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Example 1: matrix completion
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Low-rank prior

(n+m—r)r,r < (m,n)
(G and H are full column rank matrices)

[Netflix Challenge, 2006]
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Example 1: matrix completion as a rank
constrained error minimization problem

Minimize the error to the known ratings,

min Y (X5 — (X)y)?

X eR™™ [ Hea
subject to rank(X) = r

ixed—ran —_GHT min (X/ - (GHT)I)2
Fixed—rank, X=GH' G e R (i;Q J J

H e RI™"

Q2 is the set of known ratings.

RT*" denotes full rank m x r matrices.
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Example 1: fixed-rank parameterizations have
structured symmetries

r m
| - |
n | |
X = G
r m
]
= n
G

M is r-by-r non-singular.

Other fixed-rank parameterizations have symmetries too.
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Example 1: matrix completion as a least-squares
problem with symmetries

min Z (X; — (GHT);)2 = Optimization on [G, H]
nxr
G e R (jjea
H e R™"

e Equivalence classes:
[G,H] := {(GM™}, HMT) : M non-singular € GL(r)}.

e Explicit computations: (G, H) € RI™" x R’
Implicit optimization: [G,H] € RI*" x R /GL(r) .
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Example 2: eigenvalue problem

xTAx
max

xeR"  xTx

@ cost unchanged under map x — ax, « non-zero scalar € R,.

@ Solutions not isolated, i.e., but are equivalence classes
[x] = {ax : a € R.} (real projective space)

@ An interpretation: direction is important and not length.

Explicit computations: R”, but
Implicit optimization: R"/R,.
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Example 2: eigenvalue problem, the block case

@ Generalization: r-dominant eigenvalue-eigenvector pairs:

max Trace(XTAX)

XERan
subject to XTX =1.

@ Symmetry under map X — XO such that 00" =070 =1,
denoted by O(r).

@ Interpretation: subspace is important and not basis vectors.

@ Search space is Grassmann manifold St(r, n)/O(r) [Edelman et
al., 1998; Absil et al., 2008].
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Problems have two fundamental structures:

least-squares and symmetries

min f(x) + least — squares cost
@ XEM
subject to [x] € M/ ~ . <+ equivalence classes on M

Both M and ~ result from interplay of few matrix manifolds.
M/ ~ has quotient manifold structure.

Rank constraint Orthogonality constraints
St(r,n) St(r,n)

R7*" RI*"

O(r) O(r)

GL(r) GL(r)

S++(r)
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A number of applications relate to quadratic
optimization with orthogonality and rank
constraints

min Trace(XTAX) Power, inverse, RQI, ...
subject to  XIX =1 PCA, Sparse PCA, ...
Max-cut
Procrustes
min X — X*H% Linear matrix equations, e.g., Lyanpunov
subject to  rank(X) =r Matrix completion, Tensor completion
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Optimization on manifold framework has gained
much attention lately

min f(x)
subject to x € M.

@ Nonlinear optimization methods: SQP.

@ Geometric methods: Optimization on manifolds [Smith, 1994;
Edelman et al., 1998; Absil et al., 2008]

+ Manopt: a Matlab toolbox at Manopt.org [Boumal et al.,
2014].
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Our contribution

@ Exploit cost and constraints with symmetries structures to
develop efficient algorithms.

@ We propose a notion of preconditioning on manifolds with

e metric tuning (identifying a good inner product)

e exploit second-order information in first-order algorithms.
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Outline

@ Motivation for a geometric framework for constraints with
symmetries

@ Exploiting structures

e Metric tuning
e Quadratic optimization with orthogonality and rank constraints

@ Algorithms for low-rank matrix completion with fixed-rank
constraint
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Two complementary views of optimization

min f(z)

zeRM

subject to h(z) =0

Sequential quadratic

. Riemannian framework
programming

(constraints are encoded

(constraints are embedded .
into the seach space)

into the cost function)

maxmin  f(z) — (A, h(z)), min - f(z),
where A is the Lagrange multiplier where M = {z : h(z) = 0}

has dimension p
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Two complementary views of optimization

Lagrangian view Manifold optimization view

(An ant-on-manifold view:

(Constrained viewpoint) . ( v
unconstrained viewpoint)
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Motivation for Riemannian framework

Sequential quadratic programming (SQP)

m}iR? f(x) subject to h(x)=0.
xeR"?

© Compute search direction (},

F(x) + {£(x), &) + 5(C D2L0x, A)[6)

arg min
(xERN ~~
first—order second—order
subject to Dh(x)[¢x] = 0. ((-,-) is scalar product)
—_———

linearization

@ Next x, is obtained by projecting x + s(* onto h(x) = 0.

Lagrangian function £(x, \) = f(x) — (\, h(x)).
Estimate \, = (h.(x)(he(x))") 1 he(x)f(x) locally [Nocedal and
Wright (2006)].
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Motivation for Riemannian framework

A critical assumption of SQP is not satisfied for
constraints with symmetries

o Competitive algorithm near the minimum.

@ A well-defined problem with unique solution when
(G, D2L(x, A)[¢x]) > 0 on Dh(x)[¢,] = 0.

@ Condition not satisfied for a search space with symmetries

<gX’ Dz‘C(Xa Ax)[CXD ZO
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SQP fails on the eigenvalue problem

. xTAx
min —
xERN XTX

©@ Compute the search direction

G = argmin f(x) + (f(x), &) + 5(Ce, D2L(X)[C)

(xER?
= (= x. (true for any homogenous function)

@ Consequently, the next iterate x; = x + s¢ = (1 + s)x,
e, x; = (1+s)x.

Bamdev Mishra (ULg and UCambridge) Riemannian preconditioning June 2015 18 / 44



Why SQP fails for constraints with symmetries?

Dh(z)[&,] = 0 = T, M v,

E}M = Haz @ VT

T, M is tangent space
V. is vertical space
[z] / Y+ @ ‘H, is horizontal space

W= {yiy~ayeM} /o] M = {x : hiz) = 0}

o SQP: ¢ = argmin f(x) + (f(x), &) + 3(Ce, D2L(X)[G) E Vi
(xETXM

@ Resolve: exclude V., and only H, is relevant.
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Motivation for Riemannian framework

The Riemannian optimization framework requires a
Riemannian metric

@ The Riemannian framework enables us to separate H, and V..

@ Riemannian metric that is invariant to [x].
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The Riemannian steepest-descent algorithm

min  f(x)

xXeEM
@ Compute the negative Riemannian gradient £, = —grad, f
w.r.t Riemannian metric g, i.e.,

grad,f = — argmin  f(x) + (£(x), ) + 5 &(C G -
(x € TM — —

X x first—order second—order

N , sec >

linearization

© Next iterate x; is computed using the retraction,
equivalent to projection.

@ A well-defined scheme on the quotient manifold M/ ~ of M.
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Metric profoundly affects performance of
Riemannian gradient algorithm

@ Conventional: metric g is only motivated by symmetry search
space, but ignores cost.

@ As a result, performance of the steepest-descent algorithm is
profoundly affected for different cost functions [Manton, 2002].
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Outline

e Motivation for a geometric framework for constraints with
symmetries

@ Exploiting structures

o Metric tuning
e Quadratic optimization with orthogonality and rank constraints

® Algorithms for low-rank matrix completion with fixed-rank
constraint
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Connecting SQP to Riemannian gradient descent

SQP :  argmin F(x) + (%), G} + 3G D2LLx A)[G)

(xERN

subject to  Dh(x)[(x] =0

Riemann : argmin f(x)+ (f(x), () + %gx(cx, )
xETM

Theorem
If x* € M is a local minimum of f : M — R on M/ ~, then
(i) (e, D2L(x*, A\es)[ne]) =0 for all ny- € Vs,
(i) (&, D2L(x*, Mo )[Ex+]) captures the second-order information.
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The second-derivative of the Lagrangian induces a
valid metric on the quotient space

Metric induced by Lagrangian, i.e., ((x, D?L(x, \)[nx]) is only a
pseudometric in T, M.

What we require:
@ metric is well-defined in the entire T, M.

@ the metric is a global structure.

Resolve: we exploit the Lagrangian structure further.
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Riemannian optimization and local convexity

Lagrangian £(x, \) = f(x) — (A, h(x)), (-,-) standard inner product.

8(&x:x) = (& D2L(x, Ax)[nx])
= (& D*F(x)[n]) + (& D2c(x, A)lnd).

TV TV
cost related constraint related
Case | v /\
Convex Concave
Case II /\ U
Concave Convex
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Quadratic optimization with orthogonality
constraints: revisiting the eigenvalue problem

max Trace(XTAX)  subject to XTX =1

XeRan
A= XTAX
L(x, M) = Trace(XTAX)/2 — (Ao, XTX = 1)/2
= L(x, M) = AX — X\,

= D2£(X7 )\X)[SX] = Afx - §x>\x
gx(gxa 77x) = <€X7 AT]X> - <£X7 77XXTAX>
—_—— ——————

cost related constraints related

@ Connects to power, inverse, and Rayleigh quotient iterations
[Absil et al., 2002].
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Capturing both cost and constraint information in

metric leads to a superior performance

-
o

|
n
T

—
o

Distance to solution

Standard metric

Preconditioned metric with shiftsi

Figure : w is updated with iterations. metric: (&, Any)

Bamdev Mishra (ULg and UCambridge)
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Similar story for generalized eigenvalue problem

min TTrace(XTAX)
XeRn

subject to X"BX =1,

gX(ngnX) = <§X7A77X> - <§X7 B77><>\X>7
—— —_———

cost related constraints related

Ax = Sym((XTBBX)~1(X7BAX)).
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Quadratic optimization with the rank constraint

min ITrace(XT AXB) + Trace(X'C)
XeRnxm

subject to rank(X) = r.

@ We use the parameterization X = GH', Ge R H e R,
@ The cost is quadratic and convex in arguments G, H individually.
(&, nx) = (N6, 2AGSym(H"B&y) + Céy)
+(1m, 2BHSym(G" Aég) + C'&g)
+<T]G, AfGHTBH> + <7]H, BfHGTAG>

(.

~
Block diagonal approximation of L (x)

x = (G, H).

@ The block-diagonal choice provides a simpler and convenient
metric choice.
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The case of symmetric fixed-rank constraint is
dealt with similarly

The case of symmetric fixed-rank constraint is handled by making
G=H,ie,

X =GG".

The metric tuning ideas follow through.
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Outline

e Motivation for a geometric framework for constraints with
symmetries

@ Exploiting structures

e Metric tuning
e Quadratic optimization with orthogonality and rank constraints

@ Algorithms for low-rank matrix completion with fixed-rank
constraint
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Revisiting the matrix completion problem: a
simpler cost function to infer the metric

XeR™™ (ijea
subject to rank(X) = r.

@ Second-order derivative of z(i,j)eﬂ(iij — X;)? wrt X=GHT
is computationally cumbersome.

@ Consider simpler cost function
min ITrace(XTX) — Trace(XTX) = ||X — X||2
X 6 Rnxm
subject to rank(X) = r.
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The matrix scaling acts a computationally efficient
preconditioner

@ Two parameterizations
X =GH™ (two — factor factorization)
RP* % R
X =URV™ (SVD — type factorization).
St(r,n) x GL(r) x St(r, m)

@ Novel metrics based on block diagonal approximation

8x (& k) = (n6, &eH™H) + (nn, &nG ' G)
8<(Ex:1x) = (nu, SuRRT) + (R, &r) + (v, EWRTR)

x =(G,H), x = (U,R,V).
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We develop conjugate gradient algorithms

@ The matrix scaling connect to various state-of-the-art
algorithms, e.g., scaled ALS [Wen et al., 2012] and scaled
subspace iteration [Ngo and Saad, 2012] .

@ Our algorithms, R2ZMC and R3MC, have shown competitive
performance.
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Algorithms for low-rank matrix completion

Under high sampling, the performance of metrics is
distinctly different

Standard three-factor
100 “““ i
Standard two-factor
-5
10
17
3
107°
Tuned three-factor
-15
10
Tuned two-factor
107

0 5 10

15 20 25
Time in seconds
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Movielens-1M dataset

set
o
©

o o

~ ~

o o
‘

o o
2
£

]
\S)
T

LRGeom

Mean square error on training
o
~

0.68f
0.66f R2MC
R3MC Pol. Fac.
0.64k (o] ac |
0 10 20 30 40 50 60

Time in seconds

(Similar conclusion also obtained on the Netflix and Yahoo datasets.)
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Extension to tensors: Tucker decomposition

T3
ns
1 —U;
— "3 N9
N9 T T9 T T
X U1 g U2

X =[G, Uy, Uy, Us] = Gx1U; x2Usx3Us3,

where
(r1,79,73) is the multilinear rank of X and

U,, Ug, and Uj are on the Stiefel manifold.

T T T
(U17 U27 US: g) = (U1017 U2027 U3O37 gX101 X202 X303)
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Algorithms for low-rank matrix completion

Riemannian preconditioning for tensor completion

Red is ours. ..

BB Proposed

150 x 150 x 150

100 x 100 x 100

Time in seconds
=)

10 20 30 10 20 30
0S

200 x 200 x 200

10 20 30

Figure : Small-scale instances of rank (10,10, 10). OS denotes the over

sampling ratio.
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Algorithms for low-rank matrix completion

Tensor completion: large-scale instances

Red is ours. ..

- Propoéed
Bl geomCG

r=(5,5,5)

Time in seconds
b

r=(10,10,10)

3000 5000 10000 3000 5000 10000
Tensor Size (per dimension)

Bamdev Mishra (ULg and UCambridge) Riemannian preconditioning

June 2015

40 / 44



Algorithms for low-rank matrix completion

Preconditioning:

BM, R Sepulchre (2014) Riemannian preconditioning. Tech. rep.,
arXiv:1405.6055.

Matrix completion:

BM, R Sepulchre (2014) R3MC: A Riemannian three-factor algorithm for
low-rank matrix completion. In: the proceedings of the 53rd IEEE
Conference on Decision and Control (CDC).

BM, K Adithya Apuroop, R Sepulchre (2012) A Riemannian geometry for
low-rank matrix completion. Tech. rep., arXiv:1211.1550.

Tensor completion:

H Kasai and BM (2015) Riemannian preconditioning for tensor
completion. arXiv:1506.02159.
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Summary

o Categorized popular problems into quadratic optimization with
rank and orthogonality constraints.

@ Importance of a geometric framework.

@ Question of selecting a metric addressed. Least-squares with
rank and/or orthogonality constraints.

o Classical Power, inverse, and Rayleigh quotient iterations
interpreted.

@ Concrete large-scale algorithms developed for low-rank matrix
completion with novel metric.
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