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Motivation

Example 1: matrix completion
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(G and H are full column rank matrices)

[Netflix Challenge, 2006]
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Motivation

Example 1: matrix completion as a rank

constrained error minimization problem

Minimize the error to the known ratings,

min
X ∈ Rn×m

∑
(i ,j)∈Ω

(X̃ij − (X)ij)
2

subject to rank(X) = r

Fixed−rank, X=GHT

============⇒
min

G ∈ Rn×r
∗

H ∈ Rm×r
∗

∑
(i ,j)∈Ω

(X̃ij − (GHT )ij)
2.

.

Ω is the set of known ratings.

Rm×r
∗ denotes full rank m × r matrices.
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Motivation

Example 1: fixed-rank parameterizations have

structured symmetries

= n
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=X

M is r -by-r non-singular.

Other fixed-rank parameterizations have symmetries too.
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Motivation

Example 1: matrix completion as a least-squares

problem with symmetries

min
G ∈ Rn×r

∗
H ∈ Rm×r

∗

∑
(i ,j)∈Ω

(X̃ij − (GHT )ij)
2 =⇒ Optimization on [G,H]

Equivalence classes:
[G,H] := {(GM−1,HMT ) : M non-singular ∈ GL(r)}.

Explicit computations: (G,H) ∈ Rn×r
∗ × Rm×r

∗
Implicit optimization: [G,H] ∈ Rn×r

∗ × Rm×r
∗ /GL(r) .
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Motivation

Example 2: eigenvalue problem

max
x∈Rn

xTAx

xTx

cost unchanged under map x 7→ αx , α non-zero scalar ∈ R∗.

Solutions not isolated, i.e., but are equivalence classes
[x ] = {αx : α ∈ R∗} (real projective space)

An interpretation: direction is important and not length.

Explicit computations: Rn, but
Implicit optimization: Rn/R∗.
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Motivation

Example 2: eigenvalue problem, the block case

Generalization: r -dominant eigenvalue-eigenvector pairs:

max
X∈Rn×r

Trace(XTAX)

subject to XTX = I.

Symmetry under map X 7→ XO such that OOT = OTO = I,
denoted by O(r).

Interpretation: subspace is important and not basis vectors.

Search space is Grassmann manifold St(r , n)/O(r) [Edelman et
al., 1998; Absil et al., 2008].
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Motivation

Problems have two fundamental structures:

least-squares and symmetries

min
x∈M

f (x) ← least− squares cost

subject to [x ] ∈M/ ∼ . ← equivalence classes onM

Both M and ∼ result from interplay of few matrix manifolds.

M/ ∼ has quotient manifold structure.

Rank constraint Orthogonality constraints

Rn×r
∗

St(r, n)

S++(r)

GL(r)

O(r)

Rn×r
∗

St(r, n)

GL(r)

O(r)
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Motivation

A number of applications relate to quadratic

optimization with orthogonality and rank

constraints

min Trace(XTAX)

subject to XTX = I

min ‖X−X⋆‖2F
subject to rank(X) = r

Power, inverse, RQI, . . .

PCA, Sparse PCA, . . .

Max-cut

Linear matrix equations, e.g., Lyanpunov

Matrix completion, Tensor completion

Procrustes
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Motivation

Optimization on manifold framework has gained

much attention lately

min f (x)

subject to x ∈M.

Nonlinear optimization methods: SQP.

Geometric methods: Optimization on manifolds [Smith, 1994;
Edelman et al., 1998; Absil et al., 2008]

+ Manopt: a Matlab toolbox at Manopt.org [Boumal et al.,
2014].
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Motivation

Our contribution

Exploit cost and constraints with symmetries structures to
develop efficient algorithms.

We propose a notion of preconditioning on manifolds with

metric tuning (identifying a good inner product)

exploit second-order information in first-order algorithms.
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Outline

Outline

Motivation for a geometric framework for constraints with
symmetries

Exploiting structures

Metric tuning
Quadratic optimization with orthogonality and rank constraints

Algorithms for low-rank matrix completion with fixed-rank
constraint
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Motivation for Riemannian framework

Outline

Motivation for a geometric framework for constraints with
symmetries

Exploiting structures

Metric tuning
Quadratic optimization with orthogonality and rank constraints

Algorithms for low-rank matrix completion with fixed-rank
constraint
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Motivation for Riemannian framework

Two complementary views of optimization

min
x∈Rn

f (x)

subject to h(x) = 0

min
x∈M

f (x),

where M = {x : h(x) = 0}
has dimension p

max
λ∈Rp

min
x∈Rn

f (x)− 〈λ, h(x)〉,
where λ is the Lagrange multiplier

Riemannian framework
Sequential quadratic

(constraints are embedded

into the cost function)

(constraints are encoded

into the seach space)

programming
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Motivation for Riemannian framework

Two complementary views of optimization

Rn

Lagrangian view Manifold optimization view

(An ant-on-manifold view:(Constrained viewpoint)
unconstrained viewpoint)
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Motivation for Riemannian framework

Sequential quadratic programming (SQP)

min
x∈Rn

f (x) subject to h(x) = 0.

1 Compute search direction ζ∗x ,

arg min
ζx∈Rn

f (x) + 〈fx(x), ζx〉︸ ︷︷ ︸
first−order

+ 1
2
〈ζx ,D2L(x , λx)[ζx ]〉︸ ︷︷ ︸

second−order

subject to Dh(x)[ζx ] = 0︸ ︷︷ ︸
linearization

. (〈·, ·〉 is scalar product)

2 Next x+ is obtained by projecting x + sζ∗x onto h(x) = 0.

Lagrangian function L(x , λ) = f (x)− 〈λ, h(x)〉.
Estimate λx = (hx(x)(hx(x))T )−1hx(x)fx(x) locally [Nocedal and
Wright (2006)].
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Motivation for Riemannian framework

A critical assumption of SQP is not satisfied for

constraints with symmetries

Competitive algorithm near the minimum.

A well-defined problem with unique solution when
〈ζx ,D2L(x , λx)[ζx ]〉 > 0 on Dh(x)[ζx ] = 0.

Condition not satisfied for a search space with symmetries
〈ζx ,D2L(x , λx)[ζx ]〉≥0.
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Motivation for Riemannian framework

SQP fails on the eigenvalue problem

min
x∈Rn

−xTAx

xTx

1 Compute the search direction

ζ∗x = arg min
ζx∈Rn

f (x) + 〈fx(x), ζx〉+ 1
2
〈ζx ,D2L(x)[ζx ]〉

⇒ ζ∗x = x . (true for any homogenous function)

2 Consequently, the next iterate x+ = x + sζ∗x = (1 + s)x ,
i.e., x+ = (1 + s)x .
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Motivation for Riemannian framework

Why SQP fails for constraints with symmetries?

M := {x : h(x) = 0}

y

x

y+

x+

[x+]

[x]

Dh(x)[ξx] = 0 ≡ TxM Vx

Hx

TxM is tangent space
Vx is vertical space
Hx is horizontal space

TxM = Hx ⊕ Vx

[x] := {y : y ∼ x, y ∈ M}

SQP: ζ∗x = arg min
ζx∈TxM

f (x) + 〈fx(x), ζx〉+ 1
2
〈ζx ,D2L(x)[ζx ]〉∈ Vx .

Resolve: exclude Vx , and only Hx is relevant.
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Motivation for Riemannian framework

The Riemannian optimization framework requires a

Riemannian metric

ξy

x

y

[x]M/ ∼

M

ξx

ξ[x]

x+

[x+]

Hx

Hy

ζx

ζy

ζ[x]

The Riemannian framework enables us to separate Hx and Vx .

Riemannian metric that is invariant to [x ].
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Motivation for Riemannian framework

The Riemannian steepest-descent algorithm

min
x∈M

f (x)

1 Compute the negative Riemannian gradient ξx = −gradx f
w.r.t Riemannian metric gx , i.e.,

gradx f = − arg min
ζx ∈ TxM︸ ︷︷ ︸

linearization

f (x) + 〈fx(x), ζx〉︸ ︷︷ ︸
first−order

+ 1
2
gx(ζx , ζx)︸ ︷︷ ︸
second−order

.

2 Next iterate x+ is computed using the retraction,
equivalent to projection.

A well-defined scheme on the quotient manifold M/ ∼ of M.
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Motivation for Riemannian framework

Metric profoundly affects performance of

Riemannian gradient algorithm

Conventional: metric g is only motivated by symmetry search
space, but ignores cost.

As a result, performance of the steepest-descent algorithm is
profoundly affected for different cost functions [Manton, 2002].
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Exploiting structure

Outline

Motivation for a geometric framework for constraints with
symmetries

Exploiting structures

Metric tuning
Quadratic optimization with orthogonality and rank constraints

Algorithms for low-rank matrix completion with fixed-rank
constraint
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Exploiting structure

Connecting SQP to Riemannian gradient descent

SQP : arg min
ζx∈Rn

f (x) + 〈fx(x), ζx〉+ 1
2
〈ζx ,D2L(x , λx)[ζx ]〉

subject to Dh(x)[ζx ] = 0

Riemann : arg min
ζx∈TxM

f (x) + 〈fx(x), ζx〉+ 1
2
gx(ζx , ζx)

Theorem

If x∗ ∈M is a local minimum of f :M→ R onM/ ∼, then
(i) 〈ηx∗ ,D2L(x∗, λx∗)[ηx∗]〉 = 0 for all ηx∗ ∈ Vx∗ ,
(ii) 〈ξx∗ ,D2L(x∗, λx∗)[ξx∗]〉 captures the second-order information.
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Exploiting structure

The second-derivative of the Lagrangian induces a

valid metric on the quotient space

Metric induced by Lagrangian, i.e., 〈ζx ,D2L(x , λx)[ηx ]〉 is only a
pseudometric in TxM.

What we require:

metric is well-defined in the entire TxM.

the metric is a global structure.

Resolve: we exploit the Lagrangian structure further.
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Exploiting structure

Riemannian optimization and local convexity

Lagrangian L(x , λ) = f (x)− 〈λ, h(x)〉, 〈·, ·〉 standard inner product.

gx(ξx , ηx) = 〈ξx ,D2L(x , λx)[ηx ]〉
= 〈ξx ,D2f (x)[ηx ]〉︸ ︷︷ ︸

cost related

+ 〈ξx ,D2c(x , λx)[ηx ]〉︸ ︷︷ ︸
constraint related

.

f (x) c(x, λx) = −〈λx, h(x)〉

Convex Concave

Concave Convex

Case I

Case II
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Exploiting structure

Quadratic optimization with orthogonality

constraints: revisiting the eigenvalue problem

max
X∈Rn×r

Trace(XTAX) subject to XTX = I

λx = XTAX

L(x , λx) = Trace(XTAX)/2− 〈λx ,XTX− I〉/2

⇒ Lx(x , λx) = AX− Xλx

⇒ D2L(x , λx)[ξx ] = Aξx − ξxλx
gx(ξx , ηx) = 〈ξx ,Aηx〉︸ ︷︷ ︸

cost related

− 〈ξx , ηxXTAX〉.︸ ︷︷ ︸
constraints related

Connects to power, inverse, and Rayleigh quotient iterations
[Absil et al., 2002].
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Exploiting structure

Capturing both cost and constraint information in

metric leads to a superior performance
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Figure : ω is updated with iterations. metric: 〈ξx ,Aηx〉−ω〈ξx , ηxXTAX〉.
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Exploiting structure

Similar story for generalized eigenvalue problem

min
X∈Rn×r

1
2
Trace(XTAX)

subject to XTBX = I,

gx(ξx , ηx) = 〈ξx ,Aηx〉︸ ︷︷ ︸
cost related

− 〈ξx ,Bηxλx〉,︸ ︷︷ ︸
constraints related

λx = Sym((XTBBX)−1(XTBAX)).
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Exploiting structure

Quadratic optimization with the rank constraint

min
X∈Rn×m

1
2
Trace(XTAXB) + Trace(XTC)

subject to rank(X) = r .

We use the parameterization X = GHT , G ∈ Rn×r
∗ , H ∈ Rm×r

∗ .

The cost is quadratic and convex in arguments G,H individually.
gx(ξx , ηx) = 〈ηG, 2AGSym(HTBξH) + CξH〉

+〈ηH, 2BHSym(GTAξG) + CT ξG〉
+〈ηG,AξGHTBH〉+ 〈ηH,BξHGTAG〉︸ ︷︷ ︸

Block diagonal approximation of Lxx (x)

.

x = (G,H).

The block-diagonal choice provides a simpler and convenient
metric choice.
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Exploiting structure

The case of symmetric fixed-rank constraint is

dealt with similarly

The case of symmetric fixed-rank constraint is handled by making
G = H, i.e.,

X = GGT .

The metric tuning ideas follow through.
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Algorithms for low-rank matrix completion

Outline

Motivation for a geometric framework for constraints with
symmetries

Exploiting structures

Metric tuning
Quadratic optimization with orthogonality and rank constraints

Algorithms for low-rank matrix completion with fixed-rank
constraint
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Algorithms for low-rank matrix completion

Revisiting the matrix completion problem: a

simpler cost function to infer the metric

min
X ∈ Rn×m

∑
(i ,j)∈Ω

(X̃ij − Xij)
2

subject to rank(X) = r .

Second-order derivative of
∑

(i ,j)∈Ω(X̃ij − Xij)
2 w.r.t X = GHT

is computationally cumbersome.

Consider simpler cost function

min
X ∈ Rn×m

1
2
Trace(XTX)− Trace(XT X̃) ≡ ‖X− X̃‖2

F

subject to rank(X) = r .
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Algorithms for low-rank matrix completion

The matrix scaling acts a computationally efficient

preconditioner

Two parameterizations

X = GHT (two− factor factorization)

Rn×r
∗ × Rm×r

∗

X = URVT (SVD− type factorization).

St(r , n)×GL(r)× St(r ,m)

Novel metrics based on block diagonal approximation

gx(ξx , ηx) = 〈ηG, ξGHTH〉+ 〈ηH, ξHGTG〉
gx(ξx , ηx) = 〈ηU, ξURRT 〉+ 〈ηR, ξR〉+ 〈ηV, ξVRTR〉

x = (G,H), x = (U,R,V).
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Algorithms for low-rank matrix completion

We develop conjugate gradient algorithms

The matrix scaling connect to various state-of-the-art
algorithms, e.g., scaled ALS [Wen et al., 2012] and scaled
subspace iteration [Ngo and Saad, 2012] .

Our algorithms, R2MC and R3MC, have shown competitive
performance.
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Algorithms for low-rank matrix completion

Under high sampling, the performance of metrics is

distinctly different
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Algorithms for low-rank matrix completion

Movielens-1M dataset
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(Similar conclusion also obtained on the Netflix and Yahoo datasets.)
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Algorithms for low-rank matrix completion

Extension to tensors: Tucker decomposition

=
n1

n2

n3

r1

r2

r3

n1

n2

n3

X U1 U2

U3

G

X = [[G;U1,U2,U3]] = G×1U1×2U2×3U3,

(r1, r2, r3) is the multilinear rank of X and

U1, U2, and U3 are on the Stiefel manifold.

where

r2

r1

r3

(U1,U2,U3,G) 7→ (U1O1,U2O2,U3O3,G×1O
T
1×2O

T
2×3O

T
3 )
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Algorithms for low-rank matrix completion

Riemannian preconditioning for tensor completion

Red is ours. . .
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Figure : Small-scale instances of rank (10, 10, 10). OS denotes the over
sampling ratio.
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Algorithms for low-rank matrix completion

Tensor completion: large-scale instances

Red is ours. . .
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Algorithms for low-rank matrix completion

Preconditioning:

BM, R Sepulchre (2014) Riemannian preconditioning. Tech. rep.,

arXiv:1405.6055.

Matrix completion:

BM, R Sepulchre (2014) R3MC: A Riemannian three-factor algorithm for

low-rank matrix completion. In: the proceedings of the 53rd IEEE

Conference on Decision and Control (CDC).

BM, K Adithya Apuroop, R Sepulchre (2012) A Riemannian geometry for

low-rank matrix completion. Tech. rep., arXiv:1211.1550.

Tensor completion:

H Kasai and BM (2015) Riemannian preconditioning for tensor

completion. arXiv:1506.02159.
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Summary

Summary

Categorized popular problems into quadratic optimization with
rank and orthogonality constraints.

Importance of a geometric framework.

Question of selecting a metric addressed. Least-squares with
rank and/or orthogonality constraints.

Classical Power, inverse, and Rayleigh quotient iterations
interpreted.

Concrete large-scale algorithms developed for low-rank matrix
completion with novel metric.
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