbeds, and the
system should be able to generate and receive real traffic,
e.g., from the Internet or the local network.

Towards these goals and filling an existing gap in the avail-
able research platforms (mainly simulators and testbeds),
Mini-CCNx 1 appears as a low-cost, scalable and experiment-
er-friendly NDN emulator (hundreds of NDN nodes can be
instantiated in a commodity laptop), with flexible options to
define experiment configurations, including topologies, link
properties, and applications. Furthermore, Mini-CCNx runs
real code with real traffic and presents high-fidelity results
with regards to real experiments.

2. MINI-CCNx OVERVIEW
Mini-CCNx is a fork of Mininet-HiFi [3] (originally pro-

posed for OpenFlow/SDN) augmented with several mech-
anisms, tools, and classes for NDN experimentation. Each
node emulates a NDN node and runs the official code [1].

Mini-CCNx uses Container-Based Emulation (CBE) [4],
a lightweight OS-level virtualization technique. Each con-
tainer allows groups of processes to have independent views
of system resources, such as process IDs, file systems and
network interfaces while still using the same kernel. Each
container is a NDN node, with its own network namespace,

1Available at https://github.com/carlosmscabral/mn-ccnx



Figure 2: Typical Mini-CCNx workflow

virtual network interface(s), NDN-specific data structures
implemented by the ccnd daemon (PIT, FIB, and CS) and
repositories (ccnr). These nodes are connected to each other
using virtual Ethernet links in the kernel space. The main
challenge Mini-CCNx faces is related to performance iso-
lation and so it uses isolation techniques in order to limit
the resources available for each node and link and thus pro-
viding high-fidelity results. In order to achieve this, Linux
cgroups [2] are used to limit CPU bandwidth for each node.
Mini-CCNx also adds memory limits, a relevant subject for
NDN when it comes to caching and content storage. Finally,
using tc, it is possible to configure several link properties
such as bandwidth, delay, and packet loss. Figure 1 illus-
trates the CBE and isolation features used by Mini-CCNx.

3. DEMONSTRATION
The demonstration is split in two parts, each following a

typical Mini-CCNx experimental workflow (see Fig. 2).
1. Retrieving content under different network con-
ditions. The experiment shows how the download time of
media files in NDN repositories is affected under different
link conditions such as low-latency LAN, high-delay links,
and lossy links (e.g. wireless links). Download performance
depends also on hop distance and the caching configuration.
With this, we want to show how easy it is to set-up dif-
ferent NDN scenarios using Mini-CCNx. Figure 3 shows a
Mini-CCNx running environment.

Figure 3: Mini-CCNx demo experiment including
GUI (upper left), CLI (bottom left), NDNVideo
(upper right), and measured RTT (bottom right).

Figure 4: Part of the emulated NDN Testbed (out
of scale) and approximated link delays

2. Reproducing the NDN Testbed. Emulating the
NDN testbed [6] with Mini-CCNx, we evaluate the behaviour
of (1) multicast NDNVideo [7] delivery, and (2) the ospfn [8]
dynamic routing protocol . With a simple miniccnx -testbed

command, Mini-CCNx automatically loads 17 nodes repre-
senting the NDN testbed routers and their point-to-point
links.2. Propagation delays were estimated using straight
geographical distances between the nodes (see Fig. 4).
2.1 Multicast content delivery. NDNVideo [7] is a video
streaming application that allows to play live and pre-record-
ed videos with random access and no session negotiation.
We will show how Mini-CCNx reproduces the unexpected
behavior seen on the real deployment (RTT spikes), and also
how the suggested solution indeed attenuated this problem
(cf. TR-NDN-0007 [5]).
2.2 Dynamic routing. In this scenario, each node runs
its own instance of the ospfn [8] daemon, and the required
ospfd and zebra daemons from Quagga [9]. Each node is
configured to announce exactly the same name prefixes out-
lined in the NDN testbed website [6]. For instance, the
CAIDA/UCSD router announces the /ndn/caida.org/ pre-
fix while the UA router announces /ndn/arizona.edu. The
user can verify the routing scheme convergence and the tim-
ing and insertions of FIB entries (as seen with ccndstatus).
Moreover, with Mini-CCNx, the user can easily bring any
link up or down and observe the dynamic behavior of OSPFN
such as convergence times and automatic failover.

4. REFERENCES
[1] CCNx. CCN implementation. https://www.ccnx.org/.
[2] cgroups. Linux Control Groups.

https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt.
[3] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and

N. McKeown. Reproducible network experiments using
container-based emulation. CoNEXT ’12, page 253, 2012.

[4] lxc. Linux Containers. http://lxc.sourceforge.net/.
[5] NDN Project. NDN Technical Reports.

http://www.named-data.net/techreports.html.
[6] NDN Testbed. NDN Routing Topology.

http://netlab.cs.memphis.edu/script/htm/topology.html.
[7] NDNVideo.

http://www.named-data.net/techreport/TR007-streaming.pdf.
[8] OSPFN. OSPF for Named-data.

http://www.named-data.net/techreport/TR003-OSPFN.pdf.
[9] Quagga. Quagga Routing Suite.

http://www.nongnu.org/quagga/ .

2As seen on March 8th 2013 in [6]

https://www.ccnx.org/
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://lxc.sourceforge.net/
http://www.named-data.net/techreports.html
http://netlab.cs.memphis.edu/script/htm/topology.html
http://www.named-data.net/techreport/TR007-streaming.pdf
http://www.named-data.net/techreport/TR003-OSPFN.pdf
http://www.nongnu.org/quagga/

	Introduction
	Mini-CCNx Overview
	Demonstration
	References

